ETH Price: $1,863.24 (-0.51%)

Transaction Decoder

Block:
15968543 at Nov-14-2022 01:22:47 PM +UTC
Transaction Fee:
0.003603843834572488 ETH $6.71
Gas Used:
179,972 Gas / 20.024469554 Gwei

Emitted Events:

9 XENCrypto.RankClaimed( user=[Sender] 0xfb8e7689a1c6457d75e9e38a05fce60bbbd15ca4, term=364, rank=2552248 )

Account State Difference:

  Address   Before After State Difference Code
0x06450dEe...5599a6Fb8
(Fee Recipient: 0xF0...C61)
13.79873701423623593 Eth13.79900697223623593 Eth0.000269958
0xFb8e7689...BBBd15CA4
0.031153079582497059 Eth
Nonce: 0
0.027549235747924571 Eth
Nonce: 1
0.003603843834572488

Execution Trace

XENCrypto.claimRank( term=364 )
  • Math.min( a=36201600, b=86400000 ) => ( 36201600 )
  • Math.max( a=2964, b=1 ) => ( 2964 )
    File 1 of 2: XENCrypto
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.10;
    import "./Math.sol";
    import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
    import "@openzeppelin/contracts/interfaces/IERC165.sol";
    import "abdk-libraries-solidity/ABDKMath64x64.sol";
    import "./interfaces/IStakingToken.sol";
    import "./interfaces/IRankedMintingToken.sol";
    import "./interfaces/IBurnableToken.sol";
    import "./interfaces/IBurnRedeemable.sol";
    contract XENCrypto is Context, IRankedMintingToken, IStakingToken, IBurnableToken, ERC20("XEN Crypto", "XEN") {
        using Math for uint256;
        using ABDKMath64x64 for int128;
        using ABDKMath64x64 for uint256;
        // INTERNAL TYPE TO DESCRIBE A XEN MINT INFO
        struct MintInfo {
            address user;
            uint256 term;
            uint256 maturityTs;
            uint256 rank;
            uint256 amplifier;
            uint256 eaaRate;
        }
        // INTERNAL TYPE TO DESCRIBE A XEN STAKE
        struct StakeInfo {
            uint256 term;
            uint256 maturityTs;
            uint256 amount;
            uint256 apy;
        }
        // PUBLIC CONSTANTS
        uint256 public constant SECONDS_IN_DAY = 3_600 * 24;
        uint256 public constant DAYS_IN_YEAR = 365;
        uint256 public constant GENESIS_RANK = 1;
        uint256 public constant MIN_TERM = 1 * SECONDS_IN_DAY - 1;
        uint256 public constant MAX_TERM_START = 100 * SECONDS_IN_DAY;
        uint256 public constant MAX_TERM_END = 1_000 * SECONDS_IN_DAY;
        uint256 public constant TERM_AMPLIFIER = 15;
        uint256 public constant TERM_AMPLIFIER_THRESHOLD = 5_000;
        uint256 public constant REWARD_AMPLIFIER_START = 3_000;
        uint256 public constant REWARD_AMPLIFIER_END = 1;
        uint256 public constant EAA_PM_START = 100;
        uint256 public constant EAA_PM_STEP = 1;
        uint256 public constant EAA_RANK_STEP = 100_000;
        uint256 public constant WITHDRAWAL_WINDOW_DAYS = 7;
        uint256 public constant MAX_PENALTY_PCT = 99;
        uint256 public constant XEN_MIN_STAKE = 0;
        uint256 public constant XEN_MIN_BURN = 0;
        uint256 public constant XEN_APY_START = 20;
        uint256 public constant XEN_APY_DAYS_STEP = 90;
        uint256 public constant XEN_APY_END = 2;
        string public constant AUTHORS = "@MrJackLevin @lbelyaev faircrypto.org";
        // PUBLIC STATE, READABLE VIA NAMESAKE GETTERS
        uint256 public immutable genesisTs;
        uint256 public globalRank = GENESIS_RANK;
        uint256 public activeMinters;
        uint256 public activeStakes;
        uint256 public totalXenStaked;
        // user address => XEN mint info
        mapping(address => MintInfo) public userMints;
        // user address => XEN stake info
        mapping(address => StakeInfo) public userStakes;
        // user address => XEN burn amount
        mapping(address => uint256) public userBurns;
        // CONSTRUCTOR
        constructor() {
            genesisTs = block.timestamp;
        }
        // PRIVATE METHODS
        /**
         * @dev calculates current MaxTerm based on Global Rank
         *      (if Global Rank crosses over TERM_AMPLIFIER_THRESHOLD)
         */
        function _calculateMaxTerm() private view returns (uint256) {
            if (globalRank > TERM_AMPLIFIER_THRESHOLD) {
                uint256 delta = globalRank.fromUInt().log_2().mul(TERM_AMPLIFIER.fromUInt()).toUInt();
                uint256 newMax = MAX_TERM_START + delta * SECONDS_IN_DAY;
                return Math.min(newMax, MAX_TERM_END);
            }
            return MAX_TERM_START;
        }
        /**
         * @dev calculates Withdrawal Penalty depending on lateness
         */
        function _penalty(uint256 secsLate) private pure returns (uint256) {
            // =MIN(2^(daysLate+3)/window-1,99)
            uint256 daysLate = secsLate / SECONDS_IN_DAY;
            if (daysLate > WITHDRAWAL_WINDOW_DAYS - 1) return MAX_PENALTY_PCT;
            uint256 penalty = (uint256(1) << (daysLate + 3)) / WITHDRAWAL_WINDOW_DAYS - 1;
            return Math.min(penalty, MAX_PENALTY_PCT);
        }
        /**
         * @dev calculates net Mint Reward (adjusted for Penalty)
         */
        function _calculateMintReward(
            uint256 cRank,
            uint256 term,
            uint256 maturityTs,
            uint256 amplifier,
            uint256 eeaRate
        ) private view returns (uint256) {
            uint256 secsLate = block.timestamp - maturityTs;
            uint256 penalty = _penalty(secsLate);
            uint256 rankDelta = Math.max(globalRank - cRank, 2);
            uint256 EAA = (1_000 + eeaRate);
            uint256 reward = getGrossReward(rankDelta, amplifier, term, EAA);
            return (reward * (100 - penalty)) / 100;
        }
        /**
         * @dev cleans up User Mint storage (gets some Gas credit;))
         */
        function _cleanUpUserMint() private {
            delete userMints[_msgSender()];
            activeMinters--;
        }
        /**
         * @dev calculates XEN Stake Reward
         */
        function _calculateStakeReward(
            uint256 amount,
            uint256 term,
            uint256 maturityTs,
            uint256 apy
        ) private view returns (uint256) {
            if (block.timestamp > maturityTs) {
                uint256 rate = (apy * term * 1_000_000) / DAYS_IN_YEAR;
                return (amount * rate) / 100_000_000;
            }
            return 0;
        }
        /**
         * @dev calculates Reward Amplifier
         */
        function _calculateRewardAmplifier() private view returns (uint256) {
            uint256 amplifierDecrease = (block.timestamp - genesisTs) / SECONDS_IN_DAY;
            if (amplifierDecrease < REWARD_AMPLIFIER_START) {
                return Math.max(REWARD_AMPLIFIER_START - amplifierDecrease, REWARD_AMPLIFIER_END);
            } else {
                return REWARD_AMPLIFIER_END;
            }
        }
        /**
         * @dev calculates Early Adopter Amplifier Rate (in 1/000ths)
         *      actual EAA is (1_000 + EAAR) / 1_000
         */
        function _calculateEAARate() private view returns (uint256) {
            uint256 decrease = (EAA_PM_STEP * globalRank) / EAA_RANK_STEP;
            if (decrease > EAA_PM_START) return 0;
            return EAA_PM_START - decrease;
        }
        /**
         * @dev calculates APY (in %)
         */
        function _calculateAPY() private view returns (uint256) {
            uint256 decrease = (block.timestamp - genesisTs) / (SECONDS_IN_DAY * XEN_APY_DAYS_STEP);
            if (XEN_APY_START - XEN_APY_END < decrease) return XEN_APY_END;
            return XEN_APY_START - decrease;
        }
        /**
         * @dev creates User Stake
         */
        function _createStake(uint256 amount, uint256 term) private {
            userStakes[_msgSender()] = StakeInfo({
                term: term,
                maturityTs: block.timestamp + term * SECONDS_IN_DAY,
                amount: amount,
                apy: _calculateAPY()
            });
            activeStakes++;
            totalXenStaked += amount;
        }
        // PUBLIC CONVENIENCE GETTERS
        /**
         * @dev calculates gross Mint Reward
         */
        function getGrossReward(
            uint256 rankDelta,
            uint256 amplifier,
            uint256 term,
            uint256 eaa
        ) public pure returns (uint256) {
            int128 log128 = rankDelta.fromUInt().log_2();
            int128 reward128 = log128.mul(amplifier.fromUInt()).mul(term.fromUInt()).mul(eaa.fromUInt());
            return reward128.div(uint256(1_000).fromUInt()).toUInt();
        }
        /**
         * @dev returns User Mint object associated with User account address
         */
        function getUserMint() external view returns (MintInfo memory) {
            return userMints[_msgSender()];
        }
        /**
         * @dev returns XEN Stake object associated with User account address
         */
        function getUserStake() external view returns (StakeInfo memory) {
            return userStakes[_msgSender()];
        }
        /**
         * @dev returns current AMP
         */
        function getCurrentAMP() external view returns (uint256) {
            return _calculateRewardAmplifier();
        }
        /**
         * @dev returns current EAA Rate
         */
        function getCurrentEAAR() external view returns (uint256) {
            return _calculateEAARate();
        }
        /**
         * @dev returns current APY
         */
        function getCurrentAPY() external view returns (uint256) {
            return _calculateAPY();
        }
        /**
         * @dev returns current MaxTerm
         */
        function getCurrentMaxTerm() external view returns (uint256) {
            return _calculateMaxTerm();
        }
        // PUBLIC STATE-CHANGING METHODS
        /**
         * @dev accepts User cRank claim provided all checks pass (incl. no current claim exists)
         */
        function claimRank(uint256 term) external {
            uint256 termSec = term * SECONDS_IN_DAY;
            require(termSec > MIN_TERM, "CRank: Term less than min");
            require(termSec < _calculateMaxTerm() + 1, "CRank: Term more than current max term");
