ETH Price: $1,867.29 (-0.57%)

Transaction Decoder

Block:
21966886 at Mar-03-2025 02:14:59 PM +UTC
Transaction Fee:
0.000412632040136842 ETH $0.77
Gas Used:
135,614 Gas / 3.042695003 Gwei

Emitted Events:

45 FeeCollector.FeesCollected( _token=0x00000000...000000000, _integrator=0x37E945Ed...c1c7f07Ed, _integratorFee=533400000000000, _lifiFee=666600000000000 )
46 LiFiDiamond.0x7bfdfdb5e3a3776976e53cb0607060f54c5312701c8cba1155cc4d5394440b38( 0x7bfdfdb5e3a3776976e53cb0607060f54c5312701c8cba1155cc4d5394440b38, 07f4f729e8e321a7d0e2fbe82b9c779220b0f69b257f812802f05729490a369f, 000000000000000000000000bd6c7b0d2f68c2b7805d88388319cfb6ecb50ea9, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000, 000000000000000000000000000000000000000000000000058d15e176280000, 0000000000000000000000000000000000000000000000000588d27cb06d0000, 0000000000000000000000000000000000000000000000000000000067c5b963 )
47 RelayReceiver.FundsForwardedWithData( data=0xB9A4AB7D8976BC791C9A895F3EEE91260A11EC44D1F643B58E7EBC7843C8C687 )
48 LiFiDiamond.0xcba69f43792f9f399347222505213b55af8e0b0b54b893085c2e27ecbe1644f1( 0xcba69f43792f9f399347222505213b55af8e0b0b54b893085c2e27ecbe1644f1, 0000000000000000000000000000000000000000000000000000000000000020, 07f4f729e8e321a7d0e2fbe82b9c779220b0f69b257f812802f05729490a369f, 0000000000000000000000000000000000000000000000000000000000000140, 0000000000000000000000000000000000000000000000000000000000000180, 000000000000000000000000b4f34d09124b8c9712957b76707b42510041ecbb, 0000000000000000000000000000000000000000000000000000000000000000, 000000000000000000000000b8792dc26097e74f7a46ad7b3cd9c771a65fa2bf, 0000000000000000000000000000000000000000000000000588d27cb06d0000, 0000000000000000000000000000000000000000000000000000000000002105, 0000000000000000000000000000000000000000000000000000000000000001, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000005, 72656c6179000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000007, 7361666570616c00000000000000000000000000000000000000000000000000 )

Account State Difference:

  Address   Before After State Difference Code
0x1231DEB6...7486F4EaE
(LI.FI: LiFi Diamond)
(beaverbuild)
15.761483252076319418 Eth15.761768041476319418 Eth0.0002847894
0xB8792Dc2...1a65FA2BF
0.40188423157275 Eth
Nonce: 2
0.001471599532613158 Eth
Nonce: 3
0.400412632040136842
0xbD6C7B0d...6EcB50eA9 443.449992184344791699 Eth443.451192184344791699 Eth0.0012
0xf70da978...8dfA3dbEF 388.465970831926555879 Eth388.864770831926555879 Eth0.3988

Execution Trace

ETH 0.4 LiFiDiamond.25d374e8( )
  • ETH 0.4 RelayFacet.swapAndStartBridgeTokensViaRelay( _bridgeData=[{name:transactionId, type:bytes32, order:1, indexed:false, value:07F4F729E8E321A7D0E2FBE82B9C779220B0F69B257F812802F05729490A369F, valueString:07F4F729E8E321A7D0E2FBE82B9C779220B0F69B257F812802F05729490A369F}, {name:bridge, type:string, order:2, indexed:false, value:relay, valueString:relay}, {name:integrator, type:string, order:3, indexed:false, value:safepal, valueString:safepal}, {name:referrer, type:address, order:4, indexed:false, value:0xB4f34d09124b8c9712957b76707b42510041EcBb, valueString:0xB4f34d09124b8c9712957b76707b42510041EcBb}, {name:sendingAssetId, type:address, order:5, indexed:false, value:0x0000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000}, {name:receiver, type:address, order:6, indexed:false, value:0xB8792Dc26097e74F7A46ad7b3CD9C771a65FA2BF, valueString:0xB8792Dc26097e74F7A46ad7b3CD9C771a65FA2BF}, {name:minAmount, type:uint256, order:7, indexed:false, value:398800000000000000, valueString:398800000000000000}, {name:destinationChainId, type:uint256, order:8, indexed:false, value:8453, valueString:8453}, {name:hasSourceSwaps, type:bool, order:9, indexed:false, value:true, valueString:True}, {name:hasDestinationCall, type:bool, order:10, indexed:false, value:false, valueString:False}], _swapData=, _relayData=[{name:requestId, type:bytes32, order:1, indexed:false, value:B9A4AB7D8976BC791C9A895F3EEE91260A11EC44D1F643B58E7EBC7843C8C687, valueString:B9A4AB7D8976BC791C9A895F3EEE91260A11EC44D1F643B58E7EBC7843C8C687}, {name:nonEVMReceiver, type:bytes32, order:2, indexed:false, value:000000000000000000000000B8792DC26097E74F7A46AD7B3CD9C771A65FA2BF, valueString:000000000000000000000000B8792DC26097E74F7A46AD7B3CD9C771A65FA2BF}, {name:receivingAssetId, type:bytes32, order:3, indexed:false, value:0000000000000000000000000000000000000000000000000000000000000000, valueString:0000000000000000000000000000000000000000000000000000000000000000}, {name:signature, type:bytes, order:4, indexed:false, value:0x35805C299FFAD2C558350AD1A58F8FA4580C606D32812B44260EAED14B5F6430214C98A03AC078239858CE26292225C2C03E996F1B92B97F11F8C18236DBB1641C, valueString:0x35805C299FFAD2C558350AD1A58F8FA4580C606D32812B44260EAED14B5F6430214C98A03AC078239858CE26292225C2C03E996F1B92B97F11F8C18236DBB1641C}] )
    • Null: 0x000...001.6c20ea37( )
    • ETH 0.4 FeeCollector.collectNativeFees( integratorFee=533400000000000, lifiFee=666600000000000, integratorAddress=0x37E945Ed26B17A631d7Df3382C2808cc1c7f07Ed )
      • ETH 0.3988 LiFiDiamond.CALL( )
      • ETH 0.3988 RelayReceiver.b9a4ab7d( )
        • ETH 0.3988 0xf70da97812cb96acdf810712aa562db8dfa3dbef.CALL( )
          File 1 of 4: LiFiDiamond
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.17;
          error TokenAddressIsZero();
          error TokenNotSupported();
          error CannotBridgeToSameNetwork();
          error ZeroPostSwapBalance();
          error NoSwapDataProvided();
          error NativeValueWithERC();
          error ContractCallNotAllowed();
          error NullAddrIsNotAValidSpender();
          error NullAddrIsNotAnERC20Token();
          error NoTransferToNullAddress();
          error NativeAssetTransferFailed();
          error InvalidBridgeConfigLength();
          error InvalidAmount();
          error InvalidContract();
          error InvalidConfig();
          error UnsupportedChainId(uint256 chainId);
          error InvalidReceiver();
          error InvalidDestinationChain();
          error InvalidSendingToken();
          error InvalidCaller();
          error AlreadyInitialized();
          error NotInitialized();
          error OnlyContractOwner();
          error CannotAuthoriseSelf();
          error RecoveryAddressCannotBeZero();
          error CannotDepositNativeToken();
          error InvalidCallData();
          error NativeAssetNotSupported();
          error UnAuthorized();
          error NoSwapFromZeroBalance();
          error InvalidFallbackAddress();
          error CumulativeSlippageTooHigh(uint256 minAmount, uint256 receivedAmount);
          error InsufficientBalance(uint256 required, uint256 balance);
          error ZeroAmount();
          error InvalidFee();
          error InformationMismatch();
          error NotAContract();
          error NotEnoughBalance(uint256 requested, uint256 available);
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.17;
          interface IDiamondCut {
              enum FacetCutAction {
                  Add,
                  Replace,
                  Remove
              }
              // Add=0, Replace=1, Remove=2
              struct FacetCut {
                  address facetAddress;
                  FacetCutAction action;
                  bytes4[] functionSelectors;
              }
              /// @notice Add/replace/remove any number of functions and optionally execute
              ///         a function with delegatecall
              /// @param _diamondCut Contains the facet addresses and function selectors
              /// @param _init The address of the contract or facet to execute _calldata
              /// @param _calldata A function call, including function selector and arguments
              ///                  _calldata is executed with delegatecall on _init
              function diamondCut(
                  FacetCut[] calldata _diamondCut,
                  address _init,
                  bytes calldata _calldata
              ) external;
              event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata);
          }
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.17;
          import { LibDiamond } from "./Libraries/LibDiamond.sol";
          import { IDiamondCut } from "./Interfaces/IDiamondCut.sol";
          import { LibUtil } from "./Libraries/LibUtil.sol";
          contract LiFiDiamond {
              constructor(address _contractOwner, address _diamondCutFacet) payable {
                  LibDiamond.setContractOwner(_contractOwner);
                  // Add the diamondCut external function from the diamondCutFacet
                  IDiamondCut.FacetCut[] memory cut = new IDiamondCut.FacetCut[](1);
                  bytes4[] memory functionSelectors = new bytes4[](1);
                  functionSelectors[0] = IDiamondCut.diamondCut.selector;
                  cut[0] = IDiamondCut.FacetCut({
                      facetAddress: _diamondCutFacet,
                      action: IDiamondCut.FacetCutAction.Add,
                      functionSelectors: functionSelectors
                  });
                  LibDiamond.diamondCut(cut, address(0), "");
              }
              // Find facet for function that is called and execute the
              // function if a facet is found and return any value.
              // solhint-disable-next-line no-complex-fallback
              fallback() external payable {
                  LibDiamond.DiamondStorage storage ds;
                  bytes32 position = LibDiamond.DIAMOND_STORAGE_POSITION;
                  // get diamond storage
                  // solhint-disable-next-line no-inline-assembly
                  assembly {
                      ds.slot := position
                  }
                  // get facet from function selector
                  address facet = ds.selectorToFacetAndPosition[msg.sig].facetAddress;
                  if (facet == address(0)) {
                      revert LibDiamond.FunctionDoesNotExist();
                  }
                  // Execute external function from facet using delegatecall and return any value.
                  // solhint-disable-next-line no-inline-assembly
                  assembly {
                      // copy function selector and any arguments
                      calldatacopy(0, 0, calldatasize())
                      // execute function call using the facet
                      let result := delegatecall(gas(), facet, 0, calldatasize(), 0, 0)
                      // get any return value
                      returndatacopy(0, 0, returndatasize())
                      // return any return value or error back to the caller
                      switch result
                      case 0 {
                          revert(0, returndatasize())
                      }
                      default {
                          return(0, returndatasize())
                      }
                  }
              }
              // Able to receive ether
              // solhint-disable-next-line no-empty-blocks
              receive() external payable {}
          }
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.17;
          library LibBytes {
              // solhint-disable no-inline-assembly
              // LibBytes specific errors
              error SliceOverflow();
              error SliceOutOfBounds();
              error AddressOutOfBounds();
              error UintOutOfBounds();
              // -------------------------
              function concat(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bytes memory) {
                  bytes memory tempBytes;
                  assembly {
                      // Get a location of some free memory and store it in tempBytes as
                      // Solidity does for memory variables.
                      tempBytes := mload(0x40)
                      // Store the length of the first bytes array at the beginning of
                      // the memory for tempBytes.
                      let length := mload(_preBytes)
                      mstore(tempBytes, length)
                      // Maintain a memory counter for the current write location in the
                      // temp bytes array by adding the 32 bytes for the array length to
                      // the starting location.
                      let mc := add(tempBytes, 0x20)
                      // Stop copying when the memory counter reaches the length of the
                      // first bytes array.
                      let end := add(mc, length)
                      for {
                          // Initialize a copy counter to the start of the _preBytes data,
                          // 32 bytes into its memory.
                          let cc := add(_preBytes, 0x20)
                      } lt(mc, end) {
                          // Increase both counters by 32 bytes each iteration.
                          mc := add(mc, 0x20)
                          cc := add(cc, 0x20)
                      } {
                          // Write the _preBytes data into the tempBytes memory 32 bytes
                          // at a time.
                          mstore(mc, mload(cc))
                      }
                      // Add the length of _postBytes to the current length of tempBytes
                      // and store it as the new length in the first 32 bytes of the
                      // tempBytes memory.
                      length := mload(_postBytes)
                      mstore(tempBytes, add(length, mload(tempBytes)))
                      // Move the memory counter back from a multiple of 0x20 to the
                      // actual end of the _preBytes data.
                      mc := end
                      // Stop copying when the memory counter reaches the new combined
                      // length of the arrays.
                      end := add(mc, length)
                      for {
                          let cc := add(_postBytes, 0x20)
                      } lt(mc, end) {
                          mc := add(mc, 0x20)
                          cc := add(cc, 0x20)
                      } {
                          mstore(mc, mload(cc))
                      }
                      // Update the free-memory pointer by padding our last write location
                      // to 32 bytes: add 31 bytes to the end of tempBytes to move to the
                      // next 32 byte block, then round down to the nearest multiple of
                      // 32. If the sum of the length of the two arrays is zero then add
                      // one before rounding down to leave a blank 32 bytes (the length block with 0).
                      mstore(
                          0x40,
                          and(
                              add(add(end, iszero(add(length, mload(_preBytes)))), 31),
                              not(31) // Round down to the nearest 32 bytes.
                          )
                      )
                  }
                  return tempBytes;
              }
              function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal {
                  assembly {
                      // Read the first 32 bytes of _preBytes storage, which is the length
                      // of the array. (We don't need to use the offset into the slot
                      // because arrays use the entire slot.)
                      let fslot := sload(_preBytes.slot)
                      // Arrays of 31 bytes or less have an even value in their slot,
                      // while longer arrays have an odd value. The actual length is
                      // the slot divided by two for odd values, and the lowest order
                      // byte divided by two for even values.
                      // If the slot is even, bitwise and the slot with 255 and divide by
                      // two to get the length. If the slot is odd, bitwise and the slot
                      // with -1 and divide by two.
                      let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
                      let mlength := mload(_postBytes)
                      let newlength := add(slength, mlength)
                      // slength can contain both the length and contents of the array
                      // if length < 32 bytes so let's prepare for that
                      // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                      switch add(lt(slength, 32), lt(newlength, 32))
                      case 2 {
                          // Since the new array still fits in the slot, we just need to
                          // update the contents of the slot.
                          // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
                          sstore(
                              _preBytes.slot,
                              // all the modifications to the slot are inside this
                              // next block
                              add(
                                  // we can just add to the slot contents because the
                                  // bytes we want to change are the LSBs
                                  fslot,
                                  add(
                                      mul(
                                          div(
                                              // load the bytes from memory
                                              mload(add(_postBytes, 0x20)),
                                              // zero all bytes to the right
                                              exp(0x100, sub(32, mlength))
                                          ),
                                          // and now shift left the number of bytes to
                                          // leave space for the length in the slot
                                          exp(0x100, sub(32, newlength))
                                      ),
                                      // increase length by the double of the memory
                                      // bytes length
                                      mul(mlength, 2)
                                  )
                              )
                          )
                      }
                      case 1 {
                          // The stored value fits in the slot, but the combined value
                          // will exceed it.
