Transaction Hash:
Block:
21225758 at Nov-20-2024 01:47:11 AM +UTC
Transaction Fee:
0.000690854510171903 ETH
$1.55
Gas Used:
67,333 Gas / 10.260266291 Gwei
Emitted Events:
199 |
TetherToken.Transfer( from=[Sender] 0x1d8543594e3d63844bfbad7e2293d700f0bb2b7d, to=[Receiver] TransparentUpgradeableProxy, value=50000000 )
|
200 |
TransparentUpgradeableProxy.0x54ef209e319f7d023f4f2c1d4b427c3844f7ef008d20a2104b1f20cb533a7fbf( 0x54ef209e319f7d023f4f2c1d4b427c3844f7ef008d20a2104b1f20cb533a7fbf, 0x0000000000000000000000009a5db3f0de77e94fc07f45a06d9dbd5b4220c8ab, 000000000000000000000000dac17f958d2ee523a2206206994597c13d831ec7, 0000000000000000000000000000000000000000000000000000000002faf080 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x1d854359...0F0bB2B7d |
0.002974726731237227 Eth
Nonce: 6
|
0.002283872221065324 Eth
Nonce: 7
| 0.000690854510171903 | ||
0x95222290...5CC4BAfe5
Miner
| (beaverbuild) | 5.335435352691516273 Eth | 5.335497152385159681 Eth | 0.000061799693643408 | |
0xdAC17F95...13D831ec7 |
Execution Trace
TransparentUpgradeableProxy.e0149124( )
MrpcDeposit.depositForUser( token=0xdAC17F958D2ee523a2206206994597C13D831ec7, amount=50000000, user=0x9A5DB3f0de77E94Fc07f45A06d9DBd5B4220C8Ab )
-
TetherToken.transferFrom( _from=0x1d8543594e3d63844bFBaD7e2293d700F0bB2B7d, _to=0x764737FB03f2443798EB317677D253Ff226b97A9, _value=50000000 )
-
depositForUser[MrpcDeposit (ln:1109)]
_collectToken[MrpcDeposit (ln:1110)]
_checkTokenAvailable[MrpcDeposit (ln:1113)]
_getMinAmount[MrpcDeposit (ln:1114)]
safeTransferFrom[MrpcDeposit (ln:1115)]
_callOptionalReturn[SafeERC20 (ln:748)]
functionCall[SafeERC20 (ln:793)]
decode[SafeERC20 (ln:794)]
SafeERC20FailedOperation[SafeERC20 (ln:795)]
encodeCall[SafeERC20 (ln:748)]
DepositReceived[MrpcDeposit (ln:1116)]
File 1 of 3: TransparentUpgradeableProxy
File 2 of 3: TetherToken
File 3 of 3: MrpcDeposit
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1967.sol) pragma solidity ^0.8.20; /** * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC. */ interface IERC1967 { /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Emitted when the beacon is changed. */ event BeaconUpgraded(address indexed beacon); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/BeaconProxy.sol) pragma solidity ^0.8.20; import {IBeacon} from "./IBeacon.sol"; import {Proxy} from "../Proxy.sol"; import {ERC1967Utils} from "../ERC1967/ERC1967Utils.sol"; /** * @dev This contract implements a proxy that gets the implementation address for each call from an {UpgradeableBeacon}. * * The beacon address can only be set once during construction, and cannot be changed afterwards. It is stored in an * immutable variable to avoid unnecessary storage reads, and also in the beacon storage slot specified by * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] so that it can be accessed externally. * * CAUTION: Since the beacon address can never be changed, you must ensure that you either control the beacon, or trust * the beacon to not upgrade the implementation maliciously. * * IMPORTANT: Do not use the implementation logic to modify the beacon storage slot. Doing so would leave the proxy in * an inconsistent state where the beacon storage slot does not match the beacon address. */ contract BeaconProxy is Proxy { // An immutable address for the beacon to avoid unnecessary SLOADs before each delegate call. address private immutable _beacon; /** * @dev Initializes the proxy with `beacon`. * * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon. This * will typically be an encoded function call, and allows initializing the storage of the proxy like a Solidity * constructor. * * Requirements: * * - `beacon` must be a contract with the interface {IBeacon}. * - If `data` is empty, `msg.value` must be zero. */ constructor(address beacon, bytes memory data) payable { ERC1967Utils.upgradeBeaconToAndCall(beacon, data); _beacon = beacon; } /** * @dev Returns the current implementation address of the associated beacon. */ function _implementation() internal view virtual override returns (address) { return IBeacon(_getBeacon()).implementation(); } /** * @dev Returns the beacon. */ function _getBeacon() internal view virtual returns (address) { return _beacon; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol) pragma solidity ^0.8.20; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeacon { /** * @dev Must return an address that can be used as a delegate call target. * * {UpgradeableBeacon} will check that this address is a contract. */ function implementation() external view returns (address); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/UpgradeableBeacon.sol) pragma solidity ^0.8.20; import {IBeacon} from "./IBeacon.sol"; import {Ownable} from "../../access/Ownable.sol"; /** * @dev This contract is used in conjunction with one or more instances of {BeaconProxy} to determine their * implementation contract, which is where they will delegate all function calls. * * An owner is able to change the implementation the beacon points to, thus upgrading the proxies that use this beacon. */ contract UpgradeableBeacon is IBeacon, Ownable { address private _implementation; /** * @dev The `implementation` of the beacon is invalid. */ error BeaconInvalidImplementation(address implementation); /** * @dev Emitted when the implementation returned by the beacon is changed. */ event Upgraded(address indexed implementation); /** * @dev Sets the address of the initial implementation, and the initial owner who can upgrade the beacon. */ constructor(address implementation_, address initialOwner) Ownable(initialOwner) { _setImplementation(implementation_); } /** * @dev Returns the current implementation address. */ function implementation() public view virtual returns (address) { return _implementation; } /** * @dev Upgrades the beacon to a new implementation. * * Emits an {Upgraded} event. * * Requirements: * * - msg.sender must be the owner of the contract. * - `newImplementation` must be a contract. */ function upgradeTo(address newImplementation) public virtual onlyOwner { _setImplementation(newImplementation); } /** * @dev Sets the implementation contract address for this beacon * * Requirements: * * - `newImplementation` must be a contract. */ function _setImplementation(address newImplementation) private { if (newImplementation.code.length == 0) { revert BeaconInvalidImplementation(newImplementation); } _implementation = newImplementation; emit Upgraded(newImplementation); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Proxy.sol) pragma solidity ^0.8.20; import {Proxy} from "../Proxy.sol"; import {ERC1967Utils} from "./ERC1967Utils.sol"; /** * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an * implementation address that can be changed. This address is stored in storage in the location specified by * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the * implementation behind the proxy. */ contract ERC1967Proxy is Proxy { /** * @dev Initializes the upgradeable proxy with an initial implementation specified by `implementation`. * * If `_data` is nonempty, it's used as data in a delegate call to `implementation`. This will typically be an * encoded function call, and allows initializing the storage of the proxy like a Solidity constructor. * * Requirements: * * - If `data` is empty, `msg.value` must be zero. */ constructor(address implementation, bytes memory _data) payable { ERC1967Utils.upgradeToAndCall(implementation, _data); } /** * @dev Returns the current implementation address. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc` */ function _implementation() internal view virtual override returns (address) { return ERC1967Utils.getImplementation(); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Utils.sol) pragma solidity ^0.8.20; import {IBeacon} from "../beacon/IBeacon.sol"; import {Address} from "../../utils/Address.sol"; import {StorageSlot} from "../../utils/StorageSlot.sol"; /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots. */ library ERC1967Utils { // We re-declare ERC-1967 events here because they can't be used directly from IERC1967. // This will be fixed in Solidity 0.8.21. At that point we should remove these events. /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Emitted when the beacon is changed. */ event BeaconUpgraded(address indexed beacon); /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev The `implementation` of the proxy is invalid. */ error ERC1967InvalidImplementation(address implementation); /** * @dev The `admin` of the proxy is invalid. */ error ERC1967InvalidAdmin(address admin); /** * @dev The `beacon` of the proxy is invalid. */ error ERC1967InvalidBeacon(address beacon); /** * @dev An upgrade function sees `msg.value > 0` that may be lost. */ error ERC1967NonPayable(); /** * @dev Returns the current implementation address. */ function getImplementation() internal view returns (address) { return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { if (newImplementation.code.length == 0) { revert ERC1967InvalidImplementation(newImplementation); } StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Performs implementation upgrade with additional setup call if data is nonempty. * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected * to avoid stuck value in the contract. * * Emits an {IERC1967-Upgraded} event. */ function upgradeToAndCall(address newImplementation, bytes memory data) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); if (data.length > 0) { Address.functionDelegateCall(newImplementation, data); } else { _checkNonPayable(); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Returns the current admin. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103` */ function getAdmin() internal view returns (address) { return StorageSlot.getAddressSlot(ADMIN_SLOT).value; } /** * @dev Stores a new address in the EIP1967 admin slot. */ function _setAdmin(address newAdmin) private { if (newAdmin == address(0)) { revert ERC1967InvalidAdmin(address(0)); } StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {IERC1967-AdminChanged} event. */ function changeAdmin(address newAdmin) internal { emit AdminChanged(getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Returns the current beacon. */ function getBeacon() internal view returns (address) { return StorageSlot.getAddressSlot(BEACON_SLOT).value; } /** * @dev Stores a new beacon in the EIP1967 beacon slot. */ function _setBeacon(address newBeacon) private { if (newBeacon.code.length == 0) { revert ERC1967InvalidBeacon(newBeacon); } StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon; address beaconImplementation = IBeacon(newBeacon).implementation(); if (beaconImplementation.code.length == 0) { revert ERC1967InvalidImplementation(beaconImplementation); } } /** * @dev Change the beacon and trigger a setup call if data is nonempty. * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected * to avoid stuck value in the contract. * * Emits an {IERC1967-BeaconUpgraded} event. * * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for * efficiency. */ function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal { _setBeacon(newBeacon); emit BeaconUpgraded(newBeacon); if (data.length > 0) { Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data); } else { _checkNonPayable(); } } /** * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract * if an upgrade doesn't perform an initialization call. */ function _checkNonPayable() private { if (msg.value > 0) { revert ERC1967NonPayable(); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/Proxy.sol) pragma solidity ^0.8.20; /** * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to * be specified by overriding the virtual {_implementation} function. * * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a * different contract through the {_delegate} function. * * The success and return data of the delegated call will be returned back to the caller of the proxy. */ abstract contract Proxy { /** * @dev Delegates the current call to `implementation`. * * This function does not return to its internal call site, it will return directly to the external caller. */ function _delegate(address implementation) internal virtual { assembly { // Copy msg.data. We take full control of memory in this inline assembly // block because it will not return to Solidity code. We overwrite the // Solidity scratch pad at memory position 0. calldatacopy(0, 0, calldatasize()) // Call the implementation. // out and outsize are 0 because we don't know the size yet. let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0) // Copy the returned data. returndatacopy(0, 0, returndatasize()) switch result // delegatecall returns 0 on error. case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } /** * @dev This is a virtual function that should be overridden so it returns the address to which the fallback * function and {_fallback} should delegate. */ function _implementation() internal view virtual returns (address); /** * @dev Delegates the current call to the address returned by `_implementation()`. * * This function does not return to its internal call site, it will return