            require(userMints[_msgSender()].rank == 0, "CRank: Mint already in progress");
            // create and store new MintInfo
            MintInfo memory mintInfo = MintInfo({
                user: _msgSender(),
                term: term,
                maturityTs: block.timestamp + termSec,
                rank: globalRank,
                amplifier: _calculateRewardAmplifier(),
                eaaRate: _calculateEAARate()
            });
            userMints[_msgSender()] = mintInfo;
            activeMinters++;
            emit RankClaimed(_msgSender(), term, globalRank++);
        }
        /**
         * @dev ends minting upon maturity (and within permitted Withdrawal Time Window), gets minted XEN
         */
        function claimMintReward() external {
            MintInfo memory mintInfo = userMints[_msgSender()];
            require(mintInfo.rank > 0, "CRank: No mint exists");
            require(block.timestamp > mintInfo.maturityTs, "CRank: Mint maturity not reached");
            // calculate reward and mint tokens
            uint256 rewardAmount = _calculateMintReward(
                mintInfo.rank,
                mintInfo.term,
                mintInfo.maturityTs,
                mintInfo.amplifier,
                mintInfo.eaaRate
            ) * 1 ether;
            _mint(_msgSender(), rewardAmount);
            _cleanUpUserMint();
            emit MintClaimed(_msgSender(), rewardAmount);
        }
        /**
         * @dev  ends minting upon maturity (and within permitted Withdrawal time Window)
         *       mints XEN coins and splits them between User and designated other address
         */
        function claimMintRewardAndShare(address other, uint256 pct) external {
            MintInfo memory mintInfo = userMints[_msgSender()];
            require(other != address(0), "CRank: Cannot share with zero address");
            require(pct > 0, "CRank: Cannot share zero percent");
            require(pct < 101, "CRank: Cannot share 100+ percent");
            require(mintInfo.rank > 0, "CRank: No mint exists");
            require(block.timestamp > mintInfo.maturityTs, "CRank: Mint maturity not reached");
            // calculate reward
            uint256 rewardAmount = _calculateMintReward(
                mintInfo.rank,
                mintInfo.term,
                mintInfo.maturityTs,
                mintInfo.amplifier,
                mintInfo.eaaRate
            ) * 1 ether;
            uint256 sharedReward = (rewardAmount * pct) / 100;
            uint256 ownReward = rewardAmount - sharedReward;
            // mint reward tokens
            _mint(_msgSender(), ownReward);
            _mint(other, sharedReward);
            _cleanUpUserMint();
            emit MintClaimed(_msgSender(), rewardAmount);
        }
        /**
         * @dev  ends minting upon maturity (and within permitted Withdrawal time Window)
         *       mints XEN coins and stakes 'pct' of it for 'term'
         */
        function claimMintRewardAndStake(uint256 pct, uint256 term) external {
            MintInfo memory mintInfo = userMints[_msgSender()];
            // require(pct > 0, "CRank: Cannot share zero percent");
            require(pct < 101, "CRank: Cannot share >100 percent");
            require(mintInfo.rank > 0, "CRank: No mint exists");
            require(block.timestamp > mintInfo.maturityTs, "CRank: Mint maturity not reached");
            // calculate reward
            uint256 rewardAmount = _calculateMintReward(
                mintInfo.rank,
                mintInfo.term,
                mintInfo.maturityTs,
                mintInfo.amplifier,
                mintInfo.eaaRate
            ) * 1 ether;
            uint256 stakedReward = (rewardAmount * pct) / 100;
            uint256 ownReward = rewardAmount - stakedReward;
            // mint reward tokens part
            _mint(_msgSender(), ownReward);
            _cleanUpUserMint();
            emit MintClaimed(_msgSender(), rewardAmount);
            // nothing to burn since we haven't minted this part yet
            // stake extra tokens part
            require(stakedReward > XEN_MIN_STAKE, "XEN: Below min stake");
            require(term * SECONDS_IN_DAY > MIN_TERM, "XEN: Below min stake term");
            require(term * SECONDS_IN_DAY < MAX_TERM_END + 1, "XEN: Above max stake term");
            require(userStakes[_msgSender()].amount == 0, "XEN: stake exists");
            _createStake(stakedReward, term);
            emit Staked(_msgSender(), stakedReward, term);
        }
        /**
         * @dev initiates XEN Stake in amount for a term (days)
         */
        function stake(uint256 amount, uint256 term) external {
            require(balanceOf(_msgSender()) >= amount, "XEN: not enough balance");
            require(amount > XEN_MIN_STAKE, "XEN: Below min stake");
            require(term * SECONDS_IN_DAY > MIN_TERM, "XEN: Below min stake term");
            require(term * SECONDS_IN_DAY < MAX_TERM_END + 1, "XEN: Above max stake term");
            require(userStakes[_msgSender()].amount == 0, "XEN: stake exists");
            // burn staked XEN
            _burn(_msgSender(), amount);
            // create XEN Stake
            _createStake(amount, term);
            emit Staked(_msgSender(), amount, term);
        }
        /**
         * @dev ends XEN Stake and gets reward if the Stake is mature
         */
        function withdraw() external {
            StakeInfo memory userStake = userStakes[_msgSender()];
            require(userStake.amount > 0, "XEN: no stake exists");
            uint256 xenReward = _calculateStakeReward(
                userStake.amount,
                userStake.term,
                userStake.maturityTs,
                userStake.apy
            );
            activeStakes--;
            totalXenStaked -= userStake.amount;
            // mint staked XEN (+ reward)
            _mint(_msgSender(), userStake.amount + xenReward);
            emit Withdrawn(_msgSender(), userStake.amount, xenReward);
            delete userStakes[_msgSender()];
        }
        /**
         * @dev burns XEN tokens and creates Proof-Of-Burn record to be used by connected DeFi services
         */
        function burn(address user, uint256 amount) public {
            require(amount > XEN_MIN_BURN, "Burn: Below min limit");
            require(
                IERC165(_msgSender()).supportsInterface(type(IBurnRedeemable).interfaceId),
                "Burn: not a supported contract"
            );
            _spendAllowance(user, _msgSender(), amount);
            _burn(user, amount);
            userBurns[user] += amount;
            IBurnRedeemable(_msgSender()).onTokenBurned(user, amount);
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.10;
    interface IStakingToken {
        event Staked(address indexed user, uint256 amount, uint256 term);
        event Withdrawn(address indexed user, uint256 amount, uint256 reward);
        function stake(uint256 amount, uint256 term) external;
        function withdraw() external;
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.10;
    interface IRankedMintingToken {
        event RankClaimed(address indexed user, uint256 term, uint256 rank);
        event MintClaimed(address indexed user, uint256 rewardAmount);
        function claimRank(uint256 term) external;
        function claimMintReward() external;
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.10;
    interface IBurnableToken {
        function burn(address user, uint256 amount) external;
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.10;
    interface IBurnRedeemable {
        event Redeemed(
            address indexed user,
            address indexed xenContract,
            address indexed tokenContract,
            uint256 xenAmount,
            uint256 tokenAmount
        );
        function onTokenBurned(address user, uint256 amount) external;
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.10;
    import "abdk-libraries-solidity/ABDKMath64x64.sol";
    library Math {
        function min(uint256 a, uint256 b) external pure returns (uint256) {
            if (a > b) return b;
            return a;
        }
        function max(uint256 a, uint256 b) external pure returns (uint256) {
            if (a > b) return a;
            return b;
        }
        function logX64(uint256 x) external pure returns (int128) {
            return ABDKMath64x64.log_2(ABDKMath64x64.fromUInt(x));
        }
    }
    // SPDX-License-Identifier: BSD-4-Clause
    /*
     * ABDK Math 64.64 Smart Contract Library.  Copyright © 2019 by ABDK Consulting.
     * Author: Mikhail Vladimirov <[email protected]>
     */
    pragma solidity ^0.8.0;
    /**
     * Smart contract library of mathematical functions operating with signed
     * 64.64-bit fixed point numbers.  Signed 64.64-bit fixed point number is
     * basically a simple fraction whose numerator is signed 128-bit integer and
     * denominator is 2^64.  As long as denominator is always the same, there is no
     * need to store it, thus in Solidity signed 64.64-bit fixed point numbers are
     * represented by int128 type holding only the numerator.
     */
    library ABDKMath64x64 {
      /*
       * Minimum value signed 64.64-bit fixed point number may have. 
       */
      int128 private constant MIN_64x64 = -0x80000000000000000000000000000000;
      /*
       * Maximum value signed 64.64-bit fixed point number may have. 
       */
      int128 private constant MAX_64x64 = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
      /**
       * Convert signed 256-bit integer number into signed 64.64-bit fixed point
       * number.  Revert on overflow.
       *
       * @param x signed 256-bit integer number
       * @return signed 64.64-bit fixed point number
       */
      function fromInt (int256 x) internal pure returns (int128) {
        unchecked {
          require (x >= -0x8000000000000000 && x <= 0x7FFFFFFFFFFFFFFF);
          return int128 (x << 64);
        }
      }
      /**
       * Convert signed 64.64 fixed point number into signed 64-bit integer number
       * rounding down.