                          // get the keccak hash to get the contents of the array
                          mstore(0x0, _preBytes.slot)
                          let sc := add(keccak256(0x0, 0x20), div(slength, 32))
                          // save new length
                          sstore(_preBytes.slot, add(mul(newlength, 2), 1))
                          // The contents of the _postBytes array start 32 bytes into
                          // the structure. Our first read should obtain the `submod`
                          // bytes that can fit into the unused space in the last word
                          // of the stored array. To get this, we read 32 bytes starting
                          // from `submod`, so the data we read overlaps with the array
                          // contents by `submod` bytes. Masking the lowest-order
                          // `submod` bytes allows us to add that value directly to the
                          // stored value.
                          let submod := sub(32, slength)
                          let mc := add(_postBytes, submod)
                          let end := add(_postBytes, mlength)
                          let mask := sub(exp(0x100, submod), 1)
                          sstore(
                              sc,
                              add(
                                  and(fslot, 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00),
                                  and(mload(mc), mask)
                              )
                          )
                          for {
                              mc := add(mc, 0x20)
                              sc := add(sc, 1)
                          } lt(mc, end) {
                              sc := add(sc, 1)
                              mc := add(mc, 0x20)
                          } {
                              sstore(sc, mload(mc))
                          }
                          mask := exp(0x100, sub(mc, end))
                          sstore(sc, mul(div(mload(mc), mask), mask))
                      }
                      default {
                          // get the keccak hash to get the contents of the array
                          mstore(0x0, _preBytes.slot)
                          // Start copying to the last used word of the stored array.
                          let sc := add(keccak256(0x0, 0x20), div(slength, 32))
                          // save new length
                          sstore(_preBytes.slot, add(mul(newlength, 2), 1))
                          // Copy over the first `submod` bytes of the new data as in
                          // case 1 above.
                          let slengthmod := mod(slength, 32)
                          let submod := sub(32, slengthmod)
                          let mc := add(_postBytes, submod)
                          let end := add(_postBytes, mlength)
                          let mask := sub(exp(0x100, submod), 1)
                          sstore(sc, add(sload(sc), and(mload(mc), mask)))
                          for {
                              sc := add(sc, 1)
                              mc := add(mc, 0x20)
                          } lt(mc, end) {
                              sc := add(sc, 1)
                              mc := add(mc, 0x20)
                          } {
                              sstore(sc, mload(mc))
                          }
                          mask := exp(0x100, sub(mc, end))
                          sstore(sc, mul(div(mload(mc), mask), mask))
                      }
                  }
              }
              function slice(
                  bytes memory _bytes,
                  uint256 _start,
                  uint256 _length
              ) internal pure returns (bytes memory) {
                  if (_length + 31 < _length) revert SliceOverflow();
                  if (_bytes.length < _start + _length) revert SliceOutOfBounds();
                  bytes memory tempBytes;
                  assembly {
                      switch iszero(_length)
                      case 0 {
                          // Get a location of some free memory and store it in tempBytes as
                          // Solidity does for memory variables.
                          tempBytes := mload(0x40)
                          // The first word of the slice result is potentially a partial
                          // word read from the original array. To read it, we calculate
                          // the length of that partial word and start copying that many
                          // bytes into the array. The first word we copy will start with
                          // data we don't care about, but the last `lengthmod` bytes will
                          // land at the beginning of the contents of the new array. When
                          // we're done copying, we overwrite the full first word with
                          // the actual length of the slice.
                          let lengthmod := and(_length, 31)
                          // The multiplication in the next line is necessary
                          // because when slicing multiples of 32 bytes (lengthmod == 0)
                          // the following copy loop was copying the origin's length
                          // and then ending prematurely not copying everything it should.
                          let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                          let end := add(mc, _length)
                          for {
                              // The multiplication in the next line has the same exact purpose
                              // as the one above.
                              let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                          } lt(mc, end) {
                              mc := add(mc, 0x20)
                              cc := add(cc, 0x20)
                          } {
                              mstore(mc, mload(cc))
                          }
                          mstore(tempBytes, _length)
                          //update free-memory pointer
                          //allocating the array padded to 32 bytes like the compiler does now
                          mstore(0x40, and(add(mc, 31), not(31)))
                      }
                      //if we want a zero-length slice let's just return a zero-length array
                      default {
                          tempBytes := mload(0x40)
                          //zero out the 32 bytes slice we are about to return
                          //we need to do it because Solidity does not garbage collect
                          mstore(tempBytes, 0)
                          mstore(0x40, add(tempBytes, 0x20))
                      }
                  }
                  return tempBytes;
              }
              function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
                  if (_bytes.length < _start + 20) {
                      revert AddressOutOfBounds();
                  }
                  address tempAddress;
                  assembly {
                      tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
                  }
                  return tempAddress;
              }
              function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) {
                  if (_bytes.length < _start + 1) {
                      revert UintOutOfBounds();
                  }
                  uint8 tempUint;
                  assembly {
                      tempUint := mload(add(add(_bytes, 0x1), _start))
                  }
                  return tempUint;
              }
              function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) {
                  if (_bytes.length < _start + 2) {
                      revert UintOutOfBounds();
                  }
                  uint16 tempUint;
                  assembly {
                      tempUint := mload(add(add(_bytes, 0x2), _start))
                  }
                  return tempUint;
              }
              function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) {
                  if (_bytes.length < _start + 4) {
                      revert UintOutOfBounds();
                  }
                  uint32 tempUint;
                  assembly {
                      tempUint := mload(add(add(_bytes, 0x4), _start))
                  }
                  return tempUint;
              }
              function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) {
                  if (_bytes.length < _start + 8) {
                      revert UintOutOfBounds();
                  }
                  uint64 tempUint;
                  assembly {
                      tempUint := mload(add(add(_bytes, 0x8), _start))
                  }
                  return tempUint;
              }
              function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) {
                  if (_bytes.length < _start + 12) {
                      revert UintOutOfBounds();
                  }
                  uint96 tempUint;
                  assembly {
                      tempUint := mload(add(add(_bytes, 0xc), _start))
                  }
                  return tempUint;
              }
              function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) {
                  if (_bytes.length < _start + 16) {
                      revert UintOutOfBounds();
                  }
                  uint128 tempUint;
                  assembly {
                      tempUint := mload(add(add(_bytes, 0x10), _start))
                  }
                  return tempUint;
              }
              function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) {
                  if (_bytes.length < _start + 32) {
                      revert UintOutOfBounds();
                  }
                  uint256 tempUint;
                  assembly {
                      tempUint := mload(add(add(_bytes, 0x20), _start))
                  }
                  return tempUint;
              }
              function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) {
                  if (_bytes.length < _start + 32) {
                      revert UintOutOfBounds();
                  }
                  bytes32 tempBytes32;
                  assembly {
                      tempBytes32 := mload(add(add(_bytes, 0x20), _start))
                  }
                  return tempBytes32;
              }
              function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) {
                  bool success = true;
                  assembly {
                      let length := mload(_preBytes)
                      // if lengths don't match the arrays are not equal
                      switch eq(length, mload(_postBytes))
                      case 1 {
                          // cb is a circuit breaker in the for loop since there's
                          //  no said feature for inline assembly loops
                          // cb = 1 - don't breaker
                          // cb = 0 - break
                          let cb := 1
                          let mc := add(_preBytes, 0x20)
                          let end := add(mc, length)
                          for {
                              let cc := add(_postBytes, 0x20)
                              // the next line is the loop condition:
                              // while(uint256(mc < end) + cb == 2)
                          } eq(add(lt(mc, end), cb), 2) {
                              mc := add(mc, 0x20)
                              cc := add(cc, 0x20)
                          } {
                              // if any of these checks fails then arrays are not equal
                              if iszero(eq(mload(mc), mload(cc))) {
                                  // unsuccess:
                                  success := 0
                                  cb := 0
                              }
                          }
                      }
                      default {
                          // unsuccess:
                          success := 0
                      }
                  }
                  return success;
              }
              function equalStorage(bytes storage _preBytes, bytes memory _postBytes) internal view returns (bool) {
                  bool success = true;
                  assembly {
                      // we know _preBytes_offset is 0
                      let fslot := sload(_preBytes.slot)
                      // Decode the length of the stored array like in concatStorage().
                      let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
                      let mlength := mload(_postBytes)
                      // if lengths don't match the arrays are not equal
                      switch eq(slength, mlength)
                      case 1 {
                          // slength can contain both the length and contents of the array
                          // if length < 32 bytes so let's prepare for that
                          // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                          if iszero(iszero(slength)) {
                              switch lt(slength, 32)
                              case 1 {
                                  // blank the last byte which is the length
                                  fslot := mul(div(fslot, 0x100), 0x100)
                                  if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
                                      // unsuccess:
                                      success := 0
                                  }
                              }
                              default {
                                  // cb is a circuit breaker in the for loop since there's
                                  //  no said feature for inline assembly loops
                                  // cb = 1 - don't breaker
                                  // cb = 0 - break
                                  let cb := 1
                                  // get the keccak hash to get the contents of the array
                                  mstore(0x0, _preBytes.slot)
                                  let sc := keccak256(0x0, 0x20)
                                  let mc := add(_postBytes, 0x20)
                                  let end := add(mc, mlength)
                                  // the next line is the loop condition:
                                  // while(uint256(mc < end) + cb == 2)
                                  // solhint-disable-next-line no-empty-blocks
                                  for {
                                  } eq(add(lt(mc, end), cb), 2) {
                                      sc := add(sc, 1)
                                      mc := add(mc, 0x20)
                                  } {
                                      if iszero(eq(sload(sc), mload(mc))) {
                                          // unsuccess:
                                          success := 0
                                          cb := 0
                                      }
                                  }
                              }
                          }
                      }
                      default {
                          // unsuccess:
                          success := 0
                      }
                  }
                  return success;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.17;
          import { IDiamondCut } from "../Interfaces/IDiamondCut.sol";
          import { LibUtil } from "../Libraries/LibUtil.sol";
          import { OnlyContractOwner } from "../Errors/GenericErrors.sol";
          /// Implementation of EIP-2535 Diamond Standard
          /// https://eips.ethereum.org/EIPS/eip-2535
          library LibDiamond {
              bytes32 internal constant DIAMOND_STORAGE_POSITION = keccak256("diamond.standard.diamond.storage");
              // Diamond specific errors
              error IncorrectFacetCutAction();
              error NoSelectorsInFace();
              error FunctionAlreadyExists();
              error FacetAddressIsZero();
              error FacetAddressIsNotZero();
              error FacetContainsNoCode();
              error FunctionDoesNotExist();
              error FunctionIsImmutable();
              error InitZeroButCalldataNotEmpty();
              error CalldataEmptyButInitNotZero();
              error InitReverted();
              // ----------------
              struct FacetAddressAndPosition {
                  address facetAddress;
                  uint96 functionSelectorPosition; // position in facetFunctionSelectors.functionSelectors array
              }
              struct FacetFunctionSelectors {
                  bytes4[] functionSelectors;
                  uint256 facetAddressPosition; // position of facetAddress in facetAddresses array
              }
              struct DiamondStorage {
                  // maps function selector to the facet address and
                  // the position of the selector in the facetFunctionSelectors.selectors array
                  mapping(bytes4 => FacetAddressAndPosition) selectorToFacetAndPosition;
                  // maps facet addresses to function selectors
                  mapping(address => FacetFunctionSelectors) facetFunctionSelectors;
                  // facet addresses
                  address[] facetAddresses;
                  // Used to query if a contract implements an interface.
                  // Used to implement ERC-165.