directly to the external caller. */ function _fallback() internal virtual { _delegate(_implementation()); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other * function in the contract matches the call data. */ fallback() external payable virtual { _fallback(); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/transparent/ProxyAdmin.sol) pragma solidity ^0.8.20; import {ITransparentUpgradeableProxy} from "./TransparentUpgradeableProxy.sol"; import {Ownable} from "../../access/Ownable.sol"; /** * @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an * explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}. */ contract ProxyAdmin is Ownable { /** * @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgrade(address)` * and `upgradeAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called, * while `upgradeAndCall` will invoke the `receive` function if the second argument is the empty byte string. * If the getter returns `"5.0.0"`, only `upgradeAndCall(address,bytes)` is present, and the second argument must * be the empty byte string if no function should be called, making it impossible to invoke the `receive` function * during an upgrade. */ string public constant UPGRADE_INTERFACE_VERSION = "5.0.0"; /** * @dev Sets the initial owner who can perform upgrades. */ constructor(address initialOwner) Ownable(initialOwner) {} /** * @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation. * See {TransparentUpgradeableProxy-_dispatchUpgradeToAndCall}. * * Requirements: * * - This contract must be the admin of `proxy`. * - If `data` is empty, `msg.value` must be zero. */ function upgradeAndCall( ITransparentUpgradeableProxy proxy, address implementation, bytes memory data ) public payable virtual onlyOwner { proxy.upgradeToAndCall{value: msg.value}(implementation, data); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/transparent/TransparentUpgradeableProxy.sol) pragma solidity ^0.8.20; import {ERC1967Utils} from "../ERC1967/ERC1967Utils.sol"; import {ERC1967Proxy} from "../ERC1967/ERC1967Proxy.sol"; import {IERC1967} from "../../interfaces/IERC1967.sol"; import {ProxyAdmin} from "./ProxyAdmin.sol"; /** * @dev Interface for {TransparentUpgradeableProxy}. In order to implement transparency, {TransparentUpgradeableProxy} * does not implement this interface directly, and its upgradeability mechanism is implemented by an internal dispatch * mechanism. The compiler is unaware that these functions are implemented by {TransparentUpgradeableProxy} and will not * include them in the ABI so this interface must be used to interact with it. */ interface ITransparentUpgradeableProxy is IERC1967 { function upgradeToAndCall(address, bytes calldata) external payable; } /** * @dev This contract implements a proxy that is upgradeable through an associated {ProxyAdmin} instance. * * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector * clashing], which can potentially be used in an attack, this contract uses the * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two * things that go hand in hand: * * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if * that call matches the {ITransparentUpgradeableProxy-upgradeToAndCall} function exposed by the proxy itself. * 2. If the admin calls the proxy, it can call the `upgradeToAndCall` function but any other call won't be forwarded to * the implementation. If the admin tries to call a function on the implementation it will fail with an error indicating * the proxy admin cannot fallback to the target implementation. * * These properties mean that the admin account can only be used for upgrading the proxy, so it's best if it's a * dedicated account that is not used for anything else. This will avoid headaches due to sudden errors when trying to * call a function from the proxy implementation. For this reason, the proxy deploys an instance of {ProxyAdmin} and * allows upgrades only if they come through it. You should think of the `ProxyAdmin` instance as the administrative * interface of the proxy, including the ability to change who can trigger upgrades by transferring ownership. * * NOTE: The real interface of this proxy is that defined in `ITransparentUpgradeableProxy`. This contract does not * inherit from that interface, and instead `upgradeToAndCall` is implicitly implemented using a custom dispatch * mechanism in `_fallback`. Consequently, the compiler will not produce an ABI for this contract. This is necessary to * fully implement transparency without decoding reverts caused by selector clashes between the proxy and the * implementation. * * NOTE: This proxy does not inherit from {Context} deliberately. The {ProxyAdmin} of this contract won't send a * meta-transaction in any way, and any other meta-transaction setup should be made in the implementation contract. * * IMPORTANT: This contract avoids unnecessary storage reads by setting the admin only during construction as an * immutable variable, preventing any changes thereafter. However, the admin slot defined in ERC-1967 can still be * overwritten by the implementation logic pointed to by this proxy. In such cases, the contract may end up in an * undesirable state where the admin slot is different from the actual admin. * * WARNING: It is not recommended to extend this contract to add additional external functions. If you do so, the * compiler will not check that there are no selector conflicts, due to the note above. A selector clash between any new * function and the functions declared in {ITransparentUpgradeableProxy} will be resolved in favor of the new one. This * could render the `upgradeToAndCall` function inaccessible, preventing upgradeability and compromising transparency. */ contract TransparentUpgradeableProxy is ERC1967Proxy { // An immutable address for the admin to avoid unnecessary SLOADs before each call // at the expense of removing the ability to change the admin once it's set. // This is acceptable if the admin is always a ProxyAdmin instance or similar contract // with its own ability to transfer the permissions to another account. address private immutable _admin; /** * @dev The proxy caller is the current admin, and can't fallback to the proxy target. */ error ProxyDeniedAdminAccess(); /** * @dev Initializes an upgradeable proxy managed by an instance of a {ProxyAdmin} with an `initialOwner`, * backed by the implementation at `_logic`, and optionally initialized with `_data` as explained in * {ERC1967Proxy-constructor}. */ constructor(address _logic, address initialOwner, bytes memory _data) payable ERC1967Proxy(_logic, _data) { _admin = address(new