ETH Price: $1,827.89 (+0.61%)
Gas: 0.39 Gwei

Transaction Decoder

Block:
21274910 at Nov-26-2024 10:27:59 PM +UTC
Transaction Fee:
0.001055347020186875 ETH $1.93
Gas Used:
125,957 Gas / 8.378629375 Gwei

Emitted Events:

262 AdminUpgradeabilityProxy.0xe5b754fb1abb7f01b499791d0b820ae3b6af3424ac1c59768edb53f4ec31a929( 0xe5b754fb1abb7f01b499791d0b820ae3b6af3424ac1c59768edb53f4ec31a929, 0x0000000000000000000000005983f0f9ccde7e506ddf68c7b08d20e84b84c003, 00000000000000000000000000000000000000000000000000a4141421a6176b, 0000000000000000000000000000000000000000000000000000000000000013 )
263 AdminUpgradeabilityProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x000000000000000000000000acd147a5bbcb7166c5bb13a9354ad7a59b99fb4d, 0x0000000000000000000000005983f0f9ccde7e506ddf68c7b08d20e84b84c003, 00000000000000000000000000000000000000000000000000a4141421a6176b )
264 AdminUpgradeabilityProxy.0x0c53c82ad07e2d592d88ece3b066777dd60f1118e2a081b380efc4358f0d9e2a( 0x0c53c82ad07e2d592d88ece3b066777dd60f1118e2a081b380efc4358f0d9e2a, 0x0000000000000000000000005983f0f9ccde7e506ddf68c7b08d20e84b84c003, 00000000000000000000000000000000000000000000000000a4141421a6176a, 0000000000000000000000000000000000000000000000000000000000000020 )
265 AdminUpgradeabilityProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x0000000000000000000000005983f0f9ccde7e506ddf68c7b08d20e84b84c003, 0x000000000000000000000000acd147a5bbcb7166c5bb13a9354ad7a59b99fb4d, 00000000000000000000000000000000000000000000000000a4141421a6176a )

Account State Difference:

  Address   Before After State Difference Code
(Titan Builder)
9.634413410043324865 Eth9.634419707893324865 Eth0.00000629785
0x5983F0f9...84B84C003
0.002132639510089168 Eth
Nonce: 69
0.001077292489902293 Eth
Nonce: 70
0.001055347020186875
0xAcD147A5...59b99fB4d

Execution Trace

AdminUpgradeabilityProxy.7e108d52( )
File 1 of 2: AdminUpgradeabilityProxy
/**
 *Submitted for verification at Etherscan.io on 2021-02-27
*/

// SPDX-License-Identifier: MIT

pragma solidity >=0.6.8;


// 
/**
 * @title Proxy
 * @dev Implements delegation of calls to other contracts, with proper
 * forwarding of return values and bubbling of failures.
 * It defines a fallback function that delegates all calls to the address
 * returned by the abstract _implementation() internal function.
 */
abstract contract Proxy {
  /**
   * @dev Fallback function.
   * Implemented entirely in `_fallback`.
   */
  fallback () payable external {
    _fallback();
  }

  /**
   * @dev Receive function.
   * Implemented entirely in `_fallback`.
   */
  receive () payable external {
    // _fallback();
  }

  /**
   * @return The Address of the implementation.
   */
  function _implementation() internal virtual view returns (address);

  /**
   * @dev Delegates execution to an implementation contract.
   * This is a low level function that doesn't return to its internal call site.
   * It will return to the external caller whatever the implementation returns.
   * @param implementation Address to delegate.
   */
  function _delegate(address implementation) internal {
    assembly {
      // Copy msg.data. We take full control of memory in this inline assembly
      // block because it will not return to Solidity code. We overwrite the
      // Solidity scratch pad at memory position 0.
      calldatacopy(0, 0, calldatasize())

      // Call the implementation.
      // out and outsize are 0 because we don't know the size yet.
      let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)

      // Copy the returned data.
      returndatacopy(0, 0, returndatasize())

      switch result
      // delegatecall returns 0 on error.
      case 0 { revert(0, returndatasize()) }
      default { return(0, returndatasize()) }
    }
  }

  /**
   * @dev Function that is run as the first thing in the fallback function.
   * Can be redefined in derived contracts to add functionality.
   * Redefinitions must call super._willFallback().
   */
  function _willFallback() internal virtual {
  }

  /**
   * @dev fallback implementation.
   * Extracted to enable manual triggering.
   */
  function _fallback() internal {
    _willFallback();
    _delegate(_implementation());
  }
}

// 
/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize, which returns 0 for contracts in
        // construction, since the code is only stored at the end of the
        // constructor execution.

        uint256 size;
        // solhint-disable-next-line no-inline-assembly
        assembly { size := extcodesize(account) }
        return size > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
        (bool success, ) = recipient.call{ value: amount }("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain`call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
      return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.call{ value: value }(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.staticcall(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
        require(isContract(target), "Address: delegate call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }

    function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly

                // solhint-disable-next-line no-inline-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}

// 
/**
 * @title UpgradeabilityProxy
 * @dev This contract implements a proxy that allows to change the
 * implementation address to which it will delegate.
 * Such a change is called an implementation upgrade.
 */
contract UpgradeabilityProxy is Proxy {
  /**
   * @dev Contract constructor.
   * @param _logic Address of the initial implementation.
   * @param _data Data to send as msg.data to the implementation to initialize the proxied contract.
   * It should include the signature and the parameters of the function to be called, as described in
   * https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
   * This parameter is optional, if no data is given the initialization call to proxied contract will be skipped.
   */
  constructor(address _logic, bytes memory _data) payable {
    assert(IMPLEMENTATION_SLOT == bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1));
    _setImplementation(_logic);
    if(_data.length > 0) {
      (bool success,) = _logic.delegatecall(_data);
      require(success);
    }
  }  

  /**
   * @dev Emitted when the implementation is upgraded.
   * @param implementation Address of the new implementation.
   */
  event Upgraded(address indexed implementation);

  /**
   * @dev Storage slot with the address of the current implementation.
   * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
   * validated in the constructor.
   */
  bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;

  /**
   * @dev Returns the current implementation.
   * @return impl Address of the current implementation
   */
  function _implementation() internal override view returns (address impl) {
    bytes32 slot = IMPLEMENTATION_SLOT;
    assembly {
      impl := sload(slot)
    }
  }

  /**
   * @dev Upgrades the proxy to a new implementation.
   * @param newImplementation Address of the new implementation.
   */
  function _upgradeTo(address newImplementation) internal {
    _setImplementation(newImplementation);
    emit Upgraded(newImplementation);
  }

  /**
   * @dev Sets the implementation address of the proxy.
   * @param newImplementation Address of the new implementation.
   */
  function _setImplementation(address newImplementation) internal {
    require(Address.isContract(newImplementation), "Cannot set a proxy implementation to a non-contract address");

    bytes32 slot = IMPLEMENTATION_SLOT;

    assembly {
      sstore(slot, newImplementation)
    }
  }
}

// 
/**
 * @title AdminUpgradeabilityProxy
 * @dev This contract combines an upgradeability proxy with an authorization
 * mechanism for administrative tasks.
 * All external functions in this contract must be guarded by the
 * `ifAdmin` modifier. See ethereum/solidity#3864 for a Solidity
 * feature proposal that would enable this to be done automatically.
 */
contract AdminUpgradeabilityProxy is UpgradeabilityProxy {
  /**
   * Contract constructor.
   * @param _logic address of the initial implementation.
   * @param _admin Address of the proxy administrator.
   * @param _data Data to send as msg.data to the implementation to initialize the proxied contract.
   * It should include the signature and the parameters of the function to be called, as described in
   * https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
   * This parameter is optional, if no data is given the initialization call to proxied contract will be skipped.
   */
  constructor(address _logic, address _admin, bytes memory _data) UpgradeabilityProxy(_logic, _data) payable {
    assert(ADMIN_SLOT == bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1));
    _setAdmin(_admin);
  }

  /**
   * @dev Emitted when the administration has been transferred.
   * @param previousAdmin Address of the previous admin.
   * @param newAdmin Address of the new admin.
   */
  event AdminChanged(address previousAdmin, address newAdmin);

  /**
   * @dev Storage slot with the admin of the contract.
   * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
   * validated in the constructor.
   */

  bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;

  /**
   * @dev Modifier to check whether the `msg.sender` is the admin.
   * If it is, it will run the function. Otherwise, it will delegate the call
   * to the implementation.
   */
  modifier ifAdmin() {
    if (msg.sender == _admin()) {
      _;
    } else {
      _fallback();
    }
  }

  /**
   * @return The address of the proxy admin.
   */
  function admin() external ifAdmin returns (address) {
    return _admin();
  }

  /**
   * @return The address of the implementation.
   */
  function implementation() external ifAdmin returns (address) {
    return _implementation();
  }

  /**
   * @dev Changes the admin of the proxy.
   * Only the current admin can call this function.
   * @param newAdmin Address to transfer proxy administration to.
   */
  function changeAdmin(address newAdmin) external ifAdmin {
    require(newAdmin != address(0), "Cannot change the admin of a proxy to the zero address");
    emit AdminChanged(_admin(), newAdmin);
    _setAdmin(newAdmin);
  }

  /**
   * @dev Upgrade the backing implementation of the proxy.
   * Only the admin can call this function.
   * @param newImplementation Address of the new implementation.
   */
  function upgradeTo(address newImplementation) external ifAdmin {
    _upgradeTo(newImplementation);
  }

  /**
   * @dev Upgrade the backing implementation of the proxy and call a function
   * on the new implementation.
   * This is useful to initialize the proxied contract.
   * @param newImplementation Address of the new implementation.
   * @param data Data to send as msg.data in the low level call.
   * It should include the signature and the parameters of the function to be called, as described in
   * https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
   */
  function upgradeToAndCall(address newImplementation, bytes calldata data) payable external ifAdmin {
    _upgradeTo(newImplementation);
    (bool success,) = newImplementation.delegatecall(data);
    require(success);
  }

  /**
   * @return adm The admin slot.
   */
  function _admin() internal view returns (address adm) {
    bytes32 slot = ADMIN_SLOT;
    assembly {
      adm := sload(slot)
    }
  }

  /**
   * @dev Sets the address of the proxy admin.
   * @param newAdmin Address of the new proxy admin.
   */
  function _setAdmin(address newAdmin) internal {
    bytes32 slot = ADMIN_SLOT;

    assembly {
      sstore(slot, newAdmin)
    }
  }

  /**
   * @dev Only fall back when the sender is not the admin.
   */
  function _willFallback() internal override virtual {
    require(msg.sender != _admin(), "Cannot call fallback function from the proxy admin");
    super._willFallback();
  }
}

