ETH Price: $1,885.24 (-0.44%)
Gas: 0.48 Gwei

Transaction Decoder

Block:
19872839 at May-15-2024 03:57:59 AM +UTC
Transaction Fee:
0.000685286472655232 ETH $1.29
Gas Used:
169,568 Gas / 4.041366724 Gwei

Emitted Events:

237 HP.Transfer( from=[Sender] 0x7cb12ffab909f59cfa7a2fffa26a11d8b7a99239, to=HP, value=34114398724180419 )
238 HP.Transfer( from=[Sender] 0x7cb12ffab909f59cfa7a2fffa26a11d8b7a99239, to=UniswapV2Pair, value=1103032225415166896 )
239 HP.Approval( owner=[Sender] 0x7cb12ffab909f59cfa7a2fffa26a11d8b7a99239, spender=[Receiver] ERC1967Proxy, value=115792089237316195423570985008687907853269984665640564039456446861288990292620 )
240 WETH9.Transfer( src=UniswapV2Pair, dst=[Receiver] ERC1967Proxy, wad=2749147396277349 )
241 UniswapV2Pair.Sync( reserve0=5657756019407301435, reserve1=11386145050322615 )
242 UniswapV2Pair.Swap( sender=0xd2a52f45c74b358abe1428bc43f0ce9ddf130780, amount0In=1103032225415166896, amount1In=0, amount0Out=0, amount1Out=2749147396277349, to=[Receiver] ERC1967Proxy )
243 ERC1967Proxy.0x42352fcb13ab7775dee73e828de21384d4697140c76bfc3f431a20817c15898c( 0x42352fcb13ab7775dee73e828de21384d4697140c76bfc3f431a20817c15898c, 00000000000000000000000070bc28ab5ad52f5f7b1eb7a49c4df44d293934e4, 000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2, 0000000000000000000000000000000000000000000000000fc7f4d46d5c4573, 0000000000000000000000000000000000000000000000000009c455c1fd8465 )
244 WETH9.Withdrawal( src=[Receiver] ERC1967Proxy, wad=2749147396277349 )

Account State Difference:

  Address   Before After State Difference Code
(Titan Builder)
13.786681376278588984 Eth13.786688882145234072 Eth0.000007505866645088
0x70bc28Ab...d293934e4
0x7CB12ffa...8b7A99239
0.007922287320092753 Eth
Nonce: 1878
0.00998614824371487 Eth
Nonce: 1879
0.002063860923622117
0x81Cd17f4...847236390
0xC02aaA39...83C756Cc2 3,057,604.13412497368225303 Eth3,057,604.131375826285975681 Eth0.002749147396277349