ProxyAdmin(initialOwner)); // Set the storage value and emit an event for ERC-1967 compatibility ERC1967Utils.changeAdmin(_proxyAdmin()); } /** * @dev Returns the admin of this proxy. */ function _proxyAdmin() internal virtual returns (address) { return _admin; } /** * @dev If caller is the admin process the call internally, otherwise transparently fallback to the proxy behavior. */ function _fallback() internal virtual override { if (msg.sender == _proxyAdmin()) { if (msg.sig != ITransparentUpgradeableProxy.upgradeToAndCall.selector) { revert ProxyDeniedAdminAccess(); } else { _dispatchUpgradeToAndCall(); } } else { super._fallback(); } } /** * @dev Upgrade the implementation of the proxy. See {ERC1967Utils-upgradeToAndCall}. * * Requirements: * * - If `data` is empty, `msg.value` must be zero. */ function _dispatchUpgradeToAndCall() private { (address newImplementation, bytes memory data) = abi.decode(msg.data[4:], (address, bytes)); ERC1967Utils.upgradeToAndCall(newImplementation, data); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol) pragma solidity ^0.8.20; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error AddressInsufficientBalance(address account); /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedInnerCall(); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert AddressInsufficientBalance(address(this)); } (bool success, ) = recipient.call{value: amount}(""); if (!success) { revert FailedInnerCall(); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {FailedInnerCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert AddressInsufficientBalance(address(this)); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an * unsuccessful call. */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata ) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {FailedInnerCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert FailedInnerCall(); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.20; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ```solidity * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(newImplementation.code.length > 0); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } /** * @dev Returns an `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } }
File 2 of 3: TetherToken
pragma solidity ^0.4.17; /** * @title SafeMath * @dev Math operations with safety checks that throw on error */ library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) { return 0; } uint256 c = a * b; assert(c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { // assert(b > 0); // Solidity automatically throws when dividing by 0 uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { assert(b <= a); return a - b; } function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; assert(c >= a); return c; } } /** * @title Ownable * @dev The Ownable contract has an owner address, and provides basic authorization control * functions, this simplifies the implementation of "user permissions". */ contract Ownable { address public owner; /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */ function Ownable() public { owner = msg.sender; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(msg.sender == owner); _; } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) public onlyOwner { if (newOwner != address(0)) { owner = newOwner; } } } /** * @title ERC20Basic * @dev Simpler version of ERC20 interface * @dev see https://github.com/ethereum/EIPs/issues/20 */ contract ERC20Basic { uint public _totalSupply; function totalSupply() public constant returns (uint); function balanceOf(address who) public constant returns (uint); function transfer(address to, uint value) public; event Transfer(address indexed from, address indexed to, uint value); } /** * @title ERC20 interface * @dev see https://github.com/ethereum/EIPs/issues/20 */ contract ERC20 is ERC20Basic { function allowance(address owner, address spender) public constant returns (uint); function transferFrom(address from, address to, uint value) public; function approve(address spender, uint value) public; event Approval(address indexed owner, address indexed spender, uint value); } /** * @title Basic token * @dev Basic version of StandardToken, with no allowances. */ contract BasicToken is Ownable, ERC20Basic { using SafeMath for uint; mapping(address => uint) public balances; // additional variables for use if transaction fees ever became necessary uint public basisPointsRate = 0; uint public maximumFee = 0; /** * @dev Fix for the ERC20 short address attack. */ modifier onlyPayloadSize(uint size) { require(!(msg.data.length < size + 4)); _; } /** * @dev transfer token for a specified address * @param _to The address to transfer to. * @param _value The amount to be transferred. */ function transfer(address _to, uint _value) public onlyPayloadSize(2 * 32) { uint fee = (_value.mul(basisPointsRate)).div(10000); if (fee > maximumFee) { fee = maximumFee; } uint sendAmount = _value.sub(fee); balances[msg.sender] = balances[msg.sender].sub(_value); balances[_to] = balances[_to].add(sendAmount); if (fee > 0) { balances[owner] = balances[owner].add(fee); Transfer(msg.sender, owner, fee); } Transfer(msg.sender, _to, sendAmount); } /** * @dev Gets the balance of the specified address. * @param _owner The address to query the the balance of. * @return An uint representing the amount owned by the passed address. */ function balanceOf(address _owner) public constant returns (uint balance) { return balances[_owner]; } } /** * @title Standard ERC20 token * * @dev Implementation of the basic standard token. * @dev https://github.com/ethereum/EIPs/issues/20 * @dev Based oncode by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol */ contract StandardToken is BasicToken, ERC20 { mapping (address => mapping (address => uint)) public allowed; uint public constant MAX_UINT = 2**256 - 1; /** * @dev Transfer tokens from one address to another * @param _from address The address which you want to send tokens from * @param _to address The address which you want to transfer to * @param _value uint the amount of tokens to be transferred */ function transferFrom(address _from, address _to, uint _value) public onlyPayloadSize(3 * 32) { var _allowance = allowed[_from][msg.sender]; // Check is not needed because sub(_allowance, _value) will already throw if this condition is not met // if (_value > _allowance) throw; uint fee = (_value.mul(basisPointsRate)).div(10000); if (fee > maximumFee) { fee = maximumFee; } if (_allowance < MAX_UINT) { allowed[_from][msg.sender] = _allowance.sub(_value); } uint sendAmount = _value.sub(fee); balances[_from] = balances[_from].sub(_value); balances[_to] = balances[_to].add(sendAmount); if (fee > 0) { balances[owner] = balances[owner].add(fee); Transfer(_from, owner, fee); } Transfer(_from, _to, sendAmount); } /** * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender. * @param _spender The address which will spend the funds. * @param _value The amount of tokens to be spent. */ function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) { // To change the approve amount you first have to reduce the addresses` // allowance to zero by calling `approve(_spender, 0)` if it is not // already 0 to mitigate the race condition described here: // https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 require(!