       *
       * @param x signed 64.64-bit fixed point number
       * @return signed 64-bit integer number
       */
      function toInt (int128 x) internal pure returns (int64) {
        unchecked {
          return int64 (x >> 64);
        }
      }
      /**
       * Convert unsigned 256-bit integer number into signed 64.64-bit fixed point
       * number.  Revert on overflow.
       *
       * @param x unsigned 256-bit integer number
       * @return signed 64.64-bit fixed point number
       */
      function fromUInt (uint256 x) internal pure returns (int128) {
        unchecked {
          require (x <= 0x7FFFFFFFFFFFFFFF);
          return int128 (int256 (x << 64));
        }
      }
      /**
       * Convert signed 64.64 fixed point number into unsigned 64-bit integer
       * number rounding down.  Revert on underflow.
       *
       * @param x signed 64.64-bit fixed point number
       * @return unsigned 64-bit integer number
       */
      function toUInt (int128 x) internal pure returns (uint64) {
        unchecked {
          require (x >= 0);
          return uint64 (uint128 (x >> 64));
        }
      }
      /**
       * Convert signed 128.128 fixed point number into signed 64.64-bit fixed point
       * number rounding down.  Revert on overflow.
       *
       * @param x signed 128.128-bin fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function from128x128 (int256 x) internal pure returns (int128) {
        unchecked {
          int256 result = x >> 64;
          require (result >= MIN_64x64 && result <= MAX_64x64);
          return int128 (result);
        }
      }
      /**
       * Convert signed 64.64 fixed point number into signed 128.128 fixed point
       * number.
       *
       * @param x signed 64.64-bit fixed point number
       * @return signed 128.128 fixed point number
       */
      function to128x128 (int128 x) internal pure returns (int256) {
        unchecked {
          return int256 (x) << 64;
        }
      }
      /**
       * Calculate x + y.  Revert on overflow.
       *
       * @param x signed 64.64-bit fixed point number
       * @param y signed 64.64-bit fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function add (int128 x, int128 y) internal pure returns (int128) {
        unchecked {
          int256 result = int256(x) + y;
          require (result >= MIN_64x64 && result <= MAX_64x64);
          return int128 (result);
        }
      }
      /**
       * Calculate x - y.  Revert on overflow.
       *
       * @param x signed 64.64-bit fixed point number
       * @param y signed 64.64-bit fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function sub (int128 x, int128 y) internal pure returns (int128) {
        unchecked {
          int256 result = int256(x) - y;
          require (result >= MIN_64x64 && result <= MAX_64x64);
          return int128 (result);
        }
      }
      /**
       * Calculate x * y rounding down.  Revert on overflow.
       *
       * @param x signed 64.64-bit fixed point number
       * @param y signed 64.64-bit fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function mul (int128 x, int128 y) internal pure returns (int128) {
        unchecked {
          int256 result = int256(x) * y >> 64;
          require (result >= MIN_64x64 && result <= MAX_64x64);
          return int128 (result);
        }
      }
      /**
       * Calculate x * y rounding towards zero, where x is signed 64.64 fixed point
       * number and y is signed 256-bit integer number.  Revert on overflow.
       *
       * @param x signed 64.64 fixed point number
       * @param y signed 256-bit integer number
       * @return signed 256-bit integer number
       */
      function muli (int128 x, int256 y) internal pure returns (int256) {
        unchecked {
          if (x == MIN_64x64) {
            require (y >= -0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF &&
              y <= 0x1000000000000000000000000000000000000000000000000);
            return -y << 63;
          } else {
            bool negativeResult = false;
            if (x < 0) {
              x = -x;
              negativeResult = true;
            }
            if (y < 0) {
              y = -y; // We rely on overflow behavior here
              negativeResult = !negativeResult;
            }
            uint256 absoluteResult = mulu (x, uint256 (y));
            if (negativeResult) {
              require (absoluteResult <=
                0x8000000000000000000000000000000000000000000000000000000000000000);
              return -int256 (absoluteResult); // We rely on overflow behavior here
            } else {
              require (absoluteResult <=
                0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
              return int256 (absoluteResult);
            }
          }
        }
      }
      /**
       * Calculate x * y rounding down, where x is signed 64.64 fixed point number
       * and y is unsigned 256-bit integer number.  Revert on overflow.
       *
       * @param x signed 64.64 fixed point number
       * @param y unsigned 256-bit integer number
       * @return unsigned 256-bit integer number
       */
      function mulu (int128 x, uint256 y) internal pure returns (uint256) {
        unchecked {
          if (y == 0) return 0;
          require (x >= 0);
          uint256 lo = (uint256 (int256 (x)) * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) >> 64;
          uint256 hi = uint256 (int256 (x)) * (y >> 128);
          require (hi <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
          hi <<= 64;
          require (hi <=
            0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF - lo);
          return hi + lo;
        }
      }
      /**
       * Calculate x / y rounding towards zero.  Revert on overflow or when y is
       * zero.
       *
       * @param x signed 64.64-bit fixed point number
       * @param y signed 64.64-bit fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function div (int128 x, int128 y) internal pure returns (int128) {
        unchecked {
          require (y != 0);
          int256 result = (int256 (x) << 64) / y;
          require (result >= MIN_64x64 && result <= MAX_64x64);
          return int128 (result);
        }
      }
      /**
       * Calculate x / y rounding towards zero, where x and y are signed 256-bit
       * integer numbers.  Revert on overflow or when y is zero.
       *
       * @param x signed 256-bit integer number
       * @param y signed 256-bit integer number
       * @return signed 64.64-bit fixed point number
       */
      function divi (int256 x, int256 y) internal pure returns (int128) {
        unchecked {
          require (y != 0);
          bool negativeResult = false;
          if (x < 0) {
            x = -x; // We rely on overflow behavior here
            negativeResult = true;
          }
          if (y < 0) {
            y = -y; // We rely on overflow behavior here
            negativeResult = !negativeResult;
          }
          uint128 absoluteResult = divuu (uint256 (x), uint256 (y));
          if (negativeResult) {
            require (absoluteResult <= 0x80000000000000000000000000000000);
            return -int128 (absoluteResult); // We rely on overflow behavior here
          } else {
            require (absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
            return int128 (absoluteResult); // We rely on overflow behavior here
          }
        }
      }
      /**
       * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
       * integer numbers.  Revert on overflow or when y is zero.
       *
       * @param x unsigned 256-bit integer number
       * @param y unsigned 256-bit integer number
       * @return signed 64.64-bit fixed point number
       */
      function divu (uint256 x, uint256 y) internal pure returns (int128) {
        unchecked {
          require (y != 0);
          uint128 result = divuu (x, y);
          require (result <= uint128 (MAX_64x64));
          return int128 (result);
        }
      }
      /**
       * Calculate -x.  Revert on overflow.
       *
       * @param x signed 64.64-bit fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function neg (int128 x) internal pure returns (int128) {
        unchecked {
          require (x != MIN_64x64);
          return -x;
        }
      }
      /**
       * Calculate |x|.  Revert on overflow.
       *
       * @param x signed 64.64-bit fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function abs (int128 x) internal pure returns (int128) {
        unchecked {
          require (x != MIN_64x64);
          return x < 0 ? -x : x;
        }
      }
      /**
       * Calculate 1 / x rounding towards zero.  Revert on overflow or when x is
       * zero.
       *
       * @param x signed 64.64-bit fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function inv (int128 x) internal pure returns (int128) {
        unchecked {
          require (x != 0);
          int256 result = int256 (0x100000000000000000000000000000000) / x;
          require (result >= MIN_64x64 && result <= MAX_64x64);
          return int128 (result);
        }
      }
      /**
       * Calculate arithmetics average of x and y, i.e. (x + y) / 2 rounding down.
       *
       * @param x signed 64.64-bit fixed point number
       * @param y signed 64.64-bit fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function avg (int128 x, int128 y) internal pure returns (int128) {
        unchecked {
          return int128 ((int256 (x) + int256 (y)) >> 1);
        }
      }
      /**
       * Calculate geometric average of x and y, i.e. sqrt (x * y) rounding down.
       * Revert on overflow or in case x * y is negative.
       *
       * @param x signed 64.64-bit fixed point number
       * @param y signed 64.64-bit fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function gavg (int128 x, int128 y) internal pure returns (int128) {
        unchecked {
          int256 m = int256 (x) * int256 (y);
          require (m >= 0);
          require (m <
              0x4000000000000000000000000000000000000000000000000000000000000000);
          return int128 (sqrtu (uint256 (m)));
        }
      }
      /**
       * Calculate x^y assuming 0^0 is 1, where x is signed 64.64 fixed point number
       * and y is unsigned 256-bit integer number.  Revert on overflow.