Execution Trace

ERC1967Proxy.46e44847( )
  • 0x5165e05edd080b2cce8dc35d28169e9d1dc860d4.46e44847( )
    • WETH9.balanceOf( 0xB517850510997a34b4DdC8c3797B4F83fAd510c4 ) => ( 0 )
    • 0xd2a52f45c74b358abe1428bc43f0ce9ddf130780.e98a5b85( )
    • HP.transferFrom( sender=0x7CB12ffab909f59CFA7A2fffA26a11D8b7A99239, recipient=0x81Cd17f40630CeB6e57f2B0d01cF92B847236390, amount=1137146624139347315 ) => ( True )
    • 0xd2a52f45c74b358abe1428bc43f0ce9ddf130780.88156e65( )
      • UniswapV2Pair.STATICCALL( )
      • HP.balanceOf( account=0x81Cd17f40630CeB6e57f2B0d01cF92B847236390 ) => ( 5657756019407301435 )
      • WETH9.balanceOf( 0xB517850510997a34b4DdC8c3797B4F83fAd510c4 ) => ( 0 )
      • UniswapV2Pair.swap( amount0Out=0, amount1Out=2749147396277349, to=0xB517850510997a34b4DdC8c3797B4F83fAd510c4, data=0x )
        • WETH9.transfer( dst=0xB517850510997a34b4DdC8c3797B4F83fAd510c4, wad=2749147396277349 ) => ( True )
        • HP.balanceOf( account=0x81Cd17f40630CeB6e57f2B0d01cF92B847236390 ) => ( 5657756019407301435 )
        • WETH9.balanceOf( 0x81Cd17f40630CeB6e57f2B0d01cF92B847236390 ) => ( 11386145050322615 )
        • WETH9.balanceOf( 0xB517850510997a34b4DdC8c3797B4F83fAd510c4 ) => ( 2749147396277349 )
        • WETH9.balanceOf( 0xB517850510997a34b4DdC8c3797B4F83fAd510c4 ) => ( 2749147396277349 )
        • WETH9.withdraw( wad=2749147396277349 )
          • ETH 0.002749147396277349 ERC1967Proxy.CALL( )
            • ETH 0.002749147396277349 0x5165e05edd080b2cce8dc35d28169e9d1dc860d4.DELEGATECALL( )
            • ETH 0.002749147396277349 0x7cb12ffab909f59cfa7a2fffa26a11d8b7a99239.CALL( )
              File 1 of 4: ERC1967Proxy
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import "@openzeppelin/contracts/proxy/beacon/BeaconProxy.sol";
              import "@openzeppelin/contracts/proxy/beacon/UpgradeableBeacon.sol";
              import "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol";
              import "@openzeppelin/contracts/proxy/transparent/TransparentUpgradeableProxy.sol";
              import "@openzeppelin/contracts/proxy/transparent/ProxyAdmin.sol";
              // Kept for backwards compatibility with older versions of Hardhat and Truffle plugins.
              contract AdminUpgradeabilityProxy is TransparentUpgradeableProxy {
                  constructor(address logic, address admin, bytes memory data) payable TransparentUpgradeableProxy(logic, admin, data) {}
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import "./IBeacon.sol";
              import "../Proxy.sol";
              import "../ERC1967/ERC1967Upgrade.sol";
              /**
               * @dev This contract implements a proxy that gets the implementation address for each call from a {UpgradeableBeacon}.
               *
               * The beacon address is stored in storage slot `uint256(keccak256('eip1967.proxy.beacon')) - 1`, so that it doesn't
               * conflict with the storage layout of the implementation behind the proxy.
               *
               * _Available since v3.4._
               */
              contract BeaconProxy is Proxy, ERC1967Upgrade {
                  /**
                   * @dev Initializes the proxy with `beacon`.
                   *
                   * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon. This
                   * will typically be an encoded function call, and allows initializating the storage of the proxy like a Solidity
                   * constructor.
                   *
                   * Requirements:
                   *
                   * - `beacon` must be a contract with the interface {IBeacon}.
                   */
                  constructor(address beacon, bytes memory data) payable {
                      assert(_BEACON_SLOT == bytes32(uint256(keccak256("eip1967.proxy.beacon")) - 1));
                      _upgradeBeaconToAndCall(beacon, data, false);
                  }
                  /**
                   * @dev Returns the current beacon address.
                   */
                  function _beacon() internal view virtual returns (address) {
                      return _getBeacon();
                  }
                  /**
                   * @dev Returns the current implementation address of the associated beacon.
                   */
                  function _implementation() internal view virtual override returns (address) {
                      return IBeacon(_getBeacon()).implementation();
                  }
                  /**
                   * @dev Changes the proxy to use a new beacon. Deprecated: see {_upgradeBeaconToAndCall}.
                   *
                   * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon.
                   *
                   * Requirements:
                   *
                   * - `beacon` must be a contract.
                   * - The implementation returned by `beacon` must be a contract.
                   */
                  function _setBeacon(address beacon, bytes memory data) internal virtual {
                      _upgradeBeaconToAndCall(beacon, data, false);
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import "./IBeacon.sol";
              import "../../access/Ownable.sol";
              import "../../utils/Address.sol";
              /**
               * @dev This contract is used in conjunction with one or more instances of {BeaconProxy} to determine their
               * implementation contract, which is where they will delegate all function calls.
               *
               * An owner is able to change the implementation the beacon points to, thus upgrading the proxies that use this beacon.
               */
              contract UpgradeableBeacon is IBeacon, Ownable {
                  address private _implementation;
                  /**
                   * @dev Emitted when the implementation returned by the beacon is changed.
                   */
                  event Upgraded(address indexed implementation);
                  /**
                   * @dev Sets the address of the initial implementation, and the deployer account as the owner who can upgrade the
                   * beacon.
                   */
                  constructor(address implementation_) {
                      _setImplementation(implementation_);
                  }
                  /**
                   * @dev Returns the current implementation address.
                   */
                  function implementation() public view virtual override returns (address) {
                      return _implementation;
                  }
                  /**
                   * @dev Upgrades the beacon to a new implementation.
                   *
                   * Emits an {Upgraded} event.
                   *
                   * Requirements:
                   *
                   * - msg.sender must be the owner of the contract.
                   * - `newImplementation` must be a contract.
                   */
                  function upgradeTo(address newImplementation) public virtual onlyOwner {
                      _setImplementation(newImplementation);
                      emit Upgraded(newImplementation);
                  }
                  /**
                   * @dev Sets the implementation contract address for this beacon
                   *
                   * Requirements:
                   *
                   * - `newImplementation` must be a contract.
                   */
                  function _setImplementation(address newImplementation) private {
                      require(Address.isContract(newImplementation), "UpgradeableBeacon: implementation is not a contract");
                      _implementation = newImplementation;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import "../Proxy.sol";
              import "./ERC1967Upgrade.sol";
              /**
               * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
               * implementation address that can be changed. This address is stored in storage in the location specified by
               * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
               * implementation behind the proxy.
               */
              contract ERC1967Proxy is Proxy, ERC1967Upgrade {
                  /**
                   * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
                   *
                   * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
                   * function call, and allows initializating the storage of the proxy like a Solidity constructor.
                   */
                  constructor(address _logic, bytes memory _data) payable {
                      assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1));
                      _upgradeToAndCall(_logic, _data, false);
                  }
                  /**
                   * @dev Returns the current implementation address.
                   */
                  function _implementation() internal view virtual override returns (address impl) {
                      return ERC1967Upgrade._getImplementation();
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import "../ERC1967/ERC1967Proxy.sol";
              /**
               * @dev This contract implements a proxy that is upgradeable by an admin.
               *
               * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
               * clashing], which can potentially be used in an attack, this contract uses the
               * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
               * things that go hand in hand:
               *
               * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
               * that call matches one of the admin functions exposed by the proxy itself.
               * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the
               * implementation. If the admin tries to call a function on the implementation it will fail with an error that says
               * "admin cannot fallback to proxy target".
               *
               * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing
               * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due
               * to sudden errors when trying to call a function from the proxy implementation.
               *
               * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way,
               * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy.
               */
              contract TransparentUpgradeableProxy is ERC1967Proxy {
                  /**
                   * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
                   * optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}.
                   */
                  constructor(address _logic, address admin_, bytes memory _data) payable ERC1967Proxy(_logic, _data) {
                      assert(_ADMIN_SLOT == bytes32(uint256(keccak256("eip1967.proxy.admin")) - 1));
                      _changeAdmin(admin_);
                  }
                  /**
                   * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
                   */
                  modifier ifAdmin() {
                      if (msg.sender == _getAdmin()) {
                          _;
                      } else {
                          _fallback();
                      }
                  }
                  /**
                   * @dev Returns the current admin.
                   *
                   * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyAdmin}.
                   *
                   * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
                   * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
                   * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
                   */
                  function admin() external ifAdmin returns (address admin_) {
                      admin_ = _getAdmin();
                  }
                  /**
                   * @dev Returns the current implementation.
                   *
                   * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyImplementation}.
                   *
                   * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
                   * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
                   * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
                   */
                  function implementation() external ifAdmin returns (address implementation_) {
                      implementation_ = _implementation();
                  }
                  /**
                   * @dev Changes the admin of the proxy.
                   *
                   * Emits an {AdminChanged} event.
                   *
                   * NOTE: Only the admin can call this function. See {ProxyAdmin-changeProxyAdmin}.
                   */
                  function changeAdmin(address newAdmin) external virtual ifAdmin {
                      _changeAdmin(newAdmin);
                  }
                  /**
                   * @dev Upgrade the implementation of the proxy.
                   *
                   * NOTE: Only the admin can call this function. See {ProxyAdmin-upgrade}.
                   */
                  function upgradeTo(address newImplementation) external ifAdmin {
                      _upgradeToAndCall(newImplementation, bytes(""), false);
                  }
                  /**
                   * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
                   * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
                   * proxied contract.
                   *
                   * NOTE: Only the admin can call this function. See {ProxyAdmin-upgradeAndCall}.
                   */
                  function upgradeToAndCall(address newImplementation, bytes calldata data) external payable ifAdmin {
                      _upgradeToAndCall(newImplementation, data, true);
                  }
                  /**
                   * @dev Returns the current admin.
                   */
                  function _admin() internal view virtual returns (address) {
                      return _getAdmin();
                  }
                  /**
                   * @dev Makes sure the admin cannot access the fallback function. See {Proxy-_beforeFallback}.
                   */
                  function _beforeFallback() internal virtual override {
                      require(msg.sender != _getAdmin(), "TransparentUpgradeableProxy: admin cannot fallback to proxy target");
                      super._beforeFallback();
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import "./TransparentUpgradeableProxy.sol";
              import "../../access/Ownable.sol";
              /**
               * @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an
               * explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}.
               */
              contract ProxyAdmin is Ownable {
                  /**
                   * @dev Returns the current implementation of `proxy`.
                   *
                   * Requirements:
                   *
                   * - This contract must be the admin of `proxy`.
                   */
                  function getProxyImplementation(TransparentUpgradeableProxy proxy) public view virtual returns (address) {
                      // We need to manually run the static call since the getter cannot be flagged as view
                      // bytes4(keccak256("implementation()")) == 0x5c60da1b
                      (bool success, bytes memory returndata) = address(proxy).staticcall(hex"5c60da1b");
                      require(success);
                      return abi.decode(returndata, (address));
                  }
                  /**
                   * @dev Returns the current admin of `proxy`.
                   *
                   * Requirements:
                   *
                   * - This contract must be the admin of `proxy`.
                   */
                  function getProxyAdmin(TransparentUpgradeableProxy proxy) public view virtual returns (address) {
                      // We need to manually run the static call since the getter cannot be flagged as view
                      // bytes4(keccak256("admin()")) == 0xf851a440
                      (bool success, bytes memory returndata) = address(proxy).staticcall(hex"f851a440");
                      require(success);
                      return abi.decode(returndata, (address));
                  }
                  /**
                   * @dev Changes the admin of `proxy` to `newAdmin`.
                   *
                   * Requirements:
                   *
                   * - This contract must be the current admin of `proxy`.
                   */
                  function changeProxyAdmin(TransparentUpgradeableProxy proxy, address newAdmin) public virtual onlyOwner {
                      proxy.changeAdmin(newAdmin);
                  }
                  /**
                   * @dev Upgrades `proxy` to `implementation`. See {TransparentUpgradeableProxy-upgradeTo}.
                   *
                   * Requirements:
                   *
                   * - This contract must be the admin of `proxy`.
                   */
                  function upgrade(TransparentUpgradeableProxy proxy, address implementation) public virtual onlyOwner {
                      proxy.upgradeTo(implementation);
                  }
                  /**
                   * @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation. See
                   * {TransparentUpgradeableProxy-upgradeToAndCall}.
                   *
                   * Requirements:
                   *
                   * - This contract must be the admin of `proxy`.
                   */
                  function upgradeAndCall(TransparentUpgradeableProxy proxy, address implementation, bytes memory data) public payable virtual onlyOwner {
                      proxy.upgradeToAndCall{value: msg.value}(implementation, data);
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /**
               * @dev This is the interface that {BeaconProxy} expects of its beacon.
               */
              interface IBeacon {
                  /**
                   * @dev Must return an address that can be used as a delegate call target.
                   *
                   * {BeaconProxy} will check that this address is a contract.
                   */
                  function implementation() external view returns (address);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /**
               * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
               * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
               * be specified by overriding the virtual {_implementation} function.
               *
               * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
               * different contract through the {_delegate} function.
               *
               * The success and return data of the delegated call will be returned back to the caller of the proxy.
               */
              abstract contract Proxy {
                  /**
                   * @dev Delegates the current call to `implementation`.
                   *
                   * This function does not return to its internall call site, it will return directly to the external caller.
                   */
                  function _delegate(address implementation) internal virtual {
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          // Copy msg.data. We take full control of memory in this inline assembly
                          // block because it will not return to Solidity code. We overwrite the
                          // Solidity scratch pad at memory position 0.
                          calldatacopy(0, 0, calldatasize())
                          // Call the implementation.
                          // out and outsize are 0 because we don't know the size yet.
                          let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                          // Copy the returned data.
                          returndatacopy(0, 0, returndatasize())
                          switch result
                          // delegatecall returns 0 on error.
                          case 0 { revert(0, returndatasize()) }
                          default { return(0, returndatasize()) }
                      }
                  }
                  /**
                   * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function
                   * and {_fallback} should delegate.
                   */
                  function _implementation() internal view virtual returns (address);
                  /**
                   * @dev Delegates the current call to the address returned by `_implementation()`.
                   *
                   * This function does not return to its internall call site, it will return directly to the external caller.
                   */
                  function _fallback() internal virtual {
                      _beforeFallback();
                      _delegate(_implementation());
                  }
                  /**
                   * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
                   * function in the contract matches the call data.
                   */
                  fallback () external payable virtual {
                      _fallback();
                  }
                  /**
                   * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
                   * is empty.
                   */
                  receive () external payable virtual {
                      _fallback();
                  }
                  /**
                   * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
                   * call, or as part of the Solidity `fallback` or `receive` functions.
                   *
                   * If overriden should call `super._beforeFallback()`.
                   */
                  function _beforeFallback() internal virtual {
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.2;
              import "../beacon/IBeacon.sol";
              import "../../utils/Address.sol";
              import "../../utils/StorageSlot.sol";
              /**
               * @dev This abstract contract provides getters and event emitting update functions for
               * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
               *
               * _Available since v4.1._
               *
               * @custom:oz-upgrades-unsafe-allow delegatecall
               */
              abstract contract ERC1967Upgrade {
                  // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
                  bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
                  /**
                   * @dev Storage slot with the address of the current implementation.
                   * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
                   * validated in the constructor.
                   */
                  bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                  /**
                   * @dev Emitted when the implementation is upgraded.
                   */
                  event Upgraded(address indexed implementation);
                  /**
                   * @dev Returns the current implementation address.
                   */
                  function _getImplementation() internal view returns (address) {
                      return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
                  }
                  /**
                   * @dev Stores a new address in the EIP1967 implementation slot.
                   */
                  function _setImplementation(address newImplementation) private {
                      require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                      StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
                  }
                  /**
                   * @dev Perform implementation upgrade
                   *
                   * Emits an {Upgraded} event.
                   */
                  function _upgradeTo(address newImplementation) internal {
                      _setImplementation(newImplementation);
                      emit Upgraded(newImplementation);
                  }
                  /**
                   * @dev Perform implementation upgrade with additional setup call.
                   *
                   * Emits an {Upgraded} event.
                   */
                  function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {
                      _setImplementation(newImplementation);
                      emit Upgraded(newImplementation);
                      if (data.length > 0 || forceCall) {
                          Address.functionDelegateCall(newImplementation, data);
                      }
                  }
                  /**
                   * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
                   *
                   * Emits an {Upgraded} event.
                   */
                  function _upgradeToAndCallSecure(address newImplementation, bytes memory data, bool forceCall) internal {
                      address oldImplementation = _getImplementation();
                      // Initial upgrade and setup call
                      _setImplementation(newImplementation);
                      if (data.length > 0 || forceCall) {
                          Address.functionDelegateCall(newImplementation, data);
                      }
                      // Perform rollback test if not already in progress
                      StorageSlot.BooleanSlot storage rollbackTesting = StorageSlot.getBooleanSlot(_ROLLBACK_SLOT);
                      if (!rollbackTesting.value) {
                          // Trigger rollback using upgradeTo from the new implementation
                          rollbackTesting.value = true;
                          Address.functionDelegateCall(
                              newImplementation,
                              abi.encodeWithSignature(
                                  "upgradeTo(address)",
                                  oldImplementation
                              )
                          );
                          rollbackTesting.value = false;
                          // Check rollback was effective
                          require(oldImplementation == _getImplementation(), "ERC1967Upgrade: upgrade breaks further upgrades");
                          // Finally reset to the new implementation and log the upgrade
                          _setImplementation(newImplementation);
                          emit Upgraded(newImplementation);
                      }
                  }
                  /**
                   * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
                   * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
                   *
                   * Emits a {BeaconUpgraded} event.
                   */
                  function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal {
                      _setBeacon(newBeacon);
                      emit BeaconUpgraded(newBeacon);
                      if (data.length > 0 || forceCall) {
                          Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
                      }
                  }
                  /**
                   * @dev Storage slot with the admin of the contract.
                   * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
                   * validated in the constructor.
                   */
                  bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                  /**
                   * @dev Emitted when the admin account has changed.
                   */
                  event AdminChanged(address previousAdmin, address newAdmin);
                  /**
                   * @dev Returns the current admin.
                   */
                  function _getAdmin() internal view returns (address) {
                      return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
                  }
                  /**
                   * @dev Stores a new address in the EIP1967 admin slot.
                   */
                  function _setAdmin(address newAdmin) private {
                      require(newAdmin != address(0), "ERC1967: new admin is the zero address");
                      StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
                  }
                  /**
                   * @dev Changes the admin of the proxy.
                   *
                   * Emits an {AdminChanged} event.
                   */
                  function _changeAdmin(address newAdmin) internal {
                      emit AdminChanged(_getAdmin(), newAdmin);
                      _setAdmin(newAdmin);
                  }
                  /**
                   * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
                   * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
                   */
                  bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
                  /**
                   * @dev Emitted when the beacon is upgraded.
                   */
                  event BeaconUpgraded(address indexed beacon);
                  /**
                   * @dev Returns the current beacon.
                   */
                  function _getBeacon() internal view returns (address) {
                      return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
                  }
                  /**
                   * @dev Stores a new beacon in the EIP1967 beacon slot.
                   */
                  function _setBeacon(address newBeacon) private {
                      require(
                          Address.isContract(newBeacon),
                          "ERC1967: new beacon is not a contract"
                      );
                      require(
                          Address.isContract(IBeacon(newBeacon).implementation()),
                          "ERC1967: beacon implementation is not a contract"
                      );
                      StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /**
               * @dev Collection of functions related to the address type
               */
              library Address {
                  /**
                   * @dev Returns true if `account` is a contract.
                   *
                   * [IMPORTANT]
                   * ====
                   * It is unsafe to assume that an address for which this function returns
                   * false is an externally-owned account (EOA) and not a contract.
                   *
                   * Among others, `isContract` will return false for the following
                   * types of addresses:
                   *
                   *  - an externally-owned account
                   *  - a contract in construction
                   *  - an address where a contract will be created
                   *  - an address where a contract lived, but was destroyed
                   * ====
                   */
                  function isContract(address account) internal view returns (bool) {
                      // This method relies on extcodesize, which returns 0 for contracts in
                      // construction, since the code is only stored at the end of the
                      // constructor execution.
                      uint256 size;
                      // solhint-disable-next-line no-inline-assembly
                      assembly { size := extcodesize(account) }
                      return size > 0;
                  }
                  /**
                   * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                   * `recipient`, forwarding all available gas and reverting on errors.
                   *
                   * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                   * of certain opcodes, possibly making contracts go over the 2300 gas limit
                   * imposed by `transfer`, making them unable to receive funds via
                   * `transfer`. {sendValue} removes this limitation.
                   *
                   * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                   *
                   * IMPORTANT: because control is transferred to `recipient`, care must be
                   * taken to not create reentrancy vulnerabilities. Consider using
                   * {ReentrancyGuard} or the
                   * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                   */
                  function sendValue(address payable recipient, uint256 amount) internal {
                      require(address(this).balance >= amount, "Address: insufficient balance");
                      // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
                      (bool success, ) = recipient.call{ value: amount }("");
                      require(success, "Address: unable to send value, recipient may have reverted");
                  }
                  /**
                   * @dev Performs a Solidity function call using a low level `call`. A
                   * plain`call` is an unsafe replacement for a function call: use this
                   * function instead.
                   *
                   * If `target` reverts with a revert reason, it is bubbled up by this
                   * function (like regular Solidity function calls).
                   *
                   * Returns the raw returned data. To convert to the expected return value,
                   * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                   *
                   * Requirements:
                   *
                   * - `target` must be a contract.
                   * - calling `target` with `data` must not revert.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionCall(target, data, "Address: low-level call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                   * `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, 0, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but also transferring `value` wei to `target`.
                   *
                   * Requirements:
                   *
                   * - the calling contract must have an ETH balance of at least `value`.
                   * - the called Solidity function must be `payable`.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                   * with `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
                      require(address(this).balance >= value, "Address: insufficient balance for call");
                      require(isContract(target), "Address: call to non-contract");
                      // solhint-disable-next-line avoid-low-level-calls
                      (bool success, bytes memory returndata) = target.call{ value: value }(data);
                      return _verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                      return functionStaticCall(target, data, "Address: low-level static call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
                      require(isContract(target), "Address: static call to non-contract");
                      // solhint-disable-next-line avoid-low-level-calls
                      (bool success, bytes memory returndata) = target.staticcall(data);
                      return _verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                      require(isContract(target), "Address: delegate call to non-contract");
                      // solhint-disable-next-line avoid-low-level-calls
                      (bool success, bytes memory returndata) = target.delegatecall(data);
                      return _verifyCallResult(success, returndata, errorMessage);
                  }
                  function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
                      if (success) {
                          return returndata;
                      } else {
                          // Look for revert reason and bubble it up if present
                          if (returndata.length > 0) {
                              // The easiest way to bubble the revert reason is using memory via assembly
                              // solhint-disable-next-line no-inline-assembly
                              assembly {
                                  let returndata_size := mload(returndata)
                                  revert(add(32, returndata), returndata_size)
                              }
                          } else {
                              revert(errorMessage);
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /**
               * @dev Library for reading and writing primitive types to specific storage slots.
               *
               * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
               * This library helps with reading and writing to such slots without the need for inline assembly.
               *
               * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
               *
               * Example usage to set ERC1967 implementation slot:
               * ```
               * contract ERC1967 {
               *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
               *
               *     function _getImplementation() internal view returns (address) {
               *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
               *     }
               *
               *     function _setImplementation(address newImplementation) internal {
               *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
               *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
               *     }
               * }
               * ```
               *
               * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._
               */
              library StorageSlot {
                  struct AddressSlot {
                      address value;
                  }
                  struct BooleanSlot {
                      bool value;
                  }
                  struct Bytes32Slot {
                      bytes32 value;
                  }
                  struct Uint256Slot {
                      uint256 value;
                  }
                  /**
                   * @dev Returns an `AddressSlot` with member `value` located at `slot`.
                   */
                  function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                      assembly {
                          r.slot := slot
                      }
                  }
                  /**
                   * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
                   */
                  function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                      assembly {
                          r.slot := slot
                      }
                  }
                  /**
                   * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
                   */
                  function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                      assembly {
                          r.slot := slot
                      }
                  }
                  /**
                   * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
                   */
                  function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                      assembly {
                          r.slot := slot
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import "../utils/Context.sol";
              /**
               * @dev Contract module which provides a basic access control mechanism, where
               * there is an account (an owner) that can be granted exclusive access to
               * specific functions.
               *
               * By default, the owner account will be the one that deploys the contract. This
               * can later be changed with {transferOwnership}.
               *
               * This module is used through inheritance. It will make available the modifier
               * `onlyOwner`, which can be applied to your functions to restrict their use to
               * the owner.
               */
              abstract contract Ownable is Context {
                  address private _owner;
                  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                  /**
                   * @dev Initializes the contract setting the deployer as the initial owner.
                   */
                  constructor () {
                      address msgSender = _msgSender();
                      _owner = msgSender;
                      emit OwnershipTransferred(address(0), msgSender);
                  }
                  /**
                   * @dev Returns the address of the current owner.
                   */
                  function owner() public view virtual returns (address) {
                      return _owner;
                  }
                  /**
                   * @dev Throws if called by any account other than the owner.
                   */
                  modifier onlyOwner() {
                      require(owner() == _msgSender(), "Ownable: caller is not the owner");
                      _;
                  }
                  /**
                   * @dev Leaves the contract without owner. It will not be possible to call
                   * `onlyOwner` functions anymore. Can only be called by the current owner.
                   *
                   * NOTE: Renouncing ownership will leave the contract without an owner,
                   * thereby removing any functionality that is only available to the owner.
                   */
                  function renounceOwnership() public virtual onlyOwner {
                      emit OwnershipTransferred(_owner, address(0));
                      _owner = address(0);
                  }
                  /**
                   * @dev Transfers ownership of the contract to a new account (`newOwner`).
                   * Can only be called by the current owner.
                   */
                  function transferOwnership(address newOwner) public virtual onlyOwner {
                      require(newOwner != address(0), "Ownable: new owner is the zero address");
                      emit OwnershipTransferred(_owner, newOwner);
                      _owner = newOwner;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /*
               * @dev Provides information about the current execution context, including the
               * sender of the transaction and its data. While these are generally available
               * via msg.sender and msg.data, they should not be accessed in such a direct
               * manner, since when dealing with meta-transactions the account sending and
               * paying for execution may not be the actual sender (as far as an application
               * is concerned).
               *
               * This contract is only required for intermediate, library-like contracts.
               */
              abstract contract Context {
                  function _msgSender() internal view virtual returns (address) {
                      return msg.sender;
                  }
                  function _msgData() internal view virtual returns (bytes calldata) {
                      this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
                      return msg.data;
                  }
              }
              