                  mapping(bytes4 => bool) supportedInterfaces;
                  // owner of the contract
                  address contractOwner;
              }
              function diamondStorage() internal pure returns (DiamondStorage storage ds) {
                  bytes32 position = DIAMOND_STORAGE_POSITION;
                  // solhint-disable-next-line no-inline-assembly
                  assembly {
                      ds.slot := position
                  }
              }
              event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
              function setContractOwner(address _newOwner) internal {
                  DiamondStorage storage ds = diamondStorage();
                  address previousOwner = ds.contractOwner;
                  ds.contractOwner = _newOwner;
                  emit OwnershipTransferred(previousOwner, _newOwner);
              }
              function contractOwner() internal view returns (address contractOwner_) {
                  contractOwner_ = diamondStorage().contractOwner;
              }
              function enforceIsContractOwner() internal view {
                  if (msg.sender != diamondStorage().contractOwner) revert OnlyContractOwner();
              }
              event DiamondCut(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata);
              // Internal function version of diamondCut
              function diamondCut(
                  IDiamondCut.FacetCut[] memory _diamondCut,
                  address _init,
                  bytes memory _calldata
              ) internal {
                  for (uint256 facetIndex; facetIndex < _diamondCut.length; ) {
                      IDiamondCut.FacetCutAction action = _diamondCut[facetIndex].action;
                      if (action == IDiamondCut.FacetCutAction.Add) {
                          addFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
                      } else if (action == IDiamondCut.FacetCutAction.Replace) {
                          replaceFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
                      } else if (action == IDiamondCut.FacetCutAction.Remove) {
                          removeFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
                      } else {
                          revert IncorrectFacetCutAction();
                      }
                      unchecked {
                          ++facetIndex;
                      }
                  }
                  emit DiamondCut(_diamondCut, _init, _calldata);
                  initializeDiamondCut(_init, _calldata);
              }
              function addFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
                  if (_functionSelectors.length == 0) {
                      revert NoSelectorsInFace();
                  }
                  DiamondStorage storage ds = diamondStorage();
                  if (LibUtil.isZeroAddress(_facetAddress)) {
                      revert FacetAddressIsZero();
                  }
                  uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
                  // add new facet address if it does not exist
                  if (selectorPosition == 0) {
                      addFacet(ds, _facetAddress);
                  }
                  for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
                      bytes4 selector = _functionSelectors[selectorIndex];
                      address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
                      if (!LibUtil.isZeroAddress(oldFacetAddress)) {
                          revert FunctionAlreadyExists();
                      }
                      addFunction(ds, selector, selectorPosition, _facetAddress);
                      unchecked {
                          ++selectorPosition;
                          ++selectorIndex;
                      }
                  }
              }
              function replaceFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
                  if (_functionSelectors.length == 0) {
                      revert NoSelectorsInFace();
                  }
                  DiamondStorage storage ds = diamondStorage();
                  if (LibUtil.isZeroAddress(_facetAddress)) {
                      revert FacetAddressIsZero();
                  }
                  uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
                  // add new facet address if it does not exist
                  if (selectorPosition == 0) {
                      addFacet(ds, _facetAddress);
                  }
                  for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
                      bytes4 selector = _functionSelectors[selectorIndex];
                      address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
                      if (oldFacetAddress == _facetAddress) {
                          revert FunctionAlreadyExists();
                      }
                      removeFunction(ds, oldFacetAddress, selector);
                      addFunction(ds, selector, selectorPosition, _facetAddress);
                      unchecked {
                          ++selectorPosition;
                          ++selectorIndex;
                      }
                  }
              }
              function removeFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
                  if (_functionSelectors.length == 0) {
                      revert NoSelectorsInFace();
                  }
                  DiamondStorage storage ds = diamondStorage();
                  // if function does not exist then do nothing and return
                  if (!LibUtil.isZeroAddress(_facetAddress)) {
                      revert FacetAddressIsNotZero();
                  }
                  for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
                      bytes4 selector = _functionSelectors[selectorIndex];
                      address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
                      removeFunction(ds, oldFacetAddress, selector);
                      unchecked {
                          ++selectorIndex;
                      }
                  }
              }
              function addFacet(DiamondStorage storage ds, address _facetAddress) internal {
                  enforceHasContractCode(_facetAddress);
                  ds.facetFunctionSelectors[_facetAddress].facetAddressPosition = ds.facetAddresses.length;
                  ds.facetAddresses.push(_facetAddress);
              }
              function addFunction(
                  DiamondStorage storage ds,
                  bytes4 _selector,
                  uint96 _selectorPosition,
                  address _facetAddress
              ) internal {
                  ds.selectorToFacetAndPosition[_selector].functionSelectorPosition = _selectorPosition;
                  ds.facetFunctionSelectors[_facetAddress].functionSelectors.push(_selector);
                  ds.selectorToFacetAndPosition[_selector].facetAddress = _facetAddress;
              }
              function removeFunction(
                  DiamondStorage storage ds,
                  address _facetAddress,
                  bytes4 _selector
              ) internal {
                  if (LibUtil.isZeroAddress(_facetAddress)) {
                      revert FunctionDoesNotExist();
                  }
                  // an immutable function is a function defined directly in a diamond
                  if (_facetAddress == address(this)) {
                      revert FunctionIsImmutable();
                  }
                  // replace selector with last selector, then delete last selector
                  uint256 selectorPosition = ds.selectorToFacetAndPosition[_selector].functionSelectorPosition;
                  uint256 lastSelectorPosition = ds.facetFunctionSelectors[_facetAddress].functionSelectors.length - 1;
                  // if not the same then replace _selector with lastSelector
                  if (selectorPosition != lastSelectorPosition) {
                      bytes4 lastSelector = ds.facetFunctionSelectors[_facetAddress].functionSelectors[lastSelectorPosition];
                      ds.facetFunctionSelectors[_facetAddress].functionSelectors[selectorPosition] = lastSelector;
                      ds.selectorToFacetAndPosition[lastSelector].functionSelectorPosition = uint96(selectorPosition);
                  }
                  // delete the last selector
                  ds.facetFunctionSelectors[_facetAddress].functionSelectors.pop();
                  delete ds.selectorToFacetAndPosition[_selector];
                  // if no more selectors for facet address then delete the facet address
                  if (lastSelectorPosition == 0) {
                      // replace facet address with last facet address and delete last facet address
                      uint256 lastFacetAddressPosition = ds.facetAddresses.length - 1;
                      uint256 facetAddressPosition = ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
                      if (facetAddressPosition != lastFacetAddressPosition) {
                          address lastFacetAddress = ds.facetAddresses[lastFacetAddressPosition];
                          ds.facetAddresses[facetAddressPosition] = lastFacetAddress;
                          ds.facetFunctionSelectors[lastFacetAddress].facetAddressPosition = facetAddressPosition;
                      }
                      ds.facetAddresses.pop();
                      delete ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
                  }
              }
              function initializeDiamondCut(address _init, bytes memory _calldata) internal {
                  if (LibUtil.isZeroAddress(_init)) {
                      if (_calldata.length != 0) {
                          revert InitZeroButCalldataNotEmpty();
                      }
                  } else {
                      if (_calldata.length == 0) {
                          revert CalldataEmptyButInitNotZero();
                      }
                      if (_init != address(this)) {
                          enforceHasContractCode(_init);
                      }
                      // solhint-disable-next-line avoid-low-level-calls
                      (bool success, bytes memory error) = _init.delegatecall(_calldata);
                      if (!success) {
                          if (error.length > 0) {
                              // bubble up the error
                              revert(string(error));
                          } else {
                              revert InitReverted();
                          }
                      }
                  }
              }
              function enforceHasContractCode(address _contract) internal view {
                  uint256 contractSize;
                  // solhint-disable-next-line no-inline-assembly
                  assembly {
                      contractSize := extcodesize(_contract)
                  }
                  if (contractSize == 0) {
                      revert FacetContainsNoCode();
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.17;
          import "./LibBytes.sol";
          library LibUtil {
              using LibBytes for bytes;
              function getRevertMsg(bytes memory _res) internal pure returns (string memory) {
                  // If the _res length is less than 68, then the transaction failed silently (without a revert message)
                  if (_res.length < 68) return "Transaction reverted silently";
                  bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes
                  return abi.decode(revertData, (string)); // All that remains is the revert string
              }
              /// @notice Determines whether the given address is the zero address
              /// @param addr The address to verify
              /// @return Boolean indicating if the address is the zero address
              function isZeroAddress(address addr) internal pure returns (bool) {
                  return addr == address(0);
              }
          }
          

          File 2 of 4: FeeCollector
          // SPDX-License-Identifier: UNLICENSED
          pragma solidity 0.8.13;
          import { LibAsset } from "../Libraries/LibAsset.sol";
          /// @title Fee Collector
          /// @author LI.FI (https://li.fi)
          /// @notice Provides functionality for collecting integrator fees
          contract FeeCollector {
              /// State ///
              // Integrator -> TokenAddress -> Balance
              mapping(address => mapping(address => uint256)) private _balances;
              // TokenAddress -> Balance
              mapping(address => uint256) private _lifiBalances;
              address public owner;
              address public pendingOwner;
              /// Errors ///
              error Unauthorized(address);
              error NoNullOwner();
              error NewOwnerMustNotBeSelf();
              error NoPendingOwnershipTransfer();
              error NotPendingOwner();
              error TransferFailure();
              /// Events ///
              event FeesCollected(address indexed _token, address indexed _integrator, uint256 _integratorFee, uint256 _lifiFee);
              event FeesWithdrawn(address indexed _token, address indexed _to, uint256 _amount);
              event LiFiFeesWithdrawn(address indexed _token, address indexed _to, uint256 _amount);
              event OwnershipTransferRequested(address indexed _from, address indexed _to);
              event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
              /// Constructor ///
              constructor(address _owner) {
                  owner = _owner;
              }
              /// External Methods ///
              /// @notice Collects fees for the integrator
              /// @param tokenAddress address of the token to collect fees for
              /// @param integratorFee amount of fees to collect going to the integrator
              /// @param lifiFee amount of fees to collect going to lifi
              /// @param integratorAddress address of the integrator
              function collectTokenFees(
                  address tokenAddress,
                  uint256 integratorFee,
                  uint256 lifiFee,
                  address integratorAddress
              ) external {
                  LibAsset.depositAsset(tokenAddress, integratorFee + lifiFee);
                  _balances[integratorAddress][tokenAddress] += integratorFee;
                  _lifiBalances[tokenAddress] += lifiFee;
                  emit FeesCollected(tokenAddress, integratorAddress, integratorFee, lifiFee);
              }
              /// @notice Collects fees for the integrator in native token
              /// @param integratorFee amount of fees to collect going to the integrator
              /// @param lifiFee amount of fees to collect going to lifi
              /// @param integratorAddress address of the integrator
              function collectNativeFees(
                  uint256 integratorFee,
                  uint256 lifiFee,
                  address integratorAddress
              ) external payable {
                  _balances[integratorAddress][LibAsset.NULL_ADDRESS] += integratorFee;
                  _lifiBalances[LibAsset.NULL_ADDRESS] += lifiFee;
                  uint256 remaining = msg.value - (integratorFee + lifiFee);
                  // Prevent extra native token from being locked in the contract
                  if (remaining > 0) {
                      (bool success, ) = msg.sender.call{ value: remaining }("");
                      if (!success) {
                          revert TransferFailure();
                      }
                  }
                  emit FeesCollected(LibAsset.NULL_ADDRESS, integratorAddress, integratorFee, lifiFee);
              }
              /// @notice Withdraw fees and sends to the integrator
              /// @param tokenAddress address of the token to withdraw fees for
              function withdrawIntegratorFees(address tokenAddress) external {
                  uint256 balance = _balances[msg.sender][tokenAddress];
                  if (balance == 0) {
                      return;
                  }
                  _balances[msg.sender][tokenAddress] = 0;
                  LibAsset.transferAsset(tokenAddress, payable(msg.sender), balance);
                  emit FeesWithdrawn(tokenAddress, msg.sender, balance);
              }
              /// @notice Batch withdraw fees and sends to the integrator
              /// @param tokenAddresses addresses of the tokens to withdraw fees for
              function batchWithdrawIntegratorFees(address[] memory tokenAddresses) external {
                  uint256 length = tokenAddresses.length;
                  uint256 balance;
                  for (uint256 i = 0; i < length; i++) {
                      balance = _balances[msg.sender][tokenAddresses[i]];
                      if (balance == 0) {
                          continue;
                      }
                      _balances[msg.sender][tokenAddresses[i]] = 0;
                      LibAsset.transferAsset(tokenAddresses[i], payable(msg.sender), balance);
                      emit FeesWithdrawn(tokenAddresses[i], msg.sender, balance);
                  }
              }
              /// @notice Withdraws fees and sends to lifi
              /// @param tokenAddress address of the token to withdraw fees for
              function withdrawLifiFees(address tokenAddress) external {
                  _enforceIsContractOwner();
                  uint256 balance = _lifiBalances[tokenAddress];
                  if (balance == 0) {
                      return;
                  }
                  _lifiBalances[tokenAddress] = 0;
                  LibAsset.transferAsset(tokenAddress, payable(owner), balance);
                  emit LiFiFeesWithdrawn(tokenAddress, msg.sender, balance);
              }
              /// @notice Batch withdraws fees and sends to lifi
              /// @param tokenAddresses addresses of the tokens to withdraw fees for
              function batchWithdrawLifiFees(address[] memory tokenAddresses) external {
                  _enforceIsContractOwner();
                  uint256 length = tokenAddresses.length;
                  uint256 balance;
                  for (uint256 i = 0; i < length; i++) {
                      balance = _lifiBalances[tokenAddresses[i]];
                      if (balance == 0) {
                          continue;
                      }
                      _lifiBalances[tokenAddresses[i]] = 0;
                      LibAsset.transferAsset(tokenAddresses[i], payable(owner), balance);
                      emit LiFiFeesWithdrawn(tokenAddresses[i], msg.sender, balance);
                  }
              }
              /// @notice Returns the balance of the integrator
              /// @param integratorAddress address of the integrator
              /// @param tokenAddress address of the token to get the balance of
              function getTokenBalance(address integratorAddress, address tokenAddress) external view returns (uint256) {
                  return _balances[integratorAddress][tokenAddress];
              }
              /// @notice Returns the balance of lifi
              /// @param tokenAddress address of the token to get the balance of
              function getLifiTokenBalance(address tokenAddress) external view returns (uint256) {
                  return _lifiBalances[tokenAddress];
              }
              /// @notice Intitiates transfer of ownership to a new address
              /// @param _newOwner the address to transfer ownership to
              function transferOwnership(address _newOwner) external {
                  _enforceIsContractOwner();
                  if (_newOwner == LibAsset.NULL_ADDRESS) revert NoNullOwner();
                  if (_newOwner == owner) revert NewOwnerMustNotBeSelf();
                  pendingOwner = _newOwner;
                  emit OwnershipTransferRequested(msg.sender, pendingOwner);
              }
              /// @notice Cancel transfer of ownership
              function cancelOnwershipTransfer() external {
                  _enforceIsContractOwner();
                  if (pendingOwner == LibAsset.NULL_ADDRESS) revert NoPendingOwnershipTransfer();
                  pendingOwner = LibAsset.NULL_ADDRESS;
              }
              /// @notice Confirms transfer of ownership to the calling address (msg.sender)
              function confirmOwnershipTransfer() external {
                  if (msg.sender != pendingOwner) revert NotPendingOwner();
                  owner = pendingOwner;
                  pendingOwner = LibAsset.NULL_ADDRESS;
                  emit OwnershipTransferred(owner, pendingOwner);
              }
              /// Private Methods ///
              /// @notice Ensures that the calling address is the owner of the contract
              function _enforceIsContractOwner() private view {
                  if (msg.sender != owner) {
                      revert Unauthorized(msg.sender);
                  }
              }
          }
          // SPDX-License-Identifier: UNLICENSED
          pragma solidity 0.8.13;
          import { NullAddrIsNotAnERC20Token, NullAddrIsNotAValidSpender, NoTransferToNullAddress, InvalidAmount, NativeValueWithERC, NativeAssetTransferFailed } from "../Errors/GenericErrors.sol";
          import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
          import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
          /// @title LibAsset
          /// @author Connext <[email protected]>
          /// @notice This library contains helpers for dealing with onchain transfers
          ///         of assets, including accounting for the native asset `assetId`
          ///         conventions and any noncompliant ERC20 transfers
          library LibAsset {
              uint256 private constant MAX_INT = type(uint256).max;
              address internal constant NULL_ADDRESS = 0x0000000000000000000000000000000000000000; //address(0)
              /// @dev All native assets use the empty address for their asset id
              ///      by convention
              address internal constant NATIVE_ASSETID = NULL_ADDRESS; //address(0)
              /// @notice Gets the balance of the inheriting contract for the given asset
              /// @param assetId The asset identifier to get the balance of
              /// @return Balance held by contracts using this library
              function getOwnBalance(address assetId) internal view returns (uint256) {
                  return assetId == NATIVE_ASSETID ? address(this).balance : IERC20(assetId).balanceOf(address(this));
              }
              /// @notice Transfers ether from the inheriting contract to a given
              ///         recipient
              /// @param recipient Address to send ether to
              /// @param amount Amount to send to given recipient
              function transferNativeAsset(address payable recipient, uint256 amount) private {
                  if (recipient == NULL_ADDRESS) revert NoTransferToNullAddress();
                  // solhint-disable-next-line avoid-low-level-calls
                  (bool success, ) = recipient.call{ value: amount }("");
                  if (!success) revert NativeAssetTransferFailed();
              }
              /// @notice Gives MAX approval for another address to spend tokens
              /// @param assetId Token address to transfer
              /// @param spender Address to give spend approval to
              /// @param amount Amount to approve for spending
              function maxApproveERC20(
                  IERC20 assetId,
                  address spender,
                  uint256 amount
              ) internal {
                  if (address(assetId) == NATIVE_ASSETID) return;
                  if (spender == NULL_ADDRESS) revert NullAddrIsNotAValidSpender();
                  uint256 allowance = assetId.allowance(address(this), spender);
                  if (allowance < amount) SafeERC20.safeApprove(IERC20(assetId), spender, MAX_INT);
              }
              /// @notice Transfers tokens from the inheriting contract to a given
              ///         recipient
              /// @param assetId Token address to transfer
              /// @param recipient Address to send token to
              /// @param amount Amount to send to given recipient
              function transferERC20(
                  address assetId,
                  address recipient,
                  uint256 amount
              ) private {
                  if (isNativeAsset(assetId)) revert NullAddrIsNotAnERC20Token();
                  SafeERC20.safeTransfer(IERC20(assetId), recipient, amount);
              }
              /// @notice Transfers tokens from a sender to a given recipient
              /// @param assetId Token address to transfer
              /// @param from Address of sender/owner
              /// @param to Address of recipient/spender
              /// @param amount Amount to transfer from owner to spender
              function transferFromERC20(
                  address assetId,
                  address from,
                  address to,
                  uint256 amount
              ) internal {
                  if (assetId == NATIVE_ASSETID) revert NullAddrIsNotAnERC20Token();
                  if (to == NULL_ADDRESS) revert NoTransferToNullAddress();
                  SafeERC20.safeTransferFrom(IERC20(assetId), from, to, amount);
              }
              /// @notice Deposits an asset into the contract and performs checks to avoid NativeValueWithERC
              /// @param tokenId Token to deposit
              /// @param amount Amount to deposit
              /// @param isNative Wether the token is native or ERC20
              function depositAsset(
                  address tokenId,
                  uint256 amount,
                  bool isNative
              ) internal {
                  if (amount == 0) revert InvalidAmount();
                  if (isNative) {
                      if (msg.value != amount) revert InvalidAmount();
                  } else {
                      if (msg.value != 0) revert NativeValueWithERC();
                      uint256 _fromTokenBalance = LibAsset.getOwnBalance(tokenId);
                      LibAsset.transferFromERC20(tokenId, msg.sender, address(this), amount);
                      if (LibAsset.getOwnBalance(tokenId) - _fromTokenBalance != amount) revert InvalidAmount();
                  }
              }
              /// @notice Overload for depositAsset(address tokenId, uint256 amount, bool isNative)
              /// @param tokenId Token to deposit
              /// @param amount Amount to deposit
              function depositAsset(address tokenId, uint256 amount) internal {
                  return depositAsset(tokenId, amount, tokenId == NATIVE_ASSETID);
              }
              /// @notice Determines whether the given assetId is the native asset
              /// @param assetId The asset identifier to evaluate
              /// @return Boolean indicating if the asset is the native asset
              function isNativeAsset(address assetId) internal pure returns (bool) {
                  return assetId == NATIVE_ASSETID;
              }
              /// @notice Wrapper function to transfer a given asset (native or erc20) to
              ///         some recipient. Should handle all non-compliant return value
              ///         tokens as well by using the SafeERC20 contract by open zeppelin.