((_value != 0) && (allowed[msg.sender][_spender] != 0))); allowed[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); } /** * @dev Function to check the amount of tokens than an owner allowed to a spender. * @param _owner address The address which owns the funds. * @param _spender address The address which will spend the funds. * @return A uint specifying the amount of tokens still available for the spender. */ function allowance(address _owner, address _spender) public constant returns (uint remaining) { return allowed[_owner][_spender]; } } /** * @title Pausable * @dev Base contract which allows children to implement an emergency stop mechanism. */ contract Pausable is Ownable { event Pause(); event Unpause(); bool public paused = false; /** * @dev Modifier to make a function callable only when the contract is not paused. */ modifier whenNotPaused() { require(!paused); _; } /** * @dev Modifier to make a function callable only when the contract is paused. */ modifier whenPaused() { require(paused); _; } /** * @dev called by the owner to pause, triggers stopped state */ function pause() onlyOwner whenNotPaused public { paused = true; Pause(); } /** * @dev called by the owner to unpause, returns to normal state */ function unpause() onlyOwner whenPaused public { paused = false; Unpause(); } } contract BlackList is Ownable, BasicToken { /////// Getters to allow the same blacklist to be used also by other contracts (including upgraded Tether) /////// function getBlackListStatus(address _maker) external constant returns (bool) { return isBlackListed[_maker]; } function getOwner() external constant returns (address) { return owner; } mapping (address => bool) public isBlackListed; function addBlackList (address _evilUser) public onlyOwner { isBlackListed[_evilUser] = true; AddedBlackList(_evilUser); } function removeBlackList (address _clearedUser) public onlyOwner { isBlackListed[_clearedUser] = false; RemovedBlackList(_clearedUser); } function destroyBlackFunds (address _blackListedUser) public onlyOwner { require(isBlackListed[_blackListedUser]); uint dirtyFunds = balanceOf(_blackListedUser); balances[_blackListedUser] = 0; _totalSupply -= dirtyFunds; DestroyedBlackFunds(_blackListedUser, dirtyFunds); } event DestroyedBlackFunds(address _blackListedUser, uint _balance); event AddedBlackList(address _user); event RemovedBlackList(address _user); } contract UpgradedStandardToken is StandardToken{ // those methods are called by the legacy contract // and they must ensure msg.sender to be the contract address function transferByLegacy(address from, address to, uint value) public; function transferFromByLegacy(address sender, address from, address spender, uint value) public; function approveByLegacy(address from, address spender, uint value) public; } contract TetherToken is Pausable, StandardToken, BlackList { string public name; string public symbol; uint public decimals; address public upgradedAddress; bool public deprecated; // The contract can be initialized with a number of tokens // All the tokens are deposited to the owner address // // @param _balance Initial supply of the contract // @param _name Token Name // @param _symbol Token symbol // @param _decimals Token decimals function TetherToken(uint _initialSupply, string _name, string _symbol, uint _decimals) public { _totalSupply = _initialSupply; name = _name; symbol = _symbol; decimals = _decimals; balances[owner] = _initialSupply; deprecated = false; } // Forward ERC20 methods to upgraded contract if this one is deprecated function transfer(address _to, uint _value) public whenNotPaused { require(!isBlackListed[msg.sender]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferByLegacy(msg.sender, _to, _value); } else { return super.transfer(_to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function transferFrom(address _from, address _to, uint _value) public whenNotPaused { require(!isBlackListed[_from]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferFromByLegacy(msg.sender, _from, _to, _value); } else { return super.transferFrom(_from, _to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function balanceOf(address who) public constant returns (uint) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).balanceOf(who); } else { return super.balanceOf(who); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).approveByLegacy(msg.sender, _spender, _value); } else { return super.approve(_spender, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function allowance(address _owner, address _spender) public constant returns (uint remaining) { if (deprecated) { return StandardToken(upgradedAddress).allowance(_owner, _spender); } else { return super.allowance(_owner, _spender); } } // deprecate current contract in favour of a new one function deprecate(address _upgradedAddress) public onlyOwner { deprecated = true; upgradedAddress = _upgradedAddress; Deprecate(_upgradedAddress); } // deprecate current contract if favour of a new one function totalSupply() public constant returns (uint) { if (deprecated) { return StandardToken(upgradedAddress).totalSupply(); } else { return _totalSupply; } } // Issue a new amount of tokens // these tokens are deposited into the owner address // // @param _amount Number of tokens to be issued function issue(uint amount) public onlyOwner { require(_totalSupply + amount > _totalSupply); require(balances[owner] + amount > balances[owner]); balances[owner] += amount; _totalSupply += amount; Issue(amount); } // Redeem tokens. // These tokens are withdrawn from the owner address // if the balance must be enough to cover the redeem // or the call will fail. // @param _amount Number of tokens to be issued function redeem(uint amount) public onlyOwner { require(_totalSupply >= amount); require(balances[owner] >= amount); _totalSupply -= amount; balances[owner] -= amount; Redeem(amount); } function setParams(uint newBasisPoints, uint newMaxFee) public onlyOwner { // Ensure transparency by hardcoding limit beyond which fees can never be added require(newBasisPoints < 20); require(newMaxFee < 50); basisPointsRate = newBasisPoints; maximumFee = newMaxFee.mul(10**decimals); Params(basisPointsRate, maximumFee); } // Called when new token are issued event Issue(uint amount); // Called when tokens are redeemed event Redeem(uint amount); // Called when contract is deprecated event Deprecate(address newAddress); // Called if contract ever adds fees event Params(uint feeBasisPoints, uint maxFee); }
