ETH Price: $1,905.03 (-0.93%)

Transaction Decoder

Block:
18024976 at Aug-30-2023 04:15:47 AM +UTC
Transaction Fee:
0.002772896599171867 ETH $5.28
Gas Used:
182,399 Gas / 15.202367333 Gwei

Emitted Events:

171 Proxy.0xb3813568d9991fc951961fcb4c784893574240a28925604d09fc577c55bb7c32( 0xb3813568d9991fc951961fcb4c784893574240a28925604d09fc577c55bb7c32, 0x00000000000000000000000078acf2ae8387139c2928dfbe081253e3804ba0fd, 0x00000000000000000000000022222222d2b432ec420032c46fae3cda0e029dcc, 0x0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000020, 00000000000000000000000000000000000000000000000000000000000002f1, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000, 000000000003633000b77a147b00000000000000000000000000000000000000, 0000000000000000000000002000000000000000000000000000000000000000, 00000000000000000000000013f0530700175e6d8c50b91324bfe55aaea4ea2e, b2d340c34b5c2c4a01e181300962fe49c67016f0d41b4ebab29b0f4a7aca7f3b, bda00982bb5314b441c3cb1c105d900a3189b65e2ca708540c250e5038a78f97, 7309253cf3666cc33d443a7ce1e0139c95dee084ec5ff964d4836dde6a27004c, 8db966dc262efc47aef983e195df9988242950f42d82b6fd6ef464af2ceea817, 5c8565e1ce48e222d59a53673b06a9b489191e8103c444d1b10c9b9ccc5ff9e1, 71f5e35d1183cf6c2590a3fc8e68d679f622da86399ed6cefd180161342c8dad, f670b5c1acd2aa97dc2283d50c0dc5394571da379b5690d1d8a0fc0f8cc8189f, 5a03d76bc5dbafb4ce6b815187ae2936ecb80c7cea8433766189601400f59671, 4f4d61edf9dec0779f030526ed12784d55e8202c755db3e439eb7c1e04878fee, bd526479d78c478ef1e253ab4f478223eb68bdb2b46976fbc2687d2fdf296165, ed95d69df02dfed5b8c7922479af5f3b3f4b4485148b16161fe2b2c6692165a0, 59a3389416d7442c46d02fe600de92ba088d4c3846d594b65b9dc0c817da69f8, 661f46858ed264ecdd4f0424dd6267de3c97281aafd10c4cdef286305cd9dadb, 091ee74a273c69a8915387385a537b372e0aa5dfe2f2f7d8f24bddfe85317219, f747de9a2ce948824d9fab76c9fb4ba7cf9c360817e6e2194307c622cc8dce95, 85949ae7c70b225f7df3291b52c94bc15ac3c5826eb550ec8d1acf9f363e5f7e, d3239852e2eb9ad82f229b13782e48aa197475399ea92ba32f4ac89895bf09f3, bf5c62e76a35c0f5a563548b781fecf08b9f4b78124e70033702c67c63c8bb2c, 5f645169cd7a1a2c927cc91f380021fb3f000000000000000000000000000000 )

Account State Difference:

  Address   Before After State Difference Code
0x1a0ad011...fD9551054
(Zora: Bridge)
0x78acF2AE...3804ba0FD
0.042230459409972133 Eth
Nonce: 18
0.039457562810800266 Eth
Nonce: 19
0.002772896599171867
(MEV Builder: 0xBaF...e19)
6.185050238457341711 Eth6.185068478357341711 Eth0.0000182399

Execution Trace

Proxy.e9e05c42( )
  • OptimismPortal.depositTransaction( _to=0x22222222d2B432Ec420032C46fAe3Cda0e029dCc, _value=0, _gasLimit=222000, _isCreation=False, _data=0xB77A147B00000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000013F0530700175E6D8C50B91324BFE55AAEA4EA2EB2D340C34B5C2C4A01E181300962FE49C67016F0D41B4EBAB29B0F4A7ACA7F3BBDA00982BB5314B441C3CB1C105D900A3189B65E2CA708540C250E5038A78F977309253CF3666CC33D443A7CE1E0139C95DEE084EC5FF964D4836DDE6A27004C8DB966DC262EFC47AEF983E195DF9988242950F42D82B6FD6EF464AF2CEEA8175C8565E1CE48E222D59A53673B06A9B489191E8103C444D1B10C9B9CCC5FF9E171F5E35D1183CF6C2590A3FC8E68D679F622DA86399ED6CEFD180161342C8DADF670B5C1ACD2AA97DC2283D50C0DC5394571DA379B5690D1D8A0FC0F8CC8189F5A03D76BC5DBAFB4CE6B815187AE2936ECB80C7CEA8433766189601400F596714F4D61EDF9DEC0779F030526ED12784D55E8202C755DB3E439EB7C1E04878FEEBD526479D78C478EF1E253AB4F478223EB68BDB2B46976FBC2687D2FDF296165ED95D69DF02DFED5B8C7922479AF5F3B3F4B4485148B16161FE2B2C6692165A059A3389416D7442C46D02FE600DE92BA088D4C3846D594B65B9DC0C817DA69F8661F46858ED264ECDD4F0424DD6267DE3C97281AAFD10C4CDEF286305CD9DADB091EE74A273C69A8915387385A537B372E0AA5DFE2F2F7D8F24BDDFE85317219F747DE9A2CE948824D9FAB76C9FB4BA7CF9C360817E6E2194307C622CC8DCE9585949AE7C70B225F7DF3291B52C94BC15AC3C5826EB550EC8D1ACF9F363E5F7ED3239852E2EB9AD82F229B13782E48AA197475399EA92BA32F4AC89895BF09F3BF5C62E76A35C0F5A563548B781FECF08B9F4B78124E70033702C67C63C8BB2C5F645169CD7A1A2C927CC91F380021FB3F )
    • Proxy.STATICCALL( )
      • SystemConfig.DELEGATECALL( )
        File 1 of 4: Proxy
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.15;
        /**
         * @title Proxy
         * @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
         *         if the caller is address(0), meaning that the call originated from an off-chain
         *         simulation.
         */
        contract Proxy {
            /**
             * @notice The storage slot that holds the address of the implementation.
             *         bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
             */
            bytes32 internal constant IMPLEMENTATION_KEY =
                0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
            /**
             * @notice The storage slot that holds the address of the owner.
             *         bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
             */
            bytes32 internal constant OWNER_KEY =
                0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
            /**
             * @notice An event that is emitted each time the implementation is changed. This event is part
             *         of the EIP-1967 specification.
             *
             * @param implementation The address of the implementation contract
             */
            event Upgraded(address indexed implementation);
            /**
             * @notice An event that is emitted each time the owner is upgraded. This event is part of the
             *         EIP-1967 specification.
             *
             * @param previousAdmin The previous owner of the contract
             * @param newAdmin      The new owner of the contract
             */
            event AdminChanged(address previousAdmin, address newAdmin);
            /**
             * @notice A modifier that reverts if not called by the owner or by address(0) to allow
             *         eth_call to interact with this proxy without needing to use low-level storage
             *         inspection. We assume that nobody is able to trigger calls from address(0) during
             *         normal EVM execution.
             */
            modifier proxyCallIfNotAdmin() {
                if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                    _;
                } else {
                    // This WILL halt the call frame on completion.
                    _doProxyCall();
                }
            }
            /**
             * @notice Sets the initial admin during contract deployment. Admin address is stored at the
             *         EIP-1967 admin storage slot so that accidental storage collision with the
             *         implementation is not possible.
             *
             * @param _admin Address of the initial contract admin. Admin as the ability to access the
             *               transparent proxy interface.
             */
            constructor(address _admin) {
                _changeAdmin(_admin);
            }
            // slither-disable-next-line locked-ether
            receive() external payable {
                // Proxy call by default.
                _doProxyCall();
            }
            // slither-disable-next-line locked-ether
            fallback() external payable {
                // Proxy call by default.
                _doProxyCall();
            }
            /**
             * @notice Set the implementation contract address. The code at the given address will execute
             *         when this contract is called.
             *
             * @param _implementation Address of the implementation contract.
             */
            function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
                _setImplementation(_implementation);
            }
            /**
             * @notice Set the implementation and call a function in a single transaction. Useful to ensure
             *         atomic execution of initialization-based upgrades.
             *
             * @param _implementation Address of the implementation contract.
             * @param _data           Calldata to delegatecall the new implementation with.
             */
            function upgradeToAndCall(address _implementation, bytes calldata _data)
                public
                payable
                virtual
                proxyCallIfNotAdmin
                returns (bytes memory)
            {
                _setImplementation(_implementation);
                (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
                require(success, "Proxy: delegatecall to new implementation contract failed");
                return returndata;
            }
            /**
             * @notice Changes the owner of the proxy contract. Only callable by the owner.
             *
             * @param _admin New owner of the proxy contract.
             */
            function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
                _changeAdmin(_admin);
            }
            /**
             * @notice Gets the owner of the proxy contract.
             *
             * @return Owner address.
             */
            function admin() public virtual proxyCallIfNotAdmin returns (address) {
                return _getAdmin();
            }
            /**
             * @notice Queries the implementation address.
             *
             * @return Implementation address.
             */
            function implementation() public virtual proxyCallIfNotAdmin returns (address) {
                return _getImplementation();
            }
            /**
             * @notice Sets the implementation address.
             *
             * @param _implementation New implementation address.
             */
            function _setImplementation(address _implementation) internal {
                assembly {
                    sstore(IMPLEMENTATION_KEY, _implementation)
                }
                emit Upgraded(_implementation);
            }
            /**
             * @notice Changes the owner of the proxy contract.
             *
             * @param _admin New owner of the proxy contract.
             */
            function _changeAdmin(address _admin) internal {
                address previous = _getAdmin();
                assembly {
                    sstore(OWNER_KEY, _admin)
                }
                emit AdminChanged(previous, _admin);
            }
            /**
             * @notice Performs the proxy call via a delegatecall.
             */
            function _doProxyCall() internal {
                address impl = _getImplementation();
                require(impl != address(0), "Proxy: implementation not initialized");
                assembly {
                    // Copy calldata into memory at 0x0....calldatasize.
                    calldatacopy(0x0, 0x0, calldatasize())
                    // Perform the delegatecall, make sure to pass all available gas.
                    let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                    // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                    // overwrite the calldata that we just copied into memory but that doesn't really
                    // matter because we'll be returning in a second anyway.
                    returndatacopy(0x0, 0x0, returndatasize())
                    // Success == 0 means a revert. We'll revert too and pass the data up.
                    if iszero(success) {
                        revert(0x0, returndatasize())
                    }
                    // Otherwise we'll just return and pass the data up.
                    return(0x0, returndatasize())
                }
            }
            /**
             * @notice Queries the implementation address.
             *
             * @return Implementation address.
             */
            function _getImplementation() internal view returns (address) {
                address impl;
                assembly {
                    impl := sload(IMPLEMENTATION_KEY)
                }
                return impl;
            }
            /**
             * @notice Queries the owner of the proxy contract.
             *
             * @return Owner address.
             */
            function _getAdmin() internal view returns (address) {
                address owner;
                assembly {
                    owner := sload(OWNER_KEY)
                }
                return owner;
            }
        }
        

        File 2 of 4: OptimismPortal
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.15;
        import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
        import { Semver } from "../universal/Semver.sol";
        import { Types } from "../libraries/Types.sol";
        /**
         * @custom:proxied
         * @title L2OutputOracle
         * @notice The L2OutputOracle contains an array of L2 state outputs, where each output is a
         *         commitment to the state of the L2 chain. Other contracts like the OptimismPortal use
         *         these outputs to verify information about the state of L2.
         */
        contract L2OutputOracle is Initializable, Semver {
            /**
             * @notice The interval in L2 blocks at which checkpoints must be submitted. Although this is
             *         immutable, it can safely be modified by upgrading the implementation contract.
             */
            uint256 public immutable SUBMISSION_INTERVAL;
            /**
             * @notice The time between L2 blocks in seconds. Once set, this value MUST NOT be modified.
             */
            uint256 public immutable L2_BLOCK_TIME;
            /**
             * @notice The address of the challenger. Can be updated via upgrade.
             */
            address public immutable CHALLENGER;
            /**
             * @notice The address of the proposer. Can be updated via upgrade.
             */
            address public immutable PROPOSER;
            /**
             * @notice Minimum time (in seconds) that must elapse before a withdrawal can be finalized.
             */
            uint256 public immutable FINALIZATION_PERIOD_SECONDS;
            /**
             * @notice The number of the first L2 block recorded in this contract.
             */
            uint256 public startingBlockNumber;
            /**
             * @notice The timestamp of the first L2 block recorded in this contract.
             */
            uint256 public startingTimestamp;
            /**
             * @notice Array of L2 output proposals.
             */
            Types.OutputProposal[] internal l2Outputs;
            /**
             * @notice Emitted when an output is proposed.
             *
             * @param outputRoot    The output root.
             * @param l2OutputIndex The index of the output in the l2Outputs array.
             * @param l2BlockNumber The L2 block number of the output root.
             * @param l1Timestamp   The L1 timestamp when proposed.
             */
            event OutputProposed(
                bytes32 indexed outputRoot,
                uint256 indexed l2OutputIndex,
                uint256 indexed l2BlockNumber,
                uint256 l1Timestamp
            );
            /**
             * @notice Emitted when outputs are deleted.
             *
             * @param prevNextOutputIndex Next L2 output index before the deletion.
             * @param newNextOutputIndex  Next L2 output index after the deletion.
             */
            event OutputsDeleted(uint256 indexed prevNextOutputIndex, uint256 indexed newNextOutputIndex);
            /**
             * @custom:semver 1.3.0
             *
             * @param _submissionInterval  Interval in blocks at which checkpoints must be submitted.
             * @param _l2BlockTime         The time per L2 block, in seconds.
             * @param _startingBlockNumber The number of the first L2 block.
             * @param _startingTimestamp   The timestamp of the first L2 block.
             * @param _proposer            The address of the proposer.
             * @param _challenger          The address of the challenger.
             */
            constructor(
                uint256 _submissionInterval,
                uint256 _l2BlockTime,
                uint256 _startingBlockNumber,
                uint256 _startingTimestamp,
                address _proposer,
                address _challenger,
                uint256 _finalizationPeriodSeconds
            ) Semver(1, 3, 0) {
                require(_l2BlockTime > 0, "L2OutputOracle: L2 block time must be greater than 0");
                require(
                    _submissionInterval > 0,
                    "L2OutputOracle: submission interval must be greater than 0"
                );
                SUBMISSION_INTERVAL = _submissionInterval;
                L2_BLOCK_TIME = _l2BlockTime;
                PROPOSER = _proposer;
                CHALLENGER = _challenger;
                FINALIZATION_PERIOD_SECONDS = _finalizationPeriodSeconds;
                initialize(_startingBlockNumber, _startingTimestamp);
            }
            /**
             * @notice Initializer.
             *
             * @param _startingBlockNumber Block number for the first recoded L2 block.
             * @param _startingTimestamp   Timestamp for the first recoded L2 block.
             */
            function initialize(uint256 _startingBlockNumber, uint256 _startingTimestamp)
                public
                initializer
            {
                require(
                    _startingTimestamp <= block.timestamp,
                    "L2OutputOracle: starting L2 timestamp must be less than current time"
                );
                startingTimestamp = _startingTimestamp;
                startingBlockNumber = _startingBlockNumber;
            }
            /**
             * @notice Deletes all output proposals after and including the proposal that corresponds to
             *         the given output index. Only the challenger address can delete outputs.
             *
             * @param _l2OutputIndex Index of the first L2 output to be deleted. All outputs after this
             *                       output will also be deleted.
             */
            // solhint-disable-next-line ordering
            function deleteL2Outputs(uint256 _l2OutputIndex) external {
                require(
                    msg.sender == CHALLENGER,
                    "L2OutputOracle: only the challenger address can delete outputs"
                );
                // Make sure we're not *increasing* the length of the array.
                require(
                    _l2OutputIndex < l2Outputs.length,
                    "L2OutputOracle: cannot delete outputs after the latest output index"
                );
                // Do not allow deleting any outputs that have already been finalized.
                require(
                    block.timestamp - l2Outputs[_l2OutputIndex].timestamp < FINALIZATION_PERIOD_SECONDS,
                    "L2OutputOracle: cannot delete outputs that have already been finalized"
                );
                uint256 prevNextL2OutputIndex = nextOutputIndex();
                // Use assembly to delete the array elements because Solidity doesn't allow it.
                assembly {
                    sstore(l2Outputs.slot, _l2OutputIndex)
                }
                emit OutputsDeleted(prevNextL2OutputIndex, _l2OutputIndex);
            }
            /**
             * @notice Accepts an outputRoot and the timestamp of the corresponding L2 block. The timestamp
             *         must be equal to the current value returned by `nextTimestamp()` in order to be
             *         accepted. This function may only be called by the Proposer.
             *
             * @param _outputRoot    The L2 output of the checkpoint block.
             * @param _l2BlockNumber The L2 block number that resulted in _outputRoot.
             * @param _l1BlockHash   A block hash which must be included in the current chain.
             * @param _l1BlockNumber The block number with the specified block hash.
             */
            function proposeL2Output(
                bytes32 _outputRoot,
                uint256 _l2BlockNumber,
                bytes32 _l1BlockHash,
                uint256 _l1BlockNumber
            ) external payable {
                require(
                    msg.sender == PROPOSER,
                    "L2OutputOracle: only the proposer address can propose new outputs"
                );
                require(
                    _l2BlockNumber == nextBlockNumber(),
                    "L2OutputOracle: block number must be equal to next expected block number"
                );
                require(
                    computeL2Timestamp(_l2BlockNumber) < block.timestamp,
                    "L2OutputOracle: cannot propose L2 output in the future"
                );
                require(
                    _outputRoot != bytes32(0),
                    "L2OutputOracle: L2 output proposal cannot be the zero hash"
                );
                if (_l1BlockHash != bytes32(0)) {
                    // This check allows the proposer to propose an output based on a given L1 block,
                    // without fear that it will be reorged out.
                    // It will also revert if the blockheight provided is more than 256 blocks behind the
                    // chain tip (as the hash will return as zero). This does open the door to a griefing
                    // attack in which the proposer's submission is censored until the block is no longer
                    // retrievable, if the proposer is experiencing this attack it can simply leave out the
                    // blockhash value, and delay submission until it is confident that the L1 block is
                    // finalized.
                    require(
                        blockhash(_l1BlockNumber) == _l1BlockHash,
                        "L2OutputOracle: block hash does not match the hash at the expected height"
                    );
                }
                emit OutputProposed(_outputRoot, nextOutputIndex(), _l2BlockNumber, block.timestamp);
                l2Outputs.push(
                    Types.OutputProposal({
                        outputRoot: _outputRoot,
                        timestamp: uint128(block.timestamp),
                        l2BlockNumber: uint128(_l2BlockNumber)
                    })
                );
            }
            /**
             * @notice Returns an output by index. Exists because Solidity's array access will return a
             *         tuple instead of a struct.
             *
             * @param _l2OutputIndex Index of the output to return.
             *
             * @return The output at the given index.
             */
            function getL2Output(uint256 _l2OutputIndex)
                external
                view
                returns (Types.OutputProposal memory)
            {
                return l2Outputs[_l2OutputIndex];
            }
            /**
             * @notice Returns the index of the L2 output that checkpoints a given L2 block number. Uses a
             *         binary search to find the first output greater than or equal to the given block.
             *
             * @param _l2BlockNumber L2 block number to find a checkpoint for.
             *
             * @return Index of the first checkpoint that commits to the given L2 block number.
             */
            function getL2OutputIndexAfter(uint256 _l2BlockNumber) public view returns (uint256) {
                // Make sure an output for this block number has actually been proposed.
                require(
                    _l2BlockNumber <= latestBlockNumber(),
                    "L2OutputOracle: cannot get output for a block that has not been proposed"
                );
                // Make sure there's at least one output proposed.
                require(
                    l2Outputs.length > 0,
                    "L2OutputOracle: cannot get output as no outputs have been proposed yet"
                );
                // Find the output via binary search, guaranteed to exist.
                uint256 lo = 0;
                uint256 hi = l2Outputs.length;
                while (lo < hi) {
                    uint256 mid = (lo + hi) / 2;
                    if (l2Outputs[mid].l2BlockNumber < _l2BlockNumber) {
                        lo = mid + 1;
                    } else {
                        hi = mid;
                    }
                }
                return lo;
            }
            /**
             * @notice Returns the L2 output proposal that checkpoints a given L2 block number. Uses a
             *         binary search to find the first output greater than or equal to the given block.
             *
             * @param _l2BlockNumber L2 block number to find a checkpoint for.
             *
             * @return First checkpoint that commits to the given L2 block number.
             */
            function getL2OutputAfter(uint256 _l2BlockNumber)
                external
                view
                returns (Types.OutputProposal memory)
            {
                return l2Outputs[getL2OutputIndexAfter(_l2BlockNumber)];
            }
            /**
             * @notice Returns the number of outputs that have been proposed. Will revert if no outputs
             *         have been proposed yet.
             *
             * @return The number of outputs that have been proposed.
             */
            function latestOutputIndex() external view returns (uint256) {
                return l2Outputs.length - 1;
            }
            /**
             * @notice Returns the index of the next output to be proposed.
             *
             * @return The index of the next output to be proposed.
             */
            function nextOutputIndex() public view returns (uint256) {
                return l2Outputs.length;
            }
            /**
             * @notice Returns the block number of the latest submitted L2 output proposal. If no proposals
             *         been submitted yet then this function will return the starting block number.
             *
             * @return Latest submitted L2 block number.
             */
            function latestBlockNumber() public view returns (uint256) {
                return
                    l2Outputs.length == 0
                        ? startingBlockNumber
                        : l2Outputs[l2Outputs.length - 1].l2BlockNumber;
            }
            /**
             * @notice Computes the block number of the next L2 block that needs to be checkpointed.
             *
             * @return Next L2 block number.
             */
            function nextBlockNumber() public view returns (uint256) {
                return latestBlockNumber() + SUBMISSION_INTERVAL;
            }
            /**
             * @notice Returns the L2 timestamp corresponding to a given L2 block number.
             *
             * @param _l2BlockNumber The L2 block number of the target block.
             *
             * @return L2 timestamp of the given block.
             */
            function computeL2Timestamp(uint256 _l2BlockNumber) public view returns (uint256) {
                return startingTimestamp + ((_l2BlockNumber - startingBlockNumber) * L2_BLOCK_TIME);
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.15;
        import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
        import { SafeCall } from "../libraries/SafeCall.sol";
        import { L2OutputOracle } from "./L2OutputOracle.sol";
        import { SystemConfig } from "./SystemConfig.sol";
        import { Constants } from "../libraries/Constants.sol";
        import { Types } from "../libraries/Types.sol";
        import { Hashing } from "../libraries/Hashing.sol";
        import { SecureMerkleTrie } from "../libraries/trie/SecureMerkleTrie.sol";
        import { AddressAliasHelper } from "../vendor/AddressAliasHelper.sol";
        import { ResourceMetering } from "./ResourceMetering.sol";
        import { Semver } from "../universal/Semver.sol";
        /**
         * @custom:proxied
         * @title OptimismPortal
         * @notice The OptimismPortal is a low-level contract responsible for passing messages between L1
         *         and L2. Messages sent directly to the OptimismPortal have no form of replayability.