File 2 of 2: RibbonThetaVaultWithSwap
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../utils/ContextUpgradeable.sol";
import "../proxy/utils/Initializable.sol";
/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
    address private _owner;
    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    function __Ownable_init() internal initializer {
        __Context_init_unchained();
        __Ownable_init_unchained();
    }
    function __Ownable_init_unchained() internal initializer {
        _setOwner(_msgSender());
    }
    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }
    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
        _;
    }
    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _setOwner(address(0));
    }
    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _setOwner(newOwner);
    }
    function _setOwner(address newOwner) private {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
    uint256[49] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 */
abstract contract Initializable {
    /**
     * @dev Indicates that the contract has been initialized.
     */
    bool private _initialized;
    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;
    /**
     * @dev Modifier to protect an initializer function from being invoked twice.
     */
    modifier initializer() {
        require(_initializing || !_initialized, "Initializable: contract is already initialized");
        bool isTopLevelCall = !_initializing;
        if (isTopLevelCall) {
            _initializing = true;
            _initialized = true;
        }
        _;
        if (isTopLevelCall) {
            _initializing = false;
        }
    }
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../proxy/utils/Initializable.sol";
/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuardUpgradeable is Initializable {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.
    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;
    uint256 private _status;
    function __ReentrancyGuard_init() internal initializer {
        __ReentrancyGuard_init_unchained();
    }
    function __ReentrancyGuard_init_unchained() internal initializer {
        _status = _NOT_ENTERED;
    }
    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and make it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        // On the first call to nonReentrant, _notEntered will be true
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
        _;
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }
    uint256[49] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./IERC20Upgradeable.sol";
import "./extensions/IERC20MetadataUpgradeable.sol";
import "../../utils/ContextUpgradeable.sol";
import "../../proxy/utils/Initializable.sol";
/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20Upgradeable, IERC20MetadataUpgradeable {
    mapping(address => uint256) private _balances;
    mapping(address => mapping(address => uint256)) private _allowances;
    uint256 private _totalSupply;
    string private _name;
    string private _symbol;
    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * The default value of {decimals} is 18. To select a different value for
     * {decimals} you should overload it.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    function __ERC20_init(string memory name_, string memory symbol_) internal initializer {
        __Context_init_unchained();
        __ERC20_init_unchained(name_, symbol_);
    }
    function __ERC20_init_unchained(string memory name_, string memory symbol_) internal initializer {
        _name = name_;
        _symbol = symbol_;
    }
    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }
    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }
    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless this function is
     * overridden;
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }
    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }
    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }
    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `recipient` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(_msgSender(), recipient, amount);
        return true;
    }
    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }
    /**
     * @dev See {IERC20-approve}.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        _approve(_msgSender(), spender, amount);
        return true;
    }
    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * Requirements:
     *
     * - `sender` and `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     * - the caller must have allowance for ``sender``'s tokens of at least
     * `amount`.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);
        uint256 currentAllowance = _allowances[sender][_msgSender()];
        require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance");
        unchecked {
            _approve(sender, _msgSender(), currentAllowance - amount);
        }
        return true;
    }
    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);
        return true;
    }
    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        uint256 currentAllowance = _allowances[_msgSender()][spender];
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(_msgSender(), spender, currentAllowance - subtractedValue);
        }
        return true;
    }
    /**
     * @dev Moves `amount` of tokens from `sender` to `recipient`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `sender` cannot be the zero address.
     * - `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     */
    function _transfer(
        address sender,
        address recipient,
        uint256 amount
    ) internal virtual {
        require(sender != address(0), "ERC20: transfer from the zero address");
        require(recipient != address(0), "ERC20: transfer to the zero address");
        _beforeTokenTransfer(sender, recipient, amount);
        uint256 senderBalance = _balances[sender];
        require(senderBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[sender] = senderBalance - amount;
        }
        _balances[recipient] += amount;
        emit Transfer(sender, recipient, amount);
        _afterTokenTransfer(sender, recipient, amount);
    }
    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");
        _beforeTokenTransfer(address(0), account, amount);
        _totalSupply += amount;
        _balances[account] += amount;
        emit Transfer(address(0), account, amount);
        _afterTokenTransfer(address(0), account, amount);
    }
    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");
        _beforeTokenTransfer(account, address(0), amount);
        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
        }
        _totalSupply -= amount;
        emit Transfer(account, address(0), amount);
        _afterTokenTransfer(account, address(0), amount);
    }
    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");
        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }
    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}
    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}
    uint256[45] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../IERC20Upgradeable.sol";
/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20MetadataUpgradeable is IERC20Upgradeable {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);
    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);
    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20Upgradeable {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);
    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);
    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);
    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);
    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);
    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) external returns (bool);
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);
    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../proxy/utils/Initializable.sol";
/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal initializer {
        __Context_init_unchained();
    }
    function __Context_init_unchained() internal initializer {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }
    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
    uint256[50] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;
    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);
    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);
    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);
    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);
    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);
    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);
    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) external returns (bool);
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);
    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../../../utils/Address.sol";
/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;
    function safeTransfer(
        IERC20 token,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }
    function safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }
    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }
    function safeIncreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        uint256 newAllowance = token.allowance(address(this), spender) + value;
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }
    function safeDecreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            uint256 newAllowance = oldAllowance - value;
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    }
    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.
        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) {
            // Return data is optional
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize, which returns 0 for contracts in
        // construction, since the code is only stored at the end of the
        // constructor execution.
        uint256 size;
        assembly {
            size := extcodesize(account)
        }
        return size > 0;
    }
    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");
        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }
    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCall(target, data, "Address: low-level call failed");
    }
    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }
    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }
    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResult(success, returndata, errorMessage);
    }
    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }
    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }
    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }
    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(isContract(target), "Address: delegate call to non-contract");
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }
    /**
     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.
/**
 * @dev Wrappers over Solidity's arithmetic operations.
 *
 * NOTE: `SafeMath` is no longer needed starting with Solidity 0.8. The compiler
 * now has built in overflow checking.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }
    /**
     * @dev Returns the substraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }
    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }
    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }
    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }
    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        return a + b;
    }
    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return a - b;
    }
    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        return a * b;
    }
    /**
     * @dev Returns the integer division of two unsigned integers, reverting on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator.
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return a / b;
    }
    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return a % b;
    }
    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {trySub}.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b <= a, errorMessage);
            return a - b;
        }
    }
    /**
     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a / b;
        }
    }
    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting with custom message when dividing by zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryMod}.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a % b;
        }
    }
}
// SPDX-License-Identifier: MIT
pragma solidity =0.8.4;
library GammaTypes {
    // vault is a struct of 6 arrays that describe a position a user has, a user can have multiple vaults.
    struct Vault {
        // addresses of oTokens a user has shorted (i.e. written) against this vault
        address[] shortOtokens;
        // addresses of oTokens a user has bought and deposited in this vault
        // user can be long oTokens without opening a vault (e.g. by buying on a DEX)
        // generally, long oTokens will be 'deposited' in vaults to act as collateral
        // in order to write oTokens against (i.e. in spreads)
        address[] longOtokens;
        // addresses of other ERC-20s a user has deposited as collateral in this vault
        address[] collateralAssets;
        // quantity of oTokens minted/written for each oToken address in shortOtokens
        uint256[] shortAmounts;
        // quantity of oTokens owned and held in the vault for each oToken address in longOtokens
        uint256[] longAmounts;
        // quantity of ERC-20 deposited as collateral in the vault for each ERC-20 address in collateralAssets
        uint256[] collateralAmounts;
    }
}
interface IOtoken {
    function underlyingAsset() external view returns (address);
    function strikeAsset() external view returns (address);
    function collateralAsset() external view returns (address);
    function strikePrice() external view returns (uint256);
    function expiryTimestamp() external view returns (uint256);
    function isPut() external view returns (bool);
    function balanceOf(address) external view returns (uint256);
    function totalSupply() external view returns (uint256);
    function transfer(address, uint256) external;
}
interface IOtokenFactory {
    function getOtoken(
        address _underlyingAsset,
        address _strikeAsset,
        address _collateralAsset,
        uint256 _strikePrice,
        uint256 _expiry,
        bool _isPut
    ) external view returns (address);
    function createOtoken(
        address _underlyingAsset,
        address _strikeAsset,
        address _collateralAsset,
        uint256 _strikePrice,
        uint256 _expiry,
        bool _isPut
    ) external returns (address);
    function getTargetOtokenAddress(
        address _underlyingAsset,
        address _strikeAsset,
        address _collateralAsset,
        uint256 _strikePrice,
        uint256 _expiry,
        bool _isPut
    ) external view returns (address);
    event OtokenCreated(
        address tokenAddress,
        address creator,
        address indexed underlying,
        address indexed strike,
        address indexed collateral,
        uint256 strikePrice,
        uint256 expiry,
