Transaction Hash:
Block:
19717410 at Apr-23-2024 10:10:59 AM +UTC
Transaction Fee:
0.000531205727004125 ETH
$1.33
Gas Used:
53,975 Gas / 9.841699435 Gwei
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x1f9090aa...8e676c326
Miner
| 2.846476364368034096 Eth | 2.846479063118034096 Eth | 0.00000269875 | ||
0x7014232b...B57264601 |
0.00429586475110707 Eth
Nonce: 52
|
0.003764659024102945 Eth
Nonce: 53
| 0.000531205727004125 |
Execution Trace
ContinuousVestingMerkle.claim( )
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/draft-IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/cryptography/MerkleProof.sol) pragma solidity ^0.8.0; /** * @dev These functions deal with verification of Merkle Tree proofs. * * The proofs can be generated using the JavaScript library * https://github.com/miguelmota/merkletreejs[merkletreejs]. * Note: the hashing algorithm should be keccak256 and pair sorting should be enabled. * * See `test/utils/cryptography/MerkleProof.test.js` for some examples. * * WARNING: You should avoid using leaf values that are 64 bytes long prior to * hashing, or use a hash function other than keccak256 for hashing leaves. * This is because the concatenation of a sorted pair of internal nodes in * the merkle tree could be reinterpreted as a leaf value. */ library MerkleProof { /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. */ function verify( bytes32[] memory proof, bytes32 root, bytes32 leaf ) internal pure returns (bool) { return processProof(proof, leaf) == root; } /** * @dev Calldata version of {verify} * * _Available since v4.7._ */ function verifyCalldata( bytes32[] calldata proof, bytes32 root, bytes32 leaf ) internal pure returns (bool) { return processProofCalldata(proof, leaf) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leafs & pre-images are assumed to be sorted. * * _Available since v4.4._ */ function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Calldata version of {processProof} * * _Available since v4.7._ */ function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if the `leaves` can be proved to be a part of a Merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * _Available since v4.7._ */ function multiProofVerify( bytes32[] memory proof, bool[] memory proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProof(proof, proofFlags, leaves) == root; } /** * @dev Calldata version of {multiProofVerify} * * _Available since v4.7._ */ function multiProofVerifyCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProofCalldata(proof, proofFlags, leaves) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and the sibling nodes in `proof`, * consuming from one or the other at each step according to the instructions given by * `proofFlags`. * * _Available since v4.7._ */ function processMultiProof( bytes32[] memory proof, bool[] memory proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof"); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { return hashes[totalHashes - 1]; } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Calldata version of {processMultiProof} * * _Available since v4.7._ */ function processMultiProofCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof"); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { return hashes[totalHashes - 1]; } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) { return a < b ? _efficientHash(a, b) : _efficientHash(b, a); } function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) { /// @solidity memory-safe-assembly assembly { mstore(0x00, a) mstore(0x20, b) value := keccak256(0x00, 0x40) } } } // SPDX-License-Identifier: MIT pragma solidity 0.8.16; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { ContinuousVesting } from "./abstract/ContinuousVesting.sol"; import { MerkleSet } from "./abstract/MerkleSet.sol"; contract ContinuousVestingMerkle is ContinuousVesting, MerkleSet { constructor( IERC20 _token, // the token being claimed uint256 _total, // the total claimable by all users string memory _uri, // information on the sale (e.g. merkle proofs) uint256 _voteFactor, // votes have this weight uint256 _start, // vesting clock starts at this time uint256 _cliff, // claims open at this time uint256 _end, // vesting clock ends and this time bytes32 _merkleRoot // the merkle root for claim membership ) ContinuousVesting(_token, _total, _uri, _voteFactor, _start, _cliff, _end) MerkleSet(_merkleRoot) {} function NAME() external override pure returns (string memory) { return 'ContinuousVestingMerkle'; } function VERSION() external override pure returns (uint) { return 2; } function initializeDistributionRecord( uint256 index, // the beneficiary's