Transaction Hash:
Block:
11860484 at Feb-15-2021 09:12:57 AM +UTC
Transaction Fee:
0.017505727 ETH
$42.78
Gas Used:
160,603 Gas / 109 Gwei
Emitted Events:
81 |
HEX.Transfer( from=Vyper_contract, to=Spender, value=780139465674 )
|
82 |
Vyper_contract.TokenPurchase( buyer=0xe069cb01d06ba617bcdf789bf2ff0d5e5ca20c71, eth_sold=49562500000000000, tokens_bought=780139465674 )
|
83 |
OneInchExchange.Swapped( sender=Spender, srcToken=0xEeeeeEee...eeeeeEEeE, dstToken=HEX, dstReceiver=Spender, amount=49562500000000000, spentAmount=49562500000000000, returnAmount=780139465674, minReturnAmount=764536676360, guaranteedAmount=780139465674, referrer=0x00000000...000000000 )
|
84 |
HEX.Transfer( from=Spender, to=[Sender] 0x6cfcb2f95ef977f3cc5513f87306f18b9ad5d6e1, value=780139465674 )
|
85 |
MetaSwap.Swap( 0xbeee1e6e7fe307ddcf84b0a16137a4430ad5e2480fc4f4a8e250ab56ccd7630d, 0x5c1762e565dfd2c94d5050843f988a3702be98b423e773202fc96f258be96838, 0x0000000000000000000000006cfcb2f95ef977f3cc5513f87306f18b9ad5d6e1 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x05cDe89c...f129E7883 | 6.363755642289919711 Eth | 6.413318142289919711 Eth | 0.0495625 | ||
0x11eDedeb...1543ec6fB | (Metamask: Fees) | 468.291327296994593588 Eth | 468.291764796994593588 Eth | 0.0004375 | |
0x2b591e99...8c40Eeb39 | |||||
0x6CFcb2f9...B9Ad5d6e1 |
0.1 Eth
Nonce: 0
|
0.032494273 Eth
Nonce: 1
| 0.067505727 | ||
0xEA674fdD...16B898ec8
Miner
| (Ethermine) | 2,318.404474259169634489 Eth | 2,318.421979986169634489 Eth | 0.017505727 |
Execution Trace
ETH 0.05
MetaSwap.swap( aggregatorId=oneInchFee, tokenFrom=0x0000000000000000000000000000000000000000, amount=50000000000000000, data=0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000002B591E99AFE9F32EAA6214F7B7629768C40EEB3900000000000000000000000000000000000000000000000000B014D4C6AE2800000000000000000000000000000000000000000000000000000000B201EFE008000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000018DE76816D80000000000000000000000000011EDEDEBF63BEF0EA2D2D071BDF88F71543EC6FB0000000000000000000000000000000000000000000000000000000000000320000000000000000000000000E069CB01D06BA617BCDF789BF2FF0D5E5CA20C71000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000001C0000000000000000000000000EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE0000000000000000000000002B591E99AFE9F32EAA6214F7B7629768C40EEB39000000000000000000000000E069CB01D06BA617BCDF789BF2FF0D5E5CA20C7100000000000000000000000074DE5D4FCBF63E00296FD95D33236B979401663100000000000000000000000000000000000000000000000000B014D4C6AE2800000000000000000000000000000000000000000000000000000000B201EFE008000000000000000000000000000000000000000000000000000000B5A3EF8BCA00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000014000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000002080000000000000000000000005CDE89CCFA0ADA8C88D5A23CAAA79EF129E7883000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000B014D4C6AE280000000000000000000000000000000000000000000000000000000000000000800000000000000000000000000000000000000000000000000000000000000064AD65D76D000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000602B8C8F00000000000000000000000074DE5D4FCBF63E00296FD95D33236B979401663100000000000000000000000000000000000000000000000000000000 )
ETH 0.05
Spender.swap( adapter=0x61CaeCd0eb81d3Ea9c43ACC8CE7E40865951eBc3, data=0x242FB09F0000000000000000000000006CFCB2F95EF977F3CC5513F87306F18B9AD5D6E100000000000000000000000000000000000000000000000000000000000000000000000000000000000000002B591E99AFE9F32EAA6214F7B7629768C40EEB3900000000000000000000000000000000000000000000000000B014D4C6AE2800000000000000000000000000000000000000000000000000000000B201EFE008000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000018DE76816D80000000000000000000000000011EDEDEBF63BEF0EA2D2D071BDF88F71543EC6FB0000000000000000000000000000000000000000000000000000000000000320000000000000000000000000E069CB01D06BA617BCDF789BF2FF0D5E5CA20C71000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000001C0000000000000000000000000EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE0000000000000000000000002B591E99AFE9F32EAA6214F7B7629768C40EEB39000000000000000000000000E069CB01D06BA617BCDF789BF2FF0D5E5CA20C7100000000000000000000000074DE5D4FCBF63E00296FD95D33236B979401663100000000000000000000000000000000000000000000000000B014D4C6AE2800000000000000000000000000000000000000000000000000000000B201EFE008000000000000000000000000000000000000000000000000000000B5A3EF8BCA00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000014000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000002080000000000000000000000005CDE89CCFA0ADA8C88D5A23CAAA79EF129E7883000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000B014D4C6AE280000000000000000000000000000000000000000000000000000000000000000800000000000000000000000000000000000000000000000000000000000000064AD65D76D000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000602B8C8F00000000000000000000000074DE5D4FCBF63E00296FD95D33236B979401663100000000000000000000000000000000000000000000000000000000 )
ETH 0.05
0x61caecd0eb81d3ea9c43acc8ce7e40865951ebc3.242fb09f( )
- ETH 0.0004375
Metamask: Fees.CALL( )
ETH 0.0495625
OneInchExchange.swap( caller=0xe069CB01D06bA617bCDf789bf2ff0D5E5ca20C71, desc=[{name:srcToken, type:address, order:1, indexed:false, value:0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE, valueString:0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE}, {name:dstToken, type:address, order:2, indexed:false, value:0x2b591e99afE9f32eAA6214f7B7629768c40Eeb39, valueString:0x2b591e99afE9f32eAA6214f7B7629768c40Eeb39}, {name:srcReceiver, type:address, order:3, indexed:false, value:0xe069CB01D06bA617bCDf789bf2ff0D5E5ca20C71, valueString:0xe069CB01D06bA617bCDf789bf2ff0D5E5ca20C71}, {name:dstReceiver, type:address, order:4, indexed:false, value:0x74de5d4FCbf63E00296fd95d33236B9794016631, valueString:0x74de5d4FCbf63E00296fd95d33236B9794016631}, {name:amount, type:uint256, order:5, indexed:false, value:49562500000000000, valueString:49562500000000000}, {name:minReturnAmount, type:uint256, order:6, indexed:false, value:764536676360, valueString:764536676360}, {name:guaranteedAmount, type:uint256, order:7, indexed:false, value:780139465674, valueString:780139465674}, {name:flags, type:uint256, order:8, indexed:false, value:0, valueString:0}, {name:referrer, type:address, order:9, indexed:false, value:0x0000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000}, {name:permit, type:bytes, order:10, indexed:false, value:0x, valueString:0x}], calls= ) => ( returnAmount=780139465674 )
-
HEX.balanceOf( account=0x74de5d4FCbf63E00296fd95d33236B9794016631 ) => ( 0 )
ETH 0.0495625
1inch: Router 2.a8920d2b( )
ETH 0.0495625
Vyper_contract.ethToTokenTransferInput( min_tokens=1, deadline=1613466767, recipient=0x74de5d4FCbf63E00296fd95d33236B9794016631 ) => ( out=780139465674 )
- ETH 0.0495625
Vyper_contract.ethToTokenTransferInput( min_tokens=1, deadline=1613466767, recipient=0x74de5d4FCbf63E00296fd95d33236B9794016631 ) => ( out=780139465674 )
- ETH 0.0495625
-
HEX.balanceOf( account=0x74de5d4FCbf63E00296fd95d33236B9794016631 ) => ( 780139465674 )
-
-
HEX.balanceOf( account=0x74de5d4FCbf63E00296fd95d33236B9794016631 ) => ( 780139465674 )
-
HEX.transfer( recipient=0x6CFcb2f95EF977f3CC5513F87306F18B9Ad5d6e1, amount=780139465674 ) => ( True )
- ETH 0.0004375
swap[MetaSwap (ln:1598)]
_swap[MetaSwap (ln:1604)]
safeTransferFrom[MetaSwap (ln:1637)]
swap[MetaSwap (ln:1639)]
encode[MetaSwap (ln:1643)]
Swap[MetaSwap (ln:1648)]
File 1 of 6: MetaSwap
File 2 of 6: Vyper_contract
File 3 of 6: Spender
File 4 of 6: HEX
File 5 of 6: OneInchExchange
File 6 of 6: Vyper_contract
pragma solidity ^0.6.0; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; import "@openzeppelin/contracts/utils/Address.sol"; import "../Constants.sol"; contract CommonAdapter { using SafeERC20 for IERC20; using Address for address; using Address for address payable; /** * @dev Performs a swap * @param recipient The original msg.sender performing the swap * @param aggregator Address of the aggregator's contract * @param spender Address to which tokens will be approved * @param method Selector of the function to be called in the aggregator's contract * @param tokenFrom Token to be swapped * @param tokenTo Token to be received * @param amountFrom Amount of tokenFrom to swap * @param amountTo Minimum amount of tokenTo to receive * @param data Data used for the call made to the aggregator's contract */ function swap( address payable recipient, address aggregator, address spender, bytes4 method, IERC20 tokenFrom, IERC20 tokenTo, uint256 amountFrom, uint256 amountTo, bytes calldata data ) external payable { require(tokenFrom != tokenTo, "TOKEN_PAIR_INVALID"); if (address(tokenFrom) != Constants.ETH) { _approveSpender(tokenFrom, spender, amountFrom); } // We always forward msg.value as it may be necessary to pay fees bytes memory encodedData = abi.encodePacked(method, data); aggregator.functionCallWithValue(encodedData, msg.value); // Transfer remaining balance of tokenFrom to sender if (address(tokenFrom) != Constants.ETH) { uint256 balance = tokenFrom.balanceOf(address(this)); _transfer(tokenFrom, balance, recipient); } uint256 weiBalance = address(this).balance; // Transfer remaining balance of tokenTo to sender if (address(tokenTo) != Constants.ETH) { uint256 balance = tokenTo.balanceOf(address(this)); require(balance >= amountTo, "INSUFFICIENT_AMOUNT"); _transfer(tokenTo, balance, recipient); } else { // If tokenTo == ETH, then check that the remaining ETH balance >= amountTo require(weiBalance >= amountTo, "INSUFFICIENT_AMOUNT"); } // If there are unused fees or if tokenTo is ETH, transfer to sender if (weiBalance > 0) { recipient.sendValue(weiBalance); } } /** * @dev Transfers token to sender if amount > 0 * @param token IERC20 token to transfer to sender * @param amount Amount of token to transfer * @param recipient Address that will receive the tokens */ function _transfer( IERC20 token, uint256 amount, address recipient ) internal { if (amount > 0) { token.safeTransfer(recipient, amount); } } // https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/SafeERC20.sol /** * @dev Approves max amount of token to the spender if the allowance is lower than amount * @param token The ERC20 token to approve * @param spender Address to which funds will be approved * @param amount Amount used to compare current allowance */ function _approveSpender( IERC20 token, address spender, uint256 amount ) internal { // If allowance is not enough, approve max possible amount uint256 allowance = token.allowance(address(this), spender); if (allowance < amount) { bytes memory returndata = address(token).functionCall( abi.encodeWithSelector( token.approve.selector, spender, type(uint256).max ) ); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "APPROVAL_FAILED"); } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; import "./IERC20.sol"; import "../../math/SafeMath.sol"; import "../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using SafeMath for uint256; using Address for address; function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' // solhint-disable-next-line max-line-length require((value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).add(value); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional // solhint-disable-next-line max-line-length require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.2; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies in extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) { require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: weiValue }(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; library Constants { address internal constant ETH = 0x0000000000000000000000000000000000000000; } pragma solidity ^0.6.0; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; import "@openzeppelin/contracts/math/SafeMath.sol"; import "@openzeppelin/contracts/utils/Address.sol"; import "../Constants.sol"; contract FeeCommonAdapter { using SafeERC20 for IERC20; using Address for address; using Address for address payable; using SafeMath for uint256; // solhint-disable-next-line var-name-mixedcase address payable public immutable FEE_WALLET; constructor(address payable feeWallet) public { FEE_WALLET = feeWallet; } /** * @dev Performs a swap * @param recipient The original msg.sender performing the swap * @param aggregator Address of the aggregator's contract * @param spender Address to which tokens will be approved * @param method Selector of the function to be called in the aggregator's contract * @param tokenFrom Token to be swapped * @param tokenTo Token to be received * @param amountFrom Amount of tokenFrom to swap * @param amountTo Minimum amount of tokenTo to receive * @param data Data used for the call made to the aggregator's contract * @param fee Amount of tokenFrom sent to the fee wallet */ function swap( address payable recipient, address aggregator, address spender, bytes4 method, IERC20 tokenFrom, IERC20 tokenTo, uint256 amountFrom, uint256 amountTo, bytes calldata data, uint256 fee ) external payable { require(tokenFrom != tokenTo, "TOKEN_PAIR_INVALID"); if (address(tokenFrom) == Constants.ETH) { FEE_WALLET.sendValue(fee); } else { _transfer(tokenFrom, fee, FEE_WALLET); _approveSpender(tokenFrom, spender, amountFrom); } // We always forward msg.value as it may be necessary to pay fees aggregator.functionCallWithValue( abi.encodePacked(method, data), address(this).balance ); // Transfer remaining balance of tokenFrom to sender if (address(tokenFrom) != Constants.ETH) { _transfer(tokenFrom, tokenFrom.balanceOf(address(this)), recipient); } uint256 weiBalance = address(this).balance; // Transfer remaining balance of tokenTo to sender if (address(tokenTo) != Constants.ETH) { uint256 balance = tokenTo.balanceOf(address(this)); require(balance >= amountTo, "INSUFFICIENT_AMOUNT"); _transfer(tokenTo, balance, recipient); } else { // If tokenTo == ETH, then check that the remaining ETH balance >= amountTo require(weiBalance >= amountTo, "INSUFFICIENT_AMOUNT"); } // If there are unused fees or if tokenTo is ETH, transfer to sender if (weiBalance > 0) { recipient.sendValue(weiBalance); } } /** * @dev Transfers token to sender if amount > 0 * @param token IERC20 token to transfer to sender * @param amount Amount of token to transfer * @param recipient Address that will receive the tokens */ function _transfer( IERC20 token, uint256 amount, address recipient ) internal { if (amount > 0) { token.safeTransfer(recipient, amount); } } // https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/SafeERC20.sol /** * @dev Approves max amount of token to the spender if the allowance is lower than amount * @param token The ERC20 token to approve * @param spender Address to which funds will be approved * @param amount Amount used to compare current allowance */ function _approveSpender( IERC20 token, address spender, uint256 amount ) internal { // If allowance is not enough, approve max possible amount uint256 allowance = token.allowance(address(this), spender); if (allowance < amount) { bytes memory returndata = address(token).functionCall( abi.encodeWithSelector( token.approve.selector, spender, type(uint256).max ) ); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "APPROVAL_FAILED"); } } } } pragma solidity ^0.6.0; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; import "@openzeppelin/contracts/math/SafeMath.sol"; import "@openzeppelin/contracts/utils/Address.sol"; import "../Constants.sol"; import "../IWETH.sol"; contract FeeWethAdapter { using SafeERC20 for IERC20; using Address for address; using Address