File 3 of 3: MrpcDeposit
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol"; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { /// @custom:storage-location erc7201:openzeppelin.storage.Ownable struct OwnableStorage { address _owner; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant OwnableStorageLocation = 0x9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300; function _getOwnableStorage() private pure returns (OwnableStorage storage $) { assembly { $.slot := OwnableStorageLocation } } /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ function __Ownable_init(address initialOwner) internal onlyInitializing { __Ownable_init_unchained(initialOwner); } function __Ownable_init_unchained(address initialOwner) internal onlyInitializing { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { OwnableStorage storage $ = _getOwnableStorage(); return $._owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { OwnableStorage storage $ = _getOwnableStorage(); address oldOwner = $._owner; $._owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.20; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Storage of the initializable contract. * * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions * when using with upgradeable contracts. * * @custom:storage-location erc7201:openzeppelin.storage.Initializable */ struct InitializableStorage { /** * @dev Indicates that the contract has been initialized. */ uint64 _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool _initializing; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00; /** * @dev The contract is already initialized. */ error InvalidInitialization(); /** * @dev The contract is not initializing. */ error NotInitializing(); /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint64 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in * production. * * Emits an {Initialized} event. */ modifier initializer() { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); // Cache values to avoid duplicated sloads bool isTopLevelCall = !$._initializing; uint64 initialized = $._initialized; // Allowed calls: // - initialSetup: the contract is not in the initializing state and no previous version was // initialized // - construction: the contract is initialized at version 1 (no reininitialization) and the // current contract is just being deployed bool initialSetup = initialized == 0 && isTopLevelCall; bool construction = initialized == 1 && address(this).code.length == 0; if (!initialSetup && !construction) { revert InvalidInitialization(); } $._initialized = 1; if (isTopLevelCall) { $._initializing = true; } _; if (isTopLevelCall) { $._initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint64 version) { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing || $._initialized >= version) { revert InvalidInitialization(); } $._initialized = version; $._initializing = true; _; $._initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { _checkInitializing(); _; } /** * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}. */ function _checkInitializing() internal view virtual { if (!_isInitializing()) { revert NotInitializing(); } } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing) { revert InvalidInitialization(); } if ($._initialized != type(uint64).max) { $._initialized = type(uint64).max; emit Initialized(type(uint64).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint64) { return _getInitializableStorage()._initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _getInitializableStorage()._initializing; } /** * @dev Returns a pointer to the storage namespace. */ // solhint-disable-next-line var-name-mixedcase function _getInitializableStorage() private pure returns (InitializableStorage storage $) { assembly { $.slot := INITIALIZABLE_STORAGE } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol) pragma solidity ^0.8.20; import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol"; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract PausableUpgradeable is Initializable, ContextUpgradeable { /// @custom:storage-location erc7201:openzeppelin.storage.Pausable struct PausableStorage { bool _paused; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Pausable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant PausableStorageLocation = 0xcd5ed15c6e187e77e9aee88184c21f4f2182ab5827cb3b7e07fbedcd63f03300; function _getPausableStorage() private pure returns (PausableStorage storage $) { assembly { $.slot := PausableStorageLocation } } /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); /** * @dev The operation failed because the contract is paused. */ error EnforcedPause(); /** * @dev The operation failed because the contract is not paused. */ error ExpectedPause(); /** * @dev Initializes the contract in unpaused state. */ function __Pausable_init() internal onlyInitializing { __Pausable_init_unchained(); } function __Pausable_init_unchained() internal onlyInitializing { PausableStorage storage $ = _getPausableStorage(); $._paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { PausableStorage storage $ = _getPausableStorage(); return $._paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { if (paused()) { revert EnforcedPause(); } } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { if (!paused()) { revert ExpectedPause(); } } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { PausableStorage storage $ = _getPausableStorage(); $._paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { PausableStorage storage $ = _getPausableStorage(); $._paused = false; emit Unpaused(_msgSender()); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol) pragma solidity ^0.8.20; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuardUpgradeable is Initializable { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant NOT_ENTERED = 1; uint256 private constant ENTERED = 2; /// @custom:storage-location erc7201:openzeppelin.storage.ReentrancyGuard