              /// @param assetId Asset id for transfer (address(0) for native asset,
              ///                token address for erc20s)
              /// @param recipient Address to send asset to
              /// @param amount Amount to send to given recipient
              function transferAsset(
                  address assetId,
                  address payable recipient,
                  uint256 amount
              ) internal {
                  (assetId == NATIVE_ASSETID)
                      ? transferNativeAsset(recipient, amount)
                      : transferERC20(assetId, recipient, amount);
              }
              /// @dev Checks whether the given address is a contract and contains code
              function isContract(address _contractAddr) internal view returns (bool) {
                  uint256 size;
                  // solhint-disable-next-line no-inline-assembly
                  assembly {
                      size := extcodesize(_contractAddr)
                  }
                  return size > 0;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.13;
          error InvalidAmount();
          error TokenAddressIsZero();
          error CannotBridgeToSameNetwork();
          error ZeroPostSwapBalance();
          error InvalidBridgeConfigLength();
          error NoSwapDataProvided();
          error NativeValueWithERC();
          error ContractCallNotAllowed();
          error NullAddrIsNotAValidSpender();
          error NullAddrIsNotAnERC20Token();
          error NoTransferToNullAddress();
          error NativeAssetTransferFailed();
          error InvalidContract();
          error InvalidConfig();
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          import "../IERC20.sol";
          import "../../../utils/Address.sol";
          /**
           * @title SafeERC20
           * @dev Wrappers around ERC20 operations that throw on failure (when the token
           * contract returns false). Tokens that return no value (and instead revert or
           * throw on failure) are also supported, non-reverting calls are assumed to be
           * successful.
           * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
           * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
           */
          library SafeERC20 {
              using Address for address;
              function safeTransfer(
                  IERC20 token,
                  address to,
                  uint256 value
              ) internal {
                  _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
              }
              function safeTransferFrom(
                  IERC20 token,
                  address from,
                  address to,
                  uint256 value
              ) internal {
                  _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
              }
              /**
               * @dev Deprecated. This function has issues similar to the ones found in
               * {IERC20-approve}, and its usage is discouraged.
               *
               * Whenever possible, use {safeIncreaseAllowance} and
               * {safeDecreaseAllowance} instead.
               */
              function safeApprove(
                  IERC20 token,
                  address spender,
                  uint256 value
              ) internal {
                  // safeApprove should only be called when setting an initial allowance,
                  // or when resetting it to zero. To increase and decrease it, use
                  // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                  require(
                      (value == 0) || (token.allowance(address(this), spender) == 0),
                      "SafeERC20: approve from non-zero to non-zero allowance"
                  );
                  _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
              }
              function safeIncreaseAllowance(
                  IERC20 token,
                  address spender,
                  uint256 value
              ) internal {
                  uint256 newAllowance = token.allowance(address(this), spender) + value;
                  _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
              }
              function safeDecreaseAllowance(
                  IERC20 token,
                  address spender,
                  uint256 value
              ) internal {
                  unchecked {
                      uint256 oldAllowance = token.allowance(address(this), spender);
                      require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                      uint256 newAllowance = oldAllowance - value;
                      _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                  }
              }
              /**
               * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
               * on the return value: the return value is optional (but if data is returned, it must not be false).
               * @param token The token targeted by the call.
               * @param data The call data (encoded using abi.encode or one of its variants).
               */
              function _callOptionalReturn(IERC20 token, bytes memory data) private {
                  // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                  // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
                  // the target address contains contract code and also asserts for success in the low-level call.
                  bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                  if (returndata.length > 0) {
                      // Return data is optional
                      require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          /**
           * @dev Interface of the ERC20 standard as defined in the EIP.
           */
          interface IERC20 {
              /**
               * @dev Returns the amount of tokens in existence.
               */
              function totalSupply() external view returns (uint256);
              /**
               * @dev Returns the amount of tokens owned by `account`.
               */
              function balanceOf(address account) external view returns (uint256);
              /**
               * @dev Moves `amount` tokens from the caller's account to `recipient`.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * Emits a {Transfer} event.
               */
              function transfer(address recipient, uint256 amount) external returns (bool);
              /**
               * @dev Returns the remaining number of tokens that `spender` will be
               * allowed to spend on behalf of `owner` through {transferFrom}. This is
               * zero by default.
               *
               * This value changes when {approve} or {transferFrom} are called.
               */
              function allowance(address owner, address spender) external view returns (uint256);
              /**
               * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * IMPORTANT: Beware that changing an allowance with this method brings the risk
               * that someone may use both the old and the new allowance by unfortunate
               * transaction ordering. One possible solution to mitigate this race
               * condition is to first reduce the spender's allowance to 0 and set the
               * desired value afterwards:
               * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
               *
               * Emits an {Approval} event.
               */
              function approve(address spender, uint256 amount) external returns (bool);
              /**
               * @dev Moves `amount` tokens from `sender` to `recipient` using the
               * allowance mechanism. `amount` is then deducted from the caller's
               * allowance.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * Emits a {Transfer} event.
               */
              function transferFrom(
                  address sender,
                  address recipient,
                  uint256 amount
              ) external returns (bool);
              /**
               * @dev Emitted when `value` tokens are moved from one account (`from`) to
               * another (`to`).
               *
               * Note that `value` may be zero.
               */
              event Transfer(address indexed from, address indexed to, uint256 value);
              /**
               * @dev Emitted when the allowance of a `spender` for an `owner` is set by
               * a call to {approve}. `value` is the new allowance.
               */
              event Approval(address indexed owner, address indexed spender, uint256 value);
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          /**
           * @dev Collection of functions related to the address type
           */
          library Address {
              /**
               * @dev Returns true if `account` is a contract.
               *
               * [IMPORTANT]
               * ====
               * It is unsafe to assume that an address for which this function returns
               * false is an externally-owned account (EOA) and not a contract.
               *
               * Among others, `isContract` will return false for the following
               * types of addresses:
               *
               *  - an externally-owned account
               *  - a contract in construction
               *  - an address where a contract will be created
               *  - an address where a contract lived, but was destroyed
               * ====
               */
              function isContract(address account) internal view returns (bool) {
                  // This method relies on extcodesize, which returns 0 for contracts in
                  // construction, since the code is only stored at the end of the
                  // constructor execution.
                  uint256 size;
                  assembly {
                      size := extcodesize(account)
                  }
                  return size > 0;
              }
              /**
               * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
               * `recipient`, forwarding all available gas and reverting on errors.
               *
               * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
               * of certain opcodes, possibly making contracts go over the 2300 gas limit
               * imposed by `transfer`, making them unable to receive funds via
               * `transfer`. {sendValue} removes this limitation.
               *
               * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
               *
               * IMPORTANT: because control is transferred to `recipient`, care must be
               * taken to not create reentrancy vulnerabilities. Consider using
               * {ReentrancyGuard} or the
               * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
               */
              function sendValue(address payable recipient, uint256 amount) internal {
                  require(address(this).balance >= amount, "Address: insufficient balance");
                  (bool success, ) = recipient.call{value: amount}("");
                  require(success, "Address: unable to send value, recipient may have reverted");
              }
              /**
               * @dev Performs a Solidity function call using a low level `call`. A
               * plain `call` is an unsafe replacement for a function call: use this
               * function instead.
               *
               * If `target` reverts with a revert reason, it is bubbled up by this
               * function (like regular Solidity function calls).
               *
               * Returns the raw returned data. To convert to the expected return value,
               * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
               *
               * Requirements:
               *
               * - `target` must be a contract.
               * - calling `target` with `data` must not revert.
               *
               * _Available since v3.1._
               */
              function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionCall(target, data, "Address: low-level call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
               * `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but also transferring `value` wei to `target`.
               *
               * Requirements:
               *
               * - the calling contract must have an ETH balance of at least `value`.
               * - the called Solidity function must be `payable`.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
              }
              /**
               * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
               * with `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  require(address(this).balance >= value, "Address: insufficient balance for call");
                  require(isContract(target), "Address: call to non-contract");
                  (bool success, bytes memory returndata) = target.call{value: value}(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                  return functionStaticCall(target, data, "Address: low-level static call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal view returns (bytes memory) {
                  require(isContract(target), "Address: static call to non-contract");
                  (bool success, bytes memory returndata) = target.staticcall(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionDelegateCall(target, data, "Address: low-level delegate call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  require(isContract(target), "Address: delegate call to non-contract");
                  (bool success, bytes memory returndata) = target.delegatecall(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
               * revert reason using the provided one.
               *
               * _Available since v4.3._
               */
              function verifyCallResult(
                  bool success,
                  bytes memory returndata,
                  string memory errorMessage
              ) internal pure returns (bytes memory) {
                  if (success) {
                      return returndata;
                  } else {
                      // Look for revert reason and bubble it up if present
                      if (returndata.length > 0) {
                          // The easiest way to bubble the revert reason is using memory via assembly
                          assembly {
                              let returndata_size := mload(returndata)
                              revert(add(32, returndata), returndata_size)
                          }
                      } else {
                          revert(errorMessage);
                      }
                  }
              }
          }
          

          File 3 of 4: RelayReceiver
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.23;
          contract RelayReceiver {
              // --- Structs ---
              struct Call {
                  address to;
                  bytes data;
                  uint256 value;
              }
              // --- Errors ---
              error CallFailed();
              error NativeTransferFailed();
              error Unauthorized();
              // --- Events ---
              event FundsForwardedWithData(bytes data);
              // --- Fields ---
              address private immutable SOLVER;
              // --- Constructor ---
              constructor(address solver) {
                  SOLVER = solver;
              }
              // --- Public methods ---
              fallback() external payable {
                  send(SOLVER, msg.value);
                  emit FundsForwardedWithData(msg.data);
              }
              function forward(bytes calldata data) external payable {
                  send(SOLVER, msg.value);
                  emit FundsForwardedWithData(data);
              }
              // --- Restricted methods ---
              function makeCalls(Call[] calldata calls) external payable {
                  if (msg.sender != SOLVER) {
                      revert Unauthorized();
                  }
                  unchecked {
                      uint256 length = calls.length;
                      for (uint256 i; i < length; i++) {
                          Call memory c = calls[i];
                          (bool success, ) = c.to.call{value: c.value}(c.data);
                          if (!success) {
                              revert CallFailed();
                          }
                      }
                  }
              }
              // --- Internal methods ---
              function send(address to, uint256 value) internal {
                  bool success;
                  assembly {
                      // Save gas by avoiding copying the return data to memory.
                      // Provide at most 100k gas to the internal call, which is
                      // more than enough to cover common use-cases of logic for
                      // receiving native tokens (eg. SCW payable fallbacks).