for address payable; using SafeMath for uint256; IWETH public immutable weth; // solhint-disable-next-line var-name-mixedcase address payable public immutable FEE_WALLET; constructor(IWETH _weth, address payable feeWallet) public { weth = _weth; FEE_WALLET = feeWallet; } /** * @dev Performs a swap * @param recipient The original msg.sender performing the swap * @param aggregator Address of the aggregator's contract * @param spender Address to which tokens will be approved * @param method Selector of the function to be called in the aggregator's contract * @param tokenFrom Token to be swapped * @param tokenTo Token to be received * @param amountFrom Amount of tokenFrom to swap * @param amountTo Minimum amount of tokenTo to receive * @param data Data used for the call made to the aggregator's contract * @param fee Amount of tokenFrom sent to the fee wallet */ function swap( address payable recipient, address aggregator, address spender, bytes4 method, IERC20 tokenFrom, IERC20 tokenTo, uint256 amountFrom, uint256 amountTo, bytes calldata data, uint256 fee ) external payable { require(tokenFrom != tokenTo, "TOKEN_PAIR_INVALID"); if (address(tokenFrom) == Constants.ETH) { FEE_WALLET.sendValue(fee); // If tokenFrom is ETH, msg.value = fee + amountFrom (total fee could be 0) // Can't deal with ETH, convert to WETH, the remaining balance will be the fee weth.deposit{value: amountFrom}(); _approveSpender(weth, spender, amountFrom); } else { _transfer(tokenFrom, fee, FEE_WALLET); // Otherwise capture tokens from sender _approveSpender(tokenFrom, spender, amountFrom); } // Perform the swap aggregator.functionCallWithValue( abi.encodePacked(method, data), address(this).balance ); // Transfer remaining balance of tokenFrom to sender if (address(tokenFrom) != Constants.ETH) { _transfer(tokenFrom, tokenFrom.balanceOf(address(this)), recipient); } else { // If using ETH, just unwrap any remaining WETH // At the end of this function all ETH will be transferred to the sender _unwrapWETH(); } uint256 weiBalance = address(this).balance; // Transfer remaining balance of tokenTo to sender if (address(tokenTo) != Constants.ETH) { uint256 balance = tokenTo.balanceOf(address(this)); require(balance >= amountTo, "INSUFFICIENT_AMOUNT"); _transfer(tokenTo, balance, recipient); } else { // If tokenTo == ETH, unwrap received WETH and add it to the wei balance, // then check that the remaining ETH balance >= amountTo // It is safe to not use safeMath as no one can have enough Ether to overflow weiBalance += _unwrapWETH(); require(weiBalance >= amountTo, "INSUFFICIENT_AMOUNT"); } // If there are unused fees or if tokenTo is ETH, transfer to sender if (weiBalance > 0) { recipient.sendValue(weiBalance); } } /** * @dev Unwraps all available WETH into ETH */ function _unwrapWETH() internal returns (uint256) { uint256 balance = weth.balanceOf(address(this)); weth.withdraw(balance); return balance; } /** * @dev Transfers token to sender if amount > 0 * @param token IERC20 token to transfer to sender * @param amount Amount of token to transfer * @param recipient Address that will receive the tokens */ function _transfer( IERC20 token, uint256 amount, address recipient ) internal { if (amount > 0) { token.safeTransfer(recipient, amount); } } // https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/SafeERC20.sol /** * @dev Approves max amount of token to the spender if the allowance is lower than amount * @param token The ERC20 token to approve * @param spender Address to which funds will be approved * @param amount Amount used to compare current allowance */ function _approveSpender( IERC20 token, address spender, uint256 amount ) internal { // If allowance is not enough, approve max possible amount uint256 allowance = token.allowance(address(this), spender); if (allowance < amount) { bytes memory returndata = address(token).functionCall( abi.encodeWithSelector( token.approve.selector, spender, type(uint256).max ) ); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "APPROVAL_FAILED"); } } } } pragma solidity ^0.6.0; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; interface IWETH is IERC20 { function deposit() external payable; function withdraw(uint256) external; } pragma solidity ^0.6.0; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; import "@openzeppelin/contracts/math/SafeMath.sol"; import "@openzeppelin/contracts/utils/Address.sol"; import "@uniswap/v2-periphery/contracts/interfaces/IUniswapV2Router02.sol"; import "../Constants.sol"; contract UniswapAdapter { using SafeERC20 for IERC20; using Address for address; using Address for address payable; using SafeMath for uint256; // solhint-disable-next-line var-name-mixedcase IUniswapV2Router02 public immutable UNISWAP; // solhint-disable-next-line var-name-mixedcase address payable public immutable FEE_WALLET; constructor(address payable feeWallet, IUniswapV2Router02 uniswap) public { FEE_WALLET = feeWallet; UNISWAP = uniswap; } /** * @dev Performs a swap * @param recipient The original msg.sender performing the swap * @param tokenFrom Token to be swapped * @param tokenTo Token to be received * @param amountFrom Amount of tokenFrom to swap * @param amountTo Minimum amount of tokenTo to receive * @param path Used by Uniswap * @param deadline Timestamp at which the swap becomes invalid. Used by Uniswap * @param feeOnTransfer Use `supportingFeeOnTransfer` Uniswap methods * @param fee Amount of tokenFrom sent to the fee wallet */ function swap( address payable recipient, IERC20 tokenFrom, IERC20 tokenTo, uint256 amountFrom, uint256 amountTo, address[] calldata path, uint256 deadline, bool feeOnTransfer, uint256 fee ) external payable { require(tokenFrom != tokenTo, "TOKEN_PAIR_INVALID"); if (address(tokenFrom) == Constants.ETH) { FEE_WALLET.sendValue(fee); } else { _transfer(tokenFrom, fee, FEE_WALLET); } if (address(tokenFrom) == Constants.ETH) { if (feeOnTransfer) { UNISWAP.swapExactETHForTokensSupportingFeeOnTransferTokens{ value: address(this).balance }(amountTo, path, address(this), deadline); } else { UNISWAP.swapExactETHForTokens{value: address(this).balance}( amountTo, path, address(this), deadline ); } } else { _approveSpender(tokenFrom, address(UNISWAP), amountFrom); if (address(tokenTo) == Constants.ETH) { if (feeOnTransfer) { UNISWAP.swapExactTokensForETHSupportingFeeOnTransferTokens( amountFrom, amountTo, path, address(this), deadline ); } else { UNISWAP.swapExactTokensForETH( amountFrom, amountTo, path, address(this), deadline ); } } else { if (feeOnTransfer) { UNISWAP .swapExactTokensForTokensSupportingFeeOnTransferTokens( amountFrom, amountTo, path, address(this), deadline ); } else { UNISWAP.swapExactTokensForTokens( amountFrom, amountTo, path, address(this), deadline ); } } } // Transfer remaining balance of tokenFrom to sender if (address(tokenFrom) != Constants.ETH) { _transfer(tokenFrom, tokenFrom.balanceOf(address(this)), recipient); } uint256 weiBalance = address(this).balance; // Transfer remaining balance of tokenTo to sender if (address(tokenTo) != Constants.ETH) { uint256 balance = tokenTo.balanceOf(address(this)); require(balance >= amountTo, "INSUFFICIENT_AMOUNT"); _transfer(tokenTo, balance, recipient); } else { // If tokenTo == ETH, then check that the remaining ETH balance >= amountTo require(weiBalance >= amountTo, "INSUFFICIENT_AMOUNT"); } // If there are unused fees or if tokenTo is ETH, transfer to sender if (weiBalance > 0) { recipient.sendValue(weiBalance); } } /** * @dev Transfers token to sender if amount > 0 * @param token IERC20 token to transfer to sender * @param amount Amount of token to transfer * @param recipient Address that will receive the tokens */ function _transfer( IERC20 token, uint256 amount, address recipient ) internal { if (amount > 0) { token.safeTransfer(recipient, amount); } } // https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/SafeERC20.sol /** * @dev Approves max amount of token to the spender if the allowance is lower than amount * @param token The ERC20 token to approve * @param spender Address to which funds will be approved * @param amount Amount used to compare current allowance */ function _approveSpender( IERC20 token, address spender, uint256 amount ) internal { // If allowance is not enough, approve max possible amount uint256 allowance = token.allowance(address(this), spender); if (allowance < amount) { bytes memory returndata = address(token).functionCall( abi.encodeWithSelector( token.approve.selector, spender, type(uint256).max ) ); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "APPROVAL_FAILED"); } } } } pragma solidity >=0.6.2; import './IUniswapV2Router01.sol'; interface IUniswapV2Router02 is IUniswapV2Router01 { function removeLiquidityETHSupportingFeeOnTransferTokens( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external returns (uint amountETH); function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountETH); function swapExactTokensForTokensSupportingFeeOnTransferTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external; function swapExactETHForTokensSupportingFeeOnTransferTokens( uint amountOutMin, address[] calldata path, address to, uint deadline ) external payable; function swapExactTokensForETHSupportingFeeOnTransferTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external; } pragma solidity >=0.6.2; interface IUniswapV2Router01 { function factory() external pure returns (address); function WETH() external pure returns (address); function addLiquidity( address tokenA, address tokenB, uint amountADesired, uint amountBDesired, uint amountAMin, uint amountBMin, address to, uint deadline ) external returns (uint amountA, uint amountB, uint liquidity); function addLiquidityETH( address token, uint amountTokenDesired, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external payable returns (uint amountToken, uint amountETH, uint liquidity); function removeLiquidity( address tokenA, address tokenB, uint liquidity, uint amountAMin, uint amountBMin, address to, uint deadline ) external returns (uint amountA, uint amountB); function removeLiquidityETH( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external returns (uint amountToken, uint amountETH); function removeLiquidityWithPermit( address tokenA, address tokenB, uint liquidity, uint amountAMin, uint amountBMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountA, uint amountB); function removeLiquidityETHWithPermit( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountToken, uint amountETH); function swapExactTokensForTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external returns (uint[] memory amounts); function swapTokensForExactTokens( uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline ) external returns (uint[] memory amounts); function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline) external payable returns (uint[] memory amounts); function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline) external returns (uint[] memory amounts); function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline) external returns (uint[] memory amounts); function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline) external payable returns (uint[] memory amounts); function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB); function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut); function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn); function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts); function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts); } pragma solidity ^0.6.0; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; import "@openzeppelin/contracts/utils/Address.sol"; import "../Constants.sol"; import "../IWETH.sol"; contract WethAdapter { using SafeERC20 for IERC20; using Address for address; using Address for address payable; IWETH public immutable weth; constructor(IWETH _weth) public { weth = _weth; } /** * @dev Performs a swap * @param recipient The original msg.sender performing the swap * @param aggregator Address of the aggregator's contract * @param spender Address to which tokens will be approved * @param method Selector of the function to be called in the aggregator's contract * @param tokenFrom Token to be swapped * @param tokenTo Token to be received * @param amountFrom Amount of tokenFrom to swap * @param amountTo Minimum amount of tokenTo to receive * @param data Data used for the call made to the aggregator's contract */ function swap( address payable recipient, address aggregator, address spender, bytes4 method, IERC20 tokenFrom, IERC20 tokenTo, uint256 amountFrom, uint256 amountTo, bytes calldata data ) external payable { require(tokenFrom != tokenTo, "TOKEN_PAIR_INVALID"); if (address(tokenFrom) == Constants.ETH) { // If tokenFrom is ETH, msg.value = fee + amountFrom (total fee could be 0) // Can't deal with ETH, convert to WETH, the remaining balance will be the fee weth.deposit{value: amountFrom}(); _approveSpender(weth, spender, amountFrom); } else { // Otherwise capture tokens from sender _approveSpender(tokenFrom, spender, amountFrom); } // Perform the swap aggregator.functionCallWithValue( abi.encodePacked(method, data), address(this).balance ); // Transfer remaining balance of tokenFrom to sender if (address(tokenFrom) != Constants.ETH) { _transfer(tokenFrom, tokenFrom.balanceOf(address(this)), recipient); } else { // If using ETH, just unwrap any remaining WETH // At the end of this function all ETH will be transferred to the sender _unwrapWETH(); } uint256 weiBalance = address(this).balance; // Transfer remaining balance of tokenTo to sender if (address(tokenTo) != Constants.ETH) { uint256 balance = tokenTo.balanceOf(address(this)); require(balance >= amountTo, "INSUFFICIENT_AMOUNT"); _transfer(tokenTo, balance, recipient); } else { // If tokenTo == ETH, unwrap received WETH and add it to the wei balance, // then check that the remaining ETH balance >= amountTo // It is safe to not use safeMath as no one can have enough Ether to overflow weiBalance += _unwrapWETH(); require(weiBalance >= amountTo, "INSUFFICIENT_AMOUNT"); } // If there are unused fees or if tokenTo is ETH, transfer to sender if (weiBalance > 0) { recipient.sendValue(weiBalance); } } /** * @dev Unwraps all available WETH into ETH */ function _unwrapWETH() internal returns (uint256) { uint256 balance = weth.balanceOf(address(this)); weth.withdraw(balance); return balance; } /** * @dev Transfers token to sender if amount > 0 * @param token IERC20 token to transfer to sender * @param amount Amount of token to transfer * @param recipient Address that will receive the tokens */ function _transfer( IERC20 token, uint256 amount, address recipient ) internal { if (amount > 0) { token.safeTransfer(recipient, amount); } } // https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/SafeERC20.sol /** * @dev Approves max amount of token to the spender if the allowance is lower than amount * @param token The ERC20 token to approve * @param spender Address to which funds will be approved * @param amount Amount used to compare current allowance */ function _approveSpender( IERC20 token, address spender, uint256 amount ) internal { // If allowance is not enough, approve max possible amount uint256 allowance = token.allowance(address(this), spender); if (allowance < amount) { bytes memory returndata = address(token).functionCall( abi.encodeWithSelector( token.approve.selector, spender, type(uint256).max ) ); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "APPROVAL_FAILED"); } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; interface ICHI is IERC20 { function freeUpTo(uint256 value) external returns (uint256); function freeFromUpTo( address from, uint256 value ) external returns (uint256); function mint(uint256 value) external; } // SPDX-License-Identifier: UNLICENSED pragma solidity ^0.6.0; // We import the contract so truffle compiles it, and we have the ABI // available when working from truffle console. import "@openzeppelin/contracts/token/ERC20/ERC20.sol"; //helpers// SPDX-License-Identifier: MIT pragma solidity ^0.6.0; import "../../GSN/Context.sol"; import "./IERC20.sol"; import "../../math/SafeMath.sol"; import "../../utils/Address.