       *
       * @param x signed 64.64-bit fixed point number
       * @param y uint256 value
       * @return signed 64.64-bit fixed point number
       */
      function pow (int128 x, uint256 y) internal pure returns (int128) {
        unchecked {
          bool negative = x < 0 && y & 1 == 1;
          uint256 absX = uint128 (x < 0 ? -x : x);
          uint256 absResult;
          absResult = 0x100000000000000000000000000000000;
          if (absX <= 0x10000000000000000) {
            absX <<= 63;
            while (y != 0) {
              if (y & 0x1 != 0) {
                absResult = absResult * absX >> 127;
              }
              absX = absX * absX >> 127;
              if (y & 0x2 != 0) {
                absResult = absResult * absX >> 127;
              }
              absX = absX * absX >> 127;
              if (y & 0x4 != 0) {
                absResult = absResult * absX >> 127;
              }
              absX = absX * absX >> 127;
              if (y & 0x8 != 0) {
                absResult = absResult * absX >> 127;
              }
              absX = absX * absX >> 127;
              y >>= 4;
            }
            absResult >>= 64;
          } else {
            uint256 absXShift = 63;
            if (absX < 0x1000000000000000000000000) { absX <<= 32; absXShift -= 32; }
            if (absX < 0x10000000000000000000000000000) { absX <<= 16; absXShift -= 16; }
            if (absX < 0x1000000000000000000000000000000) { absX <<= 8; absXShift -= 8; }
            if (absX < 0x10000000000000000000000000000000) { absX <<= 4; absXShift -= 4; }
            if (absX < 0x40000000000000000000000000000000) { absX <<= 2; absXShift -= 2; }
            if (absX < 0x80000000000000000000000000000000) { absX <<= 1; absXShift -= 1; }
            uint256 resultShift = 0;
            while (y != 0) {
              require (absXShift < 64);
              if (y & 0x1 != 0) {
                absResult = absResult * absX >> 127;
                resultShift += absXShift;
                if (absResult > 0x100000000000000000000000000000000) {
                  absResult >>= 1;
                  resultShift += 1;
                }
              }
              absX = absX * absX >> 127;
              absXShift <<= 1;
              if (absX >= 0x100000000000000000000000000000000) {
                  absX >>= 1;
                  absXShift += 1;
              }
              y >>= 1;
            }
            require (resultShift < 64);
            absResult >>= 64 - resultShift;
          }
          int256 result = negative ? -int256 (absResult) : int256 (absResult);
          require (result >= MIN_64x64 && result <= MAX_64x64);
          return int128 (result);
        }
      }
      /**
       * Calculate sqrt (x) rounding down.  Revert if x < 0.
       *
       * @param x signed 64.64-bit fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function sqrt (int128 x) internal pure returns (int128) {
        unchecked {
          require (x >= 0);
          return int128 (sqrtu (uint256 (int256 (x)) << 64));
        }
      }
      /**
       * Calculate binary logarithm of x.  Revert if x <= 0.
       *
       * @param x signed 64.64-bit fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function log_2 (int128 x) internal pure returns (int128) {
        unchecked {
          require (x > 0);
          int256 msb = 0;
          int256 xc = x;
          if (xc >= 0x10000000000000000) { xc >>= 64; msb += 64; }
          if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
          if (xc >= 0x10000) { xc >>= 16; msb += 16; }
          if (xc >= 0x100) { xc >>= 8; msb += 8; }
          if (xc >= 0x10) { xc >>= 4; msb += 4; }
          if (xc >= 0x4) { xc >>= 2; msb += 2; }
          if (xc >= 0x2) msb += 1;  // No need to shift xc anymore
          int256 result = msb - 64 << 64;
          uint256 ux = uint256 (int256 (x)) << uint256 (127 - msb);
          for (int256 bit = 0x8000000000000000; bit > 0; bit >>= 1) {
            ux *= ux;
            uint256 b = ux >> 255;
            ux >>= 127 + b;
            result += bit * int256 (b);
          }
          return int128 (result);
        }
      }
      /**
       * Calculate natural logarithm of x.  Revert if x <= 0.
       *
       * @param x signed 64.64-bit fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function ln (int128 x) internal pure returns (int128) {
        unchecked {
          require (x > 0);
          return int128 (int256 (
              uint256 (int256 (log_2 (x))) * 0xB17217F7D1CF79ABC9E3B39803F2F6AF >> 128));
        }
      }
      /**
       * Calculate binary exponent of x.  Revert on overflow.
       *
       * @param x signed 64.64-bit fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function exp_2 (int128 x) internal pure returns (int128) {
        unchecked {
          require (x < 0x400000000000000000); // Overflow
          if (x < -0x400000000000000000) return 0; // Underflow
          uint256 result = 0x80000000000000000000000000000000;
          if (x & 0x8000000000000000 > 0)
            result = result * 0x16A09E667F3BCC908B2FB1366EA957D3E >> 128;
          if (x & 0x4000000000000000 > 0)
            result = result * 0x1306FE0A31B7152DE8D5A46305C85EDEC >> 128;
          if (x & 0x2000000000000000 > 0)
            result = result * 0x1172B83C7D517ADCDF7C8C50EB14A791F >> 128;
          if (x & 0x1000000000000000 > 0)
            result = result * 0x10B5586CF9890F6298B92B71842A98363 >> 128;
          if (x & 0x800000000000000 > 0)
            result = result * 0x1059B0D31585743AE7C548EB68CA417FD >> 128;
          if (x & 0x400000000000000 > 0)
            result = result * 0x102C9A3E778060EE6F7CACA4F7A29BDE8 >> 128;
          if (x & 0x200000000000000 > 0)
            result = result * 0x10163DA9FB33356D84A66AE336DCDFA3F >> 128;
          if (x & 0x100000000000000 > 0)
            result = result * 0x100B1AFA5ABCBED6129AB13EC11DC9543 >> 128;
          if (x & 0x80000000000000 > 0)
            result = result * 0x10058C86DA1C09EA1FF19D294CF2F679B >> 128;
          if (x & 0x40000000000000 > 0)
            result = result * 0x1002C605E2E8CEC506D21BFC89A23A00F >> 128;
          if (x & 0x20000000000000 > 0)
            result = result * 0x100162F3904051FA128BCA9C55C31E5DF >> 128;
          if (x & 0x10000000000000 > 0)
            result = result * 0x1000B175EFFDC76BA38E31671CA939725 >> 128;
          if (x & 0x8000000000000 > 0)
            result = result * 0x100058BA01FB9F96D6CACD4B180917C3D >> 128;
          if (x & 0x4000000000000 > 0)
            result = result * 0x10002C5CC37DA9491D0985C348C68E7B3 >> 128;
          if (x & 0x2000000000000 > 0)
            result = result * 0x1000162E525EE054754457D5995292026 >> 128;
          if (x & 0x1000000000000 > 0)
            result = result * 0x10000B17255775C040618BF4A4ADE83FC >> 128;
          if (x & 0x800000000000 > 0)
            result = result * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB >> 128;
          if (x & 0x400000000000 > 0)
            result = result * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9 >> 128;
          if (x & 0x200000000000 > 0)
            result = result * 0x10000162E43F4F831060E02D839A9D16D >> 128;
          if (x & 0x100000000000 > 0)
            result = result * 0x100000B1721BCFC99D9F890EA06911763 >> 128;
          if (x & 0x80000000000 > 0)
            result = result * 0x10000058B90CF1E6D97F9CA14DBCC1628 >> 128;
          if (x & 0x40000000000 > 0)
            result = result * 0x1000002C5C863B73F016468F6BAC5CA2B >> 128;
          if (x & 0x20000000000 > 0)
            result = result * 0x100000162E430E5A18F6119E3C02282A5 >> 128;
          if (x & 0x10000000000 > 0)
            result = result * 0x1000000B1721835514B86E6D96EFD1BFE >> 128;
          if (x & 0x8000000000 > 0)
            result = result * 0x100000058B90C0B48C6BE5DF846C5B2EF >> 128;
          if (x & 0x4000000000 > 0)
            result = result * 0x10000002C5C8601CC6B9E94213C72737A >> 128;
          if (x & 0x2000000000 > 0)
            result = result * 0x1000000162E42FFF037DF38AA2B219F06 >> 128;
          if (x & 0x1000000000 > 0)
            result = result * 0x10000000B17217FBA9C739AA5819F44F9 >> 128;
          if (x & 0x800000000 > 0)
            result = result * 0x1000000058B90BFCDEE5ACD3C1CEDC823 >> 128;
          if (x & 0x400000000 > 0)
            result = result * 0x100000002C5C85FE31F35A6A30DA1BE50 >> 128;
          if (x & 0x200000000 > 0)
            result = result * 0x10000000162E42FF0999CE3541B9FFFCF >> 128;
          if (x & 0x100000000 > 0)
            result = result * 0x100000000B17217F80F4EF5AADDA45554 >> 128;
          if (x & 0x80000000 > 0)
            result = result * 0x10000000058B90BFBF8479BD5A81B51AD >> 128;
          if (x & 0x40000000 > 0)
            result = result * 0x1000000002C5C85FDF84BD62AE30A74CC >> 128;
          if (x & 0x20000000 > 0)
            result = result * 0x100000000162E42FEFB2FED257559BDAA >> 128;
          if (x & 0x10000000 > 0)
            result = result * 0x1000000000B17217F7D5A7716BBA4A9AE >> 128;
          if (x & 0x8000000 > 0)
            result = result * 0x100000000058B90BFBE9DDBAC5E109CCE >> 128;
          if (x & 0x4000000 > 0)
            result = result * 0x10000000002C5C85FDF4B15DE6F17EB0D >> 128;
          if (x & 0x2000000 > 0)
            result = result * 0x1000000000162E42FEFA494F1478FDE05 >> 128;
          if (x & 0x1000000 > 0)
            result = result * 0x10000000000B17217F7D20CF927C8E94C >> 128;
          if (x & 0x800000 > 0)
            result = result * 0x1000000000058B90BFBE8F71CB4E4B33D >> 128;
          if (x & 0x400000 > 0)
            result = result * 0x100000000002C5C85FDF477B662B26945 >> 128;
          if (x & 0x200000 > 0)
            result = result * 0x10000000000162E42FEFA3AE53369388C >> 128;
          if (x & 0x100000 > 0)
            result = result * 0x100000000000B17217F7D1D351A389D40 >> 128;
          if (x & 0x80000 > 0)
            result = result * 0x10000000000058B90BFBE8E8B2D3D4EDE >> 128;
          if (x & 0x40000 > 0)
            result = result * 0x1000000000002C5C85FDF4741BEA6E77E >> 128;
          if (x & 0x20000 > 0)
            result = result * 0x100000000000162E42FEFA39FE95583C2 >> 128;
          if (x & 0x10000 > 0)
            result = result * 0x1000000000000B17217F7D1CFB72B45E1 >> 128;
          if (x & 0x8000 > 0)
            result = result * 0x100000000000058B90BFBE8E7CC35C3F0 >> 128;
          if (x & 0x4000 > 0)
            result = result * 0x10000000000002C5C85FDF473E242EA38 >> 128;
          if (x & 0x2000 > 0)
            result = result * 0x1000000000000162E42FEFA39F02B772C >> 128;
          if (x & 0x1000 > 0)
            result = result * 0x10000000000000B17217F7D1CF7D83C1A >> 128;
          if (x & 0x800 > 0)
            result = result * 0x1000000000000058B90BFBE8E7BDCBE2E >> 128;
          if (x & 0x400 > 0)
            result = result * 0x100000000000002C5C85FDF473DEA871F >> 128;
          if (x & 0x200 > 0)
            result = result * 0x10000000000000162E42FEFA39EF44D91 >> 128;
          if (x & 0x100 > 0)
            result = result * 0x100000000000000B17217F7D1CF79E949 >> 128;
          if (x & 0x80 > 0)
            result = result * 0x10000000000000058B90BFBE8E7BCE544 >> 128;
          if (x & 0x40 > 0)
            result = result * 0x1000000000000002C5C85FDF473DE6ECA >> 128;
          if (x & 0x20 > 0)
            result = result * 0x100000000000000162E42FEFA39EF366F >> 128;
          if (x & 0x10 > 0)
            result = result * 0x1000000000000000B17217F7D1CF79AFA >> 128;
          if (x & 0x8 > 0)
            result = result * 0x100000000000000058B90BFBE8E7BCD6D >> 128;
          if (x & 0x4 > 0)
            result = result * 0x10000000000000002C5C85FDF473DE6B2 >> 128;
          if (x & 0x2 > 0)
            result = result * 0x1000000000000000162E42FEFA39EF358 >> 128;
          if (x & 0x1 > 0)
            result = result * 0x10000000000000000B17217F7D1CF79AB >> 128;
          result >>= uint256 (int256 (63 - (x >> 64)));
          require (result <= uint256 (int256 (MAX_64x64)));
          return int128 (int256 (result));
        }
      }
      /**
       * Calculate natural exponent of x.  Revert on overflow.