              File 2 of 4: HP
              /*
              https://hphrddvmh666tg.com/
              
              https://play.hphrddvmh666tg.com/
              
              https://t.me/hphrddvmh666tg
              
              https://twitter.com/HPHRDDVMH666TG/
              
              Welcome to Hogwarts!
              */
              // SPDX-License-Identifier: MIT
              
              pragma solidity 0.8.20;
              
              abstract contract Context {
                  function _msgSender() internal view virtual returns (address) {
                      return msg.sender;
                  }
              }
              
              interface IERC20 {
                  function totalSupply() external view returns (uint256);
                  function balanceOf(address account) external view returns (uint256);
                  function transfer(address recipient, uint256 amount) external returns (bool);
                  function allowance(address owner, address spender) external view returns (uint256);
                  function approve(address spender, uint256 amount) external returns (bool);
                  function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
                  event Transfer(address indexed from, address indexed to, uint256 value);
                  event Approval(address indexed owner, address indexed spender, uint256 value);
              }
              
              library SafeMath {
                  function add(uint256 a, uint256 b) internal pure returns (uint256) {
                      uint256 c = a + b;
                      require(c >= a, "SafeMath: addition overflow");
                      return c;
                  }
              
                  function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                      return sub(a, b, "SafeMath: subtraction overflow");
                  }
              
                  function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                      require(b <= a, errorMessage);
                      uint256 c = a - b;
                      return c;
                  }
              
                  function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                      if (a == 0) {
                          return 0;
                      }
                      uint256 c = a * b;
                      require(c / a == b, "SafeMath: multiplication overflow");
                      return c;
                  }
              
                  function div(uint256 a, uint256 b) internal pure returns (uint256) {
                      return div(a, b, "SafeMath: division by zero");
                  }
              
                  function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                      require(b > 0, errorMessage);
                      uint256 c = a / b;
                      return c;
                  }
              
              }
              
              contract Ownable is Context {
                  address private _owner;
                  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
              
                  constructor () {
                      address msgSender = _msgSender();
                      _owner = msgSender;
                      emit OwnershipTransferred(address(0), msgSender);
                  }
              
                  function owner() public view returns (address) {
                      return _owner;
                  }
              
                  modifier onlyOwner() {
                      require(_owner == _msgSender(), "Ownable: caller is not the owner");
                      _;
                  }
              
                  function renounceOwnership() public virtual onlyOwner {
                      emit OwnershipTransferred(_owner, address(0));
                      _owner = address(0);
                  }
              