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name, string memory symbol) public { _name = name; _symbol = symbol; _decimals = 18; } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/utils/Pausable.sol"; import "@openzeppelin/contracts/utils/Address.sol"; import "@openzeppelin/contracts/utils/ReentrancyGuard.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; import "./ICHI.sol"; import "./Spender.sol"; /** * @title MetaSwap */ contract MetaSwap is Ownable, Pausable, ReentrancyGuard { using SafeERC20 for IERC20; using Address for address; using Address for address payable; struct Adapter { address addr; // adapter's address bytes4 selector; bytes data; // adapter's fixed data } ICHI public immutable chi; Spender public immutable spender; // Mapping of aggregatorId to aggregator mapping(string => Adapter) public adapters; mapping(string => bool) public adapterRemoved; event AdapterSet( string indexed aggregatorId, address indexed addr, bytes4 selector, bytes data ); event AdapterRemoved(string indexed aggregatorId); event Swap(string indexed aggregatorId, address indexed sender); constructor(ICHI _chi) public { chi = _chi; spender = new Spender(); } /** * @dev Sets the adapter for an aggregator. It can't be changed later. * @param aggregatorId Aggregator's identifier * @param addr Address of the contract that contains the logic for this aggregator * @param selector The function selector of the swap function in the adapter * @param data Fixed abi encoded data the will be passed in each delegatecall made to the adapter */ function setAdapter( string calldata aggregatorId, address addr, bytes4 selector, bytes calldata data ) external onlyOwner { require(addr.isContract(), "ADAPTER_IS_NOT_A_CONTRACT"); require(!adapterRemoved[aggregatorId], "ADAPTER_REMOVED"); Adapter storage adapter = adapters[aggregatorId]; require(adapter.addr == address(0), "ADAPTER_EXISTS"); adapter.addr = addr; adapter.selector = selector; adapter.data = data; emit AdapterSet(aggregatorId, addr, selector, data); } /** * @dev Removes the adapter for an existing aggregator. This can't be undone. * @param aggregatorId Aggregator's identifier */ function removeAdapter(string calldata aggregatorId) external onlyOwner { require( adapters[aggregatorId].addr != address(0), "ADAPTER_DOES_NOT_EXIST" ); delete adapters[aggregatorId]; adapterRemoved[aggregatorId] = true; emit AdapterRemoved(aggregatorId); } /** * @dev Performs a swap * @param aggregatorId Identifier of the aggregator to be used for the swap * @param data Dynamic data which is concatenated with the fixed aggregator's * data in the delecatecall made to the adapter */ function swap( string calldata aggregatorId, IERC20 tokenFrom, uint256 amount, bytes calldata data ) external payable whenNotPaused nonReentrant { _swap(aggregatorId, tokenFrom, amount, data); } /** * @dev Performs a swap * @param aggregatorId Identifier of the aggregator to be used for the swap * @param data Dynamic data which is concatenated with the fixed aggregator's * data in the delecatecall made to the adapter */ function swapUsingGasToken( string calldata aggregatorId, IERC20 tokenFrom, uint256 amount, bytes calldata data ) external payable whenNotPaused nonReentrant { uint256 gas = gasleft(); _swap(aggregatorId, tokenFrom, amount, data); uint256 gasSpent = 21000 + gas - gasleft() + 16 * msg.data.length; chi.freeFromUpTo(msg.sender, (gasSpent + 14154) / 41947); } function pauseSwaps() external onlyOwner { _pause(); } function unpauseSwaps() external onlyOwner { _unpause(); } function _swap( string calldata aggregatorId, IERC20 tokenFrom, uint256 amount, bytes calldata data ) internal { Adapter storage adapter = adapters[aggregatorId]; if (address(tokenFrom) != Constants.ETH) { tokenFrom.safeTransferFrom(msg.sender, address(spender), amount); } spender.swap{value: msg.value}( adapter.addr, abi.encodePacked( adapter.selector, abi.encode(msg.sender), adapter.data, data ) ); emit Swap(aggregatorId, msg.sender); } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; import "../GSN/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor () internal { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(_owner == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; import "../GSN/Context.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ contract Pausable is Context { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ constructor () internal { _paused = false; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view returns (bool) { return _paused; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { require(!_paused, "Pausable: paused"); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { require(_paused, "Pausable: not paused"); _; } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor () internal { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and make it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; import "./Constants.sol"; contract Spender { address public immutable metaswap; constructor() public { metaswap = msg.sender; } /// @dev Receives ether from swaps fallback() external payable {} function swap(address adapter, bytes calldata data) external payable { require(msg.sender == metaswap, "FORBIDDEN"); require(adapter != address(0), "ADAPTER_NOT_PROVIDED"); _delegate(adapter, data, "ADAPTER_DELEGATECALL_FAILED"); } /** * @dev Performs a delegatecall and bubbles up the errors, adapted from * https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/Address.sol * @param target Address of the contract to delegatecall * @param data Data passed in the delegatecall * @param errorMessage Fallback revert reason */ function _delegate( address target, bytes memory data, string memory errorMessage ) private returns (bytes memory) { // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.delegatecall(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } pragma solidity ^0.6.0; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; import "@openzeppelin/contracts/utils/Address.sol"; contract MockAdapter { using SafeERC20 for IERC20; using Address for address; using Address for address payable; event MockAdapterEvent( address sender, uint256 valueFixed, uint256 valueDynamic ); function test( address sender, uint256 valueFixed, uint256 valueDynamic ) external payable { emit MockAdapterEvent(sender, valueFixed, valueDynamic); } function testRevert( address, uint256, uint256 ) external payable { revert("SWAP_FAILED"); } function testRevertNoReturnData( address, uint256, uint256 ) external payable { revert(); } } pragma solidity ^0.6.0; // TAKEN FROM https://github.com/gnosis/mock-contract // TODO: use their npm package once it is published for solidity 0.6 interface MockInterface { /** * @dev After calling this method, the mock will return `response` when it is called * with any calldata that is not mocked more specifically below * (e.g. using givenMethodReturn). * @param response ABI encoded response that will be returned if method is invoked */ function givenAnyReturn(bytes calldata response) external; function givenAnyReturnBool(bool response) external; function givenAnyReturnUint(uint256 response) external; function givenAnyReturnAddress(address response) external; function givenAnyRevert() external; function givenAnyRevertWithMessage(string calldata message) external; function givenAnyRunOutOfGas() external; /** * @dev After calling this method, the mock will return `response` when the given * methodId is called regardless of arguments. If the methodId and arguments * are mocked more specifically (using `givenMethodAndArguments`) the latter * will take precedence. * @param method ABI encoded methodId. It is valid to pass full calldata (including arguments). The mock will extract the methodId from it * @param response ABI encoded response that will be returned if method is invoked */ function givenMethodReturn(bytes calldata method, bytes calldata response) external; function givenMethodReturnBool(bytes calldata method, bool response) external; function givenMethodReturnUint(bytes calldata method, uint256 response) external; function givenMethodReturnAddress(bytes calldata method, address response) external; function givenMethodRevert(bytes calldata method) external; function givenMethodRevertWithMessage( bytes calldata method, string calldata message ) external; function givenMethodRunOutOfGas(bytes calldata method) external; /** * @dev After calling this method, the mock will return `response` when the given * methodId is called with matching arguments. These exact calldataMocks will take * precedence over all other calldataMocks. * @param call ABI encoded calldata (methodId and arguments) * @param response ABI encoded response that will be returned if contract is invoked with calldata */ function givenCalldataReturn(bytes calldata call, bytes calldata response) external; function givenCalldataReturnBool(bytes calldata call, bool response) external; function givenCalldataReturnUint(bytes calldata call, uint256 response) external; function givenCalldataReturnAddress(bytes calldata call, address response) external; function givenCalldataRevert(bytes calldata call) external; function givenCalldataRevertWithMessage( bytes calldata call, string calldata message ) external; function givenCalldataRunOutOfGas(bytes calldata call) external; /** * @dev Returns the number of times anything has been called on this mock since last reset */ function invocationCount() external returns (uint256); /** * @dev Returns the number of times the given method has been called on this mock since last reset * @param method ABI encoded methodId. It is valid to pass full calldata (including arguments). The mock will extract the methodId from it */ function invocationCountForMethod(bytes calldata method) external returns (uint256); /** * @dev Returns the number of times this mock has been called with the exact calldata since last reset. * @param call ABI encoded calldata (methodId and arguments) */ function invocationCountForCalldata(bytes calldata call) external returns (uint256); /** * @dev Resets all mocked methods and invocation counts. */ function reset() external; } /** * Implementation of the MockInterface. */ contract MockContract is MockInterface { enum MockType {Return, Revert, OutOfGas} bytes32 public constant MOCKS_LIST_START = hex"01"; bytes public constant MOCKS_LIST_END = "0xff"; bytes32 public constant MOCKS_LIST_END_HASH = keccak256(MOCKS_LIST_END); bytes4 public constant SENTINEL_ANY_MOCKS = hex"01"; bytes public constant DEFAULT_FALLBACK_VALUE = abi.encode(false); // A linked list allows easy iteration and inclusion checks mapping(bytes32 => bytes) calldataMocks; mapping(bytes => MockType) calldataMockTypes; mapping(bytes => bytes) calldataExpectations; mapping(bytes => string) calldataRevertMessage; mapping(bytes32 => uint256) calldataInvocations; mapping(bytes4 => bytes4) methodIdMocks; mapping(bytes4 => MockType) methodIdMockTypes; mapping(bytes4 => bytes) methodIdExpectations; mapping(bytes4 => string) methodIdRevertMessages; mapping(bytes32 => uint256) methodIdInvocations; MockType fallbackMockType; bytes fallbackExpectation = DEFAULT_FALLBACK_VALUE; string fallbackRevertMessage; uint256 invocations; uint256 resetCount; constructor() public { calldataMocks[MOCKS_LIST_START] = MOCKS_LIST_END; methodIdMocks[SENTINEL_ANY_MOCKS] = SENTINEL_ANY_MOCKS; } function trackCalldataMock(bytes memory call) private { bytes32 callHash = keccak256(call); if (calldataMocks[callHash].length == 0) { calldataMocks[callHash] = calldataMocks[MOCKS_LIST_START]; calldataMocks[MOCKS_LIST_START] = call; } } function trackMethodIdMock(bytes4 methodId) private { if (methodIdMocks[methodId] == 0x0) { methodIdMocks[methodId] = methodIdMocks[SENTINEL_ANY_MOCKS]; methodIdMocks[SENTINEL_ANY_MOCKS] = methodId; } } function _givenAnyReturn(bytes memory response) internal { fallbackMockType = MockType.Return; fallbackExpectation = response; } function givenAnyReturn(bytes calldata response) external override { _givenAnyReturn(response); } function givenAnyReturnBool(bool response) external override { uint256 flag = response ? 1 : 0; _givenAnyReturn(uintToBytes(flag)); } function givenAnyReturnUint(uint256 response) external override { _givenAnyReturn(uintToBytes(response)); } function givenAnyReturnAddress(address response) external override { _givenAnyReturn(uintToBytes(uint256(response))); } function givenAnyRevert() external override { fallbackMockType = MockType.Revert; fallbackRevertMessage = ""; } function givenAnyRevertWithMessage(string calldata message) external override { fallbackMockType = MockType.Revert; fallbackRevertMessage = message; } function givenAnyRunOutOfGas() external override { fallbackMockType = MockType.OutOfGas; } function _givenCalldataReturn(bytes memory call, bytes memory response) private { calldataMockTypes[call] = MockType.Return; calldataExpectations[call] = response; trackCalldataMock(call); } function givenCalldataReturn(bytes calldata call, bytes calldata response) external override { _givenCalldataReturn(call, response); } function givenCalldataReturnBool(bytes calldata call, bool response) external override { uint256 flag = response ? 1 : 0; _givenCalldataReturn(call, uintToBytes(flag)); } function givenCalldataReturnUint(bytes calldata call, uint256 response) external override { _givenCalldataReturn(call, uintToBytes(response)); } function givenCalldataReturnAddress(bytes calldata call, address response) external override { _givenCalldataReturn(call, uintToBytes(uint256(response))); } function _givenMethodReturn(bytes memory call, bytes memory response) private { bytes4 method = bytesToBytes4(call); methodIdMockTypes[method] = MockType.Return; methodIdExpectations[method] = response; trackMethodIdMock(method); } function givenMethodReturn(bytes calldata call, bytes calldata response) external override { _givenMethodReturn(call, response); } function givenMethodReturnBool(bytes calldata call, bool response) external override { uint256 flag = response ? 