       *
       * @param x signed 64.64-bit fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function exp (int128 x) internal pure returns (int128) {
        unchecked {
          require (x < 0x400000000000000000); // Overflow
          if (x < -0x400000000000000000) return 0; // Underflow
          return exp_2 (
              int128 (int256 (x) * 0x171547652B82FE1777D0FFDA0D23A7D12 >> 128));
        }
      }
      /**
       * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
       * integer numbers.  Revert on overflow or when y is zero.
       *
       * @param x unsigned 256-bit integer number
       * @param y unsigned 256-bit integer number
       * @return unsigned 64.64-bit fixed point number
       */
      function divuu (uint256 x, uint256 y) private pure returns (uint128) {
        unchecked {
          require (y != 0);
          uint256 result;
          if (x <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
            result = (x << 64) / y;
          else {
            uint256 msb = 192;
            uint256 xc = x >> 192;
            if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
            if (xc >= 0x10000) { xc >>= 16; msb += 16; }
            if (xc >= 0x100) { xc >>= 8; msb += 8; }
            if (xc >= 0x10) { xc >>= 4; msb += 4; }
            if (xc >= 0x4) { xc >>= 2; msb += 2; }
            if (xc >= 0x2) msb += 1;  // No need to shift xc anymore
            result = (x << 255 - msb) / ((y - 1 >> msb - 191) + 1);
            require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
            uint256 hi = result * (y >> 128);
            uint256 lo = result * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
            uint256 xh = x >> 192;
            uint256 xl = x << 64;
            if (xl < lo) xh -= 1;
            xl -= lo; // We rely on overflow behavior here
            lo = hi << 128;
            if (xl < lo) xh -= 1;
            xl -= lo; // We rely on overflow behavior here
            assert (xh == hi >> 128);
            result += xl / y;
          }
          require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
          return uint128 (result);
        }
      }
      /**
       * Calculate sqrt (x) rounding down, where x is unsigned 256-bit integer
       * number.
       *
       * @param x unsigned 256-bit integer number
       * @return unsigned 128-bit integer number
       */
      function sqrtu (uint256 x) private pure returns (uint128) {
        unchecked {
          if (x == 0) return 0;
          else {
            uint256 xx = x;
            uint256 r = 1;
            if (xx >= 0x100000000000000000000000000000000) { xx >>= 128; r <<= 64; }
            if (xx >= 0x10000000000000000) { xx >>= 64; r <<= 32; }
            if (xx >= 0x100000000) { xx >>= 32; r <<= 16; }
            if (xx >= 0x10000) { xx >>= 16; r <<= 8; }
            if (xx >= 0x100) { xx >>= 8; r <<= 4; }
            if (xx >= 0x10) { xx >>= 4; r <<= 2; }
            if (xx >= 0x8) { r <<= 1; }
            r = (r + x / r) >> 1;
            r = (r + x / r) >> 1;
            r = (r + x / r) >> 1;
            r = (r + x / r) >> 1;
            r = (r + x / r) >> 1;
            r = (r + x / r) >> 1;
            r = (r + x / r) >> 1; // Seven iterations should be enough
            uint256 r1 = x / r;
            return uint128 (r < r1 ? r : r1);
          }
        }
      }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC165 standard, as defined in the
     * https://eips.ethereum.org/EIPS/eip-165[EIP].
     *
     * Implementers can declare support of contract interfaces, which can then be
     * queried by others ({ERC165Checker}).
     *
     * For an implementation, see {ERC165}.
     */
    interface IERC165 {
        /**
         * @dev Returns true if this contract implements the interface defined by
         * `interfaceId`. See the corresponding
         * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
         * to learn more about how these ids are created.
         *
         * This function call must use less than 30 000 gas.
         */
        function supportsInterface(bytes4 interfaceId) external view returns (bool);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
    pragma solidity ^0.8.0;
    import "../IERC20.sol";
    /**
     * @dev Interface for the optional metadata functions from the ERC20 standard.
     *
     * _Available since v4.1._
     */
    interface IERC20Metadata is IERC20 {
        /**
         * @dev Returns the name of the token.
         */
        function name() external view returns (string memory);
        /**
         * @dev Returns the symbol of the token.
         */
        function symbol() external view returns (string memory);
        /**
         * @dev Returns the decimals places of the token.
         */
        function decimals() external view returns (uint8);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Moves `amount` tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 amount) external returns (bool);
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
        /**
         * @dev Moves `amount` tokens from `from` to `to` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) external returns (bool);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/ERC20.sol)
    pragma solidity ^0.8.0;
    import "./IERC20.sol";
    import "./extensions/IERC20Metadata.sol";
    import "../../utils/Context.sol";
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     * For a generic mechanism see {ERC20PresetMinterPauser}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * We have followed general OpenZeppelin Contracts guidelines: functions revert
     * instead returning `false` on failure. This behavior is nonetheless
     * conventional and does not conflict with the expectations of ERC20
     * applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See {IERC20-approve}.
     */
    contract ERC20 is Context, IERC20, IERC20Metadata {
        mapping(address => uint256) private _balances;
        mapping(address => mapping(address => uint256)) private _allowances;
        uint256 private _totalSupply;
        string private _name;
        string private _symbol;
        /**
         * @dev Sets the values for {name} and {symbol}.
         *
         * The default value of {decimals} is 18. To select a different value for
         * {decimals} you should overload it.
         *
         * All two of these values are immutable: they can only be set once during
         * construction.
         */
        constructor(string memory name_, string memory symbol_) {
            _name = name_;
            _symbol = symbol_;
        }
        /**
         * @dev Returns the name of the token.
         */
        function name() public view virtual override returns (string memory) {
            return _name;
        }
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view virtual override returns (string memory) {
            return _symbol;
        }
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5.05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the value {ERC20} uses, unless this function is
         * overridden;
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view virtual override returns (uint8) {
            return 18;
        }
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view virtual override returns (uint256) {
            return _totalSupply;
        }
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view virtual override returns (uint256) {
            return _balances[account];
        }
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address to, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _transfer(owner, to, amount);
            return true;
        }
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view virtual override returns (uint256) {
            return _allowances[owner][spender];
        }
        /**
         * @dev See {IERC20-approve}.
         *
         * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
         * `transferFrom`. This is semantically equivalent to an infinite approval.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, amount);
            return true;
        }
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20}.
         *
         * NOTE: Does not update the allowance if the current allowance
         * is the maximum `uint256`.
         *
         * Requirements:
         *
         * - `from` and `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         * - the caller must have allowance for ``from``'s tokens of at least
         * `amount`.
         */
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) public virtual override returns (bool) {
            address spender = _msgSender();
            _spendAllowance(from, spender, amount);
            _transfer(from, to, amount);
            return true;
        }
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, allowance(owner, spender) + addedValue);
            return true;
        }
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
            address owner = _msgSender();
            uint256 currentAllowance = allowance(owner, spender);
            require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
            unchecked {
                _approve(owner, spender, currentAllowance - subtractedValue);
            }
            return true;
        }
        /**
         * @dev Moves `amount` of tokens from `from` to `to`.