struct ReentrancyGuardStorage { uint256 _status; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ReentrancyGuard")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant ReentrancyGuardStorageLocation = 0x9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00; function _getReentrancyGuardStorage() private pure returns (ReentrancyGuardStorage storage $) { assembly { $.slot := ReentrancyGuardStorageLocation } } /** * @dev Unauthorized reentrant call. */ error ReentrancyGuardReentrantCall(); function __ReentrancyGuard_init() internal onlyInitializing { __ReentrancyGuard_init_unchained(); } function __ReentrancyGuard_init_unchained() internal onlyInitializing { ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage(); $._status = NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage(); // On the first call to nonReentrant, _status will be NOT_ENTERED if ($._status == ENTERED) { revert ReentrancyGuardReentrantCall(); } // Any calls to nonReentrant after this point will fail $._status = ENTERED; } function _nonReentrantAfter() private { ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage(); // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) $._status = NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage(); return $._status == ENTERED; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * ==== Security Considerations * * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be * considered as an intention to spend the allowance in any specific way. The second is that because permits have * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be * generally recommended is: * * ```solidity * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public { * try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {} * doThing(..., value); * } * * function doThing(..., uint256 value) public { * token.safeTransferFrom(msg.sender, address(this), value); * ... * } * ``` * * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also * {SafeERC20-safeTransferFrom}). * * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so * contracts should have entry points that don't rely on permit. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. * * CAUTION: See Security Considerations above. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; import {IERC20Permit} from "../extensions/IERC20Permit.sol"; import {Address} from "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev An operation with an ERC20 token failed. */ error SafeERC20FailedOperation(address token); /** * @dev Indicates a failed `decreaseAllowance` request. */ error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease); /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value))); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); forceApprove(token, spender, oldAllowance + value); } /** * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no * value, non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal { unchecked { uint256 currentAllowance = token.allowance(address(this), spender); if (currentAllowance < requestedDecrease) { revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease); } forceApprove(token, spender, currentAllowance - requestedDecrease); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value)); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0))); _callOptionalReturn(token, approvalCall); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data); if (returndata.length != 0 && !abi.decode(returndata, (bool))) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol) pragma solidity ^0.8.20; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error AddressInsufficientBalance(address account); /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedInnerCall(); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert AddressInsufficientBalance(address(this)); } (bool success, ) = recipient.call{value: amount}(""); if (!success) { revert FailedInnerCall(); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {FailedInnerCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert AddressInsufficientBalance(address(this)); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an * unsuccessful call. */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata ) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {FailedInnerCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert FailedInnerCall(); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol) pragma solidity ^0.8.20; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant NOT_ENTERED = 1; uint256 private constant ENTERED = 2; uint256 private _status; /** * @dev Unauthorized reentrant call. */ error ReentrancyGuardReentrantCall(); constructor() { _status = NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be NOT_ENTERED if (_status == ENTERED) { revert ReentrancyGuardReentrantCall(); } // Any calls to nonReentrant after this point will fail _status = ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == ENTERED; } } // SPDX-License-Identifier: GPL-3.0-only pragma solidity ^0.8.23; interface IMrpcDeposit { // balance management event DepositReceived(address indexed user, address token, uint256 amount); function deposit(address token, uint256 amount) external; function depositForUser(address token, uint256 amount, address user) external; } // SPDX-License-Identifier: GPL-3.0-only pragma solidity ^0.8.23; import "@openzeppelin/contracts/utils/ReentrancyGuard.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/utils/PausableUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol"; import "./interfaces/IMrpcDeposit.sol"; contract MrpcDeposit is IMrpcDeposit, ReentrancyGuardUpgradeable, OwnableUpgradeable, PausableUpgradeable { enum TokenListAlteration{ ADD, UPDATE, DISABLE, ENABLE, DELETE } event PaymentCollected(address indexed treasury, address[] tokens, uint256[] amounts); event ConsensusUpdated(address prevConsensus, address newConsensus); event TreasuryUpdated(address prevTreasury, address newTreasury); event GovernanceUpdated(address prevGovernance, address newGovernance); event TokenListUpdated(address token, TokenListAlteration action); struct Slot0 { address consensusAddress; address treasuryAddress; address governanceAddress; } Slot0 internal _slot0; struct TokenConfig { uint256 minDeposit; bool active; } struct SupportedTokenEx { address token; uint256 minDeposit; bool active; } address[] private _acceptableTokens; mapping(address => TokenConfig) private _tokenConfigs; function initialize(address consensus, address treasury, address governance, address[] calldata tokens, uint256[] calldata minAmounts) external initializer { __Pausable_init(); __ReentrancyGuard_init(); __Ownable_init(msg.sender); __Deposit_init(consensus, treasury, governance, tokens, minAmounts); } function __Deposit_init(address consensus, address treasury, address governance, address[] calldata tokens, uint256[] calldata minAmounts) internal { require(tokens.length == minAmounts.length, "MrpcDeposit: tokens and amounts list length mismatch"); _slot0.consensusAddress = consensus; _slot0.treasuryAddress = treasury; _slot0.governanceAddress = governance; for (uint256 i = 0; i < tokens.length; i++) { require(tokens[i] != address(0), "MrpcDeposit: wrong token address"); require(!