1 : 0; _givenMethodReturn(call, uintToBytes(flag)); } function givenMethodReturnUint(bytes calldata call, uint256 response) external override { _givenMethodReturn(call, uintToBytes(response)); } function givenMethodReturnAddress(bytes calldata call, address response) external override { _givenMethodReturn(call, uintToBytes(uint256(response))); } function givenCalldataRevert(bytes calldata call) external override { calldataMockTypes[call] = MockType.Revert; calldataRevertMessage[call] = ""; trackCalldataMock(call); } function givenMethodRevert(bytes calldata call) external override { bytes4 method = bytesToBytes4(call); methodIdMockTypes[method] = MockType.Revert; trackMethodIdMock(method); } function givenCalldataRevertWithMessage( bytes calldata call, string calldata message ) external override { calldataMockTypes[call] = MockType.Revert; calldataRevertMessage[call] = message; trackCalldataMock(call); } function givenMethodRevertWithMessage( bytes calldata call, string calldata message ) external override { bytes4 method = bytesToBytes4(call); methodIdMockTypes[method] = MockType.Revert; methodIdRevertMessages[method] = message; trackMethodIdMock(method); } function givenCalldataRunOutOfGas(bytes calldata call) external override { calldataMockTypes[call] = MockType.OutOfGas; trackCalldataMock(call); } function givenMethodRunOutOfGas(bytes calldata call) external override { bytes4 method = bytesToBytes4(call); methodIdMockTypes[method] = MockType.OutOfGas; trackMethodIdMock(method); } function invocationCount() external override returns (uint256) { return invocations; } function invocationCountForMethod(bytes calldata call) external override returns (uint256) { bytes4 method = bytesToBytes4(call); return methodIdInvocations[keccak256( abi.encodePacked(resetCount, method) )]; } function invocationCountForCalldata(bytes calldata call) external override returns (uint256) { return calldataInvocations[keccak256(abi.encodePacked(resetCount, call))]; } function reset() external override { // Reset all exact calldataMocks bytes memory nextMock = calldataMocks[MOCKS_LIST_START]; bytes32 mockHash = keccak256(nextMock); // We cannot compary bytes while (mockHash != MOCKS_LIST_END_HASH) { // Reset all mock maps calldataMockTypes[nextMock] = MockType.Return; calldataExpectations[nextMock] = hex""; calldataRevertMessage[nextMock] = ""; // Set next mock to remove nextMock = calldataMocks[mockHash]; // Remove from linked list calldataMocks[mockHash] = ""; // Update mock hash mockHash = keccak256(nextMock); } // Clear list calldataMocks[MOCKS_LIST_START] = MOCKS_LIST_END; // Reset all any calldataMocks bytes4 nextAnyMock = methodIdMocks[SENTINEL_ANY_MOCKS]; while (nextAnyMock != SENTINEL_ANY_MOCKS) { bytes4 currentAnyMock = nextAnyMock; methodIdMockTypes[currentAnyMock] = MockType.Return; methodIdExpectations[currentAnyMock] = hex""; methodIdRevertMessages[currentAnyMock] = ""; nextAnyMock = methodIdMocks[currentAnyMock]; // Remove from linked list methodIdMocks[currentAnyMock] = 0x0; } // Clear list methodIdMocks[SENTINEL_ANY_MOCKS] = SENTINEL_ANY_MOCKS; fallbackExpectation = DEFAULT_FALLBACK_VALUE; fallbackMockType = MockType.Return; invocations = 0; resetCount += 1; } function useAllGas() private { while (true) { bool s; assembly { //expensive call to EC multiply contract s := call(sub(gas(), 2000), 6, 0, 0x0, 0xc0, 0x0, 0x60) } } } function bytesToBytes4(bytes memory b) private pure returns (bytes4) { bytes4 out; for (uint256 i = 0; i < 4; i++) { out |= bytes4(b[i] & 0xFF) >> (i * 8); } return out; } function uintToBytes(uint256 x) private pure returns (bytes memory b) { b = new bytes(32); assembly { mstore(add(b, 32), x) } } function updateInvocationCount( bytes4 methodId, bytes memory originalMsgData ) public { require( msg.sender == address(this), "Can only be called from the contract itself" ); invocations += 1; methodIdInvocations[keccak256( abi.encodePacked(resetCount, methodId) )] += 1; calldataInvocations[keccak256( abi.encodePacked(resetCount, originalMsgData) )] += 1; } fallback() external payable { bytes4 methodId; assembly { methodId := calldataload(0) } // First, check exact matching overrides if (calldataMockTypes[msg.data] == MockType.Revert) { revert(calldataRevertMessage[msg.data]); } if (calldataMockTypes[msg.data] == MockType.OutOfGas) { useAllGas(); } bytes memory result = calldataExpectations[msg.data]; // Then check method Id overrides if (result.length == 0) { if (methodIdMockTypes[methodId] == MockType.Revert) { revert(methodIdRevertMessages[methodId]); } if (methodIdMockTypes[methodId] == MockType.OutOfGas) { useAllGas(); } result = methodIdExpectations[methodId]; } // Last, use the fallback override if (result.length == 0) { if (fallbackMockType == MockType.Revert) { revert(fallbackRevertMessage); } if (fallbackMockType == MockType.OutOfGas) { useAllGas(); } result = fallbackExpectation; } // Record invocation as separate call so we don't rollback in case we are called with STATICCALL (, bytes memory r) = address(this).call{gas: 100000}( abi.encodeWithSignature( "updateInvocationCount(bytes4,bytes)", methodId, msg.data ) ); assert(r.length == 0); assembly { return(add(0x20, result), mload(result)) } } } pragma solidity ^0.6.0; contract MockSelfDestruct { constructor() public payable {} fallback() external payable { selfdestruct(msg.sender); } function kill(address payable target) external payable { selfdestruct(target); } }
File 2 of 6: Vyper_contract
# @title Uniswap Exchange Interface V1 # @notice Source code found at https://github.com/uniswap # @notice Use at your own risk contract Factory(): def getExchange(token_addr: address) -> address: constant contract Exchange(): def getEthToTokenOutputPrice(tokens_bought: uint256) -> uint256(wei): constant def ethToTokenTransferInput(min_tokens: uint256, deadline: timestamp, recipient: address) -> uint256: modifying def ethToTokenTransferOutput(tokens_bought: uint256, deadline: timestamp, recipient: address) -> uint256(wei): modifying TokenPurchase: event({buyer: indexed(address), eth_sold: indexed(uint256(wei)), tokens_bought: indexed(uint256)}) EthPurchase: event({buyer: indexed(address), tokens_sold: indexed(uint256), eth_bought: indexed(uint256(wei))}) AddLiquidity: event({provider: indexed(address), eth_amount: indexed(uint256(wei)), token_amount: indexed(uint256)}) RemoveLiquidity: event({provider: indexed(address), eth_amount: indexed(uint256(wei)), token_amount: indexed(uint256)}) Transfer: event({_from: indexed(address), _to: indexed(address), _value: uint256}) Approval: event({_owner: indexed(address), _spender: indexed(address), _value: uint256}) name: public(bytes32) # Uniswap V1 symbol: public(bytes32) # UNI-V1 decimals: public(uint256) # 18 totalSupply: public(uint256) # total number of UNI in existence balances: uint256[address] # UNI balance of an address allowances: (uint256[address])[address] # UNI allowance of one address on another token: address(ERC20) # address of the ERC20 token traded on this contract factory: Factory # interface for the factory that created this contract # @dev This function acts as a contract constructor which is not currently supported in contracts deployed # using create_with_code_of(). It is called once by the factory during contract creation. @public def setup(token_addr: address): assert (self.factory == ZERO_ADDRESS and self.token == ZERO_ADDRESS) and token_addr != ZERO_ADDRESS self.factory = msg.sender self.token = token_addr self.name = 0x556e697377617020563100000000000000000000000000000000000000000000 self.symbol = 0x554e492d56310000000000000000000000000000000000000000000000000000 self.decimals = 18 # @notice Deposit ETH and Tokens (self.token) at current ratio to mint UNI tokens. # @dev min_liquidity does nothing when total UNI supply is 0. # @param min_liquidity Minimum number of UNI sender will mint if total UNI supply is greater than 0. # @param max_tokens Maximum number of tokens deposited. Deposits max amount if total UNI supply is 0. # @param deadline Time after which this transaction can no longer be executed. # @return The amount of UNI minted. @public @payable def addLiquidity(min_liquidity: uint256, max_tokens: uint256, deadline: timestamp) -> uint256: assert deadline > block.timestamp and (max_tokens > 0 and msg.value > 0) total_liquidity: uint256 = self.totalSupply if total_liquidity > 0: assert min_liquidity > 0 eth_reserve: uint256(wei) = self.balance - msg.value token_reserve: uint256 = self.token.balanceOf(self) token_amount: uint256 = msg.value * token_reserve / eth_reserve + 1 liquidity_minted: uint256 = msg.value * total_liquidity / eth_reserve assert max_tokens >= token_amount and liquidity_minted >= min_liquidity self.balances[msg.sender] += liquidity_minted self.totalSupply = total_liquidity + liquidity_minted assert self.token.transferFrom(msg.sender, self, token_amount) log.AddLiquidity(msg.sender, msg.value, token_amount) log.Transfer(ZERO_ADDRESS, msg.sender, liquidity_minted) return liquidity_minted else: assert (self.factory != ZERO_ADDRESS and self.token != ZERO_ADDRESS) and msg.value >= 1000000000 assert self.factory.getExchange(self.token) == self token_amount: uint256 = max_tokens initial_liquidity: uint256 = as_unitless_number(self.balance) self.totalSupply = initial_liquidity self.balances[msg.sender] = initial_liquidity assert self.token.transferFrom(msg.sender, self, token_amount) log.AddLiquidity(msg.sender, msg.value, token_amount) log.Transfer(ZERO_ADDRESS, msg.sender, initial_liquidity) return initial_liquidity # @dev Burn UNI tokens to withdraw ETH and Tokens at current ratio. # @param amount Amount of UNI burned. # @param min_eth Minimum ETH withdrawn. # @param min_tokens Minimum Tokens withdrawn. # @param deadline Time after which this transaction can no longer be executed. # @return The amount of ETH and Tokens withdrawn. @public def removeLiquidity(amount: uint256, min_eth: uint256(wei), min_tokens: uint256, deadline: timestamp) -> (uint256(wei), uint256): assert (amount > 0 and deadline > block.timestamp) and (min_eth > 0 and min_tokens > 0) total_liquidity: uint256 = self.totalSupply assert total_liquidity > 0 token_reserve: uint256 = self.token.balanceOf(self) eth_amount: uint256(wei) = amount * self.balance / total_liquidity token_amount: uint256 = amount * token_reserve / total_liquidity assert eth_amount >= min_eth and token_amount >= min_tokens self.balances[msg.sender] -= amount self.totalSupply = total_liquidity - amount send(msg.sender, eth_amount) assert self.token.transfer(msg.sender, token_amount) log.RemoveLiquidity(msg.sender, eth_amount, token_amount) log.Transfer(msg.sender, ZERO_ADDRESS, amount) return eth_amount, token_amount # @dev Pricing function for converting between ETH and Tokens. # @param input_amount Amount of ETH or Tokens being sold. # @param input_reserve Amount of ETH or Tokens (input type) in exchange reserves. # @param output_reserve Amount of ETH or Tokens (output type) in exchange reserves. # @return Amount of ETH or Tokens bought. @private @constant def getInputPrice(input_amount: uint256, input_reserve: uint256, output_reserve: uint256) -> uint256: assert input_reserve > 0 and output_reserve > 0 input_amount_with_fee: uint256 = input_amount * 997 numerator: uint256 = input_amount_with_fee * output_reserve denominator: uint256 = (input_reserve * 1000) + input_amount_with_fee return numerator / denominator # @dev Pricing function for converting between ETH and Tokens. # @param output_amount Amount of ETH or Tokens being bought. # @param input_reserve Amount of ETH or Tokens (input type) in exchange reserves. # @param output_reserve Amount of ETH or Tokens (output type) in exchange reserves. # @return Amount of ETH or Tokens sold. @private @constant def getOutputPrice(output_amount: uint256, input_reserve: uint256, output_reserve: uint256) -> uint256: assert input_reserve > 0 and output_reserve > 0 numerator: uint256 = input_reserve * output_amount * 1000 denominator: uint256 = (output_reserve - output_amount) * 997 return numerator / denominator + 1 @private def ethToTokenInput(eth_sold: uint256(wei), min_tokens: uint256, deadline: timestamp, buyer: address, recipient: address) -> uint256: assert deadline >= block.timestamp and (eth_sold > 0 and min_tokens > 0) token_reserve: uint256 = self.token.balanceOf(self) tokens_bought: uint256 = self.getInputPrice(as_unitless_number(eth_sold), as_unitless_number(self.balance - eth_sold), token_reserve) assert tokens_bought >= min_tokens assert self.token.transfer(recipient, tokens_bought) log.TokenPurchase(buyer, eth_sold, tokens_bought) return tokens_bought # @notice Convert ETH to Tokens. # @dev User specifies exact input (msg.value). # @dev User cannot specify minimum output or deadline. @public @payable def __default__(): self.ethToTokenInput(msg.value, 1, block.timestamp, msg.sender, msg.sender) # @notice Convert ETH to Tokens. # @dev User specifies exact input (msg.value) and minimum output. # @param min_tokens Minimum Tokens bought. # @param deadline Time after which this transaction can no longer be executed. # @return Amount of Tokens bought. @public @payable def ethToTokenSwapInput(min_tokens: uint256, deadline: timestamp) -> uint256: return self.ethToTokenInput(msg.value, min_tokens, deadline, msg.sender, msg.sender) # @notice Convert ETH to Tokens and transfers Tokens to recipient. # @dev User specifies exact input (msg.value) and minimum output # @param min_tokens Minimum Tokens bought. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output Tokens. # @return Amount of Tokens bought. @public @payable def ethToTokenTransferInput(min_tokens: uint256, deadline: timestamp, recipient: address) -> uint256: assert recipient != self and recipient != ZERO_ADDRESS return self.ethToTokenInput(msg.value, min_tokens, deadline, msg.sender, recipient) @private def ethToTokenOutput(tokens_bought: uint256, max_eth: uint256(wei), deadline: timestamp, buyer: address, recipient: address) -> uint256(wei): assert deadline >= block.timestamp and (tokens_bought > 0 and max_eth > 0) token_reserve: uint256 = self.token.balanceOf(self) eth_sold: uint256 = self.getOutputPrice(tokens_bought, as_unitless_number(self.balance - max_eth), token_reserve) # Throws if eth_sold > max_eth eth_refund: uint256(wei) = max_eth - as_wei_value(eth_sold, 'wei') if eth_refund > 0: send(buyer, eth_refund) assert self.token.transfer(recipient, tokens_bought) log.TokenPurchase(buyer, as_wei_value(eth_sold, 'wei'), tokens_bought) return as_wei_value(eth_sold, 'wei') # @notice Convert ETH to Tokens. # @dev User specifies maximum input (msg.value) and exact output. # @param tokens_bought Amount of tokens bought. # @param deadline Time after which this transaction can no longer be executed. # @return Amount of ETH sold. @public @payable def ethToTokenSwapOutput(tokens_bought: uint256, deadline: timestamp) -> uint256(wei): return self.ethToTokenOutput(tokens_bought, msg.value, deadline, msg.sender, msg.sender) # @notice Convert ETH to Tokens and transfers Tokens to recipient. # @dev User specifies maximum input (msg.value) and exact output. # @param tokens_bought Amount of tokens bought. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output Tokens. # @return Amount of ETH sold. @public @payable def ethToTokenTransferOutput(tokens_bought: uint256, deadline: timestamp, recipient: address) -> uint256(wei): assert recipient != self and recipient != ZERO_ADDRESS return self.ethToTokenOutput(tokens_bought, msg.value, deadline, msg.sender, recipient) @private def tokenToEthInput(tokens_sold: uint256, min_eth: uint256(wei), deadline: timestamp, buyer: address, recipient: address) -> uint256(wei): assert deadline >= block.timestamp and (tokens_sold > 0 and min_eth > 0) token_reserve: uint256 = self.token.balanceOf(self) eth_bought: uint256 = self.getInputPrice(tokens_sold, token_reserve, as_unitless_number(self.balance)) wei_bought: uint256(wei) = as_wei_value(eth_bought, 'wei') assert wei_bought >= min_eth send(recipient, wei_bought) assert self.token.transferFrom(buyer, self, tokens_sold) log.EthPurchase(buyer, tokens_sold, wei_bought) return wei_bought # @notice Convert Tokens to ETH. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_eth Minimum ETH purchased. # @param deadline Time after which this transaction can no longer be executed. # @return Amount of ETH bought. @public def tokenToEthSwapInput(tokens_sold: uint256, min_eth: uint256(wei), deadline: timestamp) -> uint256(wei): return self.tokenToEthInput(tokens_sold, min_eth, deadline, msg.sender, msg.sender) # @notice Convert Tokens to ETH and transfers ETH to recipient. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_eth Minimum ETH purchased. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @return Amount of ETH bought. @public def tokenToEthTransferInput(tokens_sold: uint256, min_eth: uint256(wei), deadline: timestamp, recipient: address) -> uint256(wei): assert recipient != self and recipient != ZERO_ADDRESS return self.tokenToEthInput(tokens_sold, min_eth, deadline, msg.sender, recipient) @private def tokenToEthOutput(eth_bought: uint256(wei), max_tokens: uint256, deadline: timestamp, buyer: address, recipient: address) -> uint256: assert deadline >= block.timestamp and eth_bought > 0 token_reserve: uint256 = self.token.balanceOf(self) tokens_sold: uint256 = self.getOutputPrice(as_unitless_number(eth_bought), token_reserve, as_unitless_number(self.balance)) # tokens sold is always > 0 assert max_tokens >= tokens_sold send(recipient, eth_bought) assert self.token.transferFrom(buyer, self, tokens_sold) log.EthPurchase(buyer, tokens_sold, eth_bought) return tokens_sold # @notice Convert Tokens to ETH. # @dev User specifies maximum input and exact output. # @param eth_bought Amount of ETH purchased. # @param max_tokens Maximum Tokens sold. # @param deadline Time after which this transaction can no longer be executed. # @return Amount of Tokens sold. @public def tokenToEthSwapOutput(eth_bought: uint256(wei), max_tokens: uint256, deadline: timestamp) -> uint256: return self.tokenToEthOutput(eth_bought, max_tokens, deadline, msg.sender, msg.sender) # @notice Convert Tokens to ETH and transfers ETH to recipient. # @dev User specifies maximum input and exact output. # @param eth_bought Amount of ETH purchased. # @param max_tokens Maximum Tokens sold. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @return Amount of Tokens sold. @public def tokenToEthTransferOutput(eth_bought: uint256(wei), max_tokens: uint256, deadline: timestamp, recipient: address) -> uint256: assert recipient != self and recipient != ZERO_ADDRESS return self.tokenToEthOutput(eth_bought, max_tokens, deadline, msg.sender, recipient) @private def tokenToTokenInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, buyer: address, recipient: address, exchange_addr: address) -> uint256: assert (deadline >= block.timestamp and tokens_sold > 0) and (min_tokens_bought > 0 and min_eth_bought > 0) assert exchange_addr != self and exchange_addr != ZERO_ADDRESS token_reserve: uint256 = self.token.balanceOf(self) eth_bought: uint256 = self.getInputPrice(tokens_sold, token_reserve, as_unitless_number(self.balance)) wei_bought: uint256(wei) = as_wei_value(eth_bought, 'wei') assert wei_bought >= min_eth_bought assert self.token.transferFrom(buyer, self, tokens_sold) tokens_bought: uint256 = Exchange(exchange_addr).ethToTokenTransferInput(min_tokens_bought, deadline, recipient, value=wei_bought) log.EthPurchase(buyer, tokens_sold, wei_bought) return tokens_bought # @notice Convert Tokens (self.token) to Tokens (token_addr). # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_tokens_bought Minimum Tokens (token_addr) purchased. # @param min_eth_bought Minimum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (token_addr) bought. @public def tokenToTokenSwapInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, token_addr: address) -> uint256: exchange_addr: address = self.factory.getExchange(token_addr) return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, msg.sender, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (token_addr) and transfers # Tokens (token_addr) to recipient. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_tokens_bought Minimum Tokens (token_addr) purchased. # @param min_eth_bought Minimum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (token_addr) bought. @public def tokenToTokenTransferInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, recipient: address, token_addr: address) -> uint256: exchange_addr: address = self.factory.getExchange(token_addr) return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, recipient, exchange_addr) @private def tokenToTokenOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, buyer: address, recipient: address, exchange_addr: address) -> uint256: assert deadline >= block.timestamp and (tokens_bought > 0 and max_eth_sold > 0) assert exchange_addr != self and exchange_addr != ZERO_ADDRESS eth_bought: uint256(wei) = Exchange(exchange_addr).getEthToTokenOutputPrice(tokens_bought) token_reserve: uint256 = self.token.balanceOf(self) tokens_sold: uint256 = self.getOutputPrice(as_unitless_number(eth_bought), token_reserve, as_unitless_number(self.balance)) # tokens sold is always > 0 assert max_tokens_sold >= tokens_sold and max_eth_sold >= eth_bought assert self.token.transferFrom(buyer, self, tokens_sold) eth_sold: uint256(wei) = Exchange(exchange_addr).ethToTokenTransferOutput(tokens_bought, deadline, recipient, value=eth_bought) log.EthPurchase(buyer, tokens_sold, eth_bought) return tokens_sold # @notice Convert Tokens (self.token) to Tokens (token_addr). # @dev User specifies maximum input and exact output. # @param tokens_bought Amount of Tokens (token_addr) bought. # @param max_tokens_sold Maximum Tokens (self.token) sold. # @param max_eth_sold Maximum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (self.token) sold. @public def tokenToTokenSwapOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, token_addr: address) -> uint256: exchange_addr: address = self.factory.getExchange(token_addr) return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, msg.sender, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (token_addr) and transfers # Tokens (token_addr) to recipient. # @dev User specifies maximum input and exact output. # @param tokens_bought Amount of Tokens (token_addr) bought. # @param max_tokens_sold Maximum Tokens (self.token) sold. # @param max_eth_sold Maximum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (self.token) sold. @public def tokenToTokenTransferOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, recipient: address, token_addr: address) -> uint256: exchange_addr: address = self.factory.getExchange(token_addr) return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, recipient, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token). # @dev Allows trades through contracts that were not deployed from the same factory. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_tokens_bought Minimum Tokens (token_addr) purchased. # @param min_eth_bought Minimum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param exchange_addr The address of the exchange for the token being purchased. # @return Amount of Tokens (exchange_addr.token) bought. @public def tokenToExchangeSwapInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, exchange_addr: address) -> uint256: return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, msg.sender, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token) and transfers # Tokens (exchange_addr.token) to recipient. # @dev Allows trades through contracts that were not deployed from the same factory. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_tokens_bought Minimum Tokens (token_addr) purchased. # @param min_eth_bought Minimum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @param exchange_addr The address of the exchange for the token being purchased. # @return Amount of Tokens (exchange_addr.token) bought. @public def tokenToExchangeTransferInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, recipient: address, exchange_addr: address) -> uint256: assert recipient != self return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, recipient, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token). # @dev Allows trades through contracts that were not deployed from the same factory. # @dev User specifies maximum input and exact output. # @param tokens_bought Amount of Tokens (token_addr) bought. # @param max_tokens_sold Maximum Tokens (self.token) sold. # @param max_eth_sold Maximum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param exchange_addr The address of the exchange for the token being purchased. # @return Amount of Tokens (self.token) sold. @public def tokenToExchangeSwapOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, exchange_addr: address) -> uint256: return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, msg.sender, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token) and transfers # Tokens (exchange_addr.token) to recipient. # @dev Allows trades through contracts that were not deployed from the same factory. # @dev User specifies maximum input and exact output. # @param tokens_bought Amount of Tokens (token_addr) bought. # @param max_tokens_sold Maximum Tokens (self.token) sold. # @param max_eth_sold Maximum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (self.token) sold. @public def tokenToExchangeTransferOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, recipient: address, exchange_addr: address) -> uint256: assert recipient != self return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, recipient, exchange_addr) # @notice Public price function for ETH to Token trades with an exact input. # @param eth_sold Amount of ETH sold. # @return Amount of Tokens that can be bought with input ETH. @public @constant def getEthToTokenInputPrice(eth_sold: uint256(wei)) -> uint256: assert eth_sold > 0 token_reserve: uint256 = self.token.balanceOf(self) return self.getInputPrice(as_unitless_number(eth_sold), as_unitless_number(self.balance), token_reserve) # @notice Public price function for ETH to Token trades with an exact output. # @param tokens_bought Amount of Tokens bought. # @return Amount of ETH needed to buy output Tokens. @public @constant def getEthToTokenOutputPrice(tokens_bought: uint256) -> uint256(wei): assert tokens_bought > 0 token_reserve: uint256 = self.token.balanceOf(self) eth_sold: uint256 = self.getOutputPrice(tokens_bought, as_unitless_number(self.balance), token_reserve) return as_wei_value(eth_sold, 'wei') # @notice Public price function for Token to ETH trades with an exact input. # @param tokens_sold Amount of Tokens sold. # @return Amount of ETH that can be bought with input Tokens. @public @constant def getTokenToEthInputPrice(tokens_sold: uint256) -> uint256(wei): assert tokens_sold > 0 token_reserve: uint256 = self.token.balanceOf(self) eth_bought: uint256 = self.getInputPrice(tokens_sold, token_reserve, as_unitless_number(self.balance)) return as_wei_value(eth_bought, 'wei') # @notice Public price function for Token to ETH trades with an exact output. # @param eth_bought Amount of output ETH. # @return Amount of Tokens needed to buy output ETH. @public @constant def getTokenToEthOutputPrice(eth_bought: uint256(wei)) -> uint256: assert eth_bought > 0 token_reserve: uint256 = self.token.balanceOf(self) return self.getOutputPrice(as_unitless_number(eth_bought), token_reserve, as_unitless_number(self.balance)) # @return Address of Token that is sold on this exchange. @public @constant def tokenAddress() -> address: return self.token # @return Address of factory that created this exchange. @public @constant def factoryAddress() -> address(Factory): return self.factory # ERC20 compatibility for exchange liquidity modified from # https://github.com/ethereum/vyper/blob/master/examples/tokens/ERC20.vy @public @constant def balanceOf(_owner : address) -> uint256: return self.balances[_owner] @public def transfer(_to : address, _value : uint256) -> bool: self.balances[msg.sender] -= _value self.balances[_to] += _value log.Transfer(msg.sender, _to, _value) return True @public def transferFrom(_from : address, _to : address, _value : uint256) -> bool: self.balances[_from] -= _value self.balances[_to] += _value self.allowances[_from][msg.sender] -= _value log.Transfer(_from, _to, _value) return True @public def approve(_spender : address, _value : uint256) -> bool: self.allowances[msg.sender][_spender] = _value log.Approval(msg.sender, _spender, _value) return True @public @constant def allowance(_owner : address, _spender : address) -> uint256: return self.allowances[_owner][_spender]
File 3 of 6: Spender
{"Constants.84ef19f8.sol":{"content":"// SPDX-License-Identifier: MIT\r\n\r\npragma solidity ^0.6.0;\r\n\r\nlibrary Constants {\r\n address internal constant ETH = 0x0000000000000000000000000000000000000000;\r\n}\r\n"},"Spender.3372a096.sol":{"content":"// SPDX-License-Identifier: MIT\r\n\r\npragma solidity ^0.6.0;\r\n\r\nimport \"./Constants.84ef19f8.sol\";\r\n\r\ncontract Spender {\r\n address public immutable metaswap;\r\n\r\n constructor() public {\r\n metaswap = msg.sender;\r\n }\r\n\r\n /// @dev Receives ether from swaps\r\n fallback() external payable {}\r\n\r\n function swap(address adapter, bytes calldata data) external payable {\r\n require(msg.sender == metaswap, \"FORBIDDEN\");\r\n require(adapter != address(0), \"ADAPTER_NOT_PROVIDED\");\r\n _delegate(adapter, data, \"ADAPTER_DELEGATECALL_FAILED\");\r\n }\r\n\r\n /**\r\n * @dev Performs a delegatecall and bubbles up the errors, adapted from\r\n * https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/Address.sol\r\n * @param target Address of the contract to delegatecall\r\n * @param data Data passed in the delegatecall\r\n * @param errorMessage Fallback revert reason\r\n */\r\n function _delegate(\r\n address target,\r\n bytes memory data,\r\n string memory errorMessage\r\n ) private returns (bytes memory) {\r\n // solhint-disable-next-line avoid-low-level-calls\r\n (bool success, bytes memory returndata) = target.delegatecall(data);\r\n if (success) {\r\n return returndata;\r\n } else {\r\n // Look for revert reason and bubble it up if present\r\n if (returndata.length \u003e 0) {\r\n // The easiest way to bubble the revert reason is using memory via assembly\r\n\r\n // solhint-disable-next-line no-inline-assembly\r\n assembly {\r\n let returndata_size := mload(returndata)\r\n revert(add(32, returndata), returndata_size)\r\n }\r\n } else {\r\n revert(errorMessage);\r\n }\r\n }\r\n }\r\n}\r\n"}}
File 4 of 6: HEX
