ETH Price: $2,260.10 (-0.67%)

Transaction Decoder

Block:
21716620 at Jan-27-2025 03:00:59 PM +UTC
Transaction Fee:
0.005961939937112724 ETH $13.47
Gas Used:
237,579 Gas / 25.094557756 Gwei

Emitted Events:

126 Token.Transfer( from=[Sender] 0x6dcc2944b8fa86a8708fe212e4e00df7472ee249, to=RubicMultiProxy, value=13330951012826957000000 )
127 Token.Approval( owner=[Sender] 0x6dcc2944b8fa86a8708fe212e4e00df7472ee249, spender=[Receiver] ERC20Proxy, value=115792089237316195423570985008687907853269984665640564026126632995086172639935 )
128 RubicMultiProxy.0x74d5029b0a85dd485bf2414b0920760500d9535db170f72375f811087a6d2073( 0x74d5029b0a85dd485bf2414b0920760500d9535db170f72375f811087a6d2073, 0x000000000000000000000000a21636070280298e1bde98dd9f190d2d53e3c638, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000 )
129 Token.Transfer( from=RubicMultiProxy, to=0xa21636070280298E1bDE98DD9F190d2d53e3C638, value=106647608102615656000 )
130 Token.Transfer( from=RubicMultiProxy, to=0x60745F5A9742FE905BbDE2F57808416edf2B8696, value=106647608102615656000 )
131 RubicMultiProxy.0x25471ec9f39b4ceb20d58f63c37f9c738011f0babcc4b6af69bdd82984ca5f8e( 0x25471ec9f39b4ceb20d58f63c37f9c738011f0babcc4b6af69bdd82984ca5f8e, 0x000000000000000000000000a21636070280298e1bde98dd9f190d2d53e3c638, 000000000000000000000000000000000000000000000005c8086a86ad7a2640, 000000000000000000000000000000000000000000000005c8086a86ad7a2640, 000000000000000000000000b33d999469a7e6b9ebc25a3a05248287b855ed46 )
132 WETH9.Transfer( src=UniswapV3Pool, dst=SwapRouter, wad=10028544290634747 )
133 Token.Transfer( from=RubicMultiProxy, to=UniswapV3Pool, value=13117655796621725688000 )
134 Token.Approval( owner=RubicMultiProxy, spender=SwapRouter, value=115792089237316195423570985008687907853269984665640555852372433329628203407935 )
135 UniswapV3Pool.Swap( sender=SwapRouter, recipient=SwapRouter, amount0=13117655796621725688000, amount1=-10028544290634747, sqrtPriceX96=69372128829415218906293177, liquidity=65762431754740247805564, tick=-140820 )
136 WETH9.Withdrawal( src=SwapRouter, wad=10028544290634747 )
137 RubicMultiProxy.0x7bfdfdb5e3a3776976e53cb0607060f54c5312701c8cba1155cc4d5394440b38( 0x7bfdfdb5e3a3776976e53cb0607060f54c5312701c8cba1155cc4d5394440b38, e46712ecee70099e3a0de7c4300657d3018d5540b87b739c251487ed7f20300e, 000000000000000000000000e592427a0aece92de3edee1f18e0157c05861564, 000000000000000000000000b33d999469a7e6b9ebc25a3a05248287b855ed46, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000002c71c0b2eb559b060c0, 0000000000000000000000000000000000000000000000000023a0e86c0ebbfb, 0000000000000000000000000000000000000000000000000000000067979fab )
138 RubicMultiProxy.0xb6422835e7046b0692f1b80a12361c9fc693dbaf86a063f876a82ef68755670b( 0xb6422835e7046b0692f1b80a12361c9fc693dbaf86a063f876a82ef68755670b, 0xe46712ecee70099e3a0de7c4300657d3018d5540b87b739c251487ed7f20300e, 000000000000000000000000a21636070280298e1bde98dd9f190d2d53e3c638, 0000000000000000000000000000000000000000000000000000000000000000, 000000000000000000000000b33d999469a7e6b9ebc25a3a05248287b855ed46, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000002d2ac1c03c2b4a4ad40, 0000000000000000000000000000000000000000000000000023a0e86c0ebbfb )

Account State Difference:

  Address   Before After State Difference Code
0x6DCc2944...7472EE249
0.125792158794683846 Eth
Nonce: 36
0.129858763148205869 Eth
Nonce: 37
0.004066604353522023
0x85218527...39AD00068
(Uniswap V3: FLOCK 2)
0xb33D9994...7b855eD46
0xC02aaA39...83C756Cc2 3,054,530.461254444717524663 Eth3,054,530.451225900426889916 Eth0.010028544290634747
(BuilderNet)
125.324757286266465959 Eth125.325132336446166251 Eth0.000375050179700292

Execution Trace

ERC20Proxy.startViaRubic( tokens=[0xb33D999469a7e6b9EbC25A3a05248287b855eD46], amounts=[13330951012826957000000], facetCallData=0xB3474174E46712ECEE70099E3A0DE7C4300657D3018D5540B87B739C251487ED7F20300E000000000000000000000000A21636070280298E1BDE98DD9F190D2D53E3C63800000000000000000000000000000000000000000000000000000000000000000000000000000000000000006DCC2944B8FA86A8708FE212E4E00DF7472EE249000000000000000000000000000000000000000000000000001CB28FBEB3356E00000000000000000000000000000000000000000000000000000000000000C000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000020000000000000000000000000E592427A0AECE92DE3EDEE1F18E0157C05861564000000000000000000000000E592427A0AECE92DE3EDEE1F18E0157C05861564000000000000000000000000B33D999469A7E6B9EBC25A3A05248287B855ED4600000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002D2AC1C03C2B4A4AD4000000000000000000000000000000000000000000000000000000000000000E000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000244AC9650D800000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000001800000000000000000000000000000000000000000000000000000000000000104414BF389000000000000000000000000B33D999469A7E6B9EBC25A3A05248287B855ED46000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC20000000000000000000000000000000000000000000000000000000000000BB80000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000006797A4530000000000000000000000000000000000000000000002C71C0B2EB559B060C0000000000000000000000000000000000000000000000000001CB28FBEB3356E000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004449404B7C000000000000000000000000000000000000000000000000001CB28FBEB3356E0000000000000000000000006AA981BFF95EDFEA36BDAE98C26B274FFCAFE8D30000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 )
  • Token.balanceOf( account=0x6AA981bFF95eDfea36Bdae98C26B274FfcafE8d3 ) => ( 0 )
  • Token.transferFrom( sender=0x6DCc2944b8FA86a8708FE212e4E00dF7472EE249, recipient=0x6AA981bFF95eDfea36Bdae98C26B274FfcafE8d3, amount=13330951012826957000000 ) => ( True )
  • Token.balanceOf( account=0x6AA981bFF95eDfea36Bdae98C26B274FfcafE8d3 ) => ( 13330951012826957000000 )
  • RubicMultiProxy.b3474174( )
    • GenericSwapFacet.swapTokensGeneric( _transactionId=E46712ECEE70099E3A0DE7C4300657D3018D5540B87B739C251487ED7F20300E, _integrator=0xa21636070280298E1bDE98DD9F190d2d53e3C638, _referrer=0x0000000000000000000000000000000000000000, _receiver=0x6DCc2944b8FA86a8708FE212e4E00dF7472EE249, _minAmount=8077629797381486, _swapData= )
      • Token.balanceOf( account=0x6AA981bFF95eDfea36Bdae98C26B274FfcafE8d3 ) => ( 13330951012826957000000 )
      • Token.balanceOf( account=0x6AA981bFF95eDfea36Bdae98C26B274FfcafE8d3 ) => ( 13330951012826957000000 )
      • Token.transfer( recipient=0xa21636070280298E1bDE98DD9F190d2d53e3C638, amount=106647608102615656000 ) => ( True )
      • Token.balanceOf( account=0x6AA981bFF95eDfea36Bdae98C26B274FfcafE8d3 ) => ( 13224303404724341344000 )
      • Token.transfer( recipient=0x60745F5A9742FE905BbDE2F57808416edf2B8696, amount=106647608102615656000 ) => ( True )
      • Token.balanceOf( account=0x6AA981bFF95eDfea36Bdae98C26B274FfcafE8d3 ) => ( 13117655796621725688000 )
      • Token.allowance( from=0x6AA981bFF95eDfea36Bdae98C26B274FfcafE8d3, to=0xE592427A0AEce92De3Edee1F18E0157C05861564 ) => ( 115792089237316195423570985008687907853269984665640555865490089126249929095935 )
      • SwapRouter.multicall( data=[QUvziQAAAAAAAAAAAAAAALM9mZRpp+a568JaOgUkgoe4Ve1GAAAAAAAAAAAAAAAAwCqqObIj/o0KDlxPJ+rZCDx1bMIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGeXpFMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsccCy61WbBgwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcso++szVuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA=, SUBLfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcso++szVuAAAAAAAAAAAAAAAAaqmBv/le3+o2va6YwmsnT/yv6NM=] ) => ( results=[AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOg6GwOu/s=, ] )
        • SwapRouter.exactInputSingle( params=[{name:tokenIn, type:address, order:1, indexed:false, value:0xb33D999469a7e6b9EbC25A3a05248287b855eD46, valueString:0xb33D999469a7e6b9EbC25A3a05248287b855eD46}, {name:tokenOut, type:address, order:2, indexed:false, value:0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, valueString:0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2}, {name:fee, type:uint24, order:3, indexed:false, value:3000, valueString:3000}, {name:recipient, type:address, order:4, indexed:false, value:0x0000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000}, {name:deadline, type:uint256, order:5, indexed:false, value:1737991251, valueString:1737991251}, {name:amountIn, type:uint256, order:6, indexed:false, value:13117655796621725688000, valueString:13117655796621725688000}, {name:amountOutMinimum, type:uint256, order:7, indexed:false, value:8077629797381486, valueString:8077629797381486}, {name:sqrtPriceLimitX96, type:uint160, order:8, indexed:false, value:0, valueString:0}] ) => ( amountOut=10028544290634747 )
          • UniswapV3Pool.swap( recipient=0xE592427A0AEce92De3Edee1F18E0157C05861564, zeroForOne=True, amountSpecified=13117655796621725688000, sqrtPriceLimitX96=4295128740, data=0x000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000000400000000000000000000000006AA981BFF95EDFEA36BDAE98C26B274FFCAFE8D3000000000000000000000000000000000000000000000000000000000000002BB33D999469A7E6B9EBC25A3A05248287B855ED46000BB8C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000000000000000000000 ) => ( amount0=13117655796621725688000, amount1=-10028544290634747 )
            • WETH9.transfer( dst=0xE592427A0AEce92De3Edee1F18E0157C05861564, wad=10028544290634747 ) => ( True )
            • Token.balanceOf( account=0x85218527945d48167A682e277867F1539AD00068 ) => ( 75331925144038561711510447 )
            • SwapRouter.uniswapV3SwapCallback( amount0Delta=13117655796621725688000, amount1Delta=-10028544290634747, _data=0x000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000000400000000000000000000000006AA981BFF95EDFEA36BDAE98C26B274FFCAFE8D3000000000000000000000000000000000000000000000000000000000000002BB33D999469A7E6B9EBC25A3A05248287B855ED46000BB8C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000000000000000000000 )
            • Token.balanceOf( account=0x85218527945d48167A682e277867F1539AD00068 ) => ( 75345042799835183437198447 )
            • SwapRouter.unwrapWETH9( amountMinimum=8077629797381486, recipient=0x6AA981bFF95eDfea36Bdae98C26B274FfcafE8d3 )
              • WETH9.balanceOf( 0xE592427A0AEce92De3Edee1F18E0157C05861564 ) => ( 10028544290634747 )
              • WETH9.withdraw( wad=10028544290634747 )
                • ETH 0.010028544290634747 SwapRouter.CALL( )
                • ETH 0.010028544290634747 RubicMultiProxy.CALL( )
                • ETH 0.010028544290634747 0x6dcc2944b8fa86a8708fe212e4e00df7472ee249.CALL( )
                  File 1 of 7: ERC20Proxy
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
                  pragma solidity ^0.8.0;
                  import "../utils/Context.sol";
                  /**
                   * @dev Contract module which provides a basic access control mechanism, where
                   * there is an account (an owner) that can be granted exclusive access to
                   * specific functions.
                   *
                   * By default, the owner account will be the one that deploys the contract. This
                   * can later be changed with {transferOwnership}.
                   *
                   * This module is used through inheritance. It will make available the modifier
                   * `onlyOwner`, which can be applied to your functions to restrict their use to
                   * the owner.
                   */
                  abstract contract Ownable is Context {
                      address private _owner;
                      event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                      /**
                       * @dev Initializes the contract setting the deployer as the initial owner.
                       */
                      constructor() {
                          _transferOwnership(_msgSender());
                      }
                      /**
                       * @dev Throws if called by any account other than the owner.
                       */
                      modifier onlyOwner() {
                          _checkOwner();
                          _;
                      }
                      /**
                       * @dev Returns the address of the current owner.
                       */
                      function owner() public view virtual returns (address) {
                          return _owner;
                      }
                      /**
                       * @dev Throws if the sender is not the owner.
                       */
                      function _checkOwner() internal view virtual {
                          require(owner() == _msgSender(), "Ownable: caller is not the owner");
                      }
                      /**
                       * @dev Leaves the contract without owner. It will not be possible to call
                       * `onlyOwner` functions anymore. Can only be called by the current owner.
                       *
                       * NOTE: Renouncing ownership will leave the contract without an owner,
                       * thereby removing any functionality that is only available to the owner.
                       */
                      function renounceOwnership() public virtual onlyOwner {
                          _transferOwnership(address(0));
                      }
                      /**
                       * @dev Transfers ownership of the contract to a new account (`newOwner`).
                       * Can only be called by the current owner.
                       */
                      function transferOwnership(address newOwner) public virtual onlyOwner {
                          require(newOwner != address(0), "Ownable: new owner is the zero address");
                          _transferOwnership(newOwner);
                      }
                      /**
                       * @dev Transfers ownership of the contract to a new account (`newOwner`).
                       * Internal function without access restriction.
                       */
                      function _transferOwnership(address newOwner) internal virtual {
                          address oldOwner = _owner;
                          _owner = newOwner;
                          emit OwnershipTransferred(oldOwner, newOwner);
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
                  pragma solidity ^0.8.0;
                  /**
                   * @dev Interface of the ERC20 standard as defined in the EIP.
                   */
                  interface IERC20 {
                      /**
                       * @dev Emitted when `value` tokens are moved from one account (`from`) to
                       * another (`to`).
                       *
                       * Note that `value` may be zero.
                       */
                      event Transfer(address indexed from, address indexed to, uint256 value);
                      /**
                       * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                       * a call to {approve}. `value` is the new allowance.
                       */
                      event Approval(address indexed owner, address indexed spender, uint256 value);
                      /**
                       * @dev Returns the amount of tokens in existence.
                       */
                      function totalSupply() external view returns (uint256);
                      /**
                       * @dev Returns the amount of tokens owned by `account`.
                       */
                      function balanceOf(address account) external view returns (uint256);
                      /**
                       * @dev Moves `amount` tokens from the caller's account to `to`.
                       *
                       * Returns a boolean value indicating whether the operation succeeded.
                       *
                       * Emits a {Transfer} event.
                       */
                      function transfer(address to, uint256 amount) external returns (bool);
                      /**
                       * @dev Returns the remaining number of tokens that `spender` will be
                       * allowed to spend on behalf of `owner` through {transferFrom}. This is
                       * zero by default.
                       *
                       * This value changes when {approve} or {transferFrom} are called.
                       */
                      function allowance(address owner, address spender) external view returns (uint256);
                      /**
                       * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                       *
                       * Returns a boolean value indicating whether the operation succeeded.
                       *
                       * IMPORTANT: Beware that changing an allowance with this method brings the risk
                       * that someone may use both the old and the new allowance by unfortunate
                       * transaction ordering. One possible solution to mitigate this race
                       * condition is to first reduce the spender's allowance to 0 and set the
                       * desired value afterwards:
                       * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                       *
                       * Emits an {Approval} event.
                       */
                      function approve(address spender, uint256 amount) external returns (bool);
                      /**
                       * @dev Moves `amount` tokens from `from` to `to` using the
                       * allowance mechanism. `amount` is then deducted from the caller's
                       * allowance.
                       *
                       * Returns a boolean value indicating whether the operation succeeded.
                       *
                       * Emits a {Transfer} event.
                       */
                      function transferFrom(
                          address from,
                          address to,
                          uint256 amount
                      ) external returns (bool);
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
                  pragma solidity ^0.8.0;
                  /**
                   * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
                   * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
                   *
                   * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
                   * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
                   * need to send a transaction, and thus is not required to hold Ether at all.
                   */
                  interface IERC20Permit {
                      /**
                       * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
                       * given ``owner``'s signed approval.
                       *
                       * IMPORTANT: The same issues {IERC20-approve} has related to transaction
                       * ordering also apply here.
                       *
                       * Emits an {Approval} event.
                       *
                       * Requirements:
                       *
                       * - `spender` cannot be the zero address.
                       * - `deadline` must be a timestamp in the future.
                       * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
                       * over the EIP712-formatted function arguments.
                       * - the signature must use ``owner``'s current nonce (see {nonces}).
                       *
                       * For more information on the signature format, see the
                       * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
                       * section].
                       */
                      function permit(
                          address owner,
                          address spender,
                          uint256 value,
                          uint256 deadline,
                          uint8 v,
                          bytes32 r,
                          bytes32 s
                      ) external;
                      /**
                       * @dev Returns the current nonce for `owner`. This value must be
                       * included whenever a signature is generated for {permit}.
                       *
                       * Every successful call to {permit} increases ``owner``'s nonce by one. This
                       * prevents a signature from being used multiple times.
                       */
                      function nonces(address owner) external view returns (uint256);
                      /**
                       * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
                       */
                      // solhint-disable-next-line func-name-mixedcase
                      function DOMAIN_SEPARATOR() external view returns (bytes32);
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)
                  pragma solidity ^0.8.0;
                  import "../IERC20.sol";
                  import "../extensions/draft-IERC20Permit.sol";
                  import "../../../utils/Address.sol";
                  /**
                   * @title SafeERC20
                   * @dev Wrappers around ERC20 operations that throw on failure (when the token
                   * contract returns false). Tokens that return no value (and instead revert or
                   * throw on failure) are also supported, non-reverting calls are assumed to be
                   * successful.
                   * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
                   * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
                   */
                  library SafeERC20 {
                      using Address for address;
                      function safeTransfer(
                          IERC20 token,
                          address to,
                          uint256 value
                      ) internal {
                          _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                      }
                      function safeTransferFrom(
                          IERC20 token,
                          address from,
                          address to,
                          uint256 value
                      ) internal {
                          _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                      }
                      /**
                       * @dev Deprecated. This function has issues similar to the ones found in
                       * {IERC20-approve}, and its usage is discouraged.
                       *
                       * Whenever possible, use {safeIncreaseAllowance} and
                       * {safeDecreaseAllowance} instead.
                       */
                      function safeApprove(
                          IERC20 token,
                          address spender,
                          uint256 value
                      ) internal {
                          // safeApprove should only be called when setting an initial allowance,
                          // or when resetting it to zero. To increase and decrease it, use
                          // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                          require(
                              (value == 0) || (token.allowance(address(this), spender) == 0),
                              "SafeERC20: approve from non-zero to non-zero allowance"
                          );
                          _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                      }
                      function safeIncreaseAllowance(
                          IERC20 token,
                          address spender,
                          uint256 value
                      ) internal {
                          uint256 newAllowance = token.allowance(address(this), spender) + value;
                          _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                      }
                      function safeDecreaseAllowance(
                          IERC20 token,
                          address spender,
                          uint256 value
                      ) internal {
                          unchecked {
                              uint256 oldAllowance = token.allowance(address(this), spender);
                              require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                              uint256 newAllowance = oldAllowance - value;
                              _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                          }
                      }
                      function safePermit(
                          IERC20Permit token,
                          address owner,
                          address spender,
                          uint256 value,
                          uint256 deadline,
                          uint8 v,
                          bytes32 r,
                          bytes32 s
                      ) internal {
                          uint256 nonceBefore = token.nonces(owner);
                          token.permit(owner, spender, value, deadline, v, r, s);
                          uint256 nonceAfter = token.nonces(owner);
                          require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
                      }
                      /**
                       * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                       * on the return value: the return value is optional (but if data is returned, it must not be false).
                       * @param token The token targeted by the call.
                       * @param data The call data (encoded using abi.encode or one of its variants).
                       */
                      function _callOptionalReturn(IERC20 token, bytes memory data) private {
                          // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                          // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
                          // the target address contains contract code and also asserts for success in the low-level call.
                          bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                          if (returndata.length > 0) {
                              // Return data is optional
                              require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                          }
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
                  pragma solidity ^0.8.1;
                  /**
                   * @dev Collection of functions related to the address type
                   */
                  library Address {
                      /**
                       * @dev Returns true if `account` is a contract.
                       *
                       * [IMPORTANT]
                       * ====
                       * It is unsafe to assume that an address for which this function returns
                       * false is an externally-owned account (EOA) and not a contract.
                       *
                       * Among others, `isContract` will return false for the following
                       * types of addresses:
                       *
                       *  - an externally-owned account
                       *  - a contract in construction
                       *  - an address where a contract will be created
                       *  - an address where a contract lived, but was destroyed
                       * ====
                       *
                       * [IMPORTANT]
                       * ====
                       * You shouldn't rely on `isContract` to protect against flash loan attacks!
                       *
                       * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                       * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                       * constructor.
                       * ====
                       */
                      function isContract(address account) internal view returns (bool) {
                          // This method relies on extcodesize/address.code.length, which returns 0
                          // for contracts in construction, since the code is only stored at the end
                          // of the constructor execution.
                          return account.code.length > 0;
                      }
                      /**
                       * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                       * `recipient`, forwarding all available gas and reverting on errors.
                       *
                       * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                       * of certain opcodes, possibly making contracts go over the 2300 gas limit
                       * imposed by `transfer`, making them unable to receive funds via
                       * `transfer`. {sendValue} removes this limitation.
                       *
                       * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                       *
                       * IMPORTANT: because control is transferred to `recipient`, care must be
                       * taken to not create reentrancy vulnerabilities. Consider using
                       * {ReentrancyGuard} or the
                       * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                       */
                      function sendValue(address payable recipient, uint256 amount) internal {
                          require(address(this).balance >= amount, "Address: insufficient balance");
                          (bool success, ) = recipient.call{value: amount}("");
                          require(success, "Address: unable to send value, recipient may have reverted");
                      }
                      /**
                       * @dev Performs a Solidity function call using a low level `call`. A
                       * plain `call` is an unsafe replacement for a function call: use this
                       * function instead.
                       *
                       * If `target` reverts with a revert reason, it is bubbled up by this
                       * function (like regular Solidity function calls).
                       *
                       * Returns the raw returned data. To convert to the expected return value,
                       * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                       *
                       * Requirements:
                       *
                       * - `target` must be a contract.
                       * - calling `target` with `data` must not revert.
                       *
                       * _Available since v3.1._
                       */
                      function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                          return functionCallWithValue(target, data, 0, "Address: low-level call failed");
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                       * `errorMessage` as a fallback revert reason when `target` reverts.
                       *
                       * _Available since v3.1._
                       */
                      function functionCall(
                          address target,
                          bytes memory data,
                          string memory errorMessage
                      ) internal returns (bytes memory) {
                          return functionCallWithValue(target, data, 0, errorMessage);
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                       * but also transferring `value` wei to `target`.
                       *
                       * Requirements:
                       *
                       * - the calling contract must have an ETH balance of at least `value`.
                       * - the called Solidity function must be `payable`.
                       *
                       * _Available since v3.1._
                       */
                      function functionCallWithValue(
                          address target,
                          bytes memory data,
                          uint256 value
                      ) internal returns (bytes memory) {
                          return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                      }
                      /**
                       * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                       * with `errorMessage` as a fallback revert reason when `target` reverts.
                       *
                       * _Available since v3.1._
                       */
                      function functionCallWithValue(
                          address target,
                          bytes memory data,
                          uint256 value,
                          string memory errorMessage
                      ) internal returns (bytes memory) {
                          require(address(this).balance >= value, "Address: insufficient balance for call");
                          (bool success, bytes memory returndata) = target.call{value: value}(data);
                          return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                       * but performing a static call.
                       *
                       * _Available since v3.3._
                       */
                      function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                          return functionStaticCall(target, data, "Address: low-level static call failed");
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                       * but performing a static call.
                       *
                       * _Available since v3.3._
                       */
                      function functionStaticCall(
                          address target,
                          bytes memory data,
                          string memory errorMessage
                      ) internal view returns (bytes memory) {
                          (bool success, bytes memory returndata) = target.staticcall(data);
                          return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                       * but performing a delegate call.
                       *
                       * _Available since v3.4._
                       */
                      function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                          return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                       * but performing a delegate call.
                       *
                       * _Available since v3.4._
                       */
                      function functionDelegateCall(
                          address target,
                          bytes memory data,
                          string memory errorMessage
                      ) internal returns (bytes memory) {
                          (bool success, bytes memory returndata) = target.delegatecall(data);
                          return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                      }
                      /**
                       * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
                       * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
                       *
                       * _Available since v4.8._
                       */
                      function verifyCallResultFromTarget(
                          address target,
                          bool success,
                          bytes memory returndata,
                          string memory errorMessage
                      ) internal view returns (bytes memory) {
                          if (success) {
                              if (returndata.length == 0) {
                                  // only check isContract if the call was successful and the return data is empty
                                  // otherwise we already know that it was a contract
                                  require(isContract(target), "Address: call to non-contract");
                              }
                              return returndata;
                          } else {
                              _revert(returndata, errorMessage);
                          }
                      }
                      /**
                       * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
                       * revert reason or using the provided one.
                       *
                       * _Available since v4.3._
                       */
                      function verifyCallResult(
                          bool success,
                          bytes memory returndata,
                          string memory errorMessage
                      ) internal pure returns (bytes memory) {
                          if (success) {
                              return returndata;
                          } else {
                              _revert(returndata, errorMessage);
                          }
                      }
                      function _revert(bytes memory returndata, string memory errorMessage) private pure {
                          // Look for revert reason and bubble it up if present
                          if (returndata.length > 0) {
                              // The easiest way to bubble the revert reason is using memory via assembly
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let returndata_size := mload(returndata)
                                  revert(add(32, returndata), returndata_size)
                              }
                          } else {
                              revert(errorMessage);
                          }
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
                  pragma solidity ^0.8.0;
                  /**
                   * @dev Provides information about the current execution context, including the
                   * sender of the transaction and its data. While these are generally available
                   * via msg.sender and msg.data, they should not be accessed in such a direct
                   * manner, since when dealing with meta-transactions the account sending and
                   * paying for execution may not be the actual sender (as far as an application
                   * is concerned).
                   *
                   * This contract is only required for intermediate, library-like contracts.
                   */
                  abstract contract Context {
                      function _msgSender() internal view virtual returns (address) {
                          return msg.sender;
                      }
                      function _msgData() internal view virtual returns (bytes calldata) {
                          return msg.data;
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.17;
                  error TokenAddressIsZero();
                  error TokenNotSupported();
                  error CannotBridgeToSameNetwork();
                  error ZeroPostSwapBalance();
                  error NoSwapDataProvided();
                  error NativeValueWithERC();
                  error ContractCallNotAllowed();
                  error NullAddrIsNotAValidSpender();
                  error NullAddrIsNotAnERC20Token();
                  error NoTransferToNullAddress();
                  error NativeAssetTransferFailed();
                  error InvalidBridgeConfigLength();
                  error InvalidAmount();
                  error InvalidContract();
                  error InvalidConfig();
                  error UnsupportedChainId(uint256 chainId);
                  error InvalidReceiver();
                  error InvalidDestinationChain();
                  error InvalidSendingToken();
                  error InvalidCaller();
                  error AlreadyInitialized();
                  error NotInitialized();
                  error OnlyContractOwner();
                  error CannotAuthoriseSelf();
                  error RecoveryAddressCannotBeZero();
                  error CannotDepositNativeToken();
                  error InvalidCallData();
                  error NativeAssetNotSupported();
                  error UnAuthorized();
                  error NoSwapFromZeroBalance();
                  error InvalidFallbackAddress();
                  error CumulativeSlippageTooHigh(uint256 minAmount, uint256 receivedAmount);
                  error InsufficientBalance(uint256 required, uint256 balance);
                  error ZeroAmount();
                  error ZeroAddress();
                  error InvalidFee();
                  error InformationMismatch();
                  error LengthMissmatch();
                  error NotAContract();
                  error NotEnoughBalance(uint256 requested, uint256 available);
                  error InsufficientMessageValue();
                  error ExternalCallFailed();
                  error ReentrancyError();
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.17;
                  interface IFeesFacet {
                      struct IntegratorFeeInfo {
                          bool isIntegrator; // flag for setting 0 fees for integrator      - 1 byte
                          uint32 tokenFee; // total fee percent gathered from user          - 4 bytes
                          uint32 RubicTokenShare; // token share of platform commission     - 4 bytes
                          uint32 RubicFixedCryptoShare; // native share of fixed commission - 4 bytes
                          uint128 fixedFeeAmount; // custom fixed fee amount                - 16 bytes
                      }
                      /**
                       * @dev Initializes the FeesFacet with treasury address and max fee amount
                       * No need to check initialized status because if max fee is 0 than there is no token fees
                       * @param _feeTreasure Address to send fees to
                       * @param _maxRubicPlatformFee Max value of Tubic token fees
                       */
                      function initialize(
                          address _feeTreasure,
                          uint256 _maxRubicPlatformFee,
                          uint256 _maxFixedNativeFee
                      ) external;
                      /**
                       * @dev Sets fee info associated with an integrator
                       * @param _integrator Address of the integrator
                       * @param _info Struct with fee info
                       */
                      function setIntegratorInfo(
                          address _integrator,
                          IntegratorFeeInfo memory _info
                      ) external;
                      /**
                       * @dev Sets address of the treasure
                       * @param _feeTreasure Address of the treasure
                       */
                      function setFeeTreasure(address _feeTreasure) external;
                      /**
                       * @dev Sets fixed crypto fee
                       * @param _fixedNativeFee Fixed crypto fee
                       */
                      function setFixedNativeFee(uint256 _fixedNativeFee) external;
                      /**
                       * @dev Sets Rubic token fee
                       * @notice Cannot be higher than limit set only by an admin
                       * @param _platformFee Fixed crypto fee
                       */
                      function setRubicPlatformFee(uint256 _platformFee) external;
                      /**
                       * @dev Sets the limit of Rubic token fee
                       * @param _maxFee The limit
                       */
                      function setMaxRubicPlatformFee(uint256 _maxFee) external;
                      /// VIEW FUNCTIONS ///
                      function calcTokenFees(
                          uint256 _amount,
                          address _integrator
                      )
                          external
                          view
                          returns (uint256 totalFee, uint256 RubicFee, uint256 integratorFee);
                      function fixedNativeFee() external view returns (uint256 _fixedNativeFee);
                      function RubicPlatformFee()
                          external
                          view
                          returns (uint256 _RubicPlatformFee);
                      function maxRubicPlatformFee()
                          external
                          view
                          returns (uint256 _maxRubicPlatformFee);
                      function maxFixedNativeFee()
                          external
                          view
                          returns (uint256 _maxFixedNativeFee);
                      function feeTreasure() external view returns (address feeTreasure);
                      function integratorToFeeInfo(
                          address _integrator
                      ) external view returns (IFeesFacet.IntegratorFeeInfo memory _info);
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity ^0.8.17;
                  /// @title Contains 512-bit math functions
                  /// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
                  /// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
                  library FullMath {
                      /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                      /// @param a The multiplicand
                      /// @param b The multiplier
                      /// @param denominator The divisor
                      /// @return result The 256-bit result
                      /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
                      function mulDiv(
                          uint256 a,
                          uint256 b,
                          uint256 denominator
                      ) internal pure returns (uint256 result) {
                          unchecked {
                              // 512-bit multiply [prod1 prod0] = a * b
                              // Compute the product mod 2**256 and mod 2**256 - 1
                              // then use the Chinese Remainder Theorem to reconstruct
                              // the 512 bit result. The result is stored in two 256
                              // variables such that product = prod1 * 2**256 + prod0
                              uint256 prod0; // Least significant 256 bits of the product
                              uint256 prod1; // Most significant 256 bits of the product
                              assembly {
                                  let mm := mulmod(a, b, not(0))
                                  prod0 := mul(a, b)
                                  prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                              }
                              // Handle non-overflow cases, 256 by 256 division
                              if (prod1 == 0) {
                                  require(denominator > 0);
                                  assembly {
                                      result := div(prod0, denominator)
                                  }
                                  return result;
                              }
                              // Make sure the result is less than 2**256.
                              // Also prevents denominator == 0
                              require(denominator > prod1);
                              ///////////////////////////////////////////////
                              // 512 by 256 division.
                              ///////////////////////////////////////////////
                              // Make division exact by subtracting the remainder from [prod1 prod0]
                              // Compute remainder using mulmod
                              uint256 remainder;
                              assembly {
                                  remainder := mulmod(a, b, denominator)
                              }
                              // Subtract 256 bit number from 512 bit number
                              assembly {
                                  prod1 := sub(prod1, gt(remainder, prod0))
                                  prod0 := sub(prod0, remainder)
                              }
                              // Factor powers of two out of denominator
                              // Compute largest power of two divisor of denominator.
                              // Always >= 1.
                              uint256 twos = (0 - denominator) & denominator;
                              // Divide denominator by power of two
                              assembly {
                                  denominator := div(denominator, twos)
                              }
                              // Divide [prod1 prod0] by the factors of two
                              assembly {
                                  prod0 := div(prod0, twos)
                              }
                              // Shift in bits from prod1 into prod0. For this we need
                              // to flip `twos` such that it is 2**256 / twos.
                              // If twos is zero, then it becomes one
                              assembly {
                                  twos := add(div(sub(0, twos), twos), 1)
                              }
                              prod0 |= prod1 * twos;
                              // Invert denominator mod 2**256
                              // Now that denominator is an odd number, it has an inverse
                              // modulo 2**256 such that denominator * inv = 1 mod 2**256.
                              // Compute the inverse by starting with a seed that is correct
                              // correct for four bits. That is, denominator * inv = 1 mod 2**4
                              uint256 inv = (3 * denominator) ^ 2;
                              // Now use Newton-Raphson iteration to improve the precision.
                              // Thanks to Hensel's lifting lemma, this also works in modular
                              // arithmetic, doubling the correct bits in each step.
                              inv *= 2 - denominator * inv; // inverse mod 2**8
                              inv *= 2 - denominator * inv; // inverse mod 2**16
                              inv *= 2 - denominator * inv; // inverse mod 2**32
                              inv *= 2 - denominator * inv; // inverse mod 2**64
                              inv *= 2 - denominator * inv; // inverse mod 2**128
                              inv *= 2 - denominator * inv; // inverse mod 2**256
                              // Because the division is now exact we can divide by multiplying
                              // with the modular inverse of denominator. This will give us the
                              // correct result modulo 2**256. Since the precoditions guarantee
                              // that the outcome is less than 2**256, this is the final result.
                              // We don't need to compute the high bits of the result and prod1
                              // is no longer required.
                              result = prod0 * inv;
                              return result;
                          }
                      }
                  }
                  // SPDX-License-Identifier: UNLICENSED
                  pragma solidity 0.8.17;
                  import { InsufficientBalance, NullAddrIsNotAnERC20Token, NullAddrIsNotAValidSpender, NoTransferToNullAddress, InvalidAmount, NativeValueWithERC, NativeAssetTransferFailed } from "../Errors/GenericErrors.sol";
                  import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
                  import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
                  import { ERC20Proxy } from "../Periphery/ERC20Proxy.sol";
                  import { LibSwap } from "./LibSwap.sol";
                  import { LibFees } from "./LibFees.sol";
                  /// @title LibAsset
                  /// @notice This library contains helpers for dealing with onchain transfers
                  ///         of assets, including accounting for the native asset `assetId`
                  ///         conventions and any noncompliant ERC20 transfers
                  library LibAsset {
                      uint256 private constant MAX_UINT = type(uint256).max;
                      address internal constant NULL_ADDRESS = address(0);
                      /// @dev All native assets use the empty address for their asset id
                      ///      by convention
                      address internal constant NATIVE_ASSETID = NULL_ADDRESS; //address(0)
                      /// @notice Gets the balance of the inheriting contract for the given asset
                      /// @param assetId The asset identifier to get the balance of
                      /// @return Balance held by contracts using this library
                      function getOwnBalance(address assetId) internal view returns (uint256) {
                          return
                              assetId == NATIVE_ASSETID
                                  ? address(this).balance
                                  : IERC20(assetId).balanceOf(address(this));
                      }
                      /// @notice Transfers ether from the inheriting contract to a given
                      ///         recipient
                      /// @param recipient Address to send ether to
                      /// @param amount Amount to send to given recipient
                      function transferNativeAsset(
                          address payable recipient,
                          uint256 amount
                      ) internal {
                          if (recipient == NULL_ADDRESS) revert NoTransferToNullAddress();
                          if (amount > address(this).balance)
                              revert InsufficientBalance(amount, address(this).balance);
                          // solhint-disable-next-line avoid-low-level-calls
                          (bool success, ) = recipient.call{ value: amount }("");
                          if (!success) revert NativeAssetTransferFailed();
                      }
                      /// @notice If the current allowance is insufficient, the allowance for a given spender
                      /// is set to MAX_UINT.
                      /// @param assetId Token address to transfer
                      /// @param spender Address to give spend approval to
                      /// @param amount Amount to approve for spending
                      function maxApproveERC20(
                          IERC20 assetId,
                          address spender,
                          uint256 amount
                      ) internal {
                          if (address(assetId) == NATIVE_ASSETID) return;
                          if (spender == NULL_ADDRESS) revert NullAddrIsNotAValidSpender();
                          uint256 allowance = assetId.allowance(address(this), spender);
                          if (allowance < amount)
                              SafeERC20.safeIncreaseAllowance(
                                  IERC20(assetId),
                                  spender,
                                  MAX_UINT - allowance
                              );
                      }
                      /// @notice Transfers tokens from the inheriting contract to a given
                      ///         recipient
                      /// @param assetId Token address to transfer
                      /// @param recipient Address to send token to
                      /// @param amount Amount to send to given recipient
                      function transferERC20(
                          address assetId,
                          address recipient,
                          uint256 amount
                      ) internal {
                          if (isNativeAsset(assetId)) revert NullAddrIsNotAnERC20Token();
                          uint256 assetBalance = IERC20(assetId).balanceOf(address(this));
                          if (amount > assetBalance)
                              revert InsufficientBalance(amount, assetBalance);
                          SafeERC20.safeTransfer(IERC20(assetId), recipient, amount);
                      }
                      /// @notice Transfers tokens from a sender to a given recipient
                      /// @param assetId Token address to transfer
                      /// @param from Address of sender/owner
                      /// @param to Address of recipient/spender
                      /// @param amount Amount to transfer from owner to spender
                      function transferFromERC20(
                          address assetId,
                          address from,
                          address to,
                          uint256 amount
                      ) internal {
                          if (assetId == NATIVE_ASSETID) revert NullAddrIsNotAnERC20Token();
                          if (to == NULL_ADDRESS) revert NoTransferToNullAddress();
                          IERC20 asset = IERC20(assetId);
                          uint256 prevBalance = asset.balanceOf(to);
                          SafeERC20.safeTransferFrom(asset, from, to, amount);
                          if (asset.balanceOf(to) - prevBalance != amount)
                              revert InvalidAmount();
                      }
                      /// @dev Deposits asset for bridging and accrues fixed and token fees
                      /// @param assetId Address of asset to deposit
                      /// @param amount Amount of asset to bridge
                      /// @param extraNativeAmount Amount of native token to send to a bridge
                      /// @param integrator Integrator for whom to count the fees
                      /// @return amountWithoutFees Amount of tokens to bridge minus fees
                      function depositAssetAndAccrueFees(
                          address assetId,
                          uint256 amount,
                          uint256 extraNativeAmount,
                          address integrator
                      ) internal returns (uint256 amountWithoutFees) {
                          uint256 accruedFixedNativeFee = LibFees.accrueFixedNativeFee(
                              integrator
                          );
                          // Check that msg value is at least greater than fixed native fee + extra fee sending to bridge
                          if (msg.value < accruedFixedNativeFee + extraNativeAmount)
                              revert InvalidAmount();
                          amountWithoutFees = _depositAndAccrueTokenFee(
                              assetId,
                              amount,
                              accruedFixedNativeFee,
                              extraNativeAmount,
                              integrator
                          );
                      }
                      /// @dev Deposits assets for each swap that requires and accrues fixed and token fees
                      /// @param swaps Array of swap datas
                      /// @param integrator Integrator for whom to count the fees
                      /// @return amountWithoutFees Array of swap datas with updated amounts
                      function depositAssetsAndAccrueFees(
                          LibSwap.SwapData[] memory swaps,
                          address integrator
                      ) internal returns (LibSwap.SwapData[] memory) {
                          uint256 accruedFixedNativeFee = LibFees.accrueFixedNativeFee(
                              integrator
                          );
                          if (msg.value < accruedFixedNativeFee) revert InvalidAmount();
                          for (uint256 i = 0; i < swaps.length; ) {
                              LibSwap.SwapData memory swap = swaps[i];
                              if (swap.requiresDeposit) {
                                  swap.fromAmount = _depositAndAccrueTokenFee(
                                      swap.sendingAssetId,
                                      swap.fromAmount,
                                      accruedFixedNativeFee,
                                      0,
                                      integrator
                                  );
                              }
                              swaps[i] = swap;
                              unchecked {
                                  i++;
                              }
                          }
                          return swaps;
                      }
                      function _depositAndAccrueTokenFee(
                          address assetId,
                          uint256 amount,
                          uint256 accruedFixedNativeFee,
                          uint256 extraNativeAmount,
                          address integrator
                      ) private returns (uint256 amountWithoutFees) {
                          if (isNativeAsset(assetId)) {
                              // Check that msg value greater than sending amount + fixed native fees + extra fees sending to bridge
                              if (msg.value < amount + accruedFixedNativeFee + extraNativeAmount)
                                  revert InvalidAmount();
                          } else {
                              if (amount == 0) revert InvalidAmount();
                              uint256 balance = IERC20(assetId).balanceOf(address(this));
                              if (balance < amount) revert InsufficientBalance(amount, balance);
                              //            getERC20proxy().transferFrom(
                              //                assetId,
                              //                msg.sender,
                              //                address(this),
                              //                amount
                              //            );
                          }
                          amountWithoutFees = LibFees.accrueTokenFees(
                              integrator,
                              amount,
                              assetId
                          );
                      }
                      /// @notice Determines whether the given assetId is the native asset
                      /// @param assetId The asset identifier to evaluate
                      /// @return Boolean indicating if the asset is the native asset
                      function isNativeAsset(address assetId) internal pure returns (bool) {
                          return assetId == NATIVE_ASSETID;
                      }
                      /// @notice Wrapper function to transfer a given asset (native or erc20) to
                      ///         some recipient. Should handle all non-compliant return value
                      ///         tokens as well by using the SafeERC20 contract by open zeppelin.
                      /// @param assetId Asset id for transfer (address(0) for native asset,
                      ///                token address for erc20s)
                      /// @param recipient Address to send asset to
                      /// @param amount Amount to send to given recipient
                      function transferAsset(
                          address assetId,
                          address payable recipient,
                          uint256 amount
                      ) internal {
                          (assetId == NATIVE_ASSETID)
                              ? transferNativeAsset(recipient, amount)
                              : transferERC20(assetId, recipient, amount);
                      }
                      /// @dev Checks whether the given address is a contract and contains code
                      function isContract(address _contractAddr) internal view returns (bool) {
                          uint256 size;
                          // solhint-disable-next-line no-inline-assembly
                          assembly {
                              size := extcodesize(_contractAddr)
                          }
                          return size > 0;
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.17;
                  library LibBytes {
                      // solhint-disable no-inline-assembly
                      // LibBytes specific errors
                      error SliceOverflow();
                      error SliceOutOfBounds();
                      error AddressOutOfBounds();
                      error UintOutOfBounds();
                      // -------------------------
                      function concat(
                          bytes memory _preBytes,
                          bytes memory _postBytes
                      ) internal pure returns (bytes memory) {
                          bytes memory tempBytes;
                          assembly {
                              // Get a location of some free memory and store it in tempBytes as
                              // Solidity does for memory variables.
                              tempBytes := mload(0x40)
                              // Store the length of the first bytes array at the beginning of
                              // the memory for tempBytes.
                              let length := mload(_preBytes)
                              mstore(tempBytes, length)
                              // Maintain a memory counter for the current write location in the
                              // temp bytes array by adding the 32 bytes for the array length to
                              // the starting location.
                              let mc := add(tempBytes, 0x20)
                              // Stop copying when the memory counter reaches the length of the
                              // first bytes array.
                              let end := add(mc, length)
                              for {
                                  // Initialize a copy counter to the start of the _preBytes data,
                                  // 32 bytes into its memory.
                                  let cc := add(_preBytes, 0x20)
                              } lt(mc, end) {
                                  // Increase both counters by 32 bytes each iteration.
                                  mc := add(mc, 0x20)
                                  cc := add(cc, 0x20)
                              } {
                                  // Write the _preBytes data into the tempBytes memory 32 bytes
                                  // at a time.
                                  mstore(mc, mload(cc))
                              }
                              // Add the length of _postBytes to the current length of tempBytes
                              // and store it as the new length in the first 32 bytes of the
                              // tempBytes memory.
                              length := mload(_postBytes)
                              mstore(tempBytes, add(length, mload(tempBytes)))
                              // Move the memory counter back from a multiple of 0x20 to the
                              // actual end of the _preBytes data.
                              mc := end
                              // Stop copying when the memory counter reaches the new combined
                              // length of the arrays.
                              end := add(mc, length)
                              for {
                                  let cc := add(_postBytes, 0x20)
                              } lt(mc, end) {
                                  mc := add(mc, 0x20)
                                  cc := add(cc, 0x20)
                              } {
                                  mstore(mc, mload(cc))
                              }
                              // Update the free-memory pointer by padding our last write location
                              // to 32 bytes: add 31 bytes to the end of tempBytes to move to the
                              // next 32 byte block, then round down to the nearest multiple of
                              // 32. If the sum of the length of the two arrays is zero then add
                              // one before rounding down to leave a blank 32 bytes (the length block with 0).
                              mstore(
                                  0x40,
                                  and(
                                      add(add(end, iszero(add(length, mload(_preBytes)))), 31),
                                      not(31) // Round down to the nearest 32 bytes.
                                  )
                              )
                          }
                          return tempBytes;
                      }
                      function concatStorage(
                          bytes storage _preBytes,
                          bytes memory _postBytes
                      ) internal {
                          assembly {
                              // Read the first 32 bytes of _preBytes storage, which is the length
                              // of the array. (We don't need to use the offset into the slot
                              // because arrays use the entire slot.)
                              let fslot := sload(_preBytes.slot)
                              // Arrays of 31 bytes or less have an even value in their slot,
                              // while longer arrays have an odd value. The actual length is
                              // the slot divided by two for odd values, and the lowest order
                              // byte divided by two for even values.
                              // If the slot is even, bitwise and the slot with 255 and divide by
                              // two to get the length. If the slot is odd, bitwise and the slot
                              // with -1 and divide by two.
                              let slength := div(
                                  and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)),
                                  2
                              )
                              let mlength := mload(_postBytes)
                              let newlength := add(slength, mlength)
                              // slength can contain both the length and contents of the array
                              // if length < 32 bytes so let's prepare for that
                              // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                              switch add(lt(slength, 32), lt(newlength, 32))
                              case 2 {
                                  // Since the new array still fits in the slot, we just need to
                                  // update the contents of the slot.
                                  // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
                                  sstore(
                                      _preBytes.slot,
                                      // all the modifications to the slot are inside this
                                      // next block
                                      add(
                                          // we can just add to the slot contents because the
                                          // bytes we want to change are the LSBs
                                          fslot,
                                          add(
                                              mul(
                                                  div(
                                                      // load the bytes from memory
                                                      mload(add(_postBytes, 0x20)),
                                                      // zero all bytes to the right
                                                      exp(0x100, sub(32, mlength))
                                                  ),
                                                  // and now shift left the number of bytes to
                                                  // leave space for the length in the slot
                                                  exp(0x100, sub(32, newlength))
                                              ),
                                              // increase length by the double of the memory
                                              // bytes length
                                              mul(mlength, 2)
                                          )
                                      )
                                  )
                              }
                              case 1 {
                                  // The stored value fits in the slot, but the combined value
                                  // will exceed it.
                                  // get the keccak hash to get the contents of the array
                                  mstore(0x0, _preBytes.slot)
                                  let sc := add(keccak256(0x0, 0x20), div(slength, 32))
                                  // save new length
                                  sstore(_preBytes.slot, add(mul(newlength, 2), 1))
                                  // The contents of the _postBytes array start 32 bytes into
                                  // the structure. Our first read should obtain the `submod`
                                  // bytes that can fit into the unused space in the last word
                                  // of the stored array. To get this, we read 32 bytes starting
                                  // from `submod`, so the data we read overlaps with the array
                                  // contents by `submod` bytes. Masking the lowest-order
                                  // `submod` bytes allows us to add that value directly to the
                                  // stored value.
                                  let submod := sub(32, slength)
                                  let mc := add(_postBytes, submod)
                                  let end := add(_postBytes, mlength)
                                  let mask := sub(exp(0x100, submod), 1)
                                  sstore(
                                      sc,
                                      add(
                                          and(
                                              fslot,
                                              0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00
                                          ),
                                          and(mload(mc), mask)
                                      )
                                  )
                                  for {
                                      mc := add(mc, 0x20)
                                      sc := add(sc, 1)
                                  } lt(mc, end) {
                                      sc := add(sc, 1)
                                      mc := add(mc, 0x20)
                                  } {
                                      sstore(sc, mload(mc))
                                  }
                                  mask := exp(0x100, sub(mc, end))
                                  sstore(sc, mul(div(mload(mc), mask), mask))
                              }
                              default {
                                  // get the keccak hash to get the contents of the array
                                  mstore(0x0, _preBytes.slot)
                                  // Start copying to the last used word of the stored array.
                                  let sc := add(keccak256(0x0, 0x20), div(slength, 32))
                                  // save new length
                                  sstore(_preBytes.slot, add(mul(newlength, 2), 1))
                                  // Copy over the first `submod` bytes of the new data as in
                                  // case 1 above.
                                  let slengthmod := mod(slength, 32)
                                  let submod := sub(32, slengthmod)
                                  let mc := add(_postBytes, submod)
                                  let end := add(_postBytes, mlength)
                                  let mask := sub(exp(0x100, submod), 1)
                                  sstore(sc, add(sload(sc), and(mload(mc), mask)))
                                  for {
                                      sc := add(sc, 1)
                                      mc := add(mc, 0x20)
                                  } lt(mc, end) {
                                      sc := add(sc, 1)
                                      mc := add(mc, 0x20)
                                  } {
                                      sstore(sc, mload(mc))
                                  }
                                  mask := exp(0x100, sub(mc, end))
                                  sstore(sc, mul(div(mload(mc), mask), mask))
                              }
                          }
                      }
                      function slice(
                          bytes memory _bytes,
                          uint256 _start,
                          uint256 _length
                      ) internal pure returns (bytes memory) {
                          if (_length + 31 < _length) revert SliceOverflow();
                          if (_bytes.length < _start + _length) revert SliceOutOfBounds();
                          bytes memory tempBytes;
                          assembly {
                              switch iszero(_length)
                              case 0 {
                                  // Get a location of some free memory and store it in tempBytes as
                                  // Solidity does for memory variables.
                                  tempBytes := mload(0x40)
                                  // The first word of the slice result is potentially a partial
                                  // word read from the original array. To read it, we calculate
                                  // the length of that partial word and start copying that many
                                  // bytes into the array. The first word we copy will start with
                                  // data we don't care about, but the last `lengthmod` bytes will
                                  // land at the beginning of the contents of the new array. When
                                  // we're done copying, we overwrite the full first word with
                                  // the actual length of the slice.
                                  let lengthmod := and(_length, 31)
                                  // The multiplication in the next line is necessary
                                  // because when slicing multiples of 32 bytes (lengthmod == 0)
                                  // the following copy loop was copying the origin's length
                                  // and then ending prematurely not copying everything it should.
                                  let mc := add(
                                      add(tempBytes, lengthmod),
                                      mul(0x20, iszero(lengthmod))
                                  )
                                  let end := add(mc, _length)
                                  for {
                                      // The multiplication in the next line has the same exact purpose
                                      // as the one above.
                                      let cc := add(
                                          add(
                                              add(_bytes, lengthmod),
                                              mul(0x20, iszero(lengthmod))
                                          ),
                                          _start
                                      )
                                  } lt(mc, end) {
                                      mc := add(mc, 0x20)
                                      cc := add(cc, 0x20)
                                  } {
                                      mstore(mc, mload(cc))
                                  }
                                  mstore(tempBytes, _length)
                                  //update free-memory pointer
                                  //allocating the array padded to 32 bytes like the compiler does now
                                  mstore(0x40, and(add(mc, 31), not(31)))
                              }
                              //if we want a zero-length slice let's just return a zero-length array
                              default {
                                  tempBytes := mload(0x40)
                                  //zero out the 32 bytes slice we are about to return
                                  //we need to do it because Solidity does not garbage collect
                                  mstore(tempBytes, 0)
                                  mstore(0x40, add(tempBytes, 0x20))
                              }
                          }
                          return tempBytes;
                      }
                      function toAddress(
                          bytes memory _bytes,
                          uint256 _start
                      ) internal pure returns (address) {
                          if (_bytes.length < _start + 20) {
                              revert AddressOutOfBounds();
                          }
                          address tempAddress;
                          assembly {
                              tempAddress := div(
                                  mload(add(add(_bytes, 0x20), _start)),
                                  0x1000000000000000000000000
                              )
                          }
                          return tempAddress;
                      }
                      function toUint8(
                          bytes memory _bytes,
                          uint256 _start
                      ) internal pure returns (uint8) {
                          if (_bytes.length < _start + 1) {
                              revert UintOutOfBounds();
                          }
                          uint8 tempUint;
                          assembly {
                              tempUint := mload(add(add(_bytes, 0x1), _start))
                          }
                          return tempUint;
                      }
                      function toUint16(
                          bytes memory _bytes,
                          uint256 _start
                      ) internal pure returns (uint16) {
                          if (_bytes.length < _start + 2) {
                              revert UintOutOfBounds();
                          }
                          uint16 tempUint;
                          assembly {
                              tempUint := mload(add(add(_bytes, 0x2), _start))
                          }
                          return tempUint;
                      }
                      function toUint32(
                          bytes memory _bytes,
                          uint256 _start
                      ) internal pure returns (uint32) {
                          if (_bytes.length < _start + 4) {
                              revert UintOutOfBounds();
                          }
                          uint32 tempUint;
                          assembly {
                              tempUint := mload(add(add(_bytes, 0x4), _start))
                          }
                          return tempUint;
                      }
                      function toUint64(
                          bytes memory _bytes,
                          uint256 _start
                      ) internal pure returns (uint64) {
                          if (_bytes.length < _start + 8) {
                              revert UintOutOfBounds();
                          }
                          uint64 tempUint;
                          assembly {
                              tempUint := mload(add(add(_bytes, 0x8), _start))
                          }
                          return tempUint;
                      }
                      function toUint96(
                          bytes memory _bytes,
                          uint256 _start
                      ) internal pure returns (uint96) {
                          if (_bytes.length < _start + 12) {
                              revert UintOutOfBounds();
                          }
                          uint96 tempUint;
                          assembly {
                              tempUint := mload(add(add(_bytes, 0xc), _start))
                          }
                          return tempUint;
                      }
                      function toUint128(
                          bytes memory _bytes,
                          uint256 _start
                      ) internal pure returns (uint128) {
                          if (_bytes.length < _start + 16) {
                              revert UintOutOfBounds();
                          }
                          uint128 tempUint;
                          assembly {
                              tempUint := mload(add(add(_bytes, 0x10), _start))
                          }
                          return tempUint;
                      }
                      function toUint256(
                          bytes memory _bytes,
                          uint256 _start
                      ) internal pure returns (uint256) {
                          if (_bytes.length < _start + 32) {
                              revert UintOutOfBounds();
                          }
                          uint256 tempUint;
                          assembly {
                              tempUint := mload(add(add(_bytes, 0x20), _start))
                          }
                          return tempUint;
                      }
                      function toBytes32(
                          bytes memory _bytes,
                          uint256 _start
                      ) internal pure returns (bytes32) {
                          if (_bytes.length < _start + 32) {
                              revert UintOutOfBounds();
                          }
                          bytes32 tempBytes32;
                          assembly {
                              tempBytes32 := mload(add(add(_bytes, 0x20), _start))
                          }
                          return tempBytes32;
                      }
                      function equal(
                          bytes memory _preBytes,
                          bytes memory _postBytes
                      ) internal pure returns (bool) {
                          bool success = true;
                          assembly {
                              let length := mload(_preBytes)
                              // if lengths don't match the arrays are not equal
                              switch eq(length, mload(_postBytes))
                              case 1 {
                                  // cb is a circuit breaker in the for loop since there's
                                  //  no said feature for inline assembly loops
                                  // cb = 1 - don't breaker
                                  // cb = 0 - break
                                  let cb := 1
                                  let mc := add(_preBytes, 0x20)
                                  let end := add(mc, length)
                                  for {
                                      let cc := add(_postBytes, 0x20)
                                      // the next line is the loop condition:
                                      // while(uint256(mc < end) + cb == 2)
                                  } eq(add(lt(mc, end), cb), 2) {
                                      mc := add(mc, 0x20)
                                      cc := add(cc, 0x20)
                                  } {
                                      // if any of these checks fails then arrays are not equal
                                      if iszero(eq(mload(mc), mload(cc))) {
                                          // unsuccess:
                                          success := 0
                                          cb := 0
                                      }
                                  }
                              }
                              default {
                                  // unsuccess:
                                  success := 0
                              }
                          }
                          return success;
                      }
                      function equalStorage(
                          bytes storage _preBytes,
                          bytes memory _postBytes
                      ) internal view returns (bool) {
                          bool success = true;
                          assembly {
                              // we know _preBytes_offset is 0
                              let fslot := sload(_preBytes.slot)
                              // Decode the length of the stored array like in concatStorage().
                              let slength := div(
                                  and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)),
                                  2
                              )
                              let mlength := mload(_postBytes)
                              // if lengths don't match the arrays are not equal
                              switch eq(slength, mlength)
                              case 1 {
                                  // slength can contain both the length and contents of the array
                                  // if length < 32 bytes so let's prepare for that
                                  // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                                  if iszero(iszero(slength)) {
                                      switch lt(slength, 32)
                                      case 1 {
                                          // blank the last byte which is the length
                                          fslot := mul(div(fslot, 0x100), 0x100)
                                          if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
                                              // unsuccess:
                                              success := 0
                                          }
                                      }
                                      default {
                                          // cb is a circuit breaker in the for loop since there's
                                          //  no said feature for inline assembly loops
                                          // cb = 1 - don't breaker
                                          // cb = 0 - break
                                          let cb := 1
                                          // get the keccak hash to get the contents of the array
                                          mstore(0x0, _preBytes.slot)
                                          let sc := keccak256(0x0, 0x20)
                                          let mc := add(_postBytes, 0x20)
                                          let end := add(mc, mlength)
                                          // the next line is the loop condition:
                                          // while(uint256(mc < end) + cb == 2)
                                          // solhint-disable-next-line no-empty-blocks
                                          for {
                                          } eq(add(lt(mc, end), cb), 2) {
                                              sc := add(sc, 1)
                                              mc := add(mc, 0x20)
                                          } {
                                              if iszero(eq(sload(sc), mload(mc))) {
                                                  // unsuccess:
                                                  success := 0
                                                  cb := 0
                                              }
                                          }
                                      }
                                  }
                              }
                              default {
                                  // unsuccess:
                                  success := 0
                              }
                          }
                          return success;
                      }
                      function getFirst4Bytes(
                          bytes memory data
                      ) internal pure returns (bytes4 outBytes4) {
                          if (data.length == 0) {
                              return 0x0;
                          }
                          assembly {
                              outBytes4 := mload(add(data, 32))
                          }
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.17;
                  import { IFeesFacet } from "../Interfaces/IFeesFacet.sol";
                  import { LibUtil } from "../Libraries/LibUtil.sol";
                  import { FullMath } from "../Libraries/FullMath.sol";
                  import { LibAsset } from "../Libraries/LibAsset.sol";
                  /// Implementation of EIP-2535 Diamond Standard
                  /// https://eips.ethereum.org/EIPS/eip-2535
                  library LibFees {
                      bytes32 internal constant FFES_STORAGE_POSITION =
                          keccak256("rubic.library.fees.v2");
                      // Denominator for setting fees
                      uint256 internal constant DENOMINATOR = 1e6;
                      // ----------------
                      event FixedNativeFee(
                          uint256 RubicPart,
                          uint256 integratorPart,
                          address indexed integrator
                      );
                      event FixedNativeFeeCollected(uint256 amount, address collector);
                      event TokenFee(
                          uint256 RubicPart,
                          uint256 integratorPart,
                          address indexed integrator,
                          address token
                      );
                      event IntegratorTokenFeeCollected(
                          uint256 amount,
                          address indexed integrator,
                          address token
                      );
                      struct FeesStorage {
                          mapping(address => IFeesFacet.IntegratorFeeInfo) integratorToFeeInfo;
                          uint256 maxRubicPlatformFee; // sets while initialize
                          uint256 maxFixedNativeFee; // sets while initialize & cannot be changed
                          uint256 RubicPlatformFee;
                          // Rubic fixed fee for swap
                          uint256 fixedNativeFee;
                          address feeTreasure;
                          bool initialized;
                      }
                      function feesStorage() internal pure returns (FeesStorage storage fs) {
                          bytes32 position = FFES_STORAGE_POSITION;
                          // solhint-disable-next-line no-inline-assembly
                          assembly {
                              fs.slot := position
                          }
                      }
                      /**
                       * @dev Calculates and accrues fixed crypto fee
                       * @param _integrator Integrator's address if there is one
                       * @return The amount of fixedNativeFee
                       */
                      function accrueFixedNativeFee(
                          address _integrator
                      ) internal returns (uint256) {
                          uint256 _fixedNativeFee;
                          uint256 _RubicPart;
                          FeesStorage storage fs = feesStorage();
                          IFeesFacet.IntegratorFeeInfo memory _info = fs.integratorToFeeInfo[
                              _integrator
                          ];
                          if (_info.isIntegrator) {
                              _fixedNativeFee = uint256(_info.fixedFeeAmount);
                              if (_fixedNativeFee > 0) {
                                  _RubicPart =
                                      (_fixedNativeFee * _info.RubicFixedCryptoShare) /
                                      DENOMINATOR;
                                  if (_fixedNativeFee - _RubicPart > 0)
                                      LibAsset.transferNativeAsset(
                                          payable(_integrator),
                                          _fixedNativeFee - _RubicPart
                                      );
                              }
                          } else {
                              _fixedNativeFee = fs.fixedNativeFee;
                              _RubicPart = _fixedNativeFee;
                          }
                          if (_RubicPart > 0)
                              LibAsset.transferNativeAsset(payable(fs.feeTreasure), _RubicPart);
                          emit FixedNativeFee(
                              _RubicPart,
                              _fixedNativeFee - _RubicPart,
                              _integrator
                          );
                          return _fixedNativeFee;
                      }
                      /**
                       * @dev Calculates token fees and accrues them
                       * @param _integrator Integrator's address if there is one
                       * @param _amountWithFee Total amount passed by the user
                       * @param _token The token in which the fees are collected
                       * @return Amount of tokens without fee
                       */
                      function accrueTokenFees(
                          address _integrator,
                          uint256 _amountWithFee,
                          address _token
                      ) internal returns (uint256) {
                          FeesStorage storage fs = feesStorage();
                          IFeesFacet.IntegratorFeeInfo memory _info = fs.integratorToFeeInfo[
                              _integrator
                          ];
                          (uint256 _totalFees, uint256 _RubicFee) = _calculateFee(
                              fs,
                              _amountWithFee,
                              _info
                          );
                          if (_integrator != address(0)) {
                              if (_totalFees - _RubicFee > 0)
                                  LibAsset.transferAsset(
                                      _token,
                                      payable(_integrator),
                                      _totalFees - _RubicFee
                                  );
                          }
                          if (_RubicFee > 0)
                              LibAsset.transferAsset(_token, payable(fs.feeTreasure), _RubicFee);
                          emit TokenFee(_RubicFee, _totalFees - _RubicFee, _integrator, _token);
                          return _amountWithFee - _totalFees;
                      }
                      /// PRIVATE ///
                      /**
                       * @dev Calculates fee amount for integrator and rubic, used in architecture
                       * @param _amountWithFee the users initial amount
                       * @param _info the struct with data about integrator
                       * @return _totalFee the amount of Rubic + integrator fee
                       * @return _RubicFee the amount of Rubic fee only
                       */
                      function _calculateFeeWithIntegrator(
                          uint256 _amountWithFee,
                          IFeesFacet.IntegratorFeeInfo memory _info
                      ) private pure returns (uint256 _totalFee, uint256 _RubicFee) {
                          if (_info.tokenFee > 0) {
                              _totalFee = FullMath.mulDiv(
                                  _amountWithFee,
                                  _info.tokenFee,
                                  DENOMINATOR
                              );
                              _RubicFee = FullMath.mulDiv(
                                  _totalFee,
                                  _info.RubicTokenShare,
                                  DENOMINATOR
                              );
                          }
                      }
                      function _calculateFee(
                          FeesStorage storage _fs,
                          uint256 _amountWithFee,
                          IFeesFacet.IntegratorFeeInfo memory _info
                      ) internal view returns (uint256 _totalFee, uint256 _RubicFee) {
                          if (_info.isIntegrator) {
                              (_totalFee, _RubicFee) = _calculateFeeWithIntegrator(
                                  _amountWithFee,
                                  _info
                              );
                          } else {
                              _totalFee = FullMath.mulDiv(
                                  _amountWithFee,
                                  _fs.RubicPlatformFee,
                                  DENOMINATOR
                              );
                              _RubicFee = _totalFee;
                          }
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.17;
                  import { LibAsset } from "./LibAsset.sol";
                  import { LibUtil } from "./LibUtil.sol";
                  import { InvalidContract, NoSwapFromZeroBalance, InsufficientBalance, UnAuthorized } from "../Errors/GenericErrors.sol";
                  import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
                  library LibSwap {
                      struct SwapData {
                          address callTo;
                          address approveTo;
                          address sendingAssetId;
                          address receivingAssetId;
                          uint256 fromAmount;
                          bytes callData;
                          bool requiresDeposit;
                      }
                      event AssetSwapped(
                          bytes32 transactionId,
                          address dex,
                          address fromAssetId,
                          address toAssetId,
                          uint256 fromAmount,
                          uint256 toAmount,
                          uint256 timestamp
                      );
                      function swap(bytes32 transactionId, SwapData memory _swap) internal {
                          if (!LibAsset.isContract(_swap.callTo)) revert InvalidContract();
                          uint256 fromAmount = _swap.fromAmount;
                          if (fromAmount == 0) revert NoSwapFromZeroBalance();
                          uint256 nativeValue = LibAsset.isNativeAsset(_swap.sendingAssetId)
                              ? _swap.fromAmount
                              : 0;
                          uint256 initialSendingAssetBalance = LibAsset.getOwnBalance(
                              _swap.sendingAssetId
                          );
                          uint256 initialReceivingAssetBalance = LibAsset.getOwnBalance(
                              _swap.receivingAssetId
                          );
                          if (nativeValue == 0) {
                              LibAsset.maxApproveERC20(
                                  IERC20(_swap.sendingAssetId),
                                  _swap.approveTo,
                                  _swap.fromAmount
                              );
                          }
                          if (initialSendingAssetBalance < _swap.fromAmount) {
                              revert InsufficientBalance(
                                  _swap.fromAmount,
                                  initialSendingAssetBalance
                              );
                          }
                          // solhint-disable-next-line avoid-low-level-calls
                          (bool success, bytes memory res) = _swap.callTo.call{
                              value: nativeValue
                          }(_swap.callData);
                          if (!success) {
                              string memory reason = LibUtil.getRevertMsg(res);
                              revert(reason);
                          }
                          uint256 newBalance = LibAsset.getOwnBalance(_swap.receivingAssetId);
                          emit AssetSwapped(
                              transactionId,
                              _swap.callTo,
                              _swap.sendingAssetId,
                              _swap.receivingAssetId,
                              _swap.fromAmount,
                              newBalance > initialReceivingAssetBalance
                                  ? newBalance - initialReceivingAssetBalance
                                  : newBalance,
                              block.timestamp
                          );
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.17;
                  import "./LibBytes.sol";
                  library LibUtil {
                      using LibBytes for bytes;
                      function getRevertMsg(
                          bytes memory _res
                      ) internal pure returns (string memory) {
                          if (_res.length < 68) return string(_res);
                          bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes
                          return abi.decode(revertData, (string)); // All that remains is the revert string
                      }
                      /// @notice Determines whether the given address is the zero address
                      /// @param addr The address to verify
                      /// @return Boolean indicating if the address is the zero address
                      function isZeroAddress(address addr) internal pure returns (bool) {
                          return addr == address(0);
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.17;
                  import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
                  import { LibAsset } from "../Libraries/LibAsset.sol";
                  import { LibUtil } from "../Libraries/LibUtil.sol";
                  import { ZeroAddress, LengthMissmatch, NotInitialized } from "../Errors/GenericErrors.sol";
                  /// @title ERC20 Proxy
                  /// @notice Proxy contract for safely transferring ERC20 tokens for swaps/executions
                  contract ERC20Proxy is Ownable {
                      /// Storage ///
                      address public diamond;
                      /// Events ///
                      event DiamondSet(address diamond);
                      /// Constructor
                      constructor(address _owner, address _diamond) {
                          transferOwnership(_owner);
                          diamond = _diamond;
                      }
                      function setDiamond(address _diamond) external onlyOwner {
                          if (_diamond == address(0)) revert ZeroAddress();
                          diamond = _diamond;
                          emit DiamondSet(_diamond);
                      }
                      /// @dev Transfers tokens from user to the diamond and calls it
                      /// @param tokens Addresses of tokens that should be sent to the diamond
                      /// @param amounts Corresponding amounts of tokens
                      /// @param facetCallData Calldata that should be passed to the diamond
                      /// Should contain any cross-chain related function
                      function startViaRubic(
                          address[] memory tokens,
                          uint256[] memory amounts,
                          bytes memory facetCallData
                      ) external payable {
                          if (diamond == address(0)) revert NotInitialized();
                          uint256 tokensLength = tokens.length;
                          if (tokensLength != amounts.length) revert LengthMissmatch();
                          for (uint256 i = 0; i < tokensLength; ) {
                              LibAsset.transferFromERC20(
                                  tokens[i],
                                  msg.sender,
                                  diamond,
                                  amounts[i]
                              );
                              unchecked {
                                  ++i;
                              }
                          }
                          // solhint-disable-next-line avoid-low-level-calls
                          (bool success, bytes memory res) = diamond.call{ value: msg.value }(
                              facetCallData
                          );
                          if (!success) {
                              string memory reason = LibUtil.getRevertMsg(res);
                              revert(reason);
                          }
                      }
                  }
                  

