Transaction Hash:
Block:
13906992 at Dec-30-2021 01:36:33 PM +UTC
Transaction Fee:
0.01123929 ETH
$21.07
Gas Used:
124,881 Gas / 90 Gwei
Emitted Events:
149 |
DydxToken.DelegatedPowerChanged( user=[Sender] 0xe541f3a265fa9d7c62cc47b933915831ea4fba2c, amount=0, delegationType=0 )
|
150 |
DydxToken.DelegatedPowerChanged( user=0x28C6c06298d514Db089934071355E5743bf21d60, amount=1743617822555845531759096, delegationType=0 )
|
151 |
DydxToken.DelegatedPowerChanged( user=[Sender] 0xe541f3a265fa9d7c62cc47b933915831ea4fba2c, amount=0, delegationType=1 )
|
152 |
DydxToken.DelegatedPowerChanged( user=0x28C6c06298d514Db089934071355E5743bf21d60, amount=1743617822555845531759096, delegationType=1 )
|
153 |
DydxToken.Transfer( from=[Sender] 0xe541f3a265fa9d7c62cc47b933915831ea4fba2c, to=0x28C6c06298d514Db089934071355E5743bf21d60, value=4352070392071084377312 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x92D6C1e3...B716BEff5 | |||||
0xE541f3a2...1Ea4fba2c |
0.06 Eth
Nonce: 0
|
0.04876071 Eth
Nonce: 1
| 0.01123929 | ||
0xEA674fdD...16B898ec8
Miner
| (Ethermine) | 2,606.399824099804122919 Eth | 2,606.402826589067707936 Eth | 0.003002489263585017 |
Execution Trace
DydxToken.transfer( recipient=0x28C6c06298d514Db089934071355E5743bf21d60, amount=4352070392071084377312 ) => ( True )
transfer[DydxToken (ln:1519)]
_requireTransferAllowed[DydxToken (ln:1527)]
_msgSender[DydxToken (ln:1527)]
transfer[DydxToken (ln:1528)]
// SPDX-License-Identifier: AGPL-3.0 // File contracts/dependencies/open-zeppelin/Context.sol pragma solidity 0.7.5; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } // File contracts/dependencies/open-zeppelin/IERC20.sol pragma solidity 0.7.5; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // File contracts/dependencies/open-zeppelin/SafeMath.sol pragma solidity 0.7.5; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, 'SafeMath: addition overflow'); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, 'SafeMath: subtraction overflow'); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, 'SafeMath: multiplication overflow'); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, 'SafeMath: division by zero'); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, 'SafeMath: modulo by zero'); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } } // File contracts/dependencies/open-zeppelin/Address.sol pragma solidity 0.7.5; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, 'Address: insufficient balance'); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{value: amount}(''); require(success, 'Address: unable to send value, recipient may have reverted'); } } // File contracts/dependencies/open-zeppelin/ERC20.sol pragma solidity ^0.7.5; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string internal _name; string internal _symbol; uint8 private _decimals; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name, string memory symbol) public { _name = name; _symbol = symbol; _decimals = 18; } /** * @dev Returns the name of the token. */ function name() virtual public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() virtual public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() virtual public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } } // File contracts/dependencies/open-zeppelin/Ownable.sol pragma solidity 0.7.5; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(_owner == _msgSender(), 'Ownable: caller is not the owner'); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), 'Ownable: new owner is the zero address'); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } // File contracts/interfaces/IGovernancePowerDelegationERC20.sol pragma solidity 0.7.5; interface IGovernancePowerDelegationERC20 { enum DelegationType { VOTING_POWER, PROPOSITION_POWER } /** * @dev Emitted when a user delegates governance power to another user. * * @param delegator The delegator. * @param delegatee The delegatee. * @param delegationType The type of delegation (VOTING_POWER, PROPOSITION_POWER). */ event DelegateChanged( address indexed delegator, address indexed delegatee, DelegationType delegationType ); /** * @dev Emitted when an action changes the delegated power of a user. * * @param user The user whose delegated power has changed. * @param