        bool isPut
    );
}
interface IController {
    // possible actions that can be performed
    enum ActionType {
        OpenVault,
        MintShortOption,
        BurnShortOption,
        DepositLongOption,
        WithdrawLongOption,
        DepositCollateral,
        WithdrawCollateral,
        SettleVault,
        Redeem,
        Call,
        Liquidate
    }
    struct ActionArgs {
        // type of action that is being performed on the system
        ActionType actionType;
        // address of the account owner
        address owner;
        // address which we move assets from or to (depending on the action type)
        address secondAddress;
        // asset that is to be transfered
        address asset;
        // index of the vault that is to be modified (if any)
        uint256 vaultId;
        // amount of asset that is to be transfered
        uint256 amount;
        // each vault can hold multiple short / long / collateral assets
        // but we are restricting the scope to only 1 of each in this version
        // in future versions this would be the index of the short / long / collateral asset that needs to be modified
        uint256 index;
        // any other data that needs to be passed in for arbitrary function calls
        bytes data;
    }
    struct RedeemArgs {
        // address to which we pay out the oToken proceeds
        address receiver;
        // oToken that is to be redeemed
        address otoken;
        // amount of oTokens that is to be redeemed
        uint256 amount;
    }
    function getPayout(address _otoken, uint256 _amount)
        external
        view
        returns (uint256);
    function operate(ActionArgs[] calldata _actions) external;
    function getAccountVaultCounter(address owner)
        external
        view
        returns (uint256);
    function oracle() external view returns (address);
    function getVault(address _owner, uint256 _vaultId)
        external
        view
        returns (GammaTypes.Vault memory);
    function getProceed(address _owner, uint256 _vaultId)
        external
        view
        returns (uint256);
    function isSettlementAllowed(
        address _underlying,
        address _strike,
        address _collateral,
        uint256 _expiry
    ) external view returns (bool);
}
interface IOracle {
    function setAssetPricer(address _asset, address _pricer) external;
    function updateAssetPricer(address _asset, address _pricer) external;
    function getPrice(address _asset) external view returns (uint256);
    function getExpiryPrice(address _asset, uint256 _expiryTimestamp)
        external
        view
        returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity =0.8.4;
// Amplol interface
interface IAmplol {
    function mint(address,uint256) external;
    function burn(address,uint256) external;
}
// SPDX-License-Identifier: MIT
pragma solidity =0.8.4;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface IERC20Detailed is IERC20 {
    function decimals() external view returns (uint8);
    function symbol() external view returns (string calldata);
    function name() external view returns (string calldata);
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;
interface IOptionsPurchaseQueue {
    /**
     * @dev Contains purchase request info
     * @param optionsAmount Amount of options to purchase
     * @param premiums Total premiums the buyer is spending to purchase the options (optionsAmount * ceilingPrice)
     *  We need to track the premiums here since the ceilingPrice could change between the time the purchase was
     *  requested and when the options are sold
     * @param buyer The buyer requesting this purchase
     */
    struct Purchase {
        uint128 optionsAmount; // Slot 0
        uint128 premiums;
        address buyer; // Slot 1
    }
    function purchases(address, uint256)
        external
        view
        returns (
            uint128,
            uint128,
            address
        );
    function totalOptionsAmount(address) external view returns (uint256);
    function vaultAllocatedOptions(address) external view returns (uint256);
    function whitelistedBuyer(address) external view returns (bool);
    function minPurchaseAmount(address) external view returns (uint256);
    function ceilingPrice(address) external view returns (uint256);
    function getPurchases(address vault)
        external
        view
        returns (Purchase[] memory);
    function getPremiums(address vault, uint256 optionsAmount)
        external
        view
        returns (uint256);
    function getOptionsAllocation(address vault, uint256 allocatedOptions)
        external
        view
        returns (uint256);
    function requestPurchase(address vault, uint256 optionsAmount)
        external
        returns (uint256);
    function allocateOptions(uint256 allocatedOptions)
        external
        returns (uint256);
    function sellToBuyers(uint256 settlementPrice) external returns (uint256);
    function cancelAllPurchases(address vault) external;
    function addWhitelist(address buyer) external;
    function removeWhitelist(address buyer) external;
    function setCeilingPrice(address vault, uint256 price) external;
    function setMinPurchaseAmount(address vault, uint256 amount) external;
}
// SPDX-License-Identifier: MIT
pragma solidity =0.8.4;
import {Vault} from "../libraries/Vault.sol";
interface IRibbonVault {
    function deposit(uint256 amount) external;
    function depositETH() external payable;
    function cap() external view returns (uint256);
    function depositFor(uint256 amount, address creditor) external;
    function vaultParams() external view returns (Vault.VaultParams memory);
}
interface IStrikeSelection {
    function getStrikePrice(uint256 expiryTimestamp, bool isPut)
        external
        view
        returns (uint256, uint256);
    function delta() external view returns (uint256);
}
interface IOptionsPremiumPricer {
    function getPremium(
        uint256 strikePrice,
        uint256 timeToExpiry,
        bool isPut
    ) external view returns (uint256);
    function getPremiumInStables(
        uint256 strikePrice,
        uint256 timeToExpiry,
        bool isPut
    ) external view returns (uint256);
    function getOptionDelta(
        uint256 spotPrice,
        uint256 strikePrice,
        uint256 volatility,
        uint256 expiryTimestamp
    ) external view returns (uint256 delta);
    function getUnderlyingPrice() external view returns (uint256);
    function priceOracle() external view returns (address);
    function volatilityOracle() external view returns (address);
    function optionId() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
pragma solidity =0.8.4;
interface ISwap {
    struct Offer {
        // 32 byte slot 1, partial fill
        // Seller wallet address
        address seller;
        // 32 byte slot 2
        // Addess of oToken
        address oToken;
        // Price per oToken denominated in biddingToken
        uint96 minPrice;
        // 32 byte slot 3
        // ERC20 Token to bid for oToken
        address biddingToken;
        // Minimum oToken amount acceptable for a single bid
        uint96 minBidSize;
        // 32 byte slot 4
        // Total available oToken amount
        uint128 totalSize;
        // Remaining available oToken amount
        // This figure is updated after each successfull swap
        uint128 availableSize;
        // 32 byte slot 5
        // Amount of biddingToken received
        // This figure is updated after each successfull swap
        uint256 totalSales;
    }
    struct Bid {
        // ID assigned to offers
        uint256 swapId;
        // Number only used once for each wallet
        uint256 nonce;
        // Signer wallet address
        address signerWallet;
        // Buyer address
        address buyer;
        // Amount of biddingToken offered by signer
        uint256 sellAmount;
        // Amount of oToken requested by signer
        uint256 buyAmount;
        // Referrer wallet address
        address referrer;
        // Signature recovery id
        uint8 v;
        // r portion of the ECSDA signature
        bytes32 r;
        // s portion of the ECSDA signature
        bytes32 s;
    }
    struct OfferDetails {
        // Seller wallet address
        address seller;
        // Addess of oToken
        address oToken;
        // Price per oToken denominated in biddingToken
        uint256 minPrice;
        // ERC20 Token to bid for oToken
        address biddingToken;
        // Minimum oToken amount acceptable for a single bid
        uint256 minBidSize;
    }
    event Swap(
        uint256 indexed swapId,
        uint256 nonce,
        address indexed buyer,
        uint256 signerAmount,
        uint256 sellerAmount,
        address referrer,
        uint256 feeAmount
    );
    event NewOffer(
        uint256 swapId,
        address seller,
        address oToken,
        address biddingToken,
        uint256 minPrice,
        uint256 minBidSize,
        uint256 totalSize
    );
    event SetFee(address referrer, uint256 fee);
    event SetPriceFeed(address asset, address aggregator);
    event SettleOffer(uint256 swapId);
    event Cancel(uint256 indexed nonce, address indexed signerWallet);
    event Authorize(address indexed signer, address indexed signerWallet);
    event Revoke(address indexed signer, address indexed signerWallet);
    function createOffer(
        address oToken,
        address biddingToken,
        uint96 minPrice,
        uint96 minBidSize,
        uint128 totalSize
    ) external returns (uint256 swapId);
    function settleOffer(uint256 swapId, Bid[] calldata bids) external;
    function cancelNonce(uint256[] calldata nonces) external;
    function check(Bid calldata bid)
        external
        view
        returns (uint256, bytes32[] memory);
    function averagePriceForOffer(uint256 swapId)
        external
        view
        returns (uint256);
    function authorize(address sender) external;
    function revoke() external;
    function nonceUsed(address, uint256) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity =0.8.4;
import {SafeMath} from "@openzeppelin/contracts/utils/math/SafeMath.sol";
import {Vault} from "./Vault.sol";
library ShareMath {
    using SafeMath for uint256;
    uint256 internal constant PLACEHOLDER_UINT = 1;
    function assetToShares(
        uint256 assetAmount,
        uint256 assetPerShare,
        uint256 decimals
    ) internal pure returns (uint256) {
        // If this throws, it means that vault's roundPricePerShare[currentRound] has not been set yet
        // which should never happen.
        // Has to be larger than 1 because `1` is used in `initRoundPricePerShares` to prevent cold writes.
        require(assetPerShare > PLACEHOLDER_UINT, "Invalid assetPerShare");
        return assetAmount.mul(10**decimals).div(assetPerShare);
    }
    function sharesToAsset(
        uint256 shares,
        uint256 assetPerShare,
        uint256 decimals
    ) internal pure returns (uint256) {
        // If this throws, it means that vault's roundPricePerShare[currentRound] has not been set yet
        // which should never happen.
        // Has to be larger than 1 because `1` is used in `initRoundPricePerShares` to prevent cold writes.
        require(assetPerShare > PLACEHOLDER_UINT, "Invalid assetPerShare");
        return shares.mul(assetPerShare).div(10**decimals);
    }
    /**
     * @notice Returns the shares unredeemed by the user given their DepositReceipt
     * @param depositReceipt is the user's deposit receipt
     * @param currentRound is the `round` stored on the vault
     * @param assetPerShare is the price in asset per share
     * @param decimals is the number of decimals the asset/shares use
     * @return unredeemedShares is the user's virtual balance of shares that are owed
     */
    function getSharesFromReceipt(
        Vault.DepositReceipt memory depositReceipt,
        uint256 currentRound,
        uint256 assetPerShare,
        uint256 decimals
    ) internal pure returns (uint256 unredeemedShares) {
        if (depositReceipt.round > 0 && depositReceipt.round < currentRound) {
            uint256 sharesFromRound =
                assetToShares(depositReceipt.amount, assetPerShare, decimals);
            return
                uint256(depositReceipt.unredeemedShares).add(sharesFromRound);
        }
        return depositReceipt.unredeemedShares;
    }
    function pricePerShare(
        uint256 totalSupply,
        uint256 totalBalance,
        uint256 pendingAmount,
        uint256 decimals
    ) internal pure returns (uint256) {
        uint256 singleShare = 10**decimals;
        return
            totalSupply > 0
                ? singleShare.mul(totalBalance.sub(pendingAmount)).div(
                    totalSupply
                )
                : singleShare;
    }
    /************************************************
     *  HELPERS
     ***********************************************/
    function assertUint104(uint256 num) internal pure {
        require(num <= type(uint104).max, "Overflow uint104");
    }
    function assertUint128(uint256 num) internal pure {
        require(num <= type(uint128).max, "Overflow uint128");
    }
}
// SPDX-License-Identifier: MIT
pragma solidity =0.8.4;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {
    SafeERC20
} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
/**
 * This library supports ERC20s that have quirks in their behavior.
 * One such ERC20 is USDT, which requires allowance to be 0 before calling approve.
 * We plan to update this library with ERC20s that display such idiosyncratic behavior.
 */
library SupportsNonCompliantERC20 {
    address private constant USDT = 0xdAC17F958D2ee523a2206206994597C13D831ec7;
    function safeApproveNonCompliant(
        IERC20 token,
        address spender,
        uint256 amount
    ) internal {
        if (address(token) == USDT) {
            SafeERC20.safeApprove(token, spender, 0);
        }
        SafeERC20.safeApprove(token, spender, amount);
    }
}
// SPDX-License-Identifier: MIT
pragma solidity =0.8.4;
library Vault {
    /************************************************
     *  IMMUTABLES & CONSTANTS
     ***********************************************/
    // Fees are 6-decimal places. For example: 20 * 10**6 = 20%
    uint256 internal constant FEE_MULTIPLIER = 10**6;
    // Premium discount has 1-decimal place. For example: 80 * 10**1 = 80%. Which represents a 20% discount.
    uint256 internal constant PREMIUM_DISCOUNT_MULTIPLIER = 10;
    // Otokens have 8 decimal places.
    uint256 internal constant OTOKEN_DECIMALS = 8;
    // Percentage of funds allocated to options is 2 decimal places. 10 * 10**2 = 10%
    uint256 internal constant OPTION_ALLOCATION_MULTIPLIER = 10**2;
    // Placeholder uint value to prevent cold writes
    uint256 internal constant PLACEHOLDER_UINT = 1;
    struct VaultParams {
        // Option type the vault is selling
        bool isPut;
        // Token decimals for vault shares
        uint8 decimals;
        // Asset used in Theta / Delta Vault
        address asset;
        // Underlying asset of the options sold by vault
        address underlying;
        // Minimum supply of the vault shares issued, for ETH it's 10**10