         *
         * This internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         */
        function _transfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {
            require(from != address(0), "ERC20: transfer from the zero address");
            require(to != address(0), "ERC20: transfer to the zero address");
            _beforeTokenTransfer(from, to, amount);
            uint256 fromBalance = _balances[from];
            require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
            unchecked {
                _balances[from] = fromBalance - amount;
            }
            _balances[to] += amount;
            emit Transfer(from, to, amount);
            _afterTokenTransfer(from, to, amount);
        }
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: mint to the zero address");
            _beforeTokenTransfer(address(0), account, amount);
            _totalSupply += amount;
            _balances[account] += amount;
            emit Transfer(address(0), account, amount);
            _afterTokenTransfer(address(0), account, amount);
        }
        /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: burn from the zero address");
            _beforeTokenTransfer(account, address(0), amount);
            uint256 accountBalance = _balances[account];
            require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
            unchecked {
                _balances[account] = accountBalance - amount;
            }
            _totalSupply -= amount;
            emit Transfer(account, address(0), amount);
            _afterTokenTransfer(account, address(0), amount);
        }
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
         *
         * This internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
            _allowances[owner][spender] = amount;
            emit Approval(owner, spender, amount);
        }
        /**
         * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
         *
         * Does not update the allowance amount in case of infinite allowance.
         * Revert if not enough allowance is available.
         *
         * Might emit an {Approval} event.
         */
        function _spendAllowance(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            uint256 currentAllowance = allowance(owner, spender);
            if (currentAllowance != type(uint256).max) {
                require(currentAllowance >= amount, "ERC20: insufficient allowance");
                unchecked {
                    _approve(owner, spender, currentAllowance - amount);
                }
            }
        }
        /**
         * @dev Hook that is called before any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * will be transferred to `to`.
         * - when `from` is zero, `amount` tokens will be minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _beforeTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
        /**
         * @dev Hook that is called after any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * has been transferred to `to`.
         * - when `from` is zero, `amount` tokens have been minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _afterTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (interfaces/IERC165.sol)
    pragma solidity ^0.8.0;
    import "../utils/introspection/IERC165.sol";
    

    File 2 of 2: Math
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.10;
    import "abdk-libraries-solidity/ABDKMath64x64.sol";
    library Math {
        function min(uint256 a, uint256 b) external pure returns (uint256) {
            if (a > b) return b;
            return a;
        }
        function max(uint256 a, uint256 b) external pure returns (uint256) {
            if (a > b) return a;
            return b;
        }
        function logX64(uint256 x) external pure returns (int128) {
            return ABDKMath64x64.log_2(ABDKMath64x64.fromUInt(x));
        }
    }
    // SPDX-License-Identifier: BSD-4-Clause
    /*
     * ABDK Math 64.64 Smart Contract Library.  Copyright © 2019 by ABDK Consulting.
     * Author: Mikhail Vladimirov <[email protected]>
     */
    pragma solidity ^0.8.0;
    /**
     * Smart contract library of mathematical functions operating with signed
     * 64.64-bit fixed point numbers.  Signed 64.64-bit fixed point number is
     * basically a simple fraction whose numerator is signed 128-bit integer and
     * denominator is 2^64.  As long as denominator is always the same, there is no
     * need to store it, thus in Solidity signed 64.64-bit fixed point numbers are
     * represented by int128 type holding only the numerator.
     */
    library ABDKMath64x64 {
      /*
       * Minimum value signed 64.64-bit fixed point number may have. 
       */
      int128 private constant MIN_64x64 = -0x80000000000000000000000000000000;
      /*
       * Maximum value signed 64.64-bit fixed point number may have. 
       */
      int128 private constant MAX_64x64 = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
      /**
       * Convert signed 256-bit integer number into signed 64.64-bit fixed point
       * number.  Revert on overflow.
       *
       * @param x signed 256-bit integer number
       * @return signed 64.64-bit fixed point number
       */
      function fromInt (int256 x) internal pure returns (int128) {
        unchecked {
          require (x >= -0x8000000000000000 && x <= 0x7FFFFFFFFFFFFFFF);
          return int128 (x << 64);
        }
      }
      /**
       * Convert signed 64.64 fixed point number into signed 64-bit integer number
       * rounding down.
       *
       * @param x signed 64.64-bit fixed point number
       * @return signed 64-bit integer number
       */
      function toInt (int128 x) internal pure returns (int64) {
        unchecked {
          return int64 (x >> 64);
        }
      }
      /**
       * Convert unsigned 256-bit integer number into signed 64.64-bit fixed point
       * number.  Revert on overflow.
       *
       * @param x unsigned 256-bit integer number
       * @return signed 64.64-bit fixed point number
       */
      function fromUInt (uint256 x) internal pure returns (int128) {
        unchecked {
          require (x <= 0x7FFFFFFFFFFFFFFF);
          return int128 (int256 (x << 64));
        }
      }
      /**
       * Convert signed 64.64 fixed point number into unsigned 64-bit integer
       * number rounding down.  Revert on underflow.
       *
       * @param x signed 64.64-bit fixed point number
       * @return unsigned 64-bit integer number
       */
      function toUInt (int128 x) internal pure returns (uint64) {
        unchecked {
          require (x >= 0);
          return uint64 (uint128 (x >> 64));
        }
      }
      /**
       * Convert signed 128.128 fixed point number into signed 64.64-bit fixed point
       * number rounding down.  Revert on overflow.
       *
       * @param x signed 128.128-bin fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function from128x128 (int256 x) internal pure returns (int128) {
        unchecked {
          int256 result = x >> 64;
          require (result >= MIN_64x64 && result <= MAX_64x64);
          return int128 (result);
        }
      }
      /**
       * Convert signed 64.64 fixed point number into signed 128.128 fixed point
       * number.
       *
       * @param x signed 64.64-bit fixed point number
       * @return signed 128.128 fixed point number
       */
      function to128x128 (int128 x) internal pure returns (int256) {
        unchecked {
          return int256 (x) << 64;
        }
      }
      /**
       * Calculate x + y.  Revert on overflow.
       *
       * @param x signed 64.64-bit fixed point number
       * @param y signed 64.64-bit fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function add (int128 x, int128 y) internal pure returns (int128) {
        unchecked {
          int256 result = int256(x) + y;
          require (result >= MIN_64x64 && result <= MAX_64x64);
          return int128 (result);
        }
      }
      /**
       * Calculate x - y.  Revert on overflow.
       *
       * @param x signed 64.64-bit fixed point number
       * @param y signed 64.64-bit fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function sub (int128 x, int128 y) internal pure returns (int128) {
        unchecked {
          int256 result = int256(x) - y;
          require (result >= MIN_64x64 && result <= MAX_64x64);
          return int128 (result);
        }
      }
      /**
       * Calculate x * y rounding down.  Revert on overflow.
       *
       * @param x signed 64.64-bit fixed point number
       * @param y signed 64.64-bit fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function mul (int128 x, int128 y) internal pure returns (int128) {
        unchecked {
          int256 result = int256(x) * y >> 64;
          require (result >= MIN_64x64 && result <= MAX_64x64);
          return int128 (result);
        }
      }
      /**
       * Calculate x * y rounding towards zero, where x is signed 64.64 fixed point
       * number and y is signed 256-bit integer number.  Revert on overflow.
       *
       * @param x signed 64.64 fixed point number
       * @param y signed 256-bit integer number
       * @return signed 256-bit integer number
       */
      function muli (int128 x, int256 y) internal pure returns (int256) {
        unchecked {
          if (x == MIN_64x64) {
            require (y >= -0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF &&
              y <= 0x1000000000000000000000000000000000000000000000000);
            return -y << 63;
          } else {
            bool negativeResult = false;
            if (x < 0) {
              x = -x;
              negativeResult = true;
            }
            if (y < 0) {
              y = -y; // We rely on overflow behavior here
              negativeResult = !negativeResult;
            }
            uint256 absoluteResult = mulu (x, uint256 (y));
            if (negativeResult) {
              require (absoluteResult <=
                0x8000000000000000000000000000000000000000000000000000000000000000);
              return -int256 (absoluteResult); // We rely on overflow behavior here
            } else {
              require (absoluteResult <=
                0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
              return int256 (absoluteResult);
            }
          }
        }
      }
      /**
       * Calculate x * y rounding down, where x is signed 64.64 fixed point number
       * and y is unsigned 256-bit integer number.  Revert on overflow.
       *
       * @param x signed 64.64 fixed point number
       * @param y unsigned 256-bit integer number
       * @return unsigned 256-bit integer number
       */
      function mulu (int128 x, uint256 y) internal pure returns (uint256) {
        unchecked {
          if (y == 0) return 0;
          require (x >= 0);
          uint256 lo = (uint256 (int256 (x)) * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) >> 64;
          uint256 hi = uint256 (int256 (x)) * (y >> 128);
          require (hi <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
          hi <<= 64;
          require (hi <=
            0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF - lo);
          return hi + lo;
        }
      }
      /**
       * Calculate x / y rounding towards zero.  Revert on overflow or when y is
       * zero.
       *
       * @param x signed 64.64-bit fixed point number
       * @param y signed 64.64-bit fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function div (int128 x, int128 y) internal pure returns (int128) {
        unchecked {
          require (y != 0);
          int256 result = (int256 (x) << 64) / y;
          require (result >= MIN_64x64 && result <= MAX_64x64);
          return int128 (result);
        }
      }
      /**
       * Calculate x / y rounding towards zero, where x and y are signed 256-bit
       * integer numbers.  Revert on overflow or when y is zero.