                  File 2 of 7: RubicMultiProxy
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
                  pragma solidity ^0.8.0;
                  import "../utils/Context.sol";
                  /**
                   * @dev Contract module which provides a basic access control mechanism, where
                   * there is an account (an owner) that can be granted exclusive access to
                   * specific functions.
                   *
                   * By default, the owner account will be the one that deploys the contract. This
                   * can later be changed with {transferOwnership}.
                   *
                   * This module is used through inheritance. It will make available the modifier
                   * `onlyOwner`, which can be applied to your functions to restrict their use to
                   * the owner.
                   */
                  abstract contract Ownable is Context {
                      address private _owner;
                      event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                      /**
                       * @dev Initializes the contract setting the deployer as the initial owner.
                       */
                      constructor() {
                          _transferOwnership(_msgSender());
                      }
                      /**
                       * @dev Throws if called by any account other than the owner.
                       */
                      modifier onlyOwner() {
                          _checkOwner();
                          _;
                      }
                      /**
                       * @dev Returns the address of the current owner.
                       */
                      function owner() public view virtual returns (address) {
                          return _owner;
                      }
                      /**
                       * @dev Throws if the sender is not the owner.
                       */
                      function _checkOwner() internal view virtual {
                          require(owner() == _msgSender(), "Ownable: caller is not the owner");
                      }
                      /**
                       * @dev Leaves the contract without owner. It will not be possible to call
                       * `onlyOwner` functions anymore. Can only be called by the current owner.
                       *
                       * NOTE: Renouncing ownership will leave the contract without an owner,
                       * thereby removing any functionality that is only available to the owner.
                       */
                      function renounceOwnership() public virtual onlyOwner {
                          _transferOwnership(address(0));
                      }
                      /**
                       * @dev Transfers ownership of the contract to a new account (`newOwner`).
                       * Can only be called by the current owner.
                       */
                      function transferOwnership(address newOwner) public virtual onlyOwner {
                          require(newOwner != address(0), "Ownable: new owner is the zero address");
                          _transferOwnership(newOwner);
                      }
                      /**
                       * @dev Transfers ownership of the contract to a new account (`newOwner`).
                       * Internal function without access restriction.
                       */
                      function _transferOwnership(address newOwner) internal virtual {
                          address oldOwner = _owner;
                          _owner = newOwner;
                          emit OwnershipTransferred(oldOwner, newOwner);
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
                  pragma solidity ^0.8.0;
                  /**
                   * @dev Interface of the ERC20 standard as defined in the EIP.
                   */
                  interface IERC20 {
                      /**
                       * @dev Emitted when `value` tokens are moved from one account (`from`) to
                       * another (`to`).
                       *
                       * Note that `value` may be zero.
                       */
                      event Transfer(address indexed from, address indexed to, uint256 value);
                      /**
                       * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                       * a call to {approve}. `value` is the new allowance.
                       */
                      event Approval(address indexed owner, address indexed spender, uint256 value);
                      /**
                       * @dev Returns the amount of tokens in existence.
                       */
                      function totalSupply() external view returns (uint256);
                      /**
                       * @dev Returns the amount of tokens owned by `account`.
                       */
                      function balanceOf(address account) external view returns (uint256);
                      /**
                       * @dev Moves `amount` tokens from the caller's account to `to`.
                       *
                       * Returns a boolean value indicating whether the operation succeeded.
                       *
                       * Emits a {Transfer} event.
                       */
                      function transfer(address to, uint256 amount) external returns (bool);
                      /**
                       * @dev Returns the remaining number of tokens that `spender` will be
                       * allowed to spend on behalf of `owner` through {transferFrom}. This is
                       * zero by default.
                       *
                       * This value changes when {approve} or {transferFrom} are called.
                       */
                      function allowance(address owner, address spender) external view returns (uint256);
                      /**
                       * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                       *
                       * Returns a boolean value indicating whether the operation succeeded.
                       *
                       * IMPORTANT: Beware that changing an allowance with this method brings the risk
                       * that someone may use both the old and the new allowance by unfortunate
                       * transaction ordering. One possible solution to mitigate this race
                       * condition is to first reduce the spender's allowance to 0 and set the
                       * desired value afterwards:
                       * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                       *
                       * Emits an {Approval} event.
                       */
                      function approve(address spender, uint256 amount) external returns (bool);
                      /**
                       * @dev Moves `amount` tokens from `from` to `to` using the
                       * allowance mechanism. `amount` is then deducted from the caller's
                       * allowance.
                       *
                       * Returns a boolean value indicating whether the operation succeeded.
                       *
                       * Emits a {Transfer} event.
                       */
                      function transferFrom(
                          address from,
                          address to,
                          uint256 amount
                      ) external returns (bool);
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
                  pragma solidity ^0.8.0;
                  /**
                   * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
                   * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
                   *
                   * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
                   * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
                   * need to send a transaction, and thus is not required to hold Ether at all.
                   */
                  interface IERC20Permit {
                      /**
                       * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
                       * given ``owner``'s signed approval.
                       *
                       * IMPORTANT: The same issues {IERC20-approve} has related to transaction
                       * ordering also apply here.
                       *
                       * Emits an {Approval} event.
                       *
                       * Requirements:
                       *
                       * - `spender` cannot be the zero address.
                       * - `deadline` must be a timestamp in the future.
                       * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
                       * over the EIP712-formatted function arguments.
                       * - the signature must use ``owner``'s current nonce (see {nonces}).
                       *
                       * For more information on the signature format, see the
                       * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
                       * section].
                       */
                      function permit(
                          address owner,
                          address spender,
                          uint256 value,
                          uint256 deadline,
                          uint8 v,
                          bytes32 r,
                          bytes32 s
                      ) external;
                      /**
                       * @dev Returns the current nonce for `owner`. This value must be
                       * included whenever a signature is generated for {permit}.
                       *
                       * Every successful call to {permit} increases ``owner``'s nonce by one. This
                       * prevents a signature from being used multiple times.
                       */
                      function nonces(address owner) external view returns (uint256);
                      /**
                       * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
                       */
                      // solhint-disable-next-line func-name-mixedcase
                      function DOMAIN_SEPARATOR() external view returns (bytes32);
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)
                  pragma solidity ^0.8.0;
                  import "../IERC20.sol";
                  import "../extensions/draft-IERC20Permit.sol";
                  import "../../../utils/Address.sol";
                  /**
                   * @title SafeERC20
                   * @dev Wrappers around ERC20 operations that throw on failure (when the token
                   * contract returns false). Tokens that return no value (and instead revert or
                   * throw on failure) are also supported, non-reverting calls are assumed to be
                   * successful.
                   * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
                   * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
                   */
                  library SafeERC20 {
                      using Address for address;
                      function safeTransfer(
                          IERC20 token,
                          address to,
                          uint256 value
                      ) internal {
                          _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                      }
                      function safeTransferFrom(
                          IERC20 token,
                          address from,
                          address to,
                          uint256 value
                      ) internal {
                          _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                      }
                      /**
                       * @dev Deprecated. This function has issues similar to the ones found in
                       * {IERC20-approve}, and its usage is discouraged.
                       *
                       * Whenever possible, use {safeIncreaseAllowance} and
                       * {safeDecreaseAllowance} instead.
                       */
                      function safeApprove(
                          IERC20 token,
                          address spender,
                          uint256 value
                      ) internal {
                          // safeApprove should only be called when setting an initial allowance,
                          // or when resetting it to zero. To increase and decrease it, use
                          // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                          require(
                              (value == 0) || (token.allowance(address(this), spender) == 0),
                              "SafeERC20: approve from non-zero to non-zero allowance"
                          );
                          _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                      }
                      function safeIncreaseAllowance(
                          IERC20 token,
                          address spender,
                          uint256 value
                      ) internal {
                          uint256 newAllowance = token.allowance(address(this), spender) + value;
                          _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                      }
                      function safeDecreaseAllowance(
                          IERC20 token,
                          address spender,
                          uint256 value
                      ) internal {
                          unchecked {
                              uint256 oldAllowance = token.allowance(address(this), spender);
                              require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                              uint256 newAllowance = oldAllowance - value;
                              _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                          }
                      }
                      function safePermit(
                          IERC20Permit token,
                          address owner,
                          address spender,
                          uint256 value,
                          uint256 deadline,
                          uint8 v,
                          bytes32 r,
                          bytes32 s
                      ) internal {
                          uint256 nonceBefore = token.nonces(owner);
                          token.permit(owner, spender, value, deadline, v, r, s);
                          uint256 nonceAfter = token.nonces(owner);
                          require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
                      }
                      /**
                       * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                       * on the return value: the return value is optional (but if data is returned, it must not be false).
                       * @param token The token targeted by the call.
                       * @param data The call data (encoded using abi.encode or one of its variants).
                       */
                      function _callOptionalReturn(IERC20 token, bytes memory data) private {
                          // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                          // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
                          // the target address contains contract code and also asserts for success in the low-level call.
                          bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                          if (returndata.length > 0) {
                              // Return data is optional
                              require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                          }
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
                  pragma solidity ^0.8.1;
                  /**
                   * @dev Collection of functions related to the address type
                   */
                  library Address {
                      /**
                       * @dev Returns true if `account` is a contract.
                       *
                       * [IMPORTANT]
                       * ====
                       * It is unsafe to assume that an address for which this function returns
                       * false is an externally-owned account (EOA) and not a contract.
                       *
                       * Among others, `isContract` will return false for the following
                       * types of addresses:
                       *
                       *  - an externally-owned account
                       *  - a contract in construction
                       *  - an address where a contract will be created
                       *  - an address where a contract lived, but was destroyed
                       * ====
                       *
                       * [IMPORTANT]
                       * ====
                       * You shouldn't rely on `isContract` to protect against flash loan attacks!
                       *
                       * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                       * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                       * constructor.
                       * ====
                       */
                      function isContract(address account) internal view returns (bool) {
                          // This method relies on extcodesize/address.code.length, which returns 0
                          // for contracts in construction, since the code is only stored at the end
                          // of the constructor execution.
                          return account.code.length > 0;
                      }
                      /**
                       * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                       * `recipient`, forwarding all available gas and reverting on errors.
                       *
                       * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                       * of certain opcodes, possibly making contracts go over the 2300 gas limit
                       * imposed by `transfer`, making them unable to receive funds via
                       * `transfer`. {sendValue} removes this limitation.
                       *
                       * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                       *
                       * IMPORTANT: because control is transferred to `recipient`, care must be
                       * taken to not create reentrancy vulnerabilities. Consider using
                       * {ReentrancyGuard} or the
                       * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                       */
                      function sendValue(address payable recipient, uint256 amount) internal {
                          require(address(this).balance >= amount, "Address: insufficient balance");
                          (bool success, ) = recipient.call{value: amount}("");
                          require(success, "Address: unable to send value, recipient may have reverted");
                      }
                      /**
                       * @dev Performs a Solidity function call using a low level `call`. A
                       * plain `call` is an unsafe replacement for a function call: use this
                       * function instead.
                       *
                       * If `target` reverts with a revert reason, it is bubbled up by this
                       * function (like regular Solidity function calls).
                       *
                       * Returns the raw returned data. To convert to the expected return value,
                       * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                       *
                       * Requirements:
                       *
                       * - `target` must be a contract.
                       * - calling `target` with `data` must not revert.
                       *
                       * _Available since v3.1._
                       */
                      function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                          return functionCallWithValue(target, data, 0, "Address: low-level call failed");
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                       * `errorMessage` as a fallback revert reason when `target` reverts.
                       *
                       * _Available since v3.1._
                       */
                      function functionCall(
                          address target,
                          bytes memory data,
                          string memory errorMessage
                      ) internal returns (bytes memory) {
                          return functionCallWithValue(target, data, 0, errorMessage);
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                       * but also transferring `value` wei to `target`.
                       *
                       * Requirements:
                       *
                       * - the calling contract must have an ETH balance of at least `value`.
                       * - the called Solidity function must be `payable`.
                       *
                       * _Available since v3.1._
                       */
                      function functionCallWithValue(
                          address target,
                          bytes memory data,
                          uint256 value
                      ) internal returns (bytes memory) {
                          return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                      }
                      /**
                       * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                       * with `errorMessage` as a fallback revert reason when `target` reverts.
                       *
                       * _Available since v3.1._
                       */
                      function functionCallWithValue(
                          address target,
                          bytes memory data,
                          uint256 value,
                          string memory errorMessage
                      ) internal returns (bytes memory) {
                          require(address(this).balance >= value, "Address: insufficient balance for call");
                          (bool success, bytes memory returndata) = target.call{value: value}(data);
                          return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                       * but performing a static call.
                       *
                       * _Available since v3.3._
                       */
                      function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                          return functionStaticCall(target, data, "Address: low-level static call failed");
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                       * but performing a static call.
                       *
                       * _Available since v3.3._
                       */
                      function functionStaticCall(
                          address target,
                          bytes memory data,
                          string memory errorMessage
                      ) internal view returns (bytes memory) {
                          (bool success, bytes memory returndata) = target.staticcall(data);
                          return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                       * but performing a delegate call.
                       *
                       * _Available since v3.4._
                       */
                      function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                          return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                       * but performing a delegate call.
                       *
                       * _Available since v3.4._
                       */
                      function functionDelegateCall(
                          address target,
                          bytes memory data,
                          string memory errorMessage
                      ) internal returns (bytes memory) {
                          (bool success, bytes memory returndata) = target.delegatecall(data);
                          return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                      }
                      /**
                       * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
                       * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
                       *
                       * _Available since v4.8._
                       */
                      function verifyCallResultFromTarget(
                          address target,
                          bool success,
                          bytes memory returndata,
                          string memory errorMessage
                      ) internal view returns (bytes memory) {
                          if (success) {
                              if (returndata.length == 0) {
                                  // only check isContract if the call was successful and the return data is empty
                                  // otherwise we already know that it was a contract
                                  require(isContract(target), "Address: call to non-contract");
                              }
                              return returndata;
                          } else {
                              _revert(returndata, errorMessage);
                          }
                      }
                      /**
                       * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
                       * revert reason or using the provided one.
                       *
                       * _Available since v4.3._
                       */
                      function verifyCallResult(
                          bool success,
                          bytes memory returndata,
                          string memory errorMessage
                      ) internal pure returns (bytes memory) {
                          if (success) {
                              return returndata;
                          } else {
                              _revert(returndata, errorMessage);
                          }
                      }
                      function _revert(bytes memory returndata, string memory errorMessage) private pure {
                          // Look for revert reason and bubble it up if present
                          if (returndata.length > 0) {
                              // The easiest way to bubble the revert reason is using memory via assembly
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let returndata_size := mload(returndata)
                                  revert(add(32, returndata), returndata_size)
                              }
                          } else {
                              revert(errorMessage);
                          }
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
                  pragma solidity ^0.8.0;
                  /**
                   * @dev Provides information about the current execution context, including the
                   * sender of the transaction and its data. While these are generally available
                   * via msg.sender and msg.data, they should not be accessed in such a direct
                   * manner, since when dealing with meta-transactions the account sending and
                   * paying for execution may not be the actual sender (as far as an application
                   * is concerned).
                   *
                   * This contract is only required for intermediate, library-like contracts.
                   */
                  abstract contract Context {
                      function _msgSender() internal view virtual returns (address) {
                          return msg.sender;
                      }
                      function _msgData() internal view virtual returns (bytes calldata) {
                          return msg.data;
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.17;
                  error TokenAddressIsZero();
                  error TokenNotSupported();
                  error CannotBridgeToSameNetwork();
                  error ZeroPostSwapBalance();
                  error NoSwapDataProvided();
                  error NativeValueWithERC();
                  error ContractCallNotAllowed();
                  error NullAddrIsNotAValidSpender();
                  error NullAddrIsNotAnERC20Token();
                  error NoTransferToNullAddress();
                  error NativeAssetTransferFailed();
                  error InvalidBridgeConfigLength();
                  error InvalidAmount();
                  error InvalidContract();
                  error InvalidConfig();
                  error UnsupportedChainId(uint256 chainId);
                  error InvalidReceiver();
                  error InvalidDestinationChain();
                  error InvalidSendingToken();
                  error InvalidCaller();
                  error AlreadyInitialized();
                  error NotInitialized();
                  error OnlyContractOwner();
                  error CannotAuthoriseSelf();
                  error RecoveryAddressCannotBeZero();
                  error CannotDepositNativeToken();
                  error InvalidCallData();
                  error NativeAssetNotSupported();
                  error UnAuthorized();
                  error NoSwapFromZeroBalance();
                  error InvalidFallbackAddress();
                  error CumulativeSlippageTooHigh(uint256 minAmount, uint256 receivedAmount);
                  error InsufficientBalance(uint256 required, uint256 balance);
                  error ZeroAmount();
                  error ZeroAddress();
                  error InvalidFee();
                  error InformationMismatch();
                  error LengthMissmatch();
                  error NotAContract();
                  error NotEnoughBalance(uint256 requested, uint256 available);
                  error InsufficientMessageValue();
                  error ExternalCallFailed();
                  error ReentrancyError();
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.17;
                  interface IDiamondCut {
                      enum FacetCutAction {
                          Add,
                          Replace,
                          Remove
                      }
                      // Add=0, Replace=1, Remove=2
                      struct FacetCut {
                          address facetAddress;
                          FacetCutAction action;
                          bytes4[] functionSelectors;
                      }
                      /// @notice Add/replace/remove any number of functions and optionally execute
                      ///         a function with delegatecall
                      /// @param _diamondCut Contains the facet addresses and function selectors
                      /// @param _init The address of the contract or facet to execute _calldata
                      /// @param _calldata A function call, including function selector and arguments
                      ///                  _calldata is executed with delegatecall on _init
                      function diamondCut(
                          FacetCut[] calldata _diamondCut,
                          address _init,
                          bytes calldata _calldata
                      ) external;
                      event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata);
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.17;
                  interface IFeesFacet {
                      struct IntegratorFeeInfo {
                          bool isIntegrator; // flag for setting 0 fees for integrator      - 1 byte
                          uint32 tokenFee; // total fee percent gathered from user          - 4 bytes
                          uint32 RubicTokenShare; // token share of platform commission     - 4 bytes
                          uint32 RubicFixedCryptoShare; // native share of fixed commission - 4 bytes
                          uint128 fixedFeeAmount; // custom fixed fee amount                - 16 bytes
                      }
                      /**
                       * @dev Initializes the FeesFacet with treasury address and max fee amount
                       * No need to check initialized status because if max fee is 0 than there is no token fees
                       * @param _feeTreasure Address to send fees to
                       * @param _maxRubicPlatformFee Max value of Tubic token fees
                       */
                      function initialize(
                          address _feeTreasure,
                          uint256 _maxRubicPlatformFee,
                          uint256 _maxFixedNativeFee
                      ) external;
                      /**
                       * @dev Sets fee info associated with an integrator
                       * @param _integrator Address of the integrator
                       * @param _info Struct with fee info
                       */
                      function setIntegratorInfo(
                          address _integrator,
                          IntegratorFeeInfo memory _info
                      ) external;
                      /**
                       * @dev Sets address of the treasure
                       * @param _feeTreasure Address of the treasure
                       */
                      function setFeeTreasure(address _feeTreasure) external;
                      /**
                       * @dev Sets fixed crypto fee
                       * @param _fixedNativeFee Fixed crypto fee
                       */
                      function setFixedNativeFee(uint256 _fixedNativeFee) external;
                      /**
                       * @dev Sets Rubic token fee
                       * @notice Cannot be higher than limit set only by an admin
                       * @param _platformFee Fixed crypto fee
                       */
                      function setRubicPlatformFee(uint256 _platformFee) external;
                      /**
                       * @dev Sets the limit of Rubic token fee
                       * @param _maxFee The limit
                       */
                      function setMaxRubicPlatformFee(uint256 _maxFee) external;
                      /// VIEW FUNCTIONS ///
                      function calcTokenFees(
                          uint256 _amount,
                          address _integrator
                      )
                          external
                          view
                          returns (uint256 totalFee, uint256 RubicFee, uint256 integratorFee);
                      function fixedNativeFee() external view returns (uint256 _fixedNativeFee);
                      function RubicPlatformFee()
                          external
                          view
                          returns (uint256 _RubicPlatformFee);
                      function maxRubicPlatformFee()
                          external
                          view
                          returns (uint256 _maxRubicPlatformFee);
                      function maxFixedNativeFee()
                          external
                          view
                          returns (uint256 _maxFixedNativeFee);
                      function feeTreasure() external view returns (address feeTreasure);
                      function integratorToFeeInfo(
                          address _integrator
                      ) external view returns (IFeesFacet.IntegratorFeeInfo memory _info);
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity ^0.8.17;
                  /// @title Contains 512-bit math functions
                  /// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
                  /// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
                  library FullMath {
                      /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                      /// @param a The multiplicand
                      /// @param b The multiplier
                      /// @param denominator The divisor
                      /// @return result The 256-bit result
                      /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
                      function mulDiv(
                          uint256 a,
                          uint256 b,
                          uint256 denominator
                      ) internal pure returns (uint256 result) {
                          unchecked {
                              // 512-bit multiply [prod1 prod0] = a * b
                              // Compute the product mod 2**256 and mod 2**256 - 1
                              // then use the Chinese Remainder Theorem to reconstruct
                              // the 512 bit result. The result is stored in two 256
                              // variables such that product = prod1 * 2**256 + prod0
                              uint256 prod0; // Least significant 256 bits of the product
                              uint256 prod1; // Most significant 256 bits of the product
                              assembly {
                                  let mm := mulmod(a, b, not(0))
                                  prod0 := mul(a, b)
                                  prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                              }
                              // Handle non-overflow cases, 256 by 256 division
                              if (prod1 == 0) {
                                  require(denominator > 0);
                                  assembly {
                                      result := div(prod0, denominator)
                                  }
                                  return result;
                              }
                              // Make sure the result is less than 2**256.
                              // Also prevents denominator == 0
                              require(denominator > prod1);
                              ///////////////////////////////////////////////
                              // 512 by 256 division.
                              ///////////////////////////////////////////////
                              // Make division exact by subtracting the remainder from [prod1 prod0]
                              // Compute remainder using mulmod
                              uint256 remainder;
                              assembly {
                                  remainder := mulmod(a, b, denominator)
                              }
                              // Subtract 256 bit number from 512 bit number
                              assembly {
                                  prod1 := sub(prod1, gt(remainder, prod0))
                                  prod0 := sub(prod0, remainder)
                              }
                              // Factor powers of two out of denominator
                              // Compute largest power of two divisor of denominator.
                              // Always >= 1.
                              uint256 twos = (0 - denominator) & denominator;
                              // Divide denominator by power of two
                              assembly {
                                  denominator := div(denominator, twos)
                              }
                              // Divide [prod1 prod0] by the factors of two
                              assembly {
                                  prod0 := div(prod0, twos)
                              }
                              // Shift in bits from prod1 into prod0. For this we need
                              // to flip `twos` such that it is 2**256 / twos.
                              // If twos is zero, then it becomes one
                              assembly {
                                  twos := add(div(sub(0, twos), twos), 1)
                              }
                              prod0 |= prod1 * twos;
                              // Invert denominator mod 2**256
                              // Now that denominator is an odd number, it has an inverse
                              // modulo 2**256 such that denominator * inv = 1 mod 2**256.
                              // Compute the inverse by starting with a seed that is correct
                              // correct for four bits. That is, denominator * inv = 1 mod 2**4
                              uint256 inv = (3 * denominator) ^ 2;
                              // Now use Newton-Raphson iteration to improve the precision.
                              // Thanks to Hensel's lifting lemma, this also works in modular
                              // arithmetic, doubling the correct bits in each step.
                              inv *= 2 - denominator * inv; // inverse mod 2**8
                              inv *= 2 - denominator * inv; // inverse mod 2**16
                              inv *= 2 - denominator * inv; // inverse mod 2**32
                              inv *= 2 - denominator * inv; // inverse mod 2**64
                              inv *= 2 - denominator * inv; // inverse mod 2**128
                              inv *= 2 - denominator * inv; // inverse mod 2**256
                              // Because the division is now exact we can divide by multiplying
                              // with the modular inverse of denominator. This will give us the
                              // correct result modulo 2**256. Since the precoditions guarantee
                              // that the outcome is less than 2**256, this is the final result.
                              // We don't need to compute the high bits of the result and prod1
                              // is no longer required.
                              result = prod0 * inv;
                              return result;
                          }
                      }
                  }
                  // SPDX-License-Identifier: UNLICENSED
                  pragma solidity 0.8.17;
                  import { InsufficientBalance, NullAddrIsNotAnERC20Token, NullAddrIsNotAValidSpender, NoTransferToNullAddress, InvalidAmount, NativeValueWithERC, NativeAssetTransferFailed } from "../Errors/GenericErrors.sol";
                  import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
                  import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
                  import { ERC20Proxy } from "../Periphery/ERC20Proxy.sol";
                  import { LibSwap } from "./LibSwap.sol";
                  import { LibFees } from "./LibFees.sol";
                  /// @title LibAsset
                  /// @notice This library contains helpers for dealing with onchain transfers
                  ///         of assets, including accounting for the native asset `assetId`
                  ///         conventions and any noncompliant ERC20 transfers
                  library LibAsset {
                      uint256 private constant MAX_UINT = type(uint256).max;
                      address internal constant NULL_ADDRESS = address(0);
                      /// @dev All native assets use the empty address for their asset id
                      ///      by convention
                      address internal constant NATIVE_ASSETID = NULL_ADDRESS; //address(0)
                      /// @notice Gets the balance of the inheriting contract for the given asset
                      /// @param assetId The asset identifier to get the balance of
                      /// @return Balance held by contracts using this library
                      function getOwnBalance(address assetId) internal view returns (uint256) {
                          return
                              assetId == NATIVE_ASSETID
                                  ? address(this).balance
                                  : IERC20(assetId).balanceOf(address(this));
                      }
                      /// @notice Transfers ether from the inheriting contract to a given
                      ///         recipient
                      /// @param recipient Address to send ether to
                      /// @param amount Amount to send to given recipient
                      function transferNativeAsset(
                          address payable recipient,
                          uint256 amount
                      ) internal {
                          if (recipient == NULL_ADDRESS) revert NoTransferToNullAddress();
                          if (amount > address(this).balance)
                              revert InsufficientBalance(amount, address(this).balance);
                          // solhint-disable-next-line avoid-low-level-calls
                          (bool success, ) = recipient.call{ value: amount }("");
                          if (!success) revert NativeAssetTransferFailed();
                      }
                      /// @notice If the current allowance is insufficient, the allowance for a given spender
                      /// is set to MAX_UINT.
                      /// @param assetId Token address to transfer
                      /// @param spender Address to give spend approval to
                      /// @param amount Amount to approve for spending
                      function maxApproveERC20(
                          IERC20 assetId,
                          address spender,
                          uint256 amount
                      ) internal {
                          if (address(assetId) == NATIVE_ASSETID) return;
                          if (spender == NULL_ADDRESS) revert NullAddrIsNotAValidSpender();
                          uint256 allowance = assetId.allowance(address(this), spender);
                          if (allowance < amount)
                              SafeERC20.safeIncreaseAllowance(
                                  IERC20(assetId),
                                  spender,
                                  MAX_UINT - allowance
                              );
                      }
                      /// @notice Transfers tokens from the inheriting contract to a given
                      ///         recipient
                      /// @param assetId Token address to transfer
                      /// @param recipient Address to send token to
                      /// @param amount Amount to send to given recipient
                      function transferERC20(
                          address assetId,
                          address recipient,
                          uint256 amount
                      ) internal {
                          if (isNativeAsset(assetId)) revert NullAddrIsNotAnERC20Token();
                          uint256 assetBalance = IERC20(assetId).balanceOf(address(this));
                          if (amount > assetBalance)
                              revert InsufficientBalance(amount, assetBalance);
                          SafeERC20.safeTransfer(IERC20(assetId), recipient, amount);
                      }
                      /// @notice Transfers tokens from a sender to a given recipient
                      /// @param assetId Token address to transfer
                      /// @param from Address of sender/owner
                      /// @param to Address of recipient/spender
                      /// @param amount Amount to transfer from owner to spender
                      function transferFromERC20(
                          address assetId,
                          address from,
                          address to,
                          uint256 amount
                      ) internal {
                          if (assetId == NATIVE_ASSETID) revert NullAddrIsNotAnERC20Token();
                          if (to == NULL_ADDRESS) revert NoTransferToNullAddress();
                          IERC20 asset = IERC20(assetId);
                          uint256 prevBalance = asset.balanceOf(to);
                          SafeERC20.safeTransferFrom(asset, from, to, amount);
                          if (asset.balanceOf(to) - prevBalance != amount)
                              revert InvalidAmount();
                      }
                      /// @dev Deposits asset for bridging and accrues fixed and token fees
                      /// @param assetId Address of asset to deposit
                      /// @param amount Amount of asset to bridge
                      /// @param extraNativeAmount Amount of native token to send to a bridge
                      /// @param integrator Integrator for whom to count the fees
                      /// @return amountWithoutFees Amount of tokens to bridge minus fees
                      function depositAssetAndAccrueFees(
                          address assetId,
                          uint256 amount,
                          uint256 extraNativeAmount,
                          address integrator
                      ) internal returns (uint256 amountWithoutFees) {
                          uint256 accruedFixedNativeFee = LibFees.accrueFixedNativeFee(
                              integrator
                          );
                          // Check that msg value is at least greater than fixed native fee + extra fee sending to bridge
                          if (msg.value < accruedFixedNativeFee + extraNativeAmount)
                              revert InvalidAmount();
                          amountWithoutFees = _depositAndAccrueTokenFee(
                              assetId,
                              amount,
                              accruedFixedNativeFee,
                              extraNativeAmount,
                              integrator
                          );
                      }
                      /// @dev Deposits assets for each swap that requires and accrues fixed and token fees
                      /// @param swaps Array of swap datas
                      /// @param integrator Integrator for whom to count the fees
                      /// @return amountWithoutFees Array of swap datas with updated amounts
                      function depositAssetsAndAccrueFees(
                          LibSwap.SwapData[] memory swaps,
                          address integrator
                      ) internal returns (LibSwap.SwapData[] memory) {
                          uint256 accruedFixedNativeFee = LibFees.accrueFixedNativeFee(
                              integrator
                          );
                          if (msg.value < accruedFixedNativeFee) revert InvalidAmount();
                          for (uint256 i = 0; i < swaps.length; ) {
                              LibSwap.SwapData memory swap = swaps[i];
                              if (swap.requiresDeposit) {
                                  swap.fromAmount = _depositAndAccrueTokenFee(
                                      swap.sendingAssetId,
                                      swap.fromAmount,
                                      accruedFixedNativeFee,
                                      0,
                                      integrator
                                  );
                              }
                              swaps[i] = swap;
                              unchecked {
                                  i++;
                              }
                          }
                          return swaps;
                      }
                      function _depositAndAccrueTokenFee(
                          address assetId,
                          uint256 amount,
                          uint256 accruedFixedNativeFee,
                          uint256 extraNativeAmount,
                          address integrator
                      ) private returns (uint256 amountWithoutFees) {
                          if (isNativeAsset(assetId)) {
                              // Check that msg value greater than sending amount + fixed native fees + extra fees sending to bridge
                              if (msg.value < amount + accruedFixedNativeFee + extraNativeAmount)
                                  revert InvalidAmount();
                          } else {
                              if (amount == 0) revert InvalidAmount();
                              uint256 balance = IERC20(assetId).balanceOf(address(this));
                              if (balance < amount) revert InsufficientBalance(amount, balance);
                              //            getERC20proxy().transferFrom(
                              //                assetId,
                              //                msg.sender,
                              //                address(this),
                              //                amount
                              //            );
                          }
                          amountWithoutFees = LibFees.accrueTokenFees(
                              integrator,
                              amount,
                              assetId
                          );
                      }
                      /// @notice Determines whether the given assetId is the native asset
                      /// @param assetId The asset identifier to evaluate
                      /// @return Boolean indicating if the asset is the native asset
                      function isNativeAsset(address assetId) internal pure returns (bool) {
                          return assetId == NATIVE_ASSETID;
                      }
                      /// @notice Wrapper function to transfer a given asset (native or erc20) to
                      ///         some recipient. Should handle all non-compliant return value
                      ///         tokens as well by using the SafeERC20 contract by open zeppelin.
                      /// @param assetId Asset id for transfer (address(0) for native asset,
                      ///                token address for erc20s)
                      /// @param recipient Address to send asset to
                      /// @param amount Amount to send to given recipient
                      function transferAsset(
                          address assetId,
                          address payable recipient,
                          uint256 amount
                      ) internal {
                          (assetId == NATIVE_ASSETID)
                              ? transferNativeAsset(recipient, amount)
                              : transferERC20(assetId, recipient, amount);
                      }
                      /// @dev Checks whether the given address is a contract and contains code
                      function isContract(address _contractAddr) internal view returns (bool) {
                          uint256 size;
                          // solhint-disable-next-line no-inline-assembly
                          assembly {
                              size := extcodesize(_contractAddr)
                          }
                          return size > 0;
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.17;
                  library LibBytes {
                      // solhint-disable no-inline-assembly
                      // LibBytes specific errors
                      error SliceOverflow();
                      error SliceOutOfBounds();
                      error AddressOutOfBounds();
                      error UintOutOfBounds();
                      // -------------------------
                      function concat(
                          bytes memory _preBytes,
                          bytes memory _postBytes
                      ) internal pure returns (bytes memory) {
                          bytes memory tempBytes;
                          assembly {
                              // Get a location of some free memory and store it in tempBytes as
                              // Solidity does for memory variables.
                              tempBytes := mload(0x40)
                              // Store the length of the first bytes array at the beginning of
                              // the memory for tempBytes.
                              let length := mload(_preBytes)
                              mstore(tempBytes, length)
                              // Maintain a memory counter for the current write location in the
                              // temp bytes array by adding the 32 bytes for the array length to
                              // the starting location.
                              let mc := add(tempBytes, 0x20)
                              // Stop copying when the memory counter reaches the length of the
                              // first bytes array.
                              let end := add(mc, length)
                              for {
                                  // Initialize a copy counter to the start of the _preBytes data,
                                  // 32 bytes into its memory.
                                  let cc := add(_preBytes, 0x20)
                              } lt(mc, end) {
                                  // Increase both counters by 32 bytes each iteration.
                                  mc := add(mc, 0x20)
                                  cc := add(cc, 0x20)
                              } {
                                  // Write the _preBytes data into the tempBytes memory 32 bytes
                                  // at a time.
                                  mstore(mc, mload(cc))
                              }
                              // Add the length of _postBytes to the current length of tempBytes
                              // and store it as the new length in the first 32 bytes of the
                              // tempBytes memory.
                              length := mload(_postBytes)
                              mstore(tempBytes, add(length, mload(tempBytes)))
                              // Move the memory counter back from a multiple of 0x20 to the
                              // actual end of the _preBytes data.
                              mc := end
                              // Stop copying when the memory counter reaches the new combined
                              // length of the arrays.
                              end := add(mc, length)
                              for {
                                  let cc := add(_postBytes, 0x20)
                              } lt(mc, end) {
                                  mc := add(mc, 0x20)
                                  cc := add(cc, 0x20)
                              } {
                                  mstore(mc, mload(cc))
                              }
                              // Update the free-memory pointer by padding our last write location
                              // to 32 bytes: add 31 bytes to the end of tempBytes to move to the
                              // next 32 byte block, then round down to the nearest multiple of
                              // 32. If the sum of the length of the two arrays is zero then add
                              // one before rounding down to leave a blank 32 bytes (the length block with 0).
                              mstore(
                                  0x40,
                                  and(
                                      add(add(end, iszero(add(length, mload(_preBytes)))), 31),
                                      not(31) // Round down to the nearest 32 bytes.
                                  )
                              )
                          }
                          return tempBytes;
                      }
                      function concatStorage(
                          bytes storage _preBytes,
                          bytes memory _postBytes
                      ) internal {
                          assembly {
                              // Read the first 32 bytes of _preBytes storage, which is the length
                              // of the array. (We don't need to use the offset into the slot
                              // because arrays use the entire slot.)
                              let fslot := sload(_preBytes.slot)
                              // Arrays of 31 bytes or less have an even value in their slot,
                              // while longer arrays have an odd value. The actual length is
                              // the slot divided by two for odd values, and the lowest order
                              // byte divided by two for even values.
                              // If the slot is even, bitwise and the slot with 255 and divide by
                              // two to get the length. If the slot is odd, bitwise and the slot
                              // with -1 and divide by two.
                              let slength := div(
                                  and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)),
                                  2
                              )
                              let mlength := mload(_postBytes)
                              let newlength := add(slength, mlength)
                              // slength can contain both the length and contents of the array
                              // if length < 32 bytes so let's prepare for that
                              // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                              switch add(lt(slength, 32), lt(newlength, 32))
                              case 2 {
                                  // Since the new array still fits in the slot, we just need to
                                  // update the contents of the slot.
                                  // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
                                  sstore(
                                      _preBytes.slot,
                                      // all the modifications to the slot are inside this
                                      // next block
                                      add(
                                          // we can just add to the slot contents because the
                                          // bytes we want to change are the LSBs
                                          fslot,
                                          add(
                                              mul(
                                                  div(
                                                      // load the bytes from memory
                                                      mload(add(_postBytes, 0x20)),
                                                      // zero all bytes to the right
                                                      exp(0x100, sub(32, mlength))
                                                  ),
                                                  // and now shift left the number of bytes to
                                                  // leave space for the length in the slot
                                                  exp(0x100, sub(32, newlength))
                                              ),
                                              // increase length by the double of the memory
                                              // bytes length
                                              mul(mlength, 2)
                                          )
                                      )
                                  )
                              }
                              case 1 {
                                  // The stored value fits in the slot, but the combined value
                                  // will exceed it.
                                  // get the keccak hash to get the contents of the array
                                  mstore(0x0, _preBytes.slot)
                                  let sc := add(keccak256(0x0, 0x20), div(slength, 32))
                                  // save new length
                                  sstore(_preBytes.slot, add(mul(newlength, 2), 1))
                                  // The contents of the _postBytes array start 32 bytes into
                                  // the structure. Our first read should obtain the `submod`
                                  // bytes that can fit into the unused space in the last word
                                  // of the stored array. To get this, we read 32 bytes starting
                                  // from `submod`, so the data we read overlaps with the array
                                  // contents by `submod` bytes. Masking the lowest-order
                                  // `submod` bytes allows us to add that value directly to the
                                  // stored value.
                                  let submod := sub(32, slength)
                                  let mc := add(_postBytes, submod)
                                  let end := add(_postBytes, mlength)
                                  let mask := sub(exp(0x100, submod), 1)
                                  sstore(
                                      sc,
                                      add(
                                          and(
                                              fslot,
                                              0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00
                                          ),
                                          and(mload(mc), mask)
                                      )
                                  )
                                  for {
                                      mc := add(mc, 0x20)
                                      sc := add(sc, 1)
                                  } lt(mc, end) {
                                      sc := add(sc, 1)
                                      mc := add(mc, 0x20)
                                  } {
                                      sstore(sc, mload(mc))
                                  }
                                  mask := exp(0x100, sub(mc, end))
                                  sstore(sc, mul(div(mload(mc), mask), mask))
                              }
                              default {
                                  // get the keccak hash to get the contents of the array
                                  mstore(0x0, _preBytes.slot)
                                  // Start copying to the last used word of the stored array.
                                  let sc := add(keccak256(0x0, 0x20), div(slength, 32))
                                  // save new length
                                  sstore(_preBytes.slot, add(mul(newlength, 2), 1))
                                  // Copy over the first `submod` bytes of the new data as in
                                  // case 1 above.
                                  let slengthmod := mod(slength, 32)
                                  let submod := sub(32, slengthmod)
                                  let mc := add(_postBytes, submod)
                                  let end := add(_postBytes, mlength)
                                  let mask := sub(exp(0x100, submod), 1)
                                  sstore(sc, add(sload(sc), and(mload(mc), mask)))
                                  for {
                                      sc := add(sc, 1)
                                      mc := add(mc, 0x20)
                                  } lt(mc, end) {
                                      sc := add(sc, 1)
                                      mc := add(mc, 0x20)
                                  } {
                                      sstore(sc, mload(mc))
                                  }
                                  mask := exp(0x100, sub(mc, end))
                                  sstore(sc, mul(div(mload(mc), mask), mask))
                              }
                          }
                      }
                      function slice(
                          bytes memory _bytes,
                          uint256 _start,
                          uint256 _length
                      ) internal pure returns (bytes memory) {
                          if (_length + 31 < _length) revert SliceOverflow();
                          if (_bytes.length < _start + _length) revert SliceOutOfBounds();
                          bytes memory tempBytes;
                          assembly {
                              switch iszero(_length)
                              case 0 {
                                  // Get a location of some free memory and store it in tempBytes as
                                  // Solidity does for memory variables.
                                  tempBytes := mload(0x40)
                                  // The first word of the slice result is potentially a partial
                                  // word read from the original array. To read it, we calculate
                                  // the length of that partial word and start copying that many
                                  // bytes into the array. The first word we copy will start with
                                  // data we don't care about, but the last `lengthmod` bytes will
                                  // land at the beginning of the contents of the new array. When
                                  // we're done copying, we overwrite the full first word with
                                  // the actual length of the slice.
                                  let lengthmod := and(_length, 31)
                                  // The multiplication in the next line is necessary
                                  // because when slicing multiples of 32 bytes (lengthmod == 0)
                                  // the following copy loop was copying the origin's length
                                  // and then ending prematurely not copying everything it should.
                                  let mc := add(
                                      add(tempBytes, lengthmod),
                                      mul(0x20, iszero(lengthmod))
                                  )
                                  let end := add(mc, _length)
                                  for {
                                      // The multiplication in the next line has the same exact purpose
                                      // as the one above.
                                      let cc := add(
                                          add(
                                              add(_bytes, lengthmod),
                                              mul(0x20, iszero(lengthmod))
                                          ),
                                          _start
                                      )
                                  } lt(mc, end) {
                                      mc := add(mc, 0x20)
                                      cc := add(cc, 0x20)
                                  } {
                                      mstore(mc, mload(cc))
                                  }
                                  mstore(tempBytes, _length)
                                  //update free-memory pointer
                                  //allocating the array padded to 32 bytes like the compiler does now
                                  mstore(0x40, and(add(mc, 31), not(31)))
                              }
                              //if we want a zero-length slice let's just return a zero-length array
                              default {
                                  tempBytes := mload(0x40)
                                  //zero out the 32 bytes slice we are about to return
                                  //we need to do it because Solidity does not garbage collect
                                  mstore(tempBytes, 0)
                                  mstore(0x40, add(tempBytes, 0x20))
                              }
                          }
                          return tempBytes;
                      }
                      function toAddress(
                          bytes memory _bytes,
                          uint256 _start
                      ) internal pure returns (address) {
                          if (_bytes.length < _start + 20) {
                              revert AddressOutOfBounds();
                          }
                          address tempAddress;
                          assembly {
                              tempAddress := div(
                                  mload(add(add(_bytes, 0x20), _start)),
                                  0x1000000000000000000000000
                              )
                          }
                          return tempAddress;
                      }
                      function toUint8(
                          bytes memory _bytes,
                          uint256 _start
                      ) internal pure returns (uint8) {
                          if (_bytes.length < _start + 1) {
                              revert UintOutOfBounds();
                          }
                          uint8 tempUint;
                          assembly {
                              tempUint := mload(add(add(_bytes, 0x1), _start))
                          }
                          return tempUint;
                      }
                      function toUint16(
                          bytes memory _bytes,
                          uint256 _start
                      ) internal pure returns (uint16) {
                          if (_bytes.length < _start + 2) {
                              revert UintOutOfBounds();
                          }
                          uint16 tempUint;
                          assembly {
                              tempUint := mload(add(add(_bytes, 0x2), _start))
                          }
                          return tempUint;
                      }
                      function toUint32(
                          bytes memory _bytes,
                          uint256 _start
                      ) internal pure returns (uint32) {
                          if (_bytes.length < _start + 4) {
                              revert UintOutOfBounds();
                          }
                          uint32 tempUint;
                          assembly {
                              tempUint := mload(add(add(_bytes, 0x4), _start))
                          }
                          return tempUint;
                      }
                      function toUint64(
                          bytes memory _bytes,
                          uint256 _start
                      ) internal pure returns (uint64) {
                          if (_bytes.length < _start + 8) {
                              revert UintOutOfBounds();
                          }
                          uint64 tempUint;
                          assembly {
                              tempUint := mload(add(add(_bytes, 0x8), _start))
                          }
                          return tempUint;
                      }
                      function toUint96(
                          bytes memory _bytes,
                          uint256 _start
                      ) internal pure returns (uint96) {
                          if (_bytes.length < _start + 12) {
                              revert UintOutOfBounds();
                          }
                          uint96 tempUint;
                          assembly {
                              tempUint := mload(add(add(_bytes, 0xc), _start))
                          }
                          return tempUint;
                      }
                      function toUint128(
                          bytes memory _bytes,
                          uint256 _start
                      ) internal pure returns (uint128) {
                          if (_bytes.length < _start + 16) {
                              revert UintOutOfBounds();
                          }
                          uint128 tempUint;
                          assembly {
                              tempUint := mload(add(add(_bytes, 0x10), _start))
                          }
                          return tempUint;
                      }
                      function toUint256(
                          bytes memory _bytes,
                          uint256 _start
                      ) internal pure returns (uint256) {
                          if (_bytes.length < _start + 32) {
                              revert UintOutOfBounds();
                          }
                          uint256 tempUint;
                          assembly {
                              tempUint := mload(add(add(_bytes, 0x20), _start))
                          }
                          return tempUint;
                      }
                      function toBytes32(
                          bytes memory _bytes,
                          uint256 _start
                      ) internal pure returns (bytes32) {
                          if (_bytes.length < _start + 32) {
                              revert UintOutOfBounds();
                          }
                          bytes32 tempBytes32;
                          assembly {
                              tempBytes32 := mload(add(add(_bytes, 0x20), _start))
                          }
                          return tempBytes32;
                      }
                      function equal(
                          bytes memory _preBytes,
                          bytes memory _postBytes
                      ) internal pure returns (bool) {
                          bool success = true;
                          assembly {
                              let length := mload(_preBytes)
                              // if lengths don't match the arrays are not equal
                              switch eq(length, mload(_postBytes))
                              case 1 {
                                  // cb is a circuit breaker in the for loop since there's
                                  //  no said feature for inline assembly loops
                                  // cb = 1 - don't breaker
                                  // cb = 0 - break
                                  let cb := 1
                                  let mc := add(_preBytes, 0x20)
                                  let end := add(mc, length)
                                  for {
                                      let cc := add(_postBytes, 0x20)
                                      // the next line is the loop condition:
                                      // while(uint256(mc < end) + cb == 2)
                                  } eq(add(lt(mc, end), cb), 2) {
                                      mc := add(mc, 0x20)
                                      cc := add(cc, 0x20)
                                  } {
                                      // if any of these checks fails then arrays are not equal
                                      if iszero(eq(mload(mc), mload(cc))) {
                                          // unsuccess:
                                          success := 0
                                          cb := 0
                                      }
                                  }
                              }
                              default {
                                  // unsuccess:
                                  success := 0
                              }
                          }
                          return success;
                      }
                      function equalStorage(
                          bytes storage _preBytes,
                          bytes memory _postBytes
                      ) internal view returns (bool) {
                          bool success = true;
                          assembly {
                              // we know _preBytes_offset is 0
                              let fslot := sload(_preBytes.slot)
                              // Decode the length of the stored array like in concatStorage().
                              let slength := div(
                                  and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)),
                                  2
                              )
                              let mlength := mload(_postBytes)
                              // if lengths don't match the arrays are not equal
                              switch eq(slength, mlength)
                              case 1 {
                                  // slength can contain both the length and contents of the array
                                  // if length < 32 bytes so let's prepare for that
                                  // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                                  if iszero(iszero(slength)) {
                                      switch lt(slength, 32)
                                      case 1 {
                                          // blank the last byte which is the length
                                          fslot := mul(div(fslot, 0x100), 0x100)
                                          if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
                                              // unsuccess:
                                              success := 0
                                          }
                                      }
                                      default {
                                          // cb is a circuit breaker in the for loop since there's
                                          //  no said feature for inline assembly loops
                                          // cb = 1 - don't breaker
                                          // cb = 0 - break
                                          let cb := 1
                                          // get the keccak hash to get the contents of the array
                                          mstore(0x0, _preBytes.slot)
                                          let sc := keccak256(0x0, 0x20)
                                          let mc := add(_postBytes, 0x20)
                                          let end := add(mc, mlength)
                                          // the next line is the loop condition:
                                          // while(uint256(mc < end) + cb == 2)
                                          // solhint-disable-next-line no-empty-blocks
                                          for {
                                          } eq(add(lt(mc, end), cb), 2) {
                                              sc := add(sc, 1)
                                              mc := add(mc, 0x20)
                                          } {
                                              if iszero(eq(sload(sc), mload(mc))) {
                                                  // unsuccess:
                                                  success := 0
                                                  cb := 0
                                              }
                                          }
                                      }
                                  }
                              }
                              default {
                                  // unsuccess:
                                  success := 0
                              }
                          }
                          return success;
                      }
                      function getFirst4Bytes(
                          bytes memory data
                      ) internal pure returns (bytes4 outBytes4) {
                          if (data.length == 0) {
                              return 0x0;
                          }
                          assembly {
                              outBytes4 := mload(add(data, 32))
                          }
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.17;
                  import { IDiamondCut } from "../Interfaces/IDiamondCut.sol";
                  import { LibUtil } from "../Libraries/LibUtil.sol";
                  import { OnlyContractOwner } from "../Errors/GenericErrors.sol";
                  /// Implementation of EIP-2535 Diamond Standard
                  /// https://eips.ethereum.org/EIPS/eip-2535
                  library LibDiamond {
                      bytes32 internal constant DIAMOND_STORAGE_POSITION =
                          keccak256("diamond.standard.diamond.storage");
                      // Diamond specific errors
                      error IncorrectFacetCutAction();
                      error NoSelectorsInFace();
                      error FunctionAlreadyExists();
                      error FacetAddressIsZero();
                      error FacetAddressIsNotZero();
                      error FacetContainsNoCode();
                      error FunctionDoesNotExist();
                      error FunctionIsImmutable();
                      error InitZeroButCalldataNotEmpty();
                      error CalldataEmptyButInitNotZero();
                      error InitReverted();
                      // ----------------
                      struct FacetAddressAndPosition {
                          address facetAddress;
                          uint96 functionSelectorPosition; // position in facetFunctionSelectors.functionSelectors array
                      }
                      struct FacetFunctionSelectors {
                          bytes4[] functionSelectors;
                          uint256 facetAddressPosition; // position of facetAddress in facetAddresses array
                      }
                      struct DiamondStorage {
                          // maps function selector to the facet address and
                          // the position of the selector in the facetFunctionSelectors.selectors array
                          mapping(bytes4 => FacetAddressAndPosition) selectorToFacetAndPosition;
                          // maps facet addresses to function selectors
                          mapping(address => FacetFunctionSelectors) facetFunctionSelectors;
                          // facet addresses
                          address[] facetAddresses;
                          // Used to query if a contract implements an interface.
                          // Used to implement ERC-165.
                          mapping(bytes4 => bool) supportedInterfaces;
                          // owner of the contract
                          address contractOwner;
                      }
                      function diamondStorage()
                          internal
                          pure
                          returns (DiamondStorage storage ds)
                      {
                          bytes32 position = DIAMOND_STORAGE_POSITION;
                          // solhint-disable-next-line no-inline-assembly
                          assembly {
                              ds.slot := position
                          }
                      }
                      event OwnershipTransferred(
                          address indexed previousOwner,
                          address indexed newOwner
                      );
                      function setContractOwner(address _newOwner) internal {
                          DiamondStorage storage ds = diamondStorage();
                          address previousOwner = ds.contractOwner;
                          ds.contractOwner = _newOwner;
                          emit OwnershipTransferred(previousOwner, _newOwner);
                      }
                      function contractOwner() internal view returns (address contractOwner_) {
                          contractOwner_ = diamondStorage().contractOwner;
                      }
                      function enforceIsContractOwner() internal view {
                          if (msg.sender != diamondStorage().contractOwner)
                              revert OnlyContractOwner();
                      }
                      event DiamondCut(
                          IDiamondCut.FacetCut[] _diamondCut,
                          address _init,
                          bytes _calldata
                      );
                      // Internal function version of diamondCut
                      function diamondCut(
                          IDiamondCut.FacetCut[] memory _diamondCut,
                          address _init,
                          bytes memory _calldata
                      ) internal {
                          for (uint256 facetIndex; facetIndex < _diamondCut.length; ) {
                              IDiamondCut.FacetCutAction action = _diamondCut[facetIndex].action;
                              if (action == IDiamondCut.FacetCutAction.Add) {
                                  addFunctions(
                                      _diamondCut[facetIndex].facetAddress,
                                      _diamondCut[facetIndex].functionSelectors
                                  );
                              } else if (action == IDiamondCut.FacetCutAction.Replace) {
                                  replaceFunctions(
                                      _diamondCut[facetIndex].facetAddress,
                                      _diamondCut[facetIndex].functionSelectors
                                  );
                              } else if (action == IDiamondCut.FacetCutAction.Remove) {
                                  removeFunctions(
                                      _diamondCut[facetIndex].facetAddress,
                                      _diamondCut[facetIndex].functionSelectors
                                  );
                              } else {
                                  revert IncorrectFacetCutAction();
                              }
                              unchecked {
                                  ++facetIndex;
                              }
                          }
                          emit DiamondCut(_diamondCut, _init, _calldata);
                          initializeDiamondCut(_init, _calldata);
                      }
                      function addFunctions(
                          address _facetAddress,
                          bytes4[] memory _functionSelectors
                      ) internal {
                          if (_functionSelectors.length == 0) {
                              revert NoSelectorsInFace();
                          }
                          DiamondStorage storage ds = diamondStorage();
                          if (LibUtil.isZeroAddress(_facetAddress)) {
                              revert FacetAddressIsZero();
                          }
                          uint96 selectorPosition = uint96(
                              ds.facetFunctionSelectors[_facetAddress].functionSelectors.length
                          );
                          // add new facet address if it does not exist
                          if (selectorPosition == 0) {
                              addFacet(ds, _facetAddress);
                          }
                          for (
                              uint256 selectorIndex;
                              selectorIndex < _functionSelectors.length;
                          ) {
                              bytes4 selector = _functionSelectors[selectorIndex];
                              address oldFacetAddress = ds
                                  .selectorToFacetAndPosition[selector]
                                  .facetAddress;
                              if (!LibUtil.isZeroAddress(oldFacetAddress)) {
                                  revert FunctionAlreadyExists();
                              }
                              addFunction(ds, selector, selectorPosition, _facetAddress);
                              unchecked {
                                  ++selectorPosition;
                                  ++selectorIndex;
                              }
                          }
                      }
                      function replaceFunctions(
                          address _facetAddress,
                          bytes4[] memory _functionSelectors
                      ) internal {
                          if (_functionSelectors.length == 0) {
                              revert NoSelectorsInFace();
                          }
                          DiamondStorage storage ds = diamondStorage();
                          if (LibUtil.isZeroAddress(_facetAddress)) {
                              revert FacetAddressIsZero();
                          }
                          uint96 selectorPosition = uint96(
                              ds.facetFunctionSelectors[_facetAddress].functionSelectors.length
                          );
                          // add new facet address if it does not exist
                          if (selectorPosition == 0) {
                              addFacet(ds, _facetAddress);
                          }
                          for (
                              uint256 selectorIndex;
                              selectorIndex < _functionSelectors.length;
                          ) {
                              bytes4 selector = _functionSelectors[selectorIndex];
                              address oldFacetAddress = ds
                                  .selectorToFacetAndPosition[selector]
                                  .facetAddress;
                              if (oldFacetAddress == _facetAddress) {
                                  revert FunctionAlreadyExists();
                              }
                              removeFunction(ds, oldFacetAddress, selector);
                              addFunction(ds, selector, selectorPosition, _facetAddress);
                              unchecked {
                                  ++selectorPosition;
                                  ++selectorIndex;
                              }
                          }
                      }
                      function removeFunctions(
                          address _facetAddress,
                          bytes4[] memory _functionSelectors
                      ) internal {
                          if (_functionSelectors.length == 0) {
                              revert NoSelectorsInFace();
                          }
                          DiamondStorage storage ds = diamondStorage();
                          // if function does not exist then do nothing and return
                          if (!LibUtil.isZeroAddress(_facetAddress)) {
                              revert FacetAddressIsNotZero();
                          }
                          for (
                              uint256 selectorIndex;
                              selectorIndex < _functionSelectors.length;
                          ) {
                              bytes4 selector = _functionSelectors[selectorIndex];
                              address oldFacetAddress = ds
                                  .selectorToFacetAndPosition[selector]
                                  .facetAddress;
                              removeFunction(ds, oldFacetAddress, selector);
                              unchecked {
                                  ++selectorIndex;
                              }
                          }
                      }
                      function addFacet(
                          DiamondStorage storage ds,
                          address _facetAddress
                      ) internal {
                          enforceHasContractCode(_facetAddress);
                          ds.facetFunctionSelectors[_facetAddress].facetAddressPosition = ds
                              .facetAddresses
                              .length;
                          ds.facetAddresses.push(_facetAddress);
                      }
                      function addFunction(
                          DiamondStorage storage ds,
                          bytes4 _selector,
                          uint96 _selectorPosition,
                          address _facetAddress
                      ) internal {
                          ds
                              .selectorToFacetAndPosition[_selector]
                              .functionSelectorPosition = _selectorPosition;
                          ds.facetFunctionSelectors[_facetAddress].functionSelectors.push(
                              _selector
                          );
                          ds.selectorToFacetAndPosition[_selector].facetAddress = _facetAddress;
                      }
                      function removeFunction(
                          DiamondStorage storage ds,
                          address _facetAddress,
                          bytes4 _selector
                      ) internal {
                          if (LibUtil.isZeroAddress(_facetAddress)) {
                              revert FunctionDoesNotExist();
                          }
                          // an immutable function is a function defined directly in a diamond
                          if (_facetAddress == address(this)) {
                              revert FunctionIsImmutable();
                          }
                          // replace selector with last selector, then delete last selector
                          uint256 selectorPosition = ds
                              .selectorToFacetAndPosition[_selector]
                              .functionSelectorPosition;
                          uint256 lastSelectorPosition = ds
                              .facetFunctionSelectors[_facetAddress]
                              .functionSelectors
                              .length - 1;
                          // if not the same then replace _selector with lastSelector
                          if (selectorPosition != lastSelectorPosition) {
                              bytes4 lastSelector = ds
                                  .facetFunctionSelectors[_facetAddress]
                                  .functionSelectors[lastSelectorPosition];
                              ds.facetFunctionSelectors[_facetAddress].functionSelectors[
                                  selectorPosition
                              ] = lastSelector;
                              ds
                                  .selectorToFacetAndPosition[lastSelector]
                                  .functionSelectorPosition = uint96(selectorPosition);
                          }
                          // delete the last selector
                          ds.facetFunctionSelectors[_facetAddress].functionSelectors.pop();
                          delete ds.selectorToFacetAndPosition[_selector];
                          // if no more selectors for facet address then delete the facet address
                          if (lastSelectorPosition == 0) {
                              // replace facet address with last facet address and delete last facet address
                              uint256 lastFacetAddressPosition = ds.facetAddresses.length - 1;
                              uint256 facetAddressPosition = ds
                                  .facetFunctionSelectors[_facetAddress]
                                  .facetAddressPosition;
                              if (facetAddressPosition != lastFacetAddressPosition) {
                                  address lastFacetAddress = ds.facetAddresses[
                                      lastFacetAddressPosition
                                  ];
                                  ds.facetAddresses[facetAddressPosition] = lastFacetAddress;
                                  ds
                                      .facetFunctionSelectors[lastFacetAddress]
                                      .facetAddressPosition = facetAddressPosition;
                              }
                              ds.facetAddresses.pop();
                              delete ds
                                  .facetFunctionSelectors[_facetAddress]
                                  .facetAddressPosition;
                          }
                      }
                      function initializeDiamondCut(
                          address _init,
                          bytes memory _calldata
                      ) internal {
                          if (LibUtil.isZeroAddress(_init)) {
                              if (_calldata.length != 0) {
                                  revert InitZeroButCalldataNotEmpty();
                              }
                          } else {
                              if (_calldata.length == 0) {
                                  revert CalldataEmptyButInitNotZero();
                              }
                              if (_init != address(this)) {
                                  enforceHasContractCode(_init);
                              }
                              // solhint-disable-next-line avoid-low-level-calls
                              (bool success, bytes memory error) = _init.delegatecall(_calldata);
                              if (!success) {
                                  if (error.length > 0) {
                                      // bubble up the error
                                      revert(string(error));
                                  } else {
                                      revert InitReverted();
                                  }
                              }
                          }
                      }
                      function enforceHasContractCode(address _contract) internal view {
                          uint256 contractSize;
                          // solhint-disable-next-line no-inline-assembly
                          assembly {
                              contractSize := extcodesize(_contract)
                          }
                          if (contractSize == 0) {
                              revert FacetContainsNoCode();
                          }
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.17;
                  import { IFeesFacet } from "../Interfaces/IFeesFacet.sol";
                  import { LibUtil } from "../Libraries/LibUtil.sol";
                  import { FullMath } from "../Libraries/FullMath.sol";
                  import { LibAsset } from "../Libraries/LibAsset.sol";
                  /// Implementation of EIP-2535 Diamond Standard
                  /// https://eips.ethereum.org/EIPS/eip-2535
                  library LibFees {
                      bytes32 internal constant FFES_STORAGE_POSITION =
                          keccak256("rubic.library.fees.v2");
                      // Denominator for setting fees
                      uint256 internal constant DENOMINATOR = 1e6;
                      // ----------------
                      event FixedNativeFee(
                          uint256 RubicPart,
                          uint256 integratorPart,
                          address indexed integrator
                      );
                      event FixedNativeFeeCollected(uint256 amount, address collector);
                      event TokenFee(
                          uint256 RubicPart,
                          uint256 integratorPart,
                          address indexed integrator,
                          address token
                      );
                      event IntegratorTokenFeeCollected(
                          uint256 amount,
                          address indexed integrator,
                          address token
                      );
                      struct FeesStorage {
                          mapping(address => IFeesFacet.IntegratorFeeInfo) integratorToFeeInfo;
                          uint256 maxRubicPlatformFee; // sets while initialize
                          uint256 maxFixedNativeFee; // sets while initialize & cannot be changed
                          uint256 RubicPlatformFee;
                          // Rubic fixed fee for swap
                          uint256 fixedNativeFee;
                          address feeTreasure;
                          bool initialized;
                      }
                      function feesStorage() internal pure returns (FeesStorage storage fs) {
                          bytes32 position = FFES_STORAGE_POSITION;
                          // solhint-disable-next-line no-inline-assembly
                          assembly {
                              fs.slot := position
                          }
                      }
                      /**
                       * @dev Calculates and accrues fixed crypto fee
                       * @param _integrator Integrator's address if there is one
                       * @return The amount of fixedNativeFee
                       */
                      function accrueFixedNativeFee(
                          address _integrator
                      ) internal returns (uint256) {
                          uint256 _fixedNativeFee;
                          uint256 _RubicPart;
                          FeesStorage storage fs = feesStorage();
                          IFeesFacet.IntegratorFeeInfo memory _info = fs.integratorToFeeInfo[
                              _integrator
                          ];
                          if (_info.isIntegrator) {
                              _fixedNativeFee = uint256(_info.fixedFeeAmount);
                              if (_fixedNativeFee > 0) {
                                  _RubicPart =
                                      (_fixedNativeFee * _info.RubicFixedCryptoShare) /
                                      DENOMINATOR;
                                  if (_fixedNativeFee - _RubicPart > 0)
                                      LibAsset.transferNativeAsset(
                                          payable(_integrator),
                                          _fixedNativeFee - _RubicPart
                                      );
                              }
                          } else {
                              _fixedNativeFee = fs.fixedNativeFee;
                              _RubicPart = _fixedNativeFee;
                          }
                          if (_RubicPart > 0)
                              LibAsset.transferNativeAsset(payable(fs.feeTreasure), _RubicPart);
                          emit FixedNativeFee(
                              _RubicPart,
                              _fixedNativeFee - _RubicPart,
                              _integrator
                          );
                          return _fixedNativeFee;
                      }
                      /**
                       * @dev Calculates token fees and accrues them
                       * @param _integrator Integrator's address if there is one
                       * @param _amountWithFee Total amount passed by the user
                       * @param _token The token in which the fees are collected
                       * @return Amount of tokens without fee
                       */
                      function accrueTokenFees(
                          address _integrator,
                          uint256 _amountWithFee,
                          address _token
                      ) internal returns (uint256) {
                          FeesStorage storage fs = feesStorage();
                          IFeesFacet.IntegratorFeeInfo memory _info = fs.integratorToFeeInfo[
                              _integrator
                          ];
                          (uint256 _totalFees, uint256 _RubicFee) = _calculateFee(
                              fs,
                              _amountWithFee,
                              _info
                          );
                          if (_integrator != address(0)) {
                              if (_totalFees - _RubicFee > 0)
                                  LibAsset.transferAsset(
                                      _token,
                                      payable(_integrator),
                                      _totalFees - _RubicFee
                                  );
                          }
                          if (_RubicFee > 0)
                              LibAsset.transferAsset(_token, payable(fs.feeTreasure), _RubicFee);
                          emit TokenFee(_RubicFee, _totalFees - _RubicFee, _integrator, _token);
                          return _amountWithFee - _totalFees;
                      }
                      /// PRIVATE ///
                      /**
                       * @dev Calculates fee amount for integrator and rubic, used in architecture
                       * @param _amountWithFee the users initial amount
                       * @param _info the struct with data about integrator
                       * @return _totalFee the amount of Rubic + integrator fee
                       * @return _RubicFee the amount of Rubic fee only
                       */
                      function _calculateFeeWithIntegrator(
                          uint256 _amountWithFee,
                          IFeesFacet.IntegratorFeeInfo memory _info
                      ) private pure returns (uint256 _totalFee, uint256 _RubicFee) {
                          if (_info.tokenFee > 0) {
                              _totalFee = FullMath.mulDiv(
                                  _amountWithFee,
                                  _info.tokenFee,
                                  DENOMINATOR
                              );
                              _RubicFee = FullMath.mulDiv(
                                  _totalFee,
                                  _info.RubicTokenShare,
                                  DENOMINATOR
                              );
                          }
                      }
                      function _calculateFee(
                          FeesStorage storage _fs,
                          uint256 _amountWithFee,
                          IFeesFacet.IntegratorFeeInfo memory _info
                      ) internal view returns (uint256 _totalFee, uint256 _RubicFee) {
                          if (_info.isIntegrator) {
                              (_totalFee, _RubicFee) = _calculateFeeWithIntegrator(
                                  _amountWithFee,
                                  _info
                              );
                          } else {
                              _totalFee = FullMath.mulDiv(
                                  _amountWithFee,
                                  _fs.RubicPlatformFee,
                                  DENOMINATOR
                              );
                              _RubicFee = _totalFee;
                          }
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.17;
                  import { LibAsset } from "./LibAsset.sol";
                  import { LibUtil } from "./LibUtil.sol";
                  import { InvalidContract, NoSwapFromZeroBalance, InsufficientBalance, UnAuthorized } from "../Errors/GenericErrors.sol";
                  import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
                  library LibSwap {
                      struct SwapData {
                          address callTo;
                          address approveTo;
                          address sendingAssetId;
                          address receivingAssetId;
                          uint256 fromAmount;
                          bytes callData;
                          bool requiresDeposit;
                      }
                      event AssetSwapped(
                          bytes32 transactionId,
                          address dex,
                          address fromAssetId,
                          address toAssetId,
                          uint256 fromAmount,
                          uint256 toAmount,
                          uint256 timestamp
                      );
                      function swap(bytes32 transactionId, SwapData memory _swap) internal {
                          if (!LibAsset.isContract(_swap.callTo)) revert InvalidContract();
                          uint256 fromAmount = _swap.fromAmount;
                          if (fromAmount == 0) revert NoSwapFromZeroBalance();
                          uint256 nativeValue = LibAsset.isNativeAsset(_swap.sendingAssetId)
                              ? _swap.fromAmount
                              : 0;
                          uint256 initialSendingAssetBalance = LibAsset.getOwnBalance(
                              _swap.sendingAssetId
                          );
                          uint256 initialReceivingAssetBalance = LibAsset.getOwnBalance(
                              _swap.receivingAssetId
                          );
                          if (nativeValue == 0) {
                              LibAsset.maxApproveERC20(
                                  IERC20(_swap.sendingAssetId),
                                  _swap.approveTo,
                                  _swap.fromAmount
                              );
                          }
                          if (initialSendingAssetBalance < _swap.fromAmount) {
                              revert InsufficientBalance(
                                  _swap.fromAmount,
                                  initialSendingAssetBalance
                              );
                          }
                          // solhint-disable-next-line avoid-low-level-calls
                          (bool success, bytes memory res) = _swap.callTo.call{
                              value: nativeValue
                          }(_swap.callData);
                          if (!success) {
                              string memory reason = LibUtil.getRevertMsg(res);
                              revert(reason);
                          }
                          uint256 newBalance = LibAsset.getOwnBalance(_swap.receivingAssetId);
                          emit AssetSwapped(
                              transactionId,
                              _swap.callTo,
                              _swap.sendingAssetId,
                              _swap.receivingAssetId,
                              _swap.fromAmount,
                              newBalance > initialReceivingAssetBalance
                                  ? newBalance - initialReceivingAssetBalance
                                  : newBalance,
                              block.timestamp
                          );
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.17;
                  import "./LibBytes.sol";
                  library LibUtil {
                      using LibBytes for bytes;
                      function getRevertMsg(
                          bytes memory _res
                      ) internal pure returns (string memory) {
                          if (_res.length < 68) return string(_res);
                          bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes
                          return abi.decode(revertData, (string)); // All that remains is the revert string
                      }
                      /// @notice Determines whether the given address is the zero address
                      /// @param addr The address to verify
                      /// @return Boolean indicating if the address is the zero address
                      function isZeroAddress(address addr) internal pure returns (bool) {
                          return addr == address(0);
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.17;
                  import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
                  import { LibAsset } from "../Libraries/LibAsset.sol";
                  import { LibUtil } from "../Libraries/LibUtil.sol";
                  import { ZeroAddress, LengthMissmatch, NotInitialized } from "../Errors/GenericErrors.sol";
                  /// @title ERC20 Proxy
                  /// @notice Proxy contract for safely transferring ERC20 tokens for swaps/executions
                  contract ERC20Proxy is Ownable {
                      /// Storage ///
                      address public diamond;
                      /// Events ///
                      event DiamondSet(address diamond);
                      /// Constructor
                      constructor(address _owner, address _diamond) {
                          transferOwnership(_owner);
                          diamond = _diamond;
                      }
                      function setDiamond(address _diamond) external onlyOwner {
                          if (_diamond == address(0)) revert ZeroAddress();
                          diamond = _diamond;
                          emit DiamondSet(_diamond);
                      }
                      /// @dev Transfers tokens from user to the diamond and calls it
                      /// @param tokens Addresses of tokens that should be sent to the diamond
                      /// @param amounts Corresponding amounts of tokens
                      /// @param facetCallData Calldata that should be passed to the diamond
                      /// Should contain any cross-chain related function
                      function startViaRubic(
                          address[] memory tokens,
                          uint256[] memory amounts,
                          bytes memory facetCallData
                      ) external payable {
                          if (diamond == address(0)) revert NotInitialized();
                          uint256 tokensLength = tokens.length;
                          if (tokensLength != amounts.length) revert LengthMissmatch();
                          for (uint256 i = 0; i < tokensLength; ) {
                              LibAsset.transferFromERC20(
                                  tokens[i],
                                  msg.sender,
                                  diamond,
                                  amounts[i]
                              );
                              unchecked {
                                  ++i;
                              }
                          }
                          // solhint-disable-next-line avoid-low-level-calls
                          (bool success, bytes memory res) = diamond.call{ value: msg.value }(
                              facetCallData
                          );
                          if (!success) {
                              string memory reason = LibUtil.getRevertMsg(res);
                              revert(reason);
                          }
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.17;
                  import { LibDiamond } from "./Libraries/LibDiamond.sol";
                  import { LibFees } from "./Libraries/LibFees.sol";
                  import { IDiamondCut } from "./Interfaces/IDiamondCut.sol";
                  import { LibUtil } from "./Libraries/LibUtil.sol";
                  import { LibAsset } from "./Libraries/LibAsset.sol";
                  import { ZeroAddress } from "./Errors/GenericErrors.sol";
                  contract RubicMultiProxy {
                      constructor(address _contractOwner, address _diamondCutFacet) payable {
                          if (_contractOwner == address(0)) {
                              revert ZeroAddress();
                          }
                          LibDiamond.setContractOwner(_contractOwner);
                          // Add the diamondCut external function from the diamondCutFacet
                          IDiamondCut.FacetCut[] memory cut = new IDiamondCut.FacetCut[](1);
                          bytes4[] memory functionSelectors = new bytes4[](1);
                          functionSelectors[0] = IDiamondCut.diamondCut.selector;
                          cut[0] = IDiamondCut.FacetCut({
                              facetAddress: _diamondCutFacet,
                              action: IDiamondCut.FacetCutAction.Add,
                              functionSelectors: functionSelectors
                          });
                          LibDiamond.diamondCut(cut, address(0), "");
                      }
                      // Find facet for function that is called and execute the
                      // function if a facet is found and return any value.
                      // solhint-disable-next-line no-complex-fallback
                      fallback() external payable {
                          LibDiamond.DiamondStorage storage ds;
                          bytes32 position = LibDiamond.DIAMOND_STORAGE_POSITION;
                          // get diamond storage
                          // solhint-disable-next-line no-inline-assembly
                          assembly {
                              ds.slot := position
                          }
                          // get facet from function selector
                          address facet = ds.selectorToFacetAndPosition[msg.sig].facetAddress;
                          if (facet == address(0)) {
                              revert LibDiamond.FunctionDoesNotExist();
                          }
                          // Execute external function from facet using delegatecall and return any value.
                          // solhint-disable-next-line no-inline-assembly
                          assembly {
                              // copy function selector and any arguments
                              calldatacopy(0, 0, calldatasize())
                              // execute function call using the facet
                              let result := delegatecall(gas(), facet, 0, calldatasize(), 0, 0)
                              // get any return value
                              returndatacopy(0, 0, returndatasize())
                              // return any return value or error back to the caller
                              switch result
                              case 0 {
                                  revert(0, returndatasize())
                              }
                              default {
                                  return(0, returndatasize())
                              }
                          }
                      }
                      // Able to receive ether
                      // solhint-disable-next-line no-empty-blocks
                      receive() external payable {}
                  }
                  