        uint56 minimumSupply;
        // Vault cap
        uint104 cap;
    }
    struct OptionState {
        // Option that the vault is shorting / longing in the next cycle
        address nextOption;
        // Option that the vault is currently shorting / longing
        address currentOption;
        // The timestamp when the `nextOption` can be used by the vault
        uint32 nextOptionReadyAt;
    }
    struct VaultState {
        // 32 byte slot 1
        //  Current round number. `round` represents the number of `period`s elapsed.
        uint16 round;
        // Amount that is currently locked for selling options
        uint104 lockedAmount;
        // Amount that was locked for selling options in the previous round
        // used for calculating performance fee deduction
        uint104 lastLockedAmount;
        // 32 byte slot 2
        // Stores the total tally of how much of `asset` there is
        // to be used to mint rTHETA tokens
        uint128 totalPending;
        // Total amount of queued withdrawal shares from previous rounds (doesn't include the current round)
        uint128 queuedWithdrawShares;
    }
    struct DepositReceipt {
        // Maximum of 65535 rounds. Assuming 1 round is 7 days, maximum is 1256 years.
        uint16 round;
        // Deposit amount, max 20,282,409,603,651 or 20 trillion ETH deposit
        uint104 amount;
        // Unredeemed shares balance
        uint128 unredeemedShares;
    }
    struct Withdrawal {
        // Maximum of 65535 rounds. Assuming 1 round is 7 days, maximum is 1256 years.
        uint16 round;
        // Number of shares withdrawn
        uint128 shares;
    }
    struct AuctionSellOrder {
        // Amount of `asset` token offered in auction
        uint96 sellAmount;
        // Amount of oToken requested in auction
        uint96 buyAmount;
        // User Id of delta vault in latest gnosis auction
        uint64 userId;
    }
}
// SPDX-License-Identifier: MIT
pragma solidity =0.8.4;
import {SafeMath} from "@openzeppelin/contracts/utils/math/SafeMath.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {
    SafeERC20
} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {Vault} from "./Vault.sol";
import {ShareMath} from "./ShareMath.sol";
import {IStrikeSelection} from "../interfaces/IRibbon.sol";
import {
    IOtokenFactory,
    IOtoken,
    IController,
    GammaTypes
} from "../interfaces/GammaInterface.sol";
import {IERC20Detailed} from "../interfaces/IERC20Detailed.sol";
import {ISwap} from "../interfaces/ISwap.sol";
import {IOptionsPurchaseQueue} from "../interfaces/IOptionsPurchaseQueue.sol";
import {SupportsNonCompliantERC20} from "./SupportsNonCompliantERC20.sol";
import {IOptionsPremiumPricer} from "../interfaces/IRibbon.sol";
library VaultLifecycleWithSwap {
    using SafeMath for uint256;
    using SupportsNonCompliantERC20 for IERC20;
    using SafeERC20 for IERC20;
    struct CommitParams {
        address OTOKEN_FACTORY;
        address USDC;
        address collateralAsset;
        address currentOption;
        uint256 delay;
        uint16 lastStrikeOverrideRound;
        uint256 overriddenStrikePrice;
        address strikeSelection;
        address optionsPremiumPricer;
        uint256 period;
    }
    /**
     * @notice Sets the next option the vault will be shorting, and calculates its premium for the auction
     * @param commitParams is the struct with details on previous option and strike selection details
     * @param vaultParams is the struct with vault general data
     * @param vaultState is the struct with vault accounting state
     * @return otokenAddress is the address of the new option
     * @return strikePrice is the strike price of the new option
     * @return delta is the delta of the new option
     */
    function commitNextOption(
        CommitParams calldata commitParams,
        Vault.VaultParams storage vaultParams,
        Vault.VaultState storage vaultState
    )
        external
        returns (
            address otokenAddress,
            uint256 strikePrice,
            uint256 delta
        )
    {
        uint256 expiry = getNextExpiry(commitParams.period);
        IStrikeSelection selection =
            IStrikeSelection(commitParams.strikeSelection);
        bool isPut = vaultParams.isPut;
        address underlying = vaultParams.underlying;
        (strikePrice, delta) = commitParams.lastStrikeOverrideRound ==
            vaultState.round
            ? (commitParams.overriddenStrikePrice, selection.delta())
            : selection.getStrikePrice(expiry, isPut);
        require(strikePrice != 0, "!strikePrice");
        // retrieve address if option already exists, or deploy it
        otokenAddress = getOrDeployOtoken(
            commitParams,
            vaultParams,
            underlying,
            strikePrice,
            expiry,
            isPut
        );
        return (otokenAddress, strikePrice, delta);
    }
    /**
     * @notice Verify the otoken has the correct parameters to prevent vulnerability to opyn contract changes
     * @param otokenAddress is the address of the otoken
     * @param vaultParams is the struct with vault general data
     * @param collateralAsset is the address of the collateral asset
     * @param USDC is the address of usdc
     * @param delay is the delay between commitAndClose and rollToNextOption
     */
    function verifyOtoken(
        address otokenAddress,
        Vault.VaultParams storage vaultParams,
        address collateralAsset,
        address USDC,
        uint256 delay
    ) private view {
        require(otokenAddress != address(0), "!otokenAddress");
        IOtoken otoken = IOtoken(otokenAddress);
        require(otoken.isPut() == vaultParams.isPut, "Type mismatch");
        require(
            otoken.underlyingAsset() == vaultParams.underlying,
            "Wrong underlyingAsset"
        );
        require(
            otoken.collateralAsset() == collateralAsset,
            "Wrong collateralAsset"
        );
        // we just assume all options use USDC as the strike
        require(otoken.strikeAsset() == USDC, "strikeAsset != USDC");
        uint256 readyAt = block.timestamp.add(delay);
        require(otoken.expiryTimestamp() >= readyAt, "Expiry before delay");
    }
    /**
     * @param decimals is the decimals of the asset
     * @param totalBalance is the vault's total asset balance
     * @param currentShareSupply is the supply of the shares invoked with totalSupply()
     * @param lastQueuedWithdrawAmount is the amount queued for withdrawals from last round
     * @param performanceFee is the perf fee percent to charge on premiums
     * @param managementFee is the management fee percent to charge on the AUM
     */
    struct CloseParams {
        uint256 decimals;
        uint256 totalBalance;
        uint256 currentShareSupply;
        uint256 lastQueuedWithdrawAmount;
        uint256 performanceFee;
        uint256 managementFee;
        uint256 currentQueuedWithdrawShares;
    }
    /**
     * @notice Calculate the shares to mint, new price per share, and
      amount of funds to re-allocate as collateral for the new round
     * @param vaultState is the storage variable vaultState passed from RibbonVault
     * @param params is the rollover parameters passed to compute the next state
     * @return newLockedAmount is the amount of funds to allocate for the new round
     * @return queuedWithdrawAmount is the amount of funds set aside for withdrawal
     * @return newPricePerShare is the price per share of the new round
     * @return mintShares is the amount of shares to mint from deposits
     * @return performanceFeeInAsset is the performance fee charged by vault
     * @return totalVaultFee is the total amount of fee charged by vault
     */
    function closeRound(
        Vault.VaultState storage vaultState,
        CloseParams calldata params
    )
        external
        view
        returns (
            uint256 newLockedAmount,
            uint256 queuedWithdrawAmount,
            uint256 newPricePerShare,
            uint256 mintShares,
            uint256 performanceFeeInAsset,
            uint256 totalVaultFee
        )
    {
        uint256 currentBalance = params.totalBalance;
        uint256 pendingAmount = vaultState.totalPending;
        // Total amount of queued withdrawal shares from previous rounds (doesn't include the current round)
        uint256 lastQueuedWithdrawShares = vaultState.queuedWithdrawShares;
        // Deduct older queued withdraws so we don't charge fees on them
        uint256 balanceForVaultFees =
            currentBalance.sub(params.lastQueuedWithdrawAmount);
        {
            (performanceFeeInAsset, , totalVaultFee) = getVaultFees(
                balanceForVaultFees,
                vaultState.lastLockedAmount,
                vaultState.totalPending,
                params.performanceFee,
                params.managementFee
            );
        }
        // Take into account the fee
        // so we can calculate the newPricePerShare
        currentBalance = currentBalance.sub(totalVaultFee);
        {
            newPricePerShare = ShareMath.pricePerShare(
                params.currentShareSupply.sub(lastQueuedWithdrawShares),
                currentBalance.sub(params.lastQueuedWithdrawAmount),
                pendingAmount,
                params.decimals
            );
            queuedWithdrawAmount = params.lastQueuedWithdrawAmount.add(
                ShareMath.sharesToAsset(
                    params.currentQueuedWithdrawShares,
                    newPricePerShare,
                    params.decimals
                )
            );
            // After closing the short, if the options expire in-the-money
            // vault pricePerShare would go down because vault's asset balance decreased.
            // This ensures that the newly-minted shares do not take on the loss.
            mintShares = ShareMath.assetToShares(
                pendingAmount,
                newPricePerShare,
                params.decimals
            );
        }
        return (
            currentBalance.sub(queuedWithdrawAmount), // new locked balance subtracts the queued withdrawals
            queuedWithdrawAmount,
            newPricePerShare,
            mintShares,
            performanceFeeInAsset,
            totalVaultFee
        );
    }
    /**
     * @notice Creates the actual Opyn short position by depositing collateral and minting otokens
     * @param gammaController is the address of the opyn controller contract
     * @param marginPool is the address of the opyn margin contract which holds the collateral
     * @param oTokenAddress is the address of the otoken to mint
     * @param depositAmount is the amount of collateral to deposit
     * @return the otoken mint amount
     */
    function createShort(
        address gammaController,
        address marginPool,
        address oTokenAddress,
        uint256 depositAmount
    ) external returns (uint256) {
        IController controller = IController(gammaController);
        uint256 newVaultID =
            (controller.getAccountVaultCounter(address(this))).add(1);
        // An otoken's collateralAsset is the vault's `asset`
        // So in the context of performing Opyn short operations we call them collateralAsset
        IOtoken oToken = IOtoken(oTokenAddress);
        address collateralAsset = oToken.collateralAsset();
        uint256 collateralDecimals =
            uint256(IERC20Detailed(collateralAsset).decimals());
        uint256 mintAmount;
        if (oToken.isPut()) {
            // For minting puts, there will be instances where the full depositAmount will not be used for minting.
            // This is because of an issue with precision.
            //
            // For ETH put options, we are calculating the mintAmount (10**8 decimals) using
            // the depositAmount (10**18 decimals), which will result in truncation of decimals when scaling down.
            // As a result, there will be tiny amounts of dust left behind in the Opyn vault when minting put otokens.
            //
            // For simplicity's sake, we do not refund the dust back to the address(this) on minting otokens.
            // We retain the dust in the vault so the calling contract can withdraw the
            // actual locked amount + dust at settlement.
            //
            // To test this behavior, we can console.log
            // MarginCalculatorInterface(0x7A48d10f372b3D7c60f6c9770B91398e4ccfd3C7).getExcessCollateral(vault)
            // to see how much dust (or excess collateral) is left behind.
            mintAmount = depositAmount
                .mul(10**Vault.OTOKEN_DECIMALS)
                .mul(10**18) // we use 10**18 to give extra precision
                .div(oToken.strikePrice().mul(10**(10 + collateralDecimals)));
        } else {
            mintAmount = depositAmount;
            if (collateralDecimals > 8) {
                uint256 scaleBy = 10**(collateralDecimals.sub(8)); // oTokens have 8 decimals
                if (mintAmount > scaleBy) {
                    mintAmount = depositAmount.div(scaleBy); // scale down from 10**18 to 10**8
                }
            }
        }
        // double approve to fix non-compliant ERC20s
        IERC20 collateralToken = IERC20(collateralAsset);
        collateralToken.safeApproveNonCompliant(marginPool, depositAmount);
        IController.ActionArgs[] memory actions =
            new IController.ActionArgs[](3);
        actions[0] = IController.ActionArgs(
            IController.ActionType.OpenVault,
            address(this), // owner
            address(this), // receiver
            address(0), // asset, otoken
            newVaultID, // vaultId
            0, // amount
            0, //index
            "" //data
        );
        actions[1] = IController.ActionArgs(
            IController.ActionType.DepositCollateral,
            address(this), // owner
            address(this), // address to transfer from
            collateralAsset, // deposited asset
            newVaultID, // vaultId
            depositAmount, // amount
            0, //index
            "" //data
        );
        actions[2] = IController.ActionArgs(
            IController.ActionType.MintShortOption,
            address(this), // owner
            address(this), // address to transfer to
            oTokenAddress, // option address
            newVaultID, // vaultId
            mintAmount, // amount
            0, //index
            "" //data
        );
        controller.operate(actions);
        return mintAmount;
    }
    /**
     * @notice Close the existing short otoken position. Currently this implementation is simple.
     * It closes the most recent vault opened by the contract. This assumes that the contract will
     * only have a single vault open at any given time. Since calling `_closeShort` deletes vaults by
     calling SettleVault action, this assumption should hold.
     * @param gammaController is the address of the opyn controller contract
     * @return amount of collateral redeemed from the vault
     */
    function settleShort(address gammaController) external returns (uint256) {
        IController controller = IController(gammaController);