index in the merkle root address beneficiary, // the address that will receive tokens uint256 amount, // the total claimable by this beneficiary bytes32[] calldata merkleProof ) validMerkleProof(keccak256(abi.encodePacked(index, beneficiary, amount)), merkleProof) external { _initializeDistributionRecord(beneficiary, amount); } function claim( uint256 index, // the beneficiary's index in the merkle root address beneficiary, // the address that will receive tokens uint256 amount, // the total claimable by this beneficiary bytes32[] calldata merkleProof ) external validMerkleProof(keccak256(abi.encodePacked(index, beneficiary, amount)), merkleProof) nonReentrant { if (!records[beneficiary].initialized) { _initializeDistributionRecord(beneficiary, amount); } super._executeClaim(beneficiary, uint120(getClaimableAmount(beneficiary))); } function setMerkleRoot(bytes32 _merkleRoot) external onlyOwner { _setMerkleRoot(_merkleRoot); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.16; import "@openzeppelin/contracts/access/Ownable.sol"; import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import {Distributor, DistributionRecord, IERC20} from "./Distributor.sol"; import {IAdjustable} from "../interfaces/IAdjustable.sol"; import {IVotesLite} from "../interfaces/IVotesLite.sol"; import {Sweepable} from "../../utilities/Sweepable.sol"; abstract contract AdvancedDistributor is Ownable, Distributor, Sweepable, IAdjustable, IVotesLite { using SafeERC20 for IERC20; uint256 private voteFactor; constructor( IERC20 _token, uint256 _total, string memory _uri, uint256 _voteFactor, uint256 _fractionDenominator ) Distributor(_token, _total, _uri, _fractionDenominator) { voteFactor = _voteFactor; emit SetVoteFactor(voteFactor); } function adjust(address beneficiary, int256 amount) external onlyOwner { DistributionRecord memory distributionRecord = records[beneficiary]; require( distributionRecord.initialized, "must initialize before adjusting" ); uint256 diff = uint256(amount > 0 ? amount : -amount); require(diff < type(uint120).max, "adjustment > max uint120"); if (amount < 0) { // decreasing claimable tokens require(total >= diff, "decrease greater than distributor total"); require( distributionRecord.total >= diff, "decrease greater than distributionRecord total" ); total -= diff; records[beneficiary].total -= uint120(diff); token.safeTransfer(owner(), diff); } else { // increasing claimable tokens total += diff; records[beneficiary].total += uint120(diff); } emit Adjust(beneficiary, amount); } \t// Set the token being distributed \tfunction setToken(IERC20 _token) external onlyOwner { require(address(_token) != address(0), "Adjustable: token is address(0)"); \t\ttoken = _token; \t\temit SetToken(token); \t} \t// Set the total to distribute \tfunction setTotal(uint256 _total) external onlyOwner { \t\ttotal = _total; \t\temit SetTotal(total); \t} \t// Set the distributor metadata URI \tfunction setUri(string memory _uri) external onlyOwner { \t\turi = _uri; \t\temit SetUri(uri); \t} function getVotes( address beneficiary ) external override(IVotesLite) view returns (uint256) { // Uninitialized claims will not have any votes! (returns 0) // The user can vote using tokens that are allocated to them but not yet claimed return (records[beneficiary].total - records[beneficiary].claimed) * voteFactor / fractionDenominator; } function getTotalVotes() external override(IVotesLite) view returns (uint256) { // Return total voting power for this distributor across all users return (total - claimed) * voteFactor / fractionDenominator; } function getVoteFactor(address) external override(IVotesLite) view returns (uint256) { \treturn voteFactor; } \t// Set the voting power of undistributed tokens \tfunction setVoteFactor(uint256 _voteFactor) external onlyOwner { \t\tvoteFactor = _voteFactor; \t\temit SetVoteFactor(voteFactor); \t} } // SPDX-License-Identifier: MIT pragma solidity 0.8.16; import {Distributor, AdvancedDistributor} from "./AdvancedDistributor.sol"; import {IVesting} from "../interfaces/IVesting.sol"; import {IContinuousVesting} from "../interfaces/IContinuousVesting.