                  File 3 of 7: Token
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.9;
                  /**
                   * @dev Interface of the ERC20 standard as defined in the EIP.
                   */
                  interface IERC20 {
                    /**
                     * @dev Emitted when `value` tokens are moved from one account (`from`) to
                     * another (`to`).
                     *
                     * Note that `value` may be zero.
                     */
                    event Transfer(address indexed from, address indexed to, uint256 value);
                    /**
                     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                     * a call to {approve}. `value` is the new allowance.
                     */
                    event Approval(address indexed owner, address indexed spender, uint256 value);
                    /**
                     * @dev Returns the amount of tokens in existence.
                     */
                    function totalSupply() external view returns (uint256);
                    /**
                     * @dev Returns the amount of tokens owned by `account`.
                     */
                    function balanceOf(address account) external view returns (uint256);
                    /**
                     * @dev Moves `amount` tokens from the caller's account to `to`.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * Emits a {Transfer} event.
                     */
                    function transfer(address to, uint256 amount) external returns (bool);
                    /**
                     * @dev Returns the remaining number of tokens that `spender` will be
                     * allowed to spend on behalf of `owner` through {transferFrom}. This is
                     * zero by default.
                     *
                     * This value changes when {approve} or {transferFrom} are called.
                     */
                    function allowance(address owner, address spender) external view returns (uint256);
                    /**
                     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * IMPORTANT: Beware that changing an allowance with this method brings the risk
                     * that someone may use both the old and the new allowance by unfortunate
                     * transaction ordering. One possible solution to mitigate this race
                     * condition is to first reduce the spender's allowance to 0 and set the
                     * desired value afterwards:
                     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                     *
                     * Emits an {Approval} event.
                     */
                    function approve(address spender, uint256 amount) external returns (bool);
                    /**
                     * @dev Moves `amount` tokens from `from` to `to` using the
                     * allowance mechanism. `amount` is then deducted from the caller's
                     * allowance.
                     *
                     * Returns a boolean value indicating whether the operation succeeded.
                     *
                     * Emits a {Transfer} event.
                     */
                    function transferFrom(address from, address to, uint256 amount) external returns (bool);
                  }
                  /**
                   * @dev Interface for the optional metadata functions from the ERC20 standard.
                   *
                   * _Available since v4.1._
                   */
                  interface IERC20Metadata is IERC20 {
                    /**
                     * @dev Returns the name of the token.
                     */
                    function name() external view returns (string memory);
                    /**
                     * @dev Returns the symbol of the token.
                     */
                    function symbol() external view returns (string memory);
                    /**
                     * @dev Returns the decimals places of the token.
                     */
                    function decimals() external view returns (uint8);
                  }
                  /**
                   * @dev Provides information about the current execution context, including the
                   * sender of the transaction and its data. While these are generally available
                   * via msg.sender and msg.data, they should not be accessed in such a direct
                   * manner, since when dealing with meta-transactions the account sending and
                   * paying for execution may not be the actual sender (as far as an application
                   * is concerned).
                   *
                   * This contract is only required for intermediate, library-like contracts.
                   */
                  abstract contract Context {
                    function _msgSender() internal view virtual returns (address) {
                      return msg.sender;
                    }
                    function _msgData() internal view virtual returns (bytes calldata) {
                      return msg.data;
                    }
                  }
                  /**
                   * @dev Contract module which provides a basic access control mechanism, where
                   * there is an account (an owner) that can be granted exclusive access to
                   * specific functions.
                   *
                   * By default, the owner account will be the one that deploys the contract. This
                   * can later be changed with {transferOwnership}.
                   *
                   * This module is used through inheritance. It will make available the modifier
                   * `onlyOwner`, which can be applied to your functions to restrict their use to
                   * the owner.
                   */
                  abstract contract Ownable is Context {
                    address private _owner;
                    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                    /**
                     * @dev Initializes the contract setting the deployer as the initial owner.
                     */
                    constructor() {
                      _transferOwnership(_msgSender());
                    }
                    /**
                     * @dev Throws if called by any account other than the owner.
                     */
                    modifier onlyOwner() {
                      _checkOwner();
                      _;
                    }
                    /**
                     * @dev Returns the address of the current owner.
                     */
                    function owner() public view virtual returns (address) {
                      return _owner;
                    }
                    /**
                     * @dev Throws if the sender is not the owner.
                     */
                    function _checkOwner() internal view virtual {
                      require(owner() == _msgSender(), 'Ownable: caller is not the owner');
                    }
                    /**
                     * @dev Leaves the contract without owner. It will not be possible to call
                     * `onlyOwner` functions. Can only be called by the current owner.
                     *
                     * NOTE: Renouncing ownership will leave the contract without an owner,
                     * thereby disabling any functionality that is only available to the owner.
                     */
                    function renounceOwnership() public virtual onlyOwner {
                      _transferOwnership(address(0));
                    }
                    /**
                     * @dev Transfers ownership of the contract to a new account (`newOwner`).
                     * Can only be called by the current owner.
                     */
                    function transferOwnership(address newOwner) public virtual onlyOwner {
                      require(newOwner != address(0), 'Ownable: new owner is the zero address');
                      _transferOwnership(newOwner);
                    }
                    /**
                     * @dev Transfers ownership of the contract to a new account (`newOwner`).
                     * Internal function without access restriction.
                     */
                    function _transferOwnership(address newOwner) internal virtual {
                      address oldOwner = _owner;
                      _owner = newOwner;
                      emit OwnershipTransferred(oldOwner, newOwner);
                    }
                  }
                  contract Token is Context, IERC20Metadata, Ownable {
                    mapping(address => uint256) private _balances;
                    mapping(address => mapping(address => uint256)) private _allowances;
                    uint256 private _totalSupply;
                    string private _name;
                    string private _symbol;
                    uint8 private constant _decimals = 18;
                    uint256 public constant earlyBirdCatchReserve = 2_400_000_000 * (10 ** _decimals);
                    uint256 public constant tokenBreedingReserve = 3_000_000_000 * (10 ** _decimals);
                    uint256 public constant flockVaultReserve = 3_000_000_000 * (10 ** _decimals);
                    uint256 public constant exchangesFuelReserve = 1_200_000_000 * (10 ** _decimals);
                    uint256 public constant birdCallsReserve = 2_400_000_000 * (10 ** _decimals);
                    /**
                     * @dev Contract constructor.
                     */
                    constructor() {
                      _name = 'Flockerz';
                      _symbol = 'FLOCK';
                      _mint(0xA46196997f220d3fD3705bE776415870E9897f9D, earlyBirdCatchReserve);
                      _mint(0x68Ab897e2bBAd9EefF95b7b3bD116DCCe91b0611, tokenBreedingReserve);
                      _mint(0x2D1a1F60E50BD9d6416474211e0f15C8F66616c8, flockVaultReserve);
                      _mint(0x60BE5f6588e67D2f20FCE47DE6d06C364c28410e, exchangesFuelReserve);
                      _mint(0x5F38d0a3314eA0Cc0F6c60725F59cBAc4Ec998fA, birdCallsReserve);
                    }
                    /**
                     * @dev Returns the name of the token.
                     * @return The name of the token.
                     */
                    function name() public view virtual override returns (string memory) {
                      return _name;
                    }
                    /**
                     * @dev Returns the symbol of the token.
                     * @return The symbol of the token.
                     */
                    function symbol() public view virtual override returns (string memory) {
                      return _symbol;
                    }
                    /**
                     * @dev Returns the number of decimals used for token display.
                     * @return The number of decimals.
                     */
                    function decimals() public view virtual override returns (uint8) {
                      return _decimals;
                    }
                    /**
                     * @dev Returns the total supply of the token.
                     * @return The total supply.
                     */
                    function totalSupply() public view virtual override returns (uint256) {
                      return _totalSupply;
                    }
                    /**
                     * @dev Returns the balance of the specified account.
                     * @param account The address to check the balance for.
                     * @return The balance of the account.
                     */
                    function balanceOf(address account) public view virtual override returns (uint256) {
                      return _balances[account];
                    }
                    /**
                     * @dev Transfers tokens from the caller to a specified recipient.
                     * @param recipient The address to transfer tokens to.
                     * @param amount The amount of tokens to transfer.
                     * @return A boolean value indicating whether the transfer was successful.
                     */
                    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
                      _transfer(_msgSender(), recipient, amount);
                      return true;
                    }
                    /**
                     * @dev Returns the amount of tokens that the spender is allowed to spend on behalf of the owner.
                     * @param from The address that approves the spending.
                     * @param to The address that is allowed to spend.
                     * @return The remaining allowance for the spender.
                     */
                    function allowance(address from, address to) public view virtual override returns (uint256) {
                      return _allowances[from][to];
                    }
                    /**
                     * @dev Approves the specified address to spend the specified amount of tokens on behalf of the caller.
                     * @param to The address to approve the spending for.
                     * @param amount The amount of tokens to approve.
                     * @return A boolean value indicating whether the approval was successful.
                     */
                    function approve(address to, uint256 amount) public virtual override returns (bool) {
                      _approve(_msgSender(), to, amount);
                      return true;
                    }
                    /**
                     * @dev Transfers tokens from one address to another.
                     * @param sender The address to transfer tokens from.
                     * @param recipient The address to transfer tokens to.
                     * @param amount The amount of tokens to transfer.
                     * @return A boolean value indicating whether the transfer was successful.
                     */
                    function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
                      _transfer(sender, recipient, amount);
                      uint256 currentAllowance = _allowances[sender][_msgSender()];
                      require(currentAllowance >= amount, 'ERC20: transfer amount exceeds allowance');
                      unchecked {
                        _approve(sender, _msgSender(), currentAllowance - amount);
                      }
                      return true;
                    }
                    /**
                     * @dev Increases the allowance of the specified address to spend tokens on behalf of the caller.
                     * @param to The address to increase the allowance for.
                     * @param addedValue The amount of tokens to increase the allowance by.
                     * @return A boolean value indicating whether the increase was successful.
                     */
                    function increaseAllowance(address to, uint256 addedValue) public virtual returns (bool) {
                      _approve(_msgSender(), to, _allowances[_msgSender()][to] + addedValue);
                      return true;
                    }
                    /**
                     * @dev Decreases the allowance granted by the owner of the tokens to `to` account.
                     * @param to The account allowed to spend the tokens.
                     * @param subtractedValue The amount of tokens to decrease the allowance by.
                     * @return A boolean value indicating whether the operation succeeded.
                     */
                    function decreaseAllowance(address to, uint256 subtractedValue) public virtual returns (bool) {
                      uint256 currentAllowance = _allowances[_msgSender()][to];
                      require(currentAllowance >= subtractedValue, 'ERC20: decreased allowance below zero');
                      unchecked {
                        _approve(_msgSender(), to, currentAllowance - subtractedValue);
                      }
                      return true;
                    }
                    /**
                     * @dev Transfers `amount` tokens from `sender` to `recipient`.
                     * @param sender The account to transfer tokens from.
                     * @param recipient The account to transfer tokens to.
                     * @param amount The amount of tokens to transfer.
                     */
                    function _transfer(address sender, address recipient, uint256 amount) internal virtual {
                      require(amount > 0, 'ERC20: transfer amount zero');
                      require(sender != address(0), 'ERC20: transfer from the zero address');
                      require(recipient != address(0), 'ERC20: transfer to the zero address');
                      uint256 senderBalance = _balances[sender];
                      require(senderBalance >= amount, 'ERC20: transfer amount exceeds balance');
                      unchecked {
                        _balances[sender] = senderBalance - amount;
                      }
                      _balances[recipient] += amount;
                      emit Transfer(sender, recipient, amount);
                    }
                    /**
                     * @dev Creates `amount` tokens and assigns them to `account`.
                     * @param account The account to assign the newly created tokens to.
                     * @param amount The amount of tokens to create.
                     */
                    function _mint(address account, uint256 amount) internal virtual {
                      require(account != address(0), 'ERC20: mint to the zero address');
                      _totalSupply += amount;
                      _balances[account] += amount;
                      emit Transfer(address(0), account, amount);
                    }
                    /**
                     * @dev Destroys `amount` tokens from `account`, reducing the total supply.
                     * @param account The account to burn tokens from.
                     * @param amount The amount of tokens to burn.
                     */
                    function _burn(address account, uint256 amount) internal virtual {
                      require(account != address(0), 'ERC20: burn from the zero address');
                      uint256 accountBalance = _balances[account];
                      require(accountBalance >= amount, 'ERC20: burn amount exceeds balance');
                      unchecked {
                        _balances[account] = accountBalance - amount;
                      }
                      _totalSupply -= amount;
                      emit Transfer(account, address(0), amount);
                    }
                    /**
                     * @dev Destroys `amount` tokens from the caller's account, reducing the total supply.
                     * @param amount The amount of tokens to burn.
                     */
                    function burn(uint256 amount) external {
                      _burn(_msgSender(), amount);
                    }
                    /**
                     * @dev Sets `amount` as the allowance of `to` over the caller's tokens.
                     * @param from The account granting the allowance.
                     * @param to The account allowed to spend the tokens.
                     * @param amount The amount of tokens to allow.
                     */
                    function _approve(address from, address to, uint256 amount) internal virtual {
                      require(from != address(0), 'ERC20: approve from the zero address');
                      require(to != address(0), 'ERC20: approve to the zero address');
                      _allowances[from][to] = amount;
                      emit Approval(from, to, amount);
                    }
                  }
                  