        // gets the currently active vault ID
        uint256 vaultID = controller.getAccountVaultCounter(address(this));
        GammaTypes.Vault memory vault =
            controller.getVault(address(this), vaultID);
        require(vault.shortOtokens.length > 0, "No short");
        // An otoken's collateralAsset is the vault's `asset`
        // So in the context of performing Opyn short operations we call them collateralAsset
        IERC20 collateralToken = IERC20(vault.collateralAssets[0]);
        // The short position has been previously closed, or all the otokens have been burned.
        // So we return early.
        if (address(collateralToken) == address(0)) {
            return 0;
        }
        // This is equivalent to doing IERC20(vault.asset).balanceOf(address(this))
        uint256 startCollateralBalance =
            collateralToken.balanceOf(address(this));
        // If it is after expiry, we need to settle the short position using the normal way
        // Delete the vault and withdraw all remaining collateral from the vault
        IController.ActionArgs[] memory actions =
            new IController.ActionArgs[](1);
        actions[0] = IController.ActionArgs(
            IController.ActionType.SettleVault,
            address(this), // owner
            address(this), // address to transfer to
            address(0), // not used
            vaultID, // vaultId
            0, // not used
            0, // not used
            "" // not used
        );
        controller.operate(actions);
        uint256 endCollateralBalance = collateralToken.balanceOf(address(this));
        return endCollateralBalance.sub(startCollateralBalance);
    }
    /**
     * @notice Exercises the ITM option using existing long otoken position. Currently this implementation is simple.
     * It calls the `Redeem` action to claim the payout.
     * @param gammaController is the address of the opyn controller contract
     * @param oldOption is the address of the old option
     * @param asset is the address of the vault's asset
     * @return amount of asset received by exercising the option
     */
    function settleLong(
        address gammaController,
        address oldOption,
        address asset
    ) external returns (uint256) {
        IController controller = IController(gammaController);
        uint256 oldOptionBalance = IERC20(oldOption).balanceOf(address(this));
        if (controller.getPayout(oldOption, oldOptionBalance) == 0) {
            return 0;
        }
        uint256 startAssetBalance = IERC20(asset).balanceOf(address(this));
        // If it is after expiry, we need to redeem the profits
        IController.ActionArgs[] memory actions =
            new IController.ActionArgs[](1);
        actions[0] = IController.ActionArgs(
            IController.ActionType.Redeem,
            address(0), // not used
            address(this), // address to send profits to
            oldOption, // address of otoken
            0, // not used
            oldOptionBalance, // otoken balance
            0, // not used
            "" // not used
        );
        controller.operate(actions);
        uint256 endAssetBalance = IERC20(asset).balanceOf(address(this));
        return endAssetBalance.sub(startAssetBalance);
    }
    /**
     * @notice Burn the remaining oTokens left over from auction. Currently this implementation is simple.
     * It burns oTokens from the most recent vault opened by the contract. This assumes that the contract will
     * only have a single vault open at any given time.
     * @param gammaController is the address of the opyn controller contract
     * @param currentOption is the address of the current option
     * @return amount of collateral redeemed by burning otokens
     */
    function burnOtokens(address gammaController, address currentOption)
        external
        returns (uint256)
    {
        uint256 numOTokensToBurn =
            IERC20(currentOption).balanceOf(address(this));
        require(numOTokensToBurn > 0, "No oTokens to burn");
        IController controller = IController(gammaController);
        // gets the currently active vault ID
        uint256 vaultID = controller.getAccountVaultCounter(address(this));
        GammaTypes.Vault memory vault =
            controller.getVault(address(this), vaultID);
        require(vault.shortOtokens.length > 0, "No short");
        IERC20 collateralToken = IERC20(vault.collateralAssets[0]);
        uint256 startCollateralBalance =
            collateralToken.balanceOf(address(this));
        // Burning `amount` of oTokens from the ribbon vault,
        // then withdrawing the corresponding collateral amount from the vault
        IController.ActionArgs[] memory actions =
            new IController.ActionArgs[](2);
        actions[0] = IController.ActionArgs(
            IController.ActionType.BurnShortOption,
            address(this), // owner
            address(this), // address to transfer from
            address(vault.shortOtokens[0]), // otoken address
            vaultID, // vaultId
            numOTokensToBurn, // amount
            0, //index
            "" //data
        );
        actions[1] = IController.ActionArgs(
            IController.ActionType.WithdrawCollateral,
            address(this), // owner
            address(this), // address to transfer to
            address(collateralToken), // withdrawn asset
            vaultID, // vaultId
            vault.collateralAmounts[0].mul(numOTokensToBurn).div(
                vault.shortAmounts[0]
            ), // amount
            0, //index
            "" //data
        );
        controller.operate(actions);
        uint256 endCollateralBalance = collateralToken.balanceOf(address(this));
        return endCollateralBalance.sub(startCollateralBalance);
    }
    /**
     * @notice Calculates the performance and management fee for this week's round
     * @param currentBalance is the balance of funds held on the vault after closing short
     * @param lastLockedAmount is the amount of funds locked from the previous round
     * @param pendingAmount is the pending deposit amount
     * @param performanceFeePercent is the performance fee pct.
     * @param managementFeePercent is the management fee pct.
     * @return performanceFeeInAsset is the performance fee
     * @return managementFeeInAsset is the management fee
     * @return vaultFee is the total fees
     */
    function getVaultFees(
        uint256 currentBalance,
        uint256 lastLockedAmount,
        uint256 pendingAmount,
        uint256 performanceFeePercent,
        uint256 managementFeePercent
    )
        internal
        pure
        returns (
            uint256 performanceFeeInAsset,
            uint256 managementFeeInAsset,
            uint256 vaultFee
        )
    {
        // At the first round, currentBalance=0, pendingAmount>0
        // so we just do not charge anything on the first round
        uint256 lockedBalanceSansPending =
            currentBalance > pendingAmount
                ? currentBalance.sub(pendingAmount)
                : 0;
        uint256 _performanceFeeInAsset;
        uint256 _managementFeeInAsset;
        uint256 _vaultFee;
        // Take performance fee and management fee ONLY if difference between
        // last week and this week's vault deposits, taking into account pending
        // deposits and withdrawals, is positive. If it is negative, last week's
        // option expired ITM past breakeven, and the vault took a loss so we
        // do not collect performance fee for last week
        if (lockedBalanceSansPending > lastLockedAmount) {
            _performanceFeeInAsset = performanceFeePercent > 0
                ? lockedBalanceSansPending
                    .sub(lastLockedAmount)
                    .mul(performanceFeePercent)
                    .div(100 * Vault.FEE_MULTIPLIER)
                : 0;
            _managementFeeInAsset = managementFeePercent > 0
                ? lockedBalanceSansPending.mul(managementFeePercent).div(
                    100 * Vault.FEE_MULTIPLIER
                )
                : 0;
            _vaultFee = _performanceFeeInAsset.add(_managementFeeInAsset);
        }
        return (_performanceFeeInAsset, _managementFeeInAsset, _vaultFee);
    }
    /**
     * @notice Either retrieves the option token if it already exists, or deploy it
     * @param commitParams is the struct with details on previous option and strike selection details
     * @param vaultParams is the struct with vault general data
     * @param underlying is the address of the underlying asset of the option
     * @param strikePrice is the strike price of the option
     * @param expiry is the expiry timestamp of the option
     * @param isPut is whether the option is a put
     * @return the address of the option
     */
    function getOrDeployOtoken(
        CommitParams calldata commitParams,
        Vault.VaultParams storage vaultParams,
        address underlying,
        uint256 strikePrice,
        uint256 expiry,
        bool isPut
    ) internal returns (address) {
        IOtokenFactory factory = IOtokenFactory(commitParams.OTOKEN_FACTORY);
        address otokenFromFactory =
            factory.getOtoken(
                underlying,
                commitParams.USDC,
                commitParams.collateralAsset,
                strikePrice,
                expiry,
                isPut
            );
        if (otokenFromFactory != address(0)) {
            return otokenFromFactory;
        }
        address otoken =
            factory.createOtoken(
                underlying,
                commitParams.USDC,
                commitParams.collateralAsset,
                strikePrice,
                expiry,
                isPut
            );
        verifyOtoken(
            otoken,
            vaultParams,
            commitParams.collateralAsset,
            commitParams.USDC,
            commitParams.delay
        );
        return otoken;
    }
    /**
     * @notice Creates an offer in the Swap Contract
     * @param currentOtoken is the current otoken address
     * @param currOtokenPremium is premium for each otoken
     * @param swapContract the address of the swap contract
     * @param vaultParams is the struct with vault general data
     * @return optionAuctionID auction id of the newly created offer
     */
    function createOffer(
        address currentOtoken,
        uint256 currOtokenPremium,
        address swapContract,
        Vault.VaultParams storage vaultParams
    ) external returns (uint256 optionAuctionID) {
        require(
            currOtokenPremium <= type(uint96).max,
            "currentOtokenPremium > type(uint96) max value!"
        );
        require(currOtokenPremium > 0, "!currentOtokenPremium");
        uint256 oTokenBalance = IERC20(currentOtoken).balanceOf(address(this));
        require(
            oTokenBalance <= type(uint128).max,
            "oTokenBalance > type(uint128) max value!"
        );
        // Use safeIncrease instead of safeApproval because safeApproval is only used for initial
        // approval and cannot be called again. Using safeIncrease allow us to call _createOffer
        // even when we are approving the same oTokens we have used before. This might happen if
        // we accidentally burn the oTokens before settlement.
        uint256 allowance =
            IERC20(currentOtoken).allowance(address(this), swapContract);
        if (allowance < oTokenBalance) {
            IERC20(currentOtoken).safeIncreaseAllowance(
                swapContract,
                oTokenBalance.sub(allowance)
            );
        }
        uint256 decimals = vaultParams.decimals;
        // If total size is larger than 1, set minimum bid as 1
        // Otherwise, set minimum bid to one tenth the total size
        uint256 minBidSize =
            oTokenBalance > 10**decimals ? 10**decimals : oTokenBalance.div(10);
        require(
            minBidSize <= type(uint96).max,
            "minBidSize > type(uint96) max value!"
        );
        currOtokenPremium = decimals > 18
            ? currOtokenPremium.mul(10**(decimals.sub(18)))
            : currOtokenPremium.div(10**(uint256(18).sub(decimals)));
        optionAuctionID = ISwap(swapContract).createOffer(
            currentOtoken,
            vaultParams.asset,
            uint96(currOtokenPremium),
            uint96(minBidSize),
            uint128(oTokenBalance)
        );
    }
    /**
     * @notice Allocates the vault's minted options to the OptionsPurchaseQueue contract
     * @dev Skipped if the optionsPurchaseQueue doesn't exist
     * @param optionsPurchaseQueue is the OptionsPurchaseQueue contract
     * @param option is the minted option
     * @param optionsAmount is the amount of options minted
     * @param optionAllocation is the maximum % of options to allocate towards the purchase queue (will only allocate
     *  up to the amount that is on the queue)
     * @return allocatedOptions is the amount of options that ended up getting allocated to the OptionsPurchaseQueue
     */
    function allocateOptions(
        address optionsPurchaseQueue,
        address option,
        uint256 optionsAmount,
        uint256 optionAllocation
    ) external returns (uint256 allocatedOptions) {
        // Skip if optionsPurchaseQueue is address(0)
        if (optionsPurchaseQueue != address(0)) {
            allocatedOptions = optionsAmount.mul(optionAllocation).div(
                100 * Vault.OPTION_ALLOCATION_MULTIPLIER
            );
            allocatedOptions = IOptionsPurchaseQueue(optionsPurchaseQueue)
                .getOptionsAllocation(address(this), allocatedOptions);
            if (allocatedOptions != 0) {
                IERC20(option).approve(optionsPurchaseQueue, allocatedOptions);
                IOptionsPurchaseQueue(optionsPurchaseQueue).allocateOptions(
                    allocatedOptions
                );
            }
        }
        return allocatedOptions;
    }
    /**
     * @notice Sell the allocated options to the purchase queue post auction settlement
     * @dev Reverts if the auction hasn't settled yet
     * @param optionsPurchaseQueue is the OptionsPurchaseQueue contract
     * @param swapContract The address of the swap settlement contract
     * @return totalPremiums Total premiums earnt by the vault
     */
    function sellOptionsToQueue(
        address optionsPurchaseQueue,
        address swapContract,
        uint256 optionAuctionID
    ) external returns (uint256) {
        uint256 settlementPrice =
            getAuctionSettlementPrice(swapContract, optionAuctionID);
        require(settlementPrice != 0, "!settlementPrice");
        return
            IOptionsPurchaseQueue(optionsPurchaseQueue).sellToBuyers(
                settlementPrice
            );
    }
    /**
     * @notice Gets the settlement price of a settled auction
     * @param swapContract The address of the swap settlement contract
     * @param optionAuctionID is the offer ID
     * @return settlementPrice Auction settlement price
     */
    function getAuctionSettlementPrice(
        address swapContract,
        uint256 optionAuctionID
    ) public view returns (uint256) {
        return ISwap(swapContract).averagePriceForOffer(optionAuctionID);
    }
    /**