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; abstract contract ContinuousVesting is AdvancedDistributor, IContinuousVesting { uint256 private start; // time vesting clock begins uint256 private cliff; // time vesting begins (all tokens vested prior to the cliff are immediately claimable) uint256 private end; // time vesting clock ends constructor( IERC20 _token, uint256 _total, string memory _uri, uint256 _voteFactor, uint256 _start, uint256 _cliff, uint256 _end ) // use a large fraction denominator to provide the highest resolution on continuous vesting. AdvancedDistributor(_token, _total, _uri, _voteFactor, 10**18) { require(_start <= _cliff, "vesting cliff before start"); require(_cliff <= _end, "vesting end before cliff"); require( _end <= 4102444800, "vesting ends after 4102444800 (Jan 1 2100)" ); start = _start; cliff = _cliff; end = _end; emit SetContinuousVesting(start, cliff, end); } function getVestedFraction( address, /*beneficiary*/ uint256 time // time is in seconds past the epoch (e.g. block.timestamp) ) public view override(Distributor, IVesting) returns (uint256) { // no tokens are vested if (time <= cliff) { return 0; } // all tokens are vested if (time >= end) { return fractionDenominator; } // some tokens are vested return (fractionDenominator * (time - start)) / (end - start); } function getVestingConfig() external view returns ( uint256, uint256, uint256 ) { return (start, cliff, end); } // Adjustable admin functions function setVestingConfig( uint256 _start, uint256 _cliff, uint256 _end ) external onlyOwner { start = _start; cliff = _cliff; end = _end; emit SetContinuousVesting(start, cliff, end); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.16; import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {ReentrancyGuard} from "@openzeppelin/contracts/security/ReentrancyGuard.sol"; import {IDistributor, DistributionRecord} from "../interfaces/IDistributor.sol"; abstract contract Distributor is IDistributor, ReentrancyGuard { using SafeERC20 for IERC20; mapping(address => DistributionRecord) internal records; // track distribution records per user IERC20 public token; // the token being claimed uint256 public total; // total tokens allocated for claims uint256 public claimed; // tokens already claimed string public uri; // ipfs link on distributor info uint256 immutable fractionDenominator; // denominator for vesting fraction (e.g. if vested fraction is 100 and fractionDenominator is 10000, 1% of tokens have vested) // provide context on the contract name and version function NAME() external virtual returns (string memory); function VERSION() external virtual returns (uint256); constructor( IERC20 _token, uint256 _total, string memory _uri, uint256 _fractionDenominator ) { require( address(_token) != address(0), "Distributor: token is address(0)" ); require(_total > 0, "Distributor: total is 0"); token = _token; total = _total; uri = _uri; fractionDenominator = _fractionDenominator; emit InitializeDistributor(token, total, uri, fractionDenominator); } function _initializeDistributionRecord(address beneficiary, uint256 amount) internal { // CALLER MUST VERIFY THE BENEFICIARY AND AMOUNT ARE VALID! // Checks require( amount <= type(uint120).max, "Distributor: amount > type(uint120).max" ); require(amount > 0, "Distributor: amount == 0"); require( !records[beneficiary].initialized, "Distributor: already initialized" ); // Effects records[beneficiary] = DistributionRecord(true, uint120(amount), 0); emit InitializeDistributionRecord(beneficiary, amount); } function _executeClaim(address beneficiary, uint256 _amount) internal { // Checks: NONE! THIS FUNCTION DOES NOT CHECK PERMISSIONS: CALLER MUST VERIFY THE CLAIM IS VALID! uint120 amount = uint120(_amount); require(amount > 0, "Distributor: no more tokens claimable right now"); // effects records[beneficiary].claimed += amount; claimed += amount; // interactions token.safeTransfer(beneficiary, amount); emit Claim(beneficiary, amount); } function getDistributionRecord(address beneficiary) external view virtual returns (DistributionRecord memory) { return records[beneficiary]; } // Get tokens vested as fraction of fractionDenominator function getVestedFraction(address beneficiary, uint256 time) public view virtual returns (uint256); function getFractionDenominator() public view returns (uint256) { return fractionDenominator; } // get the number of tokens currently claimable by a specific use function getClaimableAmount(address beneficiary) public view virtual returns (uint256) { require( records[beneficiary].initialized, "Distributor: claim not initialized" ); DistributionRecord memory record = records[beneficiary]; uint256 claimable = (record.total * getVestedFraction(beneficiary, block.timestamp)) / fractionDenominator; return record.claimed >= claimable ? 