                  File 4 of 7: UniswapV3Pool
                  // SPDX-License-Identifier: BUSL-1.1
                  pragma solidity =0.7.6;
                  import './interfaces/IUniswapV3Pool.sol';
                  import './NoDelegateCall.sol';
                  import './libraries/LowGasSafeMath.sol';
                  import './libraries/SafeCast.sol';
                  import './libraries/Tick.sol';
                  import './libraries/TickBitmap.sol';
                  import './libraries/Position.sol';
                  import './libraries/Oracle.sol';
                  import './libraries/FullMath.sol';
                  import './libraries/FixedPoint128.sol';
                  import './libraries/TransferHelper.sol';
                  import './libraries/TickMath.sol';
                  import './libraries/LiquidityMath.sol';
                  import './libraries/SqrtPriceMath.sol';
                  import './libraries/SwapMath.sol';
                  import './interfaces/IUniswapV3PoolDeployer.sol';
                  import './interfaces/IUniswapV3Factory.sol';
                  import './interfaces/IERC20Minimal.sol';
                  import './interfaces/callback/IUniswapV3MintCallback.sol';
                  import './interfaces/callback/IUniswapV3SwapCallback.sol';
                  import './interfaces/callback/IUniswapV3FlashCallback.sol';
                  contract UniswapV3Pool is IUniswapV3Pool, NoDelegateCall {
                      using LowGasSafeMath for uint256;
                      using LowGasSafeMath for int256;
                      using SafeCast for uint256;
                      using SafeCast for int256;
                      using Tick for mapping(int24 => Tick.Info);
                      using TickBitmap for mapping(int16 => uint256);
                      using Position for mapping(bytes32 => Position.Info);
                      using Position for Position.Info;
                      using Oracle for Oracle.Observation[65535];
                      /// @inheritdoc IUniswapV3PoolImmutables
                      address public immutable override factory;
                      /// @inheritdoc IUniswapV3PoolImmutables
                      address public immutable override token0;
                      /// @inheritdoc IUniswapV3PoolImmutables
                      address public immutable override token1;
                      /// @inheritdoc IUniswapV3PoolImmutables
                      uint24 public immutable override fee;
                      /// @inheritdoc IUniswapV3PoolImmutables
                      int24 public immutable override tickSpacing;
                      /// @inheritdoc IUniswapV3PoolImmutables
                      uint128 public immutable override maxLiquidityPerTick;
                      struct Slot0 {
                          // the current price
                          uint160 sqrtPriceX96;
                          // the current tick
                          int24 tick;
                          // the most-recently updated index of the observations array
                          uint16 observationIndex;
                          // the current maximum number of observations that are being stored
                          uint16 observationCardinality;
                          // the next maximum number of observations to store, triggered in observations.write
                          uint16 observationCardinalityNext;
                          // the current protocol fee as a percentage of the swap fee taken on withdrawal
                          // represented as an integer denominator (1/x)%
                          uint8 feeProtocol;
                          // whether the pool is locked
                          bool unlocked;
                      }
                      /// @inheritdoc IUniswapV3PoolState
                      Slot0 public override slot0;
                      /// @inheritdoc IUniswapV3PoolState
                      uint256 public override feeGrowthGlobal0X128;
                      /// @inheritdoc IUniswapV3PoolState
                      uint256 public override feeGrowthGlobal1X128;
                      // accumulated protocol fees in token0/token1 units
                      struct ProtocolFees {
                          uint128 token0;
                          uint128 token1;
                      }
                      /// @inheritdoc IUniswapV3PoolState
                      ProtocolFees public override protocolFees;
                      /// @inheritdoc IUniswapV3PoolState
                      uint128 public override liquidity;
                      /// @inheritdoc IUniswapV3PoolState
                      mapping(int24 => Tick.Info) public override ticks;
                      /// @inheritdoc IUniswapV3PoolState
                      mapping(int16 => uint256) public override tickBitmap;
                      /// @inheritdoc IUniswapV3PoolState
                      mapping(bytes32 => Position.Info) public override positions;
                      /// @inheritdoc IUniswapV3PoolState
                      Oracle.Observation[65535] public override observations;
                      /// @dev Mutually exclusive reentrancy protection into the pool to/from a method. This method also prevents entrance
                      /// to a function before the pool is initialized. The reentrancy guard is required throughout the contract because
                      /// we use balance checks to determine the payment status of interactions such as mint, swap and flash.
                      modifier lock() {
                          require(slot0.unlocked, 'LOK');
                          slot0.unlocked = false;
                          _;
                          slot0.unlocked = true;
                      }
                      /// @dev Prevents calling a function from anyone except the address returned by IUniswapV3Factory#owner()
                      modifier onlyFactoryOwner() {
                          require(msg.sender == IUniswapV3Factory(factory).owner());
                          _;
                      }
                      constructor() {
                          int24 _tickSpacing;
                          (factory, token0, token1, fee, _tickSpacing) = IUniswapV3PoolDeployer(msg.sender).parameters();
                          tickSpacing = _tickSpacing;
                          maxLiquidityPerTick = Tick.tickSpacingToMaxLiquidityPerTick(_tickSpacing);
                      }
                      /// @dev Common checks for valid tick inputs.
                      function checkTicks(int24 tickLower, int24 tickUpper) private pure {
                          require(tickLower < tickUpper, 'TLU');
                          require(tickLower >= TickMath.MIN_TICK, 'TLM');
                          require(tickUpper <= TickMath.MAX_TICK, 'TUM');
                      }
                      /// @dev Returns the block timestamp truncated to 32 bits, i.e. mod 2**32. This method is overridden in tests.
                      function _blockTimestamp() internal view virtual returns (uint32) {
                          return uint32(block.timestamp); // truncation is desired
                      }
                      /// @dev Get the pool's balance of token0
                      /// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize
                      /// check
                      function balance0() private view returns (uint256) {
                          (bool success, bytes memory data) =
                              token0.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this)));
                          require(success && data.length >= 32);
                          return abi.decode(data, (uint256));
                      }
                      /// @dev Get the pool's balance of token1
                      /// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize
                      /// check
                      function balance1() private view returns (uint256) {
                          (bool success, bytes memory data) =
                              token1.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this)));
                          require(success && data.length >= 32);
                          return abi.decode(data, (uint256));
                      }
                      /// @inheritdoc IUniswapV3PoolDerivedState
                      function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
                          external
                          view
                          override
                          noDelegateCall
                          returns (
                              int56 tickCumulativeInside,
                              uint160 secondsPerLiquidityInsideX128,
                              uint32 secondsInside
                          )
                      {
                          checkTicks(tickLower, tickUpper);
                          int56 tickCumulativeLower;
                          int56 tickCumulativeUpper;
                          uint160 secondsPerLiquidityOutsideLowerX128;
                          uint160 secondsPerLiquidityOutsideUpperX128;
                          uint32 secondsOutsideLower;
                          uint32 secondsOutsideUpper;
                          {
                              Tick.Info storage lower = ticks[tickLower];
                              Tick.Info storage upper = ticks[tickUpper];
                              bool initializedLower;
                              (tickCumulativeLower, secondsPerLiquidityOutsideLowerX128, secondsOutsideLower, initializedLower) = (
                                  lower.tickCumulativeOutside,
                                  lower.secondsPerLiquidityOutsideX128,
                                  lower.secondsOutside,
                                  lower.initialized
                              );
                              require(initializedLower);
                              bool initializedUpper;
                              (tickCumulativeUpper, secondsPerLiquidityOutsideUpperX128, secondsOutsideUpper, initializedUpper) = (
                                  upper.tickCumulativeOutside,
                                  upper.secondsPerLiquidityOutsideX128,
                                  upper.secondsOutside,
                                  upper.initialized
                              );
                              require(initializedUpper);
                          }
                          Slot0 memory _slot0 = slot0;
                          if (_slot0.tick < tickLower) {
                              return (
                                  tickCumulativeLower - tickCumulativeUpper,
                                  secondsPerLiquidityOutsideLowerX128 - secondsPerLiquidityOutsideUpperX128,
                                  secondsOutsideLower - secondsOutsideUpper
                              );
                          } else if (_slot0.tick < tickUpper) {
                              uint32 time = _blockTimestamp();
                              (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) =
                                  observations.observeSingle(
                                      time,
                                      0,
                                      _slot0.tick,
                                      _slot0.observationIndex,
                                      liquidity,
                                      _slot0.observationCardinality
                                  );
                              return (
                                  tickCumulative - tickCumulativeLower - tickCumulativeUpper,
                                  secondsPerLiquidityCumulativeX128 -
                                      secondsPerLiquidityOutsideLowerX128 -
                                      secondsPerLiquidityOutsideUpperX128,
                                  time - secondsOutsideLower - secondsOutsideUpper
                              );
                          } else {
                              return (
                                  tickCumulativeUpper - tickCumulativeLower,
                                  secondsPerLiquidityOutsideUpperX128 - secondsPerLiquidityOutsideLowerX128,
                                  secondsOutsideUpper - secondsOutsideLower
                              );
                          }
                      }
                      /// @inheritdoc IUniswapV3PoolDerivedState
                      function observe(uint32[] calldata secondsAgos)
                          external
                          view
                          override
                          noDelegateCall
                          returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s)
                      {
                          return
                              observations.observe(
                                  _blockTimestamp(),
                                  secondsAgos,
                                  slot0.tick,
                                  slot0.observationIndex,
                                  liquidity,
                                  slot0.observationCardinality
                              );
                      }
                      /// @inheritdoc IUniswapV3PoolActions
                      function increaseObservationCardinalityNext(uint16 observationCardinalityNext)
                          external
                          override
                          lock
                          noDelegateCall
                      {
                          uint16 observationCardinalityNextOld = slot0.observationCardinalityNext; // for the event
                          uint16 observationCardinalityNextNew =
                              observations.grow(observationCardinalityNextOld, observationCardinalityNext);
                          slot0.observationCardinalityNext = observationCardinalityNextNew;
                          if (observationCardinalityNextOld != observationCardinalityNextNew)
                              emit IncreaseObservationCardinalityNext(observationCardinalityNextOld, observationCardinalityNextNew);
                      }
                      /// @inheritdoc IUniswapV3PoolActions
                      /// @dev not locked because it initializes unlocked
                      function initialize(uint160 sqrtPriceX96) external override {
                          require(slot0.sqrtPriceX96 == 0, 'AI');
                          int24 tick = TickMath.getTickAtSqrtRatio(sqrtPriceX96);
                          (uint16 cardinality, uint16 cardinalityNext) = observations.initialize(_blockTimestamp());
                          slot0 = Slot0({
                              sqrtPriceX96: sqrtPriceX96,
                              tick: tick,
                              observationIndex: 0,
                              observationCardinality: cardinality,
                              observationCardinalityNext: cardinalityNext,
                              feeProtocol: 0,
                              unlocked: true
                          });
                          emit Initialize(sqrtPriceX96, tick);
                      }
                      struct ModifyPositionParams {
                          // the address that owns the position
                          address owner;
                          // the lower and upper tick of the position
                          int24 tickLower;
                          int24 tickUpper;
                          // any change in liquidity
                          int128 liquidityDelta;
                      }
                      /// @dev Effect some changes to a position
                      /// @param params the position details and the change to the position's liquidity to effect
                      /// @return position a storage pointer referencing the position with the given owner and tick range
                      /// @return amount0 the amount of token0 owed to the pool, negative if the pool should pay the recipient
                      /// @return amount1 the amount of token1 owed to the pool, negative if the pool should pay the recipient
                      function _modifyPosition(ModifyPositionParams memory params)
                          private
                          noDelegateCall
                          returns (
                              Position.Info storage position,
                              int256 amount0,
                              int256 amount1
                          )
                      {
                          checkTicks(params.tickLower, params.tickUpper);
                          Slot0 memory _slot0 = slot0; // SLOAD for gas optimization
                          position = _updatePosition(
                              params.owner,
                              params.tickLower,
                              params.tickUpper,
                              params.liquidityDelta,
                              _slot0.tick
                          );
                          if (params.liquidityDelta != 0) {
                              if (_slot0.tick < params.tickLower) {
                                  // current tick is below the passed range; liquidity can only become in range by crossing from left to
                                  // right, when we'll need _more_ token0 (it's becoming more valuable) so user must provide it
                                  amount0 = SqrtPriceMath.getAmount0Delta(
                                      TickMath.getSqrtRatioAtTick(params.tickLower),
                                      TickMath.getSqrtRatioAtTick(params.tickUpper),
                                      params.liquidityDelta
                                  );
                              } else if (_slot0.tick < params.tickUpper) {
                                  // current tick is inside the passed range
                                  uint128 liquidityBefore = liquidity; // SLOAD for gas optimization
                                  // write an oracle entry
                                  (slot0.observationIndex, slot0.observationCardinality) = observations.write(
                                      _slot0.observationIndex,
                                      _blockTimestamp(),
                                      _slot0.tick,
                                      liquidityBefore,
                                      _slot0.observationCardinality,
                                      _slot0.observationCardinalityNext
                                  );
                                  amount0 = SqrtPriceMath.getAmount0Delta(
                                      _slot0.sqrtPriceX96,
                                      TickMath.getSqrtRatioAtTick(params.tickUpper),
                                      params.liquidityDelta
                                  );
                                  amount1 = SqrtPriceMath.getAmount1Delta(
                                      TickMath.getSqrtRatioAtTick(params.tickLower),
                                      _slot0.sqrtPriceX96,
                                      params.liquidityDelta
                                  );
                                  liquidity = LiquidityMath.addDelta(liquidityBefore, params.liquidityDelta);
                              } else {
                                  // current tick is above the passed range; liquidity can only become in range by crossing from right to
                                  // left, when we'll need _more_ token1 (it's becoming more valuable) so user must provide it
                                  amount1 = SqrtPriceMath.getAmount1Delta(
                                      TickMath.getSqrtRatioAtTick(params.tickLower),
                                      TickMath.getSqrtRatioAtTick(params.tickUpper),
                                      params.liquidityDelta
                                  );
                              }
                          }
                      }
                      /// @dev Gets and updates a position with the given liquidity delta
                      /// @param owner the owner of the position
                      /// @param tickLower the lower tick of the position's tick range
                      /// @param tickUpper the upper tick of the position's tick range
                      /// @param tick the current tick, passed to avoid sloads
                      function _updatePosition(
                          address owner,
                          int24 tickLower,
                          int24 tickUpper,
                          int128 liquidityDelta,
                          int24 tick
                      ) private returns (Position.Info storage position) {
                          position = positions.get(owner, tickLower, tickUpper);
                          uint256 _feeGrowthGlobal0X128 = feeGrowthGlobal0X128; // SLOAD for gas optimization
                          uint256 _feeGrowthGlobal1X128 = feeGrowthGlobal1X128; // SLOAD for gas optimization
                          // if we need to update the ticks, do it
                          bool flippedLower;
                          bool flippedUpper;
                          if (liquidityDelta != 0) {
                              uint32 time = _blockTimestamp();
                              (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) =
                                  observations.observeSingle(
                                      time,
                                      0,
                                      slot0.tick,
                                      slot0.observationIndex,
                                      liquidity,
                                      slot0.observationCardinality
                                  );
                              flippedLower = ticks.update(
                                  tickLower,
                                  tick,
                                  liquidityDelta,
                                  _feeGrowthGlobal0X128,
                                  _feeGrowthGlobal1X128,
                                  secondsPerLiquidityCumulativeX128,
                                  tickCumulative,
                                  time,
                                  false,
                                  maxLiquidityPerTick
                              );
                              flippedUpper = ticks.update(
                                  tickUpper,
                                  tick,
                                  liquidityDelta,
                                  _feeGrowthGlobal0X128,
                                  _feeGrowthGlobal1X128,
                                  secondsPerLiquidityCumulativeX128,
                                  tickCumulative,
                                  time,
                                  true,
                                  maxLiquidityPerTick
                              );
                              if (flippedLower) {
                                  tickBitmap.flipTick(tickLower, tickSpacing);
                              }
                              if (flippedUpper) {
                                  tickBitmap.flipTick(tickUpper, tickSpacing);
                              }
                          }
                          (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) =
                              ticks.getFeeGrowthInside(tickLower, tickUpper, tick, _feeGrowthGlobal0X128, _feeGrowthGlobal1X128);
                          position.update(liquidityDelta, feeGrowthInside0X128, feeGrowthInside1X128);
                          // clear any tick data that is no longer needed
                          if (liquidityDelta < 0) {
                              if (flippedLower) {
                                  ticks.clear(tickLower);
                              }
                              if (flippedUpper) {
                                  ticks.clear(tickUpper);
                              }
                          }
                      }
                      /// @inheritdoc IUniswapV3PoolActions
                      /// @dev noDelegateCall is applied indirectly via _modifyPosition
                      function mint(
                          address recipient,
                          int24 tickLower,
                          int24 tickUpper,
                          uint128 amount,
                          bytes calldata data
                      ) external override lock returns (uint256 amount0, uint256 amount1) {
                          require(amount > 0);
                          (, int256 amount0Int, int256 amount1Int) =
                              _modifyPosition(
                                  ModifyPositionParams({
                                      owner: recipient,
                                      tickLower: tickLower,
                                      tickUpper: tickUpper,
                                      liquidityDelta: int256(amount).toInt128()
                                  })
                              );
                          amount0 = uint256(amount0Int);
                          amount1 = uint256(amount1Int);
                          uint256 balance0Before;
                          uint256 balance1Before;
                          if (amount0 > 0) balance0Before = balance0();
                          if (amount1 > 0) balance1Before = balance1();
                          IUniswapV3MintCallback(msg.sender).uniswapV3MintCallback(amount0, amount1, data);
                          if (amount0 > 0) require(balance0Before.add(amount0) <= balance0(), 'M0');
                          if (amount1 > 0) require(balance1Before.add(amount1) <= balance1(), 'M1');
                          emit Mint(msg.sender, recipient, tickLower, tickUpper, amount, amount0, amount1);
                      }
                      /// @inheritdoc IUniswapV3PoolActions
                      function collect(
                          address recipient,
                          int24 tickLower,
                          int24 tickUpper,
                          uint128 amount0Requested,
                          uint128 amount1Requested
                      ) external override lock returns (uint128 amount0, uint128 amount1) {
                          // we don't need to checkTicks here, because invalid positions will never have non-zero tokensOwed{0,1}
                          Position.Info storage position = positions.get(msg.sender, tickLower, tickUpper);
                          amount0 = amount0Requested > position.tokensOwed0 ? position.tokensOwed0 : amount0Requested;
                          amount1 = amount1Requested > position.tokensOwed1 ? position.tokensOwed1 : amount1Requested;
                          if (amount0 > 0) {
                              position.tokensOwed0 -= amount0;
                              TransferHelper.safeTransfer(token0, recipient, amount0);
                          }
                          if (amount1 > 0) {
                              position.tokensOwed1 -= amount1;
                              TransferHelper.safeTransfer(token1, recipient, amount1);
                          }
                          emit Collect(msg.sender, recipient, tickLower, tickUpper, amount0, amount1);
                      }
                      /// @inheritdoc IUniswapV3PoolActions
                      /// @dev noDelegateCall is applied indirectly via _modifyPosition
                      function burn(
                          int24 tickLower,
                          int24 tickUpper,
                          uint128 amount
                      ) external override lock returns (uint256 amount0, uint256 amount1) {
                          (Position.Info storage position, int256 amount0Int, int256 amount1Int) =
                              _modifyPosition(
                                  ModifyPositionParams({
                                      owner: msg.sender,
                                      tickLower: tickLower,
                                      tickUpper: tickUpper,
                                      liquidityDelta: -int256(amount).toInt128()
                                  })
                              );
                          amount0 = uint256(-amount0Int);
                          amount1 = uint256(-amount1Int);
                          if (amount0 > 0 || amount1 > 0) {
                              (position.tokensOwed0, position.tokensOwed1) = (
                                  position.tokensOwed0 + uint128(amount0),
                                  position.tokensOwed1 + uint128(amount1)
                              );
                          }
                          emit Burn(msg.sender, tickLower, tickUpper, amount, amount0, amount1);
                      }
                      struct SwapCache {
                          // the protocol fee for the input token
                          uint8 feeProtocol;
                          // liquidity at the beginning of the swap
                          uint128 liquidityStart;
                          // the timestamp of the current block
                          uint32 blockTimestamp;
                          // the current value of the tick accumulator, computed only if we cross an initialized tick
                          int56 tickCumulative;
                          // the current value of seconds per liquidity accumulator, computed only if we cross an initialized tick
                          uint160 secondsPerLiquidityCumulativeX128;
                          // whether we've computed and cached the above two accumulators
                          bool computedLatestObservation;
                      }
                      // the top level state of the swap, the results of which are recorded in storage at the end
                      struct SwapState {
                          // the amount remaining to be swapped in/out of the input/output asset
                          int256 amountSpecifiedRemaining;
                          // the amount already swapped out/in of the output/input asset
                          int256 amountCalculated;
                          // current sqrt(price)
                          uint160 sqrtPriceX96;
                          // the tick associated with the current price
                          int24 tick;
                          // the global fee growth of the input token
                          uint256 feeGrowthGlobalX128;
                          // amount of input token paid as protocol fee
                          uint128 protocolFee;
                          // the current liquidity in range
                          uint128 liquidity;
                      }
                      struct StepComputations {
                          // the price at the beginning of the step
                          uint160 sqrtPriceStartX96;
                          // the next tick to swap to from the current tick in the swap direction
                          int24 tickNext;
                          // whether tickNext is initialized or not
                          bool initialized;
                          // sqrt(price) for the next tick (1/0)
                          uint160 sqrtPriceNextX96;
                          // how much is being swapped in in this step
                          uint256 amountIn;
                          // how much is being swapped out
                          uint256 amountOut;
                          // how much fee is being paid in
                          uint256 feeAmount;
                      }
                      /// @inheritdoc IUniswapV3PoolActions
                      function swap(
                          address recipient,
                          bool zeroForOne,
                          int256 amountSpecified,
                          uint160 sqrtPriceLimitX96,
                          bytes calldata data
                      ) external override noDelegateCall returns (int256 amount0, int256 amount1) {
                          require(amountSpecified != 0, 'AS');
                          Slot0 memory slot0Start = slot0;
                          require(slot0Start.unlocked, 'LOK');
                          require(
                              zeroForOne
                                  ? sqrtPriceLimitX96 < slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 > TickMath.MIN_SQRT_RATIO
                                  : sqrtPriceLimitX96 > slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 < TickMath.MAX_SQRT_RATIO,
                              'SPL'
                          );
                          slot0.unlocked = false;
                          SwapCache memory cache =
                              SwapCache({
                                  liquidityStart: liquidity,
                                  blockTimestamp: _blockTimestamp(),
                                  feeProtocol: zeroForOne ? (slot0Start.feeProtocol % 16) : (slot0Start.feeProtocol >> 4),
                                  secondsPerLiquidityCumulativeX128: 0,
                                  tickCumulative: 0,
                                  computedLatestObservation: false
                              });
                          bool exactInput = amountSpecified > 0;
                          SwapState memory state =
                              SwapState({
                                  amountSpecifiedRemaining: amountSpecified,
                                  amountCalculated: 0,
                                  sqrtPriceX96: slot0Start.sqrtPriceX96,
                                  tick: slot0Start.tick,
                                  feeGrowthGlobalX128: zeroForOne ? feeGrowthGlobal0X128 : feeGrowthGlobal1X128,
                                  protocolFee: 0,
                                  liquidity: cache.liquidityStart
                              });
                          // continue swapping as long as we haven't used the entire input/output and haven't reached the price limit
                          while (state.amountSpecifiedRemaining != 0 && state.sqrtPriceX96 != sqrtPriceLimitX96) {
                              StepComputations memory step;
                              step.sqrtPriceStartX96 = state.sqrtPriceX96;
                              (step.tickNext, step.initialized) = tickBitmap.nextInitializedTickWithinOneWord(
                                  state.tick,
                                  tickSpacing,
                                  zeroForOne
                              );
                              // ensure that we do not overshoot the min/max tick, as the tick bitmap is not aware of these bounds
                              if (step.tickNext < TickMath.MIN_TICK) {
                                  step.tickNext = TickMath.MIN_TICK;
                              } else if (step.tickNext > TickMath.MAX_TICK) {
                                  step.tickNext = TickMath.MAX_TICK;
                              }
                              // get the price for the next tick
                              step.sqrtPriceNextX96 = TickMath.getSqrtRatioAtTick(step.tickNext);
                              // compute values to swap to the target tick, price limit, or point where input/output amount is exhausted
                              (state.sqrtPriceX96, step.amountIn, step.amountOut, step.feeAmount) = SwapMath.computeSwapStep(
                                  state.sqrtPriceX96,
                                  (zeroForOne ? step.sqrtPriceNextX96 < sqrtPriceLimitX96 : step.sqrtPriceNextX96 > sqrtPriceLimitX96)
                                      ? sqrtPriceLimitX96
                                      : step.sqrtPriceNextX96,
                                  state.liquidity,
                                  state.amountSpecifiedRemaining,
                                  fee
                              );
                              if (exactInput) {
                                  state.amountSpecifiedRemaining -= (step.amountIn + step.feeAmount).toInt256();
                                  state.amountCalculated = state.amountCalculated.sub(step.amountOut.toInt256());
                              } else {
                                  state.amountSpecifiedRemaining += step.amountOut.toInt256();
                                  state.amountCalculated = state.amountCalculated.add((step.amountIn + step.feeAmount).toInt256());
                              }
                              // if the protocol fee is on, calculate how much is owed, decrement feeAmount, and increment protocolFee
                              if (cache.feeProtocol > 0) {
                                  uint256 delta = step.feeAmount / cache.feeProtocol;
                                  step.feeAmount -= delta;
                                  state.protocolFee += uint128(delta);
                              }
                              // update global fee tracker
                              if (state.liquidity > 0)
                                  state.feeGrowthGlobalX128 += FullMath.mulDiv(step.feeAmount, FixedPoint128.Q128, state.liquidity);
                              // shift tick if we reached the next price
                              if (state.sqrtPriceX96 == step.sqrtPriceNextX96) {
                                  // if the tick is initialized, run the tick transition
                                  if (step.initialized) {
                                      // check for the placeholder value, which we replace with the actual value the first time the swap
                                      // crosses an initialized tick
                                      if (!cache.computedLatestObservation) {
                                          (cache.tickCumulative, cache.secondsPerLiquidityCumulativeX128) = observations.observeSingle(
                                              cache.blockTimestamp,
                                              0,
                                              slot0Start.tick,
                                              slot0Start.observationIndex,
                                              cache.liquidityStart,
                                              slot0Start.observationCardinality
                                          );
                                          cache.computedLatestObservation = true;
                                      }
                                      int128 liquidityNet =
                                          ticks.cross(
                                              step.tickNext,
                                              (zeroForOne ? state.feeGrowthGlobalX128 : feeGrowthGlobal0X128),
                                              (zeroForOne ? feeGrowthGlobal1X128 : state.feeGrowthGlobalX128),
                                              cache.secondsPerLiquidityCumulativeX128,
                                              cache.tickCumulative,
                                              cache.blockTimestamp
                                          );
                                      // if we're moving leftward, we interpret liquidityNet as the opposite sign
                                      // safe because liquidityNet cannot be type(int128).min
                                      if (zeroForOne) liquidityNet = -liquidityNet;
                                      state.liquidity = LiquidityMath.addDelta(state.liquidity, liquidityNet);
                                  }
                                  state.tick = zeroForOne ? step.tickNext - 1 : step.tickNext;
                              } else if (state.sqrtPriceX96 != step.sqrtPriceStartX96) {
                                  // recompute unless we're on a lower tick boundary (i.e. already transitioned ticks), and haven't moved
                                  state.tick = TickMath.getTickAtSqrtRatio(state.sqrtPriceX96);
                              }
                          }
                          // update tick and write an oracle entry if the tick change
                          if (state.tick != slot0Start.tick) {
                              (uint16 observationIndex, uint16 observationCardinality) =
                                  observations.write(
                                      slot0Start.observationIndex,
                                      cache.blockTimestamp,
                                      slot0Start.tick,
                                      cache.liquidityStart,
                                      slot0Start.observationCardinality,
                                      slot0Start.observationCardinalityNext
                                  );
                              (slot0.sqrtPriceX96, slot0.tick, slot0.observationIndex, slot0.observationCardinality) = (
                                  state.sqrtPriceX96,
                                  state.tick,
                                  observationIndex,
                                  observationCardinality
                              );
                          } else {
                              // otherwise just update the price
                              slot0.sqrtPriceX96 = state.sqrtPriceX96;
                          }
                          // update liquidity if it changed
                          if (cache.liquidityStart != state.liquidity) liquidity = state.liquidity;
                          // update fee growth global and, if necessary, protocol fees
                          // overflow is acceptable, protocol has to withdraw before it hits type(uint128).max fees
                          if (zeroForOne) {
                              feeGrowthGlobal0X128 = state.feeGrowthGlobalX128;
                              if (state.protocolFee > 0) protocolFees.token0 += state.protocolFee;
                          } else {
                              feeGrowthGlobal1X128 = state.feeGrowthGlobalX128;
                              if (state.protocolFee > 0) protocolFees.token1 += state.protocolFee;
                          }
                          (amount0, amount1) = zeroForOne == exactInput
                              ? (amountSpecified - state.amountSpecifiedRemaining, state.amountCalculated)
                              : (state.amountCalculated, amountSpecified - state.amountSpecifiedRemaining);
                          // do the transfers and collect payment
                          if (zeroForOne) {
                              if (amount1 < 0) TransferHelper.safeTransfer(token1, recipient, uint256(-amount1));
                              uint256 balance0Before = balance0();
                              IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data);
                              require(balance0Before.add(uint256(amount0)) <= balance0(), 'IIA');
                          } else {
                              if (amount0 < 0) TransferHelper.safeTransfer(token0, recipient, uint256(-amount0));
                              uint256 balance1Before = balance1();
                              IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data);
                              require(balance1Before.add(uint256(amount1)) <= balance1(), 'IIA');
                          }
                          emit Swap(msg.sender, recipient, amount0, amount1, state.sqrtPriceX96, state.liquidity, state.tick);
                          slot0.unlocked = true;
                      }
                      /// @inheritdoc IUniswapV3PoolActions
                      function flash(
                          address recipient,
                          uint256 amount0,
                          uint256 amount1,
                          bytes calldata data
                      ) external override lock noDelegateCall {
                          uint128 _liquidity = liquidity;
                          require(_liquidity > 0, 'L');
                          uint256 fee0 = FullMath.mulDivRoundingUp(amount0, fee, 1e6);
                          uint256 fee1 = FullMath.mulDivRoundingUp(amount1, fee, 1e6);
                          uint256 balance0Before = balance0();
                          uint256 balance1Before = balance1();
                          if (amount0 > 0) TransferHelper.safeTransfer(token0, recipient, amount0);
                          if (amount1 > 0) TransferHelper.safeTransfer(token1, recipient, amount1);
                          IUniswapV3FlashCallback(msg.sender).uniswapV3FlashCallback(fee0, fee1, data);
                          uint256 balance0After = balance0();
                          uint256 balance1After = balance1();
                          require(balance0Before.add(fee0) <= balance0After, 'F0');
                          require(balance1Before.add(fee1) <= balance1After, 'F1');
                          // sub is safe because we know balanceAfter is gt balanceBefore by at least fee
                          uint256 paid0 = balance0After - balance0Before;
                          uint256 paid1 = balance1After - balance1Before;
                          if (paid0 > 0) {
                              uint8 feeProtocol0 = slot0.feeProtocol % 16;
                              uint256 fees0 = feeProtocol0 == 0 ? 0 : paid0 / feeProtocol0;
                              if (uint128(fees0) > 0) protocolFees.token0 += uint128(fees0);
                              feeGrowthGlobal0X128 += FullMath.mulDiv(paid0 - fees0, FixedPoint128.Q128, _liquidity);
                          }
                          if (paid1 > 0) {
                              uint8 feeProtocol1 = slot0.feeProtocol >> 4;
                              uint256 fees1 = feeProtocol1 == 0 ? 0 : paid1 / feeProtocol1;
                              if (uint128(fees1) > 0) protocolFees.token1 += uint128(fees1);
                              feeGrowthGlobal1X128 += FullMath.mulDiv(paid1 - fees1, FixedPoint128.Q128, _liquidity);
                          }
                          emit Flash(msg.sender, recipient, amount0, amount1, paid0, paid1);
                      }
                      /// @inheritdoc IUniswapV3PoolOwnerActions
                      function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external override lock onlyFactoryOwner {
                          require(
                              (feeProtocol0 == 0 || (feeProtocol0 >= 4 && feeProtocol0 <= 10)) &&
                                  (feeProtocol1 == 0 || (feeProtocol1 >= 4 && feeProtocol1 <= 10))
                          );
                          uint8 feeProtocolOld = slot0.feeProtocol;
                          slot0.feeProtocol = feeProtocol0 + (feeProtocol1 << 4);
                          emit SetFeeProtocol(feeProtocolOld % 16, feeProtocolOld >> 4, feeProtocol0, feeProtocol1);
                      }
                      /// @inheritdoc IUniswapV3PoolOwnerActions
                      function collectProtocol(
                          address recipient,
                          uint128 amount0Requested,
                          uint128 amount1Requested
                      ) external override lock onlyFactoryOwner returns (uint128 amount0, uint128 amount1) {
                          amount0 = amount0Requested > protocolFees.token0 ? protocolFees.token0 : amount0Requested;
                          amount1 = amount1Requested > protocolFees.token1 ? protocolFees.token1 : amount1Requested;
                          if (amount0 > 0) {
                              if (amount0 == protocolFees.token0) amount0--; // ensure that the slot is not cleared, for gas savings
                              protocolFees.token0 -= amount0;
                              TransferHelper.safeTransfer(token0, recipient, amount0);
                          }
                          if (amount1 > 0) {
                              if (amount1 == protocolFees.token1) amount1--; // ensure that the slot is not cleared, for gas savings
                              protocolFees.token1 -= amount1;
                              TransferHelper.safeTransfer(token1, recipient, amount1);
                          }
                          emit CollectProtocol(msg.sender, recipient, amount0, amount1);
                      }
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  import './pool/IUniswapV3PoolImmutables.sol';
                  import './pool/IUniswapV3PoolState.sol';
                  import './pool/IUniswapV3PoolDerivedState.sol';
                  import './pool/IUniswapV3PoolActions.sol';
                  import './pool/IUniswapV3PoolOwnerActions.sol';
                  import './pool/IUniswapV3PoolEvents.sol';
                  /// @title The interface for a Uniswap V3 Pool
                  /// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform
                  /// to the ERC20 specification
                  /// @dev The pool interface is broken up into many smaller pieces
                  interface IUniswapV3Pool is
                      IUniswapV3PoolImmutables,
                      IUniswapV3PoolState,
                      IUniswapV3PoolDerivedState,
                      IUniswapV3PoolActions,
                      IUniswapV3PoolOwnerActions,
                      IUniswapV3PoolEvents
                  {
                  }
                  // SPDX-License-Identifier: BUSL-1.1
                  pragma solidity =0.7.6;
                  /// @title Prevents delegatecall to a contract
                  /// @notice Base contract that provides a modifier for preventing delegatecall to methods in a child contract
                  abstract contract NoDelegateCall {
                      /// @dev The original address of this contract
                      address private immutable original;
                      constructor() {
                          // Immutables are computed in the init code of the contract, and then inlined into the deployed bytecode.
                          // In other words, this variable won't change when it's checked at runtime.
                          original = address(this);
                      }
                      /// @dev Private method is used instead of inlining into modifier because modifiers are copied into each method,
                      ///     and the use of immutable means the address bytes are copied in every place the modifier is used.
                      function checkNotDelegateCall() private view {
                          require(address(this) == original);
                      }
                      /// @notice Prevents delegatecall into the modified method
                      modifier noDelegateCall() {
                          checkNotDelegateCall();
                          _;
                      }
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.7.0;
                  /// @title Optimized overflow and underflow safe math operations
                  /// @notice Contains methods for doing math operations that revert on overflow or underflow for minimal gas cost
                  library LowGasSafeMath {
                      /// @notice Returns x + y, reverts if sum overflows uint256
                      /// @param x The augend
                      /// @param y The addend
                      /// @return z The sum of x and y
                      function add(uint256 x, uint256 y) internal pure returns (uint256 z) {
                          require((z = x + y) >= x);
                      }
                      /// @notice Returns x - y, reverts if underflows
                      /// @param x The minuend
                      /// @param y The subtrahend
                      /// @return z The difference of x and y
                      function sub(uint256 x, uint256 y) internal pure returns (uint256 z) {
                          require((z = x - y) <= x);
                      }
                      /// @notice Returns x * y, reverts if overflows
                      /// @param x The multiplicand
                      /// @param y The multiplier
                      /// @return z The product of x and y
                      function mul(uint256 x, uint256 y) internal pure returns (uint256 z) {
                          require(x == 0 || (z = x * y) / x == y);
                      }
                      /// @notice Returns x + y, reverts if overflows or underflows
                      /// @param x The augend
                      /// @param y The addend
                      /// @return z The sum of x and y
                      function add(int256 x, int256 y) internal pure returns (int256 z) {
                          require((z = x + y) >= x == (y >= 0));
                      }
                      /// @notice Returns x - y, reverts if overflows or underflows
                      /// @param x The minuend
                      /// @param y The subtrahend
                      /// @return z The difference of x and y
                      function sub(int256 x, int256 y) internal pure returns (int256 z) {
                          require((z = x - y) <= x == (y >= 0));
                      }
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  /// @title Safe casting methods
                  /// @notice Contains methods for safely casting between types
                  library SafeCast {
                      /// @notice Cast a uint256 to a uint160, revert on overflow
                      /// @param y The uint256 to be downcasted
                      /// @return z The downcasted integer, now type uint160
                      function toUint160(uint256 y) internal pure returns (uint160 z) {
                          require((z = uint160(y)) == y);
                      }
                      /// @notice Cast a int256 to a int128, revert on overflow or underflow
                      /// @param y The int256 to be downcasted
                      /// @return z The downcasted integer, now type int128
                      function toInt128(int256 y) internal pure returns (int128 z) {
                          require((z = int128(y)) == y);
                      }
                      /// @notice Cast a uint256 to a int256, revert on overflow
                      /// @param y The uint256 to be casted
                      /// @return z The casted integer, now type int256
                      function toInt256(uint256 y) internal pure returns (int256 z) {
                          require(y < 2**255);
                          z = int256(y);
                      }
                  }
                  // SPDX-License-Identifier: BUSL-1.1
                  pragma solidity >=0.5.0;
                  import './LowGasSafeMath.sol';
                  import './SafeCast.sol';
                  import './TickMath.sol';
                  import './LiquidityMath.sol';
                  /// @title Tick
                  /// @notice Contains functions for managing tick processes and relevant calculations
                  library Tick {
                      using LowGasSafeMath for int256;
                      using SafeCast for int256;
                      // info stored for each initialized individual tick
                      struct Info {
                          // the total position liquidity that references this tick
                          uint128 liquidityGross;
                          // amount of net liquidity added (subtracted) when tick is crossed from left to right (right to left),
                          int128 liquidityNet;
                          // fee growth per unit of liquidity on the _other_ side of this tick (relative to the current tick)
                          // only has relative meaning, not absolute — the value depends on when the tick is initialized
                          uint256 feeGrowthOutside0X128;
                          uint256 feeGrowthOutside1X128;
                          // the cumulative tick value on the other side of the tick
                          int56 tickCumulativeOutside;
                          // the seconds per unit of liquidity on the _other_ side of this tick (relative to the current tick)
                          // only has relative meaning, not absolute — the value depends on when the tick is initialized
                          uint160 secondsPerLiquidityOutsideX128;
                          // the seconds spent on the other side of the tick (relative to the current tick)
                          // only has relative meaning, not absolute — the value depends on when the tick is initialized
                          uint32 secondsOutside;
                          // true iff the tick is initialized, i.e. the value is exactly equivalent to the expression liquidityGross != 0
                          // these 8 bits are set to prevent fresh sstores when crossing newly initialized ticks
                          bool initialized;
                      }
                      /// @notice Derives max liquidity per tick from given tick spacing
                      /// @dev Executed within the pool constructor
                      /// @param tickSpacing The amount of required tick separation, realized in multiples of `tickSpacing`
                      ///     e.g., a tickSpacing of 3 requires ticks to be initialized every 3rd tick i.e., ..., -6, -3, 0, 3, 6, ...
                      /// @return The max liquidity per tick
                      function tickSpacingToMaxLiquidityPerTick(int24 tickSpacing) internal pure returns (uint128) {
                          int24 minTick = (TickMath.MIN_TICK / tickSpacing) * tickSpacing;
                          int24 maxTick = (TickMath.MAX_TICK / tickSpacing) * tickSpacing;
                          uint24 numTicks = uint24((maxTick - minTick) / tickSpacing) + 1;
                          return type(uint128).max / numTicks;
                      }
                      /// @notice Retrieves fee growth data
                      /// @param self The mapping containing all tick information for initialized ticks
                      /// @param tickLower The lower tick boundary of the position
                      /// @param tickUpper The upper tick boundary of the position
                      /// @param tickCurrent The current tick
                      /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
                      /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
                      /// @return feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
                      /// @return feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
                      function getFeeGrowthInside(
                          mapping(int24 => Tick.Info) storage self,
                          int24 tickLower,
                          int24 tickUpper,
                          int24 tickCurrent,
                          uint256 feeGrowthGlobal0X128,
                          uint256 feeGrowthGlobal1X128
                      ) internal view returns (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) {
                          Info storage lower = self[tickLower];
                          Info storage upper = self[tickUpper];
                          // calculate fee growth below
                          uint256 feeGrowthBelow0X128;
                          uint256 feeGrowthBelow1X128;
                          if (tickCurrent >= tickLower) {
                              feeGrowthBelow0X128 = lower.feeGrowthOutside0X128;
                              feeGrowthBelow1X128 = lower.feeGrowthOutside1X128;
                          } else {
                              feeGrowthBelow0X128 = feeGrowthGlobal0X128 - lower.feeGrowthOutside0X128;
                              feeGrowthBelow1X128 = feeGrowthGlobal1X128 - lower.feeGrowthOutside1X128;
                          }
                          // calculate fee growth above
                          uint256 feeGrowthAbove0X128;
                          uint256 feeGrowthAbove1X128;
                          if (tickCurrent < tickUpper) {
                              feeGrowthAbove0X128 = upper.feeGrowthOutside0X128;
                              feeGrowthAbove1X128 = upper.feeGrowthOutside1X128;
                          } else {
                              feeGrowthAbove0X128 = feeGrowthGlobal0X128 - upper.feeGrowthOutside0X128;
                              feeGrowthAbove1X128 = feeGrowthGlobal1X128 - upper.feeGrowthOutside1X128;
                          }
                          feeGrowthInside0X128 = feeGrowthGlobal0X128 - feeGrowthBelow0X128 - feeGrowthAbove0X128;
                          feeGrowthInside1X128 = feeGrowthGlobal1X128 - feeGrowthBelow1X128 - feeGrowthAbove1X128;
                      }
                      /// @notice Updates a tick and returns true if the tick was flipped from initialized to uninitialized, or vice versa
                      /// @param self The mapping containing all tick information for initialized ticks
                      /// @param tick The tick that will be updated
                      /// @param tickCurrent The current tick
                      /// @param liquidityDelta A new amount of liquidity to be added (subtracted) when tick is crossed from left to right (right to left)
                      /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
                      /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
                      /// @param secondsPerLiquidityCumulativeX128 The all-time seconds per max(1, liquidity) of the pool
                      /// @param time The current block timestamp cast to a uint32
                      /// @param upper true for updating a position's upper tick, or false for updating a position's lower tick
                      /// @param maxLiquidity The maximum liquidity allocation for a single tick
                      /// @return flipped Whether the tick was flipped from initialized to uninitialized, or vice versa
                      function update(
                          mapping(int24 => Tick.Info) storage self,
                          int24 tick,
                          int24 tickCurrent,
                          int128 liquidityDelta,
                          uint256 feeGrowthGlobal0X128,
                          uint256 feeGrowthGlobal1X128,
                          uint160 secondsPerLiquidityCumulativeX128,
                          int56 tickCumulative,
                          uint32 time,
                          bool upper,
                          uint128 maxLiquidity
                      ) internal returns (bool flipped) {
                          Tick.Info storage info = self[tick];
                          uint128 liquidityGrossBefore = info.liquidityGross;
                          uint128 liquidityGrossAfter = LiquidityMath.addDelta(liquidityGrossBefore, liquidityDelta);
                          require(liquidityGrossAfter <= maxLiquidity, 'LO');
                          flipped = (liquidityGrossAfter == 0) != (liquidityGrossBefore == 0);
                          if (liquidityGrossBefore == 0) {
                              // by convention, we assume that all growth before a tick was initialized happened _below_ the tick
                              if (tick <= tickCurrent) {
                                  info.feeGrowthOutside0X128 = feeGrowthGlobal0X128;
                                  info.feeGrowthOutside1X128 = feeGrowthGlobal1X128;
                                  info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128;
                                  info.tickCumulativeOutside = tickCumulative;
                                  info.secondsOutside = time;
                              }
                              info.initialized = true;
                          }
                          info.liquidityGross = liquidityGrossAfter;
                          // when the lower (upper) tick is crossed left to right (right to left), liquidity must be added (removed)
                          info.liquidityNet = upper
                              ? int256(info.liquidityNet).sub(liquidityDelta).toInt128()
                              : int256(info.liquidityNet).add(liquidityDelta).toInt128();
                      }
                      /// @notice Clears tick data
                      /// @param self The mapping containing all initialized tick information for initialized ticks
                      /// @param tick The tick that will be cleared
                      function clear(mapping(int24 => Tick.Info) storage self, int24 tick) internal {
                          delete self[tick];
                      }
                      /// @notice Transitions to next tick as needed by price movement
                      /// @param self The mapping containing all tick information for initialized ticks
                      /// @param tick The destination tick of the transition
                      /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
                      /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
                      /// @param secondsPerLiquidityCumulativeX128 The current seconds per liquidity
                      /// @param time The current block.timestamp
                      /// @return liquidityNet The amount of liquidity added (subtracted) when tick is crossed from left to right (right to left)
                      function cross(
                          mapping(int24 => Tick.Info) storage self,
                          int24 tick,
                          uint256 feeGrowthGlobal0X128,
                          uint256 feeGrowthGlobal1X128,
                          uint160 secondsPerLiquidityCumulativeX128,
                          int56 tickCumulative,
                          uint32 time
                      ) internal returns (int128 liquidityNet) {
                          Tick.Info storage info = self[tick];
                          info.feeGrowthOutside0X128 = feeGrowthGlobal0X128 - info.feeGrowthOutside0X128;
                          info.feeGrowthOutside1X128 = feeGrowthGlobal1X128 - info.feeGrowthOutside1X128;
                          info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128 - info.secondsPerLiquidityOutsideX128;
                          info.tickCumulativeOutside = tickCumulative - info.tickCumulativeOutside;
                          info.secondsOutside = time - info.secondsOutside;
                          liquidityNet = info.liquidityNet;
                      }
                  }
                  // SPDX-License-Identifier: BUSL-1.1
                  pragma solidity >=0.5.0;
                  import './BitMath.sol';
                  /// @title Packed tick initialized state library
                  /// @notice Stores a packed mapping of tick index to its initialized state
                  /// @dev The mapping uses int16 for keys since ticks are represented as int24 and there are 256 (2^8) values per word.
                  library TickBitmap {
                      /// @notice Computes the position in the mapping where the initialized bit for a tick lives
                      /// @param tick The tick for which to compute the position
                      /// @return wordPos The key in the mapping containing the word in which the bit is stored
                      /// @return bitPos The bit position in the word where the flag is stored
                      function position(int24 tick) private pure returns (int16 wordPos, uint8 bitPos) {
                          wordPos = int16(tick >> 8);
                          bitPos = uint8(tick % 256);
                      }
                      /// @notice Flips the initialized state for a given tick from false to true, or vice versa
                      /// @param self The mapping in which to flip the tick
                      /// @param tick The tick to flip
                      /// @param tickSpacing The spacing between usable ticks
                      function flipTick(
                          mapping(int16 => uint256) storage self,
                          int24 tick,
                          int24 tickSpacing
                      ) internal {
                          require(tick % tickSpacing == 0); // ensure that the tick is spaced
                          (int16 wordPos, uint8 bitPos) = position(tick / tickSpacing);
                          uint256 mask = 1 << bitPos;
                          self[wordPos] ^= mask;
                      }
                      /// @notice Returns the next initialized tick contained in the same word (or adjacent word) as the tick that is either
                      /// to the left (less than or equal to) or right (greater than) of the given tick
                      /// @param self The mapping in which to compute the next initialized tick
                      /// @param tick The starting tick
                      /// @param tickSpacing The spacing between usable ticks
                      /// @param lte Whether to search for the next initialized tick to the left (less than or equal to the starting tick)
                      /// @return next The next initialized or uninitialized tick up to 256 ticks away from the current tick
                      /// @return initialized Whether the next tick is initialized, as the function only searches within up to 256 ticks
                      function nextInitializedTickWithinOneWord(
                          mapping(int16 => uint256) storage self,
                          int24 tick,
                          int24 tickSpacing,
                          bool lte
                      ) internal view returns (int24 next, bool initialized) {
                          int24 compressed = tick / tickSpacing;
                          if (tick < 0 && tick % tickSpacing != 0) compressed--; // round towards negative infinity
                          if (lte) {
                              (int16 wordPos, uint8 bitPos) = position(compressed);
                              // all the 1s at or to the right of the current bitPos
                              uint256 mask = (1 << bitPos) - 1 + (1 << bitPos);
                              uint256 masked = self[wordPos] & mask;
                              // if there are no initialized ticks to the right of or at the current tick, return rightmost in the word
                              initialized = masked != 0;
                              // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
                              next = initialized
                                  ? (compressed - int24(bitPos - BitMath.mostSignificantBit(masked))) * tickSpacing
                                  : (compressed - int24(bitPos)) * tickSpacing;
                          } else {
                              // start from the word of the next tick, since the current tick state doesn't matter
                              (int16 wordPos, uint8 bitPos) = position(compressed + 1);
                              // all the 1s at or to the left of the bitPos
                              uint256 mask = ~((1 << bitPos) - 1);
                              uint256 masked = self[wordPos] & mask;
                              // if there are no initialized ticks to the left of the current tick, return leftmost in the word
                              initialized = masked != 0;
                              // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
                              next = initialized
                                  ? (compressed + 1 + int24(BitMath.leastSignificantBit(masked) - bitPos)) * tickSpacing
                                  : (compressed + 1 + int24(type(uint8).max - bitPos)) * tickSpacing;
                          }
                      }
                  }
                  // SPDX-License-Identifier: BUSL-1.1
                  pragma solidity >=0.5.0;
                  import './FullMath.sol';
                  import './FixedPoint128.sol';
                  import './LiquidityMath.sol';
                  /// @title Position
                  /// @notice Positions represent an owner address' liquidity between a lower and upper tick boundary
                  /// @dev Positions store additional state for tracking fees owed to the position
                  library Position {
                      // info stored for each user's position
                      struct Info {
                          // the amount of liquidity owned by this position
                          uint128 liquidity;
                          // fee growth per unit of liquidity as of the last update to liquidity or fees owed
                          uint256 feeGrowthInside0LastX128;
                          uint256 feeGrowthInside1LastX128;
                          // the fees owed to the position owner in token0/token1
                          uint128 tokensOwed0;
                          uint128 tokensOwed1;
                      }
                      /// @notice Returns the Info struct of a position, given an owner and position boundaries
                      /// @param self The mapping containing all user positions
                      /// @param owner The address of the position owner
                      /// @param tickLower The lower tick boundary of the position
                      /// @param tickUpper The upper tick boundary of the position
                      /// @return position The position info struct of the given owners' position
                      function get(
                          mapping(bytes32 => Info) storage self,
                          address owner,
                          int24 tickLower,
                          int24 tickUpper
                      ) internal view returns (Position.Info storage position) {
                          position = self[keccak256(abi.encodePacked(owner, tickLower, tickUpper))];
                      }
                      /// @notice Credits accumulated fees to a user's position
                      /// @param self The individual position to update
                      /// @param liquidityDelta The change in pool liquidity as a result of the position update
                      /// @param feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
                      /// @param feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
                      function update(
                          Info storage self,
                          int128 liquidityDelta,
                          uint256 feeGrowthInside0X128,
                          uint256 feeGrowthInside1X128
                      ) internal {
                          Info memory _self = self;
                          uint128 liquidityNext;
                          if (liquidityDelta == 0) {
                              require(_self.liquidity > 0, 'NP'); // disallow pokes for 0 liquidity positions
                              liquidityNext = _self.liquidity;
                          } else {
                              liquidityNext = LiquidityMath.addDelta(_self.liquidity, liquidityDelta);
                          }
                          // calculate accumulated fees
                          uint128 tokensOwed0 =
                              uint128(
                                  FullMath.mulDiv(
                                      feeGrowthInside0X128 - _self.feeGrowthInside0LastX128,
                                      _self.liquidity,
                                      FixedPoint128.Q128
                                  )
                              );
                          uint128 tokensOwed1 =
                              uint128(
                                  FullMath.mulDiv(
                                      feeGrowthInside1X128 - _self.feeGrowthInside1LastX128,
                                      _self.liquidity,
                                      FixedPoint128.Q128
                                  )
                              );
                          // update the position
                          if (liquidityDelta != 0) self.liquidity = liquidityNext;
                          self.feeGrowthInside0LastX128 = feeGrowthInside0X128;
                          self.feeGrowthInside1LastX128 = feeGrowthInside1X128;
                          if (tokensOwed0 > 0 || tokensOwed1 > 0) {
                              // overflow is acceptable, have to withdraw before you hit type(uint128).max fees
                              self.tokensOwed0 += tokensOwed0;
                              self.tokensOwed1 += tokensOwed1;
                          }
                      }
                  }
                  // SPDX-License-Identifier: BUSL-1.1
                  pragma solidity >=0.5.0;
                  /// @title Oracle
                  /// @notice Provides price and liquidity data useful for a wide variety of system designs
                  /// @dev Instances of stored oracle data, "observations", are collected in the oracle array
                  /// Every pool is initialized with an oracle array length of 1. Anyone can pay the SSTOREs to increase the
                  /// maximum length of the oracle array. New slots will be added when the array is fully populated.
                  /// Observations are overwritten when the full length of the oracle array is populated.
                  /// The most recent observation is available, independent of the length of the oracle array, by passing 0 to observe()
                  library Oracle {
                      struct Observation {
                          // the block timestamp of the observation
                          uint32 blockTimestamp;
                          // the tick accumulator, i.e. tick * time elapsed since the pool was first initialized
                          int56 tickCumulative;
                          // the seconds per liquidity, i.e. seconds elapsed / max(1, liquidity) since the pool was first initialized
                          uint160 secondsPerLiquidityCumulativeX128;
                          // whether or not the observation is initialized
                          bool initialized;
                      }
                      /// @notice Transforms a previous observation into a new observation, given the passage of time and the current tick and liquidity values
                      /// @dev blockTimestamp _must_ be chronologically equal to or greater than last.blockTimestamp, safe for 0 or 1 overflows
                      /// @param last The specified observation to be transformed
                      /// @param blockTimestamp The timestamp of the new observation
                      /// @param tick The active tick at the time of the new observation
                      /// @param liquidity The total in-range liquidity at the time of the new observation
                      /// @return Observation The newly populated observation
                      function transform(
                          Observation memory last,
                          uint32 blockTimestamp,
                          int24 tick,
                          uint128 liquidity
                      ) private pure returns (Observation memory) {
                          uint32 delta = blockTimestamp - last.blockTimestamp;
                          return
                              Observation({
                                  blockTimestamp: blockTimestamp,
                                  tickCumulative: last.tickCumulative + int56(tick) * delta,
                                  secondsPerLiquidityCumulativeX128: last.secondsPerLiquidityCumulativeX128 +
                                      ((uint160(delta) << 128) / (liquidity > 0 ? liquidity : 1)),
                                  initialized: true
                              });
                      }
                      /// @notice Initialize the oracle array by writing the first slot. Called once for the lifecycle of the observations array
                      /// @param self The stored oracle array
                      /// @param time The time of the oracle initialization, via block.timestamp truncated to uint32
                      /// @return cardinality The number of populated elements in the oracle array
                      /// @return cardinalityNext The new length of the oracle array, independent of population
                      function initialize(Observation[65535] storage self, uint32 time)
                          internal
                          returns (uint16 cardinality, uint16 cardinalityNext)
                      {
                          self[0] = Observation({
                              blockTimestamp: time,
                              tickCumulative: 0,
                              secondsPerLiquidityCumulativeX128: 0,
                              initialized: true
                          });
                          return (1, 1);
                      }
                      /// @notice Writes an oracle observation to the array
                      /// @dev Writable at most once per block. Index represents the most recently written element. cardinality and index must be tracked externally.
                      /// If the index is at the end of the allowable array length (according to cardinality), and the next cardinality
                      /// is greater than the current one, cardinality may be increased. This restriction is created to preserve ordering.
                      /// @param self The stored oracle array
                      /// @param index The index of the observation that was most recently written to the observations array
                      /// @param blockTimestamp The timestamp of the new observation
                      /// @param tick The active tick at the time of the new observation
                      /// @param liquidity The total in-range liquidity at the time of the new observation
                      /// @param cardinality The number of populated elements in the oracle array
                      /// @param cardinalityNext The new length of the oracle array, independent of population
                      /// @return indexUpdated The new index of the most recently written element in the oracle array
                      /// @return cardinalityUpdated The new cardinality of the oracle array
                      function write(
                          Observation[65535] storage self,
                          uint16 index,
                          uint32 blockTimestamp,
                          int24 tick,
                          uint128 liquidity,
                          uint16 cardinality,
                          uint16 cardinalityNext
                      ) internal returns (uint16 indexUpdated, uint16 cardinalityUpdated) {
                          Observation memory last = self[index];
                          // early return if we've already written an observation this block
                          if (last.blockTimestamp == blockTimestamp) return (index, cardinality);
                          // if the conditions are right, we can bump the cardinality
                          if (cardinalityNext > cardinality && index == (cardinality - 1)) {
                              cardinalityUpdated = cardinalityNext;
                          } else {
                              cardinalityUpdated = cardinality;
                          }
                          indexUpdated = (index + 1) % cardinalityUpdated;
                          self[indexUpdated] = transform(last, blockTimestamp, tick, liquidity);
                      }
                      /// @notice Prepares the oracle array to store up to `next` observations
                      /// @param self The stored oracle array
                      /// @param current The current next cardinality of the oracle array
                      /// @param next The proposed next cardinality which will be populated in the oracle array
                      /// @return next The next cardinality which will be populated in the oracle array
                      function grow(
                          Observation[65535] storage self,
                          uint16 current,
                          uint16 next
                      ) internal returns (uint16) {
                          require(current > 0, 'I');
                          // no-op if the passed next value isn't greater than the current next value
                          if (next <= current) return current;
                          // store in each slot to prevent fresh SSTOREs in swaps
                          // this data will not be used because the initialized boolean is still false
                          for (uint16 i = current; i < next; i++) self[i].blockTimestamp = 1;
                          return next;
                      }
                      /// @notice comparator for 32-bit timestamps
                      /// @dev safe for 0 or 1 overflows, a and b _must_ be chronologically before or equal to time
                      /// @param time A timestamp truncated to 32 bits
                      /// @param a A comparison timestamp from which to determine the relative position of `time`
                      /// @param b From which to determine the relative position of `time`
                      /// @return bool Whether `a` is chronologically <= `b`
                      function lte(
                          uint32 time,
                          uint32 a,
                          uint32 b
                      ) private pure returns (bool) {
                          // if there hasn't been overflow, no need to adjust
                          if (a <= time && b <= time) return a <= b;
                          uint256 aAdjusted = a > time ? a : a + 2**32;
                          uint256 bAdjusted = b > time ? b : b + 2**32;
                          return aAdjusted <= bAdjusted;
                      }
                      /// @notice Fetches the observations beforeOrAt and atOrAfter a target, i.e. where [beforeOrAt, atOrAfter] is satisfied.
                      /// The result may be the same observation, or adjacent observations.
                      /// @dev The answer must be contained in the array, used when the target is located within the stored observation
                      /// boundaries: older than the most recent observation and younger, or the same age as, the oldest observation
                      /// @param self The stored oracle array
                      /// @param time The current block.timestamp
                      /// @param target The timestamp at which the reserved observation should be for
                      /// @param index The index of the observation that was most recently written to the observations array
                      /// @param cardinality The number of populated elements in the oracle array
                      /// @return beforeOrAt The observation recorded before, or at, the target
                      /// @return atOrAfter The observation recorded at, or after, the target
                      function binarySearch(
                          Observation[65535] storage self,
                          uint32 time,
                          uint32 target,
                          uint16 index,
                          uint16 cardinality
                      ) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) {
                          uint256 l = (index + 1) % cardinality; // oldest observation
                          uint256 r = l + cardinality - 1; // newest observation
                          uint256 i;
                          while (true) {
                              i = (l + r) / 2;
                              beforeOrAt = self[i % cardinality];
                              // we've landed on an uninitialized tick, keep searching higher (more recently)
                              if (!beforeOrAt.initialized) {
                                  l = i + 1;
                                  continue;
                              }
                              atOrAfter = self[(i + 1) % cardinality];
                              bool targetAtOrAfter = lte(time, beforeOrAt.blockTimestamp, target);
                              // check if we've found the answer!
                              if (targetAtOrAfter && lte(time, target, atOrAfter.blockTimestamp)) break;
                              if (!targetAtOrAfter) r = i - 1;
                              else l = i + 1;
                          }
                      }
                      /// @notice Fetches the observations beforeOrAt and atOrAfter a given target, i.e. where [beforeOrAt, atOrAfter] is satisfied
                      /// @dev Assumes there is at least 1 initialized observation.
                      /// Used by observeSingle() to compute the counterfactual accumulator values as of a given block timestamp.
                      /// @param self The stored oracle array
                      /// @param time The current block.timestamp
                      /// @param target The timestamp at which the reserved observation should be for
                      /// @param tick The active tick at the time of the returned or simulated observation
                      /// @param index The index of the observation that was most recently written to the observations array
                      /// @param liquidity The total pool liquidity at the time of the call
                      /// @param cardinality The number of populated elements in the oracle array
                      /// @return beforeOrAt The observation which occurred at, or before, the given timestamp
                      /// @return atOrAfter The observation which occurred at, or after, the given timestamp
                      function getSurroundingObservations(
                          Observation[65535] storage self,
                          uint32 time,
                          uint32 target,
                          int24 tick,
                          uint16 index,
                          uint128 liquidity,
                          uint16 cardinality
                      ) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) {
                          // optimistically set before to the newest observation
                          beforeOrAt = self[index];
                          // if the target is chronologically at or after the newest observation, we can early return
                          if (lte(time, beforeOrAt.blockTimestamp, target)) {
                              if (beforeOrAt.blockTimestamp == target) {
                                  // if newest observation equals target, we're in the same block, so we can ignore atOrAfter
                                  return (beforeOrAt, atOrAfter);
                              } else {
                                  // otherwise, we need to transform
                                  return (beforeOrAt, transform(beforeOrAt, target, tick, liquidity));
                              }
                          }
                          // now, set before to the oldest observation
                          beforeOrAt = self[(index + 1) % cardinality];
                          if (!beforeOrAt.initialized) beforeOrAt = self[0];