     * @notice Verify the constructor params satisfy requirements
     * @param owner is the owner of the vault with critical permissions
     * @param feeRecipient is the address to recieve vault performance and management fees
     * @param performanceFee is the perfomance fee pct.
     * @param tokenName is the name of the token
     * @param tokenSymbol is the symbol of the token
     * @param _vaultParams is the struct with vault general data
     */
    function verifyInitializerParams(
        address owner,
        address keeper,
        address feeRecipient,
        uint256 period,
        uint256 performanceFee,
        uint256 managementFee,
        string calldata tokenName,
        string calldata tokenSymbol,
        Vault.VaultParams calldata _vaultParams
    ) external pure {
        require(owner != address(0), "!owner");
        require(keeper != address(0), "!keeper");
        require(feeRecipient != address(0), "!feeRecipient");
        require(period > 0, "!_period");
        require(
            performanceFee < 100 * Vault.FEE_MULTIPLIER,
            "performanceFee >= 100%"
        );
        require(
            managementFee < 100 * Vault.FEE_MULTIPLIER,
            "managementFee >= 100%"
        );
        require(bytes(tokenName).length > 0, "!tokenName");
        require(bytes(tokenSymbol).length > 0, "!tokenSymbol");
        require(_vaultParams.asset != address(0), "!asset");
        require(_vaultParams.underlying != address(0), "!underlying");
        require(_vaultParams.minimumSupply > 0, "!minimumSupply");
        require(_vaultParams.cap > 0, "!cap");
        require(
            _vaultParams.cap > _vaultParams.minimumSupply,
            "cap has to be higher than minimumSupply"
        );
    }
    /**
     * @notice Gets the next options expiry timestamp for the specified period
     * @param period is no. of days in between option sales. Available periods are:
     * 7(1w), 14(2w), 30(1m), 90(3m), 180(6m)
     */
    function getNextExpiry(uint256 period)
        internal
        view
        returns (uint256 nextExpiry)
    {
        nextExpiry = block.timestamp + period * 1 days;
        nextExpiry = nextExpiry - (nextExpiry % (24 hours)) + (8 hours);
    }
}
// SPDX-License-Identifier: MIT
pragma solidity =0.8.4;
import {ISwap} from "../interfaces/ISwap.sol";
abstract contract RibbonThetaVaultStorageV1 {
    // Logic contract used to price options
    address public optionsPremiumPricer;
    // Logic contract used to select strike prices
    address public strikeSelection;
    // Current oToken premium
    uint256 public currentOtokenPremium;
    // Last round id at which the strike was manually overridden
    uint16 public lastStrikeOverrideRound;
    // Price last overridden strike set to
    uint256 public overriddenStrikePrice;
    // Auction id of current option
    uint256 public optionAuctionID;
    // Amount locked for scheduled withdrawals last week;
    uint256 public lastQueuedWithdrawAmount;
    // OptionsPurchaseQueue contract for selling options
    address public optionsPurchaseQueue;
    // Queued withdraw shares for the current round
    uint256 public currentQueuedWithdrawShares;
}
abstract contract RibbonThetaVaultStorageV2 {
    // Settled bids from previous round
    ISwap.Bid[] internal settledBids;
}
// We are following Compound's method of upgrading new contract implementations
// When we need to add new storage variables, we create a new version of RibbonThetaVaultStorage
// e.g. RibbonThetaVaultStorage<versionNumber>, so finally it would look like
// contract RibbonThetaVaultStorage is RibbonThetaVaultStorageV1, RibbonThetaVaultStorageV2
abstract contract RibbonThetaVaultStorage is RibbonThetaVaultStorageV1, RibbonThetaVaultStorageV2 {
}
// SPDX-License-Identifier: MIT
pragma solidity =0.8.4;
import {SafeMath} from "@openzeppelin/contracts/utils/math/SafeMath.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {
    SafeERC20
} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {
    ReentrancyGuardUpgradeable
} from "@openzeppelin/contracts-upgradeable/security/ReentrancyGuardUpgradeable.sol";
import {
    OwnableUpgradeable
} from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import {
    ERC20Upgradeable
} from "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol";
import {
    IERC20Permit
} from "@openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol";
import {Vault} from "../../../libraries/Vault.sol";
import {
    VaultLifecycleWithSwap
} from "../../../libraries/VaultLifecycleWithSwap.sol";
import {ShareMath} from "../../../libraries/ShareMath.sol";
import {IAmplol} from "../../../interfaces/IAmplol.sol";
contract RibbonVault is
    ReentrancyGuardUpgradeable,
    OwnableUpgradeable,
    ERC20Upgradeable
{
    using SafeERC20 for IERC20;
    using SafeMath for uint256;
    using ShareMath for Vault.DepositReceipt;
    /************************************************
     *  NON UPGRADEABLE STORAGE
     ***********************************************/
    /// @notice Stores the user's pending deposit for the round
    mapping(address => Vault.DepositReceipt) public depositReceipts;
    /// @notice On every round's close, the pricePerShare value of an rTHETA token is stored
    /// This is used to determine the number of shares to be returned
    /// to a user with their DepositReceipt.depositAmount
    mapping(uint256 => uint256) public roundPricePerShare;
    /// @notice Stores pending user withdrawals
    mapping(address => Vault.Withdrawal) public withdrawals;
    /// @notice Vault's parameters like cap, decimals
    Vault.VaultParams public vaultParams;
    /// @notice Vault's lifecycle state like round and locked amounts
    Vault.VaultState public vaultState;
    /// @notice Vault's state of the options sold and the timelocked option
    Vault.OptionState public optionState;
    /// @notice Fee recipient for the performance and management fees
    address public feeRecipient;
    /// @notice role in charge of weekly vault operations such as rollToNextOption and burnRemainingOTokens
    // no access to critical vault changes
    address public keeper;
    /// @notice Performance fee charged on premiums earned in rollToNextOption. Only charged when there is no loss.
    uint256 public performanceFee;
    /// @notice Management fee charged on entire AUM in rollToNextOption. Only charged when there is no loss.
    uint256 public managementFee;
    /// @notice Period between each options sale.
    /// Available options 7 (weekly), 14 (biweekly), 30 (monthly), 90 (quarterly), 180 (biannually)
    uint256 public period;
    // Gap is left to avoid storage collisions. Though RibbonVault is not upgradeable, we add this as a safety measure.
    uint256[30] private ____gap;
    // *IMPORTANT* NO NEW STORAGE VARIABLES SHOULD BE ADDED HERE
    // This is to prevent storage collisions. All storage variables should be appended to RibbonThetaVaultStorage
    // or RibbonDeltaVaultStorage instead. Read this documentation to learn more:
    // https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#modifying-your-contracts
    /************************************************
     *  IMMUTABLES & CONSTANTS
     ***********************************************/
    // Number of weeks per year = 52.142857 weeks * FEE_MULTIPLIER = 52142857
    // Dividing by weeks per year requires doing num.mul(FEE_MULTIPLIER).div(WEEKS_PER_YEAR)
    uint256 private constant WEEKS_PER_YEAR = 52142857;
    // GAMMA_CONTROLLER is the top-level contract in Gamma protocol
    // which allows users to perform multiple actions on their vaults
    // and positions https://github.com/opynfinance/GammaProtocol/blob/master/contracts/core/Controller.sol
    address public immutable GAMMA_CONTROLLER;
    // MARGIN_POOL is Gamma protocol's collateral pool.
    // Needed to approve collateral.safeTransferFrom for minting otokens.
    // https://github.com/opynfinance/GammaProtocol/blob/master/contracts/core/MarginPool.sol
    address public immutable MARGIN_POOL;
    // SWAP_CONTRACT is a contract for settling bids via signed messages
    // https://github.com/ribbon-finance/ribbon-v2/blob/master/contracts/utils/Swap.sol
    address public immutable SWAP_CONTRACT;
    /// @notice amplol is the amplol address.
    IAmplol public immutable AMPLOL;
    /************************************************
     *  EVENTS
     ***********************************************/
    event Deposit(address indexed account, uint256 amount, uint256 round);
    event InitiateWithdraw(
        address indexed account,
        uint256 shares,
        uint256 round
    );
    event Redeem(address indexed account, uint256 share, uint256 round);
    event ManagementFeeSet(uint256 managementFee, uint256 newManagementFee);
    event PerformanceFeeSet(uint256 performanceFee, uint256 newPerformanceFee);
    event CapSet(uint256 oldCap, uint256 newCap);
    event Withdraw(address indexed account, uint256 amount, uint256 shares);
    event CollectVaultFees(
        uint256 performanceFee,
        uint256 vaultFee,
        uint256 round,
        address indexed feeRecipient
    );
    /************************************************
     *  CONSTRUCTOR & INITIALIZATION
     ***********************************************/
    /**
     * @notice Initializes the contract with immutable variables
     * @param _gammaController is the contract address for opyn actions
     * @param _marginPool is the contract address for providing collateral to opyn
     * @param _swapContract is the contract address that facilitates bids settlement
     * @param _amplol is the contract address for AMPLOLs
     */
    constructor(
        address _gammaController,
        address _marginPool,
        address _swapContract,
        address _amplol
    ) {
        require(_swapContract != address(0), "!_swapContract");
        require(_gammaController != address(0), "!_gammaController");
        require(_marginPool != address(0), "!_marginPool");
        require(_amplol != address(0), "!_amplol");
        GAMMA_CONTROLLER = _gammaController;
        MARGIN_POOL = _marginPool;
        SWAP_CONTRACT = _swapContract;
        AMPLOL = IAmplol(_amplol);
    }
    /**
     * @notice Initializes the OptionVault contract with storage variables.
     */
    function baseInitialize(
        address _owner,
        address _keeper,
        address _feeRecipient,
        uint256 _period,
        uint256 _managementFee,
        uint256 _performanceFee,
        string memory _tokenName,
        string memory _tokenSymbol,
        Vault.VaultParams calldata _vaultParams
    ) internal initializer {
        VaultLifecycleWithSwap.verifyInitializerParams(
            _owner,
            _keeper,
            _feeRecipient,
            _period,
            _performanceFee,
            _managementFee,
            _tokenName,
            _tokenSymbol,
            _vaultParams
        );
        __ReentrancyGuard_init();
        __ERC20_init(_tokenName, _tokenSymbol);
        __Ownable_init();
        transferOwnership(_owner);
        keeper = _keeper;
        feeRecipient = _feeRecipient;
        period = _period;
        performanceFee = _performanceFee;
        managementFee = _perRoundManagementFee(_managementFee);
        vaultParams = _vaultParams;
        uint256 assetBalance =
            IERC20(vaultParams.asset).balanceOf(address(this));
        ShareMath.assertUint104(assetBalance);
        vaultState.lastLockedAmount = uint104(assetBalance);
        vaultState.round = 1;
    }
    /**
     * @dev Throws if called by any account other than the keeper.
     */
    modifier onlyKeeper() {
        require(msg.sender == keeper, "!keeper");
        _;
    }
    /************************************************
     *  SETTERS
     ***********************************************/
    /**
     * @notice Sets the new keeper
     * @param newKeeper is the address of the new keeper
     */
    function setNewKeeper(address newKeeper) external onlyOwner {
        require(newKeeper != address(0), "!newKeeper");
        keeper = newKeeper;
    }
    /**
     * @notice Sets the new fee recipient
     * @param newFeeRecipient is the address of the new fee recipient
     */
    function setFeeRecipient(address newFeeRecipient) external onlyOwner {
        require(newFeeRecipient != address(0), "!newFeeRecipient");
        require(newFeeRecipient != feeRecipient, "Must be new feeRecipient");
        feeRecipient = newFeeRecipient;
    }
    /**
     * @notice Sets the management fee for the vault
     * @param newManagementFee is the management fee (6 decimals). ex: 2 * 10 ** 6 = 2%
     */
    function setManagementFee(uint256 newManagementFee) external onlyOwner {
        require(
            newManagementFee < 100 * Vault.FEE_MULTIPLIER,
            "Invalid management fee"
        );
        managementFee = _perRoundManagementFee(newManagementFee);
        emit ManagementFeeSet(managementFee, newManagementFee);
    }
    /**
     * @notice Sets the performance fee for the vault
     * @param newPerformanceFee is the performance fee (6 decimals). ex: 20 * 10 ** 6 = 20%
     */
    function setPerformanceFee(uint256 newPerformanceFee) external onlyOwner {
        require(
            newPerformanceFee < 100 * Vault.FEE_MULTIPLIER,
            "Invalid performance fee"
        );
        emit PerformanceFeeSet(performanceFee, newPerformanceFee);
        performanceFee = newPerformanceFee;
    }
    /**
     * @notice Sets a new cap for deposits
     * @param newCap is the new cap for deposits
     */
    function setCap(uint256 newCap) external onlyOwner {
        require(newCap > 0, "!newCap");
        ShareMath.assertUint104(newCap);
        emit CapSet(vaultParams.cap, newCap);
        vaultParams.cap = uint104(newCap);
    }
    /************************************************
     *  DEPOSIT & WITHDRAWALS
     ***********************************************/
   /**
    * @notice Deposits the `asset` from msg.sender without an approve
    * `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
    * over the EIP712-formatted function arguments
    * @param amount is the amount of `asset` to deposit
    * @param deadline must be a timestamp in the future
    * @param v is a valid signature
    * @param r is a valid signature
    * @param s is a valid signature
    */
    function depositWithPermit(
        uint256 amount,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external nonReentrant {
        require(amount > 0, "!amount");
        // Sign for transfer approval
        IERC20Permit(vaultParams.asset).permit(
            msg.sender,
            address(this),
            amount,
            deadline,
            v,
            r,
            s
        );
        _depositFor(amount, msg.sender);
        // An approve() by the msg.sender is required beforehand
        IERC20(vaultParams.asset).safeTransferFrom(
            msg.sender,
            address(this),
            amount
        );
        AMPLOL.mint(msg.sender, amount);
    }
    /**
     * @notice Deposits the `asset` from msg.sender.
     * @param amount is the amount of `asset` to deposit
     */
    function deposit(uint256 amount) external nonReentrant {
        require(amount > 0, "!amount");
        _depositFor(amount, msg.sender);