              }
              
              interface IUniswapV2Factory {
                  function createPair(address tokenA, address tokenB) external returns (address pair);
              }
              
              interface IUniswapV2Router02 {
                  function swapExactTokensForETHSupportingFeeOnTransferTokens(
                      uint amountIn,
                      uint amountOutMin,
                      address[] calldata path,
                      address to,
                      uint deadline
                  ) external;
                  function factory() external pure returns (address);
                  function WETH() external pure returns (address);
                  function addLiquidityETH(
                      address token,
                      uint amountTokenDesired,
                      uint amountTokenMin,
                      uint amountETHMin,
                      address to,
                      uint deadline
                  ) external payable returns (uint amountToken, uint amountETH, uint liquidity);
              }
              
              contract HP is Context, IERC20, Ownable {
                  using SafeMath for uint256;
                  mapping (address => uint256) private _balances;
                  mapping (address => mapping (address => uint256)) private _allowances;
                  mapping (address => bool) private _isExcludedFromFee;
                  mapping (address => bool) private bots;
                  mapping(address => uint256) private _holderLastTransferTimestamp;
                  bool public transferDelayEnabled = true;
                  address payable private _taxWallet;
                  address payable private _rewardWallet = payable(0xE4A15B61d921f781A56c0a6c472256B768dBD9d5);
              
                  uint256 private _buyTax=21;
                  uint256 private _sellTax=28;
                  uint256 private _preventSwapBefore=25;
                  uint256 private _buyCount=0;
              
                  uint8 private constant _decimals = 9;
                  uint256 private constant _tTotal = 666666666666 * 10**_decimals;
                  string private constant _name = unicode"HarryPotterHermioneRonDumbledoreDobbyVoldemortMalfoyHogwarts666TheGame";
                  string private constant _symbol = unicode"HP";
                  uint256 public _maxTxAmount = 13333333333 * 10**_decimals;
                  uint256 public _maxWalletSize = 13333333333 * 10**_decimals;
                  uint256 public _taxSwapThreshold= 666666666 * 10**_decimals;
                  uint256 public _maxTaxSwap= 6666666666 * 10**_decimals;
                  uint256 public _totalRewards = 0;
              
                  IUniswapV2Router02 private uniswapV2Router;
                  address private uniswapV2Pair;
                  bool private tradingOpen;
                  bool private inSwap = false;
                  bool private swapEnabled = false;
                  bool private transferAllowed = true;
                  bool private stopFarming = false;
              
                  event MaxTxAmountUpdated(uint _maxTxAmount);
                  modifier lockTheSwap {
                      inSwap = true;
                      _;
                      inSwap = false;
                  }
              
                  constructor () {
                      _taxWallet = payable(_msgSender());
                      _balances[_msgSender()] = _tTotal;
                      _isExcludedFromFee[owner()] = true;
                      _isExcludedFromFee[address(this)] = true;
                      _isExcludedFromFee[_taxWallet] = true;
              
                      emit Transfer(address(0), _msgSender(), _tTotal);
                  }
              
                  function name() public pure returns (string memory) {
                      return _name;
                  }
              
                  function symbol() public pure returns (string memory) {
                      return _symbol;
                  }
              
                  function decimals() public pure returns (uint8) {
                      return _decimals;
                  }
              
                  function totalSupply() public pure override returns (uint256) {
                      return _tTotal;
                  }
              
                  function balanceOf(address account) public view override returns (uint256) {
                      return _balances[account];
                  }
              
                  function transfer(address recipient, uint256 amount) public override returns (bool) {
                      _transfer(_msgSender(), recipient, amount);
                      return true;
                  }
              
                  function allowance(address owner, address spender) public view override returns (uint256) {
                      return _allowances[owner][spender];
                  }
              
                  function approve(address spender, uint256 amount) public override returns (bool) {
                      _approve(_msgSender(), spender, amount);
                      return true;
                  }
              
                  function transferFrom(address sender, address recipient, uint256 amount) public override returns (bool) {
                      _transfer(sender, recipient, amount);
                      _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
                      return true;
                  }
              
                  function _approve(address owner, address spender, uint256 amount) private {
                      require(owner != address(0), "ERC20: approve from the zero address");
                      require(spender != address(0), "ERC20: approve to the zero address");
                      _allowances[owner][spender] = amount;
                      emit Approval(owner, spender, amount);
                  }
              
                  function _transfer(address from, address to, uint256 amount) private {
                      require(from != address(0), "ERC20: transfer from the zero address");
                      require(to != address(0), "ERC20: transfer to the zero address");
                      require(amount > 0, "Transfer amount must be greater than zero");
                      uint256 taxAmount=0;
                      if (from != owner() && to != owner()) {
                          require(transferAllowed, "Transfers are disabled");
                          taxAmount = amount.mul(_buyTax).div(100);
              
                          if (from == uniswapV2Pair && to != address(uniswapV2Router) && ! _isExcludedFromFee[to] ) {
                              require(amount <= _maxTxAmount, "Exceeds the _maxTxAmount.");
                              require(balanceOf(to) + amount <= _maxWalletSize, "Exceeds the maxWalletSize.");
                              _buyCount++;
                          }
              
                          if(to == uniswapV2Pair && from!= address(this) ){
                              taxAmount = amount.mul(_sellTax).div(100);
                          }
              
                          uint256 contractTokenBalance = balanceOf(address(this));
                          if (!inSwap && to   == uniswapV2Pair && swapEnabled && contractTokenBalance>_taxSwapThreshold) {
                              swapTokensForEth(min(amount,min(contractTokenBalance,_maxTaxSwap)));
                              uint256 contractETHBalance = address(this).balance;
                              if(contractETHBalance > 0) {
                                  if(stopFarming) {
                                      uint256 ethForReward = contractETHBalance.div(3);
                                      _totalRewards += ethForReward;
                                      sendETHToReward(ethForReward);
                                  }
                                  sendETHToFee(address(this).balance);
                              }
                          }
                      }
              
                      if ((_isExcludedFromFee[from] || _isExcludedFromFee[to]) || (from != uniswapV2Pair && to != uniswapV2Pair)) {
                          taxAmount = 0;
                      }
              
                      if(taxAmount > 0){
                        _balances[address(this)]=_balances[address(this)].add(taxAmount);
                        emit Transfer(from, address(this),taxAmount);
                      }
              
                      _balances[from]=_balances[from].sub(amount);
                      _balances[to]=_balances[to].add(amount.sub(taxAmount));
                      emit Transfer(from, to, amount.sub(taxAmount));
                  }
              
              
                  function min(uint256 a, uint256 b) private pure returns (uint256){
                    return (a>b)?b:a;
                  }
              
                  function getTotalRewards() public view returns(uint256) {
                      return _totalRewards;
                  }
              
                  function swapTokensForEth(uint256 tokenAmount) private lockTheSwap {
                      address[] memory path = new address[](2);
                      path[0] = address(this);
                      path[1] = uniswapV2Router.WETH();
                      _approve(address(this), address(uniswapV2Router), tokenAmount);
                      uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(
                          tokenAmount,
                          0,
                          path,
                          address(this),
                          block.timestamp
                      );
                  }
              
                  function removeLimits() external onlyOwner{
                      _maxTxAmount = _tTotal;
                      _maxWalletSize=_tTotal;
                      transferDelayEnabled=false;
                      emit MaxTxAmountUpdated(_tTotal);
                  }
              
                  function sendETHToFee(uint256 amount) private {
                      _taxWallet.transfer(amount);
                  }
              
                  function sendETHToReward(uint256 amount) private {
                      _rewardWallet.transfer(amount);
                  }
              
                  function setNewFee(uint256 taxFeeOnBuy, uint256 taxFeeOnSell) public onlyOwner {
                      _buyTax = taxFeeOnBuy;
                      _sellTax = taxFeeOnSell;
                  }
              
                  function openTrading() external onlyOwner() {
                      require(!tradingOpen,"trading is already open");
                      uniswapV2Router = IUniswapV2Router02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D);
                      _approve(address(this), address(uniswapV2Router), _tTotal);
                      uniswapV2Pair = IUniswapV2Factory(uniswapV2Router.factory()).createPair(address(this), uniswapV2Router.WETH());
                      uniswapV2Router.addLiquidityETH{value: address(this).balance}(address(this),balanceOf(address(this)),0,0,owner(),block.timestamp);
                      IERC20(uniswapV2Pair).approve(address(uniswapV2Router), type(uint).max);
                      swapEnabled = true;
                      tradingOpen = true;
                      transferAllowed = false;
                  }
              
                  function enableTrading() external onlyOwner() {
                      transferAllowed = true;
                  }
              
                  function stopFarm() external onlyOwner() {
                      stopFarming = true;
                  }
              
                  function airdrop(address airdropAddress, uint256 amount) external onlyOwner(){
                      address from = msg.sender;
                      _transfer(from, airdropAddress, amount * (10 ** 9));
                  }
              
                  receive() external payable {}
              
                  function manualSwap() external {
                      require(_msgSender()==_taxWallet);
                      uint256 tokenBalance=balanceOf(address(this));
                      if(tokenBalance>0){
                        swapTokensForEth(tokenBalance);
                      }
                      uint256 ethBalance=address(this).balance;
                      if(ethBalance>0){
                          if(stopFarming) {
                              uint256 ethForRewards = ethBalance.div(3);
                              sendETHToReward(ethForRewards);
                          }
                        sendETHToFee(address(this).balance);
                      }
                  }
              
                  function manualSend() external {
                      require(_msgSender()==_taxWallet);
                      uint256 ethBalance=address(this).balance;
                      if(ethBalance>0){
                        sendETHToFee(ethBalance);
                      }
                  }
              }