         *         Users are encouraged to use the L1CrossDomainMessenger for a higher-level interface.
         */
        contract OptimismPortal is Initializable, ResourceMetering, Semver {
            /**
             * @notice Represents a proven withdrawal.
             *
             * @custom:field outputRoot    Root of the L2 output this was proven against.
             * @custom:field timestamp     Timestamp at whcih the withdrawal was proven.
             * @custom:field l2OutputIndex Index of the output this was proven against.
             */
            struct ProvenWithdrawal {
                bytes32 outputRoot;
                uint128 timestamp;
                uint128 l2OutputIndex;
            }
            /**
             * @notice Version of the deposit event.
             */
            uint256 internal constant DEPOSIT_VERSION = 0;
            /**
             * @notice The L2 gas limit set when eth is deposited using the receive() function.
             */
            uint64 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000;
            /**
             * @notice Address of the L2OutputOracle contract.
             */
            L2OutputOracle public immutable L2_ORACLE;
            /**
             * @notice Address of the SystemConfig contract.
             */
            SystemConfig public immutable SYSTEM_CONFIG;
            /**
             * @notice Address that has the ability to pause and unpause withdrawals.
             */
            address public immutable GUARDIAN;
            /**
             * @notice Address of the L2 account which initiated a withdrawal in this transaction. If the
             *         of this variable is the default L2 sender address, then we are NOT inside of a call
             *         to finalizeWithdrawalTransaction.
             */
            address public l2Sender;
            /**
             * @notice A list of withdrawal hashes which have been successfully finalized.
             */
            mapping(bytes32 => bool) public finalizedWithdrawals;
            /**
             * @notice A mapping of withdrawal hashes to `ProvenWithdrawal` data.
             */
            mapping(bytes32 => ProvenWithdrawal) public provenWithdrawals;
            /**
             * @notice Determines if cross domain messaging is paused. When set to true,
             *         withdrawals are paused. This may be removed in the future.
             */
            bool public paused;
            /**
             * @notice Emitted when a transaction is deposited from L1 to L2. The parameters of this event
             *         are read by the rollup node and used to derive deposit transactions on L2.
             *
             * @param from       Address that triggered the deposit transaction.
             * @param to         Address that the deposit transaction is directed to.
             * @param version    Version of this deposit transaction event.
             * @param opaqueData ABI encoded deposit data to be parsed off-chain.
             */
            event TransactionDeposited(
                address indexed from,
                address indexed to,
                uint256 indexed version,
                bytes opaqueData
            );
            /**
             * @notice Emitted when a withdrawal transaction is proven.
             *
             * @param withdrawalHash Hash of the withdrawal transaction.
             */
            event WithdrawalProven(
                bytes32 indexed withdrawalHash,
                address indexed from,
                address indexed to
            );
            /**
             * @notice Emitted when a withdrawal transaction is finalized.
             *
             * @param withdrawalHash Hash of the withdrawal transaction.
             * @param success        Whether the withdrawal transaction was successful.
             */
            event WithdrawalFinalized(bytes32 indexed withdrawalHash, bool success);
            /**
             * @notice Emitted when the pause is triggered.
             *
             * @param account Address of the account triggering the pause.
             */
            event Paused(address account);
            /**
             * @notice Emitted when the pause is lifted.
             *
             * @param account Address of the account triggering the unpause.
             */
            event Unpaused(address account);
            /**
             * @notice Reverts when paused.
             */
            modifier whenNotPaused() {
                require(paused == false, "OptimismPortal: paused");
                _;
            }
            /**
             * @custom:semver 1.6.0
             *
             * @param _l2Oracle                  Address of the L2OutputOracle contract.
             * @param _guardian                  Address that can pause deposits and withdrawals.
             * @param _paused                    Sets the contract's pausability state.
             * @param _config                    Address of the SystemConfig contract.
             */
            constructor(
                L2OutputOracle _l2Oracle,
                address _guardian,
                bool _paused,
                SystemConfig _config
            ) Semver(1, 6, 0) {
                L2_ORACLE = _l2Oracle;
                GUARDIAN = _guardian;
                SYSTEM_CONFIG = _config;
                initialize(_paused);
            }
            /**
             * @notice Initializer.
             */
            function initialize(bool _paused) public initializer {
                l2Sender = Constants.DEFAULT_L2_SENDER;
                paused = _paused;
                __ResourceMetering_init();
            }
            /**
             * @notice Pause deposits and withdrawals.
             */
            function pause() external {
                require(msg.sender == GUARDIAN, "OptimismPortal: only guardian can pause");
                paused = true;
                emit Paused(msg.sender);
            }
            /**
             * @notice Unpause deposits and withdrawals.
             */
            function unpause() external {
                require(msg.sender == GUARDIAN, "OptimismPortal: only guardian can unpause");
                paused = false;
                emit Unpaused(msg.sender);
            }
            /**
             * @notice Computes the minimum gas limit for a deposit. The minimum gas limit
             *         linearly increases based on the size of the calldata. This is to prevent
             *         users from creating L2 resource usage without paying for it. This function
             *         can be used when interacting with the portal to ensure forwards compatibility.
             *
             */
            function minimumGasLimit(uint64 _byteCount) public pure returns (uint64) {
                return _byteCount * 16 + 21000;
            }
            /**
             * @notice Accepts value so that users can send ETH directly to this contract and have the
             *         funds be deposited to their address on L2. This is intended as a convenience
             *         function for EOAs. Contracts should call the depositTransaction() function directly
             *         otherwise any deposited funds will be lost due to address aliasing.
             */
            // solhint-disable-next-line ordering
            receive() external payable {
                depositTransaction(msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, false, bytes(""));
            }
            /**
             * @notice Accepts ETH value without triggering a deposit to L2. This function mainly exists
             *         for the sake of the migration between the legacy Optimism system and Bedrock.
             */
            function donateETH() external payable {
                // Intentionally empty.
            }
            /**
             * @notice Getter for the resource config. Used internally by the ResourceMetering
             *         contract. The SystemConfig is the source of truth for the resource config.
             *
             * @return ResourceMetering.ResourceConfig
             */
            function _resourceConfig()
                internal
                view
                override
                returns (ResourceMetering.ResourceConfig memory)
            {
                return SYSTEM_CONFIG.resourceConfig();
            }
            /**
             * @notice Proves a withdrawal transaction.
             *
             * @param _tx              Withdrawal transaction to finalize.
             * @param _l2OutputIndex   L2 output index to prove against.
             * @param _outputRootProof Inclusion proof of the L2ToL1MessagePasser contract's storage root.
             * @param _withdrawalProof Inclusion proof of the withdrawal in L2ToL1MessagePasser contract.
             */
            function proveWithdrawalTransaction(
                Types.WithdrawalTransaction memory _tx,
                uint256 _l2OutputIndex,
                Types.OutputRootProof calldata _outputRootProof,
                bytes[] calldata _withdrawalProof
            ) external whenNotPaused {
                // Prevent users from creating a deposit transaction where this address is the message
                // sender on L2. Because this is checked here, we do not need to check again in
                // `finalizeWithdrawalTransaction`.
                require(
                    _tx.target != address(this),
                    "OptimismPortal: you cannot send messages to the portal contract"
                );
                // Get the output root and load onto the stack to prevent multiple mloads. This will
                // revert if there is no output root for the given block number.
                bytes32 outputRoot = L2_ORACLE.getL2Output(_l2OutputIndex).outputRoot;
                // Verify that the output root can be generated with the elements in the proof.
                require(
                    outputRoot == Hashing.hashOutputRootProof(_outputRootProof),
                    "OptimismPortal: invalid output root proof"
                );
                // Load the ProvenWithdrawal into memory, using the withdrawal hash as a unique identifier.
                bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
                ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash];
                // We generally want to prevent users from proving the same withdrawal multiple times
                // because each successive proof will update the timestamp. A malicious user can take
                // advantage of this to prevent other users from finalizing their withdrawal. However,
                // since withdrawals are proven before an output root is finalized, we need to allow users
                // to re-prove their withdrawal only in the case that the output root for their specified
                // output index has been updated.
                require(
                    provenWithdrawal.timestamp == 0 ||
                        L2_ORACLE.getL2Output(provenWithdrawal.l2OutputIndex).outputRoot !=
                        provenWithdrawal.outputRoot,
                    "OptimismPortal: withdrawal hash has already been proven"
                );
                // Compute the storage slot of the withdrawal hash in the L2ToL1MessagePasser contract.
                // Refer to the Solidity documentation for more information on how storage layouts are
                // computed for mappings.
                bytes32 storageKey = keccak256(
                    abi.encode(
                        withdrawalHash,
                        uint256(0) // The withdrawals mapping is at the first slot in the layout.
                    )
                );
                // Verify that the hash of this withdrawal was stored in the L2toL1MessagePasser contract
                // on L2. If this is true, under the assumption that the SecureMerkleTrie does not have
                // bugs, then we know that this withdrawal was actually triggered on L2 and can therefore
                // be relayed on L1.
                require(
                    SecureMerkleTrie.verifyInclusionProof(
                        abi.encode(storageKey),
                        hex"01",
                        _withdrawalProof,
                        _outputRootProof.messagePasserStorageRoot
                    ),
                    "OptimismPortal: invalid withdrawal inclusion proof"
                );
                // Designate the withdrawalHash as proven by storing the `outputRoot`, `timestamp`, and
                // `l2BlockNumber` in the `provenWithdrawals` mapping. A `withdrawalHash` can only be
                // proven once unless it is submitted again with a different outputRoot.
                provenWithdrawals[withdrawalHash] = ProvenWithdrawal({
                    outputRoot: outputRoot,
                    timestamp: uint128(block.timestamp),
                    l2OutputIndex: uint128(_l2OutputIndex)
                });
                // Emit a `WithdrawalProven` event.
                emit WithdrawalProven(withdrawalHash, _tx.sender, _tx.target);
            }
            /**
             * @notice Finalizes a withdrawal transaction.
             *
             * @param _tx Withdrawal transaction to finalize.
             */
            function finalizeWithdrawalTransaction(Types.WithdrawalTransaction memory _tx)
                external
                whenNotPaused
            {
                // Make sure that the l2Sender has not yet been set. The l2Sender is set to a value other
                // than the default value when a withdrawal transaction is being finalized. This check is
                // a defacto reentrancy guard.
                require(
                    l2Sender == Constants.DEFAULT_L2_SENDER,
                    "OptimismPortal: can only trigger one withdrawal per transaction"
                );
                // Grab the proven withdrawal from the `provenWithdrawals` map.
                bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
                ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash];
                // A withdrawal can only be finalized if it has been proven. We know that a withdrawal has
                // been proven at least once when its timestamp is non-zero. Unproven withdrawals will have
                // a timestamp of zero.
                require(
                    provenWithdrawal.timestamp != 0,
                    "OptimismPortal: withdrawal has not been proven yet"
                );
                // As a sanity check, we make sure that the proven withdrawal's timestamp is greater than
                // starting timestamp inside the L2OutputOracle. Not strictly necessary but extra layer of
                // safety against weird bugs in the proving step.
                require(
                    provenWithdrawal.timestamp >= L2_ORACLE.startingTimestamp(),
                    "OptimismPortal: withdrawal timestamp less than L2 Oracle starting timestamp"
                );
                // A proven withdrawal must wait at least the finalization period before it can be
                // finalized. This waiting period can elapse in parallel with the waiting period for the
                // output the withdrawal was proven against. In effect, this means that the minimum
                // withdrawal time is proposal submission time + finalization period.
                require(
                    _isFinalizationPeriodElapsed(provenWithdrawal.timestamp),
                    "OptimismPortal: proven withdrawal finalization period has not elapsed"
                );
                // Grab the OutputProposal from the L2OutputOracle, will revert if the output that
                // corresponds to the given index has not been proposed yet.
                Types.OutputProposal memory proposal = L2_ORACLE.getL2Output(
                    provenWithdrawal.l2OutputIndex
                );
                // Check that the output root that was used to prove the withdrawal is the same as the
                // current output root for the given output index. An output root may change if it is
                // deleted by the challenger address and then re-proposed.
                require(
                    proposal.outputRoot == provenWithdrawal.outputRoot,
                    "OptimismPortal: output root proven is not the same as current output root"
                );
                // Check that the output proposal has also been finalized.
                require(
                    _isFinalizationPeriodElapsed(proposal.timestamp),
                    "OptimismPortal: output proposal finalization period has not elapsed"
                );
                // Check that this withdrawal has not already been finalized, this is replay protection.
                require(
                    finalizedWithdrawals[withdrawalHash] == false,
                    "OptimismPortal: withdrawal has already been finalized"
                );
                // Mark the withdrawal as finalized so it can't be replayed.
                finalizedWithdrawals[withdrawalHash] = true;
                // Set the l2Sender so contracts know who triggered this withdrawal on L2.
                l2Sender = _tx.sender;
                // Trigger the call to the target contract. We use a custom low level method
                // SafeCall.callWithMinGas to ensure two key properties
                //   1. Target contracts cannot force this call to run out of gas by returning a very large
                //      amount of data (and this is OK because we don't care about the returndata here).
                //   2. The amount of gas provided to the execution context of the target is at least the
                //      gas limit specified by the user. If there is not enough gas in the current context
                //      to accomplish this, `callWithMinGas` will revert.
                bool success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, _tx.value, _tx.data);
                // Reset the l2Sender back to the default value.
                l2Sender = Constants.DEFAULT_L2_SENDER;
                // All withdrawals are immediately finalized. Replayability can
                // be achieved through contracts built on top of this contract
                emit WithdrawalFinalized(withdrawalHash, success);
                // Reverting here is useful for determining the exact gas cost to successfully execute the
                // sub call to the target contract if the minimum gas limit specified by the user would not
                // be sufficient to execute the sub call.
                if (success == false && tx.origin == Constants.ESTIMATION_ADDRESS) {
                    revert("OptimismPortal: withdrawal failed");
                }
            }
            /**
             * @notice Accepts deposits of ETH and data, and emits a TransactionDeposited event for use in
             *         deriving deposit transactions. Note that if a deposit is made by a contract, its
             *         address will be aliased when retrieved using `tx.origin` or `msg.sender`. Consider
             *         using the CrossDomainMessenger contracts for a simpler developer experience.
             *
             * @param _to         Target address on L2.
             * @param _value      ETH value to send to the recipient.
             * @param _gasLimit   Minimum L2 gas limit (can be greater than or equal to this value).
             * @param _isCreation Whether or not the transaction is a contract creation.
             * @param _data       Data to trigger the recipient with.
             */
            function depositTransaction(
                address _to,
                uint256 _value,
                uint64 _gasLimit,
                bool _isCreation,
                bytes memory _data
            ) public payable metered(_gasLimit) {
                // Just to be safe, make sure that people specify address(0) as the target when doing
                // contract creations.
                if (_isCreation) {
                    require(
                        _to == address(0),
                        "OptimismPortal: must send to address(0) when creating a contract"
                    );
                }
                // Prevent depositing transactions that have too small of a gas limit. Users should pay
                // more for more resource usage.
                require(
                    _gasLimit >= minimumGasLimit(uint64(_data.length)),
                    "OptimismPortal: gas limit too small"
                );
                // Prevent the creation of deposit transactions that have too much calldata. This gives an
                // upper limit on the size of unsafe blocks over the p2p network. 120kb is chosen to ensure
                // that the transaction can fit into the p2p network policy of 128kb even though deposit
                // transactions are not gossipped over the p2p network.
                require(_data.length <= 120_000, "OptimismPortal: data too large");
                // Transform the from-address to its alias if the caller is a contract.
                address from = msg.sender;
                if (msg.sender != tx.origin) {
                    from = AddressAliasHelper.applyL1ToL2Alias(msg.sender);
                }
                // Compute the opaque data that will be emitted as part of the TransactionDeposited event.
                // We use opaque data so that we can update the TransactionDeposited event in the future
                // without breaking the current interface.
                bytes memory opaqueData = abi.encodePacked(
                    msg.value,
                    _value,
                    _gasLimit,
                    _isCreation,
                    _data
                );
                // Emit a TransactionDeposited event so that the rollup node can derive a deposit
                // transaction for this deposit.
                emit TransactionDeposited(from, _to, DEPOSIT_VERSION, opaqueData);
            }
            /**
             * @notice Determine if a given output is finalized. Reverts if the call to
             *         L2_ORACLE.getL2Output reverts. Returns a boolean otherwise.
             *
             * @param _l2OutputIndex Index of the L2 output to check.
             *
             * @return Whether or not the output is finalized.
             */
            function isOutputFinalized(uint256 _l2OutputIndex) external view returns (bool) {
                return _isFinalizationPeriodElapsed(L2_ORACLE.getL2Output(_l2OutputIndex).timestamp);
            }
            /**
             * @notice Determines whether the finalization period has elapsed w/r/t a given timestamp.
             *
             * @param _timestamp Timestamp to check.
             *
             * @return Whether or not the finalization period has elapsed.
             */
            function _isFinalizationPeriodElapsed(uint256 _timestamp) internal view returns (bool) {
                return block.timestamp > _timestamp + L2_ORACLE.FINALIZATION_PERIOD_SECONDS();
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.15;
        import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
        import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
        import { Burn } from "../libraries/Burn.sol";
        import { Arithmetic } from "../libraries/Arithmetic.sol";
        /**
         * @custom:upgradeable
         * @title ResourceMetering
         * @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
         *         updates automatically based on current demand.
         */
        abstract contract ResourceMetering is Initializable {
            /**
             * @notice Represents the various parameters that control the way in which resources are
             *         metered. Corresponds to the EIP-1559 resource metering system.
             *
             * @custom:field prevBaseFee   Base fee from the previous block(s).
             * @custom:field prevBoughtGas Amount of gas bought so far in the current block.
             * @custom:field prevBlockNum  Last block number that the base fee was updated.
             */
            struct ResourceParams {
                uint128 prevBaseFee;
                uint64 prevBoughtGas;
                uint64 prevBlockNum;
            }
            /**
             * @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
             *         market. These values should be set with care as it is possible to set them in
             *         a way that breaks the deposit gas market. The target resource limit is defined as
             *         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
             *         single word. There is additional space for additions in the future.
             *
             * @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
             *                                            can be purchased per block.
             * @custom:field elasticityMultiplier         Determines the target resource limit along with
             *                                            the resource limit.
             * @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
             * @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
             *                                            value.
             * @custom:field systemTxMaxGas               The amount of gas supplied to the system
             *                                            transaction. This should be set to the same number
             *                                            that the op-node sets as the gas limit for the
             *                                            system transaction.
             * @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
             *                                            value.
             */
            struct ResourceConfig {
                uint32 maxResourceLimit;
                uint8 elasticityMultiplier;
                uint8 baseFeeMaxChangeDenominator;
                uint32 minimumBaseFee;
                uint32 systemTxMaxGas;
                uint128 maximumBaseFee;
            }
            /**
             * @notice EIP-1559 style gas parameters.
             */
            ResourceParams public params;
            /**
             * @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
             */
            uint256[48] private __gap;
            /**
             * @notice Meters access to a function based an amount of a requested resource.
             *
             * @param _amount Amount of the resource requested.
             */
            modifier metered(uint64 _amount) {
                // Record initial gas amount so we can refund for it later.
                uint256 initialGas = gasleft();
                // Run the underlying function.
                _;
                // Run the metering function.
                _metered(_amount, initialGas);
            }
            /**
             * @notice An internal function that holds all of the logic for metering a resource.
             *
             * @param _amount     Amount of the resource requested.
             * @param _initialGas The amount of gas before any modifier execution.
             */
            function _metered(uint64 _amount, uint256 _initialGas) internal {
                // Update block number and base fee if necessary.
                uint256 blockDiff = block.number - params.prevBlockNum;
                ResourceConfig memory config = _resourceConfig();
                int256 targetResourceLimit = int256(uint256(config.maxResourceLimit)) /
                    int256(uint256(config.elasticityMultiplier));
                if (blockDiff > 0) {
                    // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                    // at which deposits can be created and therefore limit the potential for deposits to
                    // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                    int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                    int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta) /
                        (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                    // Update base fee by adding the base fee delta and clamp the resulting value between
                    // min and max.
                    int256 newBaseFee = Arithmetic.clamp({
                        _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                        _min: int256(uint256(config.minimumBaseFee)),
                        _max: int256(uint256(config.maximumBaseFee))
                    });
                    // If we skipped more than one block, we also need to account for every empty block.
                    // Empty block means there was no demand for deposits in that block, so we should
                    // reflect this lack of demand in the fee.
                    if (blockDiff > 1) {
                        // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                        // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                        // between min and max.
                        newBaseFee = Arithmetic.clamp({
                            _value: Arithmetic.cdexp({
                                _coefficient: newBaseFee,
                                _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                                _exponent: int256(blockDiff - 1)
                            }),
                            _min: int256(uint256(config.minimumBaseFee)),
                            _max: int256(uint256(config.maximumBaseFee))
                        });
                    }
                    // Update new base fee, reset bought gas, and update block number.
                    params.prevBaseFee = uint128(uint256(newBaseFee));
                    params.prevBoughtGas = 0;
                    params.prevBlockNum = uint64(block.number);
                }
                // Make sure we can actually buy the resource amount requested by the user.
                params.prevBoughtGas += _amount;
                require(
                    int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                    "ResourceMetering: cannot buy more gas than available gas limit"
                );
                // Determine the amount of ETH to be paid.
                uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
                // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
                // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
                // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
                // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
                // during any 1 day period in the last 5 years, so should be fine.
                uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
                // Give the user a refund based on the amount of gas they used to do all of the work up to
                // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
                // effectively like a dynamic stipend (with a minimum value).
                uint256 usedGas = _initialGas - gasleft();
                if (gasCost > usedGas) {
                    Burn.gas(gasCost - usedGas);
                }
            }
            /**
             * @notice Virtual function that returns the resource config. Contracts that inherit this
             *         contract must implement this function.
             *
             * @return ResourceConfig
             */
            function _resourceConfig() internal virtual returns (ResourceConfig memory);
            /**
             * @notice Sets initial resource parameter values. This function must either be called by the
             *         initializer function of an upgradeable child contract.