amount The new amount of delegated power for the user. * @param delegationType The type of delegation (VOTING_POWER, PROPOSITION_POWER). */ event DelegatedPowerChanged(address indexed user, uint256 amount, DelegationType delegationType); /** * @dev Delegates a specific governance power to a delegatee. * * @param delegatee The address to delegate power to. * @param delegationType The type of delegation (VOTING_POWER, PROPOSITION_POWER). */ function delegateByType(address delegatee, DelegationType delegationType) external virtual; /** * @dev Delegates all governance powers to a delegatee. * * @param delegatee The user to which the power will be delegated. */ function delegate(address delegatee) external virtual; /** * @dev Returns the delegatee of an user. * * @param delegator The address of the delegator. * @param delegationType The type of delegation (VOTING_POWER, PROPOSITION_POWER). */ function getDelegateeByType(address delegator, DelegationType delegationType) external view virtual returns (address); /** * @dev Returns the current delegated power of a user. The current power is the power delegated * at the time of the last snapshot. * * @param user The user whose power to query. * @param delegationType The type of power (VOTING_POWER, PROPOSITION_POWER). */ function getPowerCurrent(address user, DelegationType delegationType) external view virtual returns (uint256); /** * @dev Returns the delegated power of a user at a certain block. * * @param user The user whose power to query. * @param blockNumber The block number at which to get the user's power. * @param delegationType The type of power (VOTING_POWER, PROPOSITION_POWER). */ function getPowerAtBlock( address user, uint256 blockNumber, DelegationType delegationType ) external view virtual returns (uint256); } // File contracts/governance/token/GovernancePowerDelegationERC20Mixin.sol pragma solidity 0.7.5; /** * @title GovernancePowerDelegationERC20Mixin * @author dYdX * * @dev Provides support for two types of governance powers, both endowed by the governance * token, and separately delegatable. Provides functions for delegation and for querying a user's * power at a certain block number. */ abstract contract GovernancePowerDelegationERC20Mixin is ERC20, IGovernancePowerDelegationERC20 { using SafeMath for uint256; // ============ Constants ============ /// @notice EIP-712 typehash for delegation by signature of a specific governance power type. bytes32 public constant DELEGATE_BY_TYPE_TYPEHASH = keccak256( 'DelegateByType(address delegatee,uint256 type,uint256 nonce,uint256 expiry)' ); /// @notice EIP-712 typehash for delegation by signature of all governance powers. bytes32 public constant DELEGATE_TYPEHASH = keccak256( 'Delegate(address delegatee,uint256 nonce,uint256 expiry)' ); // ============ Structs ============ /// @dev Snapshot of a value on a specific block, used to track voting power for proposals. struct Snapshot { uint128 blockNumber; uint128 value; } // ============ External Functions ============ /** * @notice Delegates a specific governance power to a delegatee. * * @param delegatee The address to delegate power to. * @param delegationType The type of delegation (VOTING_POWER, PROPOSITION_POWER). */ function delegateByType( address delegatee, DelegationType delegationType ) external override { _delegateByType(msg.sender, delegatee, delegationType); } /** * @notice Delegates all governance powers to a delegatee. * * @param delegatee The address to delegate power to. */ function delegate( address delegatee ) external override { _delegateByType(msg.sender, delegatee, DelegationType.VOTING_POWER); _delegateByType(msg.sender, delegatee, DelegationType.PROPOSITION_POWER); } /** * @notice Returns the delegatee of a user. * * @param delegator The address of the delegator. * @param delegationType The type of delegation (VOTING_POWER, PROPOSITION_POWER). */ function getDelegateeByType( address delegator, DelegationType delegationType ) external override view returns (address) { (, , mapping(address => address) storage delegates) = _getDelegationDataByType(delegationType); return _getDelegatee(delegator, delegates); } /** * @notice Returns the current power of a user. The current power is the power delegated * at the time