                          // ensure that the target is chronologically at or after the oldest observation
                          require(lte(time, beforeOrAt.blockTimestamp, target), 'OLD');
                          // if we've reached this point, we have to binary search
                          return binarySearch(self, time, target, index, cardinality);
                      }
                      /// @dev Reverts if an observation at or before the desired observation timestamp does not exist.
                      /// 0 may be passed as `secondsAgo' to return the current cumulative values.
                      /// If called with a timestamp falling between two observations, returns the counterfactual accumulator values
                      /// at exactly the timestamp between the two observations.
                      /// @param self The stored oracle array
                      /// @param time The current block timestamp
                      /// @param secondsAgo The amount of time to look back, in seconds, at which point to return an observation
                      /// @param tick The current tick
                      /// @param index The index of the observation that was most recently written to the observations array
                      /// @param liquidity The current in-range pool liquidity
                      /// @param cardinality The number of populated elements in the oracle array
                      /// @return tickCumulative The tick * time elapsed since the pool was first initialized, as of `secondsAgo`
                      /// @return secondsPerLiquidityCumulativeX128 The time elapsed / max(1, liquidity) since the pool was first initialized, as of `secondsAgo`
                      function observeSingle(
                          Observation[65535] storage self,
                          uint32 time,
                          uint32 secondsAgo,
                          int24 tick,
                          uint16 index,
                          uint128 liquidity,
                          uint16 cardinality
                      ) internal view returns (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) {
                          if (secondsAgo == 0) {
                              Observation memory last = self[index];
                              if (last.blockTimestamp != time) last = transform(last, time, tick, liquidity);
                              return (last.tickCumulative, last.secondsPerLiquidityCumulativeX128);
                          }
                          uint32 target = time - secondsAgo;
                          (Observation memory beforeOrAt, Observation memory atOrAfter) =
                              getSurroundingObservations(self, time, target, tick, index, liquidity, cardinality);
                          if (target == beforeOrAt.blockTimestamp) {
                              // we're at the left boundary
                              return (beforeOrAt.tickCumulative, beforeOrAt.secondsPerLiquidityCumulativeX128);
                          } else if (target == atOrAfter.blockTimestamp) {
                              // we're at the right boundary
                              return (atOrAfter.tickCumulative, atOrAfter.secondsPerLiquidityCumulativeX128);
                          } else {
                              // we're in the middle
                              uint32 observationTimeDelta = atOrAfter.blockTimestamp - beforeOrAt.blockTimestamp;
                              uint32 targetDelta = target - beforeOrAt.blockTimestamp;
                              return (
                                  beforeOrAt.tickCumulative +
                                      ((atOrAfter.tickCumulative - beforeOrAt.tickCumulative) / observationTimeDelta) *
                                      targetDelta,
                                  beforeOrAt.secondsPerLiquidityCumulativeX128 +
                                      uint160(
                                          (uint256(
                                              atOrAfter.secondsPerLiquidityCumulativeX128 - beforeOrAt.secondsPerLiquidityCumulativeX128
                                          ) * targetDelta) / observationTimeDelta
                                      )
                              );
                          }
                      }
                      /// @notice Returns the accumulator values as of each time seconds ago from the given time in the array of `secondsAgos`
                      /// @dev Reverts if `secondsAgos` > oldest observation
                      /// @param self The stored oracle array
                      /// @param time The current block.timestamp
                      /// @param secondsAgos Each amount of time to look back, in seconds, at which point to return an observation
                      /// @param tick The current tick
                      /// @param index The index of the observation that was most recently written to the observations array
                      /// @param liquidity The current in-range pool liquidity
                      /// @param cardinality The number of populated elements in the oracle array
                      /// @return tickCumulatives The tick * time elapsed since the pool was first initialized, as of each `secondsAgo`
                      /// @return secondsPerLiquidityCumulativeX128s The cumulative seconds / max(1, liquidity) since the pool was first initialized, as of each `secondsAgo`
                      function observe(
                          Observation[65535] storage self,
                          uint32 time,
                          uint32[] memory secondsAgos,
                          int24 tick,
                          uint16 index,
                          uint128 liquidity,
                          uint16 cardinality
                      ) internal view returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) {
                          require(cardinality > 0, 'I');
                          tickCumulatives = new int56[](secondsAgos.length);
                          secondsPerLiquidityCumulativeX128s = new uint160[](secondsAgos.length);
                          for (uint256 i = 0; i < secondsAgos.length; i++) {
                              (tickCumulatives[i], secondsPerLiquidityCumulativeX128s[i]) = observeSingle(
                                  self,
                                  time,
                                  secondsAgos[i],
                                  tick,
                                  index,
                                  liquidity,
                                  cardinality
                              );
                          }
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity >=0.4.0;
                  /// @title Contains 512-bit math functions
                  /// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
                  /// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
                  library FullMath {
                      /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                      /// @param a The multiplicand
                      /// @param b The multiplier
                      /// @param denominator The divisor
                      /// @return result The 256-bit result
                      /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
                      function mulDiv(
                          uint256 a,
                          uint256 b,
                          uint256 denominator
                      ) internal pure returns (uint256 result) {
                          // 512-bit multiply [prod1 prod0] = a * b
                          // Compute the product mod 2**256 and mod 2**256 - 1
                          // then use the Chinese Remainder Theorem to reconstruct
                          // the 512 bit result. The result is stored in two 256
                          // variables such that product = prod1 * 2**256 + prod0
                          uint256 prod0; // Least significant 256 bits of the product
                          uint256 prod1; // Most significant 256 bits of the product
                          assembly {
                              let mm := mulmod(a, b, not(0))
                              prod0 := mul(a, b)
                              prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                          }
                          // Handle non-overflow cases, 256 by 256 division
                          if (prod1 == 0) {
                              require(denominator > 0);
                              assembly {
                                  result := div(prod0, denominator)
                              }
                              return result;
                          }
                          // Make sure the result is less than 2**256.
                          // Also prevents denominator == 0
                          require(denominator > prod1);
                          ///////////////////////////////////////////////
                          // 512 by 256 division.
                          ///////////////////////////////////////////////
                          // Make division exact by subtracting the remainder from [prod1 prod0]
                          // Compute remainder using mulmod
                          uint256 remainder;
                          assembly {
                              remainder := mulmod(a, b, denominator)
                          }
                          // Subtract 256 bit number from 512 bit number
                          assembly {
                              prod1 := sub(prod1, gt(remainder, prod0))
                              prod0 := sub(prod0, remainder)
                          }
                          // Factor powers of two out of denominator
                          // Compute largest power of two divisor of denominator.
                          // Always >= 1.
                          uint256 twos = -denominator & denominator;
                          // Divide denominator by power of two
                          assembly {
                              denominator := div(denominator, twos)
                          }
                          // Divide [prod1 prod0] by the factors of two
                          assembly {
                              prod0 := div(prod0, twos)
                          }
                          // Shift in bits from prod1 into prod0. For this we need
                          // to flip `twos` such that it is 2**256 / twos.
                          // If twos is zero, then it becomes one
                          assembly {
                              twos := add(div(sub(0, twos), twos), 1)
                          }
                          prod0 |= prod1 * twos;
                          // Invert denominator mod 2**256
                          // Now that denominator is an odd number, it has an inverse
                          // modulo 2**256 such that denominator * inv = 1 mod 2**256.
                          // Compute the inverse by starting with a seed that is correct
                          // correct for four bits. That is, denominator * inv = 1 mod 2**4
                          uint256 inv = (3 * denominator) ^ 2;
                          // Now use Newton-Raphson iteration to improve the precision.
                          // Thanks to Hensel's lifting lemma, this also works in modular
                          // arithmetic, doubling the correct bits in each step.
                          inv *= 2 - denominator * inv; // inverse mod 2**8
                          inv *= 2 - denominator * inv; // inverse mod 2**16
                          inv *= 2 - denominator * inv; // inverse mod 2**32
                          inv *= 2 - denominator * inv; // inverse mod 2**64
                          inv *= 2 - denominator * inv; // inverse mod 2**128
                          inv *= 2 - denominator * inv; // inverse mod 2**256
                          // Because the division is now exact we can divide by multiplying
                          // with the modular inverse of denominator. This will give us the
                          // correct result modulo 2**256. Since the precoditions guarantee
                          // that the outcome is less than 2**256, this is the final result.
                          // We don't need to compute the high bits of the result and prod1
                          // is no longer required.
                          result = prod0 * inv;
                          return result;
                      }
                      /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                      /// @param a The multiplicand
                      /// @param b The multiplier
                      /// @param denominator The divisor
                      /// @return result The 256-bit result
                      function mulDivRoundingUp(
                          uint256 a,
                          uint256 b,
                          uint256 denominator
                      ) internal pure returns (uint256 result) {
                          result = mulDiv(a, b, denominator);
                          if (mulmod(a, b, denominator) > 0) {
                              require(result < type(uint256).max);
                              result++;
                          }
                      }
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.4.0;
                  /// @title FixedPoint128
                  /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
                  library FixedPoint128 {
                      uint256 internal constant Q128 = 0x100000000000000000000000000000000;
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.6.0;
                  import '../interfaces/IERC20Minimal.sol';
                  /// @title TransferHelper
                  /// @notice Contains helper methods for interacting with ERC20 tokens that do not consistently return true/false
                  library TransferHelper {
                      /// @notice Transfers tokens from msg.sender to a recipient
                      /// @dev Calls transfer on token contract, errors with TF if transfer fails
                      /// @param token The contract address of the token which will be transferred
                      /// @param to The recipient of the transfer
                      /// @param value The value of the transfer
                      function safeTransfer(
                          address token,
                          address to,
                          uint256 value
                      ) internal {
                          (bool success, bytes memory data) =
                              token.call(abi.encodeWithSelector(IERC20Minimal.transfer.selector, to, value));
                          require(success && (data.length == 0 || abi.decode(data, (bool))), 'TF');
                      }
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  /// @title Math library for computing sqrt prices from ticks and vice versa
                  /// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
                  /// prices between 2**-128 and 2**128
                  library TickMath {
                      /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
                      int24 internal constant MIN_TICK = -887272;
                      /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
                      int24 internal constant MAX_TICK = -MIN_TICK;
                      /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
                      uint160 internal constant MIN_SQRT_RATIO = 4295128739;
                      /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
                      uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;
                      /// @notice Calculates sqrt(1.0001^tick) * 2^96
                      /// @dev Throws if |tick| > max tick
                      /// @param tick The input tick for the above formula
                      /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
                      /// at the given tick
                      function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
                          uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));
                          require(absTick <= uint256(MAX_TICK), 'T');
                          uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000;
                          if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
                          if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
                          if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
                          if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
                          if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
                          if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
                          if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
                          if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
                          if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
                          if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
                          if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
                          if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
                          if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
                          if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
                          if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
                          if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
                          if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
                          if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
                          if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;
                          if (tick > 0) ratio = type(uint256).max / ratio;
                          // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
                          // we then downcast because we know the result always fits within 160 bits due to our tick input constraint
                          // we round up in the division so getTickAtSqrtRatio of the output price is always consistent
                          sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
                      }
                      /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
                      /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
                      /// ever return.
                      /// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
                      /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
                      function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
                          // second inequality must be < because the price can never reach the price at the max tick
                          require(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO, 'R');
                          uint256 ratio = uint256(sqrtPriceX96) << 32;
                          uint256 r = ratio;
                          uint256 msb = 0;
                          assembly {
                              let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
                              msb := or(msb, f)
                              r := shr(f, r)
                          }
                          assembly {
                              let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
                              msb := or(msb, f)
                              r := shr(f, r)
                          }
                          assembly {
                              let f := shl(5, gt(r, 0xFFFFFFFF))
                              msb := or(msb, f)
                              r := shr(f, r)
                          }
                          assembly {
                              let f := shl(4, gt(r, 0xFFFF))
                              msb := or(msb, f)
                              r := shr(f, r)
                          }
                          assembly {
                              let f := shl(3, gt(r, 0xFF))
                              msb := or(msb, f)
                              r := shr(f, r)
                          }
                          assembly {
                              let f := shl(2, gt(r, 0xF))
                              msb := or(msb, f)
                              r := shr(f, r)
                          }
                          assembly {
                              let f := shl(1, gt(r, 0x3))
                              msb := or(msb, f)
                              r := shr(f, r)
                          }
                          assembly {
                              let f := gt(r, 0x1)
                              msb := or(msb, f)
                          }
                          if (msb >= 128) r = ratio >> (msb - 127);
                          else r = ratio << (127 - msb);
                          int256 log_2 = (int256(msb) - 128) << 64;
                          assembly {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(63, f))
                              r := shr(f, r)
                          }
                          assembly {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(62, f))
                              r := shr(f, r)
                          }
                          assembly {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(61, f))
                              r := shr(f, r)
                          }
                          assembly {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(60, f))
                              r := shr(f, r)
                          }
                          assembly {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(59, f))
                              r := shr(f, r)
                          }
                          assembly {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(58, f))
                              r := shr(f, r)
                          }
                          assembly {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(57, f))
                              r := shr(f, r)
                          }
                          assembly {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(56, f))
                              r := shr(f, r)
                          }
                          assembly {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(55, f))
                              r := shr(f, r)
                          }
                          assembly {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(54, f))
                              r := shr(f, r)
                          }
                          assembly {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(53, f))
                              r := shr(f, r)
                          }
                          assembly {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(52, f))
                              r := shr(f, r)
                          }
                          assembly {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(51, f))
                              r := shr(f, r)
                          }
                          assembly {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(50, f))
                          }
                          int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number
                          int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
                          int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);
                          tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
                      }
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  /// @title Math library for liquidity
                  library LiquidityMath {
                      /// @notice Add a signed liquidity delta to liquidity and revert if it overflows or underflows
                      /// @param x The liquidity before change
                      /// @param y The delta by which liquidity should be changed
                      /// @return z The liquidity delta
                      function addDelta(uint128 x, int128 y) internal pure returns (uint128 z) {
                          if (y < 0) {
                              require((z = x - uint128(-y)) < x, 'LS');
                          } else {
                              require((z = x + uint128(y)) >= x, 'LA');
                          }
                      }
                  }
                  // SPDX-License-Identifier: BUSL-1.1
                  pragma solidity >=0.5.0;
                  import './LowGasSafeMath.sol';
                  import './SafeCast.sol';
                  import './FullMath.sol';
                  import './UnsafeMath.sol';
                  import './FixedPoint96.sol';
                  /// @title Functions based on Q64.96 sqrt price and liquidity
                  /// @notice Contains the math that uses square root of price as a Q64.96 and liquidity to compute deltas
                  library SqrtPriceMath {
                      using LowGasSafeMath for uint256;
                      using SafeCast for uint256;
                      /// @notice Gets the next sqrt price given a delta of token0
                      /// @dev Always rounds up, because in the exact output case (increasing price) we need to move the price at least
                      /// far enough to get the desired output amount, and in the exact input case (decreasing price) we need to move the
                      /// price less in order to not send too much output.
                      /// The most precise formula for this is liquidity * sqrtPX96 / (liquidity +- amount * sqrtPX96),
                      /// if this is impossible because of overflow, we calculate liquidity / (liquidity / sqrtPX96 +- amount).
                      /// @param sqrtPX96 The starting price, i.e. before accounting for the token0 delta
                      /// @param liquidity The amount of usable liquidity
                      /// @param amount How much of token0 to add or remove from virtual reserves
                      /// @param add Whether to add or remove the amount of token0
                      /// @return The price after adding or removing amount, depending on add
                      function getNextSqrtPriceFromAmount0RoundingUp(
                          uint160 sqrtPX96,
                          uint128 liquidity,
                          uint256 amount,
                          bool add
                      ) internal pure returns (uint160) {
                          // we short circuit amount == 0 because the result is otherwise not guaranteed to equal the input price
                          if (amount == 0) return sqrtPX96;
                          uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;
                          if (add) {
                              uint256 product;
                              if ((product = amount * sqrtPX96) / amount == sqrtPX96) {
                                  uint256 denominator = numerator1 + product;
                                  if (denominator >= numerator1)
                                      // always fits in 160 bits
                                      return uint160(FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator));
                              }
                              return uint160(UnsafeMath.divRoundingUp(numerator1, (numerator1 / sqrtPX96).add(amount)));
                          } else {
                              uint256 product;
                              // if the product overflows, we know the denominator underflows
                              // in addition, we must check that the denominator does not underflow
                              require((product = amount * sqrtPX96) / amount == sqrtPX96 && numerator1 > product);
                              uint256 denominator = numerator1 - product;
                              return FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator).toUint160();
                          }
                      }
                      /// @notice Gets the next sqrt price given a delta of token1
                      /// @dev Always rounds down, because in the exact output case (decreasing price) we need to move the price at least
                      /// far enough to get the desired output amount, and in the exact input case (increasing price) we need to move the
                      /// price less in order to not send too much output.
                      /// The formula we compute is within <1 wei of the lossless version: sqrtPX96 +- amount / liquidity
                      /// @param sqrtPX96 The starting price, i.e., before accounting for the token1 delta
                      /// @param liquidity The amount of usable liquidity
                      /// @param amount How much of token1 to add, or remove, from virtual reserves
                      /// @param add Whether to add, or remove, the amount of token1
                      /// @return The price after adding or removing `amount`
                      function getNextSqrtPriceFromAmount1RoundingDown(
                          uint160 sqrtPX96,
                          uint128 liquidity,
                          uint256 amount,
                          bool add
                      ) internal pure returns (uint160) {
                          // if we're adding (subtracting), rounding down requires rounding the quotient down (up)
                          // in both cases, avoid a mulDiv for most inputs
                          if (add) {
                              uint256 quotient =
                                  (
                                      amount <= type(uint160).max
                                          ? (amount << FixedPoint96.RESOLUTION) / liquidity
                                          : FullMath.mulDiv(amount, FixedPoint96.Q96, liquidity)
                                  );
                              return uint256(sqrtPX96).add(quotient).toUint160();
                          } else {
                              uint256 quotient =
                                  (
                                      amount <= type(uint160).max
                                          ? UnsafeMath.divRoundingUp(amount << FixedPoint96.RESOLUTION, liquidity)
                                          : FullMath.mulDivRoundingUp(amount, FixedPoint96.Q96, liquidity)
                                  );
                              require(sqrtPX96 > quotient);
                              // always fits 160 bits
                              return uint160(sqrtPX96 - quotient);
                          }
                      }
                      /// @notice Gets the next sqrt price given an input amount of token0 or token1
                      /// @dev Throws if price or liquidity are 0, or if the next price is out of bounds
                      /// @param sqrtPX96 The starting price, i.e., before accounting for the input amount
                      /// @param liquidity The amount of usable liquidity
                      /// @param amountIn How much of token0, or token1, is being swapped in
                      /// @param zeroForOne Whether the amount in is token0 or token1
                      /// @return sqrtQX96 The price after adding the input amount to token0 or token1
                      function getNextSqrtPriceFromInput(
                          uint160 sqrtPX96,
                          uint128 liquidity,
                          uint256 amountIn,
                          bool zeroForOne
                      ) internal pure returns (uint160 sqrtQX96) {
                          require(sqrtPX96 > 0);
                          require(liquidity > 0);
                          // round to make sure that we don't pass the target price
                          return
                              zeroForOne
                                  ? getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountIn, true)
                                  : getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountIn, true);
                      }
                      /// @notice Gets the next sqrt price given an output amount of token0 or token1
                      /// @dev Throws if price or liquidity are 0 or the next price is out of bounds
                      /// @param sqrtPX96 The starting price before accounting for the output amount
                      /// @param liquidity The amount of usable liquidity
                      /// @param amountOut How much of token0, or token1, is being swapped out
                      /// @param zeroForOne Whether the amount out is token0 or token1
                      /// @return sqrtQX96 The price after removing the output amount of token0 or token1
                      function getNextSqrtPriceFromOutput(
                          uint160 sqrtPX96,
                          uint128 liquidity,
                          uint256 amountOut,
                          bool zeroForOne
                      ) internal pure returns (uint160 sqrtQX96) {
                          require(sqrtPX96 > 0);
                          require(liquidity > 0);
                          // round to make sure that we pass the target price
                          return
                              zeroForOne
                                  ? getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountOut, false)
                                  : getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountOut, false);
                      }
                      /// @notice Gets the amount0 delta between two prices
                      /// @dev Calculates liquidity / sqrt(lower) - liquidity / sqrt(upper),
                      /// i.e. liquidity * (sqrt(upper) - sqrt(lower)) / (sqrt(upper) * sqrt(lower))
                      /// @param sqrtRatioAX96 A sqrt price
                      /// @param sqrtRatioBX96 Another sqrt price
                      /// @param liquidity The amount of usable liquidity
                      /// @param roundUp Whether to round the amount up or down
                      /// @return amount0 Amount of token0 required to cover a position of size liquidity between the two passed prices
                      function getAmount0Delta(
                          uint160 sqrtRatioAX96,
                          uint160 sqrtRatioBX96,
                          uint128 liquidity,
                          bool roundUp
                      ) internal pure returns (uint256 amount0) {
                          if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
                          uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;
                          uint256 numerator2 = sqrtRatioBX96 - sqrtRatioAX96;
                          require(sqrtRatioAX96 > 0);
                          return
                              roundUp
                                  ? UnsafeMath.divRoundingUp(
                                      FullMath.mulDivRoundingUp(numerator1, numerator2, sqrtRatioBX96),
                                      sqrtRatioAX96
                                  )
                                  : FullMath.mulDiv(numerator1, numerator2, sqrtRatioBX96) / sqrtRatioAX96;
                      }
                      /// @notice Gets the amount1 delta between two prices
                      /// @dev Calculates liquidity * (sqrt(upper) - sqrt(lower))
                      /// @param sqrtRatioAX96 A sqrt price
                      /// @param sqrtRatioBX96 Another sqrt price
                      /// @param liquidity The amount of usable liquidity
                      /// @param roundUp Whether to round the amount up, or down
                      /// @return amount1 Amount of token1 required to cover a position of size liquidity between the two passed prices
                      function getAmount1Delta(
                          uint160 sqrtRatioAX96,
                          uint160 sqrtRatioBX96,
                          uint128 liquidity,
                          bool roundUp
                      ) internal pure returns (uint256 amount1) {
                          if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
                          return
                              roundUp
                                  ? FullMath.mulDivRoundingUp(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96)
                                  : FullMath.mulDiv(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96);
                      }
                      /// @notice Helper that gets signed token0 delta
                      /// @param sqrtRatioAX96 A sqrt price
                      /// @param sqrtRatioBX96 Another sqrt price
                      /// @param liquidity The change in liquidity for which to compute the amount0 delta
                      /// @return amount0 Amount of token0 corresponding to the passed liquidityDelta between the two prices
                      function getAmount0Delta(
                          uint160 sqrtRatioAX96,
                          uint160 sqrtRatioBX96,
                          int128 liquidity
                      ) internal pure returns (int256 amount0) {
                          return
                              liquidity < 0
                                  ? -getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256()
                                  : getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256();
                      }
                      /// @notice Helper that gets signed token1 delta
                      /// @param sqrtRatioAX96 A sqrt price
                      /// @param sqrtRatioBX96 Another sqrt price
                      /// @param liquidity The change in liquidity for which to compute the amount1 delta
                      /// @return amount1 Amount of token1 corresponding to the passed liquidityDelta between the two prices
                      function getAmount1Delta(
                          uint160 sqrtRatioAX96,
                          uint160 sqrtRatioBX96,
                          int128 liquidity
                      ) internal pure returns (int256 amount1) {
                          return
                              liquidity < 0
                                  ? -getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256()
                                  : getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256();
                      }
                  }
                  // SPDX-License-Identifier: BUSL-1.1
                  pragma solidity >=0.5.0;
                  import './FullMath.sol';
                  import './SqrtPriceMath.sol';
                  /// @title Computes the result of a swap within ticks
                  /// @notice Contains methods for computing the result of a swap within a single tick price range, i.e., a single tick.
                  library SwapMath {
                      /// @notice Computes the result of swapping some amount in, or amount out, given the parameters of the swap
                      /// @dev The fee, plus the amount in, will never exceed the amount remaining if the swap's `amountSpecified` is positive
                      /// @param sqrtRatioCurrentX96 The current sqrt price of the pool
                      /// @param sqrtRatioTargetX96 The price that cannot be exceeded, from which the direction of the swap is inferred
                      /// @param liquidity The usable liquidity
                      /// @param amountRemaining How much input or output amount is remaining to be swapped in/out
                      /// @param feePips The fee taken from the input amount, expressed in hundredths of a bip
                      /// @return sqrtRatioNextX96 The price after swapping the amount in/out, not to exceed the price target
                      /// @return amountIn The amount to be swapped in, of either token0 or token1, based on the direction of the swap
                      /// @return amountOut The amount to be received, of either token0 or token1, based on the direction of the swap
                      /// @return feeAmount The amount of input that will be taken as a fee
                      function computeSwapStep(
                          uint160 sqrtRatioCurrentX96,
                          uint160 sqrtRatioTargetX96,
                          uint128 liquidity,
                          int256 amountRemaining,
                          uint24 feePips
                      )
                          internal
                          pure
                          returns (
                              uint160 sqrtRatioNextX96,
                              uint256 amountIn,
                              uint256 amountOut,
                              uint256 feeAmount
                          )
                      {
                          bool zeroForOne = sqrtRatioCurrentX96 >= sqrtRatioTargetX96;
                          bool exactIn = amountRemaining >= 0;
                          if (exactIn) {
                              uint256 amountRemainingLessFee = FullMath.mulDiv(uint256(amountRemaining), 1e6 - feePips, 1e6);
                              amountIn = zeroForOne
                                  ? SqrtPriceMath.getAmount0Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, true)
                                  : SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, true);
                              if (amountRemainingLessFee >= amountIn) sqrtRatioNextX96 = sqrtRatioTargetX96;
                              else
                                  sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromInput(
                                      sqrtRatioCurrentX96,
                                      liquidity,
                                      amountRemainingLessFee,
                                      zeroForOne
                                  );
                          } else {
                              amountOut = zeroForOne
                                  ? SqrtPriceMath.getAmount1Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, false)
                                  : SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, false);
                              if (uint256(-amountRemaining) >= amountOut) sqrtRatioNextX96 = sqrtRatioTargetX96;
                              else
                                  sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromOutput(
                                      sqrtRatioCurrentX96,
                                      liquidity,
                                      uint256(-amountRemaining),
                                      zeroForOne
                                  );
                          }
                          bool max = sqrtRatioTargetX96 == sqrtRatioNextX96;
                          // get the input/output amounts
                          if (zeroForOne) {
                              amountIn = max && exactIn
                                  ? amountIn
                                  : SqrtPriceMath.getAmount0Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, true);
                              amountOut = max && !exactIn
                                  ? amountOut
                                  : SqrtPriceMath.getAmount1Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, false);
                          } else {
                              amountIn = max && exactIn
                                  ? amountIn
                                  : SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, true);
                              amountOut = max && !exactIn
                                  ? amountOut
                                  : SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, false);
                          }
                          // cap the output amount to not exceed the remaining output amount
                          if (!exactIn && amountOut > uint256(-amountRemaining)) {
                              amountOut = uint256(-amountRemaining);
                          }
                          if (exactIn && sqrtRatioNextX96 != sqrtRatioTargetX96) {
                              // we didn't reach the target, so take the remainder of the maximum input as fee
                              feeAmount = uint256(amountRemaining) - amountIn;
                          } else {
                              feeAmount = FullMath.mulDivRoundingUp(amountIn, feePips, 1e6 - feePips);
                          }
                      }
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  /// @title An interface for a contract that is capable of deploying Uniswap V3 Pools
                  /// @notice A contract that constructs a pool must implement this to pass arguments to the pool
                  /// @dev This is used to avoid having constructor arguments in the pool contract, which results in the init code hash
                  /// of the pool being constant allowing the CREATE2 address of the pool to be cheaply computed on-chain
                  interface IUniswapV3PoolDeployer {
                      /// @notice Get the parameters to be used in constructing the pool, set transiently during pool creation.
                      /// @dev Called by the pool constructor to fetch the parameters of the pool
                      /// Returns factory The factory address
                      /// Returns token0 The first token of the pool by address sort order
                      /// Returns token1 The second token of the pool by address sort order
                      /// Returns fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
                      /// Returns tickSpacing The minimum number of ticks between initialized ticks
                      function parameters()
                          external
                          view
                          returns (
                              address factory,
                              address token0,
                              address token1,
                              uint24 fee,
                              int24 tickSpacing
                          );
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  /// @title The interface for the Uniswap V3 Factory
                  /// @notice The Uniswap V3 Factory facilitates creation of Uniswap V3 pools and control over the protocol fees
                  interface IUniswapV3Factory {
                      /// @notice Emitted when the owner of the factory is changed
                      /// @param oldOwner The owner before the owner was changed
                      /// @param newOwner The owner after the owner was changed
                      event OwnerChanged(address indexed oldOwner, address indexed newOwner);
                      /// @notice Emitted when a pool is created
                      /// @param token0 The first token of the pool by address sort order
                      /// @param token1 The second token of the pool by address sort order
                      /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
                      /// @param tickSpacing The minimum number of ticks between initialized ticks
                      /// @param pool The address of the created pool
                      event PoolCreated(
                          address indexed token0,
                          address indexed token1,
                          uint24 indexed fee,
                          int24 tickSpacing,
                          address pool
                      );
                      /// @notice Emitted when a new fee amount is enabled for pool creation via the factory
                      /// @param fee The enabled fee, denominated in hundredths of a bip
                      /// @param tickSpacing The minimum number of ticks between initialized ticks for pools created with the given fee
                      event FeeAmountEnabled(uint24 indexed fee, int24 indexed tickSpacing);
                      /// @notice Returns the current owner of the factory
                      /// @dev Can be changed by the current owner via setOwner
                      /// @return The address of the factory owner
                      function owner() external view returns (address);
                      /// @notice Returns the tick spacing for a given fee amount, if enabled, or 0 if not enabled
                      /// @dev A fee amount can never be removed, so this value should be hard coded or cached in the calling context
                      /// @param fee The enabled fee, denominated in hundredths of a bip. Returns 0 in case of unenabled fee
                      /// @return The tick spacing
                      function feeAmountTickSpacing(uint24 fee) external view returns (int24);
                      /// @notice Returns the pool address for a given pair of tokens and a fee, or address 0 if it does not exist
                      /// @dev tokenA and tokenB may be passed in either token0/token1 or token1/token0 order
                      /// @param tokenA The contract address of either token0 or token1
                      /// @param tokenB The contract address of the other token
                      /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
                      /// @return pool The pool address
                      function getPool(
                          address tokenA,
                          address tokenB,
                          uint24 fee
                      ) external view returns (address pool);
                      /// @notice Creates a pool for the given two tokens and fee
                      /// @param tokenA One of the two tokens in the desired pool
                      /// @param tokenB The other of the two tokens in the desired pool
                      /// @param fee The desired fee for the pool
                      /// @dev tokenA and tokenB may be passed in either order: token0/token1 or token1/token0. tickSpacing is retrieved
                      /// from the fee. The call will revert if the pool already exists, the fee is invalid, or the token arguments
                      /// are invalid.
                      /// @return pool The address of the newly created pool
                      function createPool(
                          address tokenA,
                          address tokenB,
                          uint24 fee
                      ) external returns (address pool);
                      /// @notice Updates the owner of the factory
                      /// @dev Must be called by the current owner
                      /// @param _owner The new owner of the factory
                      function setOwner(address _owner) external;
                      /// @notice Enables a fee amount with the given tickSpacing
                      /// @dev Fee amounts may never be removed once enabled
                      /// @param fee The fee amount to enable, denominated in hundredths of a bip (i.e. 1e-6)
                      /// @param tickSpacing The spacing between ticks to be enforced for all pools created with the given fee amount
                      function enableFeeAmount(uint24 fee, int24 tickSpacing) external;
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  /// @title Minimal ERC20 interface for Uniswap
                  /// @notice Contains a subset of the full ERC20 interface that is used in Uniswap V3
                  interface IERC20Minimal {
                      /// @notice Returns the balance of a token
                      /// @param account The account for which to look up the number of tokens it has, i.e. its balance
                      /// @return The number of tokens held by the account
                      function balanceOf(address account) external view returns (uint256);
                      /// @notice Transfers the amount of token from the `msg.sender` to the recipient
                      /// @param recipient The account that will receive the amount transferred
                      /// @param amount The number of tokens to send from the sender to the recipient
                      /// @return Returns true for a successful transfer, false for an unsuccessful transfer
                      function transfer(address recipient, uint256 amount) external returns (bool);
                      /// @notice Returns the current allowance given to a spender by an owner
                      /// @param owner The account of the token owner
                      /// @param spender The account of the token spender
                      /// @return The current allowance granted by `owner` to `spender`
                      function allowance(address owner, address spender) external view returns (uint256);
                      /// @notice Sets the allowance of a spender from the `msg.sender` to the value `amount`
                      /// @param spender The account which will be allowed to spend a given amount of the owners tokens
                      /// @param amount The amount of tokens allowed to be used by `spender`
                      /// @return Returns true for a successful approval, false for unsuccessful
                      function approve(address spender, uint256 amount) external returns (bool);
                      /// @notice Transfers `amount` tokens from `sender` to `recipient` up to the allowance given to the `msg.sender`
                      /// @param sender The account from which the transfer will be initiated
                      /// @param recipient The recipient of the transfer
                      /// @param amount The amount of the transfer
                      /// @return Returns true for a successful transfer, false for unsuccessful
                      function transferFrom(
                          address sender,
                          address recipient,
                          uint256 amount
                      ) external returns (bool);
                      /// @notice Event emitted when tokens are transferred from one address to another, either via `#transfer` or `#transferFrom`.
                      /// @param from The account from which the tokens were sent, i.e. the balance decreased
                      /// @param to The account to which the tokens were sent, i.e. the balance increased
                      /// @param value The amount of tokens that were transferred
                      event Transfer(address indexed from, address indexed to, uint256 value);
                      /// @notice Event emitted when the approval amount for the spender of a given owner's tokens changes.
                      /// @param owner The account that approved spending of its tokens
                      /// @param spender The account for which the spending allowance was modified
                      /// @param value The new allowance from the owner to the spender
                      event Approval(address indexed owner, address indexed spender, uint256 value);
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  /// @title Callback for IUniswapV3PoolActions#mint
                  /// @notice Any contract that calls IUniswapV3PoolActions#mint must implement this interface
                  interface IUniswapV3MintCallback {
                      /// @notice Called to `msg.sender` after minting liquidity to a position from IUniswapV3Pool#mint.
                      /// @dev In the implementation you must pay the pool tokens owed for the minted liquidity.
                      /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
                      /// @param amount0Owed The amount of token0 due to the pool for the minted liquidity
                      /// @param amount1Owed The amount of token1 due to the pool for the minted liquidity
                      /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#mint call
                      function uniswapV3MintCallback(
                          uint256 amount0Owed,
                          uint256 amount1Owed,
                          bytes calldata data
                      ) external;
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  /// @title Callback for IUniswapV3PoolActions#swap
                  /// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface
                  interface IUniswapV3SwapCallback {
                      /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap.
                      /// @dev In the implementation you must pay the pool tokens owed for the swap.
                      /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
                      /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
                      /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
                      /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
                      /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
                      /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
                      /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call
                      function uniswapV3SwapCallback(
                          int256 amount0Delta,
                          int256 amount1Delta,
                          bytes calldata data
                      ) external;
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  /// @title Callback for IUniswapV3PoolActions#flash
                  /// @notice Any contract that calls IUniswapV3PoolActions#flash must implement this interface
                  interface IUniswapV3FlashCallback {
                      /// @notice Called to `msg.sender` after transferring to the recipient from IUniswapV3Pool#flash.
                      /// @dev In the implementation you must repay the pool the tokens sent by flash plus the computed fee amounts.
                      /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
                      /// @param fee0 The fee amount in token0 due to the pool by the end of the flash
                      /// @param fee1 The fee amount in token1 due to the pool by the end of the flash
                      /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#flash call
                      function uniswapV3FlashCallback(
                          uint256 fee0,
                          uint256 fee1,
                          bytes calldata data
                      ) external;
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  /// @title Pool state that never changes
                  /// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values
                  interface IUniswapV3PoolImmutables {
                      /// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface
                      /// @return The contract address
                      function factory() external view returns (address);
                      /// @notice The first of the two tokens of the pool, sorted by address
                      /// @return The token contract address
                      function token0() external view returns (address);
                      /// @notice The second of the two tokens of the pool, sorted by address
                      /// @return The token contract address
                      function token1() external view returns (address);
                      /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
                      /// @return The fee
                      function fee() external view returns (uint24);
                      /// @notice The pool tick spacing
                      /// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive
                      /// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ...
                      /// This value is an int24 to avoid casting even though it is always positive.
                      /// @return The tick spacing
                      function tickSpacing() external view returns (int24);
                      /// @notice The maximum amount of position liquidity that can use any tick in the range
                      /// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and
                      /// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool
                      /// @return The max amount of liquidity per tick
                      function maxLiquidityPerTick() external view returns (uint128);
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  /// @title Pool state that can change
                  /// @notice These methods compose the pool's state, and can change with any frequency including multiple times
                  /// per transaction
                  interface IUniswapV3PoolState {
                      /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas
                      /// when accessed externally.
                      /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value
                      /// tick The current tick of the pool, i.e. according to the last tick transition that was run.
                      /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick
                      /// boundary.
                      /// observationIndex The index of the last oracle observation that was written,
                      /// observationCardinality The current maximum number of observations stored in the pool,
                      /// observationCardinalityNext The next maximum number of observations, to be updated when the observation.
                      /// feeProtocol The protocol fee for both tokens of the pool.
                      /// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0
                      /// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee.
                      /// unlocked Whether the pool is currently locked to reentrancy
                      function slot0()
                          external
                          view
                          returns (
                              uint160 sqrtPriceX96,
                              int24 tick,
                              uint16 observationIndex,
                              uint16 observationCardinality,
                              uint16 observationCardinalityNext,
                              uint8 feeProtocol,
                              bool unlocked
                          );
                      /// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool
                      /// @dev This value can overflow the uint256
                      function feeGrowthGlobal0X128() external view returns (uint256);
                      /// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool
                      /// @dev This value can overflow the uint256
                      function feeGrowthGlobal1X128() external view returns (uint256);
                      /// @notice The amounts of token0 and token1 that are owed to the protocol
                      /// @dev Protocol fees will never exceed uint128 max in either token
                      function protocolFees() external view returns (uint128 token0, uint128 token1);
                      /// @notice The currently in range liquidity available to the pool
                      /// @dev This value has no relationship to the total liquidity across all ticks
                      function liquidity() external view returns (uint128);
                      /// @notice Look up information about a specific tick in the pool
                      /// @param tick The tick to look up
                      /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or
                      /// tick upper,
                      /// liquidityNet how much liquidity changes when the pool price crosses the tick,
                      /// feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0,
                      /// feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1,
                      /// tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick
                      /// secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick,
                      /// secondsOutside the seconds spent on the other side of the tick from the current tick,
                      /// initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false.
                      /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0.
                      /// In addition, these values are only relative and must be used only in comparison to previous snapshots for
                      /// a specific position.
                      function ticks(int24 tick)
                          external
                          view
                          returns (
                              uint128 liquidityGross,
                              int128 liquidityNet,
                              uint256 feeGrowthOutside0X128,
                              uint256 feeGrowthOutside1X128,
                              int56 tickCumulativeOutside,
                              uint160 secondsPerLiquidityOutsideX128,
                              uint32 secondsOutside,
                              bool initialized
                          );
                      /// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information
                      function tickBitmap(int16 wordPosition) external view returns (uint256);
                      /// @notice Returns the information about a position by the position's key
                      /// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper
                      /// @return _liquidity The amount of liquidity in the position,
                      /// Returns feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke,
                      /// Returns feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke,
                      /// Returns tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke,
                      /// Returns tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke
                      function positions(bytes32 key)
                          external
                          view
                          returns (
                              uint128 _liquidity,
                              uint256 feeGrowthInside0LastX128,
                              uint256 feeGrowthInside1LastX128,
                              uint128 tokensOwed0,
                              uint128 tokensOwed1
                          );
                      /// @notice Returns data about a specific observation index
                      /// @param index The element of the observations array to fetch
                      /// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time
                      /// ago, rather than at a specific index in the array.
                      /// @return blockTimestamp The timestamp of the observation,
                      /// Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp,
                      /// Returns secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp,
                      /// Returns initialized whether the observation has been initialized and the values are safe to use
                      function observations(uint256 index)
                          external
                          view
                          returns (
                              uint32 blockTimestamp,
                              int56 tickCumulative,
                              uint160 secondsPerLiquidityCumulativeX128,
                              bool initialized
                          );
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  /// @title Pool state that is not stored
                  /// @notice Contains view functions to provide information about the pool that is computed rather than stored on the
                  /// blockchain. The functions here may have variable gas costs.
                  interface IUniswapV3PoolDerivedState {
                      /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp
                      /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing
                      /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,
                      /// you must call it with secondsAgos = [3600, 0].
                      /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in
                      /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.
                      /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned
                      /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp
                      /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block
                      /// timestamp
                      function observe(uint32[] calldata secondsAgos)
                          external
                          view
                          returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s);
                      /// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range
                      /// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed.
                      /// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first
                      /// snapshot is taken and the second snapshot is taken.
                      /// @param tickLower The lower tick of the range
                      /// @param tickUpper The upper tick of the range
                      /// @return tickCumulativeInside The snapshot of the tick accumulator for the range
                      /// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range
                      /// @return secondsInside The snapshot of seconds per liquidity for the range
                      function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
                          external
                          view
                          returns (
                              int56 tickCumulativeInside,
                              uint160 secondsPerLiquidityInsideX128,
                              uint32 secondsInside
                          );
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  /// @title Permissionless pool actions
                  /// @notice Contains pool methods that can be called by anyone
                  interface IUniswapV3PoolActions {
                      /// @notice Sets the initial price for the pool
                      /// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value
                      /// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96
                      function initialize(uint160 sqrtPriceX96) external;
                      /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position
                      /// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback
                      /// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends
                      /// on tickLower, tickUpper, the amount of liquidity, and the current price.
                      /// @param recipient The address for which the liquidity will be created
                      /// @param tickLower The lower tick of the position in which to add liquidity
                      /// @param tickUpper The upper tick of the position in which to add liquidity
                      /// @param amount The amount of liquidity to mint
                      /// @param data Any data that should be passed through to the callback
                      /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback
                      /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback
                      function mint(
                          address recipient,
                          int24 tickLower,
                          int24 tickUpper,
                          uint128 amount,
                          bytes calldata data
                      ) external returns (uint256 amount0, uint256 amount1);
                      /// @notice Collects tokens owed to a position
                      /// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity.
                      /// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or
                      /// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the
                      /// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity.
                      /// @param recipient The address which should receive the fees collected
                      /// @param tickLower The lower tick of the position for which to collect fees
                      /// @param tickUpper The upper tick of the position for which to collect fees
                      /// @param amount0Requested How much token0 should be withdrawn from the fees owed
                      /// @param amount1Requested How much token1 should be withdrawn from the fees owed
                      /// @return amount0 The amount of fees collected in token0
                      /// @return amount1 The amount of fees collected in token1
                      function collect(
                          address recipient,
                          int24 tickLower,
                          int24 tickUpper,
                          uint128 amount0Requested,
                          uint128 amount1Requested
                      ) external returns (uint128 amount0, uint128 amount1);
                      /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position
                      /// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0
                      /// @dev Fees must be collected separately via a call to #collect
                      /// @param tickLower The lower tick of the position for which to burn liquidity
                      /// @param tickUpper The upper tick of the position for which to burn liquidity
                      /// @param amount How much liquidity to burn
                      /// @return amount0 The amount of token0 sent to the recipient
                      /// @return amount1 The amount of token1 sent to the recipient
                      function burn(
                          int24 tickLower,
                          int24 tickUpper,
                          uint128 amount
                      ) external returns (uint256 amount0, uint256 amount1);
                      /// @notice Swap token0 for token1, or token1 for token0
                      /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
                      /// @param recipient The address to receive the output of the swap
                      /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
                      /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
                      /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
                      /// value after the swap. If one for zero, the price cannot be greater than this value after the swap
                      /// @param data Any data to be passed through to the callback
                      /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
                      /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
                      function swap(
                          address recipient,
                          bool zeroForOne,
                          int256 amountSpecified,
                          uint160 sqrtPriceLimitX96,
                          bytes calldata data
                      ) external returns (int256 amount0, int256 amount1);
                      /// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
                      /// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback
                      /// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling
                      /// with 0 amount{0,1} and sending the donation amount(s) from the callback
                      /// @param recipient The address which will receive the token0 and token1 amounts
                      /// @param amount0 The amount of token0 to send
                      /// @param amount1 The amount of token1 to send
                      /// @param data Any data to be passed through to the callback
                      function flash(
                          address recipient,
                          uint256 amount0,
                          uint256 amount1,
                          bytes calldata data
                      ) external;
                      /// @notice Increase the maximum number of price and liquidity observations that this pool will store
                      /// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to
                      /// the input observationCardinalityNext.
                      /// @param observationCardinalityNext The desired minimum number of observations for the pool to store
                      function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external;
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  /// @title Permissioned pool actions
                  /// @notice Contains pool methods that may only be called by the factory owner
                  interface IUniswapV3PoolOwnerActions {
                      /// @notice Set the denominator of the protocol's % share of the fees
                      /// @param feeProtocol0 new protocol fee for token0 of the pool
                      /// @param feeProtocol1 new protocol fee for token1 of the pool
                      function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external;
                      /// @notice Collect the protocol fee accrued to the pool
                      /// @param recipient The address to which collected protocol fees should be sent
                      /// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1
                      /// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0
                      /// @return amount0 The protocol fee collected in token0
                      /// @return amount1 The protocol fee collected in token1
                      function collectProtocol(
                          address recipient,
                          uint128 amount0Requested,
                          uint128 amount1Requested
                      ) external returns (uint128 amount0, uint128 amount1);
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  /// @title Events emitted by a pool
                  /// @notice Contains all events emitted by the pool
                  interface IUniswapV3PoolEvents {
                      /// @notice Emitted exactly once by a pool when #initialize is first called on the pool
                      /// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize
                      /// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96
                      /// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool
                      event Initialize(uint160 sqrtPriceX96, int24 tick);
                      /// @notice Emitted when liquidity is minted for a given position
                      /// @param sender The address that minted the liquidity
                      /// @param owner The owner of the position and recipient of any minted liquidity
                      /// @param tickLower The lower tick of the position
                      /// @param tickUpper The upper tick of the position
                      /// @param amount The amount of liquidity minted to the position range
                      /// @param amount0 How much token0 was required for the minted liquidity
                      /// @param amount1 How much token1 was required for the minted liquidity
                      event Mint(
                          address sender,
                          address indexed owner,
                          int24 indexed tickLower,
                          int24 indexed tickUpper,
                          uint128 amount,
                          uint256 amount0,
                          uint256 amount1
                      );
                      /// @notice Emitted when fees are collected by the owner of a position
                      /// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees
                      /// @param owner The owner of the position for which fees are collected
                      /// @param tickLower The lower tick of the position
                      /// @param tickUpper The upper tick of the position
                      /// @param amount0 The amount of token0 fees collected
                      /// @param amount1 The amount of token1 fees collected
                      event Collect(
                          address indexed owner,
                          address recipient,
                          int24 indexed tickLower,
                          int24 indexed tickUpper,
                          uint128 amount0,
                          uint128 amount1
                      );
                      /// @notice Emitted when a position's liquidity is removed
                      /// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect
                      /// @param owner The owner of the position for which liquidity is removed
                      /// @param tickLower The lower tick of the position
                      /// @param tickUpper The upper tick of the position
                      /// @param amount The amount of liquidity to remove
                      /// @param amount0 The amount of token0 withdrawn
                      /// @param amount1 The amount of token1 withdrawn
                      event Burn(
                          address indexed owner,
                          int24 indexed tickLower,
                          int24 indexed tickUpper,
                          uint128 amount,
                          uint256 amount0,
                          uint256 amount1
                      );
                      /// @notice Emitted by the pool for any swaps between token0 and token1
                      /// @param sender The address that initiated the swap call, and that received the callback
                      /// @param recipient The address that received the output of the swap
                      /// @param amount0 The delta of the token0 balance of the pool
                      /// @param amount1 The delta of the token1 balance of the pool
                      /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
                      /// @param liquidity The liquidity of the pool after the swap
                      /// @param tick The log base 1.0001 of price of the pool after the swap
                      event Swap(
                          address indexed sender,
                          address indexed recipient,
                          int256 amount0,
                          int256 amount1,
                          uint160 sqrtPriceX96,
                          uint128 liquidity,
                          int24 tick
                      );
                      /// @notice Emitted by the pool for any flashes of token0/token1
                      /// @param sender The address that initiated the swap call, and that received the callback
                      /// @param recipient The address that received the tokens from flash
                      /// @param amount0 The amount of token0 that was flashed
                      /// @param amount1 The amount of token1 that was flashed
                      /// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee
                      /// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee
                      event Flash(
                          address indexed sender,
                          address indexed recipient,
                          uint256 amount0,
                          uint256 amount1,
                          uint256 paid0,
                          uint256 paid1
                      );
                      /// @notice Emitted by the pool for increases to the number of observations that can be stored
                      /// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index
                      /// just before a mint/swap/burn.
                      /// @param observationCardinalityNextOld The previous value of the next observation cardinality
                      /// @param observationCardinalityNextNew The updated value of the next observation cardinality
                      event IncreaseObservationCardinalityNext(
                          uint16 observationCardinalityNextOld,
                          uint16 observationCardinalityNextNew
                      );
                      /// @notice Emitted when the protocol fee is changed by the pool
                      /// @param feeProtocol0Old The previous value of the token0 protocol fee
                      /// @param feeProtocol1Old The previous value of the token1 protocol fee
                      /// @param feeProtocol0New The updated value of the token0 protocol fee
                      /// @param feeProtocol1New The updated value of the token1 protocol fee
                      event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New);
                      /// @notice Emitted when the collected protocol fees are withdrawn by the factory owner
                      /// @param sender The address that collects the protocol fees
                      /// @param recipient The address that receives the collected protocol fees
                      /// @param amount0 The amount of token0 protocol fees that is withdrawn
                      /// @param amount0 The amount of token1 protocol fees that is withdrawn
                      event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1);
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  /// @title BitMath
                  /// @dev This library provides functionality for computing bit properties of an unsigned integer
                  library BitMath {
                      /// @notice Returns the index of the most significant bit of the number,
                      ///     where the least significant bit is at index 0 and the most significant bit is at index 255
                      /// @dev The function satisfies the property:
                      ///     x >= 2**mostSignificantBit(x) and x < 2**(mostSignificantBit(x)+1)
                      /// @param x the value for which to compute the most significant bit, must be greater than 0
                      /// @return r the index of the most significant bit
                      function mostSignificantBit(uint256 x) internal pure returns (uint8 r) {
                          require(x > 0);
                          if (x >= 0x100000000000000000000000000000000) {
                              x >>= 128;
                              r += 128;
                          }
                          if (x >= 0x10000000000000000) {
                              x >>= 64;
                              r += 64;
                          }
                          if (x >= 0x100000000) {
                              x >>= 32;
                              r += 32;
                          }
                          if (x >= 0x10000) {
                              x >>= 16;
                              r += 16;
                          }
                          if (x >= 0x100) {
                              x >>= 8;
                              r += 8;
                          }
                          if (x >= 0x10) {
                              x >>= 4;
                              r += 4;
                          }
                          if (x >= 0x4) {
                              x >>= 2;
                              r += 2;
                          }
                          if (x >= 0x2) r += 1;
                      }
                      /// @notice Returns the index of the least significant bit of the number,
                      ///     where the least significant bit is at index 0 and the most significant bit is at index 255
                      /// @dev The function satisfies the property:
                      ///     (x & 2**leastSignificantBit(x)) != 0 and (x & (2**(leastSignificantBit(x)) - 1)) == 0)
                      /// @param x the value for which to compute the least significant bit, must be greater than 0
                      /// @return r the index of the least significant bit
                      function leastSignificantBit(uint256 x) internal pure returns (uint8 r) {
                          require(x > 0);
                          r = 255;
                          if (x & type(uint128).max > 0) {
                              r -= 128;
                          } else {
                              x >>= 128;
                          }
                          if (x & type(uint64).max > 0) {
                              r -= 64;
                          } else {
                              x >>= 64;
                          }
                          if (x & type(uint32).max > 0) {
                              r -= 32;
                          } else {
                              x >>= 32;
                          }
                          if (x & type(uint16).max > 0) {
                              r -= 16;
                          } else {
                              x >>= 16;
                          }
                          if (x & type(uint8).max > 0) {
                              r -= 8;
                          } else {
                              x >>= 8;
                          }
                          if (x & 0xf > 0) {
                              r -= 4;
                          } else {
                              x >>= 4;
                          }
                          if (x & 0x3 > 0) {
                              r -= 2;
                          } else {
                              x >>= 2;
                          }
                          if (x & 0x1 > 0) r -= 1;
                      }
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  /// @title Math functions that do not check inputs or outputs
                  /// @notice Contains methods that perform common math functions but do not do any overflow or underflow checks
                  library UnsafeMath {
                      /// @notice Returns ceil(x / y)
                      /// @dev division by 0 has unspecified behavior, and must be checked externally
                      /// @param x The dividend
                      /// @param y The divisor
                      /// @return z The quotient, ceil(x / y)
                      function divRoundingUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
                          assembly {
                              z := add(div(x, y), gt(mod(x, y), 0))
                          }
                      }
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.4.0;
                  /// @title FixedPoint96
                  /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
                  /// @dev Used in SqrtPriceMath.sol
                  library FixedPoint96 {
                      uint8 internal constant RESOLUTION = 96;
                      uint256 internal constant Q96 = 0x1000000000000000000000000;
                  }
                  