             */
            // solhint-disable-next-line func-name-mixedcase
            function __ResourceMetering_init() internal onlyInitializing {
                params = ResourceParams({
                    prevBaseFee: 1 gwei,
                    prevBoughtGas: 0,
                    prevBlockNum: uint64(block.number)
                });
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.15;
        import {
            OwnableUpgradeable
        } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
        import { Semver } from "../universal/Semver.sol";
        import { ResourceMetering } from "./ResourceMetering.sol";
        /**
         * @title SystemConfig
         * @notice The SystemConfig contract is used to manage configuration of an Optimism network. All
         *         configuration is stored on L1 and picked up by L2 as part of the derviation of the L2
         *         chain.
         */
        contract SystemConfig is OwnableUpgradeable, Semver {
            /**
             * @notice Enum representing different types of updates.
             *
             * @custom:value BATCHER              Represents an update to the batcher hash.
             * @custom:value GAS_CONFIG           Represents an update to txn fee config on L2.
             * @custom:value GAS_LIMIT            Represents an update to gas limit on L2.
             * @custom:value UNSAFE_BLOCK_SIGNER  Represents an update to the signer key for unsafe
             *                                    block distrubution.
             */
            enum UpdateType {
                BATCHER,
                GAS_CONFIG,
                GAS_LIMIT,
                UNSAFE_BLOCK_SIGNER
            }
            /**
             * @notice Version identifier, used for upgrades.
             */
            uint256 public constant VERSION = 0;
            /**
             * @notice Storage slot that the unsafe block signer is stored at. Storing it at this
             *         deterministic storage slot allows for decoupling the storage layout from the way
             *         that `solc` lays out storage. The `op-node` uses a storage proof to fetch this value.
             */
            bytes32 public constant UNSAFE_BLOCK_SIGNER_SLOT = keccak256("systemconfig.unsafeblocksigner");
            /**
             * @notice Fixed L2 gas overhead. Used as part of the L2 fee calculation.
             */
            uint256 public overhead;
            /**
             * @notice Dynamic L2 gas overhead. Used as part of the L2 fee calculation.
             */
            uint256 public scalar;
            /**
             * @notice Identifier for the batcher. For version 1 of this configuration, this is represented
             *         as an address left-padded with zeros to 32 bytes.
             */
            bytes32 public batcherHash;
            /**
             * @notice L2 block gas limit.
             */
            uint64 public gasLimit;
            /**
             * @notice The configuration for the deposit fee market. Used by the OptimismPortal
             *         to meter the cost of buying L2 gas on L1. Set as internal and wrapped with a getter
             *         so that the struct is returned instead of a tuple.
             */
            ResourceMetering.ResourceConfig internal _resourceConfig;
            /**
             * @notice Emitted when configuration is updated
             *
             * @param version    SystemConfig version.
             * @param updateType Type of update.
             * @param data       Encoded update data.
             */
            event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);
            /**
             * @custom:semver 1.3.0
             *
             * @param _owner             Initial owner of the contract.
             * @param _overhead          Initial overhead value.
             * @param _scalar            Initial scalar value.
             * @param _batcherHash       Initial batcher hash.
             * @param _gasLimit          Initial gas limit.
             * @param _unsafeBlockSigner Initial unsafe block signer address.
             * @param _config            Initial resource config.
             */
            constructor(
                address _owner,
                uint256 _overhead,
                uint256 _scalar,
                bytes32 _batcherHash,
                uint64 _gasLimit,
                address _unsafeBlockSigner,
                ResourceMetering.ResourceConfig memory _config
            ) Semver(1, 3, 0) {
                initialize({
                    _owner: _owner,
                    _overhead: _overhead,
                    _scalar: _scalar,
                    _batcherHash: _batcherHash,
                    _gasLimit: _gasLimit,
                    _unsafeBlockSigner: _unsafeBlockSigner,
                    _config: _config
                });
            }
            /**
             * @notice Initializer. The resource config must be set before the
             *         require check.
             *
             * @param _owner             Initial owner of the contract.
             * @param _overhead          Initial overhead value.
             * @param _scalar            Initial scalar value.
             * @param _batcherHash       Initial batcher hash.
             * @param _gasLimit          Initial gas limit.
             * @param _unsafeBlockSigner Initial unsafe block signer address.
             * @param _config            Initial ResourceConfig.
             */
            function initialize(
                address _owner,
                uint256 _overhead,
                uint256 _scalar,
                bytes32 _batcherHash,
                uint64 _gasLimit,
                address _unsafeBlockSigner,
                ResourceMetering.ResourceConfig memory _config
            ) public initializer {
                __Ownable_init();
                transferOwnership(_owner);
                overhead = _overhead;
                scalar = _scalar;
                batcherHash = _batcherHash;
                gasLimit = _gasLimit;
                _setUnsafeBlockSigner(_unsafeBlockSigner);
                _setResourceConfig(_config);
                require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
            }
            /**
             * @notice Returns the minimum L2 gas limit that can be safely set for the system to
             *         operate. The L2 gas limit must be larger than or equal to the amount of
             *         gas that is allocated for deposits per block plus the amount of gas that
             *         is allocated for the system transaction.
             *         This function is used to determine if changes to parameters are safe.
             *
             * @return uint64
             */
            function minimumGasLimit() public view returns (uint64) {
                return uint64(_resourceConfig.maxResourceLimit) + uint64(_resourceConfig.systemTxMaxGas);
            }
            /**
             * @notice High level getter for the unsafe block signer address. Unsafe blocks can be
             *         propagated across the p2p network if they are signed by the key corresponding to
             *         this address.
             *
             * @return Address of the unsafe block signer.
             */
            // solhint-disable-next-line ordering
            function unsafeBlockSigner() external view returns (address) {
                address addr;
                bytes32 slot = UNSAFE_BLOCK_SIGNER_SLOT;
                assembly {
                    addr := sload(slot)
                }
                return addr;
            }
            /**
             * @notice Updates the unsafe block signer address.
             *
             * @param _unsafeBlockSigner New unsafe block signer address.
             */
            function setUnsafeBlockSigner(address _unsafeBlockSigner) external onlyOwner {
                _setUnsafeBlockSigner(_unsafeBlockSigner);
                bytes memory data = abi.encode(_unsafeBlockSigner);
                emit ConfigUpdate(VERSION, UpdateType.UNSAFE_BLOCK_SIGNER, data);
            }
            /**
             * @notice Updates the batcher hash.
             *
             * @param _batcherHash New batcher hash.
             */
            function setBatcherHash(bytes32 _batcherHash) external onlyOwner {
                batcherHash = _batcherHash;
                bytes memory data = abi.encode(_batcherHash);
                emit ConfigUpdate(VERSION, UpdateType.BATCHER, data);
            }
            /**
             * @notice Updates gas config.
             *
             * @param _overhead New overhead value.
             * @param _scalar   New scalar value.
             */
            function setGasConfig(uint256 _overhead, uint256 _scalar) external onlyOwner {
                overhead = _overhead;
                scalar = _scalar;
                bytes memory data = abi.encode(_overhead, _scalar);
                emit ConfigUpdate(VERSION, UpdateType.GAS_CONFIG, data);
            }
            /**
             * @notice Updates the L2 gas limit.
             *
             * @param _gasLimit New gas limit.
             */
            function setGasLimit(uint64 _gasLimit) external onlyOwner {
                require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
                gasLimit = _gasLimit;
                bytes memory data = abi.encode(_gasLimit);
                emit ConfigUpdate(VERSION, UpdateType.GAS_LIMIT, data);
            }
            /**
             * @notice Low level setter for the unsafe block signer address. This function exists to
             *         deduplicate code around storing the unsafeBlockSigner address in storage.
             *
             * @param _unsafeBlockSigner New unsafeBlockSigner value.
             */
            function _setUnsafeBlockSigner(address _unsafeBlockSigner) internal {
                bytes32 slot = UNSAFE_BLOCK_SIGNER_SLOT;
                assembly {
                    sstore(slot, _unsafeBlockSigner)
                }
            }
            /**
             * @notice A getter for the resource config. Ensures that the struct is
             *         returned instead of a tuple.
             *
             * @return ResourceConfig
             */
            function resourceConfig() external view returns (ResourceMetering.ResourceConfig memory) {
                return _resourceConfig;
            }
            /**
             * @notice An external setter for the resource config. In the future, this
             *         method may emit an event that the `op-node` picks up for when the
             *         resource config is changed.
             *
             * @param _config The new resource config values.
             */
            function setResourceConfig(ResourceMetering.ResourceConfig memory _config) external onlyOwner {
                _setResourceConfig(_config);
            }
            /**
             * @notice An internal setter for the resource config. Ensures that the
             *         config is sane before storing it by checking for invariants.
             *
             * @param _config The new resource config.
             */
            function _setResourceConfig(ResourceMetering.ResourceConfig memory _config) internal {
                // Min base fee must be less than or equal to max base fee.
                require(
                    _config.minimumBaseFee <= _config.maximumBaseFee,
                    "SystemConfig: min base fee must be less than max base"
                );
                // Base fee change denominator must be greater than 1.
                require(
                    _config.baseFeeMaxChangeDenominator > 1,
                    "SystemConfig: denominator must be larger than 1"
                );
                // Max resource limit plus system tx gas must be less than or equal to the L2 gas limit.
                // The gas limit must be increased before these values can be increased.
                require(
                    _config.maxResourceLimit + _config.systemTxMaxGas <= gasLimit,
                    "SystemConfig: gas limit too low"
                );
                // Elasticity multiplier must be greater than 0.
                require(
                    _config.elasticityMultiplier > 0,
                    "SystemConfig: elasticity multiplier cannot be 0"
                );
                // No precision loss when computing target resource limit.
                require(
                    ((_config.maxResourceLimit / _config.elasticityMultiplier) *
                        _config.elasticityMultiplier) == _config.maxResourceLimit,
                    "SystemConfig: precision loss with target resource limit"
                );
                _resourceConfig = _config;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.15;
        import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
        import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
        /**
         * @title Arithmetic
         * @notice Even more math than before.
         */
        library Arithmetic {
            /**
             * @notice Clamps a value between a minimum and maximum.
             *
             * @param _value The value to clamp.
             * @param _min   The minimum value.
             * @param _max   The maximum value.
             *
             * @return The clamped value.
             */
            function clamp(
                int256 _value,
                int256 _min,
                int256 _max
            ) internal pure returns (int256) {
                return SignedMath.min(SignedMath.max(_value, _min), _max);
            }
            /**
             * @notice (c)oefficient (d)enominator (exp)onentiation function.
             *         Returns the result of: c * (1 - 1/d)^exp.
             *
             * @param _coefficient Coefficient of the function.
             * @param _denominator Fractional denominator.
             * @param _exponent    Power function exponent.
             *
             * @return Result of c * (1 - 1/d)^exp.
             */
            function cdexp(
                int256 _coefficient,
                int256 _denominator,
                int256 _exponent
            ) internal pure returns (int256) {
                return
                    (_coefficient *
                        (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.15;
        /**
         * @title Burn
         * @notice Utilities for burning stuff.
         */
        library Burn {
            /**
             * Burns a given amount of ETH.
             *
             * @param _amount Amount of ETH to burn.
             */
            function eth(uint256 _amount) internal {
                new Burner{ value: _amount }();
            }
            /**
             * Burns a given amount of gas.
             *
             * @param _amount Amount of gas to burn.
             */
            function gas(uint256 _amount) internal view {
                uint256 i = 0;
                uint256 initialGas = gasleft();
                while (initialGas - gasleft() < _amount) {
                    ++i;
                }
            }
        }
        /**
         * @title Burner
         * @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
         *         the contract from the circulating supply. Self-destructing is the only way to remove ETH
         *         from the circulating supply.
         */
        contract Burner {
            constructor() payable {
                selfdestruct(payable(address(this)));
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /**
         * @title Bytes
         * @notice Bytes is a library for manipulating byte arrays.
         */
        library Bytes {
            /**
             * @custom:attribution https://github.com/GNSPS/solidity-bytes-utils
             * @notice Slices a byte array with a given starting index and length. Returns a new byte array
             *         as opposed to a pointer to the original array. Will throw if trying to slice more
             *         bytes than exist in the array.
             *
             * @param _bytes Byte array to slice.
             * @param _start Starting index of the slice.
             * @param _length Length of the slice.
             *
             * @return Slice of the input byte array.
             */
            function slice(
                bytes memory _bytes,
                uint256 _start,
                uint256 _length
            ) internal pure returns (bytes memory) {
                unchecked {
                    require(_length + 31 >= _length, "slice_overflow");
                    require(_start + _length >= _start, "slice_overflow");
                    require(_bytes.length >= _start + _length, "slice_outOfBounds");
                }
                bytes memory tempBytes;
                assembly {
                    switch iszero(_length)
                    case 0 {
                        // Get a location of some free memory and store it in tempBytes as
                        // Solidity does for memory variables.
                        tempBytes := mload(0x40)
                        // The first word of the slice result is potentially a partial
                        // word read from the original array. To read it, we calculate
                        // the length of that partial word and start copying that many
                        // bytes into the array. The first word we copy will start with
                        // data we don't care about, but the last `lengthmod` bytes will
                        // land at the beginning of the contents of the new array. When
                        // we're done copying, we overwrite the full first word with
                        // the actual length of the slice.
                        let lengthmod := and(_length, 31)
                        // The multiplication in the next line is necessary
                        // because when slicing multiples of 32 bytes (lengthmod == 0)
                        // the following copy loop was copying the origin's length
                        // and then ending prematurely not copying everything it should.
                        let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                        let end := add(mc, _length)
                        for {
                            // The multiplication in the next line has the same exact purpose
                            // as the one above.
                            let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                        } lt(mc, end) {
                            mc := add(mc, 0x20)
                            cc := add(cc, 0x20)
                        } {
                            mstore(mc, mload(cc))
                        }
                        mstore(tempBytes, _length)
                        //update free-memory pointer
                        //allocating the array padded to 32 bytes like the compiler does now
                        mstore(0x40, and(add(mc, 31), not(31)))
                    }
                    //if we want a zero-length slice let's just return a zero-length array
                    default {
                        tempBytes := mload(0x40)
                        //zero out the 32 bytes slice we are about to return
                        //we need to do it because Solidity does not garbage collect
                        mstore(tempBytes, 0)
                        mstore(0x40, add(tempBytes, 0x20))
                    }
                }
                return tempBytes;
            }
            /**
             * @notice Slices a byte array with a given starting index up to the end of the original byte
             *         array. Returns a new array rathern than a pointer to the original.
             *
             * @param _bytes Byte array to slice.
             * @param _start Starting index of the slice.
             *
             * @return Slice of the input byte array.
             */
            function slice(bytes memory _bytes, uint256 _start) internal pure returns (bytes memory) {
                if (_start >= _bytes.length) {
                    return bytes("");
                }
                return slice(_bytes, _start, _bytes.length - _start);
            }
            /**
             * @notice Converts a byte array into a nibble array by splitting each byte into two nibbles.
             *         Resulting nibble array will be exactly twice as long as the input byte array.
             *
             * @param _bytes Input byte array to convert.
             *
             * @return Resulting nibble array.
             */
            function toNibbles(bytes memory _bytes) internal pure returns (bytes memory) {
                uint256 bytesLength = _bytes.length;
                bytes memory nibbles = new bytes(bytesLength * 2);
                bytes1 b;
                for (uint256 i = 0; i < bytesLength; ) {
                    b = _bytes[i];
                    nibbles[i * 2] = b >> 4;
                    nibbles[i * 2 + 1] = b & 0x0f;
                    unchecked {
                        ++i;
                    }
                }
                return nibbles;
            }
            /**
             * @notice Compares two byte arrays by comparing their keccak256 hashes.
             *
             * @param _bytes First byte array to compare.
             * @param _other Second byte array to compare.
             *
             * @return True if the two byte arrays are equal, false otherwise.
             */
            function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) {
                return keccak256(_bytes) == keccak256(_other);
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import { ResourceMetering } from "../L1/ResourceMetering.sol";
        /**
         * @title Constants
         * @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
         *         the stuff used in multiple contracts. Constants that only apply to a single contract
         *         should be defined in that contract instead.
         */
        library Constants {
            /**
             * @notice Special address to be used as the tx origin for gas estimation calls in the
             *         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
             *         the minimum gas limit specified by the user is not actually enough to execute the
             *         given message and you're attempting to estimate the actual necessary gas limit. We
             *         use address(1) because it's the ecrecover precompile and therefore guaranteed to
             *         never have any code on any EVM chain.
             */
            address internal constant ESTIMATION_ADDRESS = address(1);
            /**
             * @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
             *         CrossDomainMessenger contracts before an actual sender is set. This value is
             *         non-zero to reduce the gas cost of message passing transactions.
             */
            address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
            /**
             * @notice Returns the default values for the ResourceConfig. These are the recommended values
             *         for a production network.
             */
            function DEFAULT_RESOURCE_CONFIG()
                internal
                pure
                returns (ResourceMetering.ResourceConfig memory)
            {
                ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                    maxResourceLimit: 20_000_000,
                    elasticityMultiplier: 10,
                    baseFeeMaxChangeDenominator: 8,
                    minimumBaseFee: 1 gwei,
                    systemTxMaxGas: 1_000_000,
                    maximumBaseFee: type(uint128).max
                });
                return config;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import { Types } from "./Types.sol";
        import { Hashing } from "./Hashing.sol";
        import { RLPWriter } from "./rlp/RLPWriter.sol";
        /**
         * @title Encoding
         * @notice Encoding handles Optimism's various different encoding schemes.
         */
        library Encoding {
            /**
             * @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
             *         to the L2 system. Useful for searching for a deposit in the L2 system. The
             *         transaction is prefixed with 0x7e to identify its EIP-2718 type.
             *
             * @param _tx User deposit transaction to encode.
             *
             * @return RLP encoded L2 deposit transaction.
             */
            function encodeDepositTransaction(Types.UserDepositTransaction memory _tx)
                internal
                pure
                returns (bytes memory)
            {
                bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
                bytes[] memory raw = new bytes[](8);
                raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
                raw[1] = RLPWriter.writeAddress(_tx.from);
                raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
                raw[3] = RLPWriter.writeUint(_tx.mint);
                raw[4] = RLPWriter.writeUint(_tx.value);
                raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
                raw[6] = RLPWriter.writeBool(false);
                raw[7] = RLPWriter.writeBytes(_tx.data);
                return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
            }
            /**
             * @notice Encodes the cross domain message based on the version that is encoded into the
             *         message nonce.
             *
             * @param _nonce    Message nonce with version encoded into the first two bytes.
             * @param _sender   Address of the sender of the message.
             * @param _target   Address of the target of the message.
             * @param _value    ETH value to send to the target.
             * @param _gasLimit Gas limit to use for the message.
             * @param _data     Data to send with the message.
             *
             * @return Encoded cross domain message.
             */
            function encodeCrossDomainMessage(
                uint256 _nonce,
                address _sender,
                address _target,
                uint256 _value,
                uint256 _gasLimit,
                bytes memory _data
            ) internal pure returns (bytes memory) {
                (, uint16 version) = decodeVersionedNonce(_nonce);
                if (version == 0) {
                    return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
                } else if (version == 1) {
                    return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                } else {
                    revert("Encoding: unknown cross domain message version");
                }
            }
            /**
             * @notice Encodes a cross domain message based on the V0 (legacy) encoding.
             *
             * @param _target Address of the target of the message.
             * @param _sender Address of the sender of the message.
             * @param _data   Data to send with the message.
             * @param _nonce  Message nonce.
             *
             * @return Encoded cross domain message.
             */
            function encodeCrossDomainMessageV0(
                address _target,
                address _sender,
                bytes memory _data,
                uint256 _nonce
            ) internal pure returns (bytes memory) {
                return
                    abi.encodeWithSignature(
                        "relayMessage(address,address,bytes,uint256)",
                        _target,
                        _sender,
                        _data,
                        _nonce
                    );
            }
            /**
             * @notice Encodes a cross domain message based on the V1 (current) encoding.
             *
             * @param _nonce    Message nonce.
             * @param _sender   Address of the sender of the message.
             * @param _target   Address of the target of the message.
             * @param _value    ETH value to send to the target.
             * @param _gasLimit Gas limit to use for the message.
             * @param _data     Data to send with the message.
             *
             * @return Encoded cross domain message.
             */
            function encodeCrossDomainMessageV1(
                uint256 _nonce,
                address _sender,
                address _target,
                uint256 _value,
                uint256 _gasLimit,
                bytes memory _data
            ) internal pure returns (bytes memory) {
                return
                    abi.encodeWithSignature(
                        "relayMessage(uint256,address,address,uint256,uint256,bytes)",
                        _nonce,
                        _sender,
                        _target,
                        _value,
                        _gasLimit,
                        _data
                    );
            }
            /**
             * @notice Adds a version number into the first two bytes of a message nonce.
             *
             * @param _nonce   Message nonce to encode into.
             * @param _version Version number to encode into the message nonce.
             *
             * @return Message nonce with version encoded into the first two bytes.
             */
            function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
                uint256 nonce;
                assembly {
                    nonce := or(shl(240, _version), _nonce)
                }
                return nonce;
            }
            /**
             * @notice Pulls the version out of a version-encoded nonce.
             *
             * @param _nonce Message nonce with version encoded into the first two bytes.
             *
             * @return Nonce without encoded version.
             * @return Version of the message.
             */
            function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
                uint240 nonce;
                uint16 version;
                assembly {
                    nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
                    version := shr(240, _nonce)
                }
                return (nonce, version);
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import { Types } from "./Types.sol";
        import { Encoding } from "./Encoding.sol";
        /**
         * @title Hashing
         * @notice Hashing handles Optimism's various different hashing schemes.
         */
        library Hashing {
            /**
             * @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
             *         given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
             *         system.
             *
             * @param _tx User deposit transaction to hash.
             *
             * @return Hash of the RLP encoded L2 deposit transaction.
             */
            function hashDepositTransaction(Types.UserDepositTransaction memory _tx)
                internal
                pure
                returns (bytes32)
            {
                return keccak256(Encoding.encodeDepositTransaction(_tx));
            }
            /**
             * @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
             *         of the L2 transaction that corresponds to a deposit is unique and is
             *         deterministically generated from L1 transaction data.
             *
             * @param _l1BlockHash Hash of the L1 block where the deposit was included.
             * @param _logIndex    The index of the log that created the deposit transaction.
             *
             * @return Hash of the deposit transaction's "source hash".
             */
            function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex)
                internal
                pure
                returns (bytes32)
            {
                bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
                return keccak256(abi.encode(bytes32(0), depositId));
            }
            /**
             * @notice Hashes the cross domain message based on the version that is encoded into the
             *         message nonce.
             *
             * @param _nonce    Message nonce with version encoded into the first two bytes.
             * @param _sender   Address of the sender of the message.
             * @param _target   Address of the target of the message.
             * @param _value    ETH value to send to the target.
             * @param _gasLimit Gas limit to use for the message.
             * @param _data     Data to send with the message.
             *
             * @return Hashed cross domain message.