                      success := call(100000, to, value, 0, 0, 0, 0)
                  }
                  if (!success) {
                      revert NativeTransferFailed();
                  }
              }
          }
          

          File 4 of 4: RelayFacet
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.17;
          import { ILiFi } from "../Interfaces/ILiFi.sol";
          import { LibAsset } from "../Libraries/LibAsset.sol";
          import { LibSwap } from "../Libraries/LibSwap.sol";
          import { LibUtil } from "../Libraries/LibUtil.sol";
          import { ReentrancyGuard } from "../Helpers/ReentrancyGuard.sol";
          import { SwapperV2 } from "../Helpers/SwapperV2.sol";
          import { Validatable } from "../Helpers/Validatable.sol";
          import { ECDSA } from "solady/utils/ECDSA.sol";
          /// @title Relay Facet
          /// @author LI.FI (https://li.fi)
          /// @notice Provides functionality for bridging through Relay Protocol
          /// @custom:version 1.0.0
          contract RelayFacet is ILiFi, ReentrancyGuard, SwapperV2, Validatable {
              // Receiver for native transfers
              address public immutable relayReceiver;
              // Relayer wallet for ERC20 transfers
              address public immutable relaySolver;
              /// Storage ///
              mapping(bytes32 => bool) public consumedIds;
              /// Types ///
              /// @dev Relay specific parameters
              /// @param requestId Relay API request ID
              /// @param nonEVMReceiver set only if bridging to non-EVM chain
              /// @params receivingAssetId address of receiving asset
              /// @params signature attestation signature provided by the Relay solver
              struct RelayData {
                  bytes32 requestId;
                  bytes32 nonEVMReceiver;
                  bytes32 receivingAssetId;
                  bytes signature;
              }
              /// Events ///
              event BridgeToNonEVMChain(
                  bytes32 indexed transactionId,
                  uint256 indexed destinationChainId,
                  bytes32 receiver
              );
              /// Errors ///
              error InvalidQuote();
              /// Modifiers ///
              /// @param _bridgeData The core information needed for bridging
              /// @param _relayData Data specific to Relay
              modifier onlyValidQuote(
                  ILiFi.BridgeData memory _bridgeData,
                  RelayData calldata _relayData
              ) {
                  // Ensure that the id isn't already consumed
                  if (consumedIds[_relayData.requestId]) {
                      revert InvalidQuote();
                  }
                  // Ensure nonEVMAddress is not empty
                  if (
                      _bridgeData.receiver == LibAsset.NON_EVM_ADDRESS &&
                      _relayData.nonEVMReceiver == bytes32(0)
                  ) {
                      revert InvalidQuote();
                  }
                  // Verify that the bridging quote has been signed by the Relay solver
                  // as attested using the attestation API
                  // API URL: https://api.relay.link/requests/{requestId}/signature/v2
                  bytes32 message = ECDSA.toEthSignedMessageHash(
                      keccak256(
                          abi.encodePacked(
                              _relayData.requestId,
                              block.chainid,
                              bytes32(uint256(uint160(address(this)))),
                              bytes32(uint256(uint160(_bridgeData.sendingAssetId))),
                              _getMappedChainId(_bridgeData.destinationChainId),
                              _bridgeData.receiver == LibAsset.NON_EVM_ADDRESS
                                  ? _relayData.nonEVMReceiver
                                  : bytes32(uint256(uint160(_bridgeData.receiver))),
                              _relayData.receivingAssetId
                          )
                      )
                  );
                  address signer = ECDSA.recover(message, _relayData.signature);
                  if (signer != relaySolver) {
                      revert InvalidQuote();
                  }
                  _;
              }
              /// Constructor ///
              /// @param _relayReceiver The receiver for native transfers
              /// @param _relaySolver The relayer wallet for ERC20 transfers
              constructor(address _relayReceiver, address _relaySolver) {
                  relayReceiver = _relayReceiver;
                  relaySolver = _relaySolver;
              }
              /// External Methods ///
              /// @notice Bridges tokens via Relay
              /// @param _bridgeData The core information needed for bridging
              /// @param _relayData Data specific to Relay
              function startBridgeTokensViaRelay(
                  ILiFi.BridgeData calldata _bridgeData,
                  RelayData calldata _relayData
              )
                  external
                  payable
                  nonReentrant
                  onlyValidQuote(_bridgeData, _relayData)
                  refundExcessNative(payable(msg.sender))
                  validateBridgeData(_bridgeData)
                  doesNotContainSourceSwaps(_bridgeData)
                  doesNotContainDestinationCalls(_bridgeData)
              {
                  LibAsset.depositAsset(
                      _bridgeData.sendingAssetId,
                      _bridgeData.minAmount
                  );
                  _startBridge(_bridgeData, _relayData);
              }
              /// @notice Performs a swap before bridging via Relay
              /// @param _bridgeData The core information needed for bridging
              /// @param _swapData An array of swap related data for performing swaps before bridging
              /// @param _relayData Data specific to Relay
              function swapAndStartBridgeTokensViaRelay(
                  ILiFi.BridgeData memory _bridgeData,
                  LibSwap.SwapData[] calldata _swapData,
                  RelayData calldata _relayData
              )
                  external
                  payable
                  nonReentrant
                  onlyValidQuote(_bridgeData, _relayData)
                  refundExcessNative(payable(msg.sender))
                  containsSourceSwaps(_bridgeData)
                  doesNotContainDestinationCalls(_bridgeData)
                  validateBridgeData(_bridgeData)
              {
                  _bridgeData.minAmount = _depositAndSwap(
                      _bridgeData.transactionId,
                      _bridgeData.minAmount,
                      _swapData,
                      payable(msg.sender)
                  );
                  _startBridge(_bridgeData, _relayData);
              }
              /// Internal Methods ///
              /// @dev Contains the business logic for the bridge via Relay
              /// @param _bridgeData The core information needed for bridging
              /// @param _relayData Data specific to Relay
              function _startBridge(
                  ILiFi.BridgeData memory _bridgeData,
                  RelayData calldata _relayData
              ) internal {
                  // check if sendingAsset is native or ERC20
                  if (LibAsset.isNativeAsset(_bridgeData.sendingAssetId)) {
                      // Native
                      // Send Native to relayReceiver along with requestId as extra data
                      (bool success, bytes memory reason) = relayReceiver.call{
                          value: _bridgeData.minAmount
                      }(abi.encode(_relayData.requestId));
                      if (!success) {
                          revert(LibUtil.getRevertMsg(reason));
                      }
                  } else {
                      // ERC20
                      // We build the calldata from scratch to ensure that we can only
                      // send to the solver address
                      bytes memory transferCallData = bytes.concat(
                          abi.encodeWithSignature(
                              "transfer(address,uint256)",
                              relaySolver,
                              _bridgeData.minAmount
                          ),
                          abi.encode(_relayData.requestId)
                      );
                      (bool success, bytes memory reason) = address(
                          _bridgeData.sendingAssetId
                      ).call(transferCallData);
                      if (!success) {
                          revert(LibUtil.getRevertMsg(reason));
                      }
                  }
                  consumedIds[_relayData.requestId] = true;
                  // Emit special event if bridging to non-EVM chain
                  if (_bridgeData.receiver == LibAsset.NON_EVM_ADDRESS) {
                      emit BridgeToNonEVMChain(
                          _bridgeData.transactionId,
                          _getMappedChainId(_bridgeData.destinationChainId),
                          _relayData.nonEVMReceiver
                      );
                  }
                  emit LiFiTransferStarted(_bridgeData);
              }
              /// @notice get Relay specific chain id for non-EVM chains
              ///         IDs found here  https://li.quest/v1/chains?chainTypes=UTXO,SVM
              /// @param chainId LIFI specific chain id
              function _getMappedChainId(
                  uint256 chainId
              ) internal pure returns (uint256) {
                  // Bitcoin
                  if (chainId == 20000000000001) {
                      return 8253038;
                  }
                  // Solana
                  if (chainId == 1151111081099710) {
                      return 792703809;
                  }
                  return chainId;
              }
          }
          // SPDX-License-Identifier: MIT
          /// @custom:version 1.0.0
          pragma solidity ^0.8.17;
          interface ILiFi {
              /// Structs ///
              struct BridgeData {
                  bytes32 transactionId;
                  string bridge;
                  string integrator;
                  address referrer;
                  address sendingAssetId;
                  address receiver;
                  uint256 minAmount;
                  uint256 destinationChainId;
                  bool hasSourceSwaps;
                  bool hasDestinationCall;
              }
              /// Events ///
              event LiFiTransferStarted(ILiFi.BridgeData bridgeData);
              event LiFiTransferCompleted(
                  bytes32 indexed transactionId,
                  address receivingAssetId,
                  address receiver,
                  uint256 amount,
                  uint256 timestamp
              );
              event LiFiTransferRecovered(
                  bytes32 indexed transactionId,
                  address receivingAssetId,
                  address receiver,
                  uint256 amount,
                  uint256 timestamp
              );
              event LiFiGenericSwapCompleted(
                  bytes32 indexed transactionId,
                  string integrator,
                  string referrer,
                  address receiver,
                  address fromAssetId,
                  address toAssetId,
                  uint256 fromAmount,
                  uint256 toAmount
              );
              // Deprecated but kept here to include in ABI to parse historic events
              event LiFiSwappedGeneric(
                  bytes32 indexed transactionId,
                  string integrator,
                  string referrer,
                  address fromAssetId,
                  address toAssetId,
                  uint256 fromAmount,
                  uint256 toAmount
              );
          }
          // SPDX-License-Identifier: UNLICENSED
          pragma solidity ^0.8.17;
          import { InsufficientBalance, NullAddrIsNotAnERC20Token, NullAddrIsNotAValidSpender, NoTransferToNullAddress, InvalidAmount, NativeAssetTransferFailed } from "../Errors/GenericErrors.sol";
          import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
          import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
          import { LibSwap } from "./LibSwap.sol";
          /// @title LibAsset
          /// @custom:version 1.0.1
          /// @notice This library contains helpers for dealing with onchain transfers
          ///         of assets, including accounting for the native asset `assetId`
          ///         conventions and any noncompliant ERC20 transfers
          library LibAsset {
              uint256 private constant MAX_UINT = type(uint256).max;
              address internal constant NULL_ADDRESS = address(0);
              address internal constant NON_EVM_ADDRESS =
                  0x11f111f111f111F111f111f111F111f111f111F1;
              /// @dev All native assets use the empty address for their asset id
              ///      by convention
              address internal constant NATIVE_ASSETID = NULL_ADDRESS; //address(0)
              /// @notice Gets the balance of the inheriting contract for the given asset
              /// @param assetId The asset identifier to get the balance of
              /// @return Balance held by contracts using this library
              function getOwnBalance(address assetId) internal view returns (uint256) {
                  return
                      isNativeAsset(assetId)
                          ? address(this).balance
                          : IERC20(assetId).balanceOf(address(this));
              }
              /// @notice Transfers ether from the inheriting contract to a given
              ///         recipient
              /// @param recipient Address to send ether to
              /// @param amount Amount to send to given recipient
              function transferNativeAsset(
                  address payable recipient,
                  uint256 amount
              ) private {
                  if (recipient == NULL_ADDRESS) revert NoTransferToNullAddress();
                  if (amount > address(this).balance)
                      revert InsufficientBalance(amount, address(this).balance);
                  // solhint-disable-next-line avoid-low-level-calls
                  (bool success, ) = recipient.call{ value: amount }("");
                  if (!success) revert NativeAssetTransferFailed();
              }
              /// @notice If the current allowance is insufficient, the allowance for a given spender
              /// is set to MAX_UINT.
              /// @param assetId Token address to transfer
              /// @param spender Address to give spend approval to
              /// @param amount Amount to approve for spending
              function maxApproveERC20(
                  IERC20 assetId,
                  address spender,
                  uint256 amount
              ) internal {
                  if (isNativeAsset(address(assetId))) {
                      return;
                  }
                  if (spender == NULL_ADDRESS) {
                      revert NullAddrIsNotAValidSpender();
                  }
                  if (assetId.allowance(address(this), spender) < amount) {
                      SafeERC20.safeApprove(IERC20(assetId), spender, 0);
                      SafeERC20.safeApprove(IERC20(assetId), spender, MAX_UINT);
                  }
              }
              /// @notice Transfers tokens from the inheriting contract to a given
              ///         recipient
              /// @param assetId Token address to transfer
              /// @param recipient Address to send token to
              /// @param amount Amount to send to given recipient
              function transferERC20(
                  address assetId,
                  address recipient,
                  uint256 amount
              ) private {
                  if (isNativeAsset(assetId)) {
                      revert NullAddrIsNotAnERC20Token();
                  }
                  if (recipient == NULL_ADDRESS) {
                      revert NoTransferToNullAddress();
                  }
                  uint256 assetBalance = IERC20(assetId).balanceOf(address(this));
                  if (amount > assetBalance) {
                      revert InsufficientBalance(amount, assetBalance);
                  }
                  SafeERC20.safeTransfer(IERC20(assetId), recipient, amount);
              }
              /// @notice Transfers tokens from a sender to a given recipient
              /// @param assetId Token address to transfer
              /// @param from Address of sender/owner
              /// @param to Address of recipient/spender
              /// @param amount Amount to transfer from owner to spender
              function transferFromERC20(
                  address assetId,
                  address from,
                  address to,
                  uint256 amount
              ) internal {
                  if (isNativeAsset(assetId)) {
                      revert NullAddrIsNotAnERC20Token();
                  }
                  if (to == NULL_ADDRESS) {
                      revert NoTransferToNullAddress();
                  }
                  IERC20 asset = IERC20(assetId);
                  uint256 prevBalance = asset.balanceOf(to);
                  SafeERC20.safeTransferFrom(asset, from, to, amount);
                  if (asset.balanceOf(to) - prevBalance != amount) {
                      revert InvalidAmount();
                  }
              }
              function depositAsset(address assetId, uint256 amount) internal {
                  if (amount == 0) revert InvalidAmount();
                  if (isNativeAsset(assetId)) {
                      if (msg.value < amount) revert InvalidAmount();
                  } else {
                      uint256 balance = IERC20(assetId).balanceOf(msg.sender);
                      if (balance < amount) revert InsufficientBalance(amount, balance);
                      transferFromERC20(assetId, msg.sender, address(this), amount);
                  }
              }
              function depositAssets(LibSwap.SwapData[] calldata swaps) internal {
                  for (uint256 i = 0; i < swaps.length; ) {
                      LibSwap.SwapData calldata swap = swaps[i];
                      if (swap.requiresDeposit) {
                          depositAsset(swap.sendingAssetId, swap.fromAmount);
                      }
                      unchecked {
                          i++;
                      }
                  }
              }
              /// @notice Determines whether the given assetId is the native asset
              /// @param assetId The asset identifier to evaluate
              /// @return Boolean indicating if the asset is the native asset
              function isNativeAsset(address assetId) internal pure returns (bool) {
                  return assetId == NATIVE_ASSETID;
              }
              /// @notice Wrapper function to transfer a given asset (native or erc20) to
              ///         some recipient. Should handle all non-compliant return value
              ///         tokens as well by using the SafeERC20 contract by open zeppelin.