       *
       * @param x signed 256-bit integer number
       * @param y signed 256-bit integer number
       * @return signed 64.64-bit fixed point number
       */
      function divi (int256 x, int256 y) internal pure returns (int128) {
        unchecked {
          require (y != 0);
          bool negativeResult = false;
          if (x < 0) {
            x = -x; // We rely on overflow behavior here
            negativeResult = true;
          }
          if (y < 0) {
            y = -y; // We rely on overflow behavior here
            negativeResult = !negativeResult;
          }
          uint128 absoluteResult = divuu (uint256 (x), uint256 (y));
          if (negativeResult) {
            require (absoluteResult <= 0x80000000000000000000000000000000);
            return -int128 (absoluteResult); // We rely on overflow behavior here
          } else {
            require (absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
            return int128 (absoluteResult); // We rely on overflow behavior here
          }
        }
      }
      /**
       * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
       * integer numbers.  Revert on overflow or when y is zero.
       *
       * @param x unsigned 256-bit integer number
       * @param y unsigned 256-bit integer number
       * @return signed 64.64-bit fixed point number
       */
      function divu (uint256 x, uint256 y) internal pure returns (int128) {
        unchecked {
          require (y != 0);
          uint128 result = divuu (x, y);
          require (result <= uint128 (MAX_64x64));
          return int128 (result);
        }
      }
      /**
       * Calculate -x.  Revert on overflow.
       *
       * @param x signed 64.64-bit fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function neg (int128 x) internal pure returns (int128) {
        unchecked {
          require (x != MIN_64x64);
          return -x;
        }
      }
      /**
       * Calculate |x|.  Revert on overflow.
       *
       * @param x signed 64.64-bit fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function abs (int128 x) internal pure returns (int128) {
        unchecked {
          require (x != MIN_64x64);
          return x < 0 ? -x : x;
        }
      }
      /**
       * Calculate 1 / x rounding towards zero.  Revert on overflow or when x is
       * zero.
       *
       * @param x signed 64.64-bit fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function inv (int128 x) internal pure returns (int128) {
        unchecked {
          require (x != 0);
          int256 result = int256 (0x100000000000000000000000000000000) / x;
          require (result >= MIN_64x64 && result <= MAX_64x64);
          return int128 (result);
        }
      }
      /**
       * Calculate arithmetics average of x and y, i.e. (x + y) / 2 rounding down.
       *
       * @param x signed 64.64-bit fixed point number
       * @param y signed 64.64-bit fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function avg (int128 x, int128 y) internal pure returns (int128) {
        unchecked {
          return int128 ((int256 (x) + int256 (y)) >> 1);
        }
      }
      /**
       * Calculate geometric average of x and y, i.e. sqrt (x * y) rounding down.
       * Revert on overflow or in case x * y is negative.
       *
       * @param x signed 64.64-bit fixed point number
       * @param y signed 64.64-bit fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function gavg (int128 x, int128 y) internal pure returns (int128) {
        unchecked {
          int256 m = int256 (x) * int256 (y);
          require (m >= 0);
          require (m <
              0x4000000000000000000000000000000000000000000000000000000000000000);
          return int128 (sqrtu (uint256 (m)));
        }
      }
      /**
       * Calculate x^y assuming 0^0 is 1, where x is signed 64.64 fixed point number
       * and y is unsigned 256-bit integer number.  Revert on overflow.
       *
       * @param x signed 64.64-bit fixed point number
       * @param y uint256 value
       * @return signed 64.64-bit fixed point number
       */
      function pow (int128 x, uint256 y) internal pure returns (int128) {
        unchecked {
          bool negative = x < 0 && y & 1 == 1;
          uint256 absX = uint128 (x < 0 ? -x : x);
          uint256 absResult;
          absResult = 0x100000000000000000000000000000000;
          if (absX <= 0x10000000000000000) {
            absX <<= 63;
            while (y != 0) {
              if (y & 0x1 != 0) {
                absResult = absResult * absX >> 127;
              }
              absX = absX * absX >> 127;
              if (y & 0x2 != 0) {
                absResult = absResult * absX >> 127;
              }
              absX = absX * absX >> 127;
              if (y & 0x4 != 0) {
                absResult = absResult * absX >> 127;
              }
              absX = absX * absX >> 127;
              if (y & 0x8 != 0) {
                absResult = absResult * absX >> 127;
              }
              absX = absX * absX >> 127;
              y >>= 4;
            }
            absResult >>= 64;
          } else {
            uint256 absXShift = 63;
            if (absX < 0x1000000000000000000000000) { absX <<= 32; absXShift -= 32; }
            if (absX < 0x10000000000000000000000000000) { absX <<= 16; absXShift -= 16; }
            if (absX < 0x1000000000000000000000000000000) { absX <<= 8; absXShift -= 8; }
            if (absX < 0x10000000000000000000000000000000) { absX <<= 4; absXShift -= 4; }
            if (absX < 0x40000000000000000000000000000000) { absX <<= 2; absXShift -= 2; }
            if (absX < 0x80000000000000000000000000000000) { absX <<= 1; absXShift -= 1; }
            uint256 resultShift = 0;
            while (y != 0) {
              require (absXShift < 64);
              if (y & 0x1 != 0) {
                absResult = absResult * absX >> 127;
                resultShift += absXShift;
                if (absResult > 0x100000000000000000000000000000000) {
                  absResult >>= 1;
                  resultShift += 1;
                }
              }
              absX = absX * absX >> 127;
              absXShift <<= 1;
              if (absX >= 0x100000000000000000000000000000000) {
                  absX >>= 1;
                  absXShift += 1;
              }
              y >>= 1;
            }
            require (resultShift < 64);
            absResult >>= 64 - resultShift;
          }
          int256 result = negative ? -int256 (absResult) : int256 (absResult);
          require (result >= MIN_64x64 && result <= MAX_64x64);
          return int128 (result);
        }
      }
      /**
       * Calculate sqrt (x) rounding down.  Revert if x < 0.
       *
       * @param x signed 64.64-bit fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function sqrt (int128 x) internal pure returns (int128) {
        unchecked {
          require (x >= 0);
          return int128 (sqrtu (uint256 (int256 (x)) << 64));
        }
      }
      /**
       * Calculate binary logarithm of x.  Revert if x <= 0.
       *
       * @param x signed 64.64-bit fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function log_2 (int128 x) internal pure returns (int128) {
        unchecked {
          require (x > 0);
          int256 msb = 0;
          int256 xc = x;
          if (xc >= 0x10000000000000000) { xc >>= 64; msb += 64; }
          if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
          if (xc >= 0x10000) { xc >>= 16; msb += 16; }
          if (xc >= 0x100) { xc >>= 8; msb += 8; }
          if (xc >= 0x10) { xc >>= 4; msb += 4; }
          if (xc >= 0x4) { xc >>= 2; msb += 2; }
          if (xc >= 0x2) msb += 1;  // No need to shift xc anymore
          int256 result = msb - 64 << 64;
          uint256 ux = uint256 (int256 (x)) << uint256 (127 - msb);
          for (int256 bit = 0x8000000000000000; bit > 0; bit >>= 1) {
            ux *= ux;
            uint256 b = ux >> 255;
            ux >>= 127 + b;
            result += bit * int256 (b);
          }
          return int128 (result);
        }
      }
      /**
       * Calculate natural logarithm of x.  Revert if x <= 0.
       *
       * @param x signed 64.64-bit fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function ln (int128 x) internal pure returns (int128) {
        unchecked {
          require (x > 0);
          return int128 (int256 (
              uint256 (int256 (log_2 (x))) * 0xB17217F7D1CF79ABC9E3B39803F2F6AF >> 128));
        }
      }
      /**
       * Calculate binary exponent of x.  Revert on overflow.