             */
            function hashCrossDomainMessage(
                uint256 _nonce,
                address _sender,
                address _target,
                uint256 _value,
                uint256 _gasLimit,
                bytes memory _data
            ) internal pure returns (bytes32) {
                (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
                if (version == 0) {
                    return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
                } else if (version == 1) {
                    return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                } else {
                    revert("Hashing: unknown cross domain message version");
                }
            }
            /**
             * @notice Hashes a cross domain message based on the V0 (legacy) encoding.
             *
             * @param _target Address of the target of the message.
             * @param _sender Address of the sender of the message.
             * @param _data   Data to send with the message.
             * @param _nonce  Message nonce.
             *
             * @return Hashed cross domain message.
             */
            function hashCrossDomainMessageV0(
                address _target,
                address _sender,
                bytes memory _data,
                uint256 _nonce
            ) internal pure returns (bytes32) {
                return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
            }
            /**
             * @notice Hashes a cross domain message based on the V1 (current) encoding.
             *
             * @param _nonce    Message nonce.
             * @param _sender   Address of the sender of the message.
             * @param _target   Address of the target of the message.
             * @param _value    ETH value to send to the target.
             * @param _gasLimit Gas limit to use for the message.
             * @param _data     Data to send with the message.
             *
             * @return Hashed cross domain message.
             */
            function hashCrossDomainMessageV1(
                uint256 _nonce,
                address _sender,
                address _target,
                uint256 _value,
                uint256 _gasLimit,
                bytes memory _data
            ) internal pure returns (bytes32) {
                return
                    keccak256(
                        Encoding.encodeCrossDomainMessageV1(
                            _nonce,
                            _sender,
                            _target,
                            _value,
                            _gasLimit,
                            _data
                        )
                    );
            }
            /**
             * @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
             *
             * @param _tx Withdrawal transaction to hash.
             *
             * @return Hashed withdrawal transaction.
             */
            function hashWithdrawal(Types.WithdrawalTransaction memory _tx)
                internal
                pure
                returns (bytes32)
            {
                return
                    keccak256(
                        abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data)
                    );
            }
            /**
             * @notice Hashes the various elements of an output root proof into an output root hash which
             *         can be used to check if the proof is valid.
             *
             * @param _outputRootProof Output root proof which should hash to an output root.
             *
             * @return Hashed output root proof.
             */
            function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof)
                internal
                pure
                returns (bytes32)
            {
                return
                    keccak256(
                        abi.encode(
                            _outputRootProof.version,
                            _outputRootProof.stateRoot,
                            _outputRootProof.messagePasserStorageRoot,
                            _outputRootProof.latestBlockhash
                        )
                    );
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.15;
        /**
         * @title SafeCall
         * @notice Perform low level safe calls
         */
        library SafeCall {
            /**
             * @notice Performs a low level call without copying any returndata.
             * @dev Passes no calldata to the call context.
             *
             * @param _target   Address to call
             * @param _gas      Amount of gas to pass to the call
             * @param _value    Amount of value to pass to the call
             */
            function send(
                address _target,
                uint256 _gas,
                uint256 _value
            ) internal returns (bool) {
                bool _success;
                assembly {
                    _success := call(
                        _gas, // gas
                        _target, // recipient
                        _value, // ether value
                        0, // inloc
                        0, // inlen
                        0, // outloc
                        0 // outlen
                    )
                }
                return _success;
            }
            /**
             * @notice Perform a low level call without copying any returndata
             *
             * @param _target   Address to call
             * @param _gas      Amount of gas to pass to the call
             * @param _value    Amount of value to pass to the call
             * @param _calldata Calldata to pass to the call
             */
            function call(
                address _target,
                uint256 _gas,
                uint256 _value,
                bytes memory _calldata
            ) internal returns (bool) {
                bool _success;
                assembly {
                    _success := call(
                        _gas, // gas
                        _target, // recipient
                        _value, // ether value
                        add(_calldata, 32), // inloc
                        mload(_calldata), // inlen
                        0, // outloc
                        0 // outlen
                    )
                }
                return _success;
            }
            /**
             * @notice Helper function to determine if there is sufficient gas remaining within the context
             *         to guarantee that the minimum gas requirement for a call will be met as well as
             *         optionally reserving a specified amount of gas for after the call has concluded.
             * @param _minGas      The minimum amount of gas that may be passed to the target context.
             * @param _reservedGas Optional amount of gas to reserve for the caller after the execution
             *                     of the target context.
             * @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
             *         context as well as reserve `_reservedGas` for the caller after the execution of
             *         the target context.
             * @dev !!!!! FOOTGUN ALERT !!!!!
             *      1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
             *          `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
             *          `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
             *          still possible to self-rekt by initiating a withdrawal with a minimum gas limit
             *          that does not account for the `memory_expansion_cost` & `code_execution_cost`
             *          factors of the dynamic cost of the `CALL` opcode.
             *      2.) This function should *directly* precede the external call if possible. There is an
             *          added buffer to account for gas consumed between this check and the call, but it
             *          is only 5,700 gas.
             *      3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
             *          frame may be passed to a subcontext, we need to ensure that the gas will not be
             *          truncated.
             *      4.) Use wisely. This function is not a silver bullet.
             */
            function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
                bool _hasMinGas;
                assembly {
                    // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
                    _hasMinGas := iszero(
                        lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63)))
                    )
                }
                return _hasMinGas;
            }
            /**
             * @notice Perform a low level call without copying any returndata. This function
             *         will revert if the call cannot be performed with the specified minimum
             *         gas.
             *
             * @param _target   Address to call
             * @param _minGas   The minimum amount of gas that may be passed to the call
             * @param _value    Amount of value to pass to the call
             * @param _calldata Calldata to pass to the call
             */
            function callWithMinGas(
                address _target,
                uint256 _minGas,
                uint256 _value,
                bytes memory _calldata
            ) internal returns (bool) {
                bool _success;
                bool _hasMinGas = hasMinGas(_minGas, 0);
                assembly {
                    // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
                    if iszero(_hasMinGas) {
                        // Store the "Error(string)" selector in scratch space.
                        mstore(0, 0x08c379a0)
                        // Store the pointer to the string length in scratch space.
                        mstore(32, 32)
                        // Store the string.
                        //
                        // SAFETY:
                        // - We pad the beginning of the string with two zero bytes as well as the
                        // length (24) to ensure that we override the free memory pointer at offset
                        // 0x40. This is necessary because the free memory pointer is likely to
                        // be greater than 1 byte when this function is called, but it is incredibly
                        // unlikely that it will be greater than 3 bytes. As for the data within
                        // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                        // - It's fine to clobber the free memory pointer, we're reverting.
                        mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
                        // Revert with 'Error("SafeCall: Not enough gas")'
                        revert(28, 100)
                    }
                    // The call will be supplied at least ((_minGas * 64) / 63) gas due to the
                    // above assertion. This ensures that, in all circumstances (except for when the
                    // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
                    // factors of the dynamic cost of the `CALL` opcode), the call will receive at least
                    // the minimum amount of gas specified.
                    _success := call(
                        gas(), // gas
                        _target, // recipient
                        _value, // ether value
                        add(_calldata, 32), // inloc
                        mload(_calldata), // inlen
                        0x00, // outloc
                        0x00 // outlen
                    )
                }
                return _success;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /**
         * @title Types
         * @notice Contains various types used throughout the Optimism contract system.
         */
        library Types {
            /**
             * @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
             *         timestamp that the output root is posted. This timestamp is used to verify that the
             *         finalization period has passed since the output root was submitted.
             *
             * @custom:field outputRoot    Hash of the L2 output.
             * @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
             * @custom:field l2BlockNumber L2 block number that the output corresponds to.
             */
            struct OutputProposal {
                bytes32 outputRoot;
                uint128 timestamp;
                uint128 l2BlockNumber;
            }
            /**
             * @notice Struct representing the elements that are hashed together to generate an output root
             *         which itself represents a snapshot of the L2 state.
             *
             * @custom:field version                  Version of the output root.
             * @custom:field stateRoot                Root of the state trie at the block of this output.
             * @custom:field messagePasserStorageRoot Root of the message passer storage trie.
             * @custom:field latestBlockhash          Hash of the block this output was generated from.
             */
            struct OutputRootProof {
                bytes32 version;
                bytes32 stateRoot;
                bytes32 messagePasserStorageRoot;
                bytes32 latestBlockhash;
            }
            /**
             * @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
             *         user (as opposed to a system deposit transaction generated by the system).
             *
             * @custom:field from        Address of the sender of the transaction.
             * @custom:field to          Address of the recipient of the transaction.
             * @custom:field isCreation  True if the transaction is a contract creation.
             * @custom:field value       Value to send to the recipient.
             * @custom:field mint        Amount of ETH to mint.
             * @custom:field gasLimit    Gas limit of the transaction.
             * @custom:field data        Data of the transaction.
             * @custom:field l1BlockHash Hash of the block the transaction was submitted in.
             * @custom:field logIndex    Index of the log in the block the transaction was submitted in.
             */
            struct UserDepositTransaction {
                address from;
                address to;
                bool isCreation;
                uint256 value;
                uint256 mint;
                uint64 gasLimit;
                bytes data;
                bytes32 l1BlockHash;
                uint256 logIndex;
            }
            /**
             * @notice Struct representing a withdrawal transaction.
             *
             * @custom:field nonce    Nonce of the withdrawal transaction
             * @custom:field sender   Address of the sender of the transaction.
             * @custom:field target   Address of the recipient of the transaction.
             * @custom:field value    Value to send to the recipient.
             * @custom:field gasLimit Gas limit of the transaction.
             * @custom:field data     Data of the transaction.
             */
            struct WithdrawalTransaction {
                uint256 nonce;
                address sender;
                address target;
                uint256 value;
                uint256 gasLimit;
                bytes data;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.8;
        /**
         * @custom:attribution https://github.com/hamdiallam/Solidity-RLP
         * @title RLPReader
         * @notice RLPReader is a library for parsing RLP-encoded byte arrays into Solidity types. Adapted
         *         from Solidity-RLP (https://github.com/hamdiallam/Solidity-RLP) by Hamdi Allam with
         *         various tweaks to improve readability.
         */
        library RLPReader {
            /**
             * Custom pointer type to avoid confusion between pointers and uint256s.
             */
            type MemoryPointer is uint256;
            /**
             * @notice RLP item types.
             *
             * @custom:value DATA_ITEM Represents an RLP data item (NOT a list).
             * @custom:value LIST_ITEM Represents an RLP list item.
             */
            enum RLPItemType {
                DATA_ITEM,
                LIST_ITEM
            }
            /**
             * @notice Struct representing an RLP item.
             *
             * @custom:field length Length of the RLP item.
             * @custom:field ptr    Pointer to the RLP item in memory.
             */
            struct RLPItem {
                uint256 length;
                MemoryPointer ptr;
            }
            /**
             * @notice Max list length that this library will accept.
             */
            uint256 internal constant MAX_LIST_LENGTH = 32;
            /**
             * @notice Converts bytes to a reference to memory position and length.
             *
             * @param _in Input bytes to convert.
             *
             * @return Output memory reference.
             */
            function toRLPItem(bytes memory _in) internal pure returns (RLPItem memory) {
                // Empty arrays are not RLP items.
                require(
                    _in.length > 0,
                    "RLPReader: length of an RLP item must be greater than zero to be decodable"
                );
                MemoryPointer ptr;
                assembly {
                    ptr := add(_in, 32)
                }
                return RLPItem({ length: _in.length, ptr: ptr });
            }
            /**
             * @notice Reads an RLP list value into a list of RLP items.
             *
             * @param _in RLP list value.
             *
             * @return Decoded RLP list items.
             */
            function readList(RLPItem memory _in) internal pure returns (RLPItem[] memory) {
                (uint256 listOffset, uint256 listLength, RLPItemType itemType) = _decodeLength(_in);
                require(
                    itemType == RLPItemType.LIST_ITEM,
                    "RLPReader: decoded item type for list is not a list item"
                );
                require(
                    listOffset + listLength == _in.length,
                    "RLPReader: list item has an invalid data remainder"
                );
                // Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by
                // writing to the length. Since we can't know the number of RLP items without looping over
                // the entire input, we'd have to loop twice to accurately size this array. It's easier to
                // simply set a reasonable maximum list length and decrease the size before we finish.
                RLPItem[] memory out = new RLPItem[](MAX_LIST_LENGTH);
                uint256 itemCount = 0;
                uint256 offset = listOffset;
                while (offset < _in.length) {
                    (uint256 itemOffset, uint256 itemLength, ) = _decodeLength(
                        RLPItem({
                            length: _in.length - offset,
                            ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset)
                        })
                    );
                    // We don't need to check itemCount < out.length explicitly because Solidity already
                    // handles this check on our behalf, we'd just be wasting gas.
                    out[itemCount] = RLPItem({
                        length: itemLength + itemOffset,
                        ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset)
                    });
                    itemCount += 1;
                    offset += itemOffset + itemLength;
                }
                // Decrease the array size to match the actual item count.
                assembly {
                    mstore(out, itemCount)
                }
                return out;
            }
            /**
             * @notice Reads an RLP list value into a list of RLP items.
             *
             * @param _in RLP list value.
             *
             * @return Decoded RLP list items.
             */
            function readList(bytes memory _in) internal pure returns (RLPItem[] memory) {
                return readList(toRLPItem(_in));
            }
            /**
             * @notice Reads an RLP bytes value into bytes.
             *
             * @param _in RLP bytes value.
             *
             * @return Decoded bytes.
             */
            function readBytes(RLPItem memory _in) internal pure returns (bytes memory) {
                (uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in);
                require(
                    itemType == RLPItemType.DATA_ITEM,
                    "RLPReader: decoded item type for bytes is not a data item"
                );
                require(
                    _in.length == itemOffset + itemLength,
                    "RLPReader: bytes value contains an invalid remainder"
                );
                return _copy(_in.ptr, itemOffset, itemLength);
            }
            /**
             * @notice Reads an RLP bytes value into bytes.
             *
             * @param _in RLP bytes value.
             *
             * @return Decoded bytes.
             */
            function readBytes(bytes memory _in) internal pure returns (bytes memory) {
                return readBytes(toRLPItem(_in));
            }
            /**
             * @notice Reads the raw bytes of an RLP item.
             *
             * @param _in RLP item to read.
             *
             * @return Raw RLP bytes.
             */
            function readRawBytes(RLPItem memory _in) internal pure returns (bytes memory) {
                return _copy(_in.ptr, 0, _in.length);
            }
            /**
             * @notice Decodes the length of an RLP item.
             *
             * @param _in RLP item to decode.
             *
             * @return Offset of the encoded data.
             * @return Length of the encoded data.
             * @return RLP item type (LIST_ITEM or DATA_ITEM).
             */
            function _decodeLength(RLPItem memory _in)
                private
                pure
                returns (
                    uint256,
                    uint256,
                    RLPItemType
                )
            {
                // Short-circuit if there's nothing to decode, note that we perform this check when
                // the user creates an RLP item via toRLPItem, but it's always possible for them to bypass
                // that function and create an RLP item directly. So we need to check this anyway.
                require(
                    _in.length > 0,
                    "RLPReader: length of an RLP item must be greater than zero to be decodable"
                );
                MemoryPointer ptr = _in.ptr;
                uint256 prefix;
                assembly {
                    prefix := byte(0, mload(ptr))
                }
                if (prefix <= 0x7f) {
                    // Single byte.
                    return (0, 1, RLPItemType.DATA_ITEM);
                } else if (prefix <= 0xb7) {
                    // Short string.
                    // slither-disable-next-line variable-scope
                    uint256 strLen = prefix - 0x80;
                    require(
                        _in.length > strLen,
                        "RLPReader: length of content must be greater than string length (short string)"
                    );
                    bytes1 firstByteOfContent;
                    assembly {
                        firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                    }
                    require(
                        strLen != 1 || firstByteOfContent >= 0x80,
                        "RLPReader: invalid prefix, single byte < 0x80 are not prefixed (short string)"
                    );
                    return (1, strLen, RLPItemType.DATA_ITEM);
                } else if (prefix <= 0xbf) {
                    // Long string.
                    uint256 lenOfStrLen = prefix - 0xb7;
                    require(
                        _in.length > lenOfStrLen,
                        "RLPReader: length of content must be > than length of string length (long string)"
                    );
                    bytes1 firstByteOfContent;
                    assembly {
                        firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                    }
                    require(
                        firstByteOfContent != 0x00,
                        "RLPReader: length of content must not have any leading zeros (long string)"
                    );
                    uint256 strLen;
                    assembly {
                        strLen := shr(sub(256, mul(8, lenOfStrLen)), mload(add(ptr, 1)))
                    }
                    require(
                        strLen > 55,
                        "RLPReader: length of content must be greater than 55 bytes (long string)"
                    );
                    require(
                        _in.length > lenOfStrLen + strLen,
                        "RLPReader: length of content must be greater than total length (long string)"
                    );
                    return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM);
                } else if (prefix <= 0xf7) {
                    // Short list.
                    // slither-disable-next-line variable-scope
                    uint256 listLen = prefix - 0xc0;
                    require(
                        _in.length > listLen,
                        "RLPReader: length of content must be greater than list length (short list)"
                    );
                    return (1, listLen, RLPItemType.LIST_ITEM);
                } else {
                    // Long list.
                    uint256 lenOfListLen = prefix - 0xf7;
                    require(
                        _in.length > lenOfListLen,
                        "RLPReader: length of content must be > than length of list length (long list)"
                    );
                    bytes1 firstByteOfContent;
                    assembly {
                        firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                    }
                    require(
                        firstByteOfContent != 0x00,
                        "RLPReader: length of content must not have any leading zeros (long list)"
                    );
                    uint256 listLen;
                    assembly {
                        listLen := shr(sub(256, mul(8, lenOfListLen)), mload(add(ptr, 1)))
                    }
                    require(
                        listLen > 55,
                        "RLPReader: length of content must be greater than 55 bytes (long list)"
                    );
                    require(
                        _in.length > lenOfListLen + listLen,
                        "RLPReader: length of content must be greater than total length (long list)"
                    );
                    return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM);
                }
            }
            /**
             * @notice Copies the bytes from a memory location.
             *
             * @param _src    Pointer to the location to read from.
             * @param _offset Offset to start reading from.
             * @param _length Number of bytes to read.
             *
             * @return Copied bytes.
             */
            function _copy(
                MemoryPointer _src,
                uint256 _offset,
                uint256 _length
            ) private pure returns (bytes memory) {
                bytes memory out = new bytes(_length);
                if (_length == 0) {
                    return out;
                }
                // Mostly based on Solidity's copy_memory_to_memory:
                // solhint-disable max-line-length
                // https://github.com/ethereum/solidity/blob/34dd30d71b4da730488be72ff6af7083cf2a91f6/libsolidity/codegen/YulUtilFunctions.cpp#L102-L114
                uint256 src = MemoryPointer.unwrap(_src) + _offset;
                assembly {
                    let dest := add(out, 32)
                    let i := 0
                    for {
                    } lt(i, _length) {
                        i := add(i, 32)
                    } {
                        mstore(add(dest, i), mload(add(src, i)))
                    }
                    if gt(i, _length) {
                        mstore(add(dest, _length), 0)
                    }
                }
                return out;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /**
         * @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
         * @title RLPWriter
         * @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
         *         RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
         *         modifications to improve legibility.
         */
        library RLPWriter {
            /**
             * @notice RLP encodes a byte string.
             *
             * @param _in The byte string to encode.
             *
             * @return The RLP encoded string in bytes.
             */
            function writeBytes(bytes memory _in) internal pure returns (bytes memory) {
                bytes memory encoded;
                if (_in.length == 1 && uint8(_in[0]) < 128) {
                    encoded = _in;
                } else {
                    encoded = abi.encodePacked(_writeLength(_in.length, 128), _in);
                }
                return encoded;
            }
            /**
             * @notice RLP encodes a list of RLP encoded byte byte strings.
             *
             * @param _in The list of RLP encoded byte strings.
             *
             * @return The RLP encoded list of items in bytes.
             */
            function writeList(bytes[] memory _in) internal pure returns (bytes memory) {
                bytes memory list = _flatten(_in);
                return abi.encodePacked(_writeLength(list.length, 192), list);
            }
            /**
             * @notice RLP encodes a string.
             *
             * @param _in The string to encode.
             *
             * @return The RLP encoded string in bytes.
             */
            function writeString(string memory _in) internal pure returns (bytes memory) {
                return writeBytes(bytes(_in));
            }
            /**
             * @notice RLP encodes an address.
             *
             * @param _in The address to encode.
             *
             * @return The RLP encoded address in bytes.
             */
            function writeAddress(address _in) internal pure returns (bytes memory) {
                return writeBytes(abi.encodePacked(_in));
            }
            /**
             * @notice RLP encodes a uint.
             *
             * @param _in The uint256 to encode.
             *
             * @return The RLP encoded uint256 in bytes.
             */
            function writeUint(uint256 _in) internal pure returns (bytes memory) {
                return writeBytes(_toBinary(_in));
            }
            /**
             * @notice RLP encodes a bool.
             *
             * @param _in The bool to encode.
             *
             * @return The RLP encoded bool in bytes.
             */
            function writeBool(bool _in) internal pure returns (bytes memory) {
                bytes memory encoded = new bytes(1);
                encoded[0] = (_in ? bytes1(0x01) : bytes1(0x80));
                return encoded;
            }
            /**
             * @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
             *
             * @param _len    The length of the string or the payload.
             * @param _offset 128 if item is string, 192 if item is list.
             *
             * @return RLP encoded bytes.
             */
            function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory) {
                bytes memory encoded;
                if (_len < 56) {
                    encoded = new bytes(1);
                    encoded[0] = bytes1(uint8(_len) + uint8(_offset));
                } else {
                    uint256 lenLen;
                    uint256 i = 1;
                    while (_len / i != 0) {
                        lenLen++;
                        i *= 256;
                    }
                    encoded = new bytes(lenLen + 1);
                    encoded[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
                    for (i = 1; i <= lenLen; i++) {
                        encoded[i] = bytes1(uint8((_len / (256**(lenLen - i))) % 256));
                    }
                }
                return encoded;
            }
            /**
             * @notice Encode integer in big endian binary form with no leading zeroes.
             *
             * @param _x The integer to encode.
             *
             * @return RLP encoded bytes.
             */
            function _toBinary(uint256 _x) private pure returns (bytes memory) {
                bytes memory b = abi.encodePacked(_x);
                uint256 i = 0;
                for (; i < 32; i++) {
                    if (b[i] != 0) {
                        break;
                    }
                }
                bytes memory res = new bytes(32 - i);
                for (uint256 j = 0; j < res.length; j++) {
                    res[j] = b[i++];
                }
                return res;
            }
            /**
             * @custom:attribution https://github.com/Arachnid/solidity-stringutils
             * @notice Copies a piece of memory to another location.
             *
             * @param _dest Destination location.
             * @param _src  Source location.
             * @param _len  Length of memory to copy.