              /// @param assetId Asset id for transfer (address(0) for native asset,
              ///                token address for erc20s)
              /// @param recipient Address to send asset to
              /// @param amount Amount to send to given recipient
              function transferAsset(
                  address assetId,
                  address payable recipient,
                  uint256 amount
              ) internal {
                  isNativeAsset(assetId)
                      ? transferNativeAsset(recipient, amount)
                      : transferERC20(assetId, recipient, amount);
              }
              /// @dev Checks whether the given address is a contract and contains code
              function isContract(address _contractAddr) internal view returns (bool) {
                  uint256 size;
                  // solhint-disable-next-line no-inline-assembly
                  assembly {
                      size := extcodesize(_contractAddr)
                  }
                  return size > 0;
              }
          }
          // SPDX-License-Identifier: MIT
          /// @custom:version 1.0.0
          pragma solidity ^0.8.17;
          import { LibAsset } from "./LibAsset.sol";
          import { LibUtil } from "./LibUtil.sol";
          import { InvalidContract, NoSwapFromZeroBalance, InsufficientBalance } from "../Errors/GenericErrors.sol";
          import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
          library LibSwap {
              struct SwapData {
                  address callTo;
                  address approveTo;
                  address sendingAssetId;
                  address receivingAssetId;
                  uint256 fromAmount;
                  bytes callData;
                  bool requiresDeposit;
              }
              event AssetSwapped(
                  bytes32 transactionId,
                  address dex,
                  address fromAssetId,
                  address toAssetId,
                  uint256 fromAmount,
                  uint256 toAmount,
                  uint256 timestamp
              );
              function swap(bytes32 transactionId, SwapData calldata _swap) internal {
                  if (!LibAsset.isContract(_swap.callTo)) revert InvalidContract();
                  uint256 fromAmount = _swap.fromAmount;
                  if (fromAmount == 0) revert NoSwapFromZeroBalance();
                  uint256 nativeValue = LibAsset.isNativeAsset(_swap.sendingAssetId)
                      ? _swap.fromAmount
                      : 0;
                  uint256 initialSendingAssetBalance = LibAsset.getOwnBalance(
                      _swap.sendingAssetId
                  );
                  uint256 initialReceivingAssetBalance = LibAsset.getOwnBalance(
                      _swap.receivingAssetId
                  );
                  if (nativeValue == 0) {
                      LibAsset.maxApproveERC20(
                          IERC20(_swap.sendingAssetId),
                          _swap.approveTo,
                          _swap.fromAmount
                      );
                  }
                  if (initialSendingAssetBalance < _swap.fromAmount) {
                      revert InsufficientBalance(
                          _swap.fromAmount,
                          initialSendingAssetBalance
                      );
                  }
                  // solhint-disable-next-line avoid-low-level-calls
                  (bool success, bytes memory res) = _swap.callTo.call{
                      value: nativeValue
                  }(_swap.callData);
                  if (!success) {
                      LibUtil.revertWith(res);
                  }
                  uint256 newBalance = LibAsset.getOwnBalance(_swap.receivingAssetId);
                  emit AssetSwapped(
                      transactionId,
                      _swap.callTo,
                      _swap.sendingAssetId,
                      _swap.receivingAssetId,
                      _swap.fromAmount,
                      newBalance > initialReceivingAssetBalance
                          ? newBalance - initialReceivingAssetBalance
                          : newBalance,
                      block.timestamp
                  );
              }
          }
          // SPDX-License-Identifier: MIT
          /// @custom:version 1.0.0
          pragma solidity ^0.8.17;
          import "./LibBytes.sol";
          library LibUtil {
              using LibBytes for bytes;
              function getRevertMsg(
                  bytes memory _res
              ) internal pure returns (string memory) {
                  // If the _res length is less than 68, then the transaction failed silently (without a revert message)
                  if (_res.length < 68) return "Transaction reverted silently";
                  bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes
                  return abi.decode(revertData, (string)); // All that remains is the revert string
              }
              /// @notice Determines whether the given address is the zero address
              /// @param addr The address to verify
              /// @return Boolean indicating if the address is the zero address
              function isZeroAddress(address addr) internal pure returns (bool) {
                  return addr == address(0);
              }
              function revertWith(bytes memory data) internal pure {
                  assembly {
                      let dataSize := mload(data) // Load the size of the data
                      let dataPtr := add(data, 0x20) // Advance data pointer to the next word
                      revert(dataPtr, dataSize) // Revert with the given data
                  }
              }
          }
          // SPDX-License-Identifier: UNLICENSED
          /// @custom:version 1.0.0
          pragma solidity ^0.8.17;
          /// @title Reentrancy Guard
          /// @author LI.FI (https://li.fi)
          /// @notice Abstract contract to provide protection against reentrancy
          abstract contract ReentrancyGuard {
              /// Storage ///
              bytes32 private constant NAMESPACE = keccak256("com.lifi.reentrancyguard");
              /// Types ///
              struct ReentrancyStorage {
                  uint256 status;
              }
              /// Errors ///
              error ReentrancyError();
              /// Constants ///
              uint256 private constant _NOT_ENTERED = 0;
              uint256 private constant _ENTERED = 1;
              /// Modifiers ///
              modifier nonReentrant() {
                  ReentrancyStorage storage s = reentrancyStorage();
                  if (s.status == _ENTERED) revert ReentrancyError();
                  s.status = _ENTERED;
                  _;
                  s.status = _NOT_ENTERED;
              }
              /// Private Methods ///
              /// @dev fetch local storage
              function reentrancyStorage()
                  private
                  pure
                  returns (ReentrancyStorage storage data)
              {
                  bytes32 position = NAMESPACE;
                  // solhint-disable-next-line no-inline-assembly
                  assembly {
                      data.slot := position
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          /// @custom:version 1.0.0
          pragma solidity ^0.8.17;
          import { ILiFi } from "../Interfaces/ILiFi.sol";
          import { LibSwap } from "../Libraries/LibSwap.sol";
          import { LibAsset } from "../Libraries/LibAsset.sol";
          import { LibAllowList } from "../Libraries/LibAllowList.sol";
          import { ContractCallNotAllowed, NoSwapDataProvided, CumulativeSlippageTooHigh } from "../Errors/GenericErrors.sol";
          /// @title Swapper
          /// @author LI.FI (https://li.fi)
          /// @notice Abstract contract to provide swap functionality
          contract SwapperV2 is ILiFi {
              /// Types ///
              /// @dev only used to get around "Stack Too Deep" errors
              struct ReserveData {
                  bytes32 transactionId;
                  address payable leftoverReceiver;
                  uint256 nativeReserve;
              }
              /// Modifiers ///
              /// @dev Sends any leftover balances back to the user
              /// @notice Sends any leftover balances to the user
              /// @param _swaps Swap data array
              /// @param _leftoverReceiver Address to send leftover tokens to
              /// @param _initialBalances Array of initial token balances
              modifier noLeftovers(
                  LibSwap.SwapData[] calldata _swaps,
                  address payable _leftoverReceiver,
                  uint256[] memory _initialBalances
              ) {
                  uint256 numSwaps = _swaps.length;
                  if (numSwaps != 1) {
                      address finalAsset = _swaps[numSwaps - 1].receivingAssetId;
                      uint256 curBalance;
                      _;
                      for (uint256 i = 0; i < numSwaps - 1; ) {
                          address curAsset = _swaps[i].receivingAssetId;
                          // Handle multi-to-one swaps
                          if (curAsset != finalAsset) {
                              curBalance =
                                  LibAsset.getOwnBalance(curAsset) -
                                  _initialBalances[i];
                              if (curBalance > 0) {
                                  LibAsset.transferAsset(
                                      curAsset,
                                      _leftoverReceiver,
                                      curBalance
                                  );
                              }
                          }
                          unchecked {
                              ++i;
                          }
                      }
                  } else {
                      _;
                  }
              }
              /// @dev Sends any leftover balances back to the user reserving native tokens
              /// @notice Sends any leftover balances to the user
              /// @param _swaps Swap data array
              /// @param _leftoverReceiver Address to send leftover tokens to
              /// @param _initialBalances Array of initial token balances
              modifier noLeftoversReserve(
                  LibSwap.SwapData[] calldata _swaps,
                  address payable _leftoverReceiver,
                  uint256[] memory _initialBalances,
                  uint256 _nativeReserve
              ) {
                  uint256 numSwaps = _swaps.length;
                  if (numSwaps != 1) {
                      address finalAsset = _swaps[numSwaps - 1].receivingAssetId;
                      uint256 curBalance;
                      _;
                      for (uint256 i = 0; i < numSwaps - 1; ) {
                          address curAsset = _swaps[i].receivingAssetId;
                          // Handle multi-to-one swaps
                          if (curAsset != finalAsset) {
                              curBalance =
                                  LibAsset.getOwnBalance(curAsset) -
                                  _initialBalances[i];
                              uint256 reserve = LibAsset.isNativeAsset(curAsset)
                                  ? _nativeReserve
                                  : 0;
                              if (curBalance > 0) {
                                  LibAsset.transferAsset(
                                      curAsset,
                                      _leftoverReceiver,
                                      curBalance - reserve
                                  );
                              }
                          }
                          unchecked {
                              ++i;
                          }
                      }
                  } else {
                      _;
                  }
              }
              /// @dev Refunds any excess native asset sent to the contract after the main function
              /// @notice Refunds any excess native asset sent to the contract after the main function
              /// @param _refundReceiver Address to send refunds to
              modifier refundExcessNative(address payable _refundReceiver) {
                  uint256 initialBalance = address(this).balance - msg.value;
                  _;
                  uint256 finalBalance = address(this).balance;
                  if (finalBalance > initialBalance) {
                      LibAsset.transferAsset(
                          LibAsset.NATIVE_ASSETID,
                          _refundReceiver,
                          finalBalance - initialBalance
                      );
                  }
              }
              /// Internal Methods ///
              /// @dev Deposits value, executes swaps, and performs minimum amount check
              /// @param _transactionId the transaction id associated with the operation
              /// @param _minAmount the minimum amount of the final asset to receive
              /// @param _swaps Array of data used to execute swaps
              /// @param _leftoverReceiver The address to send leftover funds to
              /// @return uint256 result of the swap
              function _depositAndSwap(
                  bytes32 _transactionId,
                  uint256 _minAmount,
                  LibSwap.SwapData[] calldata _swaps,
                  address payable _leftoverReceiver
              ) internal returns (uint256) {
                  uint256 numSwaps = _swaps.length;
                  if (numSwaps == 0) {
                      revert NoSwapDataProvided();
                  }
                  address finalTokenId = _swaps[numSwaps - 1].receivingAssetId;
                  uint256 initialBalance = LibAsset.getOwnBalance(finalTokenId);
                  if (LibAsset.isNativeAsset(finalTokenId)) {
                      initialBalance -= msg.value;
                  }
                  uint256[] memory initialBalances = _fetchBalances(_swaps);
                  LibAsset.depositAssets(_swaps);
                  _executeSwaps(
                      _transactionId,
                      _swaps,
                      _leftoverReceiver,
                      initialBalances
                  );
                  uint256 newBalance = LibAsset.getOwnBalance(finalTokenId) -
                      initialBalance;
                  if (newBalance < _minAmount) {
                      revert CumulativeSlippageTooHigh(_minAmount, newBalance);
                  }
                  return newBalance;
              }
              /// @dev Deposits value, executes swaps, and performs minimum amount check and reserves native token for fees
              /// @param _transactionId the transaction id associated with the operation
              /// @param _minAmount the minimum amount of the final asset to receive
              /// @param _swaps Array of data used to execute swaps
              /// @param _leftoverReceiver The address to send leftover funds to
              /// @param _nativeReserve Amount of native token to prevent from being swept back to the caller
              function _depositAndSwap(
                  bytes32 _transactionId,
                  uint256 _minAmount,
                  LibSwap.SwapData[] calldata _swaps,
                  address payable _leftoverReceiver,
                  uint256 _nativeReserve
              ) internal returns (uint256) {
                  uint256 numSwaps = _swaps.length;
                  if (numSwaps == 0) {
                      revert NoSwapDataProvided();
                  }
                  address finalTokenId = _swaps[numSwaps - 1].receivingAssetId;
                  uint256 initialBalance = LibAsset.getOwnBalance(finalTokenId);
                  if (LibAsset.isNativeAsset(finalTokenId)) {
                      initialBalance -= msg.value;
                  }
                  uint256[] memory initialBalances = _fetchBalances(_swaps);
                  LibAsset.depositAssets(_swaps);
                  ReserveData memory rd = ReserveData(
                      _transactionId,
                      _leftoverReceiver,
                      _nativeReserve
                  );
                  _executeSwaps(rd, _swaps, initialBalances);
                  uint256 newBalance = LibAsset.getOwnBalance(finalTokenId) -
                      initialBalance;
                  if (LibAsset.isNativeAsset(finalTokenId)) {
                      newBalance -= _nativeReserve;
                  }
                  if (newBalance < _minAmount) {
                      revert CumulativeSlippageTooHigh(_minAmount, newBalance);
                  }
                  return newBalance;
              }
              /// Private Methods ///
              /// @dev Executes swaps and checks that DEXs used are in the allowList
              /// @param _transactionId the transaction id associated with the operation
              /// @param _swaps Array of data used to execute swaps
              /// @param _leftoverReceiver Address to send leftover tokens to
              /// @param _initialBalances Array of initial balances
              function _executeSwaps(
                  bytes32 _transactionId,
                  LibSwap.SwapData[] calldata _swaps,
                  address payable _leftoverReceiver,
                  uint256[] memory _initialBalances
              ) internal noLeftovers(_swaps, _leftoverReceiver, _initialBalances) {
                  uint256 numSwaps = _swaps.length;
                  for (uint256 i = 0; i < numSwaps; ) {
                      LibSwap.SwapData calldata currentSwap = _swaps[i];
                      if (
                          !((LibAsset.isNativeAsset(currentSwap.sendingAssetId) ||
                              LibAllowList.contractIsAllowed(currentSwap.approveTo)) &&
                              LibAllowList.contractIsAllowed(currentSwap.callTo) &&
                              LibAllowList.selectorIsAllowed(
                                  bytes4(currentSwap.callData[:4])
                              ))
                      ) revert ContractCallNotAllowed();
                      LibSwap.swap(_transactionId, currentSwap);
                      unchecked {
                          ++i;
                      }
                  }
              }
              /// @dev Executes swaps and checks that DEXs used are in the allowList
              /// @param _reserveData Data passed used to reserve native tokens
              /// @param _swaps Array of data used to execute swaps
              function _executeSwaps(
                  ReserveData memory _reserveData,
                  LibSwap.SwapData[] calldata _swaps,
                  uint256[] memory _initialBalances
              )
                  internal
                  noLeftoversReserve(
                      _swaps,
                      _reserveData.leftoverReceiver,
                      _initialBalances,
                      _reserveData.nativeReserve
                  )
              {
                  uint256 numSwaps = _swaps.length;
                  for (uint256 i = 0; i < numSwaps; ) {
                      LibSwap.SwapData calldata currentSwap = _swaps[i];
                      if (
                          !((LibAsset.isNativeAsset(currentSwap.sendingAssetId) ||
                              LibAllowList.contractIsAllowed(currentSwap.approveTo)) &&
                              LibAllowList.contractIsAllowed(currentSwap.callTo) &&
                              LibAllowList.selectorIsAllowed(
                                  bytes4(currentSwap.callData[:4])
                              ))
                      ) revert ContractCallNotAllowed();
                      LibSwap.swap(_reserveData.transactionId, currentSwap);
                      unchecked {
                          ++i;
                      }
                  }
              }
              /// @dev Fetches balances of tokens to be swapped before swapping.
              /// @param _swaps Array of data used to execute swaps
              /// @return uint256[] Array of token balances.
              function _fetchBalances(
                  LibSwap.SwapData[] calldata _swaps
              ) private view returns (uint256[] memory) {
                  uint256 numSwaps = _swaps.length;
                  uint256[] memory balances = new uint256[](numSwaps);
                  address asset;
                  for (uint256 i = 0; i < numSwaps; ) {
                      asset = _swaps[i].receivingAssetId;
                      balances[i] = LibAsset.getOwnBalance(asset);
                      if (LibAsset.isNativeAsset(asset)) {
                          balances[i] -= msg.value;
                      }
                      unchecked {
                          ++i;
                      }
                  }
                  return balances;
              }
          }
          // SPDX-License-Identifier: UNLICENSED
          /// @custom:version 1.0.0
          pragma solidity ^0.8.17;
          import { LibAsset } from "../Libraries/LibAsset.sol";
          import { LibUtil } from "../Libraries/LibUtil.sol";
          import { InvalidReceiver, InformationMismatch, InvalidSendingToken, InvalidAmount, NativeAssetNotSupported, InvalidDestinationChain, CannotBridgeToSameNetwork } from "../Errors/GenericErrors.sol";
          import { ILiFi } from "../Interfaces/ILiFi.sol";
          import { LibSwap } from "../Libraries/LibSwap.sol";
          contract Validatable {
              modifier validateBridgeData(ILiFi.BridgeData memory _bridgeData) {
                  if (LibUtil.isZeroAddress(_bridgeData.receiver)) {
                      revert InvalidReceiver();
                  }
                  if (_bridgeData.minAmount == 0) {
                      revert InvalidAmount();
                  }
                  if (_bridgeData.destinationChainId == block.chainid) {
                      revert CannotBridgeToSameNetwork();
                  }
                  _;
              }
              modifier noNativeAsset(ILiFi.BridgeData memory _bridgeData) {
                  if (LibAsset.isNativeAsset(_bridgeData.sendingAssetId)) {
                      revert NativeAssetNotSupported();
                  }
                  _;
              }
              modifier onlyAllowSourceToken(
                  ILiFi.BridgeData memory _bridgeData,
                  address _token
              ) {
                  if (_bridgeData.sendingAssetId != _token) {
                      revert InvalidSendingToken();
                  }
                  _;
              }
              modifier onlyAllowDestinationChain(
                  ILiFi.BridgeData memory _bridgeData,
                  uint256 _chainId
              ) {
                  if (_bridgeData.destinationChainId != _chainId) {
                      revert InvalidDestinationChain();
                  }
                  _;
              }
              modifier containsSourceSwaps(ILiFi.BridgeData memory _bridgeData) {
                  if (!_bridgeData.hasSourceSwaps) {
                      revert InformationMismatch();
                  }
                  _;
              }
              modifier doesNotContainSourceSwaps(ILiFi.BridgeData memory _bridgeData) {
                  if (_bridgeData.hasSourceSwaps) {
                      revert InformationMismatch();
                  }
                  _;
              }
              modifier doesNotContainDestinationCalls(
                  ILiFi.BridgeData memory _bridgeData
              ) {
                  if (_bridgeData.hasDestinationCall) {
                      revert InformationMismatch();
                  }
                  _;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.4;
          /// @notice Gas optimized ECDSA wrapper.
          /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/ECDSA.sol)
          /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/ECDSA.sol)
          /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol)
          ///
          /// @dev Note:
          /// - The recovery functions use the ecrecover precompile (0x1).
          /// - As of Solady version 0.0.68, the `recover` variants will revert upon recovery failure.
          ///   This is for more safety by default.
          ///   Use the `tryRecover` variants if you need to get the zero address back
          ///   upon recovery failure instead.
          /// - As of Solady version 0.0.134, all `bytes signature` variants accept both
          ///   regular 65-byte `(r, s, v)` and EIP-2098 `(r, vs)` short form signatures.
          ///   See: https://eips.ethereum.org/EIPS/eip-2098
          ///   This is for calldata efficiency on smart accounts prevalent on L2s.
          ///
          /// WARNING! Do NOT use signatures as unique identifiers:
          /// - Use a nonce in the digest to prevent replay attacks on the same contract.
          /// - Use EIP-712 for the digest to prevent replay attacks across different chains and contracts.
          ///   EIP-712 also enables readable signing of typed data for better user safety.
          /// This implementation does NOT check if a signature is non-malleable.
          library ECDSA {
              /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
              /*                        CUSTOM ERRORS                       */
              /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
              /// @dev The signature is invalid.
              error InvalidSignature();
              /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
              /*                    RECOVERY OPERATIONS                     */
              /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
              /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
              function recover(bytes32 hash, bytes memory signature) internal view returns (address result) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      result := 1
                      let m := mload(0x40) // Cache the free memory pointer.
                      for {} 1 {} {
                          mstore(0x00, hash)
                          mstore(0x40, mload(add(signature, 0x20))) // `r`.