                  File 5 of 7: SwapRouter
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity =0.7.6;
                  pragma abicoder v2;
                  import '@uniswap/v3-core/contracts/libraries/SafeCast.sol';
                  import '@uniswap/v3-core/contracts/libraries/TickMath.sol';
                  import '@uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol';
                  import './interfaces/ISwapRouter.sol';
                  import './base/PeripheryImmutableState.sol';
                  import './base/PeripheryValidation.sol';
                  import './base/PeripheryPaymentsWithFee.sol';
                  import './base/Multicall.sol';
                  import './base/SelfPermit.sol';
                  import './libraries/Path.sol';
                  import './libraries/PoolAddress.sol';
                  import './libraries/CallbackValidation.sol';
                  import './interfaces/external/IWETH9.sol';
                  /// @title Uniswap V3 Swap Router
                  /// @notice Router for stateless execution of swaps against Uniswap V3
                  contract SwapRouter is
                      ISwapRouter,
                      PeripheryImmutableState,
                      PeripheryValidation,
                      PeripheryPaymentsWithFee,
                      Multicall,
                      SelfPermit
                  {
                      using Path for bytes;
                      using SafeCast for uint256;
                      /// @dev Used as the placeholder value for amountInCached, because the computed amount in for an exact output swap
                      /// can never actually be this value
                      uint256 private constant DEFAULT_AMOUNT_IN_CACHED = type(uint256).max;
                      /// @dev Transient storage variable used for returning the computed amount in for an exact output swap.
                      uint256 private amountInCached = DEFAULT_AMOUNT_IN_CACHED;
                      constructor(address _factory, address _WETH9) PeripheryImmutableState(_factory, _WETH9) {}
                      /// @dev Returns the pool for the given token pair and fee. The pool contract may or may not exist.
                      function getPool(
                          address tokenA,
                          address tokenB,
                          uint24 fee
                      ) private view returns (IUniswapV3Pool) {
                          return IUniswapV3Pool(PoolAddress.computeAddress(factory, PoolAddress.getPoolKey(tokenA, tokenB, fee)));
                      }
                      struct SwapCallbackData {
                          bytes path;
                          address payer;
                      }
                      /// @inheritdoc IUniswapV3SwapCallback
                      function uniswapV3SwapCallback(
                          int256 amount0Delta,
                          int256 amount1Delta,
                          bytes calldata _data
                      ) external override {
                          require(amount0Delta > 0 || amount1Delta > 0); // swaps entirely within 0-liquidity regions are not supported
                          SwapCallbackData memory data = abi.decode(_data, (SwapCallbackData));
                          (address tokenIn, address tokenOut, uint24 fee) = data.path.decodeFirstPool();
                          CallbackValidation.verifyCallback(factory, tokenIn, tokenOut, fee);
                          (bool isExactInput, uint256 amountToPay) =
                              amount0Delta > 0
                                  ? (tokenIn < tokenOut, uint256(amount0Delta))
                                  : (tokenOut < tokenIn, uint256(amount1Delta));
                          if (isExactInput) {
                              pay(tokenIn, data.payer, msg.sender, amountToPay);
                          } else {
                              // either initiate the next swap or pay
                              if (data.path.hasMultiplePools()) {
                                  data.path = data.path.skipToken();
                                  exactOutputInternal(amountToPay, msg.sender, 0, data);
                              } else {
                                  amountInCached = amountToPay;
                                  tokenIn = tokenOut; // swap in/out because exact output swaps are reversed
                                  pay(tokenIn, data.payer, msg.sender, amountToPay);
                              }
                          }
                      }
                      /// @dev Performs a single exact input swap
                      function exactInputInternal(
                          uint256 amountIn,
                          address recipient,
                          uint160 sqrtPriceLimitX96,
                          SwapCallbackData memory data
                      ) private returns (uint256 amountOut) {
                          // allow swapping to the router address with address 0
                          if (recipient == address(0)) recipient = address(this);
                          (address tokenIn, address tokenOut, uint24 fee) = data.path.decodeFirstPool();
                          bool zeroForOne = tokenIn < tokenOut;
                          (int256 amount0, int256 amount1) =
                              getPool(tokenIn, tokenOut, fee).swap(
                                  recipient,
                                  zeroForOne,
                                  amountIn.toInt256(),
                                  sqrtPriceLimitX96 == 0
                                      ? (zeroForOne ? TickMath.MIN_SQRT_RATIO + 1 : TickMath.MAX_SQRT_RATIO - 1)
                                      : sqrtPriceLimitX96,
                                  abi.encode(data)
                              );
                          return uint256(-(zeroForOne ? amount1 : amount0));
                      }
                      /// @inheritdoc ISwapRouter
                      function exactInputSingle(ExactInputSingleParams calldata params)
                          external
                          payable
                          override
                          checkDeadline(params.deadline)
                          returns (uint256 amountOut)
                      {
                          amountOut = exactInputInternal(
                              params.amountIn,
                              params.recipient,
                              params.sqrtPriceLimitX96,
                              SwapCallbackData({path: abi.encodePacked(params.tokenIn, params.fee, params.tokenOut), payer: msg.sender})
                          );
                          require(amountOut >= params.amountOutMinimum, 'Too little received');
                      }
                      /// @inheritdoc ISwapRouter
                      function exactInput(ExactInputParams memory params)
                          external
                          payable
                          override
                          checkDeadline(params.deadline)
                          returns (uint256 amountOut)
                      {
                          address payer = msg.sender; // msg.sender pays for the first hop
                          while (true) {
                              bool hasMultiplePools = params.path.hasMultiplePools();
                              // the outputs of prior swaps become the inputs to subsequent ones
                              params.amountIn = exactInputInternal(
                                  params.amountIn,
                                  hasMultiplePools ? address(this) : params.recipient, // for intermediate swaps, this contract custodies
                                  0,
                                  SwapCallbackData({
                                      path: params.path.getFirstPool(), // only the first pool in the path is necessary
                                      payer: payer
                                  })
                              );
                              // decide whether to continue or terminate
                              if (hasMultiplePools) {
                                  payer = address(this); // at this point, the caller has paid
                                  params.path = params.path.skipToken();
                              } else {
                                  amountOut = params.amountIn;
                                  break;
                              }
                          }
                          require(amountOut >= params.amountOutMinimum, 'Too little received');
                      }
                      /// @dev Performs a single exact output swap
                      function exactOutputInternal(
                          uint256 amountOut,
                          address recipient,
                          uint160 sqrtPriceLimitX96,
                          SwapCallbackData memory data
                      ) private returns (uint256 amountIn) {
                          // allow swapping to the router address with address 0
                          if (recipient == address(0)) recipient = address(this);
                          (address tokenOut, address tokenIn, uint24 fee) = data.path.decodeFirstPool();
                          bool zeroForOne = tokenIn < tokenOut;
                          (int256 amount0Delta, int256 amount1Delta) =
                              getPool(tokenIn, tokenOut, fee).swap(
                                  recipient,
                                  zeroForOne,
                                  -amountOut.toInt256(),
                                  sqrtPriceLimitX96 == 0
                                      ? (zeroForOne ? TickMath.MIN_SQRT_RATIO + 1 : TickMath.MAX_SQRT_RATIO - 1)
                                      : sqrtPriceLimitX96,
                                  abi.encode(data)
                              );
                          uint256 amountOutReceived;
                          (amountIn, amountOutReceived) = zeroForOne
                              ? (uint256(amount0Delta), uint256(-amount1Delta))
                              : (uint256(amount1Delta), uint256(-amount0Delta));
                          // it's technically possible to not receive the full output amount,
                          // so if no price limit has been specified, require this possibility away
                          if (sqrtPriceLimitX96 == 0) require(amountOutReceived == amountOut);
                      }
                      /// @inheritdoc ISwapRouter
                      function exactOutputSingle(ExactOutputSingleParams calldata params)
                          external
                          payable
                          override
                          checkDeadline(params.deadline)
                          returns (uint256 amountIn)
                      {
                          // avoid an SLOAD by using the swap return data
                          amountIn = exactOutputInternal(
                              params.amountOut,
                              params.recipient,
                              params.sqrtPriceLimitX96,
                              SwapCallbackData({path: abi.encodePacked(params.tokenOut, params.fee, params.tokenIn), payer: msg.sender})
                          );
                          require(amountIn <= params.amountInMaximum, 'Too much requested');
                          // has to be reset even though we don't use it in the single hop case
                          amountInCached = DEFAULT_AMOUNT_IN_CACHED;
                      }
                      /// @inheritdoc ISwapRouter
                      function exactOutput(ExactOutputParams calldata params)
                          external
                          payable
                          override
                          checkDeadline(params.deadline)
                          returns (uint256 amountIn)
                      {
                          // it's okay that the payer is fixed to msg.sender here, as they're only paying for the "final" exact output
                          // swap, which happens first, and subsequent swaps are paid for within nested callback frames
                          exactOutputInternal(
                              params.amountOut,
                              params.recipient,
                              0,
                              SwapCallbackData({path: params.path, payer: msg.sender})
                          );
                          amountIn = amountInCached;
                          require(amountIn <= params.amountInMaximum, 'Too much requested');
                          amountInCached = DEFAULT_AMOUNT_IN_CACHED;
                      }
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  /// @title Safe casting methods
                  /// @notice Contains methods for safely casting between types
                  library SafeCast {
                      /// @notice Cast a uint256 to a uint160, revert on overflow
                      /// @param y The uint256 to be downcasted
                      /// @return z The downcasted integer, now type uint160
                      function toUint160(uint256 y) internal pure returns (uint160 z) {
                          require((z = uint160(y)) == y);
                      }
                      /// @notice Cast a int256 to a int128, revert on overflow or underflow
                      /// @param y The int256 to be downcasted
                      /// @return z The downcasted integer, now type int128
                      function toInt128(int256 y) internal pure returns (int128 z) {
                          require((z = int128(y)) == y);
                      }
                      /// @notice Cast a uint256 to a int256, revert on overflow
                      /// @param y The uint256 to be casted
                      /// @return z The casted integer, now type int256
                      function toInt256(uint256 y) internal pure returns (int256 z) {
                          require(y < 2**255);
                          z = int256(y);
                      }
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  /// @title Math library for computing sqrt prices from ticks and vice versa
                  /// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
                  /// prices between 2**-128 and 2**128
                  library TickMath {
                      /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
                      int24 internal constant MIN_TICK = -887272;
                      /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
                      int24 internal constant MAX_TICK = -MIN_TICK;
                      /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
                      uint160 internal constant MIN_SQRT_RATIO = 4295128739;
                      /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
                      uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;
                      /// @notice Calculates sqrt(1.0001^tick) * 2^96
                      /// @dev Throws if |tick| > max tick
                      /// @param tick The input tick for the above formula
                      /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
                      /// at the given tick
                      function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
                          uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));
                          require(absTick <= uint256(MAX_TICK), 'T');
                          uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000;
                          if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
                          if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
                          if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
                          if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
                          if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
                          if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
                          if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
                          if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
                          if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
                          if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
                          if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
                          if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
                          if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
                          if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
                          if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
                          if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
                          if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
                          if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
                          if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;
                          if (tick > 0) ratio = type(uint256).max / ratio;
                          // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
                          // we then downcast because we know the result always fits within 160 bits due to our tick input constraint
                          // we round up in the division so getTickAtSqrtRatio of the output price is always consistent
                          sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
                      }
                      /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
                      /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
                      /// ever return.
                      /// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
                      /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
                      function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
                          // second inequality must be < because the price can never reach the price at the max tick
                          require(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO, 'R');
                          uint256 ratio = uint256(sqrtPriceX96) << 32;
                          uint256 r = ratio;
                          uint256 msb = 0;
                          assembly {
                              let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
                              msb := or(msb, f)
                              r := shr(f, r)
                          }
                          assembly {
                              let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
                              msb := or(msb, f)
                              r := shr(f, r)
                          }
                          assembly {
                              let f := shl(5, gt(r, 0xFFFFFFFF))
                              msb := or(msb, f)
                              r := shr(f, r)
                          }
                          assembly {
                              let f := shl(4, gt(r, 0xFFFF))
                              msb := or(msb, f)
                              r := shr(f, r)
                          }
                          assembly {
                              let f := shl(3, gt(r, 0xFF))
                              msb := or(msb, f)
                              r := shr(f, r)
                          }
                          assembly {
                              let f := shl(2, gt(r, 0xF))
                              msb := or(msb, f)
                              r := shr(f, r)
                          }
                          assembly {
                              let f := shl(1, gt(r, 0x3))
                              msb := or(msb, f)
                              r := shr(f, r)
                          }
                          assembly {
                              let f := gt(r, 0x1)
                              msb := or(msb, f)
                          }
                          if (msb >= 128) r = ratio >> (msb - 127);
                          else r = ratio << (127 - msb);
                          int256 log_2 = (int256(msb) - 128) << 64;
                          assembly {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(63, f))
                              r := shr(f, r)
                          }
                          assembly {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(62, f))
                              r := shr(f, r)
                          }
                          assembly {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(61, f))
                              r := shr(f, r)
                          }
                          assembly {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(60, f))
                              r := shr(f, r)
                          }
                          assembly {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(59, f))
                              r := shr(f, r)
                          }
                          assembly {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(58, f))
                              r := shr(f, r)
                          }
                          assembly {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(57, f))
                              r := shr(f, r)
                          }
                          assembly {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(56, f))
                              r := shr(f, r)
                          }
                          assembly {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(55, f))
                              r := shr(f, r)
                          }
                          assembly {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(54, f))
                              r := shr(f, r)
                          }
                          assembly {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(53, f))
                              r := shr(f, r)
                          }
                          assembly {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(52, f))
                              r := shr(f, r)
                          }
                          assembly {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(51, f))
                              r := shr(f, r)
                          }
                          assembly {
                              r := shr(127, mul(r, r))
                              let f := shr(128, r)
                              log_2 := or(log_2, shl(50, f))
                          }
                          int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number
                          int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
                          int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);
                          tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
                      }
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  import './pool/IUniswapV3PoolImmutables.sol';
                  import './pool/IUniswapV3PoolState.sol';
                  import './pool/IUniswapV3PoolDerivedState.sol';
                  import './pool/IUniswapV3PoolActions.sol';
                  import './pool/IUniswapV3PoolOwnerActions.sol';
                  import './pool/IUniswapV3PoolEvents.sol';
                  /// @title The interface for a Uniswap V3 Pool
                  /// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform
                  /// to the ERC20 specification
                  /// @dev The pool interface is broken up into many smaller pieces
                  interface IUniswapV3Pool is
                      IUniswapV3PoolImmutables,
                      IUniswapV3PoolState,
                      IUniswapV3PoolDerivedState,
                      IUniswapV3PoolActions,
                      IUniswapV3PoolOwnerActions,
                      IUniswapV3PoolEvents
                  {
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.7.5;
                  pragma abicoder v2;
                  import '@uniswap/v3-core/contracts/interfaces/callback/IUniswapV3SwapCallback.sol';
                  /// @title Router token swapping functionality
                  /// @notice Functions for swapping tokens via Uniswap V3
                  interface ISwapRouter is IUniswapV3SwapCallback {
                      struct ExactInputSingleParams {
                          address tokenIn;
                          address tokenOut;
                          uint24 fee;
                          address recipient;
                          uint256 deadline;
                          uint256 amountIn;
                          uint256 amountOutMinimum;
                          uint160 sqrtPriceLimitX96;
                      }
                      /// @notice Swaps `amountIn` of one token for as much as possible of another token
                      /// @param params The parameters necessary for the swap, encoded as `ExactInputSingleParams` in calldata
                      /// @return amountOut The amount of the received token
                      function exactInputSingle(ExactInputSingleParams calldata params) external payable returns (uint256 amountOut);
                      struct ExactInputParams {
                          bytes path;
                          address recipient;
                          uint256 deadline;
                          uint256 amountIn;
                          uint256 amountOutMinimum;
                      }
                      /// @notice Swaps `amountIn` of one token for as much as possible of another along the specified path
                      /// @param params The parameters necessary for the multi-hop swap, encoded as `ExactInputParams` in calldata
                      /// @return amountOut The amount of the received token
                      function exactInput(ExactInputParams calldata params) external payable returns (uint256 amountOut);
                      struct ExactOutputSingleParams {
                          address tokenIn;
                          address tokenOut;
                          uint24 fee;
                          address recipient;
                          uint256 deadline;
                          uint256 amountOut;
                          uint256 amountInMaximum;
                          uint160 sqrtPriceLimitX96;
                      }
                      /// @notice Swaps as little as possible of one token for `amountOut` of another token
                      /// @param params The parameters necessary for the swap, encoded as `ExactOutputSingleParams` in calldata
                      /// @return amountIn The amount of the input token
                      function exactOutputSingle(ExactOutputSingleParams calldata params) external payable returns (uint256 amountIn);
                      struct ExactOutputParams {
                          bytes path;
                          address recipient;
                          uint256 deadline;
                          uint256 amountOut;
                          uint256 amountInMaximum;
                      }
                      /// @notice Swaps as little as possible of one token for `amountOut` of another along the specified path (reversed)
                      /// @param params The parameters necessary for the multi-hop swap, encoded as `ExactOutputParams` in calldata
                      /// @return amountIn The amount of the input token
                      function exactOutput(ExactOutputParams calldata params) external payable returns (uint256 amountIn);
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity =0.7.6;
                  import '../interfaces/IPeripheryImmutableState.sol';
                  /// @title Immutable state
                  /// @notice Immutable state used by periphery contracts
                  abstract contract PeripheryImmutableState is IPeripheryImmutableState {
                      /// @inheritdoc IPeripheryImmutableState
                      address public immutable override factory;
                      /// @inheritdoc IPeripheryImmutableState
                      address public immutable override WETH9;
                      constructor(address _factory, address _WETH9) {
                          factory = _factory;
                          WETH9 = _WETH9;
                      }
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity =0.7.6;
                  import './BlockTimestamp.sol';
                  abstract contract PeripheryValidation is BlockTimestamp {
                      modifier checkDeadline(uint256 deadline) {
                          require(_blockTimestamp() <= deadline, 'Transaction too old');
                          _;
                      }
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.7.5;
                  import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
                  import '@uniswap/v3-core/contracts/libraries/LowGasSafeMath.sol';
                  import './PeripheryPayments.sol';
                  import '../interfaces/IPeripheryPaymentsWithFee.sol';
                  import '../interfaces/external/IWETH9.sol';
                  import '../libraries/TransferHelper.sol';
                  abstract contract PeripheryPaymentsWithFee is PeripheryPayments, IPeripheryPaymentsWithFee {
                      using LowGasSafeMath for uint256;
                      /// @inheritdoc IPeripheryPaymentsWithFee
                      function unwrapWETH9WithFee(
                          uint256 amountMinimum,
                          address recipient,
                          uint256 feeBips,
                          address feeRecipient
                      ) public payable override {
                          require(feeBips > 0 && feeBips <= 100);
                          uint256 balanceWETH9 = IWETH9(WETH9).balanceOf(address(this));
                          require(balanceWETH9 >= amountMinimum, 'Insufficient WETH9');
                          if (balanceWETH9 > 0) {
                              IWETH9(WETH9).withdraw(balanceWETH9);
                              uint256 feeAmount = balanceWETH9.mul(feeBips) / 10_000;
                              if (feeAmount > 0) TransferHelper.safeTransferETH(feeRecipient, feeAmount);
                              TransferHelper.safeTransferETH(recipient, balanceWETH9 - feeAmount);
                          }
                      }
                      /// @inheritdoc IPeripheryPaymentsWithFee
                      function sweepTokenWithFee(
                          address token,
                          uint256 amountMinimum,
                          address recipient,
                          uint256 feeBips,
                          address feeRecipient
                      ) public payable override {
                          require(feeBips > 0 && feeBips <= 100);
                          uint256 balanceToken = IERC20(token).balanceOf(address(this));
                          require(balanceToken >= amountMinimum, 'Insufficient token');
                          if (balanceToken > 0) {
                              uint256 feeAmount = balanceToken.mul(feeBips) / 10_000;
                              if (feeAmount > 0) TransferHelper.safeTransfer(token, feeRecipient, feeAmount);
                              TransferHelper.safeTransfer(token, recipient, balanceToken - feeAmount);
                          }
                      }
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity =0.7.6;
                  pragma abicoder v2;
                  import '../interfaces/IMulticall.sol';
                  /// @title Multicall
                  /// @notice Enables calling multiple methods in a single call to the contract
                  abstract contract Multicall is IMulticall {
                      /// @inheritdoc IMulticall
                      function multicall(bytes[] calldata data) external payable override returns (bytes[] memory results) {
                          results = new bytes[](data.length);
                          for (uint256 i = 0; i < data.length; i++) {
                              (bool success, bytes memory result) = address(this).delegatecall(data[i]);
                              if (!success) {
                                  // Next 5 lines from https://ethereum.stackexchange.com/a/83577
                                  if (result.length < 68) revert();
                                  assembly {
                                      result := add(result, 0x04)
                                  }
                                  revert(abi.decode(result, (string)));
                              }
                              results[i] = result;
                          }
                      }
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
                  import '@openzeppelin/contracts/drafts/IERC20Permit.sol';
                  import '../interfaces/ISelfPermit.sol';
                  import '../interfaces/external/IERC20PermitAllowed.sol';
                  /// @title Self Permit
                  /// @notice Functionality to call permit on any EIP-2612-compliant token for use in the route
                  /// @dev These functions are expected to be embedded in multicalls to allow EOAs to approve a contract and call a function
                  /// that requires an approval in a single transaction.
                  abstract contract SelfPermit is ISelfPermit {
                      /// @inheritdoc ISelfPermit
                      function selfPermit(
                          address token,
                          uint256 value,
                          uint256 deadline,
                          uint8 v,
                          bytes32 r,
                          bytes32 s
                      ) public payable override {
                          IERC20Permit(token).permit(msg.sender, address(this), value, deadline, v, r, s);
                      }
                      /// @inheritdoc ISelfPermit
                      function selfPermitIfNecessary(
                          address token,
                          uint256 value,
                          uint256 deadline,
                          uint8 v,
                          bytes32 r,
                          bytes32 s
                      ) external payable override {
                          if (IERC20(token).allowance(msg.sender, address(this)) < value) selfPermit(token, value, deadline, v, r, s);
                      }
                      /// @inheritdoc ISelfPermit
                      function selfPermitAllowed(
                          address token,
                          uint256 nonce,
                          uint256 expiry,
                          uint8 v,
                          bytes32 r,
                          bytes32 s
                      ) public payable override {
                          IERC20PermitAllowed(token).permit(msg.sender, address(this), nonce, expiry, true, v, r, s);
                      }
                      /// @inheritdoc ISelfPermit
                      function selfPermitAllowedIfNecessary(
                          address token,
                          uint256 nonce,
                          uint256 expiry,
                          uint8 v,
                          bytes32 r,
                          bytes32 s
                      ) external payable override {
                          if (IERC20(token).allowance(msg.sender, address(this)) < type(uint256).max)
                              selfPermitAllowed(token, nonce, expiry, v, r, s);
                      }
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.6.0;
                  import './BytesLib.sol';
                  /// @title Functions for manipulating path data for multihop swaps
                  library Path {
                      using BytesLib for bytes;
                      /// @dev The length of the bytes encoded address
                      uint256 private constant ADDR_SIZE = 20;
                      /// @dev The length of the bytes encoded fee
                      uint256 private constant FEE_SIZE = 3;
                      /// @dev The offset of a single token address and pool fee
                      uint256 private constant NEXT_OFFSET = ADDR_SIZE + FEE_SIZE;
                      /// @dev The offset of an encoded pool key
                      uint256 private constant POP_OFFSET = NEXT_OFFSET + ADDR_SIZE;
                      /// @dev The minimum length of an encoding that contains 2 or more pools
                      uint256 private constant MULTIPLE_POOLS_MIN_LENGTH = POP_OFFSET + NEXT_OFFSET;
                      /// @notice Returns true iff the path contains two or more pools
                      /// @param path The encoded swap path
                      /// @return True if path contains two or more pools, otherwise false
                      function hasMultiplePools(bytes memory path) internal pure returns (bool) {
                          return path.length >= MULTIPLE_POOLS_MIN_LENGTH;
                      }
                      /// @notice Decodes the first pool in path
                      /// @param path The bytes encoded swap path
                      /// @return tokenA The first token of the given pool
                      /// @return tokenB The second token of the given pool
                      /// @return fee The fee level of the pool
                      function decodeFirstPool(bytes memory path)
                          internal
                          pure
                          returns (
                              address tokenA,
                              address tokenB,
                              uint24 fee
                          )
                      {
                          tokenA = path.toAddress(0);
                          fee = path.toUint24(ADDR_SIZE);
                          tokenB = path.toAddress(NEXT_OFFSET);
                      }
                      /// @notice Gets the segment corresponding to the first pool in the path
                      /// @param path The bytes encoded swap path
                      /// @return The segment containing all data necessary to target the first pool in the path
                      function getFirstPool(bytes memory path) internal pure returns (bytes memory) {
                          return path.slice(0, POP_OFFSET);
                      }
                      /// @notice Skips a token + fee element from the buffer and returns the remainder
                      /// @param path The swap path
                      /// @return The remaining token + fee elements in the path
                      function skipToken(bytes memory path) internal pure returns (bytes memory) {
                          return path.slice(NEXT_OFFSET, path.length - NEXT_OFFSET);
                      }
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  /// @title Provides functions for deriving a pool address from the factory, tokens, and the fee
                  library PoolAddress {
                      bytes32 internal constant POOL_INIT_CODE_HASH = 0xe34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b54;
                      /// @notice The identifying key of the pool
                      struct PoolKey {
                          address token0;
                          address token1;
                          uint24 fee;
                      }
                      /// @notice Returns PoolKey: the ordered tokens with the matched fee levels
                      /// @param tokenA The first token of a pool, unsorted
                      /// @param tokenB The second token of a pool, unsorted
                      /// @param fee The fee level of the pool
                      /// @return Poolkey The pool details with ordered token0 and token1 assignments
                      function getPoolKey(
                          address tokenA,
                          address tokenB,
                          uint24 fee
                      ) internal pure returns (PoolKey memory) {
                          if (tokenA > tokenB) (tokenA, tokenB) = (tokenB, tokenA);
                          return PoolKey({token0: tokenA, token1: tokenB, fee: fee});
                      }
                      /// @notice Deterministically computes the pool address given the factory and PoolKey
                      /// @param factory The Uniswap V3 factory contract address
                      /// @param key The PoolKey
                      /// @return pool The contract address of the V3 pool
                      function computeAddress(address factory, PoolKey memory key) internal pure returns (address pool) {
                          require(key.token0 < key.token1);
                          pool = address(
                              uint256(
                                  keccak256(
                                      abi.encodePacked(
                                          hex'ff',
                                          factory,
                                          keccak256(abi.encode(key.token0, key.token1, key.fee)),
                                          POOL_INIT_CODE_HASH
                                      )
                                  )
                              )
                          );
                      }
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity =0.7.6;
                  import '@uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol';
                  import './PoolAddress.sol';
                  /// @notice Provides validation for callbacks from Uniswap V3 Pools
                  library CallbackValidation {
                      /// @notice Returns the address of a valid Uniswap V3 Pool
                      /// @param factory The contract address of the Uniswap V3 factory
                      /// @param tokenA The contract address of either token0 or token1
                      /// @param tokenB The contract address of the other token
                      /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
                      /// @return pool The V3 pool contract address
                      function verifyCallback(
                          address factory,
                          address tokenA,
                          address tokenB,
                          uint24 fee
                      ) internal view returns (IUniswapV3Pool pool) {
                          return verifyCallback(factory, PoolAddress.getPoolKey(tokenA, tokenB, fee));
                      }
                      /// @notice Returns the address of a valid Uniswap V3 Pool
                      /// @param factory The contract address of the Uniswap V3 factory
                      /// @param poolKey The identifying key of the V3 pool
                      /// @return pool The V3 pool contract address
                      function verifyCallback(address factory, PoolAddress.PoolKey memory poolKey)
                          internal
                          view
                          returns (IUniswapV3Pool pool)
                      {
                          pool = IUniswapV3Pool(PoolAddress.computeAddress(factory, poolKey));
                          require(msg.sender == address(pool));
                      }
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity =0.7.6;
                  import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
                  /// @title Interface for WETH9
                  interface IWETH9 is IERC20 {
                      /// @notice Deposit ether to get wrapped ether
                      function deposit() external payable;
                      /// @notice Withdraw wrapped ether to get ether
                      function withdraw(uint256) external;
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  /// @title Pool state that never changes
                  /// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values
                  interface IUniswapV3PoolImmutables {
                      /// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface
                      /// @return The contract address
                      function factory() external view returns (address);
                      /// @notice The first of the two tokens of the pool, sorted by address
                      /// @return The token contract address
                      function token0() external view returns (address);
                      /// @notice The second of the two tokens of the pool, sorted by address
                      /// @return The token contract address
                      function token1() external view returns (address);
                      /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
                      /// @return The fee
                      function fee() external view returns (uint24);
                      /// @notice The pool tick spacing
                      /// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive
                      /// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ...
                      /// This value is an int24 to avoid casting even though it is always positive.
                      /// @return The tick spacing
                      function tickSpacing() external view returns (int24);
                      /// @notice The maximum amount of position liquidity that can use any tick in the range
                      /// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and
                      /// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool
                      /// @return The max amount of liquidity per tick
                      function maxLiquidityPerTick() external view returns (uint128);
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  /// @title Pool state that can change
                  /// @notice These methods compose the pool's state, and can change with any frequency including multiple times
                  /// per transaction
                  interface IUniswapV3PoolState {
                      /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas
                      /// when accessed externally.
                      /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value
                      /// tick The current tick of the pool, i.e. according to the last tick transition that was run.
                      /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick
                      /// boundary.
                      /// observationIndex The index of the last oracle observation that was written,
                      /// observationCardinality The current maximum number of observations stored in the pool,
                      /// observationCardinalityNext The next maximum number of observations, to be updated when the observation.
                      /// feeProtocol The protocol fee for both tokens of the pool.
                      /// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0
                      /// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee.
                      /// unlocked Whether the pool is currently locked to reentrancy
                      function slot0()
                          external
                          view
                          returns (
                              uint160 sqrtPriceX96,
                              int24 tick,
                              uint16 observationIndex,
                              uint16 observationCardinality,
                              uint16 observationCardinalityNext,
                              uint8 feeProtocol,
                              bool unlocked
                          );
                      /// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool
                      /// @dev This value can overflow the uint256
                      function feeGrowthGlobal0X128() external view returns (uint256);
                      /// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool
                      /// @dev This value can overflow the uint256
                      function feeGrowthGlobal1X128() external view returns (uint256);
                      /// @notice The amounts of token0 and token1 that are owed to the protocol
                      /// @dev Protocol fees will never exceed uint128 max in either token
                      function protocolFees() external view returns (uint128 token0, uint128 token1);
                      /// @notice The currently in range liquidity available to the pool
                      /// @dev This value has no relationship to the total liquidity across all ticks
                      function liquidity() external view returns (uint128);
                      /// @notice Look up information about a specific tick in the pool
                      /// @param tick The tick to look up
                      /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or
                      /// tick upper,
                      /// liquidityNet how much liquidity changes when the pool price crosses the tick,
                      /// feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0,
                      /// feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1,
                      /// tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick
                      /// secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick,
                      /// secondsOutside the seconds spent on the other side of the tick from the current tick,
                      /// initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false.
                      /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0.
                      /// In addition, these values are only relative and must be used only in comparison to previous snapshots for
                      /// a specific position.
                      function ticks(int24 tick)
                          external
                          view
                          returns (
                              uint128 liquidityGross,
                              int128 liquidityNet,
                              uint256 feeGrowthOutside0X128,
                              uint256 feeGrowthOutside1X128,
                              int56 tickCumulativeOutside,
                              uint160 secondsPerLiquidityOutsideX128,
                              uint32 secondsOutside,
                              bool initialized
                          );
                      /// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information
                      function tickBitmap(int16 wordPosition) external view returns (uint256);
                      /// @notice Returns the information about a position by the position's key
                      /// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper
                      /// @return _liquidity The amount of liquidity in the position,
                      /// Returns feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke,
                      /// Returns feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke,
                      /// Returns tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke,
                      /// Returns tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke
                      function positions(bytes32 key)
                          external
                          view
                          returns (
                              uint128 _liquidity,
                              uint256 feeGrowthInside0LastX128,
                              uint256 feeGrowthInside1LastX128,
                              uint128 tokensOwed0,
                              uint128 tokensOwed1
                          );
                      /// @notice Returns data about a specific observation index
                      /// @param index The element of the observations array to fetch
                      /// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time
                      /// ago, rather than at a specific index in the array.
                      /// @return blockTimestamp The timestamp of the observation,
                      /// Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp,
                      /// Returns secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp,
                      /// Returns initialized whether the observation has been initialized and the values are safe to use
                      function observations(uint256 index)
                          external
                          view
                          returns (
                              uint32 blockTimestamp,
                              int56 tickCumulative,
                              uint160 secondsPerLiquidityCumulativeX128,
                              bool initialized
                          );
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  /// @title Pool state that is not stored
                  /// @notice Contains view functions to provide information about the pool that is computed rather than stored on the
                  /// blockchain. The functions here may have variable gas costs.
                  interface IUniswapV3PoolDerivedState {
                      /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp
                      /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing
                      /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,
                      /// you must call it with secondsAgos = [3600, 0].
                      /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in
                      /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.
                      /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned
                      /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp
                      /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block
                      /// timestamp
                      function observe(uint32[] calldata secondsAgos)
                          external
                          view
                          returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s);
                      /// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range
                      /// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed.
                      /// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first
                      /// snapshot is taken and the second snapshot is taken.
                      /// @param tickLower The lower tick of the range
                      /// @param tickUpper The upper tick of the range
                      /// @return tickCumulativeInside The snapshot of the tick accumulator for the range
                      /// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range
                      /// @return secondsInside The snapshot of seconds per liquidity for the range
                      function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
                          external
                          view
                          returns (
                              int56 tickCumulativeInside,
                              uint160 secondsPerLiquidityInsideX128,
                              uint32 secondsInside
                          );
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  /// @title Permissionless pool actions
                  /// @notice Contains pool methods that can be called by anyone
                  interface IUniswapV3PoolActions {
                      /// @notice Sets the initial price for the pool
                      /// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value
                      /// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96
                      function initialize(uint160 sqrtPriceX96) external;
                      /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position
                      /// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback
                      /// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends
                      /// on tickLower, tickUpper, the amount of liquidity, and the current price.
                      /// @param recipient The address for which the liquidity will be created
                      /// @param tickLower The lower tick of the position in which to add liquidity
                      /// @param tickUpper The upper tick of the position in which to add liquidity
                      /// @param amount The amount of liquidity to mint
                      /// @param data Any data that should be passed through to the callback
                      /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback
                      /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback
                      function mint(
                          address recipient,
                          int24 tickLower,
                          int24 tickUpper,
                          uint128 amount,
                          bytes calldata data
                      ) external returns (uint256 amount0, uint256 amount1);
                      /// @notice Collects tokens owed to a position
                      /// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity.
                      /// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or
                      /// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the
                      /// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity.
                      /// @param recipient The address which should receive the fees collected
                      /// @param tickLower The lower tick of the position for which to collect fees
                      /// @param tickUpper The upper tick of the position for which to collect fees
                      /// @param amount0Requested How much token0 should be withdrawn from the fees owed
                      /// @param amount1Requested How much token1 should be withdrawn from the fees owed
                      /// @return amount0 The amount of fees collected in token0
                      /// @return amount1 The amount of fees collected in token1
                      function collect(
                          address recipient,
                          int24 tickLower,
                          int24 tickUpper,
                          uint128 amount0Requested,
                          uint128 amount1Requested
                      ) external returns (uint128 amount0, uint128 amount1);
                      /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position
                      /// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0
                      /// @dev Fees must be collected separately via a call to #collect
                      /// @param tickLower The lower tick of the position for which to burn liquidity
                      /// @param tickUpper The upper tick of the position for which to burn liquidity
                      /// @param amount How much liquidity to burn
                      /// @return amount0 The amount of token0 sent to the recipient
                      /// @return amount1 The amount of token1 sent to the recipient
                      function burn(
                          int24 tickLower,
                          int24 tickUpper,
                          uint128 amount
                      ) external returns (uint256 amount0, uint256 amount1);
                      /// @notice Swap token0 for token1, or token1 for token0
                      /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
                      /// @param recipient The address to receive the output of the swap
                      /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
                      /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
                      /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
                      /// value after the swap. If one for zero, the price cannot be greater than this value after the swap
                      /// @param data Any data to be passed through to the callback
                      /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
                      /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
                      function swap(
                          address recipient,
                          bool zeroForOne,
                          int256 amountSpecified,
                          uint160 sqrtPriceLimitX96,
                          bytes calldata data
                      ) external returns (int256 amount0, int256 amount1);
                      /// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
                      /// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback
                      /// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling
                      /// with 0 amount{0,1} and sending the donation amount(s) from the callback
                      /// @param recipient The address which will receive the token0 and token1 amounts
                      /// @param amount0 The amount of token0 to send
                      /// @param amount1 The amount of token1 to send
                      /// @param data Any data to be passed through to the callback
                      function flash(
                          address recipient,
                          uint256 amount0,
                          uint256 amount1,
                          bytes calldata data
                      ) external;
                      /// @notice Increase the maximum number of price and liquidity observations that this pool will store
                      /// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to
                      /// the input observationCardinalityNext.
                      /// @param observationCardinalityNext The desired minimum number of observations for the pool to store
                      function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external;
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  /// @title Permissioned pool actions
                  /// @notice Contains pool methods that may only be called by the factory owner
                  interface IUniswapV3PoolOwnerActions {
                      /// @notice Set the denominator of the protocol's % share of the fees
                      /// @param feeProtocol0 new protocol fee for token0 of the pool
                      /// @param feeProtocol1 new protocol fee for token1 of the pool
                      function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external;
                      /// @notice Collect the protocol fee accrued to the pool
                      /// @param recipient The address to which collected protocol fees should be sent
                      /// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1
                      /// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0
                      /// @return amount0 The protocol fee collected in token0
                      /// @return amount1 The protocol fee collected in token1
                      function collectProtocol(
                          address recipient,
                          uint128 amount0Requested,
                          uint128 amount1Requested
                      ) external returns (uint128 amount0, uint128 amount1);
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  /// @title Events emitted by a pool
                  /// @notice Contains all events emitted by the pool
                  interface IUniswapV3PoolEvents {
                      /// @notice Emitted exactly once by a pool when #initialize is first called on the pool
                      /// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize
                      /// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96
                      /// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool
                      event Initialize(uint160 sqrtPriceX96, int24 tick);
                      /// @notice Emitted when liquidity is minted for a given position
                      /// @param sender The address that minted the liquidity
                      /// @param owner The owner of the position and recipient of any minted liquidity
                      /// @param tickLower The lower tick of the position
                      /// @param tickUpper The upper tick of the position
                      /// @param amount The amount of liquidity minted to the position range
                      /// @param amount0 How much token0 was required for the minted liquidity
                      /// @param amount1 How much token1 was required for the minted liquidity
                      event Mint(
                          address sender,
                          address indexed owner,
                          int24 indexed tickLower,
                          int24 indexed tickUpper,
                          uint128 amount,
                          uint256 amount0,
                          uint256 amount1
                      );
                      /// @notice Emitted when fees are collected by the owner of a position
                      /// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees
                      /// @param owner The owner of the position for which fees are collected
                      /// @param tickLower The lower tick of the position
                      /// @param tickUpper The upper tick of the position
                      /// @param amount0 The amount of token0 fees collected
                      /// @param amount1 The amount of token1 fees collected
                      event Collect(
                          address indexed owner,
                          address recipient,
                          int24 indexed tickLower,
                          int24 indexed tickUpper,
                          uint128 amount0,
                          uint128 amount1
                      );
                      /// @notice Emitted when a position's liquidity is removed
                      /// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect
                      /// @param owner The owner of the position for which liquidity is removed
                      /// @param tickLower The lower tick of the position
                      /// @param tickUpper The upper tick of the position
                      /// @param amount The amount of liquidity to remove
                      /// @param amount0 The amount of token0 withdrawn
                      /// @param amount1 The amount of token1 withdrawn
                      event Burn(
                          address indexed owner,
                          int24 indexed tickLower,
                          int24 indexed tickUpper,
                          uint128 amount,
                          uint256 amount0,
                          uint256 amount1
                      );
                      /// @notice Emitted by the pool for any swaps between token0 and token1
                      /// @param sender The address that initiated the swap call, and that received the callback
                      /// @param recipient The address that received the output of the swap
                      /// @param amount0 The delta of the token0 balance of the pool
                      /// @param amount1 The delta of the token1 balance of the pool
                      /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
                      /// @param liquidity The liquidity of the pool after the swap
                      /// @param tick The log base 1.0001 of price of the pool after the swap
                      event Swap(
                          address indexed sender,
                          address indexed recipient,
                          int256 amount0,
                          int256 amount1,
                          uint160 sqrtPriceX96,
                          uint128 liquidity,
                          int24 tick
                      );
                      /// @notice Emitted by the pool for any flashes of token0/token1
                      /// @param sender The address that initiated the swap call, and that received the callback
                      /// @param recipient The address that received the tokens from flash
                      /// @param amount0 The amount of token0 that was flashed
                      /// @param amount1 The amount of token1 that was flashed
                      /// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee
                      /// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee
                      event Flash(
                          address indexed sender,
                          address indexed recipient,
                          uint256 amount0,
                          uint256 amount1,
                          uint256 paid0,
                          uint256 paid1
                      );
                      /// @notice Emitted by the pool for increases to the number of observations that can be stored
                      /// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index
                      /// just before a mint/swap/burn.
                      /// @param observationCardinalityNextOld The previous value of the next observation cardinality
                      /// @param observationCardinalityNextNew The updated value of the next observation cardinality
                      event IncreaseObservationCardinalityNext(
                          uint16 observationCardinalityNextOld,
                          uint16 observationCardinalityNextNew
                      );
                      /// @notice Emitted when the protocol fee is changed by the pool
                      /// @param feeProtocol0Old The previous value of the token0 protocol fee
                      /// @param feeProtocol1Old The previous value of the token1 protocol fee
                      /// @param feeProtocol0New The updated value of the token0 protocol fee
                      /// @param feeProtocol1New The updated value of the token1 protocol fee
                      event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New);
                      /// @notice Emitted when the collected protocol fees are withdrawn by the factory owner
                      /// @param sender The address that collects the protocol fees
                      /// @param recipient The address that receives the collected protocol fees
                      /// @param amount0 The amount of token0 protocol fees that is withdrawn
                      /// @param amount0 The amount of token1 protocol fees that is withdrawn
                      event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1);
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  /// @title Callback for IUniswapV3PoolActions#swap
                  /// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface
                  interface IUniswapV3SwapCallback {
                      /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap.
                      /// @dev In the implementation you must pay the pool tokens owed for the swap.
                      /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
                      /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
                      /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
                      /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
                      /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
                      /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
                      /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call
                      function uniswapV3SwapCallback(
                          int256 amount0Delta,
                          int256 amount1Delta,
                          bytes calldata data
                      ) external;
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  /// @title Immutable state
                  /// @notice Functions that return immutable state of the router
                  interface IPeripheryImmutableState {
                      /// @return Returns the address of the Uniswap V3 factory
                      function factory() external view returns (address);
                      /// @return Returns the address of WETH9
                      function WETH9() external view returns (address);
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity =0.7.6;
                  /// @title Function for getting block timestamp
                  /// @dev Base contract that is overridden for tests
                  abstract contract BlockTimestamp {
                      /// @dev Method that exists purely to be overridden for tests
                      /// @return The current block timestamp
                      function _blockTimestamp() internal view virtual returns (uint256) {
                          return block.timestamp;
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity ^0.7.0;
                  /**
                   * @dev Interface of the ERC20 standard as defined in the EIP.
                   */
                  interface IERC20 {
                      /**
                       * @dev Returns the amount of tokens in existence.
                       */
                      function totalSupply() external view returns (uint256);
                      /**
                       * @dev Returns the amount of tokens owned by `account`.
                       */
                      function balanceOf(address account) external view returns (uint256);
                      /**
                       * @dev Moves `amount` tokens from the caller's account to `recipient`.
                       *
                       * Returns a boolean value indicating whether the operation succeeded.
                       *
                       * Emits a {Transfer} event.
                       */
                      function transfer(address recipient, uint256 amount) external returns (bool);
                      /**
                       * @dev Returns the remaining number of tokens that `spender` will be
                       * allowed to spend on behalf of `owner` through {transferFrom}. This is
                       * zero by default.
                       *
                       * This value changes when {approve} or {transferFrom} are called.
                       */
                      function allowance(address owner, address spender) external view returns (uint256);
                      /**
                       * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                       *
                       * Returns a boolean value indicating whether the operation succeeded.
                       *
                       * IMPORTANT: Beware that changing an allowance with this method brings the risk
                       * that someone may use both the old and the new allowance by unfortunate
                       * transaction ordering. One possible solution to mitigate this race
                       * condition is to first reduce the spender's allowance to 0 and set the
                       * desired value afterwards:
                       * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                       *
                       * Emits an {Approval} event.
                       */
                      function approve(address spender, uint256 amount) external returns (bool);
                      /**
                       * @dev Moves `amount` tokens from `sender` to `recipient` using the
                       * allowance mechanism. `amount` is then deducted from the caller's
                       * allowance.
                       *
                       * Returns a boolean value indicating whether the operation succeeded.
                       *
                       * Emits a {Transfer} event.
                       */
                      function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
                      /**
                       * @dev Emitted when `value` tokens are moved from one account (`from`) to
                       * another (`to`).
                       *
                       * Note that `value` may be zero.
                       */
                      event Transfer(address indexed from, address indexed to, uint256 value);
                      /**
                       * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                       * a call to {approve}. `value` is the new allowance.
                       */
                      event Approval(address indexed owner, address indexed spender, uint256 value);
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.7.0;
                  /// @title Optimized overflow and underflow safe math operations
                  /// @notice Contains methods for doing math operations that revert on overflow or underflow for minimal gas cost
                  library LowGasSafeMath {
                      /// @notice Returns x + y, reverts if sum overflows uint256
                      /// @param x The augend
                      /// @param y The addend
                      /// @return z The sum of x and y
                      function add(uint256 x, uint256 y) internal pure returns (uint256 z) {
                          require((z = x + y) >= x);
                      }
                      /// @notice Returns x - y, reverts if underflows
                      /// @param x The minuend
                      /// @param y The subtrahend
                      /// @return z The difference of x and y
                      function sub(uint256 x, uint256 y) internal pure returns (uint256 z) {
                          require((z = x - y) <= x);
                      }
                      /// @notice Returns x * y, reverts if overflows
                      /// @param x The multiplicand
                      /// @param y The multiplier
                      /// @return z The product of x and y
                      function mul(uint256 x, uint256 y) internal pure returns (uint256 z) {
                          require(x == 0 || (z = x * y) / x == y);
                      }
                      /// @notice Returns x + y, reverts if overflows or underflows
                      /// @param x The augend
                      /// @param y The addend
                      /// @return z The sum of x and y
                      function add(int256 x, int256 y) internal pure returns (int256 z) {
                          require((z = x + y) >= x == (y >= 0));
                      }
                      /// @notice Returns x - y, reverts if overflows or underflows
                      /// @param x The minuend
                      /// @param y The subtrahend
                      /// @return z The difference of x and y
                      function sub(int256 x, int256 y) internal pure returns (int256 z) {
                          require((z = x - y) <= x == (y >= 0));
                      }
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.7.5;
                  import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
                  import '../interfaces/IPeripheryPayments.sol';
                  import '../interfaces/external/IWETH9.sol';
                  import '../libraries/TransferHelper.sol';
                  import './PeripheryImmutableState.sol';
                  abstract contract PeripheryPayments is IPeripheryPayments, PeripheryImmutableState {
                      receive() external payable {
                          require(msg.sender == WETH9, 'Not WETH9');
                      }
                      /// @inheritdoc IPeripheryPayments
                      function unwrapWETH9(uint256 amountMinimum, address recipient) external payable override {
                          uint256 balanceWETH9 = IWETH9(WETH9).balanceOf(address(this));
                          require(balanceWETH9 >= amountMinimum, 'Insufficient WETH9');
                          if (balanceWETH9 > 0) {
                              IWETH9(WETH9).withdraw(balanceWETH9);
                              TransferHelper.safeTransferETH(recipient, balanceWETH9);
                          }
                      }
                      /// @inheritdoc IPeripheryPayments
                      function sweepToken(
                          address token,
                          uint256 amountMinimum,
                          address recipient
                      ) external payable override {
                          uint256 balanceToken = IERC20(token).balanceOf(address(this));
                          require(balanceToken >= amountMinimum, 'Insufficient token');
                          if (balanceToken > 0) {
                              TransferHelper.safeTransfer(token, recipient, balanceToken);
                          }
                      }
                      /// @inheritdoc IPeripheryPayments
                      function refundETH() external payable override {
                          if (address(this).balance > 0) TransferHelper.safeTransferETH(msg.sender, address(this).balance);
                      }
                      /// @param token The token to pay
                      /// @param payer The entity that must pay
                      /// @param recipient The entity that will receive payment
                      /// @param value The amount to pay
                      function pay(
                          address token,
                          address payer,
                          address recipient,
                          uint256 value
                      ) internal {
                          if (token == WETH9 && address(this).balance >= value) {
                              // pay with WETH9
                              IWETH9(WETH9).deposit{value: value}(); // wrap only what is needed to pay
                              IWETH9(WETH9).transfer(recipient, value);
                          } else if (payer == address(this)) {
                              // pay with tokens already in the contract (for the exact input multihop case)
                              TransferHelper.safeTransfer(token, recipient, value);
                          } else {
                              // pull payment
                              TransferHelper.safeTransferFrom(token, payer, recipient, value);
                          }
                      }
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.7.5;
                  import './IPeripheryPayments.sol';
                  /// @title Periphery Payments
                  /// @notice Functions to ease deposits and withdrawals of ETH
                  interface IPeripheryPaymentsWithFee is IPeripheryPayments {
                      /// @notice Unwraps the contract's WETH9 balance and sends it to recipient as ETH, with a percentage between
                      /// 0 (exclusive), and 1 (inclusive) going to feeRecipient
                      /// @dev The amountMinimum parameter prevents malicious contracts from stealing WETH9 from users.
                      function unwrapWETH9WithFee(
                          uint256 amountMinimum,
                          address recipient,
                          uint256 feeBips,
                          address feeRecipient
                      ) external payable;
                      /// @notice Transfers the full amount of a token held by this contract to recipient, with a percentage between
                      /// 0 (exclusive) and 1 (inclusive) going to feeRecipient
                      /// @dev The amountMinimum parameter prevents malicious contracts from stealing the token from users
                      function sweepTokenWithFee(
                          address token,
                          uint256 amountMinimum,
                          address recipient,
                          uint256 feeBips,
                          address feeRecipient
                      ) external payable;
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.6.0;
                  import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
                  library TransferHelper {
                      /// @notice Transfers tokens from the targeted address to the given destination
                      /// @notice Errors with 'STF' if transfer fails
                      /// @param token The contract address of the token to be transferred
                      /// @param from The originating address from which the tokens will be transferred
                      /// @param to The destination address of the transfer
                      /// @param value The amount to be transferred
                      function safeTransferFrom(
                          address token,
                          address from,
                          address to,
                          uint256 value
                      ) internal {
                          (bool success, bytes memory data) =
                              token.call(abi.encodeWithSelector(IERC20.transferFrom.selector, from, to, value));
                          require(success && (data.length == 0 || abi.decode(data, (bool))), 'STF');
                      }
                      /// @notice Transfers tokens from msg.sender to a recipient
                      /// @dev Errors with ST if transfer fails
                      /// @param token The contract address of the token which will be transferred
                      /// @param to The recipient of the transfer
                      /// @param value The value of the transfer
                      function safeTransfer(
                          address token,
                          address to,
                          uint256 value
                      ) internal {
                          (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.transfer.selector, to, value));
                          require(success && (data.length == 0 || abi.decode(data, (bool))), 'ST');
                      }
                      /// @notice Approves the stipulated contract to spend the given allowance in the given token
                      /// @dev Errors with 'SA' if transfer fails
                      /// @param token The contract address of the token to be approved
                      /// @param to The target of the approval
                      /// @param value The amount of the given token the target will be allowed to spend
                      function safeApprove(
                          address token,
                          address to,
                          uint256 value
                      ) internal {
                          (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.approve.selector, to, value));
                          require(success && (data.length == 0 || abi.decode(data, (bool))), 'SA');
                      }
                      /// @notice Transfers ETH to the recipient address
                      /// @dev Fails with `STE`
                      /// @param to The destination of the transfer
                      /// @param value The value to be transferred
                      function safeTransferETH(address to, uint256 value) internal {
                          (bool success, ) = to.call{value: value}(new bytes(0));
                          require(success, 'STE');
                      }
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.7.5;
                  /// @title Periphery Payments
                  /// @notice Functions to ease deposits and withdrawals of ETH
                  interface IPeripheryPayments {
                      /// @notice Unwraps the contract's WETH9 balance and sends it to recipient as ETH.
                      /// @dev The amountMinimum parameter prevents malicious contracts from stealing WETH9 from users.
                      /// @param amountMinimum The minimum amount of WETH9 to unwrap
                      /// @param recipient The address receiving ETH
                      function unwrapWETH9(uint256 amountMinimum, address recipient) external payable;
                      /// @notice Refunds any ETH balance held by this contract to the `msg.sender`
                      /// @dev Useful for bundling with mint or increase liquidity that uses ether, or exact output swaps
                      /// that use ether for the input amount
                      function refundETH() external payable;
                      /// @notice Transfers the full amount of a token held by this contract to recipient
                      /// @dev The amountMinimum parameter prevents malicious contracts from stealing the token from users
                      /// @param token The contract address of the token which will be transferred to `recipient`
                      /// @param amountMinimum The minimum amount of token required for a transfer
                      /// @param recipient The destination address of the token
                      function sweepToken(
                          address token,
                          uint256 amountMinimum,
                          address recipient
                      ) external payable;
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.7.5;
                  pragma abicoder v2;
                  /// @title Multicall interface
                  /// @notice Enables calling multiple methods in a single call to the contract
                  interface IMulticall {
                      /// @notice Call multiple functions in the current contract and return the data from all of them if they all succeed
                      /// @dev The `msg.value` should not be trusted for any method callable from multicall.
                      /// @param data The encoded function data for each of the calls to make to this contract
                      /// @return results The results from each of the calls passed in via data
                      function multicall(bytes[] calldata data) external payable returns (bytes[] memory results);
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity >=0.6.0 <0.8.0;
                  /**
                   * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
                   * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
                   *
                   * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
                   * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
                   * need to send a transaction, and thus is not required to hold Ether at all.
                   */
                  interface IERC20Permit {
                      /**
                       * @dev Sets `value` as the allowance of `spender` over `owner`'s tokens,
                       * given `owner`'s signed approval.
                       *
                       * IMPORTANT: The same issues {IERC20-approve} has related to transaction
                       * ordering also apply here.
                       *
                       * Emits an {Approval} event.
                       *
                       * Requirements:
                       *
                       * - `spender` cannot be the zero address.
                       * - `deadline` must be a timestamp in the future.
                       * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
                       * over the EIP712-formatted function arguments.
                       * - the signature must use ``owner``'s current nonce (see {nonces}).
                       *
                       * For more information on the signature format, see the
                       * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
                       * section].
                       */
                      function permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) external;
                      /**
                       * @dev Returns the current nonce for `owner`. This value must be
                       * included whenever a signature is generated for {permit}.
                       *
                       * Every successful call to {permit} increases ``owner``'s nonce by one. This
                       * prevents a signature from being used multiple times.
                       */
                      function nonces(address owner) external view returns (uint256);
                      /**
                       * @dev Returns the domain separator used in the encoding of the signature for `permit`, as defined by {EIP712}.
                       */
                      // solhint-disable-next-line func-name-mixedcase
                      function DOMAIN_SEPARATOR() external view returns (bytes32);
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.7.5;
                  /// @title Self Permit
                  /// @notice Functionality to call permit on any EIP-2612-compliant token for use in the route
                  interface ISelfPermit {
                      /// @notice Permits this contract to spend a given token from `msg.sender`
                      /// @dev The `owner` is always msg.sender and the `spender` is always address(this).
                      /// @param token The address of the token spent
                      /// @param value The amount that can be spent of token
                      /// @param deadline A timestamp, the current blocktime must be less than or equal to this timestamp
                      /// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s`
                      /// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s`
                      /// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v`
                      function selfPermit(
                          address token,
                          uint256 value,
                          uint256 deadline,
                          uint8 v,
                          bytes32 r,
                          bytes32 s
                      ) external payable;
                      /// @notice Permits this contract to spend a given token from `msg.sender`
                      /// @dev The `owner` is always msg.sender and the `spender` is always address(this).
                      /// Can be used instead of #selfPermit to prevent calls from failing due to a frontrun of a call to #selfPermit
                      /// @param token The address of the token spent
                      /// @param value The amount that can be spent of token
                      /// @param deadline A timestamp, the current blocktime must be less than or equal to this timestamp
                      /// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s`
                      /// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s`
                      /// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v`
                      function selfPermitIfNecessary(
                          address token,
                          uint256 value,
                          uint256 deadline,
                          uint8 v,
                          bytes32 r,
                          bytes32 s
                      ) external payable;
                      /// @notice Permits this contract to spend the sender's tokens for permit signatures that have the `allowed` parameter
                      /// @dev The `owner` is always msg.sender and the `spender` is always address(this)
                      /// @param token The address of the token spent
                      /// @param nonce The current nonce of the owner
                      /// @param expiry The timestamp at which the permit is no longer valid
                      /// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s`
                      /// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s`
                      /// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v`
                      function selfPermitAllowed(
                          address token,
                          uint256 nonce,
                          uint256 expiry,
                          uint8 v,
                          bytes32 r,
                          bytes32 s
                      ) external payable;
                      /// @notice Permits this contract to spend the sender's tokens for permit signatures that have the `allowed` parameter
                      /// @dev The `owner` is always msg.sender and the `spender` is always address(this)
                      /// Can be used instead of #selfPermitAllowed to prevent calls from failing due to a frontrun of a call to #selfPermitAllowed.
                      /// @param token The address of the token spent
                      /// @param nonce The current nonce of the owner
                      /// @param expiry The timestamp at which the permit is no longer valid
                      /// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s`
                      /// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s`
                      /// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v`
                      function selfPermitAllowedIfNecessary(
                          address token,
                          uint256 nonce,
                          uint256 expiry,
                          uint8 v,
                          bytes32 r,
                          bytes32 s
                      ) external payable;
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  pragma solidity >=0.5.0;
                  /// @title Interface for permit
                  /// @notice Interface used by DAI/CHAI for permit
                  interface IERC20PermitAllowed {
                      /// @notice Approve the spender to spend some tokens via the holder signature
                      /// @dev This is the permit interface used by DAI and CHAI
                      /// @param holder The address of the token holder, the token owner
                      /// @param spender The address of the token spender
                      /// @param nonce The holder's nonce, increases at each call to permit
                      /// @param expiry The timestamp at which the permit is no longer valid
                      /// @param allowed Boolean that sets approval amount, true for type(uint256).max and false for 0
                      /// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s`
                      /// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s`
                      /// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v`
                      function permit(
                          address holder,
                          address spender,
                          uint256 nonce,
                          uint256 expiry,
                          bool allowed,
                          uint8 v,
                          bytes32 r,
                          bytes32 s
                      ) external;
                  }
                  // SPDX-License-Identifier: GPL-2.0-or-later
                  /*
                   * @title Solidity Bytes Arrays Utils
                   * @author Gonçalo Sá <[email protected]>
                   *
                   * @dev Bytes tightly packed arrays utility library for ethereum contracts written in Solidity.
                   *      The library lets you concatenate, slice and type cast bytes arrays both in memory and storage.
                   */
                  pragma solidity >=0.5.0 <0.8.0;
                  library BytesLib {
                      function slice(
                          bytes memory _bytes,
                          uint256 _start,
                          uint256 _length
                      ) internal pure returns (bytes memory) {
                          require(_length + 31 >= _length, 'slice_overflow');
                          require(_start + _length >= _start, 'slice_overflow');
                          require(_bytes.length >= _start + _length, 'slice_outOfBounds');
                          bytes memory tempBytes;
                          assembly {
                              switch iszero(_length)
                                  case 0 {
                                      // Get a location of some free memory and store it in tempBytes as
                                      // Solidity does for memory variables.
                                      tempBytes := mload(0x40)
                                      // The first word of the slice result is potentially a partial
                                      // word read from the original array. To read it, we calculate
                                      // the length of that partial word and start copying that many
                                      // bytes into the array. The first word we copy will start with
                                      // data we don't care about, but the last `lengthmod` bytes will
                                      // land at the beginning of the contents of the new array. When
                                      // we're done copying, we overwrite the full first word with
                                      // the actual length of the slice.
                                      let lengthmod := and(_length, 31)
                                      // The multiplication in the next line is necessary
                                      // because when slicing multiples of 32 bytes (lengthmod == 0)
                                      // the following copy loop was copying the origin's length
                                      // and then ending prematurely not copying everything it should.
                                      let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                                      let end := add(mc, _length)
                                      for {
                                          // The multiplication in the next line has the same exact purpose
                                          // as the one above.
                                          let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                                      } lt(mc, end) {
                                          mc := add(mc, 0x20)
                                          cc := add(cc, 0x20)
                                      } {
                                          mstore(mc, mload(cc))
                                      }
                                      mstore(tempBytes, _length)
                                      //update free-memory pointer
                                      //allocating the array padded to 32 bytes like the compiler does now
                                      mstore(0x40, and(add(mc, 31), not(31)))
                                  }
                                  //if we want a zero-length slice let's just return a zero-length array
                                  default {
                                      tempBytes := mload(0x40)
                                      //zero out the 32 bytes slice we are about to return
                                      //we need to do it because Solidity does not garbage collect
                                      mstore(tempBytes, 0)
                                      mstore(0x40, add(tempBytes, 0x20))
                                  }
                          }
                          return tempBytes;
                      }
                      function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
                          require(_start + 20 >= _start, 'toAddress_overflow');
                          require(_bytes.length >= _start + 20, 'toAddress_outOfBounds');
                          address tempAddress;
                          assembly {
                              tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
                          }
                          return tempAddress;
                      }
                      function toUint24(bytes memory _bytes, uint256 _start) internal pure returns (uint24) {
                          require(_start + 3 >= _start, 'toUint24_overflow');
                          require(_bytes.length >= _start + 3, 'toUint24_outOfBounds');
                          uint24 tempUint;
                          assembly {
                              tempUint := mload(add(add(_bytes, 0x3), _start))
                          }
                          return tempUint;
                      }
                  }
                  