             */
            function _memcpy(
                uint256 _dest,
                uint256 _src,
                uint256 _len
            ) private pure {
                uint256 dest = _dest;
                uint256 src = _src;
                uint256 len = _len;
                for (; len >= 32; len -= 32) {
                    assembly {
                        mstore(dest, mload(src))
                    }
                    dest += 32;
                    src += 32;
                }
                uint256 mask;
                unchecked {
                    mask = 256**(32 - len) - 1;
                }
                assembly {
                    let srcpart := and(mload(src), not(mask))
                    let destpart := and(mload(dest), mask)
                    mstore(dest, or(destpart, srcpart))
                }
            }
            /**
             * @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
             * @notice Flattens a list of byte strings into one byte string.
             *
             * @param _list List of byte strings to flatten.
             *
             * @return The flattened byte string.
             */
            function _flatten(bytes[] memory _list) private pure returns (bytes memory) {
                if (_list.length == 0) {
                    return new bytes(0);
                }
                uint256 len;
                uint256 i = 0;
                for (; i < _list.length; i++) {
                    len += _list[i].length;
                }
                bytes memory flattened = new bytes(len);
                uint256 flattenedPtr;
                assembly {
                    flattenedPtr := add(flattened, 0x20)
                }
                for (i = 0; i < _list.length; i++) {
                    bytes memory item = _list[i];
                    uint256 listPtr;
                    assembly {
                        listPtr := add(item, 0x20)
                    }
                    _memcpy(flattenedPtr, listPtr, item.length);
                    flattenedPtr += _list[i].length;
                }
                return flattened;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import { Bytes } from "../Bytes.sol";
        import { RLPReader } from "../rlp/RLPReader.sol";
        /**
         * @title MerkleTrie
         * @notice MerkleTrie is a small library for verifying standard Ethereum Merkle-Patricia trie
         *         inclusion proofs. By default, this library assumes a hexary trie. One can change the
         *         trie radix constant to support other trie radixes.
         */
        library MerkleTrie {
            /**
             * @notice Struct representing a node in the trie.
             *
             * @custom:field encoded The RLP-encoded node.
             * @custom:field decoded The RLP-decoded node.
             */
            struct TrieNode {
                bytes encoded;
                RLPReader.RLPItem[] decoded;
            }
            /**
             * @notice Determines the number of elements per branch node.
             */
            uint256 internal constant TREE_RADIX = 16;
            /**
             * @notice Branch nodes have TREE_RADIX elements and one value element.
             */
            uint256 internal constant BRANCH_NODE_LENGTH = TREE_RADIX + 1;
            /**
             * @notice Leaf nodes and extension nodes have two elements, a `path` and a `value`.
             */
            uint256 internal constant LEAF_OR_EXTENSION_NODE_LENGTH = 2;
            /**
             * @notice Prefix for even-nibbled extension node paths.
             */
            uint8 internal constant PREFIX_EXTENSION_EVEN = 0;
            /**
             * @notice Prefix for odd-nibbled extension node paths.
             */
            uint8 internal constant PREFIX_EXTENSION_ODD = 1;
            /**
             * @notice Prefix for even-nibbled leaf node paths.
             */
            uint8 internal constant PREFIX_LEAF_EVEN = 2;
            /**
             * @notice Prefix for odd-nibbled leaf node paths.
             */
            uint8 internal constant PREFIX_LEAF_ODD = 3;
            /**
             * @notice Verifies a proof that a given key/value pair is present in the trie.
             *
             * @param _key   Key of the node to search for, as a hex string.
             * @param _value Value of the node to search for, as a hex string.
             * @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
             *               trees, this proof is executed top-down and consists of a list of RLP-encoded
             *               nodes that make a path down to the target node.
             * @param _root  Known root of the Merkle trie. Used to verify that the included proof is
             *               correctly constructed.
             *
             * @return Whether or not the proof is valid.
             */
            function verifyInclusionProof(
                bytes memory _key,
                bytes memory _value,
                bytes[] memory _proof,
                bytes32 _root
            ) internal pure returns (bool) {
                return Bytes.equal(_value, get(_key, _proof, _root));
            }
            /**
             * @notice Retrieves the value associated with a given key.
             *
             * @param _key   Key to search for, as hex bytes.
             * @param _proof Merkle trie inclusion proof for the key.
             * @param _root  Known root of the Merkle trie.
             *
             * @return Value of the key if it exists.
             */
            function get(
                bytes memory _key,
                bytes[] memory _proof,
                bytes32 _root
            ) internal pure returns (bytes memory) {
                require(_key.length > 0, "MerkleTrie: empty key");
                TrieNode[] memory proof = _parseProof(_proof);
                bytes memory key = Bytes.toNibbles(_key);
                bytes memory currentNodeID = abi.encodePacked(_root);
                uint256 currentKeyIndex = 0;
                // Proof is top-down, so we start at the first element (root).
                for (uint256 i = 0; i < proof.length; i++) {
                    TrieNode memory currentNode = proof[i];
                    // Key index should never exceed total key length or we'll be out of bounds.
                    require(
                        currentKeyIndex <= key.length,
                        "MerkleTrie: key index exceeds total key length"
                    );
                    if (currentKeyIndex == 0) {
                        // First proof element is always the root node.
                        require(
                            Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                            "MerkleTrie: invalid root hash"
                        );
                    } else if (currentNode.encoded.length >= 32) {
                        // Nodes 32 bytes or larger are hashed inside branch nodes.
                        require(
                            Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                            "MerkleTrie: invalid large internal hash"
                        );
                    } else {
                        // Nodes smaller than 32 bytes aren't hashed.
                        require(
                            Bytes.equal(currentNode.encoded, currentNodeID),
                            "MerkleTrie: invalid internal node hash"
                        );
                    }
                    if (currentNode.decoded.length == BRANCH_NODE_LENGTH) {
                        if (currentKeyIndex == key.length) {
                            // Value is the last element of the decoded list (for branch nodes). There's
                            // some ambiguity in the Merkle trie specification because bytes(0) is a
                            // valid value to place into the trie, but for branch nodes bytes(0) can exist
                            // even when the value wasn't explicitly placed there. Geth treats a value of
                            // bytes(0) as "key does not exist" and so we do the same.
                            bytes memory value = RLPReader.readBytes(currentNode.decoded[TREE_RADIX]);
                            require(
                                value.length > 0,
                                "MerkleTrie: value length must be greater than zero (branch)"
                            );
                            // Extra proof elements are not allowed.
                            require(
                                i == proof.length - 1,
                                "MerkleTrie: value node must be last node in proof (branch)"
                            );
                            return value;
                        } else {
                            // We're not at the end of the key yet.
                            // Figure out what the next node ID should be and continue.
                            uint8 branchKey = uint8(key[currentKeyIndex]);
                            RLPReader.RLPItem memory nextNode = currentNode.decoded[branchKey];
                            currentNodeID = _getNodeID(nextNode);
                            currentKeyIndex += 1;
                        }
                    } else if (currentNode.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) {
                        bytes memory path = _getNodePath(currentNode);
                        uint8 prefix = uint8(path[0]);
                        uint8 offset = 2 - (prefix % 2);
                        bytes memory pathRemainder = Bytes.slice(path, offset);
                        bytes memory keyRemainder = Bytes.slice(key, currentKeyIndex);
                        uint256 sharedNibbleLength = _getSharedNibbleLength(pathRemainder, keyRemainder);
                        // Whether this is a leaf node or an extension node, the path remainder MUST be a
                        // prefix of the key remainder (or be equal to the key remainder) or the proof is
                        // considered invalid.
                        require(
                            pathRemainder.length == sharedNibbleLength,
                            "MerkleTrie: path remainder must share all nibbles with key"
                        );
                        if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) {
                            // Prefix of 2 or 3 means this is a leaf node. For the leaf node to be valid,
                            // the key remainder must be exactly equal to the path remainder. We already
                            // did the necessary byte comparison, so it's more efficient here to check that
                            // the key remainder length equals the shared nibble length, which implies
                            // equality with the path remainder (since we already did the same check with
                            // the path remainder and the shared nibble length).
                            require(
                                keyRemainder.length == sharedNibbleLength,
                                "MerkleTrie: key remainder must be identical to path remainder"
                            );
                            // Our Merkle Trie is designed specifically for the purposes of the Ethereum
                            // state trie. Empty values are not allowed in the state trie, so we can safely
                            // say that if the value is empty, the key should not exist and the proof is
                            // invalid.
                            bytes memory value = RLPReader.readBytes(currentNode.decoded[1]);
                            require(
                                value.length > 0,
                                "MerkleTrie: value length must be greater than zero (leaf)"
                            );
                            // Extra proof elements are not allowed.
                            require(
                                i == proof.length - 1,
                                "MerkleTrie: value node must be last node in proof (leaf)"
                            );
                            return value;
                        } else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) {
                            // Prefix of 0 or 1 means this is an extension node. We move onto the next node
                            // in the proof and increment the key index by the length of the path remainder
                            // which is equal to the shared nibble length.
                            currentNodeID = _getNodeID(currentNode.decoded[1]);
                            currentKeyIndex += sharedNibbleLength;
                        } else {
                            revert("MerkleTrie: received a node with an unknown prefix");
                        }
                    } else {
                        revert("MerkleTrie: received an unparseable node");
                    }
                }
                revert("MerkleTrie: ran out of proof elements");
            }
            /**
             * @notice Parses an array of proof elements into a new array that contains both the original
             *         encoded element and the RLP-decoded element.
             *
             * @param _proof Array of proof elements to parse.
             *
             * @return Proof parsed into easily accessible structs.
             */
            function _parseProof(bytes[] memory _proof) private pure returns (TrieNode[] memory) {
                uint256 length = _proof.length;
                TrieNode[] memory proof = new TrieNode[](length);
                for (uint256 i = 0; i < length; ) {
                    proof[i] = TrieNode({ encoded: _proof[i], decoded: RLPReader.readList(_proof[i]) });
                    unchecked {
                        ++i;
                    }
                }
                return proof;
            }
            /**
             * @notice Picks out the ID for a node. Node ID is referred to as the "hash" within the
             *         specification, but nodes < 32 bytes are not actually hashed.
             *
             * @param _node Node to pull an ID for.
             *
             * @return ID for the node, depending on the size of its contents.
             */
            function _getNodeID(RLPReader.RLPItem memory _node) private pure returns (bytes memory) {
                return _node.length < 32 ? RLPReader.readRawBytes(_node) : RLPReader.readBytes(_node);
            }
            /**
             * @notice Gets the path for a leaf or extension node.
             *
             * @param _node Node to get a path for.
             *
             * @return Node path, converted to an array of nibbles.
             */
            function _getNodePath(TrieNode memory _node) private pure returns (bytes memory) {
                return Bytes.toNibbles(RLPReader.readBytes(_node.decoded[0]));
            }
            /**
             * @notice Utility; determines the number of nibbles shared between two nibble arrays.
             *
             * @param _a First nibble array.
             * @param _b Second nibble array.
             *
             * @return Number of shared nibbles.
             */
            function _getSharedNibbleLength(bytes memory _a, bytes memory _b)
                private
                pure
                returns (uint256)
            {
                uint256 shared;
                uint256 max = (_a.length < _b.length) ? _a.length : _b.length;
                for (; shared < max && _a[shared] == _b[shared]; ) {
                    unchecked {
                        ++shared;
                    }
                }
                return shared;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /* Library Imports */
        import { MerkleTrie } from "./MerkleTrie.sol";
        /**
         * @title SecureMerkleTrie
         * @notice SecureMerkleTrie is a thin wrapper around the MerkleTrie library that hashes the input
         *         keys. Ethereum's state trie hashes input keys before storing them.
         */
        library SecureMerkleTrie {
            /**
             * @notice Verifies a proof that a given key/value pair is present in the Merkle trie.
             *
             * @param _key   Key of the node to search for, as a hex string.
             * @param _value Value of the node to search for, as a hex string.
             * @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
             *               trees, this proof is executed top-down and consists of a list of RLP-encoded
             *               nodes that make a path down to the target node.
             * @param _root  Known root of the Merkle trie. Used to verify that the included proof is
             *               correctly constructed.
             *
             * @return Whether or not the proof is valid.
             */
            function verifyInclusionProof(
                bytes memory _key,
                bytes memory _value,
                bytes[] memory _proof,
                bytes32 _root
            ) internal pure returns (bool) {
                bytes memory key = _getSecureKey(_key);
                return MerkleTrie.verifyInclusionProof(key, _value, _proof, _root);
            }
            /**
             * @notice Retrieves the value associated with a given key.
             *
             * @param _key   Key to search for, as hex bytes.
             * @param _proof Merkle trie inclusion proof for the key.
             * @param _root  Known root of the Merkle trie.
             *
             * @return Value of the key if it exists.
             */
            function get(
                bytes memory _key,
                bytes[] memory _proof,
                bytes32 _root
            ) internal pure returns (bytes memory) {
                bytes memory key = _getSecureKey(_key);
                return MerkleTrie.get(key, _proof, _root);
            }
            /**
             * @notice Computes the hashed version of the input key.
             *
             * @param _key Key to hash.
             *
             * @return Hashed version of the key.
             */
            function _getSecureKey(bytes memory _key) private pure returns (bytes memory) {
                return abi.encodePacked(keccak256(_key));
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import { Strings } from "@openzeppelin/contracts/utils/Strings.sol";
        /**
         * @title Semver
         * @notice Semver is a simple contract for managing contract versions.
         */
        contract Semver {
            /**
             * @notice Contract version number (major).
             */
            uint256 private immutable MAJOR_VERSION;
            /**
             * @notice Contract version number (minor).
             */
            uint256 private immutable MINOR_VERSION;
            /**
             * @notice Contract version number (patch).
             */
            uint256 private immutable PATCH_VERSION;
            /**
             * @param _major Version number (major).
             * @param _minor Version number (minor).
             * @param _patch Version number (patch).
             */
            constructor(
                uint256 _major,
                uint256 _minor,
                uint256 _patch
            ) {
                MAJOR_VERSION = _major;
                MINOR_VERSION = _minor;
                PATCH_VERSION = _patch;
            }
            /**
             * @notice Returns the full semver contract version.
             *
             * @return Semver contract version as a string.
             */
            function version() public view returns (string memory) {
                return
                    string(
                        abi.encodePacked(
                            Strings.toString(MAJOR_VERSION),
                            ".",
                            Strings.toString(MINOR_VERSION),
                            ".",
                            Strings.toString(PATCH_VERSION)
                        )
                    );
            }
        }
        // SPDX-License-Identifier: Apache-2.0
        /*
         * Copyright 2019-2021, Offchain Labs, Inc.
         *
         * Licensed under the Apache License, Version 2.0 (the "License");
         * you may not use this file except in compliance with the License.
         * You may obtain a copy of the License at
         *
         *    http://www.apache.org/licenses/LICENSE-2.0
         *
         * Unless required by applicable law or agreed to in writing, software
         * distributed under the License is distributed on an "AS IS" BASIS,
         * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         * See the License for the specific language governing permissions and
         * limitations under the License.
         */
        pragma solidity ^0.8.0;
        library AddressAliasHelper {
            uint160 constant offset = uint160(0x1111000000000000000000000000000000001111);
            /// @notice Utility function that converts the address in the L1 that submitted a tx to
            /// the inbox to the msg.sender viewed in the L2
            /// @param l1Address the address in the L1 that triggered the tx to L2
            /// @return l2Address L2 address as viewed in msg.sender
            function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) {
                unchecked {
                    l2Address = address(uint160(l1Address) + offset);
                }
            }
            /// @notice Utility function that converts the msg.sender viewed in the L2 to the
            /// address in the L1 that submitted a tx to the inbox
            /// @param l2Address L2 address as viewed in msg.sender
            /// @return l1Address the address in the L1 that triggered the tx to L2
            function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) {
                unchecked {
                    l1Address = address(uint160(l2Address) - offset);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
        pragma solidity ^0.8.2;
        import "../../utils/Address.sol";
        /**
         * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
         * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
         * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
         * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
         *
         * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
         * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
         * case an upgrade adds a module that needs to be initialized.
         *
         * For example:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * contract MyToken is ERC20Upgradeable {
         *     function initialize() initializer public {
         *         __ERC20_init("MyToken", "MTK");
         *     }
         * }
         * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
         *     function initializeV2() reinitializer(2) public {
         *         __ERC20Permit_init("MyToken");
         *     }
         * }
         * ```
         *
         * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
         * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
         *
         * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
         * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
         *
         * [CAUTION]
         * ====
         * Avoid leaving a contract uninitialized.
         *
         * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
         * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
         * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * /// @custom:oz-upgrades-unsafe-allow constructor
         * constructor() {
         *     _disableInitializers();
         * }
         * ```
         * ====
         */
        abstract contract Initializable {
            /**
             * @dev Indicates that the contract has been initialized.
             * @custom:oz-retyped-from bool
             */
            uint8 private _initialized;
            /**
             * @dev Indicates that the contract is in the process of being initialized.
             */
            bool private _initializing;
            /**
             * @dev Triggered when the contract has been initialized or reinitialized.
             */
            event Initialized(uint8 version);
            /**
             * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
             * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
             */
            modifier initializer() {
                bool isTopLevelCall = !_initializing;
                require(
                    (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                    "Initializable: contract is already initialized"
                );
                _initialized = 1;
                if (isTopLevelCall) {
                    _initializing = true;
                }
                _;
                if (isTopLevelCall) {
                    _initializing = false;
                    emit Initialized(1);
                }
            }
            /**
             * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
             * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
             * used to initialize parent contracts.
             *
             * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
             * initialization step. This is essential to configure modules that are added through upgrades and that require
             * initialization.
             *
             * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
             * a contract, executing them in the right order is up to the developer or operator.
             */
            modifier reinitializer(uint8 version) {
                require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                _initialized = version;
                _initializing = true;
                _;
                _initializing = false;
                emit Initialized(version);
            }
            /**
             * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
             * {initializer} and {reinitializer} modifiers, directly or indirectly.
             */
            modifier onlyInitializing() {
                require(_initializing, "Initializable: contract is not initializing");
                _;
            }
            /**
             * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
             * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
             * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
             * through proxies.
             */
            function _disableInitializers() internal virtual {
                require(!_initializing, "Initializable: contract is initializing");
                if (_initialized < type(uint8).max) {
                    _initialized = type(uint8).max;
                    emit Initialized(type(uint8).max);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
        pragma solidity ^0.8.1;
        /**
         * @dev Collection of functions related to the address type
         */
        library Address {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             * ====
             *
             * [IMPORTANT]
             * ====
             * You shouldn't rely on `isContract` to protect against flash loan attacks!
             *
             * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
             * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
             * constructor.
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize/address.code.length, which returns 0
                // for contracts in construction, since the code is only stored at the end
                // of the constructor execution.
                return account.code.length > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                (bool success, ) = recipient.call{value: amount}("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCall(target, data, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                require(isContract(target), "Address: call to non-contract");
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                require(isContract(target), "Address: static call to non-contract");
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionDelegateCall(target, data, "Address: low-level delegate call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(isContract(target), "Address: delegate call to non-contract");
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
             * revert reason using the provided one.
             *
             * _Available since v4.3._
             */
            function verifyCallResult(
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal pure returns (bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    // Look for revert reason and bubble it up if present
                    if (returndata.length > 0) {
                        // The easiest way to bubble the revert reason is using memory via assembly
                        /// @solidity memory-safe-assembly
                        assembly {
                            let returndata_size := mload(returndata)
                            revert(add(32, returndata), returndata_size)
                        }
                    } else {
                        revert(errorMessage);
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/Strings.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev String operations.
         */
        library Strings {
            bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";
            uint8 private constant _ADDRESS_LENGTH = 20;
            /**
             * @dev Converts a `uint256` to its ASCII `string` decimal representation.
             */
            function toString(uint256 value) internal pure returns (string memory) {
                // Inspired by OraclizeAPI's implementation - MIT licence
                // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol
                if (value == 0) {
                    return "0";
                }
                uint256 temp = value;
                uint256 digits;
                while (temp != 0) {
                    digits++;
                    temp /= 10;
                }
                bytes memory buffer = new bytes(digits);
                while (value != 0) {
                    digits -= 1;
                    buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
                    value /= 10;
                }
                return string(buffer);
            }
            /**
             * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
             */
            function toHexString(uint256 value) internal pure returns (string memory) {
                if (value == 0) {
                    return "0x00";
                }
                uint256 temp = value;
                uint256 length = 0;
                while (temp != 0) {
                    length++;
                    temp >>= 8;
                }
                return toHexString(value, length);
            }
            /**
             * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
             */
            function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
                bytes memory buffer = new bytes(2 * length + 2);
                buffer[0] = "0";
                buffer[1] = "x";
                for (uint256 i = 2 * length + 1; i > 1; --i) {
                    buffer[i] = _HEX_SYMBOLS[value & 0xf];
                    value >>= 4;
                }
                require(value == 0, "Strings: hex length insufficient");
                return string(buffer);
            }
            /**
             * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
             */
            function toHexString(address addr) internal pure returns (string memory) {
                return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Standard math utilities missing in the Solidity language.
         */
        library Math {
            enum Rounding {
                Down, // Toward negative infinity
                Up, // Toward infinity
                Zero // Toward zero
            }
            /**
             * @dev Returns the largest of two numbers.
             */
            function max(uint256 a, uint256 b) internal pure returns (uint256) {
                return a >= b ? a : b;
            }
            /**
             * @dev Returns the smallest of two numbers.
             */
            function min(uint256 a, uint256 b) internal pure returns (uint256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two numbers. The result is rounded towards
             * zero.
             */
            function average(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b) / 2 can overflow.
                return (a & b) + (a ^ b) / 2;
            }
            /**
             * @dev Returns the ceiling of the division of two numbers.
             *
             * This differs from standard division with `/` in that it rounds up instead
             * of rounding down.
             */
            function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b - 1) / b can overflow on addition, so we distribute.
                return a == 0 ? 0 : (a - 1) / b + 1;
            }
            /**
             * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
             * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
             * with further edits by Uniswap Labs also under MIT license.
             */
            function mulDiv(
                uint256 x,
                uint256 y,
                uint256 denominator
            ) internal pure returns (uint256 result) {
                unchecked {
                    // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                    // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                    // variables such that product = prod1 * 2^256 + prod0.
                    uint256 prod0; // Least significant 256 bits of the product
                    uint256 prod1; // Most significant 256 bits of the product
                    assembly {
                        let mm := mulmod(x, y, not(0))
                        prod0 := mul(x, y)
                        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                    }
                    // Handle non-overflow cases, 256 by 256 division.
                    if (prod1 == 0) {
                        return prod0 / denominator;
                    }
                    // Make sure the result is less than 2^256. Also prevents denominator == 0.
                    require(denominator > prod1);
                    ///////////////////////////////////////////////
                    // 512 by 256 division.