of the last snapshot. * * @param user The user whose power to query. * @param delegationType The type of power (VOTING_POWER, PROPOSITION_POWER). */ function getPowerCurrent( address user, DelegationType delegationType ) external override view returns (uint256) { ( mapping(address => mapping(uint256 => Snapshot)) storage snapshots, mapping(address => uint256) storage snapshotsCounts, // delegates ) = _getDelegationDataByType(delegationType); return _searchByBlockNumber(snapshots, snapshotsCounts, user, block.number); } /** * @notice Returns the power of a user at a certain block. * * @param user The user whose power to query. * @param blockNumber The block number at which to get the user's power. * @param delegationType The type of power (VOTING_POWER, PROPOSITION_POWER). */ function getPowerAtBlock( address user, uint256 blockNumber, DelegationType delegationType ) external override view returns (uint256) { ( mapping(address => mapping(uint256 => Snapshot)) storage snapshots, mapping(address => uint256) storage snapshotsCounts, // delegates ) = _getDelegationDataByType(delegationType); return _searchByBlockNumber(snapshots, snapshotsCounts, user, blockNumber); } // ============ Internal Functions ============ /** * @dev Delegates one specific power to a delegatee. * * @param delegator The user whose power to delegate. * @param delegatee The address to delegate power to. * @param delegationType The type of power (VOTING_POWER, PROPOSITION_POWER). */ function _delegateByType( address delegator, address delegatee, DelegationType delegationType ) internal { require( delegatee != address(0), 'INVALID_DELEGATEE' ); (, , mapping(address => address) storage delegates) = _getDelegationDataByType(delegationType); uint256 delegatorBalance = balanceOf(delegator); address previousDelegatee = _getDelegatee(delegator, delegates); delegates[delegator] = delegatee; _moveDelegatesByType(previousDelegatee, delegatee, delegatorBalance, delegationType); emit DelegateChanged(delegator, delegatee, delegationType); } /** * @dev Moves power from one user to another. * * @param from The user from which delegated power is moved. * @param to The user that will receive the delegated power. * @param amount The amount of power to be moved. * @param delegationType The type of power (VOTING_POWER, PROPOSITION_POWER). */ function _moveDelegatesByType( address from, address to, uint256 amount, DelegationType delegationType ) internal { if (from == to) { return; } ( mapping(address => mapping(uint256 => Snapshot)) storage snapshots, mapping(address => uint256) storage snapshotsCounts, // delegates ) = _getDelegationDataByType(delegationType); if (from != address(0)) { uint256 previous = 0; uint256 fromSnapshotsCount = snapshotsCounts[from]; if (fromSnapshotsCount != 0) { previous = snapshots[from][fromSnapshotsCount - 1].value; } else { previous = balanceOf(from); } uint256 newAmount = previous.sub(amount); _writeSnapshot( snapshots, snapshotsCounts, from, uint128(newAmount) ); emit DelegatedPowerChanged(from, newAmount, delegationType); } if (to != address(0)) { uint256 previous = 0; uint256 toSnapshotsCount = snapshotsCounts[to]; if (toSnapshotsCount != 0) { previous = snapshots[to][toSnapshotsCount - 1].value; } else { previous = balanceOf(to); } uint256 newAmount = previous.add(amount); _writeSnapshot( snapshots, snapshotsCounts, to, uint128(newAmount) ); emit DelegatedPowerChanged(to, newAmount, delegationType); } } /** * @dev Searches for a balance snapshot by block number using binary search. * * @param snapshots The mapping of snapshots by user. * @param snapshotsCounts The mapping of the number of snapshots by user. * @param user The user for which the snapshot is being searched. * @param blockNumber The block number being searched. */ function _searchByBlockNumber( mapping(address => mapping(uint256 => Snapshot)) storage snapshots, mapping(address => uint256) storage snapshotsCounts, address user, uint256 blockNumber ) internal view returns (uint256) { require( blockNumber <= block.number, 'INVALID_BLOCK_NUMBER' ); uint256 snapshotsCount = snapshotsCounts[user]; if (snapshotsCount == 0) { return balanceOf(user); } // First check most recent balance if (snapshots[user][snapshotsCount - 1].blockNumber <= blockNumber) { return snapshots[user][snapshotsCount - 1].value; } // Next check implicit zero balance if (snapshots[user][0].blockNumber > blockNumber) { return 0; } uint256 lower = 0; uint256 upper = snapshotsCount - 1; while (upper > lower) { uint256 center = upper - (upper - lower) / 2; // ceil, avoiding overflow Snapshot memory snapshot = snapshots[user][center]; if (snapshot.blockNumber == blockNumber) { return snapshot.value; } else if (snapshot.blockNumber < blockNumber) { lower = center; } else { upper = center - 1; } } return snapshots[user][lower].value; } /** * @dev Returns delegation data (snapshot, snapshotsCount, delegates) by delegation type. * * Note: This mixin contract does not itself define any storage, and we require the inheriting * contract to implement this method to provide access to the relevant mappings in storage. * This pattern was implemented by Aave for legacy reasons and we have decided not to change it. * * @param delegationType The type of power (VOTING_POWER, PROPOSITION_POWER). */ function _getDelegationDataByType( DelegationType delegationType ) internal virtual view returns ( mapping(address => mapping(uint256 => Snapshot)) storage, // snapshots mapping(address => uint256) storage, // snapshotsCount mapping(address => address) storage // delegates ); /** * @dev Writes a snapshot of a user's token/power balance. * * @param snapshots The mapping of snapshots by user. * @param snapshotsCounts The mapping of the number of snapshots by user. * @param owner The user whose power to snapshot. * @param newValue The new balance to snapshot at the current block. */ function _writeSnapshot( mapping(address => mapping(uint256 => Snapshot)) storage snapshots, mapping(address => uint256) storage snapshotsCounts, address owner, uint128 newValue ) internal { uint128 currentBlock = uint128(block.number); uint256 ownerSnapshotsCount = snapshotsCounts[owner]; mapping(uint256 => Snapshot) storage ownerSnapshots = snapshots[owner]; if ( ownerSnapshotsCount != 0 && ownerSnapshots[ownerSnapshotsCount - 1].blockNumber == currentBlock ) { // Doing multiple operations in the same block ownerSnapshots[ownerSnapshotsCount - 1].value = newValue; } else { ownerSnapshots[ownerSnapshotsCount] = Snapshot(currentBlock, newValue); snapshotsCounts[owner] = ownerSnapshotsCount + 1; } } /** * @dev Returns the delegatee of a user. If a user never performed any delegation, their * delegated address will be 0x0, in which case we return the user's own address. * * @param delegator The address of the user for which return the delegatee. * @param delegates The mapping of delegates for a particular type of delegation. */ function _getDelegatee( address delegator, mapping(address => address) storage delegates ) internal view returns (address) { address previousDelegatee = delegates[delegator]; if (previousDelegatee == address(0)) { return delegator; } return previousDelegatee; } } // File contracts/governance/token/DydxToken.sol pragma solidity 0.7.5; /** * @title DydxToken * @author dYdX * * @notice The dYdX governance token. */ contract DydxToken is GovernancePowerDelegationERC20Mixin, Ownable { using SafeMath for uint256; // ============ Events ============ /** * @dev Emitted when an address has been added to or removed from the token transfer allowlist. * * @param account Address that was added to or removed from the token transfer allowlist. * @param isAllowed True if the address was added to the allowlist, false if removed. */ event TransferAllowlistUpdated( address account, bool isAllowed ); /** * @dev Emitted when the transfer restriction timestamp is reassigned. * * @param transfersRestrictedBefore The new timestamp on and after which non-allowlisted * transfers may occur. */ event TransfersRestrictedBeforeUpdated( uint256 transfersRestrictedBefore ); // ============ Constants ============ string internal constant NAME = 'dYdX'; string internal constant SYMBOL = 'DYDX'; uint256 public constant INITIAL_SUPPLY = 1_000_000_000 ether; bytes32 public immutable DOMAIN_SEPARATOR; bytes public constant EIP712_VERSION = '1'; bytes32 public constant EIP712_DOMAIN = keccak256( 'EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)' ); bytes32 public constant PERMIT_TYPEHASH = keccak256( 'Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)' ); /// @notice Minimum time between mints. uint256 public constant MINT_MIN_INTERVAL = 365 days; /// @notice Cap on the percentage of the total supply that can be minted at each mint. /// Denominated in percentage points (units out of 100). uint256 public immutable MINT_MAX_PERCENT; /// @notice The timestamp on and after which the transfer restriction must be lifted. uint256 public immutable TRANSFER_RESTRICTION_LIFTED_NO_LATER_THAN; // ============ Storage ============ /// @dev Mapping from (owner) => (next valid nonce) for EIP-712 signatures. mapping(address => uint256) internal _nonces; mapping(address => mapping(uint256 => Snapshot)) public _votingSnapshots; mapping(address => uint256) public _votingSnapshotsCounts; mapping(address => address) public _votingDelegates; mapping(address => mapping(uint256 => Snapshot)) public _propositionPowerSnapshots; mapping(address => uint256) public _propositionPowerSnapshotsCounts; mapping(address => address) public _propositionPowerDelegates; /// @notice Snapshots of the token total supply, at each block where the total supply has changed. mapping(uint256 => Snapshot) public _totalSupplySnapshots; /// @notice Number of snapshots of the token total supply. uint256 public _totalSupplySnapshotsCount; /// @notice Allowlist of addresses which may send or receive tokens while transfers are /// otherwise restricted. mapping(address => bool) public _tokenTransferAllowlist; /// @notice The timestamp on and after which minting may occur. uint256 public _mintingRestrictedBefore; /// @notice The timestamp on and after which non-allowlisted transfers may occur. uint256 public _transfersRestrictedBefore; // ============ Constructor ============ /** * @notice Constructor. * * @param distributor The address which will receive the initial supply of tokens. * @param transfersRestrictedBefore Timestamp, before which transfers are restricted unless the * origin or destination address is in the allowlist. * @param transferRestrictionLiftedNoLaterThan Timestamp, which is the maximum timestamp that transfer * restrictions can be extended to. * @param mintingRestrictedBefore Timestamp, before which minting is not allowed. * @param mintMaxPercent Cap on the percentage of the total supply that can be minted at * each mint. */ constructor( address distributor, uint256 transfersRestrictedBefore, uint256 transferRestrictionLiftedNoLaterThan, uint256 mintingRestrictedBefore, uint256 mintMaxPercent ) ERC20(NAME, SYMBOL) { uint256 chainId; // solium-disable-next-line assembly { chainId := chainid() } DOMAIN_SEPARATOR = keccak256( abi.encode( EIP712_DOMAIN, keccak256(bytes(NAME)), keccak256(bytes(EIP712_VERSION)), chainId, address(this) ) ); // Validate and set parameters. require( transfersRestrictedBefore > block.timestamp, 'TRANSFERS_RESTRICTED_BEFORE_TOO_EARLY' ); require( transfersRestrictedBefore <= transferRestrictionLiftedNoLaterThan, 'MAX_TRANSFER_RESTRICTION_TOO_EARLY' ); require( mintingRestrictedBefore > block.timestamp, 'MINTING_RESTRICTED_BEFORE_TOO_EARLY' ); _transfersRestrictedBefore = transfersRestrictedBefore; TRANSFER_RESTRICTION_LIFTED_NO_LATER_THAN = transferRestrictionLiftedNoLaterThan; _mintingRestrictedBefore = mintingRestrictedBefore; MINT_MAX_PERCENT = mintMaxPercent; // Mint the initial supply. _mint(distributor, INITIAL_SUPPLY); emit TransfersRestrictedBeforeUpdated(transfersRestrictedBefore); } // ============ Other Functions ============ /** * @notice Adds addresses to the token transfer allowlist. Reverts if any of the addresses * already exist in the allowlist. Only callable by owner. * * @param addressesToAdd Addresses to add to the token transfer allowlist. */ function addToTokenTransferAllowlist( address[] calldata addressesToAdd ) external onlyOwner { for (uint256 i = 0; i < addressesToAdd.length; i++) { require( !