                          if eq(mload(signature), 64) {
                              let vs := mload(add(signature, 0x40))
                              mstore(0x20, add(shr(255, vs), 27)) // `v`.
                              mstore(0x60, shr(1, shl(1, vs))) // `s`.
                              break
                          }
                          if eq(mload(signature), 65) {
                              mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`.
                              mstore(0x60, mload(add(signature, 0x40))) // `s`.
                              break
                          }
                          result := 0
                          break
                      }
                      result :=
                          mload(
                              staticcall(
                                  gas(), // Amount of gas left for the transaction.
                                  result, // Address of `ecrecover`.
                                  0x00, // Start of input.
                                  0x80, // Size of input.
                                  0x01, // Start of output.
                                  0x20 // Size of output.
                              )
                          )
                      // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                      if iszero(returndatasize()) {
                          mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
                          revert(0x1c, 0x04)
                      }
                      mstore(0x60, 0) // Restore the zero slot.
                      mstore(0x40, m) // Restore the free memory pointer.
                  }
              }
              /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
              function recoverCalldata(bytes32 hash, bytes calldata signature)
                  internal
                  view
                  returns (address result)
              {
                  /// @solidity memory-safe-assembly
                  assembly {
                      result := 1
                      let m := mload(0x40) // Cache the free memory pointer.
                      mstore(0x00, hash)
                      for {} 1 {} {
                          if eq(signature.length, 64) {
                              let vs := calldataload(add(signature.offset, 0x20))
                              mstore(0x20, add(shr(255, vs), 27)) // `v`.
                              mstore(0x40, calldataload(signature.offset)) // `r`.
                              mstore(0x60, shr(1, shl(1, vs))) // `s`.
                              break
                          }
                          if eq(signature.length, 65) {
                              mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`.
                              calldatacopy(0x40, signature.offset, 0x40) // Copy `r` and `s`.
                              break
                          }
                          result := 0
                          break
                      }
                      result :=
                          mload(
                              staticcall(
                                  gas(), // Amount of gas left for the transaction.
                                  result, // Address of `ecrecover`.
                                  0x00, // Start of input.
                                  0x80, // Size of input.
                                  0x01, // Start of output.
                                  0x20 // Size of output.
                              )
                          )
                      // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                      if iszero(returndatasize()) {
                          mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
                          revert(0x1c, 0x04)
                      }
                      mstore(0x60, 0) // Restore the zero slot.
                      mstore(0x40, m) // Restore the free memory pointer.
                  }
              }
              /// @dev Recovers the signer's address from a message digest `hash`,
              /// and the EIP-2098 short form signature defined by `r` and `vs`.
              function recover(bytes32 hash, bytes32 r, bytes32 vs) internal view returns (address result) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      let m := mload(0x40) // Cache the free memory pointer.
                      mstore(0x00, hash)
                      mstore(0x20, add(shr(255, vs), 27)) // `v`.
                      mstore(0x40, r)
                      mstore(0x60, shr(1, shl(1, vs))) // `s`.
                      result :=
                          mload(
                              staticcall(
                                  gas(), // Amount of gas left for the transaction.
                                  1, // Address of `ecrecover`.
                                  0x00, // Start of input.
                                  0x80, // Size of input.
                                  0x01, // Start of output.
                                  0x20 // Size of output.
                              )
                          )
                      // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                      if iszero(returndatasize()) {
                          mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
                          revert(0x1c, 0x04)
                      }
                      mstore(0x60, 0) // Restore the zero slot.
                      mstore(0x40, m) // Restore the free memory pointer.
                  }
              }
              /// @dev Recovers the signer's address from a message digest `hash`,
              /// and the signature defined by `v`, `r`, `s`.
              function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s)
                  internal
                  view
                  returns (address result)
              {
                  /// @solidity memory-safe-assembly
                  assembly {
                      let m := mload(0x40) // Cache the free memory pointer.
                      mstore(0x00, hash)
                      mstore(0x20, and(v, 0xff))
                      mstore(0x40, r)
                      mstore(0x60, s)
                      result :=
                          mload(
                              staticcall(
                                  gas(), // Amount of gas left for the transaction.
                                  1, // Address of `ecrecover`.
                                  0x00, // Start of input.
                                  0x80, // Size of input.
                                  0x01, // Start of output.
                                  0x20 // Size of output.
                              )
                          )
                      // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                      if iszero(returndatasize()) {
                          mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
                          revert(0x1c, 0x04)
                      }
                      mstore(0x60, 0) // Restore the zero slot.
                      mstore(0x40, m) // Restore the free memory pointer.
                  }
              }
              /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
              /*                   TRY-RECOVER OPERATIONS                   */
              /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
              // WARNING!
              // These functions will NOT revert upon recovery failure.
              // Instead, they will return the zero address upon recovery failure.
              // It is critical that the returned address is NEVER compared against
              // a zero address (e.g. an uninitialized address variable).
              /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
              function tryRecover(bytes32 hash, bytes memory signature)
                  internal
                  view
                  returns (address result)
              {
                  /// @solidity memory-safe-assembly
                  assembly {
                      result := 1
                      let m := mload(0x40) // Cache the free memory pointer.
                      for {} 1 {} {
                          mstore(0x00, hash)
                          mstore(0x40, mload(add(signature, 0x20))) // `r`.
                          if eq(mload(signature), 64) {
                              let vs := mload(add(signature, 0x40))
                              mstore(0x20, add(shr(255, vs), 27)) // `v`.
                              mstore(0x60, shr(1, shl(1, vs))) // `s`.
                              break
                          }
                          if eq(mload(signature), 65) {
                              mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`.
                              mstore(0x60, mload(add(signature, 0x40))) // `s`.
                              break
                          }
                          result := 0
                          break
                      }
                      pop(
                          staticcall(
                              gas(), // Amount of gas left for the transaction.
                              result, // Address of `ecrecover`.
                              0x00, // Start of input.
                              0x80, // Size of input.
                              0x40, // Start of output.
                              0x20 // Size of output.
                          )
                      )
                      mstore(0x60, 0) // Restore the zero slot.
                      // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                      result := mload(xor(0x60, returndatasize()))
                      mstore(0x40, m) // Restore the free memory pointer.
                  }
              }
              /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
              function tryRecoverCalldata(bytes32 hash, bytes calldata signature)
                  internal
                  view
                  returns (address result)
              {
                  /// @solidity memory-safe-assembly
                  assembly {
                      result := 1
                      let m := mload(0x40) // Cache the free memory pointer.
                      mstore(0x00, hash)
                      for {} 1 {} {
                          if eq(signature.length, 64) {
                              let vs := calldataload(add(signature.offset, 0x20))
                              mstore(0x20, add(shr(255, vs), 27)) // `v`.
                              mstore(0x40, calldataload(signature.offset)) // `r`.
                              mstore(0x60, shr(1, shl(1, vs))) // `s`.
                              break
                          }
                          if eq(signature.length, 65) {
                              mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`.
                              calldatacopy(0x40, signature.offset, 0x40) // Copy `r` and `s`.
                              break
                          }
                          result := 0
                          break
                      }
                      pop(
                          staticcall(
                              gas(), // Amount of gas left for the transaction.
                              result, // Address of `ecrecover`.
                              0x00, // Start of input.
                              0x80, // Size of input.
                              0x40, // Start of output.
                              0x20 // Size of output.
                          )
                      )
                      mstore(0x60, 0) // Restore the zero slot.
                      // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                      result := mload(xor(0x60, returndatasize()))
                      mstore(0x40, m) // Restore the free memory pointer.
                  }
              }
              /// @dev Recovers the signer's address from a message digest `hash`,
              /// and the EIP-2098 short form signature defined by `r` and `vs`.
              function tryRecover(bytes32 hash, bytes32 r, bytes32 vs)
                  internal
                  view
                  returns (address result)
              {
                  /// @solidity memory-safe-assembly
                  assembly {
                      let m := mload(0x40) // Cache the free memory pointer.
                      mstore(0x00, hash)
                      mstore(0x20, add(shr(255, vs), 27)) // `v`.
                      mstore(0x40, r)
                      mstore(0x60, shr(1, shl(1, vs))) // `s`.
                      pop(
                          staticcall(
                              gas(), // Amount of gas left for the transaction.
                              1, // Address of `ecrecover`.
                              0x00, // Start of input.
                              0x80, // Size of input.
                              0x40, // Start of output.
                              0x20 // Size of output.
                          )
                      )
                      mstore(0x60, 0) // Restore the zero slot.
                      // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                      result := mload(xor(0x60, returndatasize()))
                      mstore(0x40, m) // Restore the free memory pointer.
                  }
              }
              /// @dev Recovers the signer's address from a message digest `hash`,
              /// and the signature defined by `v`, `r`, `s`.
              function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s)
                  internal
                  view
                  returns (address result)
              {
                  /// @solidity memory-safe-assembly
                  assembly {
                      let m := mload(0x40) // Cache the free memory pointer.
                      mstore(0x00, hash)
                      mstore(0x20, and(v, 0xff))
                      mstore(0x40, r)
                      mstore(0x60, s)
                      pop(
                          staticcall(
                              gas(), // Amount of gas left for the transaction.
                              1, // Address of `ecrecover`.
                              0x00, // Start of input.
                              0x80, // Size of input.
                              0x40, // Start of output.
                              0x20 // Size of output.
                          )
                      )
                      mstore(0x60, 0) // Restore the zero slot.
                      // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                      result := mload(xor(0x60, returndatasize()))
                      mstore(0x40, m) // Restore the free memory pointer.
                  }
              }
              /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
              /*                     HASHING OPERATIONS                     */
              /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
              /// @dev Returns an Ethereum Signed Message, created from a `hash`.
              /// This produces a hash corresponding to the one signed with the
              /// [`eth_sign`](https://eth.wiki/json-rpc/API#eth_sign)
              /// JSON-RPC method as part of EIP-191.
              function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 result) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      mstore(0x20, hash) // Store into scratch space for keccak256.
                      mstore(0x00, "\\x00\\x00\\x00\\x00\\x19Ethereum Signed Message:\
          32") // 28 bytes.
                      result := keccak256(0x04, 0x3c) // `32 * 2 - (32 - 28) = 60 = 0x3c`.
                  }
              }
              /// @dev Returns an Ethereum Signed Message, created from `s`.
              /// This produces a hash corresponding to the one signed with the
              /// [`eth_sign`](https://eth.wiki/json-rpc/API#eth_sign)
              /// JSON-RPC method as part of EIP-191.
              /// Note: Supports lengths of `s` up to 999999 bytes.
              function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32 result) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      let sLength := mload(s)
                      let o := 0x20
                      mstore(o, "\\x19Ethereum Signed Message:\
          ") // 26 bytes, zero-right-padded.
                      mstore(0x00, 0x00)
                      // Convert the `s.length` to ASCII decimal representation: `base10(s.length)`.
                      for { let temp := sLength } 1 {} {
                          o := sub(o, 1)
                          mstore8(o, add(48, mod(temp, 10)))
                          temp := div(temp, 10)
                          if iszero(temp) { break }
                      }
                      let n := sub(0x3a, o) // Header length: `26 + 32 - o`.
                      // Throw an out-of-offset error (consumes all gas) if the header exceeds 32 bytes.
                      returndatacopy(returndatasize(), returndatasize(), gt(n, 0x20))
                      mstore(s, or(mload(0x00), mload(n))) // Temporarily store the header.
                      result := keccak256(add(s, sub(0x20, n)), add(n, sLength))
                      mstore(s, sLength) // Restore the length.
                  }
              }
              /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
              /*                   EMPTY CALLDATA HELPERS                   */
              /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
              /// @dev Returns an empty calldata bytes.
              function emptySignature() internal pure returns (bytes calldata signature) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      signature.length := 0
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          /// @custom:version 1.0.0
          pragma solidity ^0.8.17;
          error AlreadyInitialized();
          error CannotAuthoriseSelf();
          error CannotBridgeToSameNetwork();
          error ContractCallNotAllowed();
          error CumulativeSlippageTooHigh(uint256 minAmount, uint256 receivedAmount);
          error DiamondIsPaused();
          error ExternalCallFailed();
          error FunctionDoesNotExist();
          error InformationMismatch();
          error InsufficientBalance(uint256 required, uint256 balance);
          error InvalidAmount();
          error InvalidCallData();
          error InvalidConfig();
          error InvalidContract();
          error InvalidDestinationChain();
          error InvalidFallbackAddress();
          error InvalidReceiver();
          error InvalidSendingToken();
          error NativeAssetNotSupported();
          error NativeAssetTransferFailed();
          error NoSwapDataProvided();
          error NoSwapFromZeroBalance();
          error NotAContract();
          error NotInitialized();
          error NoTransferToNullAddress();
          error NullAddrIsNotAnERC20Token();
          error NullAddrIsNotAValidSpender();
          error OnlyContractOwner();
          error RecoveryAddressCannotBeZero();
          error ReentrancyError();
          error TokenNotSupported();
          error UnAuthorized();
          error UnsupportedChainId(uint256 chainId);
          error WithdrawFailed();
          error ZeroAmount();
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/utils/SafeERC20.sol)
          pragma solidity ^0.8.0;
          import "../IERC20.sol";
          import "../extensions/IERC20Permit.sol";
          import "../../../utils/Address.sol";
          /**
           * @title SafeERC20
           * @dev Wrappers around ERC20 operations that throw on failure (when the token
           * contract returns false). Tokens that return no value (and instead revert or
           * throw on failure) are also supported, non-reverting calls are assumed to be
           * successful.
           * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
           * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
           */
          library SafeERC20 {
              using Address for address;
              /**
               * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
               * non-reverting calls are assumed to be successful.
               */
              function safeTransfer(IERC20 token, address to, uint256 value) internal {
                  _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
              }
              /**
               * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
               * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
               */
              function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
                  _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
              }
              /**
               * @dev Deprecated. This function has issues similar to the ones found in
               * {IERC20-approve}, and its usage is discouraged.
               *
               * Whenever possible, use {safeIncreaseAllowance} and
               * {safeDecreaseAllowance} instead.
               */
              function safeApprove(IERC20 token, address spender, uint256 value) internal {
                  // safeApprove should only be called when setting an initial allowance,
                  // or when resetting it to zero. To increase and decrease it, use
                  // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                  require(
                      (value == 0) || (token.allowance(address(this), spender) == 0),
                      "SafeERC20: approve from non-zero to non-zero allowance"
                  );
                  _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
              }
              /**
               * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
               * non-reverting calls are assumed to be successful.
               */
              function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                  uint256 oldAllowance = token.allowance(address(this), spender);
                  _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
              }
              /**
               * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
               * non-reverting calls are assumed to be successful.
               */
              function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                  unchecked {
                      uint256 oldAllowance = token.allowance(address(this), spender);
                      require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                      _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
                  }
              }
              /**
               * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
               * non-reverting calls are assumed to be successful. Compatible with tokens that require the approval to be set to
               * 0 before setting it to a non-zero value.
               */
              function forceApprove(IERC20 token, address spender, uint256 value) internal {
                  bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
                  if (!_callOptionalReturnBool(token, approvalCall)) {
                      _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
                      _callOptionalReturn(token, approvalCall);
                  }
              }
              /**
               * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
               * Revert on invalid signature.