pragma solidity 0.5.13; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ contract Context { // Empty internal constructor, to prevent people from mistakenly deploying // an instance of this contract, which should be used via inheritance. constructor () internal { } // solhint-disable-previous-line no-empty-blocks function _msgSender() internal view returns (address payable) { return msg.sender; } function _msgData() internal view returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } /** * @dev Interface of the ERC20 standard as defined in the EIP. Does not include * the optional functions; to access them see {ERC20Detailed}. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. * * _Available since v2.4.0._ */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } } /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20Mintable}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20 { using SafeMath for uint256; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for `sender`'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public returns (bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal { require(account != address(0), "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal { require(account != address(0), "ERC20: burn from the zero address"); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Destroys `amount` tokens from `account`.`amount` is then deducted * from the caller's allowance. * * See {_burn} and {_approve}. */ function _burnFrom(address account, uint256 amount) internal { _burn(account, amount); _approve(account, _msgSender(), _allowances[account][_msgSender()].sub(amount, "ERC20: burn amount exceeds allowance")); } } contract GlobalsAndUtility is ERC20 { /* XfLobbyEnter (auto-generated event) uint40 timestamp --> data0 [ 39: 0] address indexed memberAddr uint256 indexed entryId uint96 rawAmount --> data0 [135: 40] address indexed referrerAddr */ event XfLobbyEnter( uint256 data0, address indexed memberAddr, uint256 indexed entryId, address indexed referrerAddr ); /* XfLobbyExit (auto-generated event) uint40 timestamp --> data0 [ 39: 0] address indexed memberAddr uint256 indexed entryId uint72 xfAmount --> data0 [111: 40] address indexed referrerAddr */ event XfLobbyExit( uint256 data0, address indexed memberAddr, uint256 indexed entryId, address indexed referrerAddr ); /* DailyDataUpdate (auto-generated event) uint40 timestamp --> data0 [ 39: 0] uint16 beginDay --> data0 [ 55: 40] uint16 endDay --> data0 [ 71: 56] bool isAutoUpdate --> data0 [ 79: 72] address indexed updaterAddr */ event DailyDataUpdate( uint256 data0, address indexed updaterAddr ); /* Claim (auto-generated event) uint40 timestamp --> data0 [ 39: 0] bytes20 indexed btcAddr uint56 rawSatoshis --> data0 [ 95: 40] uint56 adjSatoshis --> data0 [151: 96] address indexed claimToAddr uint8 claimFlags --> data0 [159:152] uint72 claimedHearts --> data0 [231:160] address indexed referrerAddr address senderAddr --> data1 [159: 0] */ event Claim( uint256 data0, uint256 data1, bytes20 indexed btcAddr, address indexed claimToAddr, address indexed referrerAddr ); /* ClaimAssist (auto-generated event) uint40 timestamp --> data0 [ 39: 0] bytes20 btcAddr --> data0 [199: 40] uint56 rawSatoshis --> data0 [255:200] uint56 adjSatoshis --> data1 [ 55: 0] address claimToAddr --> data1 [215: 56] uint8 claimFlags --> data1 [223:216] uint72 claimedHearts --> data2 [ 71: 0] address referrerAddr --> data2 [231: 72] address indexed senderAddr */ event ClaimAssist( uint256 data0, uint256 data1, uint256 data2, address indexed senderAddr ); /* StakeStart (auto-generated event) uint40 timestamp --> data0 [ 39: 0] address indexed stakerAddr uint40 indexed stakeId uint72 stakedHearts --> data0 [111: 40] uint72 stakeShares --> data0 [183:112] uint16 stakedDays --> data0 [199:184] bool isAutoStake --> data0 [207:200] */ event StakeStart( uint256 data0, address indexed stakerAddr, uint40 indexed stakeId ); /* StakeGoodAccounting(auto-generated event) uint40 timestamp --> data0 [ 39: 0] address indexed stakerAddr uint40 indexed stakeId uint72 stakedHearts --> data0 [111: 40] uint72 stakeShares --> data0 [183:112] uint72 payout --> data0 [255:184] uint72 penalty --> data1 [ 71: 0] address indexed senderAddr */ event StakeGoodAccounting( uint256 data0, uint256 data1, address indexed stakerAddr, uint40 indexed stakeId, address indexed senderAddr ); /* StakeEnd (auto-generated event) uint40 timestamp --> data0 [ 39: 0] address indexed stakerAddr uint40 indexed stakeId uint72 stakedHearts --> data0 [111: 40] uint72 stakeShares --> data0 [183:112] uint72 payout --> data0 [255:184] uint72 penalty --> data1 [ 71: 0] uint16 servedDays --> data1 [ 87: 72] bool prevUnlocked --> data1 [ 95: 88] */ event StakeEnd( uint256 data0, uint256 data1, address indexed stakerAddr, uint40 indexed stakeId ); /* ShareRateChange (auto-generated event) uint40 timestamp --> data0 [ 39: 0] uint40 shareRate --> data0 [ 79: 40] uint40 indexed stakeId */ event ShareRateChange( uint256 data0, uint40 indexed stakeId ); /* Origin address */ address internal constant ORIGIN_ADDR = 0x9A6a414D6F3497c05E3b1De90520765fA1E07c03; /* Flush address */ address payable internal constant FLUSH_ADDR = 0xDEC9f2793e3c17cd26eeFb21C4762fA5128E0399; /* ERC20 constants */ string public constant name = "HEX"; string public constant symbol = "HEX"; uint8 public constant decimals = 8; /* Hearts per Satoshi = 10,000 * 1e8 / 1e8 = 1e4 */ uint256 private constant HEARTS_PER_HEX = 10 ** uint256(decimals); // 1e8 uint256 private constant HEX_PER_BTC = 1e4; uint256 private constant SATOSHIS_PER_BTC = 1e8; uint256 internal constant HEARTS_PER_SATOSHI = HEARTS_PER_HEX / SATOSHIS_PER_BTC * HEX_PER_BTC; /* Time of contract launch (2019-12-03T00:00:00Z) */ uint256 internal constant LAUNCH_TIME = 1575331200; /* Size of a Hearts or Shares uint */ uint256 internal constant HEART_UINT_SIZE = 72; /* Size of a transform lobby entry index uint */ uint256 internal constant XF_LOBBY_ENTRY_INDEX_SIZE = 40; uint256 internal constant XF_LOBBY_ENTRY_INDEX_MASK = (1 << XF_LOBBY_ENTRY_INDEX_SIZE) - 1; /* Seed for WAAS Lobby */ uint256 internal constant WAAS_LOBBY_SEED_HEX = 1e9; uint256 internal constant WAAS_LOBBY_SEED_HEARTS = WAAS_LOBBY_SEED_HEX * HEARTS_PER_HEX; /* Start of claim phase */ uint256 internal constant PRE_CLAIM_DAYS = 1; uint256 internal constant CLAIM_PHASE_START_DAY = PRE_CLAIM_DAYS; /* Length of claim phase */ uint256 private constant CLAIM_PHASE_WEEKS = 50; uint256 internal constant CLAIM_PHASE_DAYS = CLAIM_PHASE_WEEKS * 7; /* End of claim phase */ uint256 internal constant CLAIM_PHASE_END_DAY = CLAIM_PHASE_START_DAY + CLAIM_PHASE_DAYS; /* Number of words to hold 1 bit for each transform lobby day */ uint256 internal constant XF_LOBBY_DAY_WORDS = (CLAIM_PHASE_END_DAY + 255) >> 8; /* BigPayDay */ uint256 internal constant BIG_PAY_DAY = CLAIM_PHASE_END_DAY + 1; /* Root hash of the UTXO Merkle tree */ bytes32 internal constant MERKLE_TREE_ROOT = 0x4e831acb4223b66de3b3d2e54a2edeefb0de3d7916e2886a4b134d9764d41bec; /* Size of a Satoshi claim uint in a Merkle leaf */ uint256 internal constant MERKLE_LEAF_SATOSHI_SIZE = 45; /* Zero-fill between BTC address and Satoshis in a Merkle leaf */ uint256 internal constant MERKLE_LEAF_FILL_SIZE = 256 - 160 - MERKLE_LEAF_SATOSHI_SIZE; uint256 internal constant MERKLE_LEAF_FILL_BASE = (1 << MERKLE_LEAF_FILL_SIZE) - 1; uint256 internal constant MERKLE_LEAF_FILL_MASK = MERKLE_LEAF_FILL_BASE << MERKLE_LEAF_SATOSHI_SIZE; /* Size of a Satoshi total uint */ uint256 internal constant SATOSHI_UINT_SIZE = 51; uint256 internal constant SATOSHI_UINT_MASK = (1 << SATOSHI_UINT_SIZE) - 1; /* Total Satoshis from all BTC addresses in UTXO snapshot */ uint256 internal constant FULL_SATOSHIS_TOTAL = 1807766732160668; /* Total Satoshis from supported BTC addresses in UTXO snapshot after applying Silly Whale */ uint256 internal constant CLAIMABLE_SATOSHIS_TOTAL = 910087996911001; /* Number of claimable BTC addresses in UTXO snapshot */ uint256 internal constant CLAIMABLE_BTC_ADDR_COUNT = 27997742; /* Largest BTC address Satoshis balance in UTXO snapshot (sanity check) */ uint256 internal constant MAX_BTC_ADDR_BALANCE_SATOSHIS = 25550214098481; /* Percentage of total claimed Hearts that will be auto-staked from a claim */ uint256 internal constant AUTO_STAKE_CLAIM_PERCENT = 90; /* Stake timing parameters */ uint256 internal constant MIN_STAKE_DAYS = 1; uint256 internal constant MIN_AUTO_STAKE_DAYS = 350; uint256 internal constant MAX_STAKE_DAYS = 5555; // Approx 15 years uint256 internal constant EARLY_PENALTY_MIN_DAYS = 90; uint256 private constant LATE_PENALTY_GRACE_WEEKS = 2; uint256 internal constant LATE_PENALTY_GRACE_DAYS = LATE_PENALTY_GRACE_WEEKS * 7; uint256 private constant LATE_PENALTY_SCALE_WEEKS = 100; uint256 internal constant LATE_PENALTY_SCALE_DAYS = LATE_PENALTY_SCALE_WEEKS * 7; /* Stake shares Longer Pays Better bonus constants used by _stakeStartBonusHearts() */ uint256 private constant LPB_BONUS_PERCENT = 20; uint256 private constant LPB_BONUS_MAX_PERCENT = 200; uint256 internal constant LPB = 364 * 100 / LPB_BONUS_PERCENT; uint256 internal constant LPB_MAX_DAYS = LPB * LPB_BONUS_MAX_PERCENT / 100; /* Stake shares Bigger Pays Better bonus constants used by _stakeStartBonusHearts() */ uint256 private constant BPB_BONUS_PERCENT = 10; uint256 private constant BPB_MAX_HEX = 150 * 1e6; uint256 internal constant BPB_MAX_HEARTS = BPB_MAX_HEX * HEARTS_PER_HEX; uint256 internal constant BPB = BPB_MAX_HEARTS * 100 / BPB_BONUS_PERCENT; /* Share rate is scaled to increase precision */ uint256 internal constant SHARE_RATE_SCALE = 1e5; /* Share rate max (after scaling) */ uint256 internal constant SHARE_RATE_UINT_SIZE = 40; uint256 internal constant SHARE_RATE_MAX = (1 << SHARE_RATE_UINT_SIZE) - 1; /* Constants for preparing the claim message text */ uint8 internal constant ETH_ADDRESS_BYTE_LEN = 20; uint8 internal constant ETH_ADDRESS_HEX_LEN = ETH_ADDRESS_BYTE_LEN * 2; uint8 internal constant CLAIM_PARAM_HASH_BYTE_LEN = 12; uint8 internal constant CLAIM_PARAM_HASH_HEX_LEN = CLAIM_PARAM_HASH_BYTE_LEN * 2; uint8 internal constant BITCOIN_SIG_PREFIX_LEN = 24; bytes24 internal constant BITCOIN_SIG_PREFIX_STR = "Bitcoin Signed Message:\n"; bytes internal constant STD_CLAIM_PREFIX_STR = "Claim_HEX_to_0x"; bytes internal constant OLD_CLAIM_PREFIX_STR = "Claim_BitcoinHEX_to_0x"; bytes16 internal constant HEX_DIGITS = "0123456789abcdef"; /* Claim flags passed to btcAddressClaim() */ uint8 internal constant CLAIM_FLAG_MSG_PREFIX_OLD = 1 << 0; uint8 internal constant CLAIM_FLAG_BTC_ADDR_COMPRESSED = 1 << 1; uint8 internal constant CLAIM_FLAG_BTC_ADDR_P2WPKH_IN_P2SH = 1 << 2; uint8 internal constant CLAIM_FLAG_BTC_ADDR_BECH32 = 1 << 3; uint8 internal constant CLAIM_FLAG_ETH_ADDR_LOWERCASE = 1 << 4; /* Globals expanded for memory (except _latestStakeId) and compact for storage */ struct GlobalsCache { // 1 uint256 _lockedHeartsTotal; uint256 _nextStakeSharesTotal; uint256 _shareRate; uint256 _stakePenaltyTotal; // 2 uint256 _dailyDataCount; uint256 _stakeSharesTotal; uint40 _latestStakeId; uint256 _unclaimedSatoshisTotal; uint256 _claimedSatoshisTotal; uint256 _claimedBtcAddrCount; // uint256 _currentDay; } struct GlobalsStore { // 1 uint72 lockedHeartsTotal; uint72 nextStakeSharesTotal; uint40 shareRate; uint72 stakePenaltyTotal; // 2 uint16 dailyDataCount; uint72 stakeSharesTotal; uint40 latestStakeId; uint128 claimStats; } GlobalsStore public globals; /* Claimed BTC addresses */ mapping(bytes20 => bool) public btcAddressClaims; /* Daily data */ struct DailyDataStore { uint72 dayPayoutTotal; uint72 dayStakeSharesTotal; uint56 dayUnclaimedSatoshisTotal; } mapping(uint256 => DailyDataStore) public dailyData; /* Stake expanded for memory (except _stakeId) and compact for storage */ struct StakeCache { uint40 _stakeId; uint256 _stakedHearts; uint256 _stakeShares; uint256 _lockedDay; uint256 _stakedDays; uint256 _unlockedDay; bool _isAutoStake; } struct StakeStore { uint40 stakeId; uint72 stakedHearts; uint72 stakeShares; uint16 lockedDay; uint16 stakedDays; uint16 unlockedDay; bool isAutoStake; } mapping(address => StakeStore[]) public stakeLists; /* Temporary state for calculating daily rounds */ struct DailyRoundState { uint256 _allocSupplyCached; uint256 _mintOriginBatch; uint256 _payoutTotal; } struct XfLobbyEntryStore { uint96 rawAmount; address referrerAddr; } struct XfLobbyQueueStore { uint40 headIndex; uint40 tailIndex; mapping(uint256 => XfLobbyEntryStore) entries; } mapping(uint256 => uint256) public xfLobby; mapping(uint256 => mapping(address => XfLobbyQueueStore)) public xfLobbyMembers; /** * @dev PUBLIC FACING: Optionally update daily data for a smaller * range to reduce gas cost for a subsequent operation * @param beforeDay Only update days before this day number (optional; 0 for current day) */ function dailyDataUpdate(uint256 beforeDay) external { GlobalsCache memory g; GlobalsCache memory gSnapshot; _globalsLoad(g, gSnapshot); /* Skip pre-claim period */ require(g._currentDay > CLAIM_PHASE_START_DAY, "HEX: Too early"); if (beforeDay != 0) { require(beforeDay <= g._currentDay, "HEX: beforeDay cannot be in the future"); _dailyDataUpdate(g, beforeDay, false); } else { /* Default to updating before current day */ _dailyDataUpdate(g, g._currentDay, false); } _globalsSync(g, gSnapshot); } /** * @dev PUBLIC FACING: External helper to return multiple values of daily data with * a single call. Ugly implementation due to limitations of the standard ABI encoder. * @param beginDay First day of data range * @param endDay Last day (non-inclusive) of data range * @return Fixed array of packed values */ function dailyDataRange(uint256 beginDay, uint256 endDay) external view returns (uint256[] memory list) { require(beginDay < endDay && endDay <= globals.dailyDataCount, "HEX: range invalid"); list = new uint256[](endDay - beginDay); uint256 src = beginDay; uint256 dst = 0; uint256 v; do { v = uint256(dailyData[src].dayUnclaimedSatoshisTotal) << (HEART_UINT_SIZE * 2); v |= uint256(dailyData[src].dayStakeSharesTotal) << HEART_UINT_SIZE; v |= uint256(dailyData[src].dayPayoutTotal); list[dst++] = v; } while (++src < endDay); return list; } /** * @dev PUBLIC FACING: External helper to return most global info with a single call. * Ugly implementation due to limitations of the standard ABI encoder. * @return Fixed array of values */ function globalInfo() external view returns (uint256[13] memory) { uint256 _claimedBtcAddrCount; uint256 _claimedSatoshisTotal; uint256 _unclaimedSatoshisTotal; (_claimedBtcAddrCount, _claimedSatoshisTotal, _unclaimedSatoshisTotal) = _claimStatsDecode( globals.claimStats ); return [ // 1 globals.lockedHeartsTotal, globals.nextStakeSharesTotal, globals.shareRate, globals.stakePenaltyTotal, // 2 globals.dailyDataCount, globals.stakeSharesTotal, globals.latestStakeId, _unclaimedSatoshisTotal, _claimedSatoshisTotal, _claimedBtcAddrCount, // block.timestamp, totalSupply(), xfLobby[_currentDay()] ]; } /** * @dev PUBLIC FACING: ERC20 totalSupply() is the circulating supply and does not include any * staked Hearts. allocatedSupply() includes both. * @return Allocated Supply in Hearts */ function allocatedSupply() external view returns (uint256) { return totalSupply() + globals.lockedHeartsTotal; } /** * @dev PUBLIC FACING: External helper for the current day number since launch time * @return Current day number (zero-based) */ function currentDay() external view returns (uint256) { return _currentDay(); } function _currentDay() internal view returns (uint256) { return (block.timestamp - LAUNCH_TIME) / 1 days; } function _dailyDataUpdateAuto(GlobalsCache memory g) internal { _dailyDataUpdate(g, g._currentDay, true); } function _globalsLoad(GlobalsCache memory g, GlobalsCache memory gSnapshot) internal view { // 1 g._lockedHeartsTotal = globals.lockedHeartsTotal; g._nextStakeSharesTotal = globals.nextStakeSharesTotal; g._shareRate = globals.shareRate; g._stakePenaltyTotal = globals.stakePenaltyTotal; // 2 g._dailyDataCount = globals.dailyDataCount; g._stakeSharesTotal = globals.stakeSharesTotal; g._latestStakeId = globals.latestStakeId; (g._claimedBtcAddrCount, g._claimedSatoshisTotal, g._unclaimedSatoshisTotal) = _claimStatsDecode( globals.claimStats ); // g._currentDay = _currentDay(); _globalsCacheSnapshot(g, gSnapshot); } function _globalsCacheSnapshot(GlobalsCache memory g, GlobalsCache memory gSnapshot) internal pure { // 1 gSnapshot._lockedHeartsTotal = g._lockedHeartsTotal; gSnapshot._nextStakeSharesTotal = g._nextStakeSharesTotal; gSnapshot._shareRate = g._shareRate; gSnapshot._stakePenaltyTotal = g._stakePenaltyTotal; // 2 gSnapshot._dailyDataCount = g._dailyDataCount; gSnapshot._stakeSharesTotal = g._stakeSharesTotal; gSnapshot._latestStakeId = g._latestStakeId; gSnapshot._unclaimedSatoshisTotal = g._unclaimedSatoshisTotal; gSnapshot._claimedSatoshisTotal = g._claimedSatoshisTotal; gSnapshot._claimedBtcAddrCount = g._claimedBtcAddrCount; } function _globalsSync(GlobalsCache memory g, GlobalsCache memory gSnapshot) internal { if (g._lockedHeartsTotal != gSnapshot._lockedHeartsTotal || g._nextStakeSharesTotal != gSnapshot._nextStakeSharesTotal || g._shareRate != gSnapshot._shareRate || g._stakePenaltyTotal != gSnapshot._stakePenaltyTotal) { // 1 globals.lockedHeartsTotal = uint72(g._lockedHeartsTotal); globals.nextStakeSharesTotal = uint72(g._nextStakeSharesTotal); globals.shareRate = uint40(g._shareRate); globals.stakePenaltyTotal = uint72(g._stakePenaltyTotal); } if (g._dailyDataCount != gSnapshot._dailyDataCount || g._stakeSharesTotal != gSnapshot._stakeSharesTotal || g._latestStakeId != gSnapshot._latestStakeId || g._unclaimedSatoshisTotal != gSnapshot._unclaimedSatoshisTotal || g._claimedSatoshisTotal != gSnapshot._claimedSatoshisTotal || g._claimedBtcAddrCount != gSnapshot._claimedBtcAddrCount) { // 2 globals.dailyDataCount = uint16(g._dailyDataCount); globals.stakeSharesTotal = uint72(g._stakeSharesTotal); globals.latestStakeId = g._latestStakeId; globals.claimStats = _claimStatsEncode( g._claimedBtcAddrCount, g._claimedSatoshisTotal, g._unclaimedSatoshisTotal ); } } function _stakeLoad(StakeStore storage stRef, uint40 stakeIdParam, StakeCache memory st) internal view { /* Ensure caller's stakeIndex is still current */ require(stakeIdParam == stRef.stakeId, "HEX: stakeIdParam not in stake"); st._stakeId = stRef.stakeId; st._stakedHearts = stRef.stakedHearts; st._stakeShares = stRef.stakeShares; st._lockedDay = stRef.lockedDay; st._stakedDays = stRef.stakedDays; st._unlockedDay = stRef.unlockedDay; st._isAutoStake = stRef.isAutoStake; } function _stakeUpdate(StakeStore storage stRef, StakeCache memory st) internal { stRef.stakeId = st._stakeId; stRef.stakedHearts = uint72(st._stakedHearts); stRef.stakeShares = uint72(st._stakeShares); stRef.lockedDay = uint16(st._lockedDay); stRef.stakedDays = uint16(st._stakedDays); stRef.unlockedDay = uint16(st._unlockedDay); stRef.isAutoStake = st._isAutoStake; } function _stakeAdd( StakeStore[] storage stakeListRef, uint40 newStakeId, uint256 newStakedHearts, uint256 newStakeShares, uint256 newLockedDay, uint256 newStakedDays, bool newAutoStake ) internal { stakeListRef.push( StakeStore( newStakeId, uint72(newStakedHearts), uint72(newStakeShares), uint16(newLockedDay), uint16(newStakedDays), uint16(0), // unlockedDay newAutoStake ) ); } /** * @dev Efficiently delete from an unordered array by moving the last element * to the "hole" and reducing the array length. Can change the order of the list * and invalidate previously held indexes. * @notice stakeListRef length and stakeIndex are already ensured valid in stakeEnd() * @param stakeListRef Reference to stakeLists[stakerAddr] array in storage * @param stakeIndex Index of the element to delete */ function _stakeRemove(StakeStore[] storage stakeListRef, uint256 stakeIndex) internal { uint256 lastIndex = stakeListRef.length - 1; /* Skip the copy if element to be removed is already the last element */ if (stakeIndex != lastIndex) { /* Copy last element to the requested element's "hole" */ stakeListRef[stakeIndex] = stakeListRef[lastIndex]; } /* Reduce the array length now that the array is contiguous. Surprisingly, 'pop()' uses less gas than 'stakeListRef.length = lastIndex' */ stakeListRef.pop(); } function _claimStatsEncode( uint256 _claimedBtcAddrCount, uint256 _claimedSatoshisTotal, uint256 _unclaimedSatoshisTotal ) internal pure returns (uint128) { uint256 v = _claimedBtcAddrCount << (SATOSHI_UINT_SIZE * 2); v |= _claimedSatoshisTotal << SATOSHI_UINT_SIZE; v |= _unclaimedSatoshisTotal; return uint128(v); } function _claimStatsDecode(uint128 v) internal pure returns (uint256 _claimedBtcAddrCount, uint256 _claimedSatoshisTotal, uint256 _unclaimedSatoshisTotal) { _claimedBtcAddrCount = v >> (SATOSHI_UINT_SIZE * 2); _claimedSatoshisTotal = (v >> SATOSHI_UINT_SIZE) & SATOSHI_UINT_MASK; _unclaimedSatoshisTotal = v & SATOSHI_UINT_MASK; return (_claimedBtcAddrCount, _claimedSatoshisTotal, _unclaimedSatoshisTotal); } /** * @dev Estimate the stake payout for an incomplete day * @param g Cache of stored globals * @param stakeSharesParam Param from stake to calculate bonuses for * @param day Day to calculate bonuses for * @return Payout in Hearts */ function _estimatePayoutRewardsDay(GlobalsCache memory g, uint256 stakeSharesParam, uint256 day) internal view returns (uint256 payout) { /* Prevent updating state for this estimation */ GlobalsCache memory gTmp; _globalsCacheSnapshot(g, gTmp); DailyRoundState memory rs; rs._allocSupplyCached = totalSupply() + g._lockedHeartsTotal; _dailyRoundCalc(gTmp, rs, day); /* Stake is no longer locked so it must be added to total as if it were */ gTmp._stakeSharesTotal += stakeSharesParam; payout = rs._payoutTotal * stakeSharesParam / gTmp._stakeSharesTotal; if (day == BIG_PAY_DAY) { uint256 bigPaySlice = gTmp._unclaimedSatoshisTotal * HEARTS_PER_SATOSHI * stakeSharesParam / gTmp._stakeSharesTotal; payout += bigPaySlice + _calcAdoptionBonus(gTmp, bigPaySlice); } return payout; } function _calcAdoptionBonus(GlobalsCache memory g, uint256 payout) internal pure returns (uint256) { /* VIRAL REWARDS: Add adoption percentage bonus to payout viral = payout * (claimedBtcAddrCount / CLAIMABLE_BTC_ADDR_COUNT) */ uint256 viral = payout * g._claimedBtcAddrCount / CLAIMABLE_BTC_ADDR_COUNT; /* CRIT MASS REWARDS: Add adoption percentage bonus to payout crit = payout * (claimedSatoshisTotal / CLAIMABLE_SATOSHIS_TOTAL) */ uint256 crit = payout * g._claimedSatoshisTotal / CLAIMABLE_SATOSHIS_TOTAL; return viral + crit; } function _dailyRoundCalc(GlobalsCache memory g, DailyRoundState memory rs, uint256 day) private pure { /* Calculate payout round Inflation of 3.69% inflation per 364 days (approx 1 year) dailyInterestRate = exp(log(1 + 3.69%) / 364) - 1 = exp(log(1 + 0.0369) / 364) - 1 = exp(log(1.0369) / 364) - 1 = 0.000099553011616349 (approx) payout = allocSupply * dailyInterestRate = allocSupply / (1 / dailyInterestRate) = allocSupply / (1 / 0.000099553011616349) = allocSupply / 10044.899534066692 (approx) = allocSupply * 10000 / 100448995 (* 10000/10000 for int precision) */ rs._payoutTotal = rs._allocSupplyCached * 10000 / 100448995; if (day < CLAIM_PHASE_END_DAY) { uint256 bigPaySlice = g._unclaimedSatoshisTotal * HEARTS_PER_SATOSHI / CLAIM_PHASE_DAYS; uint256 originBonus = bigPaySlice + _calcAdoptionBonus(g, rs._payoutTotal + bigPaySlice); rs._mintOriginBatch += originBonus; rs._allocSupplyCached += originBonus; rs._payoutTotal += _calcAdoptionBonus(g, rs._payoutTotal); } if (g._stakePenaltyTotal != 0) { rs._payoutTotal += g._stakePenaltyTotal; g._stakePenaltyTotal = 0; } } function _dailyRoundCalcAndStore(GlobalsCache memory g, DailyRoundState memory rs, uint256 day) private { _dailyRoundCalc(g, rs, day); dailyData[day].dayPayoutTotal = uint72(rs._payoutTotal); dailyData[day].dayStakeSharesTotal = uint72(g._stakeSharesTotal); dailyData[day].dayUnclaimedSatoshisTotal = uint56(g._unclaimedSatoshisTotal); } function _dailyDataUpdate(GlobalsCache memory g, uint256 beforeDay, bool isAutoUpdate) private { if (g._dailyDataCount >= beforeDay) { /* Already up-to-date */ return; } DailyRoundState memory rs; rs._allocSupplyCached = totalSupply() + g._lockedHeartsTotal; uint256 day = g._dailyDataCount; _dailyRoundCalcAndStore(g, rs, day); /* Stakes started during this day are added to the total the next day */ if (g._nextStakeSharesTotal != 0) { g._stakeSharesTotal += g._nextStakeSharesTotal; g._nextStakeSharesTotal = 0; } while (++day < beforeDay) { _dailyRoundCalcAndStore(g, rs, day); } _emitDailyDataUpdate(g._dailyDataCount, day, isAutoUpdate); g._dailyDataCount = day; if (rs._mintOriginBatch != 0) { _mint(ORIGIN_ADDR, rs._mintOriginBatch); } } function _emitDailyDataUpdate(uint256 beginDay, uint256 endDay, bool isAutoUpdate) private { emit DailyDataUpdate( // (auto-generated event) uint256(uint40(block.timestamp)) | (uint256(uint16(beginDay)) << 40) | (uint256(uint16(endDay)) << 56) | (isAutoUpdate ? (1 << 72) : 0), msg.sender ); } } contract StakeableToken is GlobalsAndUtility { /** * @dev PUBLIC FACING: Open a stake. * @param newStakedHearts Number of Hearts to stake * @param newStakedDays Number of days to stake */ function stakeStart(uint256 newStakedHearts, uint256 newStakedDays) external { GlobalsCache memory g; GlobalsCache memory gSnapshot; _globalsLoad(g, gSnapshot); /* Enforce the minimum stake time */ require(newStakedDays >= MIN_STAKE_DAYS, "HEX: newStakedDays lower than minimum"); /* Check if log data needs to be updated */ _dailyDataUpdateAuto(g); _stakeStart(g, newStakedHearts, newStakedDays, false); /* Remove staked Hearts from balance of staker */ _burn(msg.sender, newStakedHearts); _globalsSync(g, gSnapshot); } /** * @dev PUBLIC FACING: Unlocks a completed stake, distributing the proceeds of any penalty * immediately. The staker must still call stakeEnd() to retrieve their stake return (if any). * @param stakerAddr Address of staker * @param stakeIndex Index of stake within stake list * @param stakeIdParam The stake's id */ function stakeGoodAccounting(address stakerAddr, uint256 stakeIndex, uint40 stakeIdParam) external { GlobalsCache memory g; GlobalsCache memory gSnapshot; _globalsLoad(g, gSnapshot); /* require() is more informative than the default assert() */ require(stakeLists[stakerAddr].length != 0, "HEX: Empty stake list"); require(stakeIndex < stakeLists[stakerAddr].length, "HEX: stakeIndex invalid"); StakeStore storage stRef = stakeLists[stakerAddr][stakeIndex]; /* Get stake copy */ StakeCache memory st; _stakeLoad(stRef, stakeIdParam, st); /* Stake must have served full term */ require(g._currentDay >= st._lockedDay + st._stakedDays, "HEX: Stake not fully served"); /* Stake must still be locked */ require(st._unlockedDay == 0, "HEX: Stake already unlocked"); /* Check if log data needs to be updated */ _dailyDataUpdateAuto(g); /* Unlock the completed stake */ _stakeUnlock(g, st); /* stakeReturn value is unused here */ (, uint256 payout, uint256 penalty, uint256 cappedPenalty) = _stakePerformance( g, st, st._stakedDays ); _emitStakeGoodAccounting( stakerAddr, stakeIdParam, st._stakedHearts, st._stakeShares, payout, penalty ); if (cappedPenalty != 0) { _splitPenaltyProceeds(g, cappedPenalty); } /* st._unlockedDay has changed */ _stakeUpdate(stRef, st); _globalsSync(g, gSnapshot); } /** * @dev PUBLIC FACING: Closes a stake. The order of the stake list can change so * a stake id is used to reject stale indexes. * @param stakeIndex Index of stake within stake list * @param stakeIdParam The stake's id */ function stakeEnd(uint256 stakeIndex, uint40 stakeIdParam) external { GlobalsCache memory g; GlobalsCache memory gSnapshot; _globalsLoad(g, gSnapshot); StakeStore[] storage stakeListRef = stakeLists[msg.sender]; /* require() is more informative than the default assert() */ require(stakeListRef.length != 0, "HEX: Empty stake list"); require(stakeIndex < stakeListRef.length, "HEX: stakeIndex invalid"); /* Get stake copy */ StakeCache memory st; _stakeLoad(stakeListRef[stakeIndex], stakeIdParam, st); /* Check if log data needs to be updated */ _dailyDataUpdateAuto(g); uint256 servedDays = 0; bool prevUnlocked = (st._unlockedDay != 0); uint256 stakeReturn; uint256 payout = 0; uint256 penalty = 0; uint256 cappedPenalty = 0; if (g._currentDay >= st._lockedDay) { if (prevUnlocked) { /* Previously unlocked in stakeGoodAccounting(), so must have served full term */ servedDays = st._stakedDays; } else { _stakeUnlock(g, st); servedDays = g._currentDay - st._lockedDay; if (servedDays > st._stakedDays) { servedDays = st._stakedDays; } else { /* Deny early-unstake before an auto-stake minimum has been served */ if (servedDays < MIN_AUTO_STAKE_DAYS) { require(!st._isAutoStake, "HEX: Auto-stake still locked"); } } } (stakeReturn, payout, penalty, cappedPenalty) = _stakePerformance(g, st, servedDays); } else { /* Deny early-unstake before an auto-stake minimum has been served */ require(!st._isAutoStake, "HEX: Auto-stake still locked"); /* Stake hasn't been added to the total yet, so no penalties or rewards apply */ g._nextStakeSharesTotal -= st._stakeShares; stakeReturn = st._stakedHearts; } _emitStakeEnd( stakeIdParam, st._stakedHearts, st._stakeShares, payout, penalty, servedDays, prevUnlocked ); if (cappedPenalty != 0 && !prevUnlocked) { /* Split penalty proceeds only if not previously unlocked by stakeGoodAccounting() */ _splitPenaltyProceeds(g, cappedPenalty); } /* Pay the stake return, if any, to the staker */ if (stakeReturn != 0) { _mint(msg.sender, stakeReturn); /* Update the share rate if necessary */ _shareRateUpdate(g, st, stakeReturn); } g._lockedHeartsTotal -= st._stakedHearts; _stakeRemove(stakeListRef, stakeIndex); _globalsSync(g, gSnapshot); } /** * @dev PUBLIC FACING: Return the current stake count for a staker address * @param stakerAddr Address of staker */ function stakeCount(address stakerAddr) external view returns (uint256) { return stakeLists[stakerAddr].length; } /** * @dev Open a stake. * @param g Cache of stored globals * @param newStakedHearts Number of Hearts to stake * @param newStakedDays Number of days to stake * @param newAutoStake Stake is automatic directly from a new claim */ function _stakeStart( GlobalsCache memory g, uint256 newStakedHearts, uint256 newStakedDays, bool newAutoStake ) internal { /* Enforce the maximum stake time */ require(newStakedDays <= MAX_STAKE_DAYS, "HEX: newStakedDays higher than maximum"); uint256 bonusHearts = _stakeStartBonusHearts(newStakedHearts, newStakedDays); uint256 newStakeShares = (newStakedHearts + bonusHearts) * SHARE_RATE_SCALE / g._shareRate; /* Ensure newStakedHearts is enough for at least one stake share */ require(newStakeShares != 0, "HEX: newStakedHearts must be at least minimum shareRate"); /* The stakeStart timestamp will always be part-way through the current day, so it needs to be rounded-up to the next day to ensure all stakes align with the same fixed calendar days. The current day is already rounded-down, so rounded-up is current day + 1. */ uint256 newLockedDay = g._currentDay < CLAIM_PHASE_START_DAY ? CLAIM_PHASE_START_DAY + 1 : g._currentDay + 1; /* Create Stake */ uint40 newStakeId = ++g._latestStakeId; _stakeAdd( stakeLists[msg.sender], newStakeId, newStakedHearts, newStakeShares, newLockedDay, newStakedDays, newAutoStake ); _emitStakeStart(newStakeId, newStakedHearts, newStakeShares, newStakedDays, newAutoStake); /* Stake is added to total in the next round, not the current round */ g._nextStakeSharesTotal += newStakeShares; /* Track total staked Hearts for inflation calculations */ g._lockedHeartsTotal += newStakedHearts; } /** * @dev Calculates total stake payout including rewards for a multi-day range * @param g Cache of stored globals * @param stakeSharesParam Param from stake to calculate bonuses for * @param beginDay First day to calculate bonuses for * @param endDay Last day (non-inclusive) of range to calculate bonuses for * @return Payout in Hearts */ function _calcPayoutRewards( GlobalsCache memory g, uint256 stakeSharesParam, uint256 beginDay, uint256 endDay ) private view returns (uint256 payout) { for (uint256 day = beginDay; day < endDay; day++) { payout += dailyData[day].dayPayoutTotal * stakeSharesParam / dailyData[day].dayStakeSharesTotal; } /* Less expensive to re-read storage than to have the condition inside the loop */ if (beginDay <= BIG_PAY_DAY && endDay > BIG_PAY_DAY) { uint256 bigPaySlice = g._unclaimedSatoshisTotal * HEARTS_PER_SATOSHI * stakeSharesParam / dailyData[BIG_PAY_DAY].dayStakeSharesTotal; payout += bigPaySlice + _calcAdoptionBonus(g, bigPaySlice); } return payout; } /** * @dev Calculate bonus Hearts for a new stake, if any * @param newStakedHearts Number of Hearts to stake * @param newStakedDays Number of days to stake */ function _stakeStartBonusHearts(uint256 newStakedHearts, uint256 newStakedDays) private pure returns (uint256 bonusHearts) { /* LONGER PAYS BETTER: If longer than 1 day stake is committed to, each extra day gives bonus shares of approximately 0.0548%, which