       *
       * @param x signed 64.64-bit fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function exp_2 (int128 x) internal pure returns (int128) {
        unchecked {
          require (x < 0x400000000000000000); // Overflow
          if (x < -0x400000000000000000) return 0; // Underflow
          uint256 result = 0x80000000000000000000000000000000;
          if (x & 0x8000000000000000 > 0)
            result = result * 0x16A09E667F3BCC908B2FB1366EA957D3E >> 128;
          if (x & 0x4000000000000000 > 0)
            result = result * 0x1306FE0A31B7152DE8D5A46305C85EDEC >> 128;
          if (x & 0x2000000000000000 > 0)
            result = result * 0x1172B83C7D517ADCDF7C8C50EB14A791F >> 128;
          if (x & 0x1000000000000000 > 0)
            result = result * 0x10B5586CF9890F6298B92B71842A98363 >> 128;
          if (x & 0x800000000000000 > 0)
            result = result * 0x1059B0D31585743AE7C548EB68CA417FD >> 128;
          if (x & 0x400000000000000 > 0)
            result = result * 0x102C9A3E778060EE6F7CACA4F7A29BDE8 >> 128;
          if (x & 0x200000000000000 > 0)
            result = result * 0x10163DA9FB33356D84A66AE336DCDFA3F >> 128;
          if (x & 0x100000000000000 > 0)
            result = result * 0x100B1AFA5ABCBED6129AB13EC11DC9543 >> 128;
          if (x & 0x80000000000000 > 0)
            result = result * 0x10058C86DA1C09EA1FF19D294CF2F679B >> 128;
          if (x & 0x40000000000000 > 0)
            result = result * 0x1002C605E2E8CEC506D21BFC89A23A00F >> 128;
          if (x & 0x20000000000000 > 0)
            result = result * 0x100162F3904051FA128BCA9C55C31E5DF >> 128;
          if (x & 0x10000000000000 > 0)
            result = result * 0x1000B175EFFDC76BA38E31671CA939725 >> 128;
          if (x & 0x8000000000000 > 0)
            result = result * 0x100058BA01FB9F96D6CACD4B180917C3D >> 128;
          if (x & 0x4000000000000 > 0)
            result = result * 0x10002C5CC37DA9491D0985C348C68E7B3 >> 128;
          if (x & 0x2000000000000 > 0)
            result = result * 0x1000162E525EE054754457D5995292026 >> 128;
          if (x & 0x1000000000000 > 0)
            result = result * 0x10000B17255775C040618BF4A4ADE83FC >> 128;
          if (x & 0x800000000000 > 0)
            result = result * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB >> 128;
          if (x & 0x400000000000 > 0)
            result = result * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9 >> 128;
          if (x & 0x200000000000 > 0)
            result = result * 0x10000162E43F4F831060E02D839A9D16D >> 128;
          if (x & 0x100000000000 > 0)
            result = result * 0x100000B1721BCFC99D9F890EA06911763 >> 128;
          if (x & 0x80000000000 > 0)
            result = result * 0x10000058B90CF1E6D97F9CA14DBCC1628 >> 128;
          if (x & 0x40000000000 > 0)
            result = result * 0x1000002C5C863B73F016468F6BAC5CA2B >> 128;
          if (x & 0x20000000000 > 0)
            result = result * 0x100000162E430E5A18F6119E3C02282A5 >> 128;
          if (x & 0x10000000000 > 0)
            result = result * 0x1000000B1721835514B86E6D96EFD1BFE >> 128;
          if (x & 0x8000000000 > 0)
            result = result * 0x100000058B90C0B48C6BE5DF846C5B2EF >> 128;
          if (x & 0x4000000000 > 0)
            result = result * 0x10000002C5C8601CC6B9E94213C72737A >> 128;
          if (x & 0x2000000000 > 0)
            result = result * 0x1000000162E42FFF037DF38AA2B219F06 >> 128;
          if (x & 0x1000000000 > 0)
            result = result * 0x10000000B17217FBA9C739AA5819F44F9 >> 128;
          if (x & 0x800000000 > 0)
            result = result * 0x1000000058B90BFCDEE5ACD3C1CEDC823 >> 128;
          if (x & 0x400000000 > 0)
            result = result * 0x100000002C5C85FE31F35A6A30DA1BE50 >> 128;
          if (x & 0x200000000 > 0)
            result = result * 0x10000000162E42FF0999CE3541B9FFFCF >> 128;
          if (x & 0x100000000 > 0)
            result = result * 0x100000000B17217F80F4EF5AADDA45554 >> 128;
          if (x & 0x80000000 > 0)
            result = result * 0x10000000058B90BFBF8479BD5A81B51AD >> 128;
          if (x & 0x40000000 > 0)
            result = result * 0x1000000002C5C85FDF84BD62AE30A74CC >> 128;
          if (x & 0x20000000 > 0)
            result = result * 0x100000000162E42FEFB2FED257559BDAA >> 128;
          if (x & 0x10000000 > 0)
            result = result * 0x1000000000B17217F7D5A7716BBA4A9AE >> 128;
          if (x & 0x8000000 > 0)
            result = result * 0x100000000058B90BFBE9DDBAC5E109CCE >> 128;
          if (x & 0x4000000 > 0)
            result = result * 0x10000000002C5C85FDF4B15DE6F17EB0D >> 128;
          if (x & 0x2000000 > 0)
            result = result * 0x1000000000162E42FEFA494F1478FDE05 >> 128;
          if (x & 0x1000000 > 0)
            result = result * 0x10000000000B17217F7D20CF927C8E94C >> 128;
          if (x & 0x800000 > 0)
            result = result * 0x1000000000058B90BFBE8F71CB4E4B33D >> 128;
          if (x & 0x400000 > 0)
            result = result * 0x100000000002C5C85FDF477B662B26945 >> 128;
          if (x & 0x200000 > 0)
            result = result * 0x10000000000162E42FEFA3AE53369388C >> 128;
          if (x & 0x100000 > 0)
            result = result * 0x100000000000B17217F7D1D351A389D40 >> 128;
          if (x & 0x80000 > 0)
            result = result * 0x10000000000058B90BFBE8E8B2D3D4EDE >> 128;
          if (x & 0x40000 > 0)
            result = result * 0x1000000000002C5C85FDF4741BEA6E77E >> 128;
          if (x & 0x20000 > 0)
            result = result * 0x100000000000162E42FEFA39FE95583C2 >> 128;
          if (x & 0x10000 > 0)
            result = result * 0x1000000000000B17217F7D1CFB72B45E1 >> 128;
          if (x & 0x8000 > 0)
            result = result * 0x100000000000058B90BFBE8E7CC35C3F0 >> 128;
          if (x & 0x4000 > 0)
            result = result * 0x10000000000002C5C85FDF473E242EA38 >> 128;
          if (x & 0x2000 > 0)
            result = result * 0x1000000000000162E42FEFA39F02B772C >> 128;
          if (x & 0x1000 > 0)
            result = result * 0x10000000000000B17217F7D1CF7D83C1A >> 128;
          if (x & 0x800 > 0)
            result = result * 0x1000000000000058B90BFBE8E7BDCBE2E >> 128;
          if (x & 0x400 > 0)
            result = result * 0x100000000000002C5C85FDF473DEA871F >> 128;
          if (x & 0x200 > 0)
            result = result * 0x10000000000000162E42FEFA39EF44D91 >> 128;
          if (x & 0x100 > 0)
            result = result * 0x100000000000000B17217F7D1CF79E949 >> 128;
          if (x & 0x80 > 0)
            result = result * 0x10000000000000058B90BFBE8E7BCE544 >> 128;
          if (x & 0x40 > 0)
            result = result * 0x1000000000000002C5C85FDF473DE6ECA >> 128;
          if (x & 0x20 > 0)
            result = result * 0x100000000000000162E42FEFA39EF366F >> 128;
          if (x & 0x10 > 0)
            result = result * 0x1000000000000000B17217F7D1CF79AFA >> 128;
          if (x & 0x8 > 0)
            result = result * 0x100000000000000058B90BFBE8E7BCD6D >> 128;
          if (x & 0x4 > 0)
            result = result * 0x10000000000000002C5C85FDF473DE6B2 >> 128;
          if (x & 0x2 > 0)
            result = result * 0x1000000000000000162E42FEFA39EF358 >> 128;
          if (x & 0x1 > 0)
            result = result * 0x10000000000000000B17217F7D1CF79AB >> 128;
          result >>= uint256 (int256 (63 - (x >> 64)));
          require (result <= uint256 (int256 (MAX_64x64)));
          return int128 (int256 (result));
        }
      }
      /**
       * Calculate natural exponent of x.  Revert on overflow.
       *
       * @param x signed 64.64-bit fixed point number
       * @return signed 64.64-bit fixed point number
       */
      function exp (int128 x) internal pure returns (int128) {
        unchecked {
          require (x < 0x400000000000000000); // Overflow
          if (x < -0x400000000000000000) return 0; // Underflow
          return exp_2 (
              int128 (int256 (x) * 0x171547652B82FE1777D0FFDA0D23A7D12 >> 128));
        }
      }
      /**
       * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
       * integer numbers.  Revert on overflow or when y is zero.
       *
       * @param x unsigned 256-bit integer number
       * @param y unsigned 256-bit integer number
       * @return unsigned 64.64-bit fixed point number
       */
      function divuu (uint256 x, uint256 y) private pure returns (uint128) {
        unchecked {
          require (y != 0);
          uint256 result;
          if (x <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
            result = (x << 64) / y;
          else {
            uint256 msb = 192;
            uint256 xc = x >> 192;
            if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
            if (xc >= 0x10000) { xc >>= 16; msb += 16; }
            if (xc >= 0x100) { xc >>= 8; msb += 8; }
            if (xc >= 0x10) { xc >>= 4; msb += 4; }
            if (xc >= 0x4) { xc >>= 2; msb += 2; }
            if (xc >= 0x2) msb += 1;  // No need to shift xc anymore
            result = (x << 255 - msb) / ((y - 1 >> msb - 191) + 1);
            require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
            uint256 hi = result * (y >> 128);
            uint256 lo = result * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
            uint256 xh = x >> 192;
            uint256 xl = x << 64;
            if (xl < lo) xh -= 1;
            xl -= lo; // We rely on overflow behavior here
            lo = hi << 128;
            if (xl < lo) xh -= 1;
            xl -= lo; // We rely on overflow behavior here
            assert (xh == hi >> 128);
            result += xl / y;
          }
          require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
          return uint128 (result);
        }
      }
      /**
       * Calculate sqrt (x) rounding down, where x is unsigned 256-bit integer
       * number.
       *
       * @param x unsigned 256-bit integer number
       * @return unsigned 128-bit integer number
       */
      function sqrtu (uint256 x) private pure returns (uint128) {
        unchecked {
          if (x == 0) return 0;
          else {
            uint256 xx = x;
            uint256 r = 1;
            if (xx >= 0x100000000000000000000000000000000) { xx >>= 128; r <<= 64; }
            if (xx >= 0x10000000000000000) { xx >>= 64; r <<= 32; }
            if (xx >= 0x100000000) { xx >>= 32; r <<= 16; }
            if (xx >= 0x10000) { xx >>= 16; r <<= 8; }
            if (xx >= 0x100) { xx >>= 8; r <<= 4; }
            if (xx >= 0x10) { xx >>= 4; r <<= 2; }
            if (xx >= 0x8) { r <<= 1; }
            r = (r + x / r) >> 1;
            r = (r + x / r) >> 1;
            r = (r + x / r) >> 1;
            r = (r + x / r) >> 1;
            r = (r + x / r) >> 1;
            r = (r + x / r) >> 1;
            r = (r + x / r) >> 1; // Seven iterations should be enough
            uint256 r1 = x / r;
            return uint128 (r < r1 ? r : r1);
          }
        }
      }
    }