        // An approve() by the msg.sender is required beforehand
        IERC20(vaultParams.asset).safeTransferFrom(
            msg.sender,
            address(this),
            amount
        );
        AMPLOL.mint(msg.sender, amount);
    }
    /**
     * @notice Deposits the `asset` from msg.sender added to `creditor`'s deposit.
     * @notice Used for vault -> vault deposits on the user's behalf
     * @param amount is the amount of `asset` to deposit
     * @param creditor is the address that can claim/withdraw deposited amount
     */
    function depositFor(uint256 amount, address creditor)
        external
        nonReentrant
    {
        require(amount > 0, "!amount");
        require(creditor != address(0));
        _depositFor(amount, creditor);
        // An approve() by the msg.sender is required beforehand
        IERC20(vaultParams.asset).safeTransferFrom(
            msg.sender,
            address(this),
            amount
        );
        AMPLOL.mint(creditor, amount);
    }
    /**
     * @notice Internal function to set the management fee for the vault
     * @param _managementFee is the management fee (6 decimals). ex: 2 * 10 ** 6 = 2%
     * @return perRoundManagementFee is the management divided by the number of rounds per year
     */
    function _perRoundManagementFee(uint256 _managementFee)
        internal
        view
        returns (uint256)
    {
        uint256 _period = period;
        uint256 feeDivider =
          _period % 30 == 0
              ? (Vault.FEE_MULTIPLIER * 12 * 30)/ _period
              : (WEEKS_PER_YEAR * 7) / _period;
        // We are dividing annualized management fee by num weeks in a year
        return _managementFee.mul(Vault.FEE_MULTIPLIER).div(feeDivider);
    }
    /**
     * @notice Mints the vault shares to the creditor
     * @param amount is the amount of `asset` deposited
     * @param creditor is the address to receieve the deposit
     */
    function _depositFor(uint256 amount, address creditor) private {
        uint256 currentRound = vaultState.round;
        uint256 totalWithDepositedAmount = totalBalance().add(amount);
        require(totalWithDepositedAmount <= vaultParams.cap, "Exceed cap");
        require(
            totalWithDepositedAmount >= vaultParams.minimumSupply,
            "Insufficient balance"
        );
        emit Deposit(creditor, amount, currentRound);
        Vault.DepositReceipt memory depositReceipt = depositReceipts[creditor];
        // If we have an unprocessed pending deposit from the previous rounds, we have to process it.
        uint256 unredeemedShares =
            depositReceipt.getSharesFromReceipt(
                currentRound,
                roundPricePerShare[depositReceipt.round],
                vaultParams.decimals
            );
        uint256 depositAmount = amount;
        // If we have a pending deposit in the current round, we add on to the pending deposit
        if (currentRound == depositReceipt.round) {
            uint256 newAmount = uint256(depositReceipt.amount).add(amount);
            depositAmount = newAmount;
        }
        ShareMath.assertUint104(depositAmount);
        depositReceipts[creditor] = Vault.DepositReceipt({
            round: uint16(currentRound),
            amount: uint104(depositAmount),
            unredeemedShares: uint128(unredeemedShares)
        });
        uint256 newTotalPending = uint256(vaultState.totalPending).add(amount);
        ShareMath.assertUint128(newTotalPending);
        vaultState.totalPending = uint128(newTotalPending);
    }
    /**
     * @notice Initiates a withdrawal that can be processed once the round completes
     * @param numShares is the number of shares to withdraw
     */
    function _initiateWithdraw(uint256 numShares) internal {
        require(numShares > 0, "!numShares");
        // We do a max redeem before initiating a withdrawal
        // But we check if they must first have unredeemed shares
        if (
            depositReceipts[msg.sender].amount > 0 ||
            depositReceipts[msg.sender].unredeemedShares > 0
        ) {
            _redeem(0, true);
        }
        // This caches the `round` variable used in shareBalances
        uint256 currentRound = vaultState.round;
        Vault.Withdrawal storage withdrawal = withdrawals[msg.sender];
        bool withdrawalIsSameRound = withdrawal.round == currentRound;
        emit InitiateWithdraw(msg.sender, numShares, currentRound);
        uint256 existingShares = uint256(withdrawal.shares);
        uint256 withdrawalShares;
        if (withdrawalIsSameRound) {
            withdrawalShares = existingShares.add(numShares);
        } else {
            require(existingShares == 0, "Existing withdraw");
            withdrawalShares = numShares;
            withdrawals[msg.sender].round = uint16(currentRound);
        }
        ShareMath.assertUint128(withdrawalShares);
        withdrawals[msg.sender].shares = uint128(withdrawalShares);
        _transfer(msg.sender, address(this), numShares);
    }
    /**
     * @notice Completes a scheduled withdrawal from a past round. Uses finalized pps for the round
     * @return withdrawAmount the current withdrawal amount
     */
    function _completeWithdraw() internal returns (uint256) {
        Vault.Withdrawal storage withdrawal = withdrawals[msg.sender];
        uint256 withdrawalShares = withdrawal.shares;
        uint256 withdrawalRound = withdrawal.round;
        // This checks if there is a withdrawal
        require(withdrawalShares > 0, "Not initiated");
        require(withdrawalRound < vaultState.round, "Round not closed");
        // We leave the round number as non-zero to save on gas for subsequent writes
        withdrawals[msg.sender].shares = 0;
        vaultState.queuedWithdrawShares = uint128(
            uint256(vaultState.queuedWithdrawShares).sub(withdrawalShares)
        );
        uint256 withdrawAmount =
            ShareMath.sharesToAsset(
                withdrawalShares,
                roundPricePerShare[withdrawalRound],
                vaultParams.decimals
            );
        emit Withdraw(msg.sender, withdrawAmount, withdrawalShares);
        _burn(address(this), withdrawalShares);
        require(withdrawAmount > 0, "!withdrawAmount");
        AMPLOL.burn(msg.sender, withdrawAmount);
        transferAsset(msg.sender, withdrawAmount);
        return withdrawAmount;
    }
    /**
     * @notice Redeems shares that are owed to the account
     * @param numShares is the number of shares to redeem
     */
    function redeem(uint256 numShares) external nonReentrant {
        require(numShares > 0, "!numShares");
        _redeem(numShares, false);
    }
    /**
     * @notice Redeems the entire unredeemedShares balance that is owed to the account
     */
    function maxRedeem() external nonReentrant {
        _redeem(0, true);
    }
    /**
     * @notice Redeems shares that are owed to the account
     * @param numShares is the number of shares to redeem, could be 0 when isMax=true
     * @param isMax is flag for when callers do a max redemption
     */
    function _redeem(uint256 numShares, bool isMax) internal {
        Vault.DepositReceipt memory depositReceipt =
            depositReceipts[msg.sender];
        // This handles the null case when depositReceipt.round = 0
        // Because we start with round = 1 at `initialize`
        uint256 currentRound = vaultState.round;
        uint256 unredeemedShares =
            depositReceipt.getSharesFromReceipt(
                currentRound,
                roundPricePerShare[depositReceipt.round],
                vaultParams.decimals
            );
        numShares = isMax ? unredeemedShares : numShares;
        if (numShares == 0) {
            return;
        }
        require(numShares <= unredeemedShares, "Exceeds available");
        // If we have a depositReceipt on the same round, BUT we have some unredeemed shares
        // we debit from the unredeemedShares, but leave the amount field intact
        // If the round has past, with no new deposits, we just zero it out for new deposits.
        if (depositReceipt.round < currentRound) {
            depositReceipts[msg.sender].amount = 0;
        }
        ShareMath.assertUint128(numShares);
        depositReceipts[msg.sender].unredeemedShares = uint128(
            unredeemedShares.sub(numShares)
        );
        emit Redeem(msg.sender, numShares, depositReceipt.round);
        _transfer(address(this), msg.sender, numShares);
    }
    /************************************************
     *  VAULT OPERATIONS
     ***********************************************/
    /**
     * @notice Helper function that helps to save gas for writing values into the roundPricePerShare map.
     *         Writing `1` into the map makes subsequent writes warm, reducing the gas from 20k to 5k.
     *         Having 1 initialized beforehand will not be an issue as long as we round down share calculations to 0.
     * @param numRounds is the number of rounds to initialize in the map
     */
    function initRounds(uint256 numRounds) external nonReentrant {
        require(numRounds > 0, "!numRounds");
        uint256 _round = vaultState.round;
        for (uint256 i = 0; i < numRounds; i++) {
            uint256 index = _round + i;
            require(roundPricePerShare[index] == 0, "Initialized"); // AVOID OVERWRITING ACTUAL VALUES
            roundPricePerShare[index] = ShareMath.PLACEHOLDER_UINT;
        }
    }
    /**
     * @notice Helper function that performs most administrative tasks
     * such as minting new shares, getting vault fees, etc.
     * @param lastQueuedWithdrawAmount is old queued withdraw amount
     * @param currentQueuedWithdrawShares is the queued withdraw shares for the current round
     * @return lockedBalance is the new balance used to calculate next option purchase size or collateral size
     * @return queuedWithdrawAmount is the new queued withdraw amount for this round
     */
    function _closeRound(
        uint256 lastQueuedWithdrawAmount,
        uint256 currentQueuedWithdrawShares
    ) internal returns (uint256 lockedBalance, uint256 queuedWithdrawAmount) {
        address recipient = feeRecipient;
        uint256 mintShares;
        uint256 performanceFeeInAsset;
        uint256 totalVaultFee;
        {
            uint256 newPricePerShare;
            (
                lockedBalance,
                queuedWithdrawAmount,
                newPricePerShare,
                mintShares,
                performanceFeeInAsset,
                totalVaultFee
            ) = VaultLifecycleWithSwap.closeRound(
                vaultState,
                VaultLifecycleWithSwap.CloseParams(
                    vaultParams.decimals,
                    IERC20(vaultParams.asset).balanceOf(address(this)),
                    totalSupply(),
                    lastQueuedWithdrawAmount,
                    performanceFee,
                    managementFee,
                    currentQueuedWithdrawShares
                )
            );
            // Finalize the pricePerShare at the end of the round
            uint256 currentRound = vaultState.round;
            roundPricePerShare[currentRound] = newPricePerShare;
            emit CollectVaultFees(
                performanceFeeInAsset,
                totalVaultFee,
                currentRound,
                recipient
            );
            vaultState.totalPending = 0;
            vaultState.round = uint16(currentRound + 1);
        }
        _mint(address(this), mintShares);
        if (totalVaultFee > 0) {
            transferAsset(payable(recipient), totalVaultFee);
        }
        return (lockedBalance, queuedWithdrawAmount);
    }
    /**
     * @notice Helper function to make either an ETH transfer or ERC20 transfer
     * @param recipient is the receiving address
     * @param amount is the transfer amount
     */
    function transferAsset(address recipient, uint256 amount) internal {
        address asset = vaultParams.asset;
        IERC20(asset).safeTransfer(recipient, amount);
    }
    /************************************************
     *  GETTERS
     ***********************************************/
    /**
     * @notice Returns the asset balance held on the vault for the account
     * @param account is the address to lookup balance for
     * @return the amount of `asset` custodied by the vault for the user
     */
    function accountVaultBalance(address account)
        external
        view
        returns (uint256)
    {
        uint256 _decimals = vaultParams.decimals;
        uint256 assetPerShare =
            ShareMath.pricePerShare(
                totalSupply(),
                totalBalance(),
                vaultState.totalPending,
                _decimals
            );
        return
            ShareMath.sharesToAsset(shares(account), assetPerShare, _decimals);
    }
    /**
     * @notice Getter for returning the account's share balance including unredeemed shares
     * @param account is the account to lookup share balance for
     * @return the share balance
     */
    function shares(address account) public view returns (uint256) {
        (uint256 heldByAccount, uint256 heldByVault) = shareBalances(account);
        return heldByAccount.add(heldByVault);
    }
    /**
     * @notice Getter for returning the account's share balance split between account and vault holdings
     * @param account is the account to lookup share balance for
     * @return heldByAccount is the shares held by account
     * @return heldByVault is the shares held on the vault (unredeemedShares)
     */
    function shareBalances(address account)
        public
        view
        returns (uint256 heldByAccount, uint256 heldByVault)
    {
        Vault.DepositReceipt memory depositReceipt = depositReceipts[account];
        if (depositReceipt.round < ShareMath.PLACEHOLDER_UINT) {
            return (balanceOf(account), 0);
        }
        uint256 unredeemedShares =
            depositReceipt.getSharesFromReceipt(
                vaultState.round,
                roundPricePerShare[depositReceipt.round],
                vaultParams.decimals
            );
        return (balanceOf(account), unredeemedShares);
    }
    /**
     * @notice The price of a unit of share denominated in the `asset`
     */
    function pricePerShare() external view returns (uint256) {
        return
            ShareMath.pricePerShare(
                totalSupply(),
                totalBalance(),
                vaultState.totalPending,
                vaultParams.decimals
            );
    }
    /**
     * @notice Returns the vault's total balance, including the amounts locked into a short position
     * @return total balance of the vault, including the amounts locked in third party protocols
     */
    function totalBalance() public view returns (uint256) {
        // After calling closeRound, current option is set to none
        // We also commit the lockedAmount but do not deposit into Opyn
        // which results in double counting of asset balance and lockedAmount
        return
            optionState.currentOption != address(0)
                ? uint256(vaultState.lockedAmount).add(
                    IERC20(vaultParams.asset).balanceOf(address(this))
                )