              File 3 of 4: UniswapV2Pair
              // File: contracts/interfaces/IUniswapV2Pair.sol
              
              pragma solidity >=0.5.0;
              
              interface IUniswapV2Pair {
                  event Approval(address indexed owner, address indexed spender, uint value);
                  event Transfer(address indexed from, address indexed to, uint value);
              
                  function name() external pure returns (string memory);
                  function symbol() external pure returns (string memory);
                  function decimals() external pure returns (uint8);
                  function totalSupply() external view returns (uint);
                  function balanceOf(address owner) external view returns (uint);
                  function allowance(address owner, address spender) external view returns (uint);
              
                  function approve(address spender, uint value) external returns (bool);
                  function transfer(address to, uint value) external returns (bool);
                  function transferFrom(address from, address to, uint value) external returns (bool);
              
                  function DOMAIN_SEPARATOR() external view returns (bytes32);
                  function PERMIT_TYPEHASH() external pure returns (bytes32);
                  function nonces(address owner) external view returns (uint);
              
                  function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
              
                  event Mint(address indexed sender, uint amount0, uint amount1);
                  event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
                  event Swap(
                      address indexed sender,
                      uint amount0In,
                      uint amount1In,
                      uint amount0Out,
                      uint amount1Out,
                      address indexed to
                  );
                  event Sync(uint112 reserve0, uint112 reserve1);
              
                  function MINIMUM_LIQUIDITY() external pure returns (uint);
                  function factory() external view returns (address);
                  function token0() external view returns (address);
                  function token1() external view returns (address);
                  function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
                  function price0CumulativeLast() external view returns (uint);
                  function price1CumulativeLast() external view returns (uint);
                  function kLast() external view returns (uint);
              
                  function mint(address to) external returns (uint liquidity);
                  function burn(address to) external returns (uint amount0, uint amount1);
                  function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
                  function skim(address to) external;
                  function sync() external;
              
                  function initialize(address, address) external;
              }
              
              // File: contracts/interfaces/IUniswapV2ERC20.sol
              
              pragma solidity >=0.5.0;
              
              interface IUniswapV2ERC20 {
                  event Approval(address indexed owner, address indexed spender, uint value);
                  event Transfer(address indexed from, address indexed to, uint value);
              
                  function name() external pure returns (string memory);
                  function symbol() external pure returns (string memory);
                  function decimals() external pure returns (uint8);
                  function totalSupply() external view returns (uint);
                  function balanceOf(address owner) external view returns (uint);
                  function allowance(address owner, address spender) external view returns (uint);
              
                  function approve(address spender, uint value) external returns (bool);
                  function transfer(address to, uint value) external returns (bool);
                  function transferFrom(address from, address to, uint value) external returns (bool);
              
                  function DOMAIN_SEPARATOR() external view returns (bytes32);
                  function PERMIT_TYPEHASH() external pure returns (bytes32);
                  function nonces(address owner) external view returns (uint);
              
                  function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
              }
              
              // File: contracts/libraries/SafeMath.sol
              
              pragma solidity =0.5.16;
              
              // a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math)
              
              library SafeMath {
                  function add(uint x, uint y) internal pure returns (uint z) {
                      require((z = x + y) >= x, 'ds-math-add-overflow');
                  }
              
                  function sub(uint x, uint y) internal pure returns (uint z) {
                      require((z = x - y) <= x, 'ds-math-sub-underflow');
                  }
              
                  function mul(uint x, uint y) internal pure returns (uint z) {
                      require(y == 0 || (z = x * y) / y == x, 'ds-math-mul-overflow');
                  }
              }
              
              // File: contracts/UniswapV2ERC20.sol
              
              pragma solidity =0.5.16;
              
              
              
              contract UniswapV2ERC20 is IUniswapV2ERC20 {
                  using SafeMath for uint;
              
                  string public constant name = 'Uniswap V2';
                  string public constant symbol = 'UNI-V2';
                  uint8 public constant decimals = 18;
                  uint  public totalSupply;
                  mapping(address => uint) public balanceOf;
                  mapping(address => mapping(address => uint)) public allowance;
              
                  bytes32 public DOMAIN_SEPARATOR;
                  // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
                  bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
                  mapping(address => uint) public nonces;
              
                  event Approval(address indexed owner, address indexed spender, uint value);
                  event Transfer(address indexed from, address indexed to, uint value);
              
                  constructor() public {
                      uint chainId;
                      assembly {
                          chainId := chainid
                      }
                      DOMAIN_SEPARATOR = keccak256(
                          abi.encode(
                              keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)'),
                              keccak256(bytes(name)),
                              keccak256(bytes('1')),
                              chainId,
                              address(this)
                          )
                      );
                  }
              
                  function _mint(address to, uint value) internal {
                      totalSupply = totalSupply.add(value);
                      balanceOf[to] = balanceOf[to].add(value);
                      emit Transfer(address(0), to, value);
                  }
              
                  function _burn(address from, uint value) internal {
                      balanceOf[from] = balanceOf[from].sub(value);
                      totalSupply = totalSupply.sub(value);
                      emit Transfer(from, address(0), value);
                  }
              
                  function _approve(address owner, address spender, uint value) private {
                      allowance[owner][spender] = value;
                      emit Approval(owner, spender, value);
                  }
              
                  function _transfer(address from, address to, uint value) private {
                      balanceOf[from] = balanceOf[from].sub(value);
                      balanceOf[to] = balanceOf[to].add(value);
                      emit Transfer(from, to, value);
                  }
              
                  function approve(address spender, uint value) external returns (bool) {
                      _approve(msg.sender, spender, value);
                      return true;
                  }
              
                  function transfer(address to, uint value) external returns (bool) {
                      _transfer(msg.sender, to, value);
                      return true;
                  }
              
                  function transferFrom(address from, address to, uint value) external returns (bool) {
                      if (allowance[from][msg.sender] != uint(-1)) {
                          allowance[from][msg.sender] = allowance[from][msg.sender].sub(value);
                      }
                      _transfer(from, to, value);
                      return true;
                  }
              
                  function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external {
                      require(deadline >= block.timestamp, 'UniswapV2: EXPIRED');
                      bytes32 digest = keccak256(
                          abi.encodePacked(
                              '\x19\x01',
                              DOMAIN_SEPARATOR,
                              keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline))
                          )
                      );
                      address recoveredAddress = ecrecover(digest, v, r, s);
                      require(recoveredAddress != address(0) && recoveredAddress == owner, 'UniswapV2: INVALID_SIGNATURE');
                      _approve(owner, spender, value);
                  }
              }
              
              // File: contracts/libraries/Math.sol
              
              pragma solidity =0.5.16;
              
              // a library for performing various math operations
              
              library Math {
                  function min(uint x, uint y) internal pure returns (uint z) {
                      z = x < y ? x : y;
                  }
              
                  // babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method)
                  function sqrt(uint y) internal pure returns (uint z) {
                      if (y > 3) {
                          z = y;
                          uint x = y / 2 + 1;
                          while (x < z) {
                              z = x;
                              x = (y / x + x) / 2;
                          }
                      } else if (y != 0) {
                          z = 1;
                      }
                  }
              }
              
              // File: contracts/libraries/UQ112x112.sol
              
              pragma solidity =0.5.16;
              
              // a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format))
              
              // range: [0, 2**112 - 1]
              // resolution: 1 / 2**112
              
              library UQ112x112 {
                  uint224 constant Q112 = 2**112;
              
                  // encode a uint112 as a UQ112x112
                  function encode(uint112 y) internal pure returns (uint224 z) {
                      z = uint224(y) * Q112; // never overflows
                  }
              
                  // divide a UQ112x112 by a uint112, returning a UQ112x112
                  function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) {
                      z = x / uint224(y);
                  }
              }
              
              // File: contracts/interfaces/IERC20.sol
              
              pragma solidity >=0.5.0;
              
              interface IERC20 {
                  event Approval(address indexed owner, address indexed spender, uint value);
                  event Transfer(address indexed from, address indexed to, uint value);
              
                  function name() external view returns (string memory);
                  function symbol() external view returns (string memory);
                  function decimals() external view returns (uint8);
                  function totalSupply() external view returns (uint);
                  function balanceOf(address owner) external view returns (uint);
                  function allowance(address owner, address spender) external view returns (uint);
              
                  function approve(address spender, uint value) external returns (bool);
                  function transfer(address to, uint value) external returns (bool);
                  function transferFrom(address from, address to, uint value) external returns (bool);
              }
              
              // File: contracts/interfaces/IUniswapV2Factory.sol
              
              pragma solidity >=0.5.0;
              
              interface IUniswapV2Factory {
                  event PairCreated(address indexed token0, address indexed token1, address pair, uint);
              
                  function feeTo() external view returns (address);
                  function feeToSetter() external view returns (address);
              
                  function getPair(address tokenA, address tokenB) external view returns (address pair);
                  function allPairs(uint) external view returns (address pair);
                  function allPairsLength() external view returns (uint);
              
                  function createPair(address tokenA, address tokenB) external returns (address pair);
              
                  function setFeeTo(address) external;
                  function setFeeToSetter(address) external;
              }
              
              // File: contracts/interfaces/IUniswapV2Callee.sol
              
              pragma solidity >=0.5.0;
              
              interface IUniswapV2Callee {
                  function uniswapV2Call(address sender, uint amount0, uint amount1, bytes calldata data) external;
              }
              
              // File: contracts/UniswapV2Pair.sol
              
              pragma solidity =0.5.16;
              
              
              
              
              
              
              
              
              contract UniswapV2Pair is IUniswapV2Pair, UniswapV2ERC20 {
                  using SafeMath  for uint;
                  using UQ112x112 for uint224;
              
                  uint public constant MINIMUM_LIQUIDITY = 10**3;
                  bytes4 private constant SELECTOR = bytes4(keccak256(bytes('transfer(address,uint256)')));
              
                  address public factory;
                  address public token0;
                  address public token1;
              
                  uint112 private reserve0;           // uses single storage slot, accessible via getReserves
                  uint112 private reserve1;           // uses single storage slot, accessible via getReserves
                  uint32  private blockTimestampLast; // uses single storage slot, accessible via getReserves
              
                  uint public price0CumulativeLast;
                  uint public price1CumulativeLast;
                  uint public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event
              
                  uint private unlocked = 1;
                  modifier lock() {
                      require(unlocked == 1, 'UniswapV2: LOCKED');
                      unlocked = 0;
                      _;
                      unlocked = 1;
                  }
              
                  function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) {
                      _reserve0 = reserve0;
                      _reserve1 = reserve1;
                      _blockTimestampLast = blockTimestampLast;
                  }
              
                  function _safeTransfer(address token, address to, uint value) private {
                      (bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value));
                      require(success && (data.length == 0 || abi.decode(data, (bool))), 'UniswapV2: TRANSFER_FAILED');
                  }
              
                  event Mint(address indexed sender, uint amount0, uint amount1);
                  event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
                  event Swap(
                      address indexed sender,
                      uint amount0In,
                      uint amount1In,
                      uint amount0Out,
                      uint amount1Out,
                      address indexed to
                  );
                  event Sync(uint112 reserve0, uint112 reserve1);
              
                  constructor() public {
                      factory = msg.sender;
                  }
              
                  // called once by the factory at time of deployment
                  function initialize(address _token0, address _token1) external {
                      require(msg.sender == factory, 'UniswapV2: FORBIDDEN'); // sufficient check
                      token0 = _token0;
                      token1 = _token1;
                  }
              
                  // update reserves and, on the first call per block, price accumulators
                  function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) private {
                      require(balance0 <= uint112(-1) && balance1 <= uint112(-1), 'UniswapV2: OVERFLOW');
                      uint32 blockTimestamp = uint32(block.timestamp % 2**32);
                      uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired
                      if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {
                          // * never overflows, and + overflow is desired
                          price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed;
                          price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed;
                      }
                      reserve0 = uint112(balance0);
                      reserve1 = uint112(balance1);
                      blockTimestampLast = blockTimestamp;
                      emit Sync(reserve0, reserve1);
                  }
              