                  File 6 of 7: WETH9
                  // Copyright (C) 2015, 2016, 2017 Dapphub
                  
                  // This program is free software: you can redistribute it and/or modify
                  // it under the terms of the GNU General Public License as published by
                  // the Free Software Foundation, either version 3 of the License, or
                  // (at your option) any later version.
                  
                  // This program is distributed in the hope that it will be useful,
                  // but WITHOUT ANY WARRANTY; without even the implied warranty of
                  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
                  // GNU General Public License for more details.
                  
                  // You should have received a copy of the GNU General Public License
                  // along with this program.  If not, see <http://www.gnu.org/licenses/>.
                  
                  pragma solidity ^0.4.18;
                  
                  contract WETH9 {
                      string public name     = "Wrapped Ether";
                      string public symbol   = "WETH";
                      uint8  public decimals = 18;
                  
                      event  Approval(address indexed src, address indexed guy, uint wad);
                      event  Transfer(address indexed src, address indexed dst, uint wad);
                      event  Deposit(address indexed dst, uint wad);
                      event  Withdrawal(address indexed src, uint wad);
                  
                      mapping (address => uint)                       public  balanceOf;
                      mapping (address => mapping (address => uint))  public  allowance;
                  
                      function() public payable {
                          deposit();
                      }
                      function deposit() public payable {
                          balanceOf[msg.sender] += msg.value;
                          Deposit(msg.sender, msg.value);
                      }
                      function withdraw(uint wad) public {
                          require(balanceOf[msg.sender] >= wad);
                          balanceOf[msg.sender] -= wad;
                          msg.sender.transfer(wad);
                          Withdrawal(msg.sender, wad);
                      }
                  
                      function totalSupply() public view returns (uint) {
                          return this.balance;
                      }
                  
                      function approve(address guy, uint wad) public returns (bool) {
                          allowance[msg.sender][guy] = wad;
                          Approval(msg.sender, guy, wad);
                          return true;
                      }
                  
                      function transfer(address dst, uint wad) public returns (bool) {
                          return transferFrom(msg.sender, dst, wad);
                      }
                  
                      function transferFrom(address src, address dst, uint wad)
                          public
                          returns (bool)
                      {
                          require(balanceOf[src] >= wad);
                  
                          if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) {
                              require(allowance[src][msg.sender] >= wad);
                              allowance[src][msg.sender] -= wad;
                          }
                  
                          balanceOf[src] -= wad;
                          balanceOf[dst] += wad;
                  
                          Transfer(src, dst, wad);
                  
                          return true;
                      }
                  }
                  
                  
                  /*
                                      GNU GENERAL PUBLIC LICENSE
                                         Version 3, 29 June 2007
                  
                   Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
                   Everyone is permitted to copy and distribute verbatim copies
                   of this license document, but changing it is not allowed.
                  
                                              Preamble
                  
                    The GNU General Public License is a free, copyleft license for
                  software and other kinds of works.
                  
                    The licenses for most software and other practical works are designed
                  to take away your freedom to share and change the works.  By contrast,
                  the GNU General Public License is intended to guarantee your freedom to
                  share and change all versions of a program--to make sure it remains free
                  software for all its users.  We, the Free Software Foundation, use the
                  GNU General Public License for most of our software; it applies also to
                  any other work released this way by its authors.  You can apply it to
                  your programs, too.
                  
                    When we speak of free software, we are referring to freedom, not
                  price.  Our General Public Licenses are designed to make sure that you
                  have the freedom to distribute copies of free software (and charge for
                  them if you wish), that you receive source code or can get it if you
                  want it, that you can change the software or use pieces of it in new
                  free programs, and that you know you can do these things.
                  
                    To protect your rights, we need to prevent others from denying you
                  these rights or asking you to surrender the rights.  Therefore, you have
                  certain responsibilities if you distribute copies of the software, or if
                  you modify it: responsibilities to respect the freedom of others.
                  
                    For example, if you distribute copies of such a program, whether
                  gratis or for a fee, you must pass on to the recipients the same
                  freedoms that you received.  You must make sure that they, too, receive
                  or can get the source code.  And you must show them these terms so they
                  know their rights.
                  
                    Developers that use the GNU GPL protect your rights with two steps:
                  (1) assert copyright on the software, and (2) offer you this License
                  giving you legal permission to copy, distribute and/or modify it.
                  
                    For the developers' and authors' protection, the GPL clearly explains
                  that there is no warranty for this free software.  For both users' and
                  authors' sake, the GPL requires that modified versions be marked as
                  changed, so that their problems will not be attributed erroneously to
                  authors of previous versions.
                  
                    Some devices are designed to deny users access to install or run
                  modified versions of the software inside them, although the manufacturer
                  can do so.  This is fundamentally incompatible with the aim of
                  protecting users' freedom to change the software.  The systematic
                  pattern of such abuse occurs in the area of products for individuals to
                  use, which is precisely where it is most unacceptable.  Therefore, we
                  have designed this version of the GPL to prohibit the practice for those
                  products.  If such problems arise substantially in other domains, we
                  stand ready to extend this provision to those domains in future versions
                  of the GPL, as needed to protect the freedom of users.
                  
                    Finally, every program is threatened constantly by software patents.
                  States should not allow patents to restrict development and use of
                  software on general-purpose computers, but in those that do, we wish to
                  avoid the special danger that patents applied to a free program could
                  make it effectively proprietary.  To prevent this, the GPL assures that
                  patents cannot be used to render the program non-free.
                  
                    The precise terms and conditions for copying, distribution and
                  modification follow.
                  
                                         TERMS AND CONDITIONS
                  
                    0. Definitions.
                  
                    "This License" refers to version 3 of the GNU General Public License.
                  
                    "Copyright" also means copyright-like laws that apply to other kinds of
                  works, such as semiconductor masks.
                  
                    "The Program" refers to any copyrightable work licensed under this
                  License.  Each licensee is addressed as "you".  "Licensees" and
                  "recipients" may be individuals or organizations.
                  
                    To "modify" a work means to copy from or adapt all or part of the work
                  in a fashion requiring copyright permission, other than the making of an
                  exact copy.  The resulting work is called a "modified version" of the
                  earlier work or a work "based on" the earlier work.
                  
                    A "covered work" means either the unmodified Program or a work based
                  on the Program.
                  
                    To "propagate" a work means to do anything with it that, without
                  permission, would make you directly or secondarily liable for
                  infringement under applicable copyright law, except executing it on a
                  computer or modifying a private copy.  Propagation includes copying,
                  distribution (with or without modification), making available to the
                  public, and in some countries other activities as well.
                  
                    To "convey" a work means any kind of propagation that enables other
                  parties to make or receive copies.  Mere interaction with a user through
                  a computer network, with no transfer of a copy, is not conveying.
                  
                    An interactive user interface displays "Appropriate Legal Notices"
                  to the extent that it includes a convenient and prominently visible
                  feature that (1) displays an appropriate copyright notice, and (2)
                  tells the user that there is no warranty for the work (except to the
                  extent that warranties are provided), that licensees may convey the
                  work under this License, and how to view a copy of this License.  If
                  the interface presents a list of user commands or options, such as a
                  menu, a prominent item in the list meets this criterion.
                  
                    1. Source Code.
                  
                    The "source code" for a work means the preferred form of the work
                  for making modifications to it.  "Object code" means any non-source
                  form of a work.
                  
                    A "Standard Interface" means an interface that either is an official
                  standard defined by a recognized standards body, or, in the case of
                  interfaces specified for a particular programming language, one that
                  is widely used among developers working in that language.
                  
                    The "System Libraries" of an executable work include anything, other
                  than the work as a whole, that (a) is included in the normal form of
                  packaging a Major Component, but which is not part of that Major
                  Component, and (b) serves only to enable use of the work with that
                  Major Component, or to implement a Standard Interface for which an
                  implementation is available to the public in source code form.  A
                  "Major Component", in this context, means a major essential component
                  (kernel, window system, and so on) of the specific operating system
                  (if any) on which the executable work runs, or a compiler used to
                  produce the work, or an object code interpreter used to run it.
                  
                    The "Corresponding Source" for a work in object code form means all
                  the source code needed to generate, install, and (for an executable
                  work) run the object code and to modify the work, including scripts to
                  control those activities.  However, it does not include the work's
                  System Libraries, or general-purpose tools or generally available free
                  programs which are used unmodified in performing those activities but
                  which are not part of the work.  For example, Corresponding Source
                  includes interface definition files associated with source files for
                  the work, and the source code for shared libraries and dynamically
                  linked subprograms that the work is specifically designed to require,
                  such as by intimate data communication or control flow between those
                  subprograms and other parts of the work.
                  
                    The Corresponding Source need not include anything that users
                  can regenerate automatically from other parts of the Corresponding
                  Source.
                  
                    The Corresponding Source for a work in source code form is that
                  same work.
                  
                    2. Basic Permissions.
                  
                    All rights granted under this License are granted for the term of
                  copyright on the Program, and are irrevocable provided the stated
                  conditions are met.  This License explicitly affirms your unlimited
                  permission to run the unmodified Program.  The output from running a
                  covered work is covered by this License only if the output, given its
                  content, constitutes a covered work.  This License acknowledges your
                  rights of fair use or other equivalent, as provided by copyright law.
                  
                    You may make, run and propagate covered works that you do not
                  convey, without conditions so long as your license otherwise remains
                  in force.  You may convey covered works to others for the sole purpose
                  of having them make modifications exclusively for you, or provide you
                  with facilities for running those works, provided that you comply with
                  the terms of this License in conveying all material for which you do
                  not control copyright.  Those thus making or running the covered works
                  for you must do so exclusively on your behalf, under your direction
                  and control, on terms that prohibit them from making any copies of
                  your copyrighted material outside their relationship with you.
                  
                    Conveying under any other circumstances is permitted solely under
                  the conditions stated below.  Sublicensing is not allowed; section 10
                  makes it unnecessary.
                  
                    3. Protecting Users' Legal Rights From Anti-Circumvention Law.
                  
                    No covered work shall be deemed part of an effective technological
                  measure under any applicable law fulfilling obligations under article
                  11 of the WIPO copyright treaty adopted on 20 December 1996, or
                  similar laws prohibiting or restricting circumvention of such
                  measures.
                  
                    When you convey a covered work, you waive any legal power to forbid
                  circumvention of technological measures to the extent such circumvention
                  is effected by exercising rights under this License with respect to
                  the covered work, and you disclaim any intention to limit operation or
                  modification of the work as a means of enforcing, against the work's
                  users, your or third parties' legal rights to forbid circumvention of
                  technological measures.
                  
                    4. Conveying Verbatim Copies.
                  
                    You may convey verbatim copies of the Program's source code as you
                  receive it, in any medium, provided that you conspicuously and
                  appropriately publish on each copy an appropriate copyright notice;
                  keep intact all notices stating that this License and any
                  non-permissive terms added in accord with section 7 apply to the code;
                  keep intact all notices of the absence of any warranty; and give all
                  recipients a copy of this License along with the Program.
                  
                    You may charge any price or no price for each copy that you convey,
                  and you may offer support or warranty protection for a fee.
                  
                    5. Conveying Modified Source Versions.
                  
                    You may convey a work based on the Program, or the modifications to
                  produce it from the Program, in the form of source code under the
                  terms of section 4, provided that you also meet all of these conditions:
                  
                      a) The work must carry prominent notices stating that you modified
                      it, and giving a relevant date.
                  
                      b) The work must carry prominent notices stating that it is
                      released under this License and any conditions added under section
                      7.  This requirement modifies the requirement in section 4 to
                      "keep intact all notices".
                  
                      c) You must license the entire work, as a whole, under this
                      License to anyone who comes into possession of a copy.  This
                      License will therefore apply, along with any applicable section 7
                      additional terms, to the whole of the work, and all its parts,
                      regardless of how they are packaged.  This License gives no
                      permission to license the work in any other way, but it does not
                      invalidate such permission if you have separately received it.
                  
                      d) If the work has interactive user interfaces, each must display
                      Appropriate Legal Notices; however, if the Program has interactive
                      interfaces that do not display Appropriate Legal Notices, your
                      work need not make them do so.
                  
                    A compilation of a covered work with other separate and independent
                  works, which are not by their nature extensions of the covered work,
                  and which are not combined with it such as to form a larger program,
                  in or on a volume of a storage or distribution medium, is called an
                  "aggregate" if the compilation and its resulting copyright are not
                  used to limit the access or legal rights of the compilation's users
                  beyond what the individual works permit.  Inclusion of a covered work
                  in an aggregate does not cause this License to apply to the other
                  parts of the aggregate.
                  
                    6. Conveying Non-Source Forms.
                  
                    You may convey a covered work in object code form under the terms
                  of sections 4 and 5, provided that you also convey the
                  machine-readable Corresponding Source under the terms of this License,
                  in one of these ways:
                  
                      a) Convey the object code in, or embodied in, a physical product
                      (including a physical distribution medium), accompanied by the
                      Corresponding Source fixed on a durable physical medium
                      customarily used for software interchange.
                  
                      b) Convey the object code in, or embodied in, a physical product
                      (including a physical distribution medium), accompanied by a
                      written offer, valid for at least three years and valid for as
                      long as you offer spare parts or customer support for that product
                      model, to give anyone who possesses the object code either (1) a
                      copy of the Corresponding Source for all the software in the
                      product that is covered by this License, on a durable physical
                      medium customarily used for software interchange, for a price no
                      more than your reasonable cost of physically performing this
                      conveying of source, or (2) access to copy the
                      Corresponding Source from a network server at no charge.
                  
                      c) Convey individual copies of the object code with a copy of the
                      written offer to provide the Corresponding Source.  This
                      alternative is allowed only occasionally and noncommercially, and
                      only if you received the object code with such an offer, in accord
                      with subsection 6b.
                  
                      d) Convey the object code by offering access from a designated
                      place (gratis or for a charge), and offer equivalent access to the
                      Corresponding Source in the same way through the same place at no
                      further charge.  You need not require recipients to copy the
                      Corresponding Source along with the object code.  If the place to
                      copy the object code is a network server, the Corresponding Source
                      may be on a different server (operated by you or a third party)
                      that supports equivalent copying facilities, provided you maintain
                      clear directions next to the object code saying where to find the
                      Corresponding Source.  Regardless of what server hosts the
                      Corresponding Source, you remain obligated to ensure that it is
                      available for as long as needed to satisfy these requirements.
                  
                      e) Convey the object code using peer-to-peer transmission, provided
                      you inform other peers where the object code and Corresponding
                      Source of the work are being offered to the general public at no
                      charge under subsection 6d.
                  
                    A separable portion of the object code, whose source code is excluded
                  from the Corresponding Source as a System Library, need not be
                  included in conveying the object code work.
                  
                    A "User Product" is either (1) a "consumer product", which means any
                  tangible personal property which is normally used for personal, family,
                  or household purposes, or (2) anything designed or sold for incorporation
                  into a dwelling.  In determining whether a product is a consumer product,
                  doubtful cases shall be resolved in favor of coverage.  For a particular
                  product received by a particular user, "normally used" refers to a
                  typical or common use of that class of product, regardless of the status
                  of the particular user or of the way in which the particular user
                  actually uses, or expects or is expected to use, the product.  A product
                  is a consumer product regardless of whether the product has substantial
                  commercial, industrial or non-consumer uses, unless such uses represent
                  the only significant mode of use of the product.
                  
                    "Installation Information" for a User Product means any methods,
                  procedures, authorization keys, or other information required to install
                  and execute modified versions of a covered work in that User Product from
                  a modified version of its Corresponding Source.  The information must
                  suffice to ensure that the continued functioning of the modified object
                  code is in no case prevented or interfered with solely because
                  modification has been made.
                  
                    If you convey an object code work under this section in, or with, or
                  specifically for use in, a User Product, and the conveying occurs as
                  part of a transaction in which the right of possession and use of the
                  User Product is transferred to the recipient in perpetuity or for a
                  fixed term (regardless of how the transaction is characterized), the
                  Corresponding Source conveyed under this section must be accompanied
                  by the Installation Information.  But this requirement does not apply
                  if neither you nor any third party retains the ability to install
                  modified object code on the User Product (for example, the work has
                  been installed in ROM).
                  
                    The requirement to provide Installation Information does not include a
                  requirement to continue to provide support service, warranty, or updates
                  for a work that has been modified or installed by the recipient, or for
                  the User Product in which it has been modified or installed.  Access to a
                  network may be denied when the modification itself materially and
                  adversely affects the operation of the network or violates the rules and
                  protocols for communication across the network.
                  
                    Corresponding Source conveyed, and Installation Information provided,
                  in accord with this section must be in a format that is publicly
                  documented (and with an implementation available to the public in
                  source code form), and must require no special password or key for
                  unpacking, reading or copying.
                  
                    7. Additional Terms.
                  
                    "Additional permissions" are terms that supplement the terms of this
                  License by making exceptions from one or more of its conditions.
                  Additional permissions that are applicable to the entire Program shall
                  be treated as though they were included in this License, to the extent
                  that they are valid under applicable law.  If additional permissions
                  apply only to part of the Program, that part may be used separately
                  under those permissions, but the entire Program remains governed by
                  this License without regard to the additional permissions.
                  
                    When you convey a copy of a covered work, you may at your option
                  remove any additional permissions from that copy, or from any part of
                  it.  (Additional permissions may be written to require their own
                  removal in certain cases when you modify the work.)  You may place
                  additional permissions on material, added by you to a covered work,
                  for which you have or can give appropriate copyright permission.
                  
                    Notwithstanding any other provision of this License, for material you
                  add to a covered work, you may (if authorized by the copyright holders of
                  that material) supplement the terms of this License with terms:
                  
                      a) Disclaiming warranty or limiting liability differently from the
                      terms of sections 15 and 16 of this License; or
                  
                      b) Requiring preservation of specified reasonable legal notices or
                      author attributions in that material or in the Appropriate Legal
                      Notices displayed by works containing it; or
                  
                      c) Prohibiting misrepresentation of the origin of that material, or
                      requiring that modified versions of such material be marked in
                      reasonable ways as different from the original version; or
                  
                      d) Limiting the use for publicity purposes of names of licensors or
                      authors of the material; or
                  
                      e) Declining to grant rights under trademark law for use of some
                      trade names, trademarks, or service marks; or
                  
                      f) Requiring indemnification of licensors and authors of that
                      material by anyone who conveys the material (or modified versions of
                      it) with contractual assumptions of liability to the recipient, for
                      any liability that these contractual assumptions directly impose on
                      those licensors and authors.
                  
                    All other non-permissive additional terms are considered "further
                  restrictions" within the meaning of section 10.  If the Program as you
                  received it, or any part of it, contains a notice stating that it is
                  governed by this License along with a term that is a further
                  restriction, you may remove that term.  If a license document contains
                  a further restriction but permits relicensing or conveying under this
                  License, you may add to a covered work material governed by the terms
                  of that license document, provided that the further restriction does
                  not survive such relicensing or conveying.
                  
                    If you add terms to a covered work in accord with this section, you
                  must place, in the relevant source files, a statement of the
                  additional terms that apply to those files, or a notice indicating
                  where to find the applicable terms.
                  
                    Additional terms, permissive or non-permissive, may be stated in the
                  form of a separately written license, or stated as exceptions;
                  the above requirements apply either way.
                  
                    8. Termination.
                  
                    You may not propagate or modify a covered work except as expressly
                  provided under this License.  Any attempt otherwise to propagate or
                  modify it is void, and will automatically terminate your rights under
                  this License (including any patent licenses granted under the third
                  paragraph of section 11).
                  
                    However, if you cease all violation of this License, then your
                  license from a particular copyright holder is reinstated (a)
                  provisionally, unless and until the copyright holder explicitly and
                  finally terminates your license, and (b) permanently, if the copyright
                  holder fails to notify you of the violation by some reasonable means
                  prior to 60 days after the cessation.
                  
                    Moreover, your license from a particular copyright holder is
                  reinstated permanently if the copyright holder notifies you of the
                  violation by some reasonable means, this is the first time you have
                  received notice of violation of this License (for any work) from that
                  copyright holder, and you cure the violation prior to 30 days after
                  your receipt of the notice.
                  
                    Termination of your rights under this section does not terminate the
                  licenses of parties who have received copies or rights from you under
                  this License.  If your rights have been terminated and not permanently
                  reinstated, you do not qualify to receive new licenses for the same
                  material under section 10.
                  
                    9. Acceptance Not Required for Having Copies.
                  
                    You are not required to accept this License in order to receive or
                  run a copy of the Program.  Ancillary propagation of a covered work
                  occurring solely as a consequence of using peer-to-peer transmission
                  to receive a copy likewise does not require acceptance.  However,
                  nothing other than this License grants you permission to propagate or
                  modify any covered work.  These actions infringe copyright if you do
                  not accept this License.  Therefore, by modifying or propagating a
                  covered work, you indicate your acceptance of this License to do so.
                  
                    10. Automatic Licensing of Downstream Recipients.
                  
                    Each time you convey a covered work, the recipient automatically
                  receives a license from the original licensors, to run, modify and
                  propagate that work, subject to this License.  You are not responsible
                  for enforcing compliance by third parties with this License.
                  
                    An "entity transaction" is a transaction transferring control of an
                  organization, or substantially all assets of one, or subdividing an
                  organization, or merging organizations.  If propagation of a covered
                  work results from an entity transaction, each party to that
                  transaction who receives a copy of the work also receives whatever
                  licenses to the work the party's predecessor in interest had or could
                  give under the previous paragraph, plus a right to possession of the
                  Corresponding Source of the work from the predecessor in interest, if
                  the predecessor has it or can get it with reasonable efforts.
                  
                    You may not impose any further restrictions on the exercise of the
                  rights granted or affirmed under this License.  For example, you may
                  not impose a license fee, royalty, or other charge for exercise of
                  rights granted under this License, and you may not initiate litigation
                  (including a cross-claim or counterclaim in a lawsuit) alleging that
                  any patent claim is infringed by making, using, selling, offering for
                  sale, or importing the Program or any portion of it.
                  
                    11. Patents.
                  
                    A "contributor" is a copyright holder who authorizes use under this
                  License of the Program or a work on which the Program is based.  The
                  work thus licensed is called the contributor's "contributor version".
                  
                    A contributor's "essential patent claims" are all patent claims
                  owned or controlled by the contributor, whether already acquired or
                  hereafter acquired, that would be infringed by some manner, permitted
                  by this License, of making, using, or selling its contributor version,
                  but do not include claims that would be infringed only as a
                  consequence of further modification of the contributor version.  For
                  purposes of this definition, "control" includes the right to grant
                  patent sublicenses in a manner consistent with the requirements of
                  this License.
                  
                    Each contributor grants you a non-exclusive, worldwide, royalty-free
                  patent license under the contributor's essential patent claims, to
                  make, use, sell, offer for sale, import and otherwise run, modify and
                  propagate the contents of its contributor version.
                  
                    In the following three paragraphs, a "patent license" is any express
                  agreement or commitment, however denominated, not to enforce a patent
                  (such as an express permission to practice a patent or covenant not to
                  sue for patent infringement).  To "grant" such a patent license to a
                  party means to make such an agreement or commitment not to enforce a
                  patent against the party.
                  
                    If you convey a covered work, knowingly relying on a patent license,
                  and the Corresponding Source of the work is not available for anyone
                  to copy, free of charge and under the terms of this License, through a
                  publicly available network server or other readily accessible means,
                  then you must either (1) cause the Corresponding Source to be so
                  available, or (2) arrange to deprive yourself of the benefit of the
                  patent license for this particular work, or (3) arrange, in a manner
                  consistent with the requirements of this License, to extend the patent
                  license to downstream recipients.  "Knowingly relying" means you have
                  actual knowledge that, but for the patent license, your conveying the
                  covered work in a country, or your recipient's use of the covered work
                  in a country, would infringe one or more identifiable patents in that
                  country that you have reason to believe are valid.
                  
                    If, pursuant to or in connection with a single transaction or
                  arrangement, you convey, or propagate by procuring conveyance of, a
                  covered work, and grant a patent license to some of the parties
                  receiving the covered work authorizing them to use, propagate, modify
                  or convey a specific copy of the covered work, then the patent license
                  you grant is automatically extended to all recipients of the covered
                  work and works based on it.
                  
                    A patent license is "discriminatory" if it does not include within
                  the scope of its coverage, prohibits the exercise of, or is
                  conditioned on the non-exercise of one or more of the rights that are
                  specifically granted under this License.  You may not convey a covered
                  work if you are a party to an arrangement with a third party that is
                  in the business of distributing software, under which you make payment
                  to the third party based on the extent of your activity of conveying
                  the work, and under which the third party grants, to any of the
                  parties who would receive the covered work from you, a discriminatory
                  patent license (a) in connection with copies of the covered work
                  conveyed by you (or copies made from those copies), or (b) primarily
                  for and in connection with specific products or compilations that
                  contain the covered work, unless you entered into that arrangement,
                  or that patent license was granted, prior to 28 March 2007.
                  
                    Nothing in this License shall be construed as excluding or limiting
                  any implied license or other defenses to infringement that may
                  otherwise be available to you under applicable patent law.
                  
                    12. No Surrender of Others' Freedom.
                  
                    If conditions are imposed on you (whether by court order, agreement or
                  otherwise) that contradict the conditions of this License, they do not
                  excuse you from the conditions of this License.  If you cannot convey a
                  covered work so as to satisfy simultaneously your obligations under this
                  License and any other pertinent obligations, then as a consequence you may
                  not convey it at all.  For example, if you agree to terms that obligate you
                  to collect a royalty for further conveying from those to whom you convey
                  the Program, the only way you could satisfy both those terms and this
                  License would be to refrain entirely from conveying the Program.
                  
                    13. Use with the GNU Affero General Public License.
                  
                    Notwithstanding any other provision of this License, you have
                  permission to link or combine any covered work with a work licensed
                  under version 3 of the GNU Affero General Public License into a single
                  combined work, and to convey the resulting work.  The terms of this
                  License will continue to apply to the part which is the covered work,
                  but the special requirements of the GNU Affero General Public License,
                  section 13, concerning interaction through a network will apply to the
                  combination as such.
                  
                    14. Revised Versions of this License.
                  
                    The Free Software Foundation may publish revised and/or new versions of
                  the GNU General Public License from time to time.  Such new versions will
                  be similar in spirit to the present version, but may differ in detail to
                  address new problems or concerns.
                  
                    Each version is given a distinguishing version number.  If the
                  Program specifies that a certain numbered version of the GNU General
                  Public License "or any later version" applies to it, you have the
                  option of following the terms and conditions either of that numbered
                  version or of any later version published by the Free Software
                  Foundation.  If the Program does not specify a version number of the
                  GNU General Public License, you may choose any version ever published
                  by the Free Software Foundation.
                  
                    If the Program specifies that a proxy can decide which future
                  versions of the GNU General Public License can be used, that proxy's
                  public statement of acceptance of a version permanently authorizes you
                  to choose that version for the Program.
                  
                    Later license versions may give you additional or different
                  permissions.  However, no additional obligations are imposed on any
                  author or copyright holder as a result of your choosing to follow a
                  later version.
                  
                    15. Disclaimer of Warranty.
                  
                    THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
                  APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
                  HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
                  OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
                  THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
                  PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
                  IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
                  ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
                  
                    16. Limitation of Liability.
                  
                    IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
                  WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
                  THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
                  GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
                  USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
                  DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
                  PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
                  EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
                  SUCH DAMAGES.
                  
                    17. Interpretation of Sections 15 and 16.
                  
                    If the disclaimer of warranty and limitation of liability provided
                  above cannot be given local legal effect according to their terms,
                  reviewing courts shall apply local law that most closely approximates
                  an absolute waiver of all civil liability in connection with the
                  Program, unless a warranty or assumption of liability accompanies a
                  copy of the Program in return for a fee.
                  
                                       END OF TERMS AND CONDITIONS
                  
                              How to Apply These Terms to Your New Programs
                  
                    If you develop a new program, and you want it to be of the greatest
                  possible use to the public, the best way to achieve this is to make it
                  free software which everyone can redistribute and change under these terms.
                  
                    To do so, attach the following notices to the program.  It is safest
                  to attach them to the start of each source file to most effectively
                  state the exclusion of warranty; and each file should have at least
                  the "copyright" line and a pointer to where the full notice is found.
                  
                      <one line to give the program's name and a brief idea of what it does.>
                      Copyright (C) <year>  <name of author>
                  
                      This program is free software: you can redistribute it and/or modify
                      it under the terms of the GNU General Public License as published by
                      the Free Software Foundation, either version 3 of the License, or
                      (at your option) any later version.
                  
                      This program is distributed in the hope that it will be useful,
                      but WITHOUT ANY WARRANTY; without even the implied warranty of
                      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
                      GNU General Public License for more details.
                  
                      You should have received a copy of the GNU General Public License
                      along with this program.  If not, see <http://www.gnu.org/licenses/>.
                  
                  Also add information on how to contact you by electronic and paper mail.
                  
                    If the program does terminal interaction, make it output a short
                  notice like this when it starts in an interactive mode:
                  
                      <program>  Copyright (C) <year>  <name of author>
                      This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
                      This is free software, and you are welcome to redistribute it
                      under certain conditions; type `show c' for details.
                  
                  The hypothetical commands `show w' and `show c' should show the appropriate
                  parts of the General Public License.  Of course, your program's commands
                  might be different; for a GUI interface, you would use an "about box".
                  
                    You should also get your employer (if you work as a programmer) or school,
                  if any, to sign a "copyright disclaimer" for the program, if necessary.
                  For more information on this, and how to apply and follow the GNU GPL, see
                  <http://www.gnu.org/licenses/>.
                  
                    The GNU General Public License does not permit incorporating your program
                  into proprietary programs.  If your program is a subroutine library, you
                  may consider it more useful to permit linking proprietary applications with
                  the library.  If this is what you want to do, use the GNU Lesser General
                  Public License instead of this License.  But first, please read
                  <http://www.gnu.org/philosophy/why-not-lgpl.html>.
                  