                : IERC20(vaultParams.asset).balanceOf(address(this));
    }
    /**
     * @notice Returns the token decimals
     */
    function decimals() public view override returns (uint8) {
        return vaultParams.decimals;
    }
    function cap() external view returns (uint256) {
        return vaultParams.cap;
    }
    function nextOptionReadyAt() external view returns (uint256) {
        return optionState.nextOptionReadyAt;
    }
    function currentOption() external view returns (address) {
        return optionState.currentOption;
    }
    function nextOption() external view returns (address) {
        return optionState.nextOption;
    }
    function totalPending() external view returns (uint256) {
        return vaultState.totalPending;
    }
}
// SPDX-License-Identifier: MIT
pragma solidity =0.8.4;
import {SafeMath} from "@openzeppelin/contracts/utils/math/SafeMath.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {
    SafeERC20
} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {ISwap} from "../../interfaces/ISwap.sol";
import {
    IOtoken
} from "../../interfaces/GammaInterface.sol";
import {
    RibbonThetaVaultStorage
} from "../../storage/RibbonThetaVaultStorage.sol";
import {Vault} from "../../libraries/Vault.sol";
import {
    VaultLifecycleWithSwap
} from "../../libraries/VaultLifecycleWithSwap.sol";
import {ShareMath} from "../../libraries/ShareMath.sol";
import {RibbonVault} from "./base/RibbonVault.sol";
/**
 * UPGRADEABILITY: Since we use the upgradeable proxy pattern, we must observe
 * the inheritance chain closely.
 * Any changes/appends in storage variable needs to happen in RibbonThetaVaultStorage.
 * RibbonThetaVault should not inherit from any other contract aside from RibbonVault, RibbonThetaVaultStorage
 */
contract RibbonThetaVaultWithSwap is RibbonVault, RibbonThetaVaultStorage {
    using SafeERC20 for IERC20;
    using SafeMath for uint256;
    using ShareMath for Vault.DepositReceipt;
    /************************************************
     *  IMMUTABLES & CONSTANTS
     ***********************************************/
    // USDC
    address public constant USDC = 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48;
    /// @notice Deprecated: 15 minute timelock between commitAndClose and rollToNexOption.
    uint256 public constant DELAY = 0;
    /// @notice oTokenFactory is the factory contract used to spawn otokens. Used to lookup otokens.
    address public immutable OTOKEN_FACTORY;
    /************************************************
     *  EVENTS
     ***********************************************/
    event OpenShort(
        address indexed options,
        uint256 depositAmount,
        address indexed manager
    );
    event CloseShort(
        address indexed options,
        uint256 withdrawAmount,
        address indexed manager
    );
    event NewOptionStrikeSelected(uint256 strikePrice, uint256 delta);
    event InstantWithdraw(
        address indexed account,
        uint256 amount,
        uint256 round
    );
    event NewOffer(
        uint256 swapId,
        address seller,
        address oToken,
        address biddingToken,
        uint256 minPrice,
        uint256 minBidSize,
        uint256 totalSize
    );
    /************************************************
     *  STRUCTS
     ***********************************************/
    /**
     * @notice Initialization parameters for the vault.
     * @param _owner is the owner of the vault with critical permissions
     * @param _feeRecipient is the address to recieve vault performance and management fees
     * @param _managementFee is the management fee pct.
     * @param _performanceFee is the perfomance fee pct.
     * @param _tokenName is the name of the token
     * @param _tokenSymbol is the symbol of the token
     * @param _optionsPremiumPricer is the address of the contract with the
       black-scholes premium calculation logic
     * @param _strikeSelection is the address of the contract with strike selection logic
     * @param _period is the period between each option sales
     */
    struct InitParams {
        address _owner;
        address _keeper;
        address _feeRecipient;
        uint256 _period;
        uint256 _managementFee;
        uint256 _performanceFee;
        string _tokenName;
        string _tokenSymbol;
        address _optionsPremiumPricer;
        address _strikeSelection;
    }
    /************************************************
     *  CONSTRUCTOR & INITIALIZATION
     ***********************************************/
    /**
     * @notice Initializes the contract with immutable variables
     * @param _oTokenFactory is the contract address for minting new opyn option types (strikes, asset, expiry)
     * @param _gammaController is the contract address for opyn actions
     * @param _marginPool is the contract address for providing collateral to opyn
     * @param _swapContract is the contract address that facilitates bids settlement
     * @param _amplol is the contract address for AMPLOLs
     */
    constructor(
        address _oTokenFactory,
        address _gammaController,
        address _marginPool,
        address _swapContract,
        address _amplol
    ) RibbonVault(_gammaController, _marginPool, _swapContract, _amplol) {
        require(_oTokenFactory != address(0), "!_oTokenFactory");
        OTOKEN_FACTORY = _oTokenFactory;
    }
    /**
     * @notice Initializes the OptionVault contract with storage variables.
     * @param _initParams is the struct with vault initialization parameters
     * @param _vaultParams is the struct with vault general data
     */
    function initialize(
        InitParams calldata _initParams,
        Vault.VaultParams calldata _vaultParams
    ) external initializer {
        baseInitialize(
            _initParams._owner,
            _initParams._keeper,
            _initParams._feeRecipient,
            _initParams._period,
            _initParams._managementFee,
            _initParams._performanceFee,
            _initParams._tokenName,
            _initParams._tokenSymbol,
            _vaultParams
        );
        require(
            _initParams._optionsPremiumPricer != address(0),
            "!_optionsPremiumPricer"
        );
        require(
            _initParams._strikeSelection != address(0),
            "!_strikeSelection"
        );
        optionsPremiumPricer = _initParams._optionsPremiumPricer;
        strikeSelection = _initParams._strikeSelection;
    }
    /************************************************
     *  SETTERS
     ***********************************************/
    /**
     * @notice Sets the new strike selection contract
     * @param newStrikeSelection is the address of the new strike selection contract
     */
    function setStrikeSelection(address newStrikeSelection) external onlyOwner {
        require(newStrikeSelection != address(0), "!newStrikeSelection");
        strikeSelection = newStrikeSelection;
    }
    /**
     * @notice Sets the new options premium pricer contract
     * @param newOptionsPremiumPricer is the address of the new strike selection contract
     */
    function setOptionsPremiumPricer(address newOptionsPremiumPricer)
        external
        onlyOwner
    {
        require(
            newOptionsPremiumPricer != address(0),
            "!newOptionsPremiumPricer"
        );
        optionsPremiumPricer = newOptionsPremiumPricer;
    }
    /**
     * @notice Optionality to set strike price manually
     * Should be called after closeRound if we are setting current week's strike
     * @param strikePrice is the strike price of the new oTokens (decimals = 8)
     */
    function setStrikePrice(uint128 strikePrice) external onlyOwner {
        require(strikePrice > 0, "!strikePrice");
        overriddenStrikePrice = strikePrice;
        lastStrikeOverrideRound = vaultState.round;
    }
    /**
     * @notice Sets oToken Premium
     * @param minPrice is the new oToken Premium in the units of 10**18
     */
    function setMinPrice(uint256 minPrice) external onlyKeeper {
        require(minPrice > 0, "!minPrice");
        currentOtokenPremium = minPrice;
    }
    /************************************************
     *  VAULT OPERATIONS
     ***********************************************/
    /**
     * @notice Withdraws the assets on the vault using the outstanding `DepositReceipt.amount`
     * @param amount is the amount to withdraw
     */
    function withdrawInstantly(uint256 amount) external nonReentrant {
        Vault.DepositReceipt storage depositReceipt =
            depositReceipts[msg.sender];
        uint256 currentRound = vaultState.round;
        require(amount > 0, "!amount");
        require(depositReceipt.round == currentRound, "Invalid round");
        uint256 receiptAmount = depositReceipt.amount;
        require(receiptAmount >= amount, "Exceed amount");
        // Subtraction underflow checks already ensure it is smaller than uint104
        depositReceipt.amount = uint104(receiptAmount.sub(amount));
        vaultState.totalPending = uint128(
            uint256(vaultState.totalPending).sub(amount)
        );
        emit InstantWithdraw(msg.sender, amount, currentRound);
        AMPLOL.burn(msg.sender, amount);
        transferAsset(msg.sender, amount);
    }
    /**
     * @notice Initiates a withdrawal that can be processed once the round completes
     * @param numShares is the number of shares to withdraw
     */
    function initiateWithdraw(uint256 numShares) external nonReentrant {
        _initiateWithdraw(numShares);
        currentQueuedWithdrawShares = currentQueuedWithdrawShares.add(
            numShares
        );
    }
    /**
     * @notice Completes a scheduled withdrawal from a past round. Uses finalized pps for the round
     */
    function completeWithdraw() external nonReentrant {
        uint256 withdrawAmount = _completeWithdraw();
        lastQueuedWithdrawAmount = uint128(
            uint256(lastQueuedWithdrawAmount).sub(withdrawAmount)
        );
    }
    /**
     * @notice Closes the existing short and calculate the shares to mint, new price per share &
      amount of funds to re-allocate as collateral for the new round
     * Since we are incrementing the round here, the options are sold in the beginning of a round
     * instead of at the end of the round. For example, at round 1, we don't sell any options. We
     * start selling options at the beginning of round 2.
     */
    function closeRound() external nonReentrant {
        address oldOption = optionState.currentOption;
        require(
            oldOption != address(0) || vaultState.round == 1,
            "Round closed"
        );
        _closeShort(oldOption);
        uint256 currQueuedWithdrawShares = currentQueuedWithdrawShares;
        (uint256 lockedBalance, uint256 queuedWithdrawAmount) =
            _closeRound(
                uint256(lastQueuedWithdrawAmount),
                currQueuedWithdrawShares
            );
        lastQueuedWithdrawAmount = queuedWithdrawAmount;
        uint256 newQueuedWithdrawShares =
            uint256(vaultState.queuedWithdrawShares).add(
                currQueuedWithdrawShares
            );
        ShareMath.assertUint128(newQueuedWithdrawShares);
        vaultState.queuedWithdrawShares = uint128(newQueuedWithdrawShares);
        currentQueuedWithdrawShares = 0;
        ShareMath.assertUint104(lockedBalance);
        vaultState.lockedAmount = uint104(lockedBalance);
        uint256 nextOptionReady = block.timestamp.add(DELAY);
        require(
            nextOptionReady <= type(uint32).max,
            "Overflow nextOptionReady"
        );
        optionState.nextOptionReadyAt = uint32(nextOptionReady);
        for (uint256 i = 0; i < settledBids.length; i++) {
          delete settledBids[i];
        }
    }
    /**
     * @notice Closes the existing short position for the vault.
     */
    function _closeShort(address oldOption) private {
        uint256 lockedAmount = vaultState.lockedAmount;
        if (oldOption != address(0)) {
            vaultState.lastLockedAmount = uint104(lockedAmount);
        }
        vaultState.lockedAmount = 0;
        optionState.currentOption = address(0);
        if (oldOption != address(0)) {
            uint256 withdrawAmount =
                VaultLifecycleWithSwap.settleShort(GAMMA_CONTROLLER);
            emit CloseShort(oldOption, withdrawAmount, msg.sender);
        }
    }
    /**
     * @notice Sets the next option the vault will be shorting
     */
    function commitNextOption() external onlyKeeper nonReentrant {
        address currentOption = optionState.currentOption;
        require(
            currentOption == address(0) && vaultState.round != 1,
            "Round not closed"
        );
        VaultLifecycleWithSwap.CommitParams memory commitParams =
            VaultLifecycleWithSwap.CommitParams({
                OTOKEN_FACTORY: OTOKEN_FACTORY,
                USDC: USDC,
                collateralAsset: vaultParams.asset,
                currentOption: currentOption,
                delay: DELAY,
                lastStrikeOverrideRound: lastStrikeOverrideRound,
                overriddenStrikePrice: overriddenStrikePrice,
                strikeSelection: strikeSelection,
                optionsPremiumPricer: optionsPremiumPricer,
                period: period
            });
        (address otokenAddress, uint256 strikePrice, uint256 delta) =
            VaultLifecycleWithSwap.commitNextOption(
                commitParams,
                vaultParams,
                vaultState
            );
        emit NewOptionStrikeSelected(strikePrice, delta);
        optionState.nextOption = otokenAddress;
    }
    /**
     * @notice Rolls the vault's funds into a new short position and create a new offer.
     */
    function rollToNextOption() external onlyKeeper nonReentrant {
        address newOption = optionState.nextOption;
        require(newOption != address(0), "!nextOption");
        optionState.currentOption = newOption;
        optionState.nextOption = address(0);
        uint256 lockedBalance = vaultState.lockedAmount;
        emit OpenShort(newOption, lockedBalance, msg.sender);
        VaultLifecycleWithSwap.createShort(
            GAMMA_CONTROLLER,
            MARGIN_POOL,
            newOption,
            lockedBalance
        );
        _createOffer();
    }
    function _createOffer() private {
        address currentOtoken = optionState.currentOption;
        uint256 currOtokenPremium = currentOtokenPremium;
        optionAuctionID = VaultLifecycleWithSwap.createOffer(
            currentOtoken,
            currOtokenPremium,
            SWAP_CONTRACT,
            vaultParams
        );
    }
    /**
     * @notice Settle current offer
     */
    function settleOffer(ISwap.Bid[] calldata bids)
        external
        onlyKeeper
        nonReentrant
    {
        for (uint256 i = 0; i < bids.length; i++) {
          settledBids.push(bids[i]);
        }
        ISwap(SWAP_CONTRACT).settleOffer(optionAuctionID, bids);
    }
    /**
     * @notice Burn the remaining oTokens left over and return premiums
     */
    function burnRemainingOTokens() external onlyKeeper nonReentrant {
      VaultLifecycleWithSwap.burnOtokens(
          GAMMA_CONTROLLER,
          optionState.currentOption
      );
    }
}