                  // if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k)
                  function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) {
                      address feeTo = IUniswapV2Factory(factory).feeTo();
                      feeOn = feeTo != address(0);
                      uint _kLast = kLast; // gas savings
                      if (feeOn) {
                          if (_kLast != 0) {
                              uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1));
                              uint rootKLast = Math.sqrt(_kLast);
                              if (rootK > rootKLast) {
                                  uint numerator = totalSupply.mul(rootK.sub(rootKLast));
                                  uint denominator = rootK.mul(5).add(rootKLast);
                                  uint liquidity = numerator / denominator;
                                  if (liquidity > 0) _mint(feeTo, liquidity);
                              }
                          }
                      } else if (_kLast != 0) {
                          kLast = 0;
                      }
                  }
              
                  // this low-level function should be called from a contract which performs important safety checks
                  function mint(address to) external lock returns (uint liquidity) {
                      (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
                      uint balance0 = IERC20(token0).balanceOf(address(this));
                      uint balance1 = IERC20(token1).balanceOf(address(this));
                      uint amount0 = balance0.sub(_reserve0);
                      uint amount1 = balance1.sub(_reserve1);
              
                      bool feeOn = _mintFee(_reserve0, _reserve1);
                      uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
                      if (_totalSupply == 0) {
                          liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY);
                         _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens
                      } else {
                          liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1);
                      }
                      require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED');
                      _mint(to, liquidity);
              
                      _update(balance0, balance1, _reserve0, _reserve1);
                      if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
                      emit Mint(msg.sender, amount0, amount1);
                  }
              
                  // this low-level function should be called from a contract which performs important safety checks
                  function burn(address to) external lock returns (uint amount0, uint amount1) {
                      (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
                      address _token0 = token0;                                // gas savings
                      address _token1 = token1;                                // gas savings
                      uint balance0 = IERC20(_token0).balanceOf(address(this));
                      uint balance1 = IERC20(_token1).balanceOf(address(this));
                      uint liquidity = balanceOf[address(this)];
              
                      bool feeOn = _mintFee(_reserve0, _reserve1);
                      uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
                      amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution
                      amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution
                      require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED');
                      _burn(address(this), liquidity);
                      _safeTransfer(_token0, to, amount0);
                      _safeTransfer(_token1, to, amount1);
                      balance0 = IERC20(_token0).balanceOf(address(this));
                      balance1 = IERC20(_token1).balanceOf(address(this));
              
                      _update(balance0, balance1, _reserve0, _reserve1);
                      if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
                      emit Burn(msg.sender, amount0, amount1, to);
                  }
              
                  // this low-level function should be called from a contract which performs important safety checks
                  function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock {
                      require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT');
                      (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
                      require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY');
              
                      uint balance0;
                      uint balance1;
                      { // scope for _token{0,1}, avoids stack too deep errors
                      address _token0 = token0;
                      address _token1 = token1;
                      require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO');
                      if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens
                      if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens
                      if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data);
                      balance0 = IERC20(_token0).balanceOf(address(this));
                      balance1 = IERC20(_token1).balanceOf(address(this));
                      }
                      uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0;
                      uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0;
                      require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT');
                      { // scope for reserve{0,1}Adjusted, avoids stack too deep errors
                      uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3));
                      uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3));
                      require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K');
                      }
              
                      _update(balance0, balance1, _reserve0, _reserve1);
                      emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);
                  }
              
                  // force balances to match reserves
                  function skim(address to) external lock {
                      address _token0 = token0; // gas savings
                      address _token1 = token1; // gas savings
                      _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0));
                      _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1));
                  }
              
                  // force reserves to match balances
                  function sync() external lock {
                      _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1);
                  }
              }

              File 4 of 4: WETH9
              // Copyright (C) 2015, 2016, 2017 Dapphub
              
              // This program is free software: you can redistribute it and/or modify
              // it under the terms of the GNU General Public License as published by
              // the Free Software Foundation, either version 3 of the License, or
              // (at your option) any later version.
              
              // This program is distributed in the hope that it will be useful,
              // but WITHOUT ANY WARRANTY; without even the implied warranty of
              // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
              // GNU General Public License for more details.
              
              // You should have received a copy of the GNU General Public License
              // along with this program.  If not, see <http://www.gnu.org/licenses/>.
              
              pragma solidity ^0.4.18;
              
              contract WETH9 {
                  string public name     = "Wrapped Ether";
                  string public symbol   = "WETH";
                  uint8  public decimals = 18;
              
                  event  Approval(address indexed src, address indexed guy, uint wad);
                  event  Transfer(address indexed src, address indexed dst, uint wad);
                  event  Deposit(address indexed dst, uint wad);
                  event  Withdrawal(address indexed src, uint wad);
              
                  mapping (address => uint)                       public  balanceOf;
                  mapping (address => mapping (address => uint))  public  allowance;
              
                  function() public payable {
                      deposit();
                  }
                  function deposit() public payable {
                      balanceOf[msg.sender] += msg.value;
                      Deposit(msg.sender, msg.value);
                  }
                  function withdraw(uint wad) public {
                      require(balanceOf[msg.sender] >= wad);
                      balanceOf[msg.sender] -= wad;
                      msg.sender.transfer(wad);
                      Withdrawal(msg.sender, wad);
                  }
              
                  function totalSupply() public view returns (uint) {
                      return this.balance;
                  }
              
                  function approve(address guy, uint wad) public returns (bool) {
                      allowance[msg.sender][guy] = wad;
                      Approval(msg.sender, guy, wad);
                      return true;
                  }
              
                  function transfer(address dst, uint wad) public returns (bool) {
                      return transferFrom(msg.sender, dst, wad);
                  }
              
                  function transferFrom(address src, address dst, uint wad)
                      public
                      returns (bool)
                  {
                      require(balanceOf[src] >= wad);
              
                      if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) {
                          require(allowance[src][msg.sender] >= wad);
                          allowance[src][msg.sender] -= wad;
                      }
              
                      balanceOf[src] -= wad;
                      balanceOf[dst] += wad;
              
                      Transfer(src, dst, wad);
              
                      return true;
                  }
              }
              
              
              /*
                                  GNU GENERAL PUBLIC LICENSE
                                     Version 3, 29 June 2007
              
               Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
               Everyone is permitted to copy and distribute verbatim copies
               of this license document, but changing it is not allowed.
              
                                          Preamble
              
                The GNU General Public License is a free, copyleft license for
              software and other kinds of works.
              
                The licenses for most software and other practical works are designed
              to take away your freedom to share and change the works.  By contrast,
              the GNU General Public License is intended to guarantee your freedom to
              share and change all versions of a program--to make sure it remains free
              software for all its users.  We, the Free Software Foundation, use the
              GNU General Public License for most of our software; it applies also to
              any other work released this way by its authors.  You can apply it to
              your programs, too.
              
                When we speak of free software, we are referring to freedom, not
              price.  Our General Public Licenses are designed to make sure that you
              have the freedom to distribute copies of free software (and charge for
              them if you wish), that you receive source code or can get it if you
              want it, that you can change the software or use pieces of it in new
              free programs, and that you know you can do these things.
              
                To protect your rights, we need to prevent others from denying you
              these rights or asking you to surrender the rights.  Therefore, you have
              certain responsibilities if you distribute copies of the software, or if
              you modify it: responsibilities to respect the freedom of others.
              
                For example, if you distribute copies of such a program, whether
              gratis or for a fee, you must pass on to the recipients the same
              freedoms that you received.  You must make sure that they, too, receive
              or can get the source code.  And you must show them these terms so they
              know their rights.
              
                Developers that use the GNU GPL protect your rights with two steps:
              (1) assert copyright on the software, and (2) offer you this License
              giving you legal permission to copy, distribute and/or modify it.
              
                For the developers' and authors' protection, the GPL clearly explains
              that there is no warranty for this free software.  For both users' and
              authors' sake, the GPL requires that modified versions be marked as
              changed, so that their problems will not be attributed erroneously to
              authors of previous versions.
              
                Some devices are designed to deny users access to install or run
              modified versions of the software inside them, although the manufacturer
              can do so.  This is fundamentally incompatible with the aim of
              protecting users' freedom to change the software.  The systematic
              pattern of such abuse occurs in the area of products for individuals to
              use, which is precisely where it is most unacceptable.  Therefore, we
              have designed this version of the GPL to prohibit the practice for those
              products.  If such problems arise substantially in other domains, we
              stand ready to extend this provision to those domains in future versions
              of the GPL, as needed to protect the freedom of users.
              
                Finally, every program is threatened constantly by software patents.
              States should not allow patents to restrict development and use of
              software on general-purpose computers, but in those that do, we wish to
              avoid the special danger that patents applied to a free program could
              make it effectively proprietary.  To prevent this, the GPL assures that
              patents cannot be used to render the program non-free.
              
                The precise terms and conditions for copying, distribution and
              modification follow.
              
                                     TERMS AND CONDITIONS
              
                0. Definitions.
              
                "This License" refers to version 3 of the GNU General Public License.
              
                "Copyright" also means copyright-like laws that apply to other kinds of
              works, such as semiconductor masks.
              
                "The Program" refers to any copyrightable work licensed under this
              License.  Each licensee is addressed as "you".  "Licensees" and
              "recipients" may be individuals or organizations.
              
                To "modify" a work means to copy from or adapt all or part of the work
              in a fashion requiring copyright permission, other than the making of an
              exact copy.  The resulting work is called a "modified version" of the
              earlier work or a work "based on" the earlier work.
              
                A "covered work" means either the unmodified Program or a work based
              on the Program.
              
                To "propagate" a work means to do anything with it that, without
              permission, would make you directly or secondarily liable for
              infringement under applicable copyright law, except executing it on a
              computer or modifying a private copy.  Propagation includes copying,
              distribution (with or without modification), making available to the
              public, and in some countries other activities as well.
              
                To "convey" a work means any kind of propagation that enables other
              parties to make or receive copies.  Mere interaction with a user through
              a computer network, with no transfer of a copy, is not conveying.
              
                An interactive user interface displays "Appropriate Legal Notices"
              to the extent that it includes a convenient and prominently visible
              feature that (1) displays an appropriate copyright notice, and (2)
              tells the user that there is no warranty for the work (except to the
              extent that warranties are provided), that licensees may convey the
              work under this License, and how to view a copy of this License.  If
              the interface presents a list of user commands or options, such as a
              menu, a prominent item in the list meets this criterion.
              
                1. Source Code.
              
                The "source code" for a work means the preferred form of the work
              for making modifications to it.  "Object code" means any non-source
              form of a work.
              
                A "Standard Interface" means an interface that either is an official
              standard defined by a recognized standards body, or, in the case of
              interfaces specified for a particular programming language, one that
              is widely used among developers working in that language.
              