_tokenConfigs[tokens[i]].active, "MrpcDeposit: token duplicate found"); require(minAmounts[i] > 0, "MrpcDeposit: wrong min amount"); _acceptableTokens.push(tokens[i]); _tokenConfigs[tokens[i]] = TokenConfig(minAmounts[i], true); emit TokenListUpdated(tokens[i], TokenListAlteration.ADD); } } modifier onlyConsensusOrGovernance() { require(msg.sender == _slot0.consensusAddress || msg.sender == _slot0.governanceAddress, "MrpcDeposit: only consensus or governance"); _; } modifier onlyTreasuryOrGovernance() { require(msg.sender == _slot0.treasuryAddress || msg.sender == _slot0.governanceAddress, "MrpcDeposit: only treasury or governance"); _; } modifier onlyGovernance() { require(msg.sender == _slot0.governanceAddress, "MrpcDeposit: only governance"); _; } function deposit(address token, uint256 amount) external nonReentrant whenNotPaused override { _collectToken(token, amount, msg.sender, msg.sender); } function depositForUser(address token, uint256 amount, address user) external nonReentrant whenNotPaused override { _collectToken(token, amount, msg.sender, user); } function _collectToken(address token, uint256 amount, address sender, address destination) internal { require(_checkTokenAvailable(token), "MrpcDeposit: this token is not available"); require(_getMinAmount(token) <= amount, "MrpcDeposit: amount is too small"); SafeERC20.safeTransferFrom(IERC20(token), sender, address(this), amount); emit DepositReceived(destination, token, amount); } function getSupportedTokens() external view returns (SupportedTokenEx[] memory) { SupportedTokenEx[] memory result = new SupportedTokenEx[](_acceptableTokens.length); for (uint256 i = 0; i < _acceptableTokens.length; i++) { address token = _acceptableTokens[i]; result[i].token = token; result[i].minDeposit = _tokenConfigs[token].minDeposit; result[i].active = _tokenConfigs[token].active; } return result; } function deleteToken(address token) external onlyConsensusOrGovernance() { require(_checkTokenListed(token), "MrpcDeposit: this token is not known"); require(IERC20(token).balanceOf(address(this)) == 0, "MrpcDeposit: cannot delete token with positive balance"); for (uint256 i = 0; i < _acceptableTokens.length; i++) { if (_acceptableTokens[i] == token) { _acceptableTokens[i] = _acceptableTokens[_acceptableTokens.length - 1]; _acceptableTokens.pop(); break; } } delete _tokenConfigs[token]; emit TokenListUpdated(token, TokenListAlteration.DELETE); } function disableToken(address token) external onlyConsensusOrGovernance() { require(_checkTokenListed(token), "MrpcDeposit: this token is not known"); _tokenConfigs[token].active = false; emit TokenListUpdated(token, TokenListAlteration.DISABLE); } function enableToken(address token) external onlyConsensusOrGovernance() { require(_checkTokenListed(token), "MrpcDeposit: this token is not known"); _tokenConfigs[token].active = true; emit TokenListUpdated(token, TokenListAlteration.ENABLE); } function addOrUpdateToken(address token, uint256 minAmount, bool active) external onlyConsensusOrGovernance() { require(token != address(0), "MrpcDeposit: wrong token address"); require(minAmount > 0, "MrpcDeposit: wrong min amount"); _tokenConfigs[token] = TokenConfig(minAmount, active); if (_checkTokenListed(token)) { emit TokenListUpdated(token, TokenListAlteration.UPDATE); } else { _acceptableTokens.push(token); emit TokenListUpdated(token, TokenListAlteration.ADD); } } function getClaimableAmount(address token) external view returns (uint256) { require(_checkTokenKnown(token), "this token is not supported"); return IERC20(token).balanceOf(address(this)); } function collectPayment(address[] calldata tokens, uint256[] calldata amounts, address treasury) external onlyConsensusOrGovernance whenNotPaused { require(treasury == _slot0.treasuryAddress, "MrpcDeposit: cannot claim on this address"); require(tokens.length == amounts.length, "MrpcDeposit: malformed data, arrays does not match"); for (uint256 i = 0; i < tokens.length; i++) { require(_checkTokenKnown(tokens[i]), "MrpcDeposit: this token is not known"); } for (uint256 i = 0; i < tokens.length; i++) { require(IERC20(tokens[i]).balanceOf(address(this)) >= amounts[i], "MrpcDeposit: wrong amount"); SafeERC20.safeTransfer(IERC20(tokens[i]), treasury, amounts[i]); } emit PaymentCollected(treasury, tokens, amounts); } function getTreasury() external view returns (address) { return _slot0.treasuryAddress; } function getConsensus() external view returns (address) { return _slot0.consensusAddress; } function getGovernance() external view returns (address) { return _slot0.governanceAddress; } function changeTreasury(address newTreasury) external onlyTreasuryOrGovernance { emit TreasuryUpdated(_slot0.treasuryAddress, newTreasury); _slot0.treasuryAddress = newTreasury; } function changeConsensus(address newConsensus) external onlyConsensusOrGovernance { emit ConsensusUpdated(_slot0.consensusAddress, newConsensus); _slot0.consensusAddress = newConsensus; } function changeGovernance(address newGovernance) external onlyGovernance { emit GovernanceUpdated(_slot0.governanceAddress, newGovernance); _slot0.governanceAddress = newGovernance; } function _checkTokenListed(address token) internal view returns (bool) { for (uint256 i = 0; i < _acceptableTokens.length; i++) { if (_acceptableTokens[i] == token) { return true; } } return false; } function _checkTokenKnown(address token) internal view returns (bool) { return _tokenConfigs[token].active || _tokenConfigs[token].minDeposit > 0; } function _checkTokenAvailable(address token) internal view returns (bool) { return _tokenConfigs[token].active; } function _getMinAmount(address token) internal view returns (uint256) { if (_tokenConfigs[token].active) { return _tokenConfigs[token].minDeposit; } return type(uint256).max; } function pause() public onlyConsensusOrGovernance() { _pause(); } function unpause() public onlyConsensusOrGovernance() { _unpause(); } }