               */
              function safePermit(
                  IERC20Permit token,
                  address owner,
                  address spender,
                  uint256 value,
                  uint256 deadline,
                  uint8 v,
                  bytes32 r,
                  bytes32 s
              ) internal {
                  uint256 nonceBefore = token.nonces(owner);
                  token.permit(owner, spender, value, deadline, v, r, s);
                  uint256 nonceAfter = token.nonces(owner);
                  require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
              }
              /**
               * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
               * on the return value: the return value is optional (but if data is returned, it must not be false).
               * @param token The token targeted by the call.
               * @param data The call data (encoded using abi.encode or one of its variants).
               */
              function _callOptionalReturn(IERC20 token, bytes memory data) private {
                  // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                  // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
                  // the target address contains contract code and also asserts for success in the low-level call.
                  bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                  require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
              }
              /**
               * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
               * on the return value: the return value is optional (but if data is returned, it must not be false).
               * @param token The token targeted by the call.
               * @param data The call data (encoded using abi.encode or one of its variants).
               *
               * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
               */
              function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
                  // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                  // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
                  // and not revert is the subcall reverts.
                  (bool success, bytes memory returndata) = address(token).call(data);
                  return
                      success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Interface of the ERC20 standard as defined in the EIP.
           */
          interface IERC20 {
              /**
               * @dev Emitted when `value` tokens are moved from one account (`from`) to
               * another (`to`).
               *
               * Note that `value` may be zero.
               */
              event Transfer(address indexed from, address indexed to, uint256 value);
              /**
               * @dev Emitted when the allowance of a `spender` for an `owner` is set by
               * a call to {approve}. `value` is the new allowance.
               */
              event Approval(address indexed owner, address indexed spender, uint256 value);
              /**
               * @dev Returns the amount of tokens in existence.
               */
              function totalSupply() external view returns (uint256);
              /**
               * @dev Returns the amount of tokens owned by `account`.
               */
              function balanceOf(address account) external view returns (uint256);
              /**
               * @dev Moves `amount` tokens from the caller's account to `to`.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * Emits a {Transfer} event.
               */
              function transfer(address to, uint256 amount) external returns (bool);
              /**
               * @dev Returns the remaining number of tokens that `spender` will be
               * allowed to spend on behalf of `owner` through {transferFrom}. This is
               * zero by default.
               *
               * This value changes when {approve} or {transferFrom} are called.
               */
              function allowance(address owner, address spender) external view returns (uint256);
              /**
               * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * IMPORTANT: Beware that changing an allowance with this method brings the risk
               * that someone may use both the old and the new allowance by unfortunate
               * transaction ordering. One possible solution to mitigate this race
               * condition is to first reduce the spender's allowance to 0 and set the
               * desired value afterwards:
               * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
               *
               * Emits an {Approval} event.
               */
              function approve(address spender, uint256 amount) external returns (bool);
              /**
               * @dev Moves `amount` tokens from `from` to `to` using the
               * allowance mechanism. `amount` is then deducted from the caller's
               * allowance.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * Emits a {Transfer} event.
               */
              function transferFrom(address from, address to, uint256 amount) external returns (bool);
          }
          // SPDX-License-Identifier: MIT
          /// @custom:version 1.0.0
          pragma solidity ^0.8.17;
          library LibBytes {
              // solhint-disable no-inline-assembly
              // LibBytes specific errors
              error SliceOverflow();
              error SliceOutOfBounds();
              error AddressOutOfBounds();
              bytes16 private constant _SYMBOLS = "0123456789abcdef";
              // -------------------------
              function slice(
                  bytes memory _bytes,
                  uint256 _start,
                  uint256 _length
              ) internal pure returns (bytes memory) {
                  if (_length + 31 < _length) revert SliceOverflow();
                  if (_bytes.length < _start + _length) revert SliceOutOfBounds();
                  bytes memory tempBytes;
                  assembly {
                      switch iszero(_length)
                      case 0 {
                          // Get a location of some free memory and store it in tempBytes as
                          // Solidity does for memory variables.
                          tempBytes := mload(0x40)
                          // The first word of the slice result is potentially a partial
                          // word read from the original array. To read it, we calculate
                          // the length of that partial word and start copying that many
                          // bytes into the array. The first word we copy will start with
                          // data we don't care about, but the last `lengthmod` bytes will
                          // land at the beginning of the contents of the new array. When
                          // we're done copying, we overwrite the full first word with
                          // the actual length of the slice.
                          let lengthmod := and(_length, 31)
                          // The multiplication in the next line is necessary
                          // because when slicing multiples of 32 bytes (lengthmod == 0)
                          // the following copy loop was copying the origin's length
                          // and then ending prematurely not copying everything it should.
                          let mc := add(
                              add(tempBytes, lengthmod),
                              mul(0x20, iszero(lengthmod))
                          )
                          let end := add(mc, _length)
                          for {
                              // The multiplication in the next line has the same exact purpose
                              // as the one above.
                              let cc := add(
                                  add(
                                      add(_bytes, lengthmod),
                                      mul(0x20, iszero(lengthmod))
                                  ),
                                  _start
                              )
                          } lt(mc, end) {
                              mc := add(mc, 0x20)
                              cc := add(cc, 0x20)
                          } {
                              mstore(mc, mload(cc))
                          }
                          mstore(tempBytes, _length)
                          //update free-memory pointer
                          //allocating the array padded to 32 bytes like the compiler does now
                          mstore(0x40, and(add(mc, 31), not(31)))
                      }
                      //if we want a zero-length slice let's just return a zero-length array
                      default {
                          tempBytes := mload(0x40)
                          //zero out the 32 bytes slice we are about to return
                          //we need to do it because Solidity does not garbage collect
                          mstore(tempBytes, 0)
                          mstore(0x40, add(tempBytes, 0x20))
                      }
                  }
                  return tempBytes;
              }
              function toAddress(
                  bytes memory _bytes,
                  uint256 _start
              ) internal pure returns (address) {
                  if (_bytes.length < _start + 20) {
                      revert AddressOutOfBounds();
                  }
                  address tempAddress;
                  assembly {
                      tempAddress := div(
                          mload(add(add(_bytes, 0x20), _start)),
                          0x1000000000000000000000000
                      )
                  }
                  return tempAddress;
              }
              /// Copied from OpenZeppelin's `Strings.sol` utility library.
              /// https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8335676b0e99944eef6a742e16dcd9ff6e68e609/contracts/utils/Strings.sol
              function toHexString(
                  uint256 value,
                  uint256 length
              ) internal pure returns (string memory) {
                  bytes memory buffer = new bytes(2 * length + 2);
                  buffer[0] = "0";
                  buffer[1] = "x";
                  for (uint256 i = 2 * length + 1; i > 1; --i) {
                      buffer[i] = _SYMBOLS[value & 0xf];
                      value >>= 4;
                  }
                  require(value == 0, "Strings: hex length insufficient");
                  return string(buffer);
              }
          }
          // SPDX-License-Identifier: MIT
          /// @custom:version 1.0.0
          pragma solidity ^0.8.17;
          import { InvalidContract } from "../Errors/GenericErrors.sol";
          /// @title Lib Allow List
          /// @author LI.FI (https://li.fi)
          /// @notice Library for managing and accessing the conract address allow list
          library LibAllowList {
              /// Storage ///
              bytes32 internal constant NAMESPACE =
                  keccak256("com.lifi.library.allow.list");
              struct AllowListStorage {
                  mapping(address => bool) allowlist;
                  mapping(bytes4 => bool) selectorAllowList;
                  address[] contracts;
              }
              /// @dev Adds a contract address to the allow list
              /// @param _contract the contract address to add
              function addAllowedContract(address _contract) internal {
                  _checkAddress(_contract);
                  AllowListStorage storage als = _getStorage();
                  if (als.allowlist[_contract]) return;
                  als.allowlist[_contract] = true;
                  als.contracts.push(_contract);
              }
              /// @dev Checks whether a contract address has been added to the allow list
              /// @param _contract the contract address to check
              function contractIsAllowed(
                  address _contract
              ) internal view returns (bool) {
                  return _getStorage().allowlist[_contract];
              }
              /// @dev Remove a contract address from the allow list
              /// @param _contract the contract address to remove
              function removeAllowedContract(address _contract) internal {
                  AllowListStorage storage als = _getStorage();
                  if (!als.allowlist[_contract]) {
                      return;
                  }
                  als.allowlist[_contract] = false;
                  uint256 length = als.contracts.length;
                  // Find the contract in the list
                  for (uint256 i = 0; i < length; i++) {
                      if (als.contracts[i] == _contract) {
                          // Move the last element into the place to delete
                          als.contracts[i] = als.contracts[length - 1];
                          // Remove the last element
                          als.contracts.pop();
                          break;
                      }
                  }
              }
              /// @dev Fetch contract addresses from the allow list
              function getAllowedContracts() internal view returns (address[] memory) {
                  return _getStorage().contracts;
              }
              /// @dev Add a selector to the allow list
              /// @param _selector the selector to add
              function addAllowedSelector(bytes4 _selector) internal {
                  _getStorage().selectorAllowList[_selector] = true;
              }
              /// @dev Removes a selector from the allow list
              /// @param _selector the selector to remove
              function removeAllowedSelector(bytes4 _selector) internal {
                  _getStorage().selectorAllowList[_selector] = false;
              }
              /// @dev Returns if selector has been added to the allow list
              /// @param _selector the selector to check
              function selectorIsAllowed(bytes4 _selector) internal view returns (bool) {
                  return _getStorage().selectorAllowList[_selector];
              }
              /// @dev Fetch local storage struct
              function _getStorage()
                  internal
                  pure
                  returns (AllowListStorage storage als)
              {
                  bytes32 position = NAMESPACE;
                  // solhint-disable-next-line no-inline-assembly
                  assembly {
                      als.slot := position
                  }
              }
              /// @dev Contains business logic for validating a contract address.
              /// @param _contract address of the dex to check
              function _checkAddress(address _contract) private view {
                  if (_contract == address(0)) revert InvalidContract();
                  if (_contract.code.length == 0) revert InvalidContract();
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
           * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
           *
           * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
           * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
           * need to send a transaction, and thus is not required to hold Ether at all.
           */
          interface IERC20Permit {
              /**
               * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
               * given ``owner``'s signed approval.
               *
               * IMPORTANT: The same issues {IERC20-approve} has related to transaction
               * ordering also apply here.
               *
               * Emits an {Approval} event.
               *
               * Requirements:
               *
               * - `spender` cannot be the zero address.
               * - `deadline` must be a timestamp in the future.
               * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
               * over the EIP712-formatted function arguments.
               * - the signature must use ``owner``'s current nonce (see {nonces}).
               *
               * For more information on the signature format, see the
               * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
               * section].
               */
              function permit(
                  address owner,
                  address spender,
                  uint256 value,
                  uint256 deadline,
                  uint8 v,
                  bytes32 r,
                  bytes32 s
              ) external;
              /**
               * @dev Returns the current nonce for `owner`. This value must be
               * included whenever a signature is generated for {permit}.
               *
               * Every successful call to {permit} increases ``owner``'s nonce by one. This
               * prevents a signature from being used multiple times.
               */
              function nonces(address owner) external view returns (uint256);
              /**
               * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
               */
              // solhint-disable-next-line func-name-mixedcase
              function DOMAIN_SEPARATOR() external view returns (bytes32);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
          pragma solidity ^0.8.1;
          /**
           * @dev Collection of functions related to the address type
           */
          library Address {
              /**
               * @dev Returns true if `account` is a contract.
               *
               * [IMPORTANT]
               * ====
               * It is unsafe to assume that an address for which this function returns
               * false is an externally-owned account (EOA) and not a contract.
               *
               * Among others, `isContract` will return false for the following
               * types of addresses:
               *
               *  - an externally-owned account
               *  - a contract in construction
               *  - an address where a contract will be created
               *  - an address where a contract lived, but was destroyed
               *
               * Furthermore, `isContract` will also return true if the target contract within
               * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
               * which only has an effect at the end of a transaction.
               * ====
               *
               * [IMPORTANT]
               * ====
               * You shouldn't rely on `isContract` to protect against flash loan attacks!
               *
               * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
               * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
               * constructor.
               * ====
               */
              function isContract(address account) internal view returns (bool) {
                  // This method relies on extcodesize/address.code.length, which returns 0
                  // for contracts in construction, since the code is only stored at the end
                  // of the constructor execution.
                  return account.code.length > 0;
              }
              /**
               * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
               * `recipient`, forwarding all available gas and reverting on errors.
               *
               * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
               * of certain opcodes, possibly making contracts go over the 2300 gas limit
               * imposed by `transfer`, making them unable to receive funds via
               * `transfer`. {sendValue} removes this limitation.
               *
               * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
               *
               * IMPORTANT: because control is transferred to `recipient`, care must be
               * taken to not create reentrancy vulnerabilities. Consider using
               * {ReentrancyGuard} or the
               * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
               */
              function sendValue(address payable recipient, uint256 amount) internal {
                  require(address(this).balance >= amount, "Address: insufficient balance");
                  (bool success, ) = recipient.call{value: amount}("");
                  require(success, "Address: unable to send value, recipient may have reverted");
              }
              /**
               * @dev Performs a Solidity function call using a low level `call`. A
               * plain `call` is an unsafe replacement for a function call: use this
               * function instead.
               *
               * If `target` reverts with a revert reason, it is bubbled up by this
               * function (like regular Solidity function calls).
               *
               * Returns the raw returned data. To convert to the expected return value,
               * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
               *
               * Requirements:
               *
               * - `target` must be a contract.
               * - calling `target` with `data` must not revert.
               *
               * _Available since v3.1._
               */
              function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0, "Address: low-level call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
               * `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but also transferring `value` wei to `target`.
               *
               * Requirements:
               *
               * - the calling contract must have an ETH balance of at least `value`.
               * - the called Solidity function must be `payable`.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
              }
              /**
               * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
               * with `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  require(address(this).balance >= value, "Address: insufficient balance for call");
                  (bool success, bytes memory returndata) = target.call{value: value}(data);
                  return verifyCallResultFromTarget(target, success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                  return functionStaticCall(target, data, "Address: low-level static call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal view returns (bytes memory) {
                  (bool success, bytes memory returndata) = target.staticcall(data);
                  return verifyCallResultFromTarget(target, success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionDelegateCall(target, data, "Address: low-level delegate call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  (bool success, bytes memory returndata) = target.delegatecall(data);
                  return verifyCallResultFromTarget(target, success, returndata, errorMessage);
              }
              /**
               * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
               * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
               *
               * _Available since v4.8._
               */
              function verifyCallResultFromTarget(
                  address target,
                  bool success,
                  bytes memory returndata,
                  string memory errorMessage
              ) internal view returns (bytes memory) {
                  if (success) {
                      if (returndata.length == 0) {
                          // only check isContract if the call was successful and the return data is empty
                          // otherwise we already know that it was a contract
                          require(isContract(target), "Address: call to non-contract");
                      }
                      return returndata;
                  } else {
                      _revert(returndata, errorMessage);
                  }
              }
              /**
               * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
               * revert reason or using the provided one.
               *
               * _Available since v4.3._
               */
              function verifyCallResult(
                  bool success,
                  bytes memory returndata,
                  string memory errorMessage
              ) internal pure returns (bytes memory) {
                  if (success) {
                      return returndata;
                  } else {
                      _revert(returndata, errorMessage);
                  }
              }
              function _revert(bytes memory returndata, string memory errorMessage) private pure {
                  // Look for revert reason and bubble it up if present
                  if (returndata.length > 0) {
                      // The easiest way to bubble the revert reason is using memory via assembly
                      /// @solidity memory-safe-assembly
                      assembly {
                          let returndata_size := mload(returndata)
                          revert(add(32, returndata), returndata_size)
                      }
                  } else {
                      revert(errorMessage);
                  }
              }
          }