                The "System Libraries" of an executable work include anything, other
              than the work as a whole, that (a) is included in the normal form of
              packaging a Major Component, but which is not part of that Major
              Component, and (b) serves only to enable use of the work with that
              Major Component, or to implement a Standard Interface for which an
              implementation is available to the public in source code form.  A
              "Major Component", in this context, means a major essential component
              (kernel, window system, and so on) of the specific operating system
              (if any) on which the executable work runs, or a compiler used to
              produce the work, or an object code interpreter used to run it.
              
                The "Corresponding Source" for a work in object code form means all
              the source code needed to generate, install, and (for an executable
              work) run the object code and to modify the work, including scripts to
              control those activities.  However, it does not include the work's
              System Libraries, or general-purpose tools or generally available free
              programs which are used unmodified in performing those activities but
              which are not part of the work.  For example, Corresponding Source
              includes interface definition files associated with source files for
              the work, and the source code for shared libraries and dynamically
              linked subprograms that the work is specifically designed to require,
              such as by intimate data communication or control flow between those
              subprograms and other parts of the work.
              
                The Corresponding Source need not include anything that users
              can regenerate automatically from other parts of the Corresponding
              Source.
              
                The Corresponding Source for a work in source code form is that
              same work.
              
                2. Basic Permissions.
              
                All rights granted under this License are granted for the term of
              copyright on the Program, and are irrevocable provided the stated
              conditions are met.  This License explicitly affirms your unlimited
              permission to run the unmodified Program.  The output from running a
              covered work is covered by this License only if the output, given its
              content, constitutes a covered work.  This License acknowledges your
              rights of fair use or other equivalent, as provided by copyright law.
              
                You may make, run and propagate covered works that you do not
              convey, without conditions so long as your license otherwise remains
              in force.  You may convey covered works to others for the sole purpose
              of having them make modifications exclusively for you, or provide you
              with facilities for running those works, provided that you comply with
              the terms of this License in conveying all material for which you do
              not control copyright.  Those thus making or running the covered works
              for you must do so exclusively on your behalf, under your direction
              and control, on terms that prohibit them from making any copies of
              your copyrighted material outside their relationship with you.
              
                Conveying under any other circumstances is permitted solely under
              the conditions stated below.  Sublicensing is not allowed; section 10
              makes it unnecessary.
              
                3. Protecting Users' Legal Rights From Anti-Circumvention Law.
              
                No covered work shall be deemed part of an effective technological
              measure under any applicable law fulfilling obligations under article
              11 of the WIPO copyright treaty adopted on 20 December 1996, or
              similar laws prohibiting or restricting circumvention of such
              measures.
              
                When you convey a covered work, you waive any legal power to forbid
              circumvention of technological measures to the extent such circumvention
              is effected by exercising rights under this License with respect to
              the covered work, and you disclaim any intention to limit operation or
              modification of the work as a means of enforcing, against the work's
              users, your or third parties' legal rights to forbid circumvention of
              technological measures.
              
                4. Conveying Verbatim Copies.
              
                You may convey verbatim copies of the Program's source code as you
              receive it, in any medium, provided that you conspicuously and
              appropriately publish on each copy an appropriate copyright notice;
              keep intact all notices stating that this License and any
              non-permissive terms added in accord with section 7 apply to the code;
              keep intact all notices of the absence of any warranty; and give all
              recipients a copy of this License along with the Program.
              
                You may charge any price or no price for each copy that you convey,
              and you may offer support or warranty protection for a fee.
              
                5. Conveying Modified Source Versions.
              
                You may convey a work based on the Program, or the modifications to
              produce it from the Program, in the form of source code under the
              terms of section 4, provided that you also meet all of these conditions:
              
                  a) The work must carry prominent notices stating that you modified
                  it, and giving a relevant date.
              
                  b) The work must carry prominent notices stating that it is
                  released under this License and any conditions added under section
                  7.  This requirement modifies the requirement in section 4 to
                  "keep intact all notices".
              
                  c) You must license the entire work, as a whole, under this
                  License to anyone who comes into possession of a copy.  This
                  License will therefore apply, along with any applicable section 7
                  additional terms, to the whole of the work, and all its parts,
                  regardless of how they are packaged.  This License gives no
                  permission to license the work in any other way, but it does not
                  invalidate such permission if you have separately received it.
              
                  d) If the work has interactive user interfaces, each must display
                  Appropriate Legal Notices; however, if the Program has interactive
                  interfaces that do not display Appropriate Legal Notices, your
                  work need not make them do so.
              
                A compilation of a covered work with other separate and independent
              works, which are not by their nature extensions of the covered work,
              and which are not combined with it such as to form a larger program,
              in or on a volume of a storage or distribution medium, is called an
              "aggregate" if the compilation and its resulting copyright are not
              used to limit the access or legal rights of the compilation's users
              beyond what the individual works permit.  Inclusion of a covered work
              in an aggregate does not cause this License to apply to the other
              parts of the aggregate.
              
                6. Conveying Non-Source Forms.
              
                You may convey a covered work in object code form under the terms
              of sections 4 and 5, provided that you also convey the
              machine-readable Corresponding Source under the terms of this License,
              in one of these ways:
              
                  a) Convey the object code in, or embodied in, a physical product
                  (including a physical distribution medium), accompanied by the
                  Corresponding Source fixed on a durable physical medium
                  customarily used for software interchange.
              
                  b) Convey the object code in, or embodied in, a physical product
                  (including a physical distribution medium), accompanied by a
                  written offer, valid for at least three years and valid for as
                  long as you offer spare parts or customer support for that product
                  model, to give anyone who possesses the object code either (1) a
                  copy of the Corresponding Source for all the software in the
                  product that is covered by this License, on a durable physical
                  medium customarily used for software interchange, for a price no
                  more than your reasonable cost of physically performing this
                  conveying of source, or (2) access to copy the
                  Corresponding Source from a network server at no charge.
              
                  c) Convey individual copies of the object code with a copy of the
                  written offer to provide the Corresponding Source.  This
                  alternative is allowed only occasionally and noncommercially, and
                  only if you received the object code with such an offer, in accord
                  with subsection 6b.
              
                  d) Convey the object code by offering access from a designated
                  place (gratis or for a charge), and offer equivalent access to the
                  Corresponding Source in the same way through the same place at no
                  further charge.  You need not require recipients to copy the
                  Corresponding Source along with the object code.  If the place to
                  copy the object code is a network server, the Corresponding Source
                  may be on a different server (operated by you or a third party)
                  that supports equivalent copying facilities, provided you maintain
                  clear directions next to the object code saying where to find the
                  Corresponding Source.  Regardless of what server hosts the
                  Corresponding Source, you remain obligated to ensure that it is
                  available for as long as needed to satisfy these requirements.
              
                  e) Convey the object code using peer-to-peer transmission, provided
                  you inform other peers where the object code and Corresponding
                  Source of the work are being offered to the general public at no
                  charge under subsection 6d.
              
                A separable portion of the object code, whose source code is excluded
              from the Corresponding Source as a System Library, need not be
              included in conveying the object code work.
              
                A "User Product" is either (1) a "consumer product", which means any
              tangible personal property which is normally used for personal, family,
              or household purposes, or (2) anything designed or sold for incorporation
              into a dwelling.  In determining whether a product is a consumer product,
              doubtful cases shall be resolved in favor of coverage.  For a particular
              product received by a particular user, "normally used" refers to a
              typical or common use of that class of product, regardless of the status
              of the particular user or of the way in which the particular user
              actually uses, or expects or is expected to use, the product.  A product
              is a consumer product regardless of whether the product has substantial
              commercial, industrial or non-consumer uses, unless such uses represent
              the only significant mode of use of the product.
              
                "Installation Information" for a User Product means any methods,
              procedures, authorization keys, or other information required to install
              and execute modified versions of a covered work in that User Product from
              a modified version of its Corresponding Source.  The information must
              suffice to ensure that the continued functioning of the modified object
              code is in no case prevented or interfered with solely because
              modification has been made.
              
                If you convey an object code work under this section in, or with, or
              specifically for use in, a User Product, and the conveying occurs as
              part of a transaction in which the right of possession and use of the
              User Product is transferred to the recipient in perpetuity or for a
              fixed term (regardless of how the transaction is characterized), the
              Corresponding Source conveyed under this section must be accompanied
              by the Installation Information.  But this requirement does not apply
              if neither you nor any third party retains the ability to install
              modified object code on the User Product (for example, the work has
              been installed in ROM).
              
                The requirement to provide Installation Information does not include a
              requirement to continue to provide support service, warranty, or updates
              for a work that has been modified or installed by the recipient, or for
              the User Product in which it has been modified or installed.  Access to a
              network may be denied when the modification itself materially and
              adversely affects the operation of the network or violates the rules and
              protocols for communication across the network.
              
                Corresponding Source conveyed, and Installation Information provided,
              in accord with this section must be in a format that is publicly
              documented (and with an implementation available to the public in
              source code form), and must require no special password or key for
              unpacking, reading or copying.
              
                7. Additional Terms.
              
                "Additional permissions" are terms that supplement the terms of this
              License by making exceptions from one or more of its conditions.
              Additional permissions that are applicable to the entire Program shall
              be treated as though they were included in this License, to the extent
              that they are valid under applicable law.  If additional permissions
              apply only to part of the Program, that part may be used separately
              under those permissions, but the entire Program remains governed by
              this License without regard to the additional permissions.
              
                When you convey a copy of a covered work, you may at your option
              remove any additional permissions from that copy, or from any part of
              it.  (Additional permissions may be written to require their own
              removal in certain cases when you modify the work.)  You may place
              additional permissions on material, added by you to a covered work,
              for which you have or can give appropriate copyright permission.
              
                Notwithstanding any other provision of this License, for material you
              add to a covered work, you may (if authorized by the copyright holders of
              that material) supplement the terms of this License with terms:
              
                  a) Disclaiming warranty or limiting liability differently from the
                  terms of sections 15 and 16 of this License; or
              
                  b) Requiring preservation of specified reasonable legal notices or
                  author attributions in that material or in the Appropriate Legal
                  Notices displayed by works containing it; or
              
                  c) Prohibiting misrepresentation of the origin of that material, or
                  requiring that modified versions of such material be marked in
                  reasonable ways as different from the original version; or
              
                  d) Limiting the use for publicity purposes of names of licensors or
                  authors of the material; or
              
                  e) Declining to grant rights under trademark law for use of some
                  trade names, trademarks, or service marks; or
              
                  f) Requiring indemnification of licensors and authors of that
                  material by anyone who conveys the material (or modified versions of
                  it) with contractual assumptions of liability to the recipient, for
                  any liability that these contractual assumptions directly impose on
                  those licensors and authors.
              
                All other non-permissive additional terms are considered "further
              restrictions" within the meaning of section 10.  If the Program as you
              received it, or any part of it, contains a notice stating that it is
              governed by this License along with a term that is a further
              restriction, you may remove that term.  If a license document contains
              a further restriction but permits relicensing or conveying under this
              License, you may add to a covered work material governed by the terms
              of that license document, provided that the further restriction does
              not survive such relicensing or conveying.
              