_tokenTransferAllowlist[addressesToAdd[i]], 'ADDRESS_EXISTS_IN_TRANSFER_ALLOWLIST' ); _tokenTransferAllowlist[addressesToAdd[i]] = true; emit TransferAllowlistUpdated(addressesToAdd[i], true); } } /** * @notice Removes addresses from the token transfer allowlist. Reverts if any of the addresses * don't exist in the allowlist. Only callable by owner. * * @param addressesToRemove Addresses to remove from the token transfer allowlist. */ function removeFromTokenTransferAllowlist( address[] calldata addressesToRemove ) external onlyOwner { for (uint256 i = 0; i < addressesToRemove.length; i++) { require( _tokenTransferAllowlist[addressesToRemove[i]], 'ADDRESS_DOES_NOT_EXIST_IN_TRANSFER_ALLOWLIST' ); _tokenTransferAllowlist[addressesToRemove[i]] = false; emit TransferAllowlistUpdated(addressesToRemove[i], false); } } /** * @notice Updates the transfer restriction. Reverts if the transfer restriction has already passed, * the new transfer restriction is earlier than the previous one, or the new transfer restriction is * after the maximum transfer restriction. * * @param transfersRestrictedBefore The timestamp on and after which non-allowlisted transfers may occur. */ function updateTransfersRestrictedBefore( uint256 transfersRestrictedBefore ) external onlyOwner { uint256 previousTransfersRestrictedBefore = _transfersRestrictedBefore; require( block.timestamp < previousTransfersRestrictedBefore, 'TRANSFER_RESTRICTION_ENDED' ); require( previousTransfersRestrictedBefore <= transfersRestrictedBefore, 'NEW_TRANSFER_RESTRICTION_TOO_EARLY' ); require( transfersRestrictedBefore <= TRANSFER_RESTRICTION_LIFTED_NO_LATER_THAN, 'AFTER_MAX_TRANSFER_RESTRICTION' ); _transfersRestrictedBefore = transfersRestrictedBefore; emit TransfersRestrictedBeforeUpdated(transfersRestrictedBefore); } /** * @notice Mint new tokens. Only callable by owner after the required time period has elapsed. * * @param recipient The address to receive minted tokens. * @param amount The number of tokens to mint. */ function mint( address recipient, uint256 amount ) external onlyOwner { require( block.timestamp >= _mintingRestrictedBefore, 'MINT_TOO_EARLY' ); require( amount <= totalSupply().mul(MINT_MAX_PERCENT).div(100), 'MAX_MINT_EXCEEDED' ); // Update the next allowed minting time. _mintingRestrictedBefore = block.timestamp.add(MINT_MIN_INTERVAL); // Mint the amount. _mint(recipient, amount); } /** * @notice Implements the permit function as specified in EIP-2612. * * @param owner Address of the token owner. * @param spender Address of the spender. * @param value Amount of allowance. * @param deadline Expiration timestamp for the signature. * @param v Signature param. * @param r Signature param. * @param s Signature param. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external { require( owner != address(0), 'INVALID_OWNER' ); require( block.timestamp <= deadline, 'INVALID_EXPIRATION' ); uint256 currentValidNonce = _nonces[owner]; bytes32 digest = keccak256( abi.encodePacked( '\x19\x01', DOMAIN_SEPARATOR, keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, currentValidNonce, deadline)) ) ); require( owner == ecrecover(digest, v, r, s), 'INVALID_SIGNATURE' ); _nonces[owner] = currentValidNonce.add(1); _approve(owner, spender, value); } /** * @notice Get the next valid nonce for EIP-712 signatures. * * This nonce should be used when signing for any of the following functions: * - permit() * - delegateByTypeBySig() * - delegateBySig() */ function nonces( address owner ) external view returns (uint256) { return _nonces[owner]; } function transfer( address recipient, uint256 amount ) public override returns (bool) { _requireTransferAllowed(_msgSender(), recipient); return super.transfer(recipient, amount); } function transferFrom( address sender, address recipient, uint256 amount ) public override returns (bool) { _requireTransferAllowed(sender, recipient); return super.transferFrom(sender, recipient, amount); } /** * @dev Override _mint() to write a snapshot whenever the total supply changes. * * These snapshots are intended to be used by the governance strategy. * * Note that the ERC20 _burn() function is never used. If desired, an official burn mechanism * could be implemented external to this contract, and accounted for in the governance strategy. */ function _mint( address account, uint256 amount ) internal override { super._mint(account, amount); uint256 snapshotsCount = _totalSupplySnapshotsCount; uint128 currentBlock = uint128(block.number); uint128 newValue = uint128(totalSupply()); // Note: There is no special case for the total supply being updated multiple times in the