                  */

                  File 7 of 7: GenericSwapFacet
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
                  pragma solidity ^0.8.0;
                  import "../utils/Context.sol";
                  /**
                   * @dev Contract module which provides a basic access control mechanism, where
                   * there is an account (an owner) that can be granted exclusive access to
                   * specific functions.
                   *
                   * By default, the owner account will be the one that deploys the contract. This
                   * can later be changed with {transferOwnership}.
                   *
                   * This module is used through inheritance. It will make available the modifier
                   * `onlyOwner`, which can be applied to your functions to restrict their use to
                   * the owner.
                   */
                  abstract contract Ownable is Context {
                      address private _owner;
                      event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                      /**
                       * @dev Initializes the contract setting the deployer as the initial owner.
                       */
                      constructor() {
                          _transferOwnership(_msgSender());
                      }
                      /**
                       * @dev Throws if called by any account other than the owner.
                       */
                      modifier onlyOwner() {
                          _checkOwner();
                          _;
                      }
                      /**
                       * @dev Returns the address of the current owner.
                       */
                      function owner() public view virtual returns (address) {
                          return _owner;
                      }
                      /**
                       * @dev Throws if the sender is not the owner.
                       */
                      function _checkOwner() internal view virtual {
                          require(owner() == _msgSender(), "Ownable: caller is not the owner");
                      }
                      /**
                       * @dev Leaves the contract without owner. It will not be possible to call
                       * `onlyOwner` functions anymore. Can only be called by the current owner.
                       *
                       * NOTE: Renouncing ownership will leave the contract without an owner,
                       * thereby removing any functionality that is only available to the owner.
                       */
                      function renounceOwnership() public virtual onlyOwner {
                          _transferOwnership(address(0));
                      }
                      /**
                       * @dev Transfers ownership of the contract to a new account (`newOwner`).
                       * Can only be called by the current owner.
                       */
                      function transferOwnership(address newOwner) public virtual onlyOwner {
                          require(newOwner != address(0), "Ownable: new owner is the zero address");
                          _transferOwnership(newOwner);
                      }
                      /**
                       * @dev Transfers ownership of the contract to a new account (`newOwner`).
                       * Internal function without access restriction.
                       */
                      function _transferOwnership(address newOwner) internal virtual {
                          address oldOwner = _owner;
                          _owner = newOwner;
                          emit OwnershipTransferred(oldOwner, newOwner);
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
                  pragma solidity ^0.8.0;
                  /**
                   * @dev Interface of the ERC20 standard as defined in the EIP.
                   */
                  interface IERC20 {
                      /**
                       * @dev Emitted when `value` tokens are moved from one account (`from`) to
                       * another (`to`).
                       *
                       * Note that `value` may be zero.
                       */
                      event Transfer(address indexed from, address indexed to, uint256 value);
                      /**
                       * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                       * a call to {approve}. `value` is the new allowance.
                       */
                      event Approval(address indexed owner, address indexed spender, uint256 value);
                      /**
                       * @dev Returns the amount of tokens in existence.
                       */
                      function totalSupply() external view returns (uint256);
                      /**
                       * @dev Returns the amount of tokens owned by `account`.
                       */
                      function balanceOf(address account) external view returns (uint256);
                      /**
                       * @dev Moves `amount` tokens from the caller's account to `to`.
                       *
                       * Returns a boolean value indicating whether the operation succeeded.
                       *
                       * Emits a {Transfer} event.
                       */
                      function transfer(address to, uint256 amount) external returns (bool);
                      /**
                       * @dev Returns the remaining number of tokens that `spender` will be
                       * allowed to spend on behalf of `owner` through {transferFrom}. This is
                       * zero by default.
                       *
                       * This value changes when {approve} or {transferFrom} are called.
                       */
                      function allowance(address owner, address spender) external view returns (uint256);
                      /**
                       * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                       *
                       * Returns a boolean value indicating whether the operation succeeded.
                       *
                       * IMPORTANT: Beware that changing an allowance with this method brings the risk
                       * that someone may use both the old and the new allowance by unfortunate
                       * transaction ordering. One possible solution to mitigate this race
                       * condition is to first reduce the spender's allowance to 0 and set the
                       * desired value afterwards:
                       * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                       *
                       * Emits an {Approval} event.
                       */
                      function approve(address spender, uint256 amount) external returns (bool);
                      /**
                       * @dev Moves `amount` tokens from `from` to `to` using the
                       * allowance mechanism. `amount` is then deducted from the caller's
                       * allowance.
                       *
                       * Returns a boolean value indicating whether the operation succeeded.
                       *
                       * Emits a {Transfer} event.
                       */
                      function transferFrom(
                          address from,
                          address to,
                          uint256 amount
                      ) external returns (bool);
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
                  pragma solidity ^0.8.0;
                  /**
                   * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
                   * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
                   *
                   * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
                   * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
                   * need to send a transaction, and thus is not required to hold Ether at all.
                   */
                  interface IERC20Permit {
                      /**
                       * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
                       * given ``owner``'s signed approval.
                       *
                       * IMPORTANT: The same issues {IERC20-approve} has related to transaction
                       * ordering also apply here.
                       *
                       * Emits an {Approval} event.
                       *
                       * Requirements:
                       *
                       * - `spender` cannot be the zero address.
                       * - `deadline` must be a timestamp in the future.
                       * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
                       * over the EIP712-formatted function arguments.
                       * - the signature must use ``owner``'s current nonce (see {nonces}).
                       *
                       * For more information on the signature format, see the
                       * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
                       * section].
                       */
                      function permit(
                          address owner,
                          address spender,
                          uint256 value,
                          uint256 deadline,
                          uint8 v,
                          bytes32 r,
                          bytes32 s
                      ) external;
                      /**
                       * @dev Returns the current nonce for `owner`. This value must be
                       * included whenever a signature is generated for {permit}.
                       *
                       * Every successful call to {permit} increases ``owner``'s nonce by one. This
                       * prevents a signature from being used multiple times.
                       */
                      function nonces(address owner) external view returns (uint256);
                      /**
                       * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
                       */
                      // solhint-disable-next-line func-name-mixedcase
                      function DOMAIN_SEPARATOR() external view returns (bytes32);
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)
                  pragma solidity ^0.8.0;
                  import "../IERC20.sol";
                  import "../extensions/draft-IERC20Permit.sol";
                  import "../../../utils/Address.sol";
                  /**
                   * @title SafeERC20
                   * @dev Wrappers around ERC20 operations that throw on failure (when the token
                   * contract returns false). Tokens that return no value (and instead revert or
                   * throw on failure) are also supported, non-reverting calls are assumed to be
                   * successful.
                   * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
                   * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
                   */
                  library SafeERC20 {
                      using Address for address;
                      function safeTransfer(
                          IERC20 token,
                          address to,
                          uint256 value
                      ) internal {
                          _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                      }
                      function safeTransferFrom(
                          IERC20 token,
                          address from,
                          address to,
                          uint256 value
                      ) internal {
                          _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                      }
                      /**
                       * @dev Deprecated. This function has issues similar to the ones found in
                       * {IERC20-approve}, and its usage is discouraged.
                       *
                       * Whenever possible, use {safeIncreaseAllowance} and
                       * {safeDecreaseAllowance} instead.
                       */
                      function safeApprove(
                          IERC20 token,
                          address spender,
                          uint256 value
                      ) internal {
                          // safeApprove should only be called when setting an initial allowance,
                          // or when resetting it to zero. To increase and decrease it, use
                          // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                          require(
                              (value == 0) || (token.allowance(address(this), spender) == 0),
                              "SafeERC20: approve from non-zero to non-zero allowance"
                          );
                          _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                      }
                      function safeIncreaseAllowance(
                          IERC20 token,
                          address spender,
                          uint256 value
                      ) internal {
                          uint256 newAllowance = token.allowance(address(this), spender) + value;
                          _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                      }
                      function safeDecreaseAllowance(
                          IERC20 token,
                          address spender,
                          uint256 value
                      ) internal {
                          unchecked {
                              uint256 oldAllowance = token.allowance(address(this), spender);
                              require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                              uint256 newAllowance = oldAllowance - value;
                              _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                          }
                      }
                      function safePermit(
                          IERC20Permit token,
                          address owner,
                          address spender,
                          uint256 value,
                          uint256 deadline,
                          uint8 v,
                          bytes32 r,
                          bytes32 s
                      ) internal {
                          uint256 nonceBefore = token.nonces(owner);
                          token.permit(owner, spender, value, deadline, v, r, s);
                          uint256 nonceAfter = token.nonces(owner);
                          require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
                      }
                      /**
                       * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                       * on the return value: the return value is optional (but if data is returned, it must not be false).
                       * @param token The token targeted by the call.
                       * @param data The call data (encoded using abi.encode or one of its variants).
                       */
                      function _callOptionalReturn(IERC20 token, bytes memory data) private {
                          // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                          // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
                          // the target address contains contract code and also asserts for success in the low-level call.
                          bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                          if (returndata.length > 0) {
                              // Return data is optional
                              require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                          }
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
                  pragma solidity ^0.8.1;
                  /**
                   * @dev Collection of functions related to the address type
                   */
                  library Address {
                      /**
                       * @dev Returns true if `account` is a contract.
                       *
                       * [IMPORTANT]
                       * ====
                       * It is unsafe to assume that an address for which this function returns
                       * false is an externally-owned account (EOA) and not a contract.
                       *
                       * Among others, `isContract` will return false for the following
                       * types of addresses:
                       *
                       *  - an externally-owned account
                       *  - a contract in construction
                       *  - an address where a contract will be created
                       *  - an address where a contract lived, but was destroyed
                       * ====
                       *
                       * [IMPORTANT]
                       * ====
                       * You shouldn't rely on `isContract` to protect against flash loan attacks!
                       *
                       * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                       * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                       * constructor.
                       * ====
                       */
                      function isContract(address account) internal view returns (bool) {
                          // This method relies on extcodesize/address.code.length, which returns 0
                          // for contracts in construction, since the code is only stored at the end
                          // of the constructor execution.
                          return account.code.length > 0;
                      }
                      /**
                       * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                       * `recipient`, forwarding all available gas and reverting on errors.
                       *
                       * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                       * of certain opcodes, possibly making contracts go over the 2300 gas limit
                       * imposed by `transfer`, making them unable to receive funds via
                       * `transfer`. {sendValue} removes this limitation.
                       *
                       * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                       *
                       * IMPORTANT: because control is transferred to `recipient`, care must be
                       * taken to not create reentrancy vulnerabilities. Consider using
                       * {ReentrancyGuard} or the
                       * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                       */
                      function sendValue(address payable recipient, uint256 amount) internal {
                          require(address(this).balance >= amount, "Address: insufficient balance");
                          (bool success, ) = recipient.call{value: amount}("");
                          require(success, "Address: unable to send value, recipient may have reverted");
                      }
                      /**
                       * @dev Performs a Solidity function call using a low level `call`. A
                       * plain `call` is an unsafe replacement for a function call: use this
                       * function instead.
                       *
                       * If `target` reverts with a revert reason, it is bubbled up by this
                       * function (like regular Solidity function calls).
                       *
                       * Returns the raw returned data. To convert to the expected return value,
                       * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                       *
                       * Requirements:
                       *
                       * - `target` must be a contract.
                       * - calling `target` with `data` must not revert.
                       *
                       * _Available since v3.1._
                       */
                      function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                          return functionCallWithValue(target, data, 0, "Address: low-level call failed");
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                       * `errorMessage` as a fallback revert reason when `target` reverts.
                       *
                       * _Available since v3.1._
                       */
                      function functionCall(
                          address target,
                          bytes memory data,
                          string memory errorMessage
                      ) internal returns (bytes memory) {
                          return functionCallWithValue(target, data, 0, errorMessage);
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                       * but also transferring `value` wei to `target`.
                       *
                       * Requirements:
                       *
                       * - the calling contract must have an ETH balance of at least `value`.
                       * - the called Solidity function must be `payable`.
                       *
                       * _Available since v3.1._
                       */
                      function functionCallWithValue(
                          address target,
                          bytes memory data,
                          uint256 value
                      ) internal returns (bytes memory) {
                          return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                      }
                      /**
                       * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                       * with `errorMessage` as a fallback revert reason when `target` reverts.
                       *
                       * _Available since v3.1._
                       */
                      function functionCallWithValue(
                          address target,
                          bytes memory data,
                          uint256 value,
                          string memory errorMessage
                      ) internal returns (bytes memory) {
                          require(address(this).balance >= value, "Address: insufficient balance for call");
                          (bool success, bytes memory returndata) = target.call{value: value}(data);
                          return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                       * but performing a static call.
                       *
                       * _Available since v3.3._
                       */
                      function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                          return functionStaticCall(target, data, "Address: low-level static call failed");
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                       * but performing a static call.
                       *
                       * _Available since v3.3._
                       */
                      function functionStaticCall(
                          address target,
                          bytes memory data,
                          string memory errorMessage
                      ) internal view returns (bytes memory) {
                          (bool success, bytes memory returndata) = target.staticcall(data);
                          return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                       * but performing a delegate call.
                       *
                       * _Available since v3.4._
                       */
                      function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                          return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                      }
                      /**
                       * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                       * but performing a delegate call.
                       *
                       * _Available since v3.4._
                       */
                      function functionDelegateCall(
                          address target,
                          bytes memory data,
                          string memory errorMessage
                      ) internal returns (bytes memory) {
                          (bool success, bytes memory returndata) = target.delegatecall(data);
                          return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                      }
                      /**
                       * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
                       * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
                       *
                       * _Available since v4.8._
                       */
                      function verifyCallResultFromTarget(
                          address target,
                          bool success,
                          bytes memory returndata,
                          string memory errorMessage
                      ) internal view returns (bytes memory) {
                          if (success) {
                              if (returndata.length == 0) {
                                  // only check isContract if the call was successful and the return data is empty
                                  // otherwise we already know that it was a contract
                                  require(isContract(target), "Address: call to non-contract");
                              }
                              return returndata;
                          } else {
                              _revert(returndata, errorMessage);
                          }
                      }
                      /**
                       * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
                       * revert reason or using the provided one.
                       *
                       * _Available since v4.3._
                       */
                      function verifyCallResult(
                          bool success,
                          bytes memory returndata,
                          string memory errorMessage
                      ) internal pure returns (bytes memory) {
                          if (success) {
                              return returndata;
                          } else {
                              _revert(returndata, errorMessage);
                          }
                      }
                      function _revert(bytes memory returndata, string memory errorMessage) private pure {
                          // Look for revert reason and bubble it up if present
                          if (returndata.length > 0) {
                              // The easiest way to bubble the revert reason is using memory via assembly
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let returndata_size := mload(returndata)
                                  revert(add(32, returndata), returndata_size)
                              }
                          } else {
                              revert(errorMessage);
                          }
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
                  pragma solidity ^0.8.0;
                  /**
                   * @dev Provides information about the current execution context, including the
                   * sender of the transaction and its data. While these are generally available
                   * via msg.sender and msg.data, they should not be accessed in such a direct
                   * manner, since when dealing with meta-transactions the account sending and
                   * paying for execution may not be the actual sender (as far as an application
                   * is concerned).
                   *
                   * This contract is only required for intermediate, library-like contracts.
                   */
                  abstract contract Context {
                      function _msgSender() internal view virtual returns (address) {
                          return msg.sender;
                      }
                      function _msgData() internal view virtual returns (bytes calldata) {
                          return msg.data;
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.17;
                  error TokenAddressIsZero();
                  error TokenNotSupported();
                  error CannotBridgeToSameNetwork();
                  error ZeroPostSwapBalance();
                  error NoSwapDataProvided();
                  error NativeValueWithERC();
                  error ContractCallNotAllowed();
                  error NullAddrIsNotAValidSpender();
                  error NullAddrIsNotAnERC20Token();
                  error NoTransferToNullAddress();
                  error NativeAssetTransferFailed();
                  error InvalidBridgeConfigLength();
                  error InvalidAmount();
                  error InvalidContract();
                  error InvalidConfig();
                  error UnsupportedChainId(uint256 chainId);
                  error InvalidReceiver();
                  error InvalidDestinationChain();
                  error InvalidSendingToken();
                  error InvalidCaller();
                  error AlreadyInitialized();
                  error NotInitialized();
                  error OnlyContractOwner();
                  error CannotAuthoriseSelf();
                  error RecoveryAddressCannotBeZero();
                  error CannotDepositNativeToken();
                  error InvalidCallData();
                  error NativeAssetNotSupported();
                  error UnAuthorized();
                  error NoSwapFromZeroBalance();
                  error InvalidFallbackAddress();
                  error CumulativeSlippageTooHigh(uint256 minAmount, uint256 receivedAmount);
                  error InsufficientBalance(uint256 required, uint256 balance);
                  error ZeroAmount();
                  error ZeroAddress();
                  error InvalidFee();
                  error InformationMismatch();
                  error LengthMissmatch();
                  error NotAContract();
                  error NotEnoughBalance(uint256 requested, uint256 available);
                  error InsufficientMessageValue();
                  error ExternalCallFailed();
                  error ReentrancyError();
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.17;
                  import { IRubic } from "../Interfaces/IRubic.sol";
                  import { LibAsset } from "../Libraries/LibAsset.sol";
                  import { ReentrancyGuard } from "../Helpers/ReentrancyGuard.sol";
                  import { SwapperV2, LibSwap } from "../Helpers/SwapperV2.sol";
                  import { Validatable } from "../Helpers/Validatable.sol";
                  import { LibUtil } from "../Libraries/LibUtil.sol";
                  import { InvalidReceiver } from "../Errors/GenericErrors.sol";
                  /// @title Generic Swap Facet
                  /// @notice Provides functionality for swapping through ANY APPROVED DEX
                  /// @dev Uses calldata to execute APPROVED arbitrary methods on DEXs
                  contract GenericSwapFacet is IRubic, ReentrancyGuard, SwapperV2, Validatable {
                      /// Events ///
                      event RubicSwappedGeneric(
                          bytes32 indexed transactionId,
                          address integrator,
                          address referrer,
                          address fromAssetId,
                          address toAssetId,
                          uint256 fromAmount,
                          uint256 toAmount
                      );
                      /// External Methods ///
                      /// @notice Performs multiple swaps in one transaction
                      /// @param _transactionId the transaction id associated with the operation
                      /// @param _integrator the address of the integrator
                      /// @param _referrer the address of the referrer
                      /// @param _receiver the address to receive the swapped tokens into (also excess tokens)
                      /// @param _minAmount the minimum amount of the final asset to receive
                      /// @param _swapData an object containing swap related data to perform swaps before bridging
                      function swapTokensGeneric(
                          bytes32 _transactionId,
                          address _integrator,
                          address _referrer,
                          address payable _receiver,
                          uint256 _minAmount,
                          LibSwap.SwapData[] calldata _swapData
                      ) external payable nonReentrant refundExcessNative(_receiver) {
                          if (LibUtil.isZeroAddress(_receiver)) {
                              revert InvalidReceiver();
                          }
                          uint256 postSwapBalance = _depositAndSwap(
                              _transactionId,
                              _minAmount,
                              _swapData,
                              _integrator,
                              _receiver
                          );
                          address receivingAssetId = _swapData[_swapData.length - 1]
                              .receivingAssetId;
                          LibAsset.transferAsset(receivingAssetId, _receiver, postSwapBalance);
                          emit RubicSwappedGeneric(
                              _transactionId,
                              _integrator,
                              _referrer,
                              _swapData[0].sendingAssetId,
                              receivingAssetId,
                              _swapData[0].fromAmount,
                              postSwapBalance
                          );
                      }
                  }
                  // SPDX-License-Identifier: UNLICENSED
                  pragma solidity 0.8.17;
                  /// @title Reentrancy Guard
                  /// @notice Abstract contract to provide protection against reentrancy
                  abstract contract ReentrancyGuard {
                      /// Storage ///
                      bytes32 private constant NAMESPACE =
                          keccak256("com.rubic.reentrancyguard");
                      /// Types ///
                      struct ReentrancyStorage {
                          uint256 status;
                      }
                      /// Errors ///
                      error ReentrancyError();
                      /// Constants ///
                      uint256 private constant _NOT_ENTERED = 0;
                      uint256 private constant _ENTERED = 1;
                      /// Modifiers ///
                      modifier nonReentrant() {
                          ReentrancyStorage storage s = reentrancyStorage();
                          if (s.status == _ENTERED) revert ReentrancyError();
                          s.status = _ENTERED;
                          _;
                          s.status = _NOT_ENTERED;
                      }
                      /// Private Methods ///
                      /// @dev fetch local storage
                      function reentrancyStorage()
                          private
                          pure
                          returns (ReentrancyStorage storage data)
                      {
                          bytes32 position = NAMESPACE;
                          // solhint-disable-next-line no-inline-assembly
                          assembly {
                              data.slot := position
                          }
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.17;
                  import { IRubic } from "../Interfaces/IRubic.sol";
                  import { LibSwap } from "../Libraries/LibSwap.sol";
                  import { LibBytes } from "../Libraries/LibBytes.sol";
                  import { LibAsset } from "../Libraries/LibAsset.sol";
                  import { LibFees } from "../Libraries/LibFees.sol";
                  import { LibAllowList } from "../Libraries/LibAllowList.sol";
                  import { InvalidAmount, ContractCallNotAllowed, NoSwapDataProvided, CumulativeSlippageTooHigh } from "../Errors/GenericErrors.sol";
                  /// @title Swapper
                  /// @notice Abstract contract to provide swap functionality
                  contract SwapperV2 is IRubic {
                      /// Types ///
                      /// @dev only used to get around "Stack Too Deep" errors
                      struct ReserveData {
                          bytes32 transactionId;
                          address payable leftoverReceiver;
                          uint256 nativeReserve;
                      }
                      /// Modifiers ///
                      /// @dev Sends any leftover balances back to the user
                      /// @notice Sends any leftover balances to the user
                      /// @param _swaps Swap data array
                      /// @param _leftoverReceiver Address to send leftover tokens to
                      /// @param _initialBalances Array of initial token balances
                      modifier noLeftovers(
                          LibSwap.SwapData[] memory _swaps,
                          address payable _leftoverReceiver,
                          uint256[] memory _initialBalances
                      ) {
                          uint256 numSwaps = _swaps.length;
                          if (numSwaps != 1) {
                              address finalAsset = _swaps[numSwaps - 1].receivingAssetId;
                              uint256 curBalance;
                              _;
                              for (uint256 i = 0; i < numSwaps - 1; ) {
                                  address curAsset = _swaps[i].receivingAssetId;
                                  // Handle multi-to-one swaps
                                  if (curAsset != finalAsset) {
                                      curBalance =
                                          LibAsset.getOwnBalance(curAsset) -
                                          _initialBalances[i];
                                      if (curBalance > 0) {
                                          LibAsset.transferAsset(
                                              curAsset,
                                              _leftoverReceiver,
                                              curBalance
                                          );
                                      }
                                  }
                                  unchecked {
                                      ++i;
                                  }
                              }
                          } else {
                              _;
                          }
                      }
                      /// @dev Sends any leftover balances back to the user reserving native tokens
                      /// @notice Sends any leftover balances to the user
                      /// @param _swaps Swap data array
                      /// @param _leftoverReceiver Address to send leftover tokens to
                      /// @param _initialBalances Array of initial token balances
                      modifier noLeftoversReserve(
                          LibSwap.SwapData[] memory _swaps,
                          address payable _leftoverReceiver,
                          uint256[] memory _initialBalances,
                          uint256 _nativeReserve
                      ) {
                          uint256 numSwaps = _swaps.length;
                          if (numSwaps != 1) {
                              address finalAsset = _swaps[numSwaps - 1].receivingAssetId;
                              uint256 curBalance;
                              _;
                              for (uint256 i = 0; i < numSwaps - 1; ) {
                                  address curAsset = _swaps[i].receivingAssetId;
                                  // Handle multi-to-one swaps
                                  if (curAsset != finalAsset) {
                                      curBalance =
                                          LibAsset.getOwnBalance(curAsset) -
                                          _initialBalances[i];
                                      uint256 reserve = LibAsset.isNativeAsset(curAsset)
                                          ? _nativeReserve
                                          : 0;
                                      if (curBalance > 0) {
                                          LibAsset.transferAsset(
                                              curAsset,
                                              _leftoverReceiver,
                                              curBalance - reserve
                                          );
                                      }
                                  }
                                  unchecked {
                                      ++i;
                                  }
                              }
                          } else {
                              _;
                          }
                      }
                      /// @dev Refunds any excess native asset sent to the contract after the main function
                      /// @notice Refunds any excess native asset sent to the contract after the main function
                      /// @param _refundReceiver Address to send refunds to
                      modifier refundExcessNative(address payable _refundReceiver) {
                          uint256 initialBalance = address(this).balance - msg.value;
                          _;
                          uint256 finalBalance = address(this).balance;
                          uint256 excess = finalBalance > initialBalance
                              ? finalBalance - initialBalance
                              : 0;
                          if (excess > 0) {
                              LibAsset.transferAsset(
                                  LibAsset.NATIVE_ASSETID,
                                  _refundReceiver,
                                  excess
                              );
                          }
                      }
                      /// Internal Methods ///
                      /// @dev Deposits value, executes swaps, and performs minimum amount check
                      /// @param _transactionId the transaction id associated with the operation
                      /// @param _minAmount the minimum amount of the final asset to receive
                      /// @param _swaps Array of data used to execute swaps
                      /// @param _integrator Integrator for whom to count the fees
                      /// @param _leftoverReceiver The address to send leftover funds to
                      /// @return uint256 result of the swap
                      function _depositAndSwap(
                          bytes32 _transactionId,
                          uint256 _minAmount,
                          LibSwap.SwapData[] memory _swaps,
                          address _integrator,
                          address payable _leftoverReceiver
                      ) internal returns (uint256) {
                          uint256 numSwaps = _swaps.length;
                          if (numSwaps == 0) {
                              revert NoSwapDataProvided();
                          }
                          address finalTokenId = _swaps[numSwaps - 1].receivingAssetId;
                          uint256 initialBalance = LibAsset.getOwnBalance(finalTokenId);
                          if (LibAsset.isNativeAsset(finalTokenId)) {
                              initialBalance -= msg.value;
                          }
                          uint256[] memory initialBalances = _fetchBalances(_swaps);
                          _swaps = LibAsset.depositAssetsAndAccrueFees(_swaps, _integrator);
                          _executeSwaps(
                              _transactionId,
                              _swaps,
                              _leftoverReceiver,
                              initialBalances
                          );
                          uint256 newBalance = LibAsset.getOwnBalance(finalTokenId) -
                              initialBalance;
                          if (newBalance < _minAmount) {
                              revert CumulativeSlippageTooHigh(_minAmount, newBalance);
                          }
                          return newBalance;
                      }
                      /// @dev Deposits value, executes swaps, and performs minimum amount check and reserves native token for fees
                      /// @param _transactionId the transaction id associated with the operation
                      /// @param _minAmount the minimum amount of the final asset to receive
                      /// @param _swaps Array of data used to execute swaps
                      /// @param _integrator Integrator for whom to count the fees
                      /// @param _leftoverReceiver The address to send leftover funds to
                      /// @param _nativeReserve Amount of native token to prevent from being swept back to the caller
                      function _depositAndSwap(
                          bytes32 _transactionId,
                          uint256 _minAmount,
                          LibSwap.SwapData[] memory _swaps,
                          address _integrator,
                          address payable _leftoverReceiver,
                          uint256 _nativeReserve
                      ) internal returns (uint256) {
                          uint256 numSwaps = _swaps.length;
                          if (numSwaps == 0) {
                              revert NoSwapDataProvided();
                          }
                          address finalTokenId = _swaps[numSwaps - 1].receivingAssetId;
                          uint256 initialBalance = LibAsset.getOwnBalance(finalTokenId);
                          if (LibAsset.isNativeAsset(finalTokenId)) {
                              initialBalance -= msg.value;
                          }
                          uint256[] memory initialBalances = _fetchBalances(_swaps);
                          _swaps = LibAsset.depositAssetsAndAccrueFees(_swaps, _integrator);
                          ReserveData memory rd = ReserveData(
                              _transactionId,
                              _leftoverReceiver,
                              _nativeReserve
                          );
                          _executeSwaps(rd, _swaps, initialBalances);
                          uint256 newBalance = LibAsset.getOwnBalance(finalTokenId) -
                              initialBalance;
                          if (newBalance < _minAmount) {
                              revert CumulativeSlippageTooHigh(_minAmount, newBalance);
                          }
                          return newBalance;
                      }
                      /// Private Methods ///
                      /// @dev Executes swaps and checks that DEXs used are in the allowList
                      /// @param _transactionId the transaction id associated with the operation
                      /// @param _swaps Array of data used to execute swaps
                      /// @param _leftoverReceiver Address to send leftover tokens to
                      /// @param _initialBalances Array of initial balances
                      function _executeSwaps(
                          bytes32 _transactionId,
                          LibSwap.SwapData[] memory _swaps,
                          address payable _leftoverReceiver,
                          uint256[] memory _initialBalances
                      ) internal noLeftovers(_swaps, _leftoverReceiver, _initialBalances) {
                          uint256 numSwaps = _swaps.length;
                          for (uint256 i = 0; i < numSwaps; ) {
                              LibSwap.SwapData memory currentSwap = _swaps[i];
                              if (
                                  !((LibAsset.isNativeAsset(currentSwap.sendingAssetId) ||
                                      LibAllowList.contractIsAllowed(currentSwap.approveTo)) &&
                                      LibAllowList.contractIsAllowed(currentSwap.callTo) &&
                                      LibAllowList.selectorIsAllowed(
                                          LibBytes.getFirst4Bytes(currentSwap.callData)
                                      ))
                              ) revert ContractCallNotAllowed();
                              LibSwap.swap(_transactionId, currentSwap);
                              unchecked {
                                  ++i;
                              }
                          }
                      }
                      /// @dev Executes swaps and checks that DEXs used are in the allowList
                      /// @param _reserveData Data passed used to reserve native tokens
                      /// @param _swaps Array of data used to execute swaps
                      function _executeSwaps(
                          ReserveData memory _reserveData,
                          LibSwap.SwapData[] memory _swaps,
                          uint256[] memory _initialBalances
                      )
                          internal
                          noLeftoversReserve(
                              _swaps,
                              _reserveData.leftoverReceiver,
                              _initialBalances,
                              _reserveData.nativeReserve
                          )
                      {
                          uint256 numSwaps = _swaps.length;
                          for (uint256 i = 0; i < numSwaps; ) {
                              LibSwap.SwapData memory currentSwap = _swaps[i];
                              if (
                                  !((LibAsset.isNativeAsset(currentSwap.sendingAssetId) ||
                                      LibAllowList.contractIsAllowed(currentSwap.approveTo)) &&
                                      LibAllowList.contractIsAllowed(currentSwap.callTo) &&
                                      LibAllowList.selectorIsAllowed(
                                          LibBytes.getFirst4Bytes(currentSwap.callData)
                                      ))
                              ) revert ContractCallNotAllowed();
                              LibSwap.swap(_reserveData.transactionId, currentSwap);
                              unchecked {
                                  ++i;
                              }
                          }
                      }
                      /// @dev Fetches balances of tokens to be swapped before swapping.
                      /// @param _swaps Array of data used to execute swaps
                      /// @return uint256[] Array of token balances.
                      function _fetchBalances(
                          LibSwap.SwapData[] memory _swaps
                      ) private view returns (uint256[] memory) {
                          uint256 numSwaps = _swaps.length;
                          uint256[] memory balances = new uint256[](numSwaps);
                          address asset;
                          for (uint256 i = 0; i < numSwaps; ) {
                              asset = _swaps[i].receivingAssetId;
                              balances[i] = LibAsset.getOwnBalance(asset);
                              if (LibAsset.isNativeAsset(asset)) {
                                  balances[i] -= msg.value;
                              }
                              unchecked {
                                  ++i;
                              }
                          }
                          return balances;
                      }
                  }
                  // SPDX-License-Identifier: UNLICENSED
                  pragma solidity 0.8.17;
                  import { LibAsset } from "../Libraries/LibAsset.sol";
                  import { LibUtil } from "../Libraries/LibUtil.sol";
                  import { InvalidReceiver, InformationMismatch, InvalidSendingToken, InvalidAmount, NativeAssetNotSupported, InvalidDestinationChain, CannotBridgeToSameNetwork } from "../Errors/GenericErrors.sol";
                  import { IRubic } from "../Interfaces/IRubic.sol";
                  import { LibSwap } from "../Libraries/LibSwap.sol";
                  contract Validatable {
                      modifier validateBridgeData(IRubic.BridgeData memory _bridgeData) {
                          if (LibUtil.isZeroAddress(_bridgeData.receiver)) {
                              revert InvalidReceiver();
                          }
                          if (_bridgeData.minAmount == 0) {
                              revert InvalidAmount();
                          }
                          if (_bridgeData.destinationChainId == block.chainid) {
                              revert CannotBridgeToSameNetwork();
                          }
                          _;
                      }
                      modifier noNativeAsset(IRubic.BridgeData memory _bridgeData) {
                          if (LibAsset.isNativeAsset(_bridgeData.sendingAssetId)) {
                              revert NativeAssetNotSupported();
                          }
                          _;
                      }
                      modifier onlyAllowSourceToken(
                          IRubic.BridgeData memory _bridgeData,
                          address _token
                      ) {
                          if (_bridgeData.sendingAssetId != _token) {
                              revert InvalidSendingToken();
                          }
                          _;
                      }
                      modifier onlyAllowDestinationChain(
                          IRubic.BridgeData memory _bridgeData,
                          uint256 _chainId
                      ) {
                          if (_bridgeData.destinationChainId != _chainId) {
                              revert InvalidDestinationChain();
                          }
                          _;
                      }
                      modifier containsSourceSwaps(IRubic.BridgeData memory _bridgeData) {
                          if (!_bridgeData.hasSourceSwaps) {
                              revert InformationMismatch();
                          }
                          _;
                      }
                      modifier doesNotContainSourceSwaps(IRubic.BridgeData memory _bridgeData) {
                          if (_bridgeData.hasSourceSwaps) {
                              revert InformationMismatch();
                          }
                          _;
                      }
                      modifier doesNotContainDestinationCalls(
                          IRubic.BridgeData memory _bridgeData
                      ) {
                          if (_bridgeData.hasDestinationCall) {
                              revert InformationMismatch();
                          }
                          _;
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.17;
                  interface IFeesFacet {
                      struct IntegratorFeeInfo {
                          bool isIntegrator; // flag for setting 0 fees for integrator      - 1 byte
                          uint32 tokenFee; // total fee percent gathered from user          - 4 bytes
                          uint32 RubicTokenShare; // token share of platform commission     - 4 bytes
                          uint32 RubicFixedCryptoShare; // native share of fixed commission - 4 bytes
                          uint128 fixedFeeAmount; // custom fixed fee amount                - 16 bytes
                      }
                      /**
                       * @dev Initializes the FeesFacet with treasury address and max fee amount
                       * No need to check initialized status because if max fee is 0 than there is no token fees
                       * @param _feeTreasure Address to send fees to
                       * @param _maxRubicPlatformFee Max value of Tubic token fees
                       */
                      function initialize(
                          address _feeTreasure,
                          uint256 _maxRubicPlatformFee,
                          uint256 _maxFixedNativeFee
                      ) external;
                      /**
                       * @dev Sets fee info associated with an integrator
                       * @param _integrator Address of the integrator
                       * @param _info Struct with fee info
                       */
                      function setIntegratorInfo(
                          address _integrator,
                          IntegratorFeeInfo memory _info
                      ) external;
                      /**
                       * @dev Sets address of the treasure
                       * @param _feeTreasure Address of the treasure
                       */
                      function setFeeTreasure(address _feeTreasure) external;
                      /**
                       * @dev Sets fixed crypto fee
                       * @param _fixedNativeFee Fixed crypto fee
                       */
                      function setFixedNativeFee(uint256 _fixedNativeFee) external;
                      /**
                       * @dev Sets Rubic token fee
                       * @notice Cannot be higher than limit set only by an admin
                       * @param _platformFee Fixed crypto fee
                       */
                      function setRubicPlatformFee(uint256 _platformFee) external;
                      /**
                       * @dev Sets the limit of Rubic token fee
                       * @param _maxFee The limit
                       */
                      function setMaxRubicPlatformFee(uint256 _maxFee) external;
                      /// VIEW FUNCTIONS ///
                      function calcTokenFees(
                          uint256 _amount,
                          address _integrator
                      )
                          external
                          view
                          returns (uint256 totalFee, uint256 RubicFee, uint256 integratorFee);
                      function fixedNativeFee() external view returns (uint256 _fixedNativeFee);
                      function RubicPlatformFee()
                          external
                          view
                          returns (uint256 _RubicPlatformFee);
                      function maxRubicPlatformFee()
                          external
                          view
                          returns (uint256 _maxRubicPlatformFee);
                      function maxFixedNativeFee()
                          external
                          view
                          returns (uint256 _maxFixedNativeFee);
                      function feeTreasure() external view returns (address feeTreasure);
                      function integratorToFeeInfo(
                          address _integrator
                      ) external view returns (IFeesFacet.IntegratorFeeInfo memory _info);
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.17;
                  interface IRubic {
                      /// Structs ///
                      struct BridgeData {
                          bytes32 transactionId;
                          string bridge;
                          address integrator;
                          address referrer;
                          address sendingAssetId;
                          address receivingAssetId;
                          address receiver;
                          address refundee;
                          uint256 minAmount;
                          uint256 destinationChainId;
                          bool hasSourceSwaps;
                          bool hasDestinationCall;
                      }
                      /// Events ///
                      event RubicTransferStarted(IRubic.BridgeData bridgeData);
                      event RubicTransferCompleted(
                          bytes32 indexed transactionId,
                          address receivingAssetId,
                          address receiver,
                          uint256 amount,
                          uint256 timestamp
                      );
                      event RubicTransferRecovered(
                          bytes32 indexed transactionId,
                          address receivingAssetId,
                          address receiver,
                          uint256 amount,
                          uint256 timestamp
                      );
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity ^0.8.17;
                  /// @title Contains 512-bit math functions
                  /// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
                  /// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
                  library FullMath {
                      /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                      /// @param a The multiplicand
                      /// @param b The multiplier
                      /// @param denominator The divisor
                      /// @return result The 256-bit result
                      /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
                      function mulDiv(
                          uint256 a,
                          uint256 b,
                          uint256 denominator
                      ) internal pure returns (uint256 result) {
                          unchecked {
                              // 512-bit multiply [prod1 prod0] = a * b
                              // Compute the product mod 2**256 and mod 2**256 - 1
                              // then use the Chinese Remainder Theorem to reconstruct
                              // the 512 bit result. The result is stored in two 256
                              // variables such that product = prod1 * 2**256 + prod0
                              uint256 prod0; // Least significant 256 bits of the product
                              uint256 prod1; // Most significant 256 bits of the product
                              assembly {
                                  let mm := mulmod(a, b, not(0))
                                  prod0 := mul(a, b)
                                  prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                              }
                              // Handle non-overflow cases, 256 by 256 division
                              if (prod1 == 0) {
                                  require(denominator > 0);
                                  assembly {
                                      result := div(prod0, denominator)
                                  }
                                  return result;
                              }
                              // Make sure the result is less than 2**256.
                              // Also prevents denominator == 0
                              require(denominator > prod1);
                              ///////////////////////////////////////////////
                              // 512 by 256 division.
                              ///////////////////////////////////////////////
                              // Make division exact by subtracting the remainder from [prod1 prod0]
                              // Compute remainder using mulmod
                              uint256 remainder;
                              assembly {
                                  remainder := mulmod(a, b, denominator)
                              }
                              // Subtract 256 bit number from 512 bit number
                              assembly {
                                  prod1 := sub(prod1, gt(remainder, prod0))
                                  prod0 := sub(prod0, remainder)
                              }
                              // Factor powers of two out of denominator
                              // Compute largest power of two divisor of denominator.
                              // Always >= 1.
                              uint256 twos = (0 - denominator) & denominator;
                              // Divide denominator by power of two
                              assembly {
                                  denominator := div(denominator, twos)
                              }
                              // Divide [prod1 prod0] by the factors of two
                              assembly {
                                  prod0 := div(prod0, twos)
                              }
                              // Shift in bits from prod1 into prod0. For this we need
                              // to flip `twos` such that it is 2**256 / twos.
                              // If twos is zero, then it becomes one
                              assembly {
                                  twos := add(div(sub(0, twos), twos), 1)
                              }
                              prod0 |= prod1 * twos;
                              // Invert denominator mod 2**256
                              // Now that denominator is an odd number, it has an inverse
                              // modulo 2**256 such that denominator * inv = 1 mod 2**256.
                              // Compute the inverse by starting with a seed that is correct
                              // correct for four bits. That is, denominator * inv = 1 mod 2**4
                              uint256 inv = (3 * denominator) ^ 2;
                              // Now use Newton-Raphson iteration to improve the precision.
                              // Thanks to Hensel's lifting lemma, this also works in modular
                              // arithmetic, doubling the correct bits in each step.
                              inv *= 2 - denominator * inv; // inverse mod 2**8
                              inv *= 2 - denominator * inv; // inverse mod 2**16
                              inv *= 2 - denominator * inv; // inverse mod 2**32
                              inv *= 2 - denominator * inv; // inverse mod 2**64
                              inv *= 2 - denominator * inv; // inverse mod 2**128
                              inv *= 2 - denominator * inv; // inverse mod 2**256
                              // Because the division is now exact we can divide by multiplying
                              // with the modular inverse of denominator. This will give us the
                              // correct result modulo 2**256. Since the precoditions guarantee
                              // that the outcome is less than 2**256, this is the final result.
                              // We don't need to compute the high bits of the result and prod1
                              // is no longer required.
                              result = prod0 * inv;
                              return result;
                          }
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.17;
                  import { InvalidContract } from "../Errors/GenericErrors.sol";
                  /// @title Lib Allow List
                  /// @notice Library for managing and accessing the conract address allow list
                  library LibAllowList {
                      /// Storage ///
                      bytes32 internal constant NAMESPACE =
                          keccak256("com.rubic.library.allow.list");
                      struct AllowListStorage {
                          mapping(address => bool) allowlist;
                          mapping(bytes4 => bool) selectorAllowList;
                          address[] contracts;
                      }
                      /// @dev Adds a contract address to the allow list
                      /// @param _contract the contract address to add
                      function addAllowedContract(address _contract) internal {
                          _checkAddress(_contract);
                          AllowListStorage storage als = _getStorage();
                          if (als.allowlist[_contract]) return;
                          als.allowlist[_contract] = true;
                          als.contracts.push(_contract);
                      }
                      /// @dev Checks whether a contract address has been added to the allow list
                      /// @param _contract the contract address to check
                      function contractIsAllowed(
                          address _contract
                      ) internal view returns (bool) {
                          return _getStorage().allowlist[_contract];
                      }
                      /// @dev Remove a contract address from the allow list
                      /// @param _contract the contract address to remove
                      function removeAllowedContract(address _contract) internal {
                          AllowListStorage storage als = _getStorage();
                          if (!als.allowlist[_contract]) {
                              return;
                          }
                          als.allowlist[_contract] = false;
                          uint256 length = als.contracts.length;
                          // Find the contract in the list
                          for (uint256 i = 0; i < length; i++) {
                              if (als.contracts[i] == _contract) {
                                  // Move the last element into the place to delete
                                  als.contracts[i] = als.contracts[length - 1];
                                  // Remove the last element
                                  als.contracts.pop();
                                  break;
                              }
                          }
                      }
                      /// @dev Fetch contract addresses from the allow list
                      function getAllowedContracts() internal view returns (address[] memory) {
                          return _getStorage().contracts;
                      }
                      /// @dev Add a selector to the allow list
                      /// @param _selector the selector to add
                      function addAllowedSelector(bytes4 _selector) internal {
                          _getStorage().selectorAllowList[_selector] = true;
                      }
                      /// @dev Removes a selector from the allow list
                      /// @param _selector the selector to remove
                      function removeAllowedSelector(bytes4 _selector) internal {
                          _getStorage().selectorAllowList[_selector] = false;
                      }
                      /// @dev Returns if selector has been added to the allow list
                      /// @param _selector the selector to check
                      function selectorIsAllowed(bytes4 _selector) internal view returns (bool) {
                          return _getStorage().selectorAllowList[_selector];
                      }
                      /// @dev Fetch local storage struct
                      function _getStorage()
                          internal
                          pure
                          returns (AllowListStorage storage als)
                      {
                          bytes32 position = NAMESPACE;
                          // solhint-disable-next-line no-inline-assembly
                          assembly {
                              als.slot := position
                          }
                      }
                      /// @dev Contains business logic for validating a contract address.
                      /// @param _contract address of the dex to check
                      function _checkAddress(address _contract) private view {
                          if (_contract == address(0)) revert InvalidContract();
                          if (_contract.code.length == 0) revert InvalidContract();
                      }
                  }
                  // SPDX-License-Identifier: UNLICENSED
                  pragma solidity 0.8.17;
                  import { InsufficientBalance, NullAddrIsNotAnERC20Token, NullAddrIsNotAValidSpender, NoTransferToNullAddress, InvalidAmount, NativeValueWithERC, NativeAssetTransferFailed } from "../Errors/GenericErrors.sol";
                  import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
                  import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
                  import { ERC20Proxy } from "../Periphery/ERC20Proxy.sol";
                  import { LibSwap } from "./LibSwap.sol";
                  import { LibFees } from "./LibFees.sol";
                  /// @title LibAsset
                  /// @notice This library contains helpers for dealing with onchain transfers
                  ///         of assets, including accounting for the native asset `assetId`
                  ///         conventions and any noncompliant ERC20 transfers
                  library LibAsset {
                      uint256 private constant MAX_UINT = type(uint256).max;
                      address internal constant NULL_ADDRESS = address(0);
                      /// @dev All native assets use the empty address for their asset id
                      ///      by convention
                      address internal constant NATIVE_ASSETID = NULL_ADDRESS; //address(0)
                      /// @notice Gets the balance of the inheriting contract for the given asset
                      /// @param assetId The asset identifier to get the balance of
                      /// @return Balance held by contracts using this library
                      function getOwnBalance(address assetId) internal view returns (uint256) {
                          return
                              assetId == NATIVE_ASSETID
                                  ? address(this).balance
                                  : IERC20(assetId).balanceOf(address(this));
                      }
                      /// @notice Transfers ether from the inheriting contract to a given
                      ///         recipient
                      /// @param recipient Address to send ether to
                      /// @param amount Amount to send to given recipient
                      function transferNativeAsset(
                          address payable recipient,
                          uint256 amount
                      ) internal {
                          if (recipient == NULL_ADDRESS) revert NoTransferToNullAddress();
                          if (amount > address(this).balance)
                              revert InsufficientBalance(amount, address(this).balance);
                          // solhint-disable-next-line avoid-low-level-calls
                          (bool success, ) = recipient.call{ value: amount }("");
                          if (!success) revert NativeAssetTransferFailed();
                      }
                      /// @notice If the current allowance is insufficient, the allowance for a given spender
                      /// is set to MAX_UINT.
                      /// @param assetId Token address to transfer
                      /// @param spender Address to give spend approval to
                      /// @param amount Amount to approve for spending
                      function maxApproveERC20(
                          IERC20 assetId,
                          address spender,
                          uint256 amount
                      ) internal {
                          if (address(assetId) == NATIVE_ASSETID) return;
                          if (spender == NULL_ADDRESS) revert NullAddrIsNotAValidSpender();
                          uint256 allowance = assetId.allowance(address(this), spender);
                          if (allowance < amount)
                              SafeERC20.safeIncreaseAllowance(
                                  IERC20(assetId),
                                  spender,
                                  MAX_UINT - allowance
                              );
                      }
                      /// @notice Transfers tokens from the inheriting contract to a given
                      ///         recipient
                      /// @param assetId Token address to transfer
                      /// @param recipient Address to send token to
                      /// @param amount Amount to send to given recipient
                      function transferERC20(
                          address assetId,
                          address recipient,
                          uint256 amount
                      ) internal {
                          if (isNativeAsset(assetId)) revert NullAddrIsNotAnERC20Token();
                          uint256 assetBalance = IERC20(assetId).balanceOf(address(this));
                          if (amount > assetBalance)
                              revert InsufficientBalance(amount, assetBalance);
                          SafeERC20.safeTransfer(IERC20(assetId), recipient, amount);
                      }
                      /// @notice Transfers tokens from a sender to a given recipient
                      /// @param assetId Token address to transfer
                      /// @param from Address of sender/owner
                      /// @param to Address of recipient/spender
                      /// @param amount Amount to transfer from owner to spender
                      function transferFromERC20(
                          address assetId,
                          address from,
                          address to,
                          uint256 amount
                      ) internal {
                          if (assetId == NATIVE_ASSETID) revert NullAddrIsNotAnERC20Token();
                          if (to == NULL_ADDRESS) revert NoTransferToNullAddress();
                          IERC20 asset = IERC20(assetId);
                          uint256 prevBalance = asset.balanceOf(to);
                          SafeERC20.safeTransferFrom(asset, from, to, amount);
                          if (asset.balanceOf(to) - prevBalance != amount)
                              revert InvalidAmount();
                      }
                      /// @dev Deposits asset for bridging and accrues fixed and token fees
                      /// @param assetId Address of asset to deposit
                      /// @param amount Amount of asset to bridge
                      /// @param extraNativeAmount Amount of native token to send to a bridge
                      /// @param integrator Integrator for whom to count the fees
                      /// @return amountWithoutFees Amount of tokens to bridge minus fees
                      function depositAssetAndAccrueFees(
                          address assetId,
                          uint256 amount,
                          uint256 extraNativeAmount,
                          address integrator
                      ) internal returns (uint256 amountWithoutFees) {
                          uint256 accruedFixedNativeFee = LibFees.accrueFixedNativeFee(
                              integrator
                          );
                          // Check that msg value is at least greater than fixed native fee + extra fee sending to bridge
                          if (msg.value < accruedFixedNativeFee + extraNativeAmount)
                              revert InvalidAmount();
                          amountWithoutFees = _depositAndAccrueTokenFee(
                              assetId,
                              amount,
                              accruedFixedNativeFee,
                              extraNativeAmount,
                              integrator
                          );
                      }
                      /// @dev Deposits assets for each swap that requires and accrues fixed and token fees
                      /// @param swaps Array of swap datas
                      /// @param integrator Integrator for whom to count the fees
                      /// @return amountWithoutFees Array of swap datas with updated amounts
                      function depositAssetsAndAccrueFees(
                          LibSwap.SwapData[] memory swaps,
                          address integrator
                      ) internal returns (LibSwap.SwapData[] memory) {
                          uint256 accruedFixedNativeFee = LibFees.accrueFixedNativeFee(
                              integrator
                          );
                          if (msg.value < accruedFixedNativeFee) revert InvalidAmount();
                          for (uint256 i = 0; i < swaps.length; ) {
                              LibSwap.SwapData memory swap = swaps[i];
                              if (swap.requiresDeposit) {
                                  swap.fromAmount = _depositAndAccrueTokenFee(
                                      swap.sendingAssetId,
                                      swap.fromAmount,
                                      accruedFixedNativeFee,
                                      0,
                                      integrator
                                  );
                              }
                              swaps[i] = swap;
                              unchecked {
                                  i++;
                              }
                          }
                          return swaps;
                      }
                      function _depositAndAccrueTokenFee(
                          address assetId,
                          uint256 amount,
                          uint256 accruedFixedNativeFee,
                          uint256 extraNativeAmount,
                          address integrator
                      ) private returns (uint256 amountWithoutFees) {
                          if (isNativeAsset(assetId)) {
                              // Check that msg value greater than sending amount + fixed native fees + extra fees sending to bridge
                              if (msg.value < amount + accruedFixedNativeFee + extraNativeAmount)
                                  revert InvalidAmount();
                          } else {
                              if (amount == 0) revert InvalidAmount();
                              uint256 balance = IERC20(assetId).balanceOf(address(this));
                              if (balance < amount) revert InsufficientBalance(amount, balance);
                              //            getERC20proxy().transferFrom(
                              //                assetId,
                              //                msg.sender,
                              //                address(this),
                              //                amount
                              //            );
                          }
                          amountWithoutFees = LibFees.accrueTokenFees(
                              integrator,
                              amount,
                              assetId
                          );
                      }
                      /// @notice Determines whether the given assetId is the native asset
                      /// @param assetId The asset identifier to evaluate
                      /// @return Boolean indicating if the asset is the native asset
                      function isNativeAsset(address assetId) internal pure returns (bool) {
                          return assetId == NATIVE_ASSETID;
                      }
                      /// @notice Wrapper function to transfer a given asset (native or erc20) to
                      ///         some recipient. Should handle all non-compliant return value
                      ///         tokens as well by using the SafeERC20 contract by open zeppelin.
                      /// @param assetId Asset id for transfer (address(0) for native asset,
                      ///                token address for erc20s)
                      /// @param recipient Address to send asset to
                      /// @param amount Amount to send to given recipient
                      function transferAsset(
                          address assetId,
                          address payable recipient,
                          uint256 amount
                      ) internal {
                          (assetId == NATIVE_ASSETID)
                              ? transferNativeAsset(recipient, amount)
                              : transferERC20(assetId, recipient, amount);
                      }
                      /// @dev Checks whether the given address is a contract and contains code
                      function isContract(address _contractAddr) internal view returns (bool) {
                          uint256 size;
                          // solhint-disable-next-line no-inline-assembly
                          assembly {
                              size := extcodesize(_contractAddr)
                          }
                          return size > 0;
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.17;
                  library LibBytes {
                      // solhint-disable no-inline-assembly
                      // LibBytes specific errors
                      error SliceOverflow();
                      error SliceOutOfBounds();
                      error AddressOutOfBounds();
                      error UintOutOfBounds();
                      // -------------------------
                      function concat(
                          bytes memory _preBytes,
                          bytes memory _postBytes
                      ) internal pure returns (bytes memory) {
                          bytes memory tempBytes;
                          assembly {
                              // Get a location of some free memory and store it in tempBytes as
                              // Solidity does for memory variables.
                              tempBytes := mload(0x40)
                              // Store the length of the first bytes array at the beginning of
                              // the memory for tempBytes.
                              let length := mload(_preBytes)
                              mstore(tempBytes, length)
                              // Maintain a memory counter for the current write location in the
                              // temp bytes array by adding the 32 bytes for the array length to
                              // the starting location.
                              let mc := add(tempBytes, 0x20)
                              // Stop copying when the memory counter reaches the length of the
                              // first bytes array.
                              let end := add(mc, length)
                              for {
                                  // Initialize a copy counter to the start of the _preBytes data,
                                  // 32 bytes into its memory.
                                  let cc := add(_preBytes, 0x20)
                              } lt(mc, end) {
                                  // Increase both counters by 32 bytes each iteration.
                                  mc := add(mc, 0x20)
                                  cc := add(cc, 0x20)
                              } {
                                  // Write the _preBytes data into the tempBytes memory 32 bytes
                                  // at a time.
                                  mstore(mc, mload(cc))
                              }
                              // Add the length of _postBytes to the current length of tempBytes
                              // and store it as the new length in the first 32 bytes of the
                              // tempBytes memory.
                              length := mload(_postBytes)
                              mstore(tempBytes, add(length, mload(tempBytes)))
                              // Move the memory counter back from a multiple of 0x20 to the
                              // actual end of the _preBytes data.
                              mc := end
                              // Stop copying when the memory counter reaches the new combined
                              // length of the arrays.
                              end := add(mc, length)
                              for {
                                  let cc := add(_postBytes, 0x20)
                              } lt(mc, end) {
                                  mc := add(mc, 0x20)
                                  cc := add(cc, 0x20)
                              } {
                                  mstore(mc, mload(cc))
                              }
                              // Update the free-memory pointer by padding our last write location
                              // to 32 bytes: add 31 bytes to the end of tempBytes to move to the
                              // next 32 byte block, then round down to the nearest multiple of
                              // 32. If the sum of the length of the two arrays is zero then add
                              // one before rounding down to leave a blank 32 bytes (the length block with 0).
                              mstore(
                                  0x40,
                                  and(
                                      add(add(end, iszero(add(length, mload(_preBytes)))), 31),
                                      not(31) // Round down to the nearest 32 bytes.
                                  )
                              )
                          }
                          return tempBytes;
                      }
                      function concatStorage(
                          bytes storage _preBytes,
                          bytes memory _postBytes
                      ) internal {
                          assembly {
                              // Read the first 32 bytes of _preBytes storage, which is the length
                              // of the array. (We don't need to use the offset into the slot
                              // because arrays use the entire slot.)
                              let fslot := sload(_preBytes.slot)
                              // Arrays of 31 bytes or less have an even value in their slot,
                              // while longer arrays have an odd value. The actual length is
                              // the slot divided by two for odd values, and the lowest order
                              // byte divided by two for even values.
                              // If the slot is even, bitwise and the slot with 255 and divide by
                              // two to get the length. If the slot is odd, bitwise and the slot
                              // with -1 and divide by two.
                              let slength := div(
                                  and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)),
                                  2
                              )
                              let mlength := mload(_postBytes)
                              let newlength := add(slength, mlength)
                              // slength can contain both the length and contents of the array
                              // if length < 32 bytes so let's prepare for that
                              // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                              switch add(lt(slength, 32), lt(newlength, 32))
                              case 2 {
                                  // Since the new array still fits in the slot, we just need to
                                  // update the contents of the slot.
                                  // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
                                  sstore(
                                      _preBytes.slot,
                                      // all the modifications to the slot are inside this
                                      // next block
                                      add(
                                          // we can just add to the slot contents because the
                                          // bytes we want to change are the LSBs
                                          fslot,
                                          add(
                                              mul(
                                                  div(
                                                      // load the bytes from memory
                                                      mload(add(_postBytes, 0x20)),
                                                      // zero all bytes to the right
                                                      exp(0x100, sub(32, mlength))
                                                  ),
                                                  // and now shift left the number of bytes to
                                                  // leave space for the length in the slot
                                                  exp(0x100, sub(32, newlength))
                                              ),
                                              // increase length by the double of the memory
                                              // bytes length
                                              mul(mlength, 2)
                                          )
                                      )
                                  )
                              }
                              case 1 {
                                  // The stored value fits in the slot, but the combined value
                                  // will exceed it.
                                  // get the keccak hash to get the contents of the array
                                  mstore(0x0, _preBytes.slot)
                                  let sc := add(keccak256(0x0, 0x20), div(slength, 32))
                                  // save new length
                                  sstore(_preBytes.slot, add(mul(newlength, 2), 1))
                                  // The contents of the _postBytes array start 32 bytes into
                                  // the structure. Our first read should obtain the `submod`
                                  // bytes that can fit into the unused space in the last word
                                  // of the stored array. To get this, we read 32 bytes starting
                                  // from `submod`, so the data we read overlaps with the array
                                  // contents by `submod` bytes. Masking the lowest-order
                                  // `submod` bytes allows us to add that value directly to the
                                  // stored value.
                                  let submod := sub(32, slength)
                                  let mc := add(_postBytes, submod)
                                  let end := add(_postBytes, mlength)
                                  let mask := sub(exp(0x100, submod), 1)
                                  sstore(
                                      sc,
                                      add(
                                          and(
                                              fslot,
                                              0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00
                                          ),
                                          and(mload(mc), mask)
                                      )
                                  )
                                  for {
                                      mc := add(mc, 0x20)
                                      sc := add(sc, 1)
                                  } lt(mc, end) {
                                      sc := add(sc, 1)
                                      mc := add(mc, 0x20)
                                  } {
                                      sstore(sc, mload(mc))
                                  }
                                  mask := exp(0x100, sub(mc, end))
                                  sstore(sc, mul(div(mload(mc), mask), mask))
                              }
                              default {
                                  // get the keccak hash to get the contents of the array
                                  mstore(0x0, _preBytes.slot)
                                  // Start copying to the last used word of the stored array.
                                  let sc := add(keccak256(0x0, 0x20), div(slength, 32))
                                  // save new length
                                  sstore(_preBytes.slot, add(mul(newlength, 2), 1))
                                  // Copy over the first `submod` bytes of the new data as in
                                  // case 1 above.
                                  let slengthmod := mod(slength, 32)
                                  let submod := sub(32, slengthmod)
                                  let mc := add(_postBytes, submod)
                                  let end := add(_postBytes, mlength)
                                  let mask := sub(exp(0x100, submod), 1)
                                  sstore(sc, add(sload(sc), and(mload(mc), mask)))
                                  for {
                                      sc := add(sc, 1)
                                      mc := add(mc, 0x20)
                                  } lt(mc, end) {
                                      sc := add(sc, 1)
                                      mc := add(mc, 0x20)
                                  } {
                                      sstore(sc, mload(mc))
                                  }
                                  mask := exp(0x100, sub(mc, end))
                                  sstore(sc, mul(div(mload(mc), mask), mask))
                              }
                          }
                      }
                      function slice(
                          bytes memory _bytes,
                          uint256 _start,
                          uint256 _length
                      ) internal pure returns (bytes memory) {
                          if (_length + 31 < _length) revert SliceOverflow();
                          if (_bytes.length < _start + _length) revert SliceOutOfBounds();
                          bytes memory tempBytes;
                          assembly {
                              switch iszero(_length)
                              case 0 {
                                  // Get a location of some free memory and store it in tempBytes as
                                  // Solidity does for memory variables.
                                  tempBytes := mload(0x40)
                                  // The first word of the slice result is potentially a partial
                                  // word read from the original array. To read it, we calculate
                                  // the length of that partial word and start copying that many
                                  // bytes into the array. The first word we copy will start with
                                  // data we don't care about, but the last `lengthmod` bytes will
                                  // land at the beginning of the contents of the new array. When
                                  // we're done copying, we overwrite the full first word with
                                  // the actual length of the slice.
                                  let lengthmod := and(_length, 31)
                                  // The multiplication in the next line is necessary
                                  // because when slicing multiples of 32 bytes (lengthmod == 0)
                                  // the following copy loop was copying the origin's length
                                  // and then ending prematurely not copying everything it should.
                                  let mc := add(
                                      add(tempBytes, lengthmod),
                                      mul(0x20, iszero(lengthmod))
                                  )
                                  let end := add(mc, _length)
                                  for {
                                      // The multiplication in the next line has the same exact purpose
                                      // as the one above.
                                      let cc := add(
                                          add(
                                              add(_bytes, lengthmod),
                                              mul(0x20, iszero(lengthmod))
                                          ),
                                          _start
                                      )
                                  } lt(mc, end) {
                                      mc := add(mc, 0x20)
                                      cc := add(cc, 0x20)
                                  } {
                                      mstore(mc, mload(cc))
                                  }
                                  mstore(tempBytes, _length)
                                  //update free-memory pointer
                                  //allocating the array padded to 32 bytes like the compiler does now
                                  mstore(0x40, and(add(mc, 31), not(31)))
                              }
                              //if we want a zero-length slice let's just return a zero-length array
                              default {
                                  tempBytes := mload(0x40)
                                  //zero out the 32 bytes slice we are about to return
                                  //we need to do it because Solidity does not garbage collect
                                  mstore(tempBytes, 0)
                                  mstore(0x40, add(tempBytes, 0x20))
                              }
                          }
                          return tempBytes;
                      }
                      function toAddress(
                          bytes memory _bytes,
                          uint256 _start
                      ) internal pure returns (address) {
                          if (_bytes.length < _start + 20) {
                              revert AddressOutOfBounds();
                          }
                          address tempAddress;
                          assembly {
                              tempAddress := div(
                                  mload(add(add(_bytes, 0x20), _start)),
                                  0x1000000000000000000000000
                              )
                          }
                          return tempAddress;
                      }
                      function toUint8(
                          bytes memory _bytes,
                          uint256 _start
                      ) internal pure returns (uint8) {
                          if (_bytes.length < _start + 1) {
                              revert UintOutOfBounds();
                          }
                          uint8 tempUint;
                          assembly {
                              tempUint := mload(add(add(_bytes, 0x1), _start))
                          }
                          return tempUint;
                      }
                      function toUint16(
                          bytes memory _bytes,
                          uint256 _start
                      ) internal pure returns (uint16) {
                          if (_bytes.length < _start + 2) {
                              revert UintOutOfBounds();
                          }
                          uint16 tempUint;
                          assembly {
                              tempUint := mload(add(add(_bytes, 0x2), _start))
                          }
                          return tempUint;
                      }
                      function toUint32(
                          bytes memory _bytes,
                          uint256 _start
                      ) internal pure returns (uint32) {
                          if (_bytes.length < _start + 4) {
                              revert UintOutOfBounds();
                          }
                          uint32 tempUint;
                          assembly {
                              tempUint := mload(add(add(_bytes, 0x4), _start))
                          }
                          return tempUint;
                      }
                      function toUint64(
                          bytes memory _bytes,
                          uint256 _start
                      ) internal pure returns (uint64) {
                          if (_bytes.length < _start + 8) {
                              revert UintOutOfBounds();
                          }
                          uint64 tempUint;
                          assembly {
                              tempUint := mload(add(add(_bytes, 0x8), _start))
                          }
                          return tempUint;
                      }
                      function toUint96(
                          bytes memory _bytes,
                          uint256 _start
                      ) internal pure returns (uint96) {
                          if (_bytes.length < _start + 12) {
                              revert UintOutOfBounds();
                          }
                          uint96 tempUint;
                          assembly {
                              tempUint := mload(add(add(_bytes, 0xc), _start))
                          }
                          return tempUint;
                      }
                      function toUint128(
                          bytes memory _bytes,
                          uint256 _start
                      ) internal pure returns (uint128) {
                          if (_bytes.length < _start + 16) {
                              revert UintOutOfBounds();
                          }
                          uint128 tempUint;
                          assembly {
                              tempUint := mload(add(add(_bytes, 0x10), _start))
                          }
                          return tempUint;
                      }
                      function toUint256(
                          bytes memory _bytes,
                          uint256 _start
                      ) internal pure returns (uint256) {
                          if (_bytes.length < _start + 32) {
                              revert UintOutOfBounds();
                          }
                          uint256 tempUint;
                          assembly {
                              tempUint := mload(add(add(_bytes, 0x20), _start))
                          }
                          return tempUint;
                      }
                      function toBytes32(
                          bytes memory _bytes,
                          uint256 _start
                      ) internal pure returns (bytes32) {
                          if (_bytes.length < _start + 32) {
                              revert UintOutOfBounds();
                          }
                          bytes32 tempBytes32;
                          assembly {
                              tempBytes32 := mload(add(add(_bytes, 0x20), _start))
                          }
                          return tempBytes32;
                      }
                      function equal(
                          bytes memory _preBytes,
                          bytes memory _postBytes
                      ) internal pure returns (bool) {
                          bool success = true;
                          assembly {
                              let length := mload(_preBytes)
                              // if lengths don't match the arrays are not equal
                              switch eq(length, mload(_postBytes))
                              case 1 {
                                  // cb is a circuit breaker in the for loop since there's
                                  //  no said feature for inline assembly loops
                                  // cb = 1 - don't breaker
                                  // cb = 0 - break
                                  let cb := 1
                                  let mc := add(_preBytes, 0x20)
                                  let end := add(mc, length)
                                  for {
                                      let cc := add(_postBytes, 0x20)
                                      // the next line is the loop condition:
                                      // while(uint256(mc < end) + cb == 2)
                                  } eq(add(lt(mc, end), cb), 2) {
                                      mc := add(mc, 0x20)
                                      cc := add(cc, 0x20)
                                  } {
                                      // if any of these checks fails then arrays are not equal
                                      if iszero(eq(mload(mc), mload(cc))) {
                                          // unsuccess:
                                          success := 0
                                          cb := 0
                                      }
                                  }
                              }
                              default {
                                  // unsuccess:
                                  success := 0
                              }
                          }
                          return success;
                      }
                      function equalStorage(
                          bytes storage _preBytes,
                          bytes memory _postBytes
                      ) internal view returns (bool) {
                          bool success = true;
                          assembly {
                              // we know _preBytes_offset is 0
                              let fslot := sload(_preBytes.slot)
                              // Decode the length of the stored array like in concatStorage().
                              let slength := div(
                                  and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)),
                                  2
                              )
                              let mlength := mload(_postBytes)
                              // if lengths don't match the arrays are not equal
                              switch eq(slength, mlength)
                              case 1 {
                                  // slength can contain both the length and contents of the array
                                  // if length < 32 bytes so let's prepare for that
                                  // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                                  if iszero(iszero(slength)) {
                                      switch lt(slength, 32)
                                      case 1 {
                                          // blank the last byte which is the length
                                          fslot := mul(div(fslot, 0x100), 0x100)
                                          if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
                                              // unsuccess:
                                              success := 0
                                          }
                                      }
                                      default {
                                          // cb is a circuit breaker in the for loop since there's
                                          //  no said feature for inline assembly loops
                                          // cb = 1 - don't breaker
                                          // cb = 0 - break
                                          let cb := 1
                                          // get the keccak hash to get the contents of the array
                                          mstore(0x0, _preBytes.slot)
                                          let sc := keccak256(0x0, 0x20)
                                          let mc := add(_postBytes, 0x20)
                                          let end := add(mc, mlength)
                                          // the next line is the loop condition:
                                          // while(uint256(mc < end) + cb == 2)
                                          // solhint-disable-next-line no-empty-blocks
                                          for {
                                          } eq(add(lt(mc, end), cb), 2) {
                                              sc := add(sc, 1)
                                              mc := add(mc, 0x20)
                                          } {
                                              if iszero(eq(sload(sc), mload(mc))) {
                                                  // unsuccess:
                                                  success := 0
                                                  cb := 0
                                              }
                                          }
                                      }
                                  }
                              }
                              default {
                                  // unsuccess:
                                  success := 0
                              }
                          }
                          return success;
                      }
                      function getFirst4Bytes(
                          bytes memory data
                      ) internal pure returns (bytes4 outBytes4) {
                          if (data.length == 0) {
                              return 0x0;
                          }
                          assembly {
                              outBytes4 := mload(add(data, 32))
                          }
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.17;
                  import { IFeesFacet } from "../Interfaces/IFeesFacet.sol";
                  import { LibUtil } from "../Libraries/LibUtil.sol";
                  import { FullMath } from "../Libraries/FullMath.sol";
                  import { LibAsset } from "../Libraries/LibAsset.sol";
                  /// Implementation of EIP-2535 Diamond Standard
                  /// https://eips.ethereum.org/EIPS/eip-2535
                  library LibFees {
                      bytes32 internal constant FFES_STORAGE_POSITION =
                          keccak256("rubic.library.fees.v2");
                      // Denominator for setting fees
                      uint256 internal constant DENOMINATOR = 1e6;
                      // ----------------
                      event FixedNativeFee(
                          uint256 RubicPart,
                          uint256 integratorPart,
                          address indexed integrator
                      );
                      event FixedNativeFeeCollected(uint256 amount, address collector);
                      event TokenFee(
                          uint256 RubicPart,
                          uint256 integratorPart,
                          address indexed integrator,
                          address token
                      );
                      event IntegratorTokenFeeCollected(
                          uint256 amount,
                          address indexed integrator,
                          address token
                      );
                      struct FeesStorage {
                          mapping(address => IFeesFacet.IntegratorFeeInfo) integratorToFeeInfo;
                          uint256 maxRubicPlatformFee; // sets while initialize
                          uint256 maxFixedNativeFee; // sets while initialize & cannot be changed
                          uint256 RubicPlatformFee;
                          // Rubic fixed fee for swap
                          uint256 fixedNativeFee;
                          address feeTreasure;
                          bool initialized;
                      }
                      function feesStorage() internal pure returns (FeesStorage storage fs) {
                          bytes32 position = FFES_STORAGE_POSITION;
                          // solhint-disable-next-line no-inline-assembly
                          assembly {
                              fs.slot := position
                          }
                      }
                      /**
                       * @dev Calculates and accrues fixed crypto fee
                       * @param _integrator Integrator's address if there is one
                       * @return The amount of fixedNativeFee
                       */
                      function accrueFixedNativeFee(
                          address _integrator
                      ) internal returns (uint256) {
                          uint256 _fixedNativeFee;
                          uint256 _RubicPart;
                          FeesStorage storage fs = feesStorage();
                          IFeesFacet.IntegratorFeeInfo memory _info = fs.integratorToFeeInfo[
                              _integrator
                          ];
                          if (_info.isIntegrator) {
                              _fixedNativeFee = uint256(_info.fixedFeeAmount);
                              if (_fixedNativeFee > 0) {
                                  _RubicPart =
                                      (_fixedNativeFee * _info.RubicFixedCryptoShare) /
                                      DENOMINATOR;
                                  if (_fixedNativeFee - _RubicPart > 0)
                                      LibAsset.transferNativeAsset(
                                          payable(_integrator),
                                          _fixedNativeFee - _RubicPart
                                      );
                              }
                          } else {
                              _fixedNativeFee = fs.fixedNativeFee;
                              _RubicPart = _fixedNativeFee;
                          }
                          if (_RubicPart > 0)
                              LibAsset.transferNativeAsset(payable(fs.feeTreasure), _RubicPart);
                          emit FixedNativeFee(
                              _RubicPart,
                              _fixedNativeFee - _RubicPart,
                              _integrator
                          );
                          return _fixedNativeFee;
                      }
                      /**
                       * @dev Calculates token fees and accrues them
                       * @param _integrator Integrator's address if there is one
                       * @param _amountWithFee Total amount passed by the user
                       * @param _token The token in which the fees are collected
                       * @return Amount of tokens without fee
                       */
                      function accrueTokenFees(
                          address _integrator,
                          uint256 _amountWithFee,
                          address _token
                      ) internal returns (uint256) {
                          FeesStorage storage fs = feesStorage();
                          IFeesFacet.IntegratorFeeInfo memory _info = fs.integratorToFeeInfo[
                              _integrator
                          ];
                          (uint256 _totalFees, uint256 _RubicFee) = _calculateFee(
                              fs,
                              _amountWithFee,
                              _info
                          );
                          if (_integrator != address(0)) {
                              if (_totalFees - _RubicFee > 0)
                                  LibAsset.transferAsset(
                                      _token,
                                      payable(_integrator),
                                      _totalFees - _RubicFee
                                  );
                          }
                          if (_RubicFee > 0)
                              LibAsset.transferAsset(_token, payable(fs.feeTreasure), _RubicFee);
                          emit TokenFee(_RubicFee, _totalFees - _RubicFee, _integrator, _token);
                          return _amountWithFee - _totalFees;
                      }
                      /// PRIVATE ///
                      /**
                       * @dev Calculates fee amount for integrator and rubic, used in architecture
                       * @param _amountWithFee the users initial amount
                       * @param _info the struct with data about integrator
                       * @return _totalFee the amount of Rubic + integrator fee
                       * @return _RubicFee the amount of Rubic fee only
                       */
                      function _calculateFeeWithIntegrator(
                          uint256 _amountWithFee,
                          IFeesFacet.IntegratorFeeInfo memory _info
                      ) private pure returns (uint256 _totalFee, uint256 _RubicFee) {
                          if (_info.tokenFee > 0) {
                              _totalFee = FullMath.mulDiv(
                                  _amountWithFee,
                                  _info.tokenFee,
                                  DENOMINATOR
                              );
                              _RubicFee = FullMath.mulDiv(
                                  _totalFee,
                                  _info.RubicTokenShare,
                                  DENOMINATOR
                              );
                          }
                      }
                      function _calculateFee(
                          FeesStorage storage _fs,
                          uint256 _amountWithFee,
                          IFeesFacet.IntegratorFeeInfo memory _info
                      ) internal view returns (uint256 _totalFee, uint256 _RubicFee) {
                          if (_info.isIntegrator) {
                              (_totalFee, _RubicFee) = _calculateFeeWithIntegrator(
                                  _amountWithFee,
                                  _info
                              );
                          } else {
                              _totalFee = FullMath.mulDiv(
                                  _amountWithFee,
                                  _fs.RubicPlatformFee,
                                  DENOMINATOR
                              );
                              _RubicFee = _totalFee;
                          }
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.17;
                  import { LibAsset } from "./LibAsset.sol";
                  import { LibUtil } from "./LibUtil.sol";
                  import { InvalidContract, NoSwapFromZeroBalance, InsufficientBalance, UnAuthorized } from "../Errors/GenericErrors.sol";
                  import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
                  library LibSwap {
                      struct SwapData {
                          address callTo;
                          address approveTo;
                          address sendingAssetId;
                          address receivingAssetId;
                          uint256 fromAmount;
                          bytes callData;
                          bool requiresDeposit;
                      }
                      event AssetSwapped(
                          bytes32 transactionId,
                          address dex,
                          address fromAssetId,
                          address toAssetId,
                          uint256 fromAmount,
                          uint256 toAmount,
                          uint256 timestamp
                      );
                      function swap(bytes32 transactionId, SwapData memory _swap) internal {
                          if (!LibAsset.isContract(_swap.callTo)) revert InvalidContract();
                          uint256 fromAmount = _swap.fromAmount;
                          if (fromAmount == 0) revert NoSwapFromZeroBalance();
                          uint256 nativeValue = LibAsset.isNativeAsset(_swap.sendingAssetId)
                              ? _swap.fromAmount
                              : 0;
                          uint256 initialSendingAssetBalance = LibAsset.getOwnBalance(
                              _swap.sendingAssetId
                          );
                          uint256 initialReceivingAssetBalance = LibAsset.getOwnBalance(
                              _swap.receivingAssetId
                          );
                          if (nativeValue == 0) {
                              LibAsset.maxApproveERC20(
                                  IERC20(_swap.sendingAssetId),
                                  _swap.approveTo,
                                  _swap.fromAmount
                              );
                          }
                          if (initialSendingAssetBalance < _swap.fromAmount) {
                              revert InsufficientBalance(
                                  _swap.fromAmount,
                                  initialSendingAssetBalance
                              );
                          }
                          // solhint-disable-next-line avoid-low-level-calls
                          (bool success, bytes memory res) = _swap.callTo.call{
                              value: nativeValue
                          }(_swap.callData);
                          if (!success) {
                              string memory reason = LibUtil.getRevertMsg(res);
                              revert(reason);
                          }
                          uint256 newBalance = LibAsset.getOwnBalance(_swap.receivingAssetId);
                          emit AssetSwapped(
                              transactionId,
                              _swap.callTo,
                              _swap.sendingAssetId,
                              _swap.receivingAssetId,
                              _swap.fromAmount,
                              newBalance > initialReceivingAssetBalance
                                  ? newBalance - initialReceivingAssetBalance
                                  : newBalance,
                              block.timestamp
                          );
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.17;
                  import "./LibBytes.sol";
                  library LibUtil {
                      using LibBytes for bytes;
                      function getRevertMsg(
                          bytes memory _res
                      ) internal pure returns (string memory) {
                          if (_res.length < 68) return string(_res);
                          bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes
                          return abi.decode(revertData, (string)); // All that remains is the revert string
                      }
                      /// @notice Determines whether the given address is the zero address
                      /// @param addr The address to verify
                      /// @return Boolean indicating if the address is the zero address
                      function isZeroAddress(address addr) internal pure returns (bool) {
                          return addr == address(0);
                      }
                  }
                  // SPDX-License-Identifier: MIT
                  pragma solidity 0.8.17;
                  import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
                  import { LibAsset } from "../Libraries/LibAsset.sol";
                  import { LibUtil } from "../Libraries/LibUtil.sol";
                  import { ZeroAddress, LengthMissmatch, NotInitialized } from "../Errors/GenericErrors.sol";
                  /// @title ERC20 Proxy
                  /// @notice Proxy contract for safely transferring ERC20 tokens for swaps/executions
                  contract ERC20Proxy is Ownable {
                      /// Storage ///
                      address public diamond;
                      /// Events ///
                      event DiamondSet(address diamond);
                      /// Constructor
                      constructor(address _owner, address _diamond) {
                          transferOwnership(_owner);
                          diamond = _diamond;
                      }
                      function setDiamond(address _diamond) external onlyOwner {
                          if (_diamond == address(0)) revert ZeroAddress();
                          diamond = _diamond;
                          emit DiamondSet(_diamond);
                      }
                      /// @dev Transfers tokens from user to the diamond and calls it
                      /// @param tokens Addresses of tokens that should be sent to the diamond
                      /// @param amounts Corresponding amounts of tokens
                      /// @param facetCallData Calldata that should be passed to the diamond
                      /// Should contain any cross-chain related function
                      function startViaRubic(
                          address[] memory tokens,
                          uint256[] memory amounts,
                          bytes memory facetCallData
                      ) external payable {
                          if (diamond == address(0)) revert NotInitialized();
                          uint256 tokensLength = tokens.length;
                          if (tokensLength != amounts.length) revert LengthMissmatch();
                          for (uint256 i = 0; i < tokensLength; ) {
                              LibAsset.transferFromERC20(
                                  tokens[i],
                                  msg.sender,
                                  diamond,
                                  amounts[i]
                              );
                              unchecked {
                                  ++i;
                              }
                          }
                          // solhint-disable-next-line avoid-low-level-calls
                          (bool success, bytes memory res) = diamond.call{ value: msg.value }(
                              facetCallData
                          );
                          if (!success) {
                              string memory reason = LibUtil.getRevertMsg(res);
                              revert(reason);
                          }
                      }
                  }