                If you add terms to a covered work in accord with this section, you
              must place, in the relevant source files, a statement of the
              additional terms that apply to those files, or a notice indicating
              where to find the applicable terms.
              
                Additional terms, permissive or non-permissive, may be stated in the
              form of a separately written license, or stated as exceptions;
              the above requirements apply either way.
              
                8. Termination.
              
                You may not propagate or modify a covered work except as expressly
              provided under this License.  Any attempt otherwise to propagate or
              modify it is void, and will automatically terminate your rights under
              this License (including any patent licenses granted under the third
              paragraph of section 11).
              
                However, if you cease all violation of this License, then your
              license from a particular copyright holder is reinstated (a)
              provisionally, unless and until the copyright holder explicitly and
              finally terminates your license, and (b) permanently, if the copyright
              holder fails to notify you of the violation by some reasonable means
              prior to 60 days after the cessation.
              
                Moreover, your license from a particular copyright holder is
              reinstated permanently if the copyright holder notifies you of the
              violation by some reasonable means, this is the first time you have
              received notice of violation of this License (for any work) from that
              copyright holder, and you cure the violation prior to 30 days after
              your receipt of the notice.
              
                Termination of your rights under this section does not terminate the
              licenses of parties who have received copies or rights from you under
              this License.  If your rights have been terminated and not permanently
              reinstated, you do not qualify to receive new licenses for the same
              material under section 10.
              
                9. Acceptance Not Required for Having Copies.
              
                You are not required to accept this License in order to receive or
              run a copy of the Program.  Ancillary propagation of a covered work
              occurring solely as a consequence of using peer-to-peer transmission
              to receive a copy likewise does not require acceptance.  However,
              nothing other than this License grants you permission to propagate or
              modify any covered work.  These actions infringe copyright if you do
              not accept this License.  Therefore, by modifying or propagating a
              covered work, you indicate your acceptance of this License to do so.
              
                10. Automatic Licensing of Downstream Recipients.
              
                Each time you convey a covered work, the recipient automatically
              receives a license from the original licensors, to run, modify and
              propagate that work, subject to this License.  You are not responsible
              for enforcing compliance by third parties with this License.
              
                An "entity transaction" is a transaction transferring control of an
              organization, or substantially all assets of one, or subdividing an
              organization, or merging organizations.  If propagation of a covered
              work results from an entity transaction, each party to that
              transaction who receives a copy of the work also receives whatever
              licenses to the work the party's predecessor in interest had or could
              give under the previous paragraph, plus a right to possession of the
              Corresponding Source of the work from the predecessor in interest, if
              the predecessor has it or can get it with reasonable efforts.
              
                You may not impose any further restrictions on the exercise of the
              rights granted or affirmed under this License.  For example, you may
              not impose a license fee, royalty, or other charge for exercise of
              rights granted under this License, and you may not initiate litigation
              (including a cross-claim or counterclaim in a lawsuit) alleging that
              any patent claim is infringed by making, using, selling, offering for
              sale, or importing the Program or any portion of it.
              
                11. Patents.
              
                A "contributor" is a copyright holder who authorizes use under this
              License of the Program or a work on which the Program is based.  The
              work thus licensed is called the contributor's "contributor version".
              
                A contributor's "essential patent claims" are all patent claims
              owned or controlled by the contributor, whether already acquired or
              hereafter acquired, that would be infringed by some manner, permitted
              by this License, of making, using, or selling its contributor version,
              but do not include claims that would be infringed only as a
              consequence of further modification of the contributor version.  For
              purposes of this definition, "control" includes the right to grant
              patent sublicenses in a manner consistent with the requirements of
              this License.
              
                Each contributor grants you a non-exclusive, worldwide, royalty-free
              patent license under the contributor's essential patent claims, to
              make, use, sell, offer for sale, import and otherwise run, modify and
              propagate the contents of its contributor version.
              
                In the following three paragraphs, a "patent license" is any express
              agreement or commitment, however denominated, not to enforce a patent
              (such as an express permission to practice a patent or covenant not to
              sue for patent infringement).  To "grant" such a patent license to a
              party means to make such an agreement or commitment not to enforce a
              patent against the party.
              
                If you convey a covered work, knowingly relying on a patent license,
              and the Corresponding Source of the work is not available for anyone
              to copy, free of charge and under the terms of this License, through a
              publicly available network server or other readily accessible means,
              then you must either (1) cause the Corresponding Source to be so
              available, or (2) arrange to deprive yourself of the benefit of the
              patent license for this particular work, or (3) arrange, in a manner
              consistent with the requirements of this License, to extend the patent
              license to downstream recipients.  "Knowingly relying" means you have
              actual knowledge that, but for the patent license, your conveying the
              covered work in a country, or your recipient's use of the covered work
              in a country, would infringe one or more identifiable patents in that
              country that you have reason to believe are valid.
              
                If, pursuant to or in connection with a single transaction or
              arrangement, you convey, or propagate by procuring conveyance of, a
              covered work, and grant a patent license to some of the parties
              receiving the covered work authorizing them to use, propagate, modify
              or convey a specific copy of the covered work, then the patent license
              you grant is automatically extended to all recipients of the covered
              work and works based on it.
              
                A patent license is "discriminatory" if it does not include within
              the scope of its coverage, prohibits the exercise of, or is
              conditioned on the non-exercise of one or more of the rights that are
              specifically granted under this License.  You may not convey a covered
              work if you are a party to an arrangement with a third party that is
              in the business of distributing software, under which you make payment
              to the third party based on the extent of your activity of conveying
              the work, and under which the third party grants, to any of the
              parties who would receive the covered work from you, a discriminatory
              patent license (a) in connection with copies of the covered work
              conveyed by you (or copies made from those copies), or (b) primarily
              for and in connection with specific products or compilations that
              contain the covered work, unless you entered into that arrangement,
              or that patent license was granted, prior to 28 March 2007.
              
                Nothing in this License shall be construed as excluding or limiting
              any implied license or other defenses to infringement that may
              otherwise be available to you under applicable patent law.
              
                12. No Surrender of Others' Freedom.
              
                If conditions are imposed on you (whether by court order, agreement or
              otherwise) that contradict the conditions of this License, they do not
              excuse you from the conditions of this License.  If you cannot convey a
              covered work so as to satisfy simultaneously your obligations under this
              License and any other pertinent obligations, then as a consequence you may
              not convey it at all.  For example, if you agree to terms that obligate you
              to collect a royalty for further conveying from those to whom you convey
              the Program, the only way you could satisfy both those terms and this
              License would be to refrain entirely from conveying the Program.
              
                13. Use with the GNU Affero General Public License.
              
                Notwithstanding any other provision of this License, you have
              permission to link or combine any covered work with a work licensed
              under version 3 of the GNU Affero General Public License into a single
              combined work, and to convey the resulting work.  The terms of this
              License will continue to apply to the part which is the covered work,
              but the special requirements of the GNU Affero General Public License,
              section 13, concerning interaction through a network will apply to the
              combination as such.
              
                14. Revised Versions of this License.
              
                The Free Software Foundation may publish revised and/or new versions of
              the GNU General Public License from time to time.  Such new versions will
              be similar in spirit to the present version, but may differ in detail to
              address new problems or concerns.
              
                Each version is given a distinguishing version number.  If the
              Program specifies that a certain numbered version of the GNU General
              Public License "or any later version" applies to it, you have the
              option of following the terms and conditions either of that numbered
              version or of any later version published by the Free Software
              Foundation.  If the Program does not specify a version number of the
              GNU General Public License, you may choose any version ever published
              by the Free Software Foundation.
              
                If the Program specifies that a proxy can decide which future
              versions of the GNU General Public License can be used, that proxy's
              public statement of acceptance of a version permanently authorizes you
              to choose that version for the Program.
              
                Later license versions may give you additional or different
              permissions.  However, no additional obligations are imposed on any
              author or copyright holder as a result of your choosing to follow a
              later version.
              
                15. Disclaimer of Warranty.
              
                THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
              APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
              HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
              OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
              THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
              PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
              IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
              ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
              
                16. Limitation of Liability.
              
                IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
              WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
              THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
              GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
              USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
              DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
              PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
              EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
              SUCH DAMAGES.
              
                17. Interpretation of Sections 15 and 16.
              
                If the disclaimer of warranty and limitation of liability provided
              above cannot be given local legal effect according to their terms,
              reviewing courts shall apply local law that most closely approximates
              an absolute waiver of all civil liability in connection with the
              Program, unless a warranty or assumption of liability accompanies a
              copy of the Program in return for a fee.
              
                                   END OF TERMS AND CONDITIONS
              
                          How to Apply These Terms to Your New Programs
              
                If you develop a new program, and you want it to be of the greatest
              possible use to the public, the best way to achieve this is to make it
              free software which everyone can redistribute and change under these terms.
              
                To do so, attach the following notices to the program.  It is safest
              to attach them to the start of each source file to most effectively
              state the exclusion of warranty; and each file should have at least
              the "copyright" line and a pointer to where the full notice is found.
              
                  <one line to give the program's name and a brief idea of what it does.>
                  Copyright (C) <year>  <name of author>
              
                  This program is free software: you can redistribute it and/or modify
                  it under the terms of the GNU General Public License as published by
                  the Free Software Foundation, either version 3 of the License, or
                  (at your option) any later version.
              
                  This program is distributed in the hope that it will be useful,
                  but WITHOUT ANY WARRANTY; without even the implied warranty of
                  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
                  GNU General Public License for more details.
              
                  You should have received a copy of the GNU General Public License
                  along with this program.  If not, see <http://www.gnu.org/licenses/>.
              
              Also add information on how to contact you by electronic and paper mail.
              
                If the program does terminal interaction, make it output a short
              notice like this when it starts in an interactive mode:
              
                  <program>  Copyright (C) <year>  <name of author>
                  This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
                  This is free software, and you are welcome to redistribute it
                  under certain conditions; type `show c' for details.
              
              The hypothetical commands `show w' and `show c' should show the appropriate
              parts of the General Public License.  Of course, your program's commands
              might be different; for a GUI interface, you would use an "about box".
              
                You should also get your employer (if you work as a programmer) or school,
              if any, to sign a "copyright disclaimer" for the program, if necessary.
              For more information on this, and how to apply and follow the GNU GPL, see
              <http://www.gnu.org/licenses/>.
              
                The GNU General Public License does not permit incorporating your program
              into proprietary programs.  If your program is a subroutine library, you
              may consider it more useful to permit linking proprietary applications with
              the library.  If this is what you want to do, use the GNU Lesser General
              Public License instead of this License.  But first, please read
              <http://www.gnu.org/philosophy/why-not-lgpl.html>.
              
              */