same // block. That should never occur. _totalSupplySnapshots[snapshotsCount] = Snapshot(currentBlock, newValue); _totalSupplySnapshotsCount = snapshotsCount.add(1); } function _requireTransferAllowed( address sender, address recipient ) view internal { // Compare against the constant `TRANSFER_RESTRICTION_LIFTED_NO_LATER_THAN` first // to avoid additional gas costs from reading from storage. if ( block.timestamp < TRANSFER_RESTRICTION_LIFTED_NO_LATER_THAN && block.timestamp < _transfersRestrictedBefore ) { // While transfers are restricted, a transfer is permitted if either the sender or the // recipient is on the allowlist. require( _tokenTransferAllowlist[sender] || _tokenTransferAllowlist[recipient], 'NON_ALLOWLIST_TRANSFERS_DISABLED' ); } } /** * @dev Writes a snapshot before any transfer operation, including: _transfer, _mint and _burn. * - On _transfer, it writes snapshots for both 'from' and 'to'. * - On _mint, only for `to`. * - On _burn, only for `from`. * * @param from The sender. * @param to The recipient. * @param amount The amount being transfered. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal override { address votingFromDelegatee = _getDelegatee(from, _votingDelegates); address votingToDelegatee = _getDelegatee(to, _votingDelegates); _moveDelegatesByType( votingFromDelegatee, votingToDelegatee, amount, DelegationType.VOTING_POWER ); address propPowerFromDelegatee = _getDelegatee(from, _propositionPowerDelegates); address propPowerToDelegatee = _getDelegatee(to, _propositionPowerDelegates); _moveDelegatesByType( propPowerFromDelegatee, propPowerToDelegatee, amount, DelegationType.PROPOSITION_POWER ); } function _getDelegationDataByType( DelegationType delegationType ) internal override view returns ( mapping(address => mapping(uint256 => Snapshot)) storage, // snapshots mapping(address => uint256) storage, // snapshots count mapping(address => address) storage // delegatees list ) { if (delegationType == DelegationType.VOTING_POWER) { return (_votingSnapshots, _votingSnapshotsCounts, _votingDelegates); } else { return ( _propositionPowerSnapshots, _propositionPowerSnapshotsCounts, _propositionPowerDelegates ); } } /** * @dev Delegates specific governance power from signer to `delegatee` using an EIP-712 signature. * * @param delegatee The address to delegate votes to. * @param delegationType The type of delegation (VOTING_POWER, PROPOSITION_POWER). * @param nonce The signer's nonce for EIP-712 signatures on this contract. * @param expiry Expiration timestamp for the signature. * @param v Signature param. * @param r Signature param. * @param s Signature param. */ function delegateByTypeBySig( address delegatee, DelegationType delegationType, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s ) public { bytes32 structHash = keccak256( abi.encode(DELEGATE_BY_TYPE_TYPEHASH, delegatee, uint256(delegationType), nonce, expiry) ); bytes32 digest = keccak256(abi.encodePacked('\x19\x01', DOMAIN_SEPARATOR, structHash)); address signer = ecrecover(digest, v, r, s); require( signer != address(0), 'INVALID_SIGNATURE' ); require( nonce == _nonces[signer]++, 'INVALID_NONCE' ); require( block.timestamp <= expiry, 'INVALID_EXPIRATION' ); _delegateByType(signer, delegatee, delegationType); } /** * @dev Delegates both governance powers from signer to `delegatee` using an EIP-712 signature. * * @param delegatee The address to delegate votes to. * @param nonce The signer's nonce for EIP-712 signatures on this contract. * @param expiry Expiration timestamp for the signature. * @param v Signature param. * @param r Signature param. * @param s Signature param. */ function delegateBySig( address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s ) public { bytes32 structHash = keccak256(abi.encode(DELEGATE_TYPEHASH, delegatee, nonce, expiry)); bytes32 digest = keccak256(abi.encodePacked('\x19\x01', DOMAIN_SEPARATOR, structHash)); address signer = ecrecover(digest, v, r, s); require( signer != address(0), 'INVALID_SIGNATURE' ); require( nonce == _nonces[signer]++, 'INVALID_NONCE' ); require( block.timestamp <= expiry, 'INVALID_EXPIRATION' ); _delegateByType(signer, delegatee, DelegationType.VOTING_POWER); _delegateByType(signer, delegatee, DelegationType.PROPOSITION_POWER); } }