                    ///////////////////////////////////////////////
                    // Make division exact by subtracting the remainder from [prod1 prod0].
                    uint256 remainder;
                    assembly {
                        // Compute remainder using mulmod.
                        remainder := mulmod(x, y, denominator)
                        // Subtract 256 bit number from 512 bit number.
                        prod1 := sub(prod1, gt(remainder, prod0))
                        prod0 := sub(prod0, remainder)
                    }
                    // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                    // See https://cs.stackexchange.com/q/138556/92363.
                    // Does not overflow because the denominator cannot be zero at this stage in the function.
                    uint256 twos = denominator & (~denominator + 1);
                    assembly {
                        // Divide denominator by twos.
                        denominator := div(denominator, twos)
                        // Divide [prod1 prod0] by twos.
                        prod0 := div(prod0, twos)
                        // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                        twos := add(div(sub(0, twos), twos), 1)
                    }
                    // Shift in bits from prod1 into prod0.
                    prod0 |= prod1 * twos;
                    // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                    // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                    // four bits. That is, denominator * inv = 1 mod 2^4.
                    uint256 inverse = (3 * denominator) ^ 2;
                    // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                    // in modular arithmetic, doubling the correct bits in each step.
                    inverse *= 2 - denominator * inverse; // inverse mod 2^8
                    inverse *= 2 - denominator * inverse; // inverse mod 2^16
                    inverse *= 2 - denominator * inverse; // inverse mod 2^32
                    inverse *= 2 - denominator * inverse; // inverse mod 2^64
                    inverse *= 2 - denominator * inverse; // inverse mod 2^128
                    inverse *= 2 - denominator * inverse; // inverse mod 2^256
                    // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                    // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                    // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                    // is no longer required.
                    result = prod0 * inverse;
                    return result;
                }
            }
            /**
             * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
             */
            function mulDiv(
                uint256 x,
                uint256 y,
                uint256 denominator,
                Rounding rounding
            ) internal pure returns (uint256) {
                uint256 result = mulDiv(x, y, denominator);
                if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                    result += 1;
                }
                return result;
            }
            /**
             * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
             *
             * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
             */
            function sqrt(uint256 a) internal pure returns (uint256) {
                if (a == 0) {
                    return 0;
                }
                // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                // `msb(a) <= a < 2*msb(a)`.
                // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                uint256 result = 1;
                uint256 x = a;
                if (x >> 128 > 0) {
                    x >>= 128;
                    result <<= 64;
                }
                if (x >> 64 > 0) {
                    x >>= 64;
                    result <<= 32;
                }
                if (x >> 32 > 0) {
                    x >>= 32;
                    result <<= 16;
                }
                if (x >> 16 > 0) {
                    x >>= 16;
                    result <<= 8;
                }
                if (x >> 8 > 0) {
                    x >>= 8;
                    result <<= 4;
                }
                if (x >> 4 > 0) {
                    x >>= 4;
                    result <<= 2;
                }
                if (x >> 2 > 0) {
                    result <<= 1;
                }
                // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                // into the expected uint128 result.
                unchecked {
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    return min(result, a / result);
                }
            }
            /**
             * @notice Calculates sqrt(a), following the selected rounding direction.
             */
            function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                uint256 result = sqrt(a);
                if (rounding == Rounding.Up && result * result < a) {
                    result += 1;
                }
                return result;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Standard signed math utilities missing in the Solidity language.
         */
        library SignedMath {
            /**
             * @dev Returns the largest of two signed numbers.
             */
            function max(int256 a, int256 b) internal pure returns (int256) {
                return a >= b ? a : b;
            }
            /**
             * @dev Returns the smallest of two signed numbers.
             */
            function min(int256 a, int256 b) internal pure returns (int256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two signed numbers without overflow.
             * The result is rounded towards zero.
             */
            function average(int256 a, int256 b) internal pure returns (int256) {
                // Formula from the book "Hacker's Delight"
                int256 x = (a & b) + ((a ^ b) >> 1);
                return x + (int256(uint256(x) >> 255) & (a ^ b));
            }
            /**
             * @dev Returns the absolute unsigned value of a signed value.
             */
            function abs(int256 n) internal pure returns (uint256) {
                unchecked {
                    // must be unchecked in order to support `n = type(int256).min`
                    return uint256(n >= 0 ? n : -n);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
        pragma solidity ^0.8.0;
        import "../utils/ContextUpgradeable.sol";
        import "../proxy/utils/Initializable.sol";
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * By default, the owner account will be the one that deploys the contract. This
         * can later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
            address private _owner;
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Initializes the contract setting the deployer as the initial owner.
             */
            function __Ownable_init() internal onlyInitializing {
                __Ownable_init_unchained();
            }
            function __Ownable_init_unchained() internal onlyInitializing {
                _transferOwnership(_msgSender());
            }
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                _checkOwner();
                _;
            }
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view virtual returns (address) {
                return _owner;
            }
            /**
             * @dev Throws if the sender is not the owner.
             */
            function _checkOwner() internal view virtual {
                require(owner() == _msgSender(), "Ownable: caller is not the owner");
            }
            /**
             * @dev Leaves the contract without owner. It will not be possible to call
             * `onlyOwner` functions anymore. Can only be called by the current owner.
             *
             * NOTE: Renouncing ownership will leave the contract without an owner,
             * thereby removing any functionality that is only available to the owner.
             */
            function renounceOwnership() public virtual onlyOwner {
                _transferOwnership(address(0));
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                require(newOwner != address(0), "Ownable: new owner is the zero address");
                _transferOwnership(newOwner);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Internal function without access restriction.
             */
            function _transferOwnership(address newOwner) internal virtual {
                address oldOwner = _owner;
                _owner = newOwner;
                emit OwnershipTransferred(oldOwner, newOwner);
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[49] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
        pragma solidity ^0.8.2;
        import "../../utils/AddressUpgradeable.sol";
        /**
         * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
         * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
         * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
         * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
         *
         * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
         * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
         * case an upgrade adds a module that needs to be initialized.
         *
         * For example:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * contract MyToken is ERC20Upgradeable {
         *     function initialize() initializer public {
         *         __ERC20_init("MyToken", "MTK");
         *     }
         * }
         * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
         *     function initializeV2() reinitializer(2) public {
         *         __ERC20Permit_init("MyToken");
         *     }
         * }
         * ```
         *
         * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
         * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
         *
         * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
         * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
         *
         * [CAUTION]
         * ====
         * Avoid leaving a contract uninitialized.
         *
         * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
         * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
         * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * /// @custom:oz-upgrades-unsafe-allow constructor
         * constructor() {
         *     _disableInitializers();
         * }
         * ```
         * ====
         */
        abstract contract Initializable {
            /**
             * @dev Indicates that the contract has been initialized.
             * @custom:oz-retyped-from bool
             */
            uint8 private _initialized;
            /**
             * @dev Indicates that the contract is in the process of being initialized.
             */
            bool private _initializing;
            /**
             * @dev Triggered when the contract has been initialized or reinitialized.
             */
            event Initialized(uint8 version);
            /**
             * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
             * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
             */
            modifier initializer() {
                bool isTopLevelCall = !_initializing;
                require(
                    (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                    "Initializable: contract is already initialized"
                );
                _initialized = 1;
                if (isTopLevelCall) {
                    _initializing = true;
                }
                _;
                if (isTopLevelCall) {
                    _initializing = false;
                    emit Initialized(1);
                }
            }
            /**
             * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
             * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
             * used to initialize parent contracts.
             *
             * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
             * initialization step. This is essential to configure modules that are added through upgrades and that require
             * initialization.
             *
             * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
             * a contract, executing them in the right order is up to the developer or operator.
             */
            modifier reinitializer(uint8 version) {
                require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                _initialized = version;
                _initializing = true;
                _;
                _initializing = false;
                emit Initialized(version);
            }
            /**
             * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
             * {initializer} and {reinitializer} modifiers, directly or indirectly.
             */
            modifier onlyInitializing() {
                require(_initializing, "Initializable: contract is not initializing");
                _;
            }
            /**
             * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
             * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
             * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
             * through proxies.
             */
            function _disableInitializers() internal virtual {
                require(!_initializing, "Initializable: contract is initializing");
                if (_initialized < type(uint8).max) {
                    _initialized = type(uint8).max;
                    emit Initialized(type(uint8).max);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
        pragma solidity ^0.8.1;
        /**
         * @dev Collection of functions related to the address type
         */
        library AddressUpgradeable {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             * ====
             *
             * [IMPORTANT]
             * ====
             * You shouldn't rely on `isContract` to protect against flash loan attacks!
             *
             * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
             * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
             * constructor.
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize/address.code.length, which returns 0
                // for contracts in construction, since the code is only stored at the end
                // of the constructor execution.
                return account.code.length > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                (bool success, ) = recipient.call{value: amount}("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCall(target, data, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                require(isContract(target), "Address: call to non-contract");
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                require(isContract(target), "Address: static call to non-contract");
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
             * revert reason using the provided one.
             *
             * _Available since v4.3._
             */
            function verifyCallResult(
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal pure returns (bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    // Look for revert reason and bubble it up if present
                    if (returndata.length > 0) {
                        // The easiest way to bubble the revert reason is using memory via assembly
                        /// @solidity memory-safe-assembly
                        assembly {
                            let returndata_size := mload(returndata)
                            revert(add(32, returndata), returndata_size)
                        }
                    } else {
                        revert(errorMessage);
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
        pragma solidity ^0.8.0;
        import "../proxy/utils/Initializable.sol";
        /**
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract ContextUpgradeable is Initializable {
            function __Context_init() internal onlyInitializing {
            }
            function __Context_init_unchained() internal onlyInitializing {
            }
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                return msg.data;
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.8.0;
        /// @notice Arithmetic library with operations for fixed-point numbers.
        /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
        library FixedPointMathLib {
            /*//////////////////////////////////////////////////////////////
                            SIMPLIFIED FIXED POINT OPERATIONS
            //////////////////////////////////////////////////////////////*/
            uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
            function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
            }
            function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
            }
            function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
            }
            function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
            }
            function powWad(int256 x, int256 y) internal pure returns (int256) {
                // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
                return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
            }
            function expWad(int256 x) internal pure returns (int256 r) {
                unchecked {
                    // When the result is < 0.5 we return zero. This happens when
                    // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                    if (x <= -42139678854452767551) return 0;
                    // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                    // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                    if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                    // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                    // for more intermediate precision and a binary basis. This base conversion
                    // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                    x = (x << 78) / 5**18;
                    // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                    // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                    // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                    int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                    x = x - k * 54916777467707473351141471128;
                    // k is in the range [-61, 195].
                    // Evaluate using a (6, 7)-term rational approximation.
                    // p is made monic, we'll multiply by a scale factor later.
                    int256 y = x + 1346386616545796478920950773328;
                    y = ((y * x) >> 96) + 57155421227552351082224309758442;
                    int256 p = y + x - 94201549194550492254356042504812;
                    p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                    p = p * x + (4385272521454847904659076985693276 << 96);
                    // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                    int256 q = x - 2855989394907223263936484059900;
                    q = ((q * x) >> 96) + 50020603652535783019961831881945;
                    q = ((q * x) >> 96) - 533845033583426703283633433725380;
                    q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                    q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                    q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                    assembly {
                        // Div in assembly because solidity adds a zero check despite the unchecked.
                        // The q polynomial won't have zeros in the domain as all its roots are complex.
                        // No scaling is necessary because p is already 2**96 too large.
                        r := sdiv(p, q)
                    }
                    // r should be in the range (0.09, 0.25) * 2**96.
                    // We now need to multiply r by:
                    // * the scale factor s = ~6.031367120.
                    // * the 2**k factor from the range reduction.
                    // * the 1e18 / 2**96 factor for base conversion.
                    // We do this all at once, with an intermediate result in 2**213
                    // basis, so the final right shift is always by a positive amount.
                    r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
                }
            }
            function lnWad(int256 x) internal pure returns (int256 r) {
                unchecked {
                    require(x > 0, "UNDEFINED");
                    // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                    // We do this by multiplying by 2**96 / 10**18. But since
                    // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                    // and add ln(2**96 / 10**18) at the end.
                    // Reduce range of x to (1, 2) * 2**96
                    // ln(2^k * x) = k * ln(2) + ln(x)
                    int256 k = int256(log2(uint256(x))) - 96;
                    x <<= uint256(159 - k);
                    x = int256(uint256(x) >> 159);
                    // Evaluate using a (8, 8)-term rational approximation.
                    // p is made monic, we will multiply by a scale factor later.
                    int256 p = x + 3273285459638523848632254066296;
                    p = ((p * x) >> 96) + 24828157081833163892658089445524;
                    p = ((p * x) >> 96) + 43456485725739037958740375743393;
                    p = ((p * x) >> 96) - 11111509109440967052023855526967;
                    p = ((p * x) >> 96) - 45023709667254063763336534515857;
                    p = ((p * x) >> 96) - 14706773417378608786704636184526;
                    p = p * x - (795164235651350426258249787498 << 96);
                    // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                    // q is monic by convention.
                    int256 q = x + 5573035233440673466300451813936;
                    q = ((q * x) >> 96) + 71694874799317883764090561454958;
                    q = ((q * x) >> 96) + 283447036172924575727196451306956;
                    q = ((q * x) >> 96) + 401686690394027663651624208769553;
                    q = ((q * x) >> 96) + 204048457590392012362485061816622;
                    q = ((q * x) >> 96) + 31853899698501571402653359427138;
                    q = ((q * x) >> 96) + 909429971244387300277376558375;
                    assembly {
                        // Div in assembly because solidity adds a zero check despite the unchecked.
                        // The q polynomial is known not to have zeros in the domain.
                        // No scaling required because p is already 2**96 too large.
                        r := sdiv(p, q)
                    }
                    // r is in the range (0, 0.125) * 2**96
                    // Finalization, we need to:
                    // * multiply by the scale factor s = 5.549…
                    // * add ln(2**96 / 10**18)
                    // * add k * ln(2)
                    // * multiply by 10**18 / 2**96 = 5**18 >> 78
                    // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                    r *= 1677202110996718588342820967067443963516166;
                    // add ln(2) * k * 5e18 * 2**192
                    r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                    // add ln(2**96 / 10**18) * 5e18 * 2**192
                    r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                    // base conversion: mul 2**18 / 2**192
                    r >>= 174;
                }
            }
            /*//////////////////////////////////////////////////////////////
                            LOW LEVEL FIXED POINT OPERATIONS
            //////////////////////////////////////////////////////////////*/
            function mulDivDown(
                uint256 x,
                uint256 y,
                uint256 denominator
            ) internal pure returns (uint256 z) {
                assembly {
                    // Store x * y in z for now.
                    z := mul(x, y)
                    // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                    if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                        revert(0, 0)
                    }
                    // Divide z by the denominator.
                    z := div(z, denominator)
                }
            }
            function mulDivUp(
                uint256 x,
                uint256 y,
                uint256 denominator
            ) internal pure returns (uint256 z) {
                assembly {
                    // Store x * y in z for now.
                    z := mul(x, y)
                    // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                    if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                        revert(0, 0)
                    }
                    // First, divide z - 1 by the denominator and add 1.
                    // We allow z - 1 to underflow if z is 0, because we multiply the
                    // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                    z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
                }
            }
            function rpow(
                uint256 x,
                uint256 n,
                uint256 scalar
            ) internal pure returns (uint256 z) {
                assembly {
                    switch x
                    case 0 {
                        switch n
                        case 0 {
                            // 0 ** 0 = 1
                            z := scalar
                        }
                        default {
                            // 0 ** n = 0
                            z := 0
                        }
                    }
                    default {
                        switch mod(n, 2)
                        case 0 {
                            // If n is even, store scalar in z for now.
                            z := scalar
                        }
                        default {
                            // If n is odd, store x in z for now.
                            z := x
                        }
                        // Shifting right by 1 is like dividing by 2.
                        let half := shr(1, scalar)
                        for {
                            // Shift n right by 1 before looping to halve it.
                            n := shr(1, n)
                        } n {
                            // Shift n right by 1 each iteration to halve it.
                            n := shr(1, n)
                        } {
                            // Revert immediately if x ** 2 would overflow.
                            // Equivalent to iszero(eq(div(xx, x), x)) here.
                            if shr(128, x) {
                                revert(0, 0)
                            }
                            // Store x squared.
                            let xx := mul(x, x)
                            // Round to the nearest number.
                            let xxRound := add(xx, half)
                            // Revert if xx + half overflowed.
                            if lt(xxRound, xx) {
                                revert(0, 0)
                            }
                            // Set x to scaled xxRound.
                            x := div(xxRound, scalar)
                            // If n is even:
                            if mod(n, 2) {
                                // Compute z * x.
                                let zx := mul(z, x)
                                // If z * x overflowed:
                                if iszero(eq(div(zx, x), z)) {
                                    // Revert if x is non-zero.
                                    if iszero(iszero(x)) {
                                        revert(0, 0)
                                    }
                                }
                                // Round to the nearest number.
                                let zxRound := add(zx, half)
                                // Revert if zx + half overflowed.
                                if lt(zxRound, zx) {
                                    revert(0, 0)
                                }
                                // Return properly scaled zxRound.
                                z := div(zxRound, scalar)
                            }
                        }
                    }
                }
            }
            /*//////////////////////////////////////////////////////////////
                                GENERAL NUMBER UTILITIES
            //////////////////////////////////////////////////////////////*/
            function sqrt(uint256 x) internal pure returns (uint256 z) {
                assembly {
                    let y := x // We start y at x, which will help us make our initial estimate.
                    z := 181 // The "correct" value is 1, but this saves a multiplication later.
                    // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                    // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                    // We check y >= 2^(k + 8) but shift right by k bits
                    // each branch to ensure that if x >= 256, then y >= 256.
                    if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                        y := shr(128, y)
                        z := shl(64, z)
                    }
                    if iszero(lt(y, 0x1000000000000000000)) {
                        y := shr(64, y)
                        z := shl(32, z)
                    }
                    if iszero(lt(y, 0x10000000000)) {
                        y := shr(32, y)
                        z := shl(16, z)
                    }
                    if iszero(lt(y, 0x1000000)) {
                        y := shr(16, y)
                        z := shl(8, z)
                    }
                    // Goal was to get z*z*y within a small factor of x. More iterations could
                    // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                    // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                    // That's not possible if x < 256 but we can just verify those cases exhaustively.
                    // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                    // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                    // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                    // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                    // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                    // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                    // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                    // There is no overflow risk here since y < 2^136 after the first branch above.
                    z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                    // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    // If x+1 is a perfect square, the Babylonian method cycles between
                    // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                    // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                    // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                    // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                    z := sub(z, lt(div(x, z), z))
                }
            }
            function log2(uint256 x) internal pure returns (uint256 r) {
                require(x > 0, "UNDEFINED");
                assembly {
                    r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                    r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                    r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                    r := or(r, shl(4, lt(0xffff, shr(r, x))))
                    r := or(r, shl(3, lt(0xff, shr(r, x))))
                    r := or(r, shl(2, lt(0xf, shr(r, x))))
                    r := or(r, shl(1, lt(0x3, shr(r, x))))
                    r := or(r, lt(0x1, shr(r, x)))
                }
            }
        }
        

        File 3 of 4: Proxy
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.15;
        /**
         * @title Proxy
         * @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
         *         if the caller is address(0), meaning that the call originated from an off-chain
         *         simulation.
         */
        contract Proxy {
            /**
             * @notice The storage slot that holds the address of the implementation.
             *         bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
             */
            bytes32 internal constant IMPLEMENTATION_KEY =
                0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
            /**
             * @notice The storage slot that holds the address of the owner.
             *         bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
             */
            bytes32 internal constant OWNER_KEY =
                0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
            /**
             * @notice An event that is emitted each time the implementation is changed. This event is part
             *         of the EIP-1967 specification.
             *
             * @param implementation The address of the implementation contract
             */
            event Upgraded(address indexed implementation);
            /**
             * @notice An event that is emitted each time the owner is upgraded. This event is part of the
             *         EIP-1967 specification.
             *
             * @param previousAdmin The previous owner of the contract
             * @param newAdmin      The new owner of the contract
             */
            event AdminChanged(address previousAdmin, address newAdmin);
            /**
             * @notice A modifier that reverts if not called by the owner or by address(0) to allow
             *         eth_call to interact with this proxy without needing to use low-level storage
             *         inspection. We assume that nobody is able to trigger calls from address(0) during
             *         normal EVM execution.
             */
            modifier proxyCallIfNotAdmin() {
                if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                    _;
                } else {
                    // This WILL halt the call frame on completion.
                    _doProxyCall();
                }
            }
            /**
             * @notice Sets the initial admin during contract deployment. Admin address is stored at the
             *         EIP-1967 admin storage slot so that accidental storage collision with the
             *         implementation is not possible.
             *
             * @param _admin Address of the initial contract admin. Admin as the ability to access the
             *               transparent proxy interface.
             */
            constructor(address _admin) {
                _changeAdmin(_admin);
            }
            // slither-disable-next-line locked-ether
            receive() external payable {
                // Proxy call by default.
                _doProxyCall();
            }
            // slither-disable-next-line locked-ether
            fallback() external payable {
                // Proxy call by default.
                _doProxyCall();
            }
            /**
             * @notice Set the implementation contract address. The code at the given address will execute
             *         when this contract is called.
             *
             * @param _implementation Address of the implementation contract.
             */
            function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
                _setImplementation(_implementation);
            }
            /**
             * @notice Set the implementation and call a function in a single transaction. Useful to ensure
             *         atomic execution of initialization-based upgrades.
             *
             * @param _implementation Address of the implementation contract.
             * @param _data           Calldata to delegatecall the new implementation with.
             */
            function upgradeToAndCall(address _implementation, bytes calldata _data)
                public
                payable
                virtual
                proxyCallIfNotAdmin
                returns (bytes memory)
            {
                _setImplementation(_implementation);
                (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
                require(success, "Proxy: delegatecall to new implementation contract failed");
                return returndata;
            }
            /**
             * @notice Changes the owner of the proxy contract. Only callable by the owner.
             *
             * @param _admin New owner of the proxy contract.
             */
            function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
                _changeAdmin(_admin);
            }
            /**
             * @notice Gets the owner of the proxy contract.
             *
             * @return Owner address.
             */
            function admin() public virtual proxyCallIfNotAdmin returns (address) {
                return _getAdmin();
            }
            /**
             * @notice Queries the implementation address.
             *
             * @return Implementation address.
             */
            function implementation() public virtual proxyCallIfNotAdmin returns (address) {
                return _getImplementation();
            }
            /**
             * @notice Sets the implementation address.
             *
             * @param _implementation New implementation address.
             */
            function _setImplementation(address _implementation) internal {
                assembly {
                    sstore(IMPLEMENTATION_KEY, _implementation)
                }
                emit Upgraded(_implementation);
            }
            /**
             * @notice Changes the owner of the proxy contract.
             *
             * @param _admin New owner of the proxy contract.