0 // no more tokens to claim : claimable - record.claimed; // claim all available tokens } } // SPDX-License-Identifier: MIT pragma solidity 0.8.16; import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol"; import { IMerkleSet } from "../interfaces/IMerkleSet.sol"; contract MerkleSet is IMerkleSet { bytes32 private merkleRoot; constructor(bytes32 _merkleRoot) { _setMerkleRoot(_merkleRoot); } modifier validMerkleProof( bytes32 leaf, bytes32[] calldata merkleProof ) { _verifyMembership(leaf, merkleProof); _; } function _testMembership(bytes32 leaf, bytes32[] calldata merkleProof) internal view returns (bool) { return MerkleProof.verify(merkleProof, merkleRoot, leaf); } function getMerkleRoot() public view returns (bytes32) { return merkleRoot; } function _verifyMembership(bytes32 leaf, bytes32[] calldata merkleProof) internal view { require(_testMembership(leaf, merkleProof), "invalid proof"); } function _setMerkleRoot(bytes32 _merkleRoot) internal { merkleRoot = _merkleRoot; emit SetMerkleRoot(merkleRoot); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.16; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; interface IAdjustable { event Adjust(address indexed beneficiary, int256 amount); event SetToken(IERC20 indexed token); event SetTotal(uint256 total); event SetUri(string indexed uri); event SetVoteFactor(uint256 voteFactor); // Adjust the quantity claimable by a user function adjust(address beneficiary, int256 amount) external; // Set the token being distributed function setToken(IERC20 token) external; // Set the total distribution quantity function setTotal(uint256 total) external; // Set the distributor metadata URI function setUri(string memory uri) external; // Set the voting power of undistributed tokens function setVoteFactor(uint256 setVoteFactor) external; } // SPDX-License-Identifier: MIT pragma solidity 0.8.16; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {IVesting} from "./IVesting.sol"; interface IContinuousVesting is IVesting { event SetContinuousVesting(uint256 start, uint256 cliff, uint256 end); function getVestingConfig() external view returns ( uint256, uint256, uint256 ); function setVestingConfig( uint256 _start, uint256 _cliff, uint256 _end ) external; } // SPDX-License-Identifier: MIT pragma solidity 0.8.16; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; struct DistributionRecord { bool initialized; // has the claim record been initialized uint120 total; // total token quantity claimable uint120 claimed; // token quantity already claimed } interface IDistributor { event InitializeDistributor( IERC20 indexed token, uint256 total, string uri, uint256 fractionDenominator ); event InitializeDistributionRecord( address indexed beneficiary, uint256 amount ); event Claim(address indexed beneficiary, uint256 amount); function getDistributionRecord(address beneficiary) external view returns (DistributionRecord memory); function getClaimableAmount(address beneficiary) external view returns (uint256); function getFractionDenominator() external view returns (uint256); } // SPDX-License-Identifier: MIT pragma solidity 0.8.16; interface IMerkleSet { event SetMerkleRoot(bytes32 merkleRoot); \tfunction getMerkleRoot() external view returns (bytes32 root); } // SPDX-License-Identifier: MIT pragma solidity 0.8.16; interface IVesting { function getVestedFraction( address, /*beneficiary*/ uint256 time // time is in seconds past the epoch (e.g. block.timestamp) ) external returns (uint256); } // SPDX-License-Identifier: MIT pragma solidity 0.8.16; interface IVotesLite { // an account's current voting power function getVotes(address account) external view returns (uint256); // an total current voting power function getTotalVotes() external view returns (uint256); // a weighting factor used to convert token holdings to voting power (eg in basis points) function getVoteFactor(address account) external view returns (uint256); } // SPDX-License-Identifier: MIT pragma solidity 0.8.16; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; abstract contract Sweepable is Ownable { using SafeERC20 for IERC20; event SweepToken(address indexed token, uint256 amount); event SweepNative(uint256 amount); constructor() {} // Sweep an ERC20 token to the owner function sweepToken(IERC20 token) external onlyOwner { uint256 amount = token.balanceOf(address(this)); token.safeTransfer(owner(), amount); emit SweepToken(address(token), amount); } function sweepToken(IERC20 token, uint256 amount) external onlyOwner { token.safeTransfer(owner(), amount); emit SweepToken(address(token), amount); } // sweep native token to the owner function sweepNative() external onlyOwner { uint256 amount = address(this).balance; (bool success, ) = owner().call{value: amount}(""); require(success, "Transfer failed."); emit SweepNative(amount); } function sweepNative(uint256 amount) external onlyOwner { (bool success, ) = owner().call{value: amount}(""); require(success, "Transfer failed."); emit SweepNative(amount); } }