             */
            function _changeAdmin(address _admin) internal {
                address previous = _getAdmin();
                assembly {
                    sstore(OWNER_KEY, _admin)
                }
                emit AdminChanged(previous, _admin);
            }
            /**
             * @notice Performs the proxy call via a delegatecall.
             */
            function _doProxyCall() internal {
                address impl = _getImplementation();
                require(impl != address(0), "Proxy: implementation not initialized");
                assembly {
                    // Copy calldata into memory at 0x0....calldatasize.
                    calldatacopy(0x0, 0x0, calldatasize())
                    // Perform the delegatecall, make sure to pass all available gas.
                    let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                    // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                    // overwrite the calldata that we just copied into memory but that doesn't really
                    // matter because we'll be returning in a second anyway.
                    returndatacopy(0x0, 0x0, returndatasize())
                    // Success == 0 means a revert. We'll revert too and pass the data up.
                    if iszero(success) {
                        revert(0x0, returndatasize())
                    }
                    // Otherwise we'll just return and pass the data up.
                    return(0x0, returndatasize())
                }
            }
            /**
             * @notice Queries the implementation address.
             *
             * @return Implementation address.
             */
            function _getImplementation() internal view returns (address) {
                address impl;
                assembly {
                    impl := sload(IMPLEMENTATION_KEY)
                }
                return impl;
            }
            /**
             * @notice Queries the owner of the proxy contract.
             *
             * @return Owner address.
             */
            function _getAdmin() internal view returns (address) {
                address owner;
                assembly {
                    owner := sload(OWNER_KEY)
                }
                return owner;
            }
        }
        

        File 4 of 4: SystemConfig
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.15;
        import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
        import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
        import { Burn } from "../libraries/Burn.sol";
        import { Arithmetic } from "../libraries/Arithmetic.sol";
        /**
         * @custom:upgradeable
         * @title ResourceMetering
         * @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
         *         updates automatically based on current demand.
         */
        abstract contract ResourceMetering is Initializable {
            /**
             * @notice Represents the various parameters that control the way in which resources are
             *         metered. Corresponds to the EIP-1559 resource metering system.
             *
             * @custom:field prevBaseFee   Base fee from the previous block(s).
             * @custom:field prevBoughtGas Amount of gas bought so far in the current block.
             * @custom:field prevBlockNum  Last block number that the base fee was updated.
             */
            struct ResourceParams {
                uint128 prevBaseFee;
                uint64 prevBoughtGas;
                uint64 prevBlockNum;
            }
            /**
             * @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
             *         market. These values should be set with care as it is possible to set them in
             *         a way that breaks the deposit gas market. The target resource limit is defined as
             *         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
             *         single word. There is additional space for additions in the future.
             *
             * @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
             *                                            can be purchased per block.
             * @custom:field elasticityMultiplier         Determines the target resource limit along with
             *                                            the resource limit.
             * @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
             * @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
             *                                            value.
             * @custom:field systemTxMaxGas               The amount of gas supplied to the system
             *                                            transaction. This should be set to the same number
             *                                            that the op-node sets as the gas limit for the
             *                                            system transaction.
             * @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
             *                                            value.
             */
            struct ResourceConfig {
                uint32 maxResourceLimit;
                uint8 elasticityMultiplier;
                uint8 baseFeeMaxChangeDenominator;
                uint32 minimumBaseFee;
                uint32 systemTxMaxGas;
                uint128 maximumBaseFee;
            }
            /**
             * @notice EIP-1559 style gas parameters.
             */
            ResourceParams public params;
            /**
             * @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
             */
            uint256[48] private __gap;
            /**
             * @notice Meters access to a function based an amount of a requested resource.
             *
             * @param _amount Amount of the resource requested.
             */
            modifier metered(uint64 _amount) {
                // Record initial gas amount so we can refund for it later.
                uint256 initialGas = gasleft();
                // Run the underlying function.
                _;
                // Run the metering function.
                _metered(_amount, initialGas);
            }
            /**
             * @notice An internal function that holds all of the logic for metering a resource.
             *
             * @param _amount     Amount of the resource requested.
             * @param _initialGas The amount of gas before any modifier execution.
             */
            function _metered(uint64 _amount, uint256 _initialGas) internal {
                // Update block number and base fee if necessary.
                uint256 blockDiff = block.number - params.prevBlockNum;
                ResourceConfig memory config = _resourceConfig();
                int256 targetResourceLimit = int256(uint256(config.maxResourceLimit)) /
                    int256(uint256(config.elasticityMultiplier));
                if (blockDiff > 0) {
                    // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                    // at which deposits can be created and therefore limit the potential for deposits to
                    // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                    int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                    int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta) /
                        (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                    // Update base fee by adding the base fee delta and clamp the resulting value between
                    // min and max.
                    int256 newBaseFee = Arithmetic.clamp({
                        _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                        _min: int256(uint256(config.minimumBaseFee)),
                        _max: int256(uint256(config.maximumBaseFee))
                    });
                    // If we skipped more than one block, we also need to account for every empty block.
                    // Empty block means there was no demand for deposits in that block, so we should
                    // reflect this lack of demand in the fee.
                    if (blockDiff > 1) {
                        // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                        // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                        // between min and max.
                        newBaseFee = Arithmetic.clamp({
                            _value: Arithmetic.cdexp({
                                _coefficient: newBaseFee,
                                _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                                _exponent: int256(blockDiff - 1)
                            }),
                            _min: int256(uint256(config.minimumBaseFee)),
                            _max: int256(uint256(config.maximumBaseFee))
                        });
                    }
                    // Update new base fee, reset bought gas, and update block number.
                    params.prevBaseFee = uint128(uint256(newBaseFee));
                    params.prevBoughtGas = 0;
                    params.prevBlockNum = uint64(block.number);
                }
                // Make sure we can actually buy the resource amount requested by the user.
                params.prevBoughtGas += _amount;
                require(
                    int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                    "ResourceMetering: cannot buy more gas than available gas limit"
                );
                // Determine the amount of ETH to be paid.
                uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
                // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
                // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
                // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
                // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
                // during any 1 day period in the last 5 years, so should be fine.
                uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
                // Give the user a refund based on the amount of gas they used to do all of the work up to
                // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
                // effectively like a dynamic stipend (with a minimum value).
                uint256 usedGas = _initialGas - gasleft();
                if (gasCost > usedGas) {
                    Burn.gas(gasCost - usedGas);
                }
            }
            /**
             * @notice Virtual function that returns the resource config. Contracts that inherit this
             *         contract must implement this function.
             *
             * @return ResourceConfig
             */
            function _resourceConfig() internal virtual returns (ResourceConfig memory);
            /**
             * @notice Sets initial resource parameter values. This function must either be called by the
             *         initializer function of an upgradeable child contract.
             */
            // solhint-disable-next-line func-name-mixedcase
            function __ResourceMetering_init() internal onlyInitializing {
                params = ResourceParams({
                    prevBaseFee: 1 gwei,
                    prevBoughtGas: 0,
                    prevBlockNum: uint64(block.number)
                });
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.15;
        import {
            OwnableUpgradeable
        } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
        import { Semver } from "../universal/Semver.sol";
        import { ResourceMetering } from "./ResourceMetering.sol";
        /**
         * @title SystemConfig
         * @notice The SystemConfig contract is used to manage configuration of an Optimism network. All
         *         configuration is stored on L1 and picked up by L2 as part of the derviation of the L2
         *         chain.
         */
        contract SystemConfig is OwnableUpgradeable, Semver {
            /**
             * @notice Enum representing different types of updates.
             *
             * @custom:value BATCHER              Represents an update to the batcher hash.
             * @custom:value GAS_CONFIG           Represents an update to txn fee config on L2.
             * @custom:value GAS_LIMIT            Represents an update to gas limit on L2.
             * @custom:value UNSAFE_BLOCK_SIGNER  Represents an update to the signer key for unsafe
             *                                    block distrubution.
             */
            enum UpdateType {
                BATCHER,
                GAS_CONFIG,
                GAS_LIMIT,
                UNSAFE_BLOCK_SIGNER
            }
            /**
             * @notice Version identifier, used for upgrades.
             */
            uint256 public constant VERSION = 0;
            /**
             * @notice Storage slot that the unsafe block signer is stored at. Storing it at this
             *         deterministic storage slot allows for decoupling the storage layout from the way
             *         that `solc` lays out storage. The `op-node` uses a storage proof to fetch this value.
             */
            bytes32 public constant UNSAFE_BLOCK_SIGNER_SLOT = keccak256("systemconfig.unsafeblocksigner");
            /**
             * @notice Fixed L2 gas overhead. Used as part of the L2 fee calculation.
             */
            uint256 public overhead;
            /**
             * @notice Dynamic L2 gas overhead. Used as part of the L2 fee calculation.
             */
            uint256 public scalar;
            /**
             * @notice Identifier for the batcher. For version 1 of this configuration, this is represented
             *         as an address left-padded with zeros to 32 bytes.
             */
            bytes32 public batcherHash;
            /**
             * @notice L2 block gas limit.
             */
            uint64 public gasLimit;
            /**
             * @notice The configuration for the deposit fee market. Used by the OptimismPortal
             *         to meter the cost of buying L2 gas on L1. Set as internal and wrapped with a getter
             *         so that the struct is returned instead of a tuple.
             */
            ResourceMetering.ResourceConfig internal _resourceConfig;
            /**
             * @notice Emitted when configuration is updated
             *
             * @param version    SystemConfig version.
             * @param updateType Type of update.
             * @param data       Encoded update data.
             */
            event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);
            /**
             * @custom:semver 1.3.0
             *
             * @param _owner             Initial owner of the contract.
             * @param _overhead          Initial overhead value.
             * @param _scalar            Initial scalar value.
             * @param _batcherHash       Initial batcher hash.
             * @param _gasLimit          Initial gas limit.
             * @param _unsafeBlockSigner Initial unsafe block signer address.
             * @param _config            Initial resource config.
             */
            constructor(
                address _owner,
                uint256 _overhead,
                uint256 _scalar,
                bytes32 _batcherHash,
                uint64 _gasLimit,
                address _unsafeBlockSigner,
                ResourceMetering.ResourceConfig memory _config
            ) Semver(1, 3, 0) {
                initialize({
                    _owner: _owner,
                    _overhead: _overhead,
                    _scalar: _scalar,
                    _batcherHash: _batcherHash,
                    _gasLimit: _gasLimit,
                    _unsafeBlockSigner: _unsafeBlockSigner,
                    _config: _config
                });
            }
            /**
             * @notice Initializer. The resource config must be set before the
             *         require check.
             *
             * @param _owner             Initial owner of the contract.
             * @param _overhead          Initial overhead value.
             * @param _scalar            Initial scalar value.
             * @param _batcherHash       Initial batcher hash.
             * @param _gasLimit          Initial gas limit.
             * @param _unsafeBlockSigner Initial unsafe block signer address.
             * @param _config            Initial ResourceConfig.
             */
            function initialize(
                address _owner,
                uint256 _overhead,
                uint256 _scalar,
                bytes32 _batcherHash,
                uint64 _gasLimit,
                address _unsafeBlockSigner,
                ResourceMetering.ResourceConfig memory _config
            ) public initializer {
                __Ownable_init();
                transferOwnership(_owner);
                overhead = _overhead;
                scalar = _scalar;
                batcherHash = _batcherHash;
                gasLimit = _gasLimit;
                _setUnsafeBlockSigner(_unsafeBlockSigner);
                _setResourceConfig(_config);
                require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
            }
            /**
             * @notice Returns the minimum L2 gas limit that can be safely set for the system to
             *         operate. The L2 gas limit must be larger than or equal to the amount of
             *         gas that is allocated for deposits per block plus the amount of gas that
             *         is allocated for the system transaction.
             *         This function is used to determine if changes to parameters are safe.
             *
             * @return uint64
             */
            function minimumGasLimit() public view returns (uint64) {
                return uint64(_resourceConfig.maxResourceLimit) + uint64(_resourceConfig.systemTxMaxGas);
            }
            /**
             * @notice High level getter for the unsafe block signer address. Unsafe blocks can be
             *         propagated across the p2p network if they are signed by the key corresponding to
             *         this address.
             *
             * @return Address of the unsafe block signer.
             */
            // solhint-disable-next-line ordering
            function unsafeBlockSigner() external view returns (address) {
                address addr;
                bytes32 slot = UNSAFE_BLOCK_SIGNER_SLOT;
                assembly {
                    addr := sload(slot)
                }
                return addr;
            }
            /**
             * @notice Updates the unsafe block signer address.
             *
             * @param _unsafeBlockSigner New unsafe block signer address.
             */
            function setUnsafeBlockSigner(address _unsafeBlockSigner) external onlyOwner {
                _setUnsafeBlockSigner(_unsafeBlockSigner);
                bytes memory data = abi.encode(_unsafeBlockSigner);
                emit ConfigUpdate(VERSION, UpdateType.UNSAFE_BLOCK_SIGNER, data);
            }
            /**
             * @notice Updates the batcher hash.
             *
             * @param _batcherHash New batcher hash.
             */
            function setBatcherHash(bytes32 _batcherHash) external onlyOwner {
                batcherHash = _batcherHash;
                bytes memory data = abi.encode(_batcherHash);
                emit ConfigUpdate(VERSION, UpdateType.BATCHER, data);
            }
            /**
             * @notice Updates gas config.
             *
             * @param _overhead New overhead value.
             * @param _scalar   New scalar value.
             */
            function setGasConfig(uint256 _overhead, uint256 _scalar) external onlyOwner {
                overhead = _overhead;
                scalar = _scalar;
                bytes memory data = abi.encode(_overhead, _scalar);
                emit ConfigUpdate(VERSION, UpdateType.GAS_CONFIG, data);
            }
            /**
             * @notice Updates the L2 gas limit.
             *
             * @param _gasLimit New gas limit.
             */
            function setGasLimit(uint64 _gasLimit) external onlyOwner {
                require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
                gasLimit = _gasLimit;
                bytes memory data = abi.encode(_gasLimit);
                emit ConfigUpdate(VERSION, UpdateType.GAS_LIMIT, data);
            }
            /**
             * @notice Low level setter for the unsafe block signer address. This function exists to
             *         deduplicate code around storing the unsafeBlockSigner address in storage.
             *
             * @param _unsafeBlockSigner New unsafeBlockSigner value.
             */
            function _setUnsafeBlockSigner(address _unsafeBlockSigner) internal {
                bytes32 slot = UNSAFE_BLOCK_SIGNER_SLOT;
                assembly {
                    sstore(slot, _unsafeBlockSigner)
                }
            }
            /**
             * @notice A getter for the resource config. Ensures that the struct is
             *         returned instead of a tuple.
             *
             * @return ResourceConfig
             */
            function resourceConfig() external view returns (ResourceMetering.ResourceConfig memory) {
                return _resourceConfig;
            }
            /**
             * @notice An external setter for the resource config. In the future, this
             *         method may emit an event that the `op-node` picks up for when the
             *         resource config is changed.
             *
             * @param _config The new resource config values.
             */
            function setResourceConfig(ResourceMetering.ResourceConfig memory _config) external onlyOwner {
                _setResourceConfig(_config);
            }
            /**
             * @notice An internal setter for the resource config. Ensures that the
             *         config is sane before storing it by checking for invariants.
             *
             * @param _config The new resource config.
             */
            function _setResourceConfig(ResourceMetering.ResourceConfig memory _config) internal {
                // Min base fee must be less than or equal to max base fee.
                require(
                    _config.minimumBaseFee <= _config.maximumBaseFee,
                    "SystemConfig: min base fee must be less than max base"
                );
                // Base fee change denominator must be greater than 1.
                require(
                    _config.baseFeeMaxChangeDenominator > 1,
                    "SystemConfig: denominator must be larger than 1"
                );
                // Max resource limit plus system tx gas must be less than or equal to the L2 gas limit.
                // The gas limit must be increased before these values can be increased.
                require(
                    _config.maxResourceLimit + _config.systemTxMaxGas <= gasLimit,
                    "SystemConfig: gas limit too low"
                );
                // Elasticity multiplier must be greater than 0.
                require(
                    _config.elasticityMultiplier > 0,
                    "SystemConfig: elasticity multiplier cannot be 0"
                );
                // No precision loss when computing target resource limit.
                require(
                    ((_config.maxResourceLimit / _config.elasticityMultiplier) *
                        _config.elasticityMultiplier) == _config.maxResourceLimit,
                    "SystemConfig: precision loss with target resource limit"
                );
                _resourceConfig = _config;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.15;
        import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
        import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
        /**
         * @title Arithmetic
         * @notice Even more math than before.
         */
        library Arithmetic {
            /**
             * @notice Clamps a value between a minimum and maximum.
             *
             * @param _value The value to clamp.
             * @param _min   The minimum value.
             * @param _max   The maximum value.
             *
             * @return The clamped value.
             */
            function clamp(
                int256 _value,
                int256 _min,
                int256 _max
            ) internal pure returns (int256) {
                return SignedMath.min(SignedMath.max(_value, _min), _max);
            }
            /**
             * @notice (c)oefficient (d)enominator (exp)onentiation function.
             *         Returns the result of: c * (1 - 1/d)^exp.
             *
             * @param _coefficient Coefficient of the function.
             * @param _denominator Fractional denominator.
             * @param _exponent    Power function exponent.
             *
             * @return Result of c * (1 - 1/d)^exp.
             */
            function cdexp(
                int256 _coefficient,
                int256 _denominator,
                int256 _exponent
            ) internal pure returns (int256) {
                return
                    (_coefficient *
                        (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.15;
        /**
         * @title Burn
         * @notice Utilities for burning stuff.
         */
        library Burn {
            /**
             * Burns a given amount of ETH.
             *
             * @param _amount Amount of ETH to burn.
             */
            function eth(uint256 _amount) internal {
                new Burner{ value: _amount }();
            }
            /**
             * Burns a given amount of gas.
             *
             * @param _amount Amount of gas to burn.
             */
            function gas(uint256 _amount) internal view {
                uint256 i = 0;
                uint256 initialGas = gasleft();
                while (initialGas - gasleft() < _amount) {
                    ++i;
                }
            }
        }
        /**
         * @title Burner
         * @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
         *         the contract from the circulating supply. Self-destructing is the only way to remove ETH
         *         from the circulating supply.
         */
        contract Burner {
            constructor() payable {
                selfdestruct(payable(address(this)));
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import { Strings } from "@openzeppelin/contracts/utils/Strings.sol";
        /**
         * @title Semver
         * @notice Semver is a simple contract for managing contract versions.
         */
        contract Semver {
            /**
             * @notice Contract version number (major).
             */
            uint256 private immutable MAJOR_VERSION;
            /**
             * @notice Contract version number (minor).
             */
            uint256 private immutable MINOR_VERSION;
            /**
             * @notice Contract version number (patch).
             */
            uint256 private immutable PATCH_VERSION;
            /**
             * @param _major Version number (major).
             * @param _minor Version number (minor).
             * @param _patch Version number (patch).
             */
            constructor(
                uint256 _major,
                uint256 _minor,
                uint256 _patch
            ) {
                MAJOR_VERSION = _major;
                MINOR_VERSION = _minor;
                PATCH_VERSION = _patch;
            }
            /**
             * @notice Returns the full semver contract version.
             *
             * @return Semver contract version as a string.
             */
            function version() public view returns (string memory) {
                return
                    string(
                        abi.encodePacked(
                            Strings.toString(MAJOR_VERSION),
                            ".",
                            Strings.toString(MINOR_VERSION),
                            ".",
                            Strings.toString(PATCH_VERSION)
                        )
                    );
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
        pragma solidity ^0.8.2;
        import "../../utils/Address.sol";
        /**
         * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
         * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
         * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
         * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
         *
         * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
         * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
         * case an upgrade adds a module that needs to be initialized.
         *
         * For example:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * contract MyToken is ERC20Upgradeable {
         *     function initialize() initializer public {
         *         __ERC20_init("MyToken", "MTK");
         *     }
         * }
         * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
         *     function initializeV2() reinitializer(2) public {
         *         __ERC20Permit_init("MyToken");
         *     }
         * }
         * ```
         *
         * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
         * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
         *
         * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
         * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
         *
         * [CAUTION]
         * ====
         * Avoid leaving a contract uninitialized.
         *
         * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
         * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
         * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * /// @custom:oz-upgrades-unsafe-allow constructor
         * constructor() {
         *     _disableInitializers();
         * }
         * ```
         * ====
         */
        abstract contract Initializable {
            /**
             * @dev Indicates that the contract has been initialized.
             * @custom:oz-retyped-from bool
             */
            uint8 private _initialized;
            /**
             * @dev Indicates that the contract is in the process of being initialized.
             */
            bool private _initializing;
            /**
             * @dev Triggered when the contract has been initialized or reinitialized.
             */
            event Initialized(uint8 version);
            /**
             * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
             * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
             */
            modifier initializer() {
                bool isTopLevelCall = !_initializing;
                require(
                    (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                    "Initializable: contract is already initialized"
                );
                _initialized = 1;
                if (isTopLevelCall) {
                    _initializing = true;
                }
                _;
                if (isTopLevelCall) {
                    _initializing = false;
                    emit Initialized(1);
                }
            }
            /**
             * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
             * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
             * used to initialize parent contracts.
             *
             * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
             * initialization step. This is essential to configure modules that are added through upgrades and that require
             * initialization.
             *
             * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
             * a contract, executing them in the right order is up to the developer or operator.
             */
            modifier reinitializer(uint8 version) {
                require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                _initialized = version;
                _initializing = true;
                _;
                _initializing = false;
                emit Initialized(version);
            }
            /**
             * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
             * {initializer} and {reinitializer} modifiers, directly or indirectly.
             */
            modifier onlyInitializing() {
                require(_initializing, "Initializable: contract is not initializing");
                _;
            }
            /**
             * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
             * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
             * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
             * through proxies.
             */
            function _disableInitializers() internal virtual {
                require(!_initializing, "Initializable: contract is initializing");
                if (_initialized < type(uint8).max) {
                    _initialized = type(uint8).max;
                    emit Initialized(type(uint8).max);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
        pragma solidity ^0.8.1;
        /**
         * @dev Collection of functions related to the address type
         */
        library Address {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             * ====
             *
             * [IMPORTANT]
             * ====
             * You shouldn't rely on `isContract` to protect against flash loan attacks!
             *
             * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
             * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
             * constructor.
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize/address.code.length, which returns 0
                // for contracts in construction, since the code is only stored at the end
                // of the constructor execution.
                return account.code.length > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                (bool success, ) = recipient.call{value: amount}("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCall(target, data, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                require(isContract(target), "Address: call to non-contract");
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                require(isContract(target), "Address: static call to non-contract");
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionDelegateCall(target, data, "Address: low-level delegate call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(isContract(target), "Address: delegate call to non-contract");
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
             * revert reason using the provided one.
             *
             * _Available since v4.3._
             */
            function verifyCallResult(
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal pure returns (bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    // Look for revert reason and bubble it up if present
                    if (returndata.length > 0) {
                        // The easiest way to bubble the revert reason is using memory via assembly
                        /// @solidity memory-safe-assembly
                        assembly {
                            let returndata_size := mload(returndata)
                            revert(add(32, returndata), returndata_size)
                        }
                    } else {
                        revert(errorMessage);
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/Strings.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev String operations.
         */
        library Strings {
            bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";
            uint8 private constant _ADDRESS_LENGTH = 20;
            /**
             * @dev Converts a `uint256` to its ASCII `string` decimal representation.
             */
            function toString(uint256 value) internal pure returns (string memory) {
                // Inspired by OraclizeAPI's implementation - MIT licence
                // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol
                if (value == 0) {
                    return "0";
                }
                uint256 temp = value;
                uint256 digits;
                while (temp != 0) {
                    digits++;
                    temp /= 10;
                }
                bytes memory buffer = new bytes(digits);
                while (value != 0) {
                    digits -= 1;
                    buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
                    value /= 10;
                }
                return string(buffer);
            }
            /**
             * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
             */
            function toHexString(uint256 value) internal pure returns (string memory) {
                if (value == 0) {
                    return "0x00";
                }
                uint256 temp = value;
                uint256 length = 0;
                while (temp != 0) {
                    length++;
                    temp >>= 8;
                }
                return toHexString(value, length);
            }
            /**
             * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
             */
            function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
                bytes memory buffer = new bytes(2 * length + 2);
                buffer[0] = "0";
                buffer[1] = "x";
                for (uint256 i = 2 * length + 1; i > 1; --i) {
                    buffer[i] = _HEX_SYMBOLS[value & 0xf];
                    value >>= 4;
                }
                require(value == 0, "Strings: hex length insufficient");
                return string(buffer);
            }
            /**
             * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
             */
            function toHexString(address addr) internal pure returns (string memory) {
                return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Standard math utilities missing in the Solidity language.
         */
        library Math {
            enum Rounding {
                Down, // Toward negative infinity
                Up, // Toward infinity
                Zero // Toward zero
            }
            /**
             * @dev Returns the largest of two numbers.
             */
            function max(uint256 a, uint256 b) internal pure returns (uint256) {
                return a >= b ? a : b;
            }
            /**
             * @dev Returns the smallest of two numbers.
             */
            function min(uint256 a, uint256 b) internal pure returns (uint256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two numbers. The result is rounded towards
             * zero.
             */
            function average(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b) / 2 can overflow.
                return (a & b) + (a ^ b) / 2;
            }
            /**
             * @dev Returns the ceiling of the division of two numbers.
             *
             * This differs from standard division with `/` in that it rounds up instead
             * of rounding down.
             */
            function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b - 1) / b can overflow on addition, so we distribute.
                return a == 0 ? 0 : (a - 1) / b + 1;
            }
            /**
             * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
             * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
             * with further edits by Uniswap Labs also under MIT license.
             */
            function mulDiv(
                uint256 x,
                uint256 y,
                uint256 denominator
            ) internal pure returns (uint256 result) {
                unchecked {
                    // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                    // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                    // variables such that product = prod1 * 2^256 + prod0.
                    uint256 prod0; // Least significant 256 bits of the product
                    uint256 prod1; // Most significant 256 bits of the product
                    assembly {
                        let mm := mulmod(x, y, not(0))
                        prod0 := mul(x, y)
                        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                    }
                    // Handle non-overflow cases, 256 by 256 division.
                    if (prod1 == 0) {
                        return prod0 / denominator;
                    }
                    // Make sure the result is less than 2^256. Also prevents denominator == 0.
                    require(denominator > prod1);
                    ///////////////////////////////////////////////
                    // 512 by 256 division.
                    ///////////////////////////////////////////////
                    // Make division exact by subtracting the remainder from [prod1 prod0].
                    uint256 remainder;
                    assembly {
                        // Compute remainder using mulmod.
                        remainder := mulmod(x, y, denominator)
                        // Subtract 256 bit number from 512 bit number.
                        prod1 := sub(prod1, gt(remainder, prod0))
                        prod0 := sub(prod0, remainder)
                    }
                    // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                    // See https://cs.stackexchange.com/q/138556/92363.
                    // Does not overflow because the denominator cannot be zero at this stage in the function.
                    uint256 twos = denominator & (~denominator + 1);
                    assembly {
                        // Divide denominator by twos.
                        denominator := div(denominator, twos)
                        // Divide [prod1 prod0] by twos.
                        prod0 := div(prod0, twos)
                        // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                        twos := add(div(sub(0, twos), twos), 1)
                    }
                    // Shift in bits from prod1 into prod0.
                    prod0 |= prod1 * twos;
                    // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                    // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                    // four bits. That is, denominator * inv = 1 mod 2^4.
                    uint256 inverse = (3 * denominator) ^ 2;
                    // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                    // in modular arithmetic, doubling the correct bits in each step.
                    inverse *= 2 - denominator * inverse; // inverse mod 2^8
                    inverse *= 2 - denominator * inverse; // inverse mod 2^16
                    inverse *= 2 - denominator * inverse; // inverse mod 2^32
                    inverse *= 2 - denominator * inverse; // inverse mod 2^64
                    inverse *= 2 - denominator * inverse; // inverse mod 2^128
                    inverse *= 2 - denominator * inverse; // inverse mod 2^256
                    // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                    // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                    // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                    // is no longer required.
                    result = prod0 * inverse;
                    return result;
                }
            }
            /**
             * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
             */
            function mulDiv(
                uint256 x,
                uint256 y,
                uint256 denominator,
                Rounding rounding
            ) internal pure returns (uint256) {
                uint256 result = mulDiv(x, y, denominator);
                if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                    result += 1;
                }
                return result;
            }
            /**
             * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
             *
             * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
             */
            function sqrt(uint256 a) internal pure returns (uint256) {
                if (a == 0) {
                    return 0;
                }
                // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                // `msb(a) <= a < 2*msb(a)`.
                // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                uint256 result = 1;
                uint256 x = a;
                if (x >> 128 > 0) {
                    x >>= 128;
                    result <<= 64;
                }
                if (x >> 64 > 0) {
                    x >>= 64;
                    result <<= 32;
                }
                if (x >> 32 > 0) {
                    x >>= 32;
                    result <<= 16;
                }
                if (x >> 16 > 0) {
                    x >>= 16;
                    result <<= 8;
                }
                if (x >> 8 > 0) {
                    x >>= 8;
                    result <<= 4;
                }
                if (x >> 4 > 0) {
                    x >>= 4;
                    result <<= 2;
                }
                if (x >> 2 > 0) {
                    result <<= 1;
                }
                // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                // into the expected uint128 result.
                unchecked {
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    return min(result, a / result);
                }
            }
            /**
             * @notice Calculates sqrt(a), following the selected rounding direction.
             */
            function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                uint256 result = sqrt(a);
                if (rounding == Rounding.Up && result * result < a) {
                    result += 1;
                }
                return result;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Standard signed math utilities missing in the Solidity language.
         */
        library SignedMath {
            /**
             * @dev Returns the largest of two signed numbers.
             */
            function max(int256 a, int256 b) internal pure returns (int256) {
                return a >= b ? a : b;
            }
            /**
             * @dev Returns the smallest of two signed numbers.
             */
            function min(int256 a, int256 b) internal pure returns (int256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two signed numbers without overflow.
             * The result is rounded towards zero.
             */
            function average(int256 a, int256 b) internal pure returns (int256) {
                // Formula from the book "Hacker's Delight"
                int256 x = (a & b) + ((a ^ b) >> 1);
                return x + (int256(uint256(x) >> 255) & (a ^ b));
            }
            /**
             * @dev Returns the absolute unsigned value of a signed value.
             */
            function abs(int256 n) internal pure returns (uint256) {
                unchecked {
                    // must be unchecked in order to support `n = type(int256).min`
                    return uint256(n >= 0 ? n : -n);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
        pragma solidity ^0.8.0;
        import "../utils/ContextUpgradeable.sol";
        import "../proxy/utils/Initializable.sol";
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * By default, the owner account will be the one that deploys the contract. This
         * can later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
            address private _owner;
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Initializes the contract setting the deployer as the initial owner.
             */
            function __Ownable_init() internal onlyInitializing {
                __Ownable_init_unchained();
            }
            function __Ownable_init_unchained() internal onlyInitializing {
                _transferOwnership(_msgSender());
            }
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                _checkOwner();
                _;
            }
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view virtual returns (address) {
                return _owner;
            }
            /**
             * @dev Throws if the sender is not the owner.
             */
            function _checkOwner() internal view virtual {
                require(owner() == _msgSender(), "Ownable: caller is not the owner");
            }
            /**
             * @dev Leaves the contract without owner. It will not be possible to call
             * `onlyOwner` functions anymore. Can only be called by the current owner.
             *
             * NOTE: Renouncing ownership will leave the contract without an owner,
             * thereby removing any functionality that is only available to the owner.
             */
            function renounceOwnership() public virtual onlyOwner {
                _transferOwnership(address(0));
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                require(newOwner != address(0), "Ownable: new owner is the zero address");
                _transferOwnership(newOwner);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Internal function without access restriction.
             */
            function _transferOwnership(address newOwner) internal virtual {
                address oldOwner = _owner;
                _owner = newOwner;
                emit OwnershipTransferred(oldOwner, newOwner);
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[49] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
        pragma solidity ^0.8.2;
        import "../../utils/AddressUpgradeable.sol";
        /**
         * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
         * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
         * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
         * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
         *
         * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
         * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
         * case an upgrade adds a module that needs to be initialized.
         *
         * For example:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * contract MyToken is ERC20Upgradeable {
         *     function initialize() initializer public {
         *         __ERC20_init("MyToken", "MTK");
         *     }
         * }
         * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
         *     function initializeV2() reinitializer(2) public {
         *         __ERC20Permit_init("MyToken");
         *     }
         * }
         * ```
         *
         * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
         * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
         *
         * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
         * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
         *
         * [CAUTION]
         * ====
         * Avoid leaving a contract uninitialized.
         *
         * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
         * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
         * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * /// @custom:oz-upgrades-unsafe-allow constructor
         * constructor() {
         *     _disableInitializers();
         * }
         * ```
         * ====
         */
        abstract contract Initializable {
            /**
             * @dev Indicates that the contract has been initialized.
             * @custom:oz-retyped-from bool
             */
            uint8 private _initialized;
            /**
             * @dev Indicates that the contract is in the process of being initialized.
             */
            bool private _initializing;
            /**
             * @dev Triggered when the contract has been initialized or reinitialized.
             */
            event Initialized(uint8 version);
            /**
             * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
             * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
             */
            modifier initializer() {
                bool isTopLevelCall = !_initializing;
                require(
                    (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                    "Initializable: contract is already initialized"
                );
                _initialized = 1;
                if (isTopLevelCall) {
                    _initializing = true;
                }
                _;
                if (isTopLevelCall) {
                    _initializing = false;
                    emit Initialized(1);
                }
            }
            /**
             * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
             * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
             * used to initialize parent contracts.
             *
             * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
             * initialization step. This is essential to configure modules that are added through upgrades and that require
             * initialization.
             *
             * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
             * a contract, executing them in the right order is up to the developer or operator.
             */
            modifier reinitializer(uint8 version) {
                require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                _initialized = version;
                _initializing = true;
                _;
                _initializing = false;
                emit Initialized(version);
            }
            /**
             * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
             * {initializer} and {reinitializer} modifiers, directly or indirectly.
             */
            modifier onlyInitializing() {
                require(_initializing, "Initializable: contract is not initializing");
                _;
            }
            /**
             * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
             * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
             * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
             * through proxies.
             */
            function _disableInitializers() internal virtual {
                require(!_initializing, "Initializable: contract is initializing");
                if (_initialized < type(uint8).max) {
                    _initialized = type(uint8).max;
                    emit Initialized(type(uint8).max);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
        pragma solidity ^0.8.1;
        /**
         * @dev Collection of functions related to the address type
         */
        library AddressUpgradeable {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             * ====
             *
             * [IMPORTANT]
             * ====
             * You shouldn't rely on `isContract` to protect against flash loan attacks!
             *
             * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
             * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
             * constructor.
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize/address.code.length, which returns 0
                // for contracts in construction, since the code is only stored at the end
                // of the constructor execution.
                return account.code.length > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                (bool success, ) = recipient.call{value: amount}("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCall(target, data, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                require(isContract(target), "Address: call to non-contract");
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                require(isContract(target), "Address: static call to non-contract");
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
             * revert reason using the provided one.
             *
             * _Available since v4.3._
             */
            function verifyCallResult(
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal pure returns (bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    // Look for revert reason and bubble it up if present
                    if (returndata.length > 0) {
                        // The easiest way to bubble the revert reason is using memory via assembly
                        /// @solidity memory-safe-assembly
                        assembly {
                            let returndata_size := mload(returndata)
                            revert(add(32, returndata), returndata_size)
                        }
                    } else {
                        revert(errorMessage);
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
        pragma solidity ^0.8.0;
        import "../proxy/utils/Initializable.sol";
        /**
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract ContextUpgradeable is Initializable {
            function __Context_init() internal onlyInitializing {
            }
            function __Context_init_unchained() internal onlyInitializing {
            }
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                return msg.data;
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.8.0;
        /// @notice Arithmetic library with operations for fixed-point numbers.
        /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
        library FixedPointMathLib {
            /*//////////////////////////////////////////////////////////////
                            SIMPLIFIED FIXED POINT OPERATIONS
            //////////////////////////////////////////////////////////////*/
            uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
            function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
            }
            function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
            }
            function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
            }
            function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
            }
            function powWad(int256 x, int256 y) internal pure returns (int256) {
                // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
                return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
            }
            function expWad(int256 x) internal pure returns (int256 r) {
                unchecked {
                    // When the result is < 0.5 we return zero. This happens when
                    // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                    if (x <= -42139678854452767551) return 0;
                    // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                    // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                    if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                    // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                    // for more intermediate precision and a binary basis. This base conversion
                    // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                    x = (x << 78) / 5**18;
                    // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                    // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                    // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                    int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                    x = x - k * 54916777467707473351141471128;
                    // k is in the range [-61, 195].
                    // Evaluate using a (6, 7)-term rational approximation.
                    // p is made monic, we'll multiply by a scale factor later.
                    int256 y = x + 1346386616545796478920950773328;
                    y = ((y * x) >> 96) + 57155421227552351082224309758442;
                    int256 p = y + x - 94201549194550492254356042504812;
                    p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                    p = p * x + (4385272521454847904659076985693276 << 96);
                    // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                    int256 q = x - 2855989394907223263936484059900;
                    q = ((q * x) >> 96) + 50020603652535783019961831881945;
                    q = ((q * x) >> 96) - 533845033583426703283633433725380;
                    q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                    q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                    q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                    assembly {
                        // Div in assembly because solidity adds a zero check despite the unchecked.
                        // The q polynomial won't have zeros in the domain as all its roots are complex.
                        // No scaling is necessary because p is already 2**96 too large.
                        r := sdiv(p, q)
                    }
                    // r should be in the range (0.09, 0.25) * 2**96.
                    // We now need to multiply r by:
                    // * the scale factor s = ~6.031367120.
                    // * the 2**k factor from the range reduction.
                    // * the 1e18 / 2**96 factor for base conversion.
                    // We do this all at once, with an intermediate result in 2**213
                    // basis, so the final right shift is always by a positive amount.
                    r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
                }
            }
            function lnWad(int256 x) internal pure returns (int256 r) {
                unchecked {
                    require(x > 0, "UNDEFINED");
                    // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                    // We do this by multiplying by 2**96 / 10**18. But since
                    // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                    // and add ln(2**96 / 10**18) at the end.
                    // Reduce range of x to (1, 2) * 2**96
                    // ln(2^k * x) = k * ln(2) + ln(x)
                    int256 k = int256(log2(uint256(x))) - 96;
                    x <<= uint256(159 - k);
                    x = int256(uint256(x) >> 159);
                    // Evaluate using a (8, 8)-term rational approximation.
                    // p is made monic, we will multiply by a scale factor later.
                    int256 p = x + 3273285459638523848632254066296;
                    p = ((p * x) >> 96) + 24828157081833163892658089445524;
                    p = ((p * x) >> 96) + 43456485725739037958740375743393;
                    p = ((p * x) >> 96) - 11111509109440967052023855526967;
                    p = ((p * x) >> 96) - 45023709667254063763336534515857;
                    p = ((p * x) >> 96) - 14706773417378608786704636184526;
                    p = p * x - (795164235651350426258249787498 << 96);
                    // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                    // q is monic by convention.
                    int256 q = x + 5573035233440673466300451813936;
                    q = ((q * x) >> 96) + 71694874799317883764090561454958;
                    q = ((q * x) >> 96) + 283447036172924575727196451306956;
                    q = ((q * x) >> 96) + 401686690394027663651624208769553;
                    q = ((q * x) >> 96) + 204048457590392012362485061816622;
                    q = ((q * x) >> 96) + 31853899698501571402653359427138;
                    q = ((q * x) >> 96) + 909429971244387300277376558375;
                    assembly {
                        // Div in assembly because solidity adds a zero check despite the unchecked.
                        // The q polynomial is known not to have zeros in the domain.
                        // No scaling required because p is already 2**96 too large.
                        r := sdiv(p, q)
                    }
                    // r is in the range (0, 0.125) * 2**96
                    // Finalization, we need to:
                    // * multiply by the scale factor s = 5.549…
                    // * add ln(2**96 / 10**18)
                    // * add k * ln(2)
                    // * multiply by 10**18 / 2**96 = 5**18 >> 78
                    // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                    r *= 1677202110996718588342820967067443963516166;
                    // add ln(2) * k * 5e18 * 2**192
                    r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                    // add ln(2**96 / 10**18) * 5e18 * 2**192
                    r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                    // base conversion: mul 2**18 / 2**192
                    r >>= 174;
                }
            }
            /*//////////////////////////////////////////////////////////////
                            LOW LEVEL FIXED POINT OPERATIONS
            //////////////////////////////////////////////////////////////*/
            function mulDivDown(
                uint256 x,
                uint256 y,
                uint256 denominator
            ) internal pure returns (uint256 z) {
                assembly {
                    // Store x * y in z for now.
                    z := mul(x, y)
                    // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                    if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                        revert(0, 0)
                    }
                    // Divide z by the denominator.
                    z := div(z, denominator)
                }
            }
            function mulDivUp(
                uint256 x,
                uint256 y,
                uint256 denominator
            ) internal pure returns (uint256 z) {
                assembly {
                    // Store x * y in z for now.
                    z := mul(x, y)
                    // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                    if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                        revert(0, 0)
                    }
                    // First, divide z - 1 by the denominator and add 1.
                    // We allow z - 1 to underflow if z is 0, because we multiply the
                    // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                    z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
                }
            }
            function rpow(
                uint256 x,
                uint256 n,
                uint256 scalar
            ) internal pure returns (uint256 z) {
                assembly {
                    switch x
                    case 0 {
                        switch n
                        case 0 {
                            // 0 ** 0 = 1
                            z := scalar
                        }
                        default {
                            // 0 ** n = 0
                            z := 0
                        }
                    }
                    default {
                        switch mod(n, 2)
                        case 0 {
                            // If n is even, store scalar in z for now.
                            z := scalar
                        }
                        default {
                            // If n is odd, store x in z for now.
                            z := x
                        }
                        // Shifting right by 1 is like dividing by 2.
                        let half := shr(1, scalar)
                        for {
                            // Shift n right by 1 before looping to halve it.
                            n := shr(1, n)
                        } n {
                            // Shift n right by 1 each iteration to halve it.
                            n := shr(1, n)
                        } {
                            // Revert immediately if x ** 2 would overflow.
                            // Equivalent to iszero(eq(div(xx, x), x)) here.
                            if shr(128, x) {
                                revert(0, 0)
                            }
                            // Store x squared.
                            let xx := mul(x, x)
                            // Round to the nearest number.
                            let xxRound := add(xx, half)
                            // Revert if xx + half overflowed.
                            if lt(xxRound, xx) {
                                revert(0, 0)
                            }
                            // Set x to scaled xxRound.
                            x := div(xxRound, scalar)
                            // If n is even:
                            if mod(n, 2) {
                                // Compute z * x.
                                let zx := mul(z, x)
                                // If z * x overflowed:
                                if iszero(eq(div(zx, x), z)) {
                                    // Revert if x is non-zero.
                                    if iszero(iszero(x)) {
                                        revert(0, 0)
                                    }
                                }
                                // Round to the nearest number.
                                let zxRound := add(zx, half)
                                // Revert if zx + half overflowed.
                                if lt(zxRound, zx) {
                                    revert(0, 0)
                                }
                                // Return properly scaled zxRound.
                                z := div(zxRound, scalar)
                            }
                        }
                    }
                }
            }
            /*//////////////////////////////////////////////////////////////
                                GENERAL NUMBER UTILITIES
            //////////////////////////////////////////////////////////////*/
            function sqrt(uint256 x) internal pure returns (uint256 z) {
                assembly {
                    let y := x // We start y at x, which will help us make our initial estimate.
                    z := 181 // The "correct" value is 1, but this saves a multiplication later.
                    // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                    // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                    // We check y >= 2^(k + 8) but shift right by k bits
                    // each branch to ensure that if x >= 256, then y >= 256.
                    if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                        y := shr(128, y)
                        z := shl(64, z)
                    }
                    if iszero(lt(y, 0x1000000000000000000)) {
                        y := shr(64, y)
                        z := shl(32, z)
                    }
                    if iszero(lt(y, 0x10000000000)) {
                        y := shr(32, y)
                        z := shl(16, z)
                    }
                    if iszero(lt(y, 0x1000000)) {
                        y := shr(16, y)
                        z := shl(8, z)
                    }
                    // Goal was to get z*z*y within a small factor of x. More iterations could
                    // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                    // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                    // That's not possible if x < 256 but we can just verify those cases exhaustively.
                    // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                    // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                    // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                    // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                    // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                    // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                    // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                    // There is no overflow risk here since y < 2^136 after the first branch above.
                    z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                    // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    // If x+1 is a perfect square, the Babylonian method cycles between
                    // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                    // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                    // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                    // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                    z := sub(z, lt(div(x, z), z))
                }
            }
            function log2(uint256 x) internal pure returns (uint256 r) {
                require(x > 0, "UNDEFINED");
                assembly {
                    r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                    r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                    r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                    r := or(r, shl(4, lt(0xffff, shr(r, x))))
                    r := or(r, shl(3, lt(0xff, shr(r, x))))
                    r := or(r, shl(2, lt(0xf, shr(r, x))))
                    r := or(r, shl(1, lt(0x3, shr(r, x))))
                    r := or(r, lt(0x1, shr(r, x)))
                }
            }
        }