is approximately 20% extra per year of increased stake length committed to, but capped to a maximum of 200% extra. extraDays = stakedDays - 1 longerBonus% = (extraDays / 364) * 20% = (extraDays / 364) / 5 = extraDays / 1820 = extraDays / LPB extraDays = longerBonus% * 1820 extraDaysMax = longerBonusMax% * 1820 = 200% * 1820 = 3640 = LPB_MAX_DAYS BIGGER PAYS BETTER: Bonus percentage scaled 0% to 10% for the first 150M HEX of stake. biggerBonus% = (cappedHearts / BPB_MAX_HEARTS) * 10% = (cappedHearts / BPB_MAX_HEARTS) / 10 = cappedHearts / (BPB_MAX_HEARTS * 10) = cappedHearts / BPB COMBINED: combinedBonus% = longerBonus% + biggerBonus% cappedExtraDays cappedHearts = --------------- + ------------ LPB BPB cappedExtraDays * BPB cappedHearts * LPB = --------------------- + ------------------ LPB * BPB LPB * BPB cappedExtraDays * BPB + cappedHearts * LPB = -------------------------------------------- LPB * BPB bonusHearts = hearts * combinedBonus% = hearts * (cappedExtraDays * BPB + cappedHearts * LPB) / (LPB * BPB) */ uint256 cappedExtraDays = 0; /* Must be more than 1 day for Longer-Pays-Better */ if (newStakedDays > 1) { cappedExtraDays = newStakedDays <= LPB_MAX_DAYS ? newStakedDays - 1 : LPB_MAX_DAYS; } uint256 cappedStakedHearts = newStakedHearts <= BPB_MAX_HEARTS ? newStakedHearts : BPB_MAX_HEARTS; bonusHearts = cappedExtraDays * BPB + cappedStakedHearts * LPB; bonusHearts = newStakedHearts * bonusHearts / (LPB * BPB); return bonusHearts; } function _stakeUnlock(GlobalsCache memory g, StakeCache memory st) private pure { g._stakeSharesTotal -= st._stakeShares; st._unlockedDay = g._currentDay; } function _stakePerformance(GlobalsCache memory g, StakeCache memory st, uint256 servedDays) private view returns (uint256 stakeReturn, uint256 payout, uint256 penalty, uint256 cappedPenalty) { if (servedDays < st._stakedDays) { (payout, penalty) = _calcPayoutAndEarlyPenalty( g, st._lockedDay, st._stakedDays, servedDays, st._stakeShares ); stakeReturn = st._stakedHearts + payout; } else { // servedDays must == stakedDays here payout = _calcPayoutRewards( g, st._stakeShares, st._lockedDay, st._lockedDay + servedDays ); stakeReturn = st._stakedHearts + payout; penalty = _calcLatePenalty(st._lockedDay, st._stakedDays, st._unlockedDay, stakeReturn); } if (penalty != 0) { if (penalty > stakeReturn) { /* Cannot have a negative stake return */ cappedPenalty = stakeReturn; stakeReturn = 0; } else { /* Remove penalty from the stake return */ cappedPenalty = penalty; stakeReturn -= cappedPenalty; } } return (stakeReturn, payout, penalty, cappedPenalty); } function _calcPayoutAndEarlyPenalty( GlobalsCache memory g, uint256 lockedDayParam, uint256 stakedDaysParam, uint256 servedDays, uint256 stakeSharesParam ) private view returns (uint256 payout, uint256 penalty) { uint256 servedEndDay = lockedDayParam + servedDays; /* 50% of stakedDays (rounded up) with a minimum applied */ uint256 penaltyDays = (stakedDaysParam + 1) / 2; if (penaltyDays < EARLY_PENALTY_MIN_DAYS) { penaltyDays = EARLY_PENALTY_MIN_DAYS; } if (servedDays == 0) { /* Fill penalty days with the estimated average payout */ uint256 expected = _estimatePayoutRewardsDay(g, stakeSharesParam, lockedDayParam); penalty = expected * penaltyDays; return (payout, penalty); // Actual payout was 0 } if (penaltyDays < servedDays) { /* Simplified explanation of intervals where end-day is non-inclusive: penalty: [lockedDay ... penaltyEndDay) delta: [penaltyEndDay ... servedEndDay) payout: [lockedDay ....................... servedEndDay) */ uint256 penaltyEndDay = lockedDayParam + penaltyDays; penalty = _calcPayoutRewards(g, stakeSharesParam, lockedDayParam, penaltyEndDay); uint256 delta = _calcPayoutRewards(g, stakeSharesParam, penaltyEndDay, servedEndDay); payout = penalty + delta; return (payout, penalty); } /* penaltyDays >= servedDays */ payout = _calcPayoutRewards(g, stakeSharesParam, lockedDayParam, servedEndDay); if (penaltyDays == servedDays) { penalty = payout; } else { /* (penaltyDays > servedDays) means not enough days served, so fill the penalty days with the average payout from only the days that were served. */ penalty = payout * penaltyDays / servedDays; } return (payout, penalty); } function _calcLatePenalty( uint256 lockedDayParam, uint256 stakedDaysParam, uint256 unlockedDayParam, uint256 rawStakeReturn ) private pure returns (uint256) { /* Allow grace time before penalties accrue */ uint256 maxUnlockedDay = lockedDayParam + stakedDaysParam + LATE_PENALTY_GRACE_DAYS; if (unlockedDayParam <= maxUnlockedDay) { return 0; } /* Calculate penalty as a percentage of stake return based on time */ return rawStakeReturn * (unlockedDayParam - maxUnlockedDay) / LATE_PENALTY_SCALE_DAYS; } function _splitPenaltyProceeds(GlobalsCache memory g, uint256 penalty) private { /* Split a penalty 50:50 between Origin and stakePenaltyTotal */ uint256 splitPenalty = penalty / 2; if (splitPenalty != 0) { _mint(ORIGIN_ADDR, splitPenalty); } /* Use the other half of the penalty to account for an odd-numbered penalty */ splitPenalty = penalty - splitPenalty; g._stakePenaltyTotal += splitPenalty; } function _shareRateUpdate(GlobalsCache memory g, StakeCache memory st, uint256 stakeReturn) private { if (stakeReturn > st._stakedHearts) { /* Calculate the new shareRate that would yield the same number of shares if the user re-staked this stakeReturn, factoring in any bonuses they would receive in stakeStart(). */ uint256 bonusHearts = _stakeStartBonusHearts(stakeReturn, st._stakedDays); uint256 newShareRate = (stakeReturn + bonusHearts) * SHARE_RATE_SCALE / st._stakeShares; if (newShareRate > SHARE_RATE_MAX) { /* Realistically this can't happen, but there are contrived theoretical scenarios that can lead to extreme values of newShareRate, so it is capped to prevent them anyway. */ newShareRate = SHARE_RATE_MAX; } if (newShareRate > g._shareRate) { g._shareRate = newShareRate; _emitShareRateChange(newShareRate, st._stakeId); } } } function _emitStakeStart( uint40 stakeId, uint256 stakedHearts, uint256 stakeShares, uint256 stakedDays, bool isAutoStake ) private { emit StakeStart( // (auto-generated event) uint256(uint40(block.timestamp)) | (uint256(uint72(stakedHearts)) << 40) | (uint256(uint72(stakeShares)) << 112) | (uint256(uint16(stakedDays)) << 184) | (isAutoStake ? (1 << 200) : 0), msg.sender, stakeId ); } function _emitStakeGoodAccounting( address stakerAddr, uint40 stakeId, uint256 stakedHearts, uint256 stakeShares, uint256 payout, uint256 penalty ) private { emit StakeGoodAccounting( // (auto-generated event) uint256(uint40(block.timestamp)) | (uint256(uint72(stakedHearts)) << 40) | (uint256(uint72(stakeShares)) << 112) | (uint256(uint72(payout)) << 184), uint256(uint72(penalty)), stakerAddr, stakeId, msg.sender ); } function _emitStakeEnd( uint40 stakeId, uint256 stakedHearts, uint256 stakeShares, uint256 payout, uint256 penalty, uint256 servedDays, bool prevUnlocked ) private { emit StakeEnd( // (auto-generated event) uint256(uint40(block.timestamp)) | (uint256(uint72(stakedHearts)) << 40) | (uint256(uint72(stakeShares)) << 112) | (uint256(uint72(payout)) << 184), uint256(uint72(penalty)) | (uint256(uint16(servedDays)) << 72) | (prevUnlocked ? (1 << 88) : 0), msg.sender, stakeId ); } function _emitShareRateChange(uint256 shareRate, uint40 stakeId) private { emit ShareRateChange( // (auto-generated event) uint256(uint40(block.timestamp)) | (uint256(uint40(shareRate)) << 40), stakeId ); } } /** * @dev These functions deal with verification of Merkle trees (hash trees), */ library MerkleProof { /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. */ function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { bytes32 proofElement = proof[i]; if (computedHash < proofElement) { // Hash(current computed hash + current element of the proof) computedHash = keccak256(abi.encodePacked(computedHash, proofElement)); } else { // Hash(current element of the proof + current computed hash) computedHash = keccak256(abi.encodePacked(proofElement, computedHash)); } } // Check if the computed hash (root) is equal to the provided root return computedHash == root; } } contract UTXOClaimValidation is StakeableToken { /** * @dev PUBLIC FACING: Verify a BTC address and balance are unclaimed and part of the Merkle tree * @param btcAddr Bitcoin address (binary; no base58-check encoding) * @param rawSatoshis Raw BTC address balance in Satoshis * @param proof Merkle tree proof * @return True if can be claimed */ function btcAddressIsClaimable(bytes20 btcAddr, uint256 rawSatoshis, bytes32[] calldata proof) external view returns (bool) { uint256 day = _currentDay(); require(day >= CLAIM_PHASE_START_DAY, "HEX: Claim phase has not yet started"); require(day < CLAIM_PHASE_END_DAY, "HEX: Claim phase has ended"); /* Don't need to check Merkle proof if UTXO BTC address has already been claimed */ if (btcAddressClaims[btcAddr]) { return false; } /* Verify the Merkle tree proof */ return _btcAddressIsValid(btcAddr, rawSatoshis, proof); } /** * @dev PUBLIC FACING: Verify a BTC address and balance are part of the Merkle tree * @param btcAddr Bitcoin address (binary; no base58-check encoding) * @param rawSatoshis Raw BTC address balance in Satoshis * @param proof Merkle tree proof * @return True if valid */ function btcAddressIsValid(bytes20 btcAddr, uint256 rawSatoshis, bytes32[] calldata proof) external pure returns (bool) { return _btcAddressIsValid(btcAddr, rawSatoshis, proof); } /** * @dev PUBLIC FACING: Verify a Merkle proof using the UTXO Merkle tree * @param merkleLeaf Leaf asserted to be present in the Merkle tree * @param proof Generated Merkle tree proof * @return True if valid */ function merkleProofIsValid(bytes32 merkleLeaf, bytes32[] calldata proof) external pure returns (bool) { return _merkleProofIsValid(merkleLeaf, proof); } /** * @dev PUBLIC FACING: Verify that a Bitcoin signature matches the claim message containing * the Ethereum address and claim param hash * @param claimToAddr Eth address within the signed claim message * @param claimParamHash Param hash within the signed claim message * @param pubKeyX First half of uncompressed ECDSA public key * @param pubKeyY Second half of uncompressed ECDSA public key * @param claimFlags Claim flags specifying address and message formats * @param v v parameter of ECDSA signature * @param r r parameter of ECDSA signature * @param s s parameter of ECDSA signature * @return True if matching */ function claimMessageMatchesSignature( address claimToAddr, bytes32 claimParamHash, bytes32 pubKeyX, bytes32 pubKeyY, uint8 claimFlags, uint8 v, bytes32 r, bytes32 s ) public pure returns (bool) { require(v >= 27 && v <= 30, "HEX: v invalid"); /* ecrecover() returns an Eth address rather than a public key, so we must do the same to compare. */ address pubKeyEthAddr = pubKeyToEthAddress(pubKeyX, pubKeyY); /* Create and hash the claim message text */ bytes32 messageHash = _hash256( _claimMessageCreate(claimToAddr, claimParamHash, claimFlags) ); /* Verify the public key */ return ecrecover(messageHash, v, r, s) == pubKeyEthAddr; } /** * @dev PUBLIC FACING: Derive an Ethereum address from an ECDSA public key * @param pubKeyX First half of uncompressed ECDSA public key * @param pubKeyY Second half of uncompressed ECDSA public key * @return Derived Eth address */ function pubKeyToEthAddress(bytes32 pubKeyX, bytes32 pubKeyY) public pure returns (address) { return address(uint160(uint256(keccak256(abi.encodePacked(pubKeyX, pubKeyY))))); } /** * @dev PUBLIC FACING: Derive a Bitcoin address from an ECDSA public key * @param pubKeyX First half of uncompressed ECDSA public key * @param pubKeyY Second half of uncompressed ECDSA public key * @param claimFlags Claim flags specifying address and message formats * @return Derived Bitcoin address (binary; no base58-check encoding) */ function pubKeyToBtcAddress(bytes32 pubKeyX, bytes32 pubKeyY, uint8 claimFlags) public pure returns (bytes20) { /* Helpful references: - https://en.bitcoin.it/wiki/Technical_background_of_version_1_Bitcoin_addresses - https://github.com/cryptocoinjs/ecurve/blob/master/lib/point.js */ uint8 startingByte; bytes memory pubKey; bool compressed = (claimFlags & CLAIM_FLAG_BTC_ADDR_COMPRESSED) != 0; bool nested = (claimFlags & CLAIM_FLAG_BTC_ADDR_P2WPKH_IN_P2SH) != 0; bool bech32 = (claimFlags & CLAIM_FLAG_BTC_ADDR_BECH32) != 0; if (compressed) { /* Compressed public key format */ require(!(nested && bech32), "HEX: claimFlags invalid"); startingByte = (pubKeyY[31] & 0x01) == 0 ? 0x02 : 0x03; pubKey = abi.encodePacked(startingByte, pubKeyX); } else { /* Uncompressed public key format */ require(!nested && !bech32, "HEX: claimFlags invalid"); startingByte = 0x04; pubKey = abi.encodePacked(startingByte, pubKeyX, pubKeyY); } bytes20 pubKeyHash = _hash160(pubKey); if (nested) { return _hash160(abi.encodePacked(hex"0014", pubKeyHash)); } return pubKeyHash; } /** * @dev Verify a BTC address and balance are part of the Merkle tree * @param btcAddr Bitcoin address (binary; no base58-check encoding) * @param rawSatoshis Raw BTC address balance in Satoshis * @param proof Merkle tree proof * @return True if valid */ function _btcAddressIsValid(bytes20 btcAddr, uint256 rawSatoshis, bytes32[] memory proof) internal pure returns (bool) { /* Ensure the proof does not attempt to treat a Merkle leaf as if it were an internal Merkle tree node. A leaf will always have the zero-fill. An internal node will never have the zero-fill, as guaranteed by HEX's Merkle tree construction. The first element, proof[0], will always be a leaf because it is the pair of the leaf being validated. The rest of the elements, proof[1..length-1], must be internal nodes. The number of leaves (CLAIMABLE_BTC_ADDR_COUNT) is even, as guaranteed by HEX's Merkle tree construction, which eliminates the only edge-case where this validation would not apply. */ require((uint256(proof[0]) & MERKLE_LEAF_FILL_MASK) == 0, "HEX: proof invalid"); for (uint256 i = 1; i < proof.length; i++) { require((uint256(proof[i]) & MERKLE_LEAF_FILL_MASK) != 0, "HEX: proof invalid"); } /* Calculate the 32 byte Merkle leaf associated with this BTC address and balance 160 bits: BTC address 52 bits: Zero-fill 45 bits: Satoshis (limited by MAX_BTC_ADDR_BALANCE_SATOSHIS) */ bytes32 merkleLeaf = bytes32(btcAddr) | bytes32(rawSatoshis); /* Verify the Merkle tree proof */ return _merkleProofIsValid(merkleLeaf, proof); } /** * @dev Verify a Merkle proof using the UTXO Merkle tree * @param merkleLeaf Leaf asserted to be present in the Merkle tree * @param proof Generated Merkle tree proof * @return True if valid */ function _merkleProofIsValid(bytes32 merkleLeaf, bytes32[] memory proof) private pure returns (bool) { return MerkleProof.verify(proof, MERKLE_TREE_ROOT, merkleLeaf); } function _claimMessageCreate(address claimToAddr, bytes32 claimParamHash, uint8 claimFlags) private pure returns (bytes memory) { bytes memory prefixStr = (claimFlags & CLAIM_FLAG_MSG_PREFIX_OLD) != 0 ? OLD_CLAIM_PREFIX_STR : STD_CLAIM_PREFIX_STR; bool includeAddrChecksum = (claimFlags & CLAIM_FLAG_ETH_ADDR_LOWERCASE) == 0; bytes memory addrStr = _addressStringCreate(claimToAddr, includeAddrChecksum); if (claimParamHash == 0) { return abi.encodePacked( BITCOIN_SIG_PREFIX_LEN, BITCOIN_SIG_PREFIX_STR, uint8(prefixStr.length) + ETH_ADDRESS_HEX_LEN, prefixStr, addrStr ); } bytes memory claimParamHashStr = new bytes(CLAIM_PARAM_HASH_HEX_LEN); _hexStringFromData(claimParamHashStr, claimParamHash, CLAIM_PARAM_HASH_BYTE_LEN); return abi.encodePacked( BITCOIN_SIG_PREFIX_LEN, BITCOIN_SIG_PREFIX_STR, uint8(prefixStr.length) + ETH_ADDRESS_HEX_LEN + 1 + CLAIM_PARAM_HASH_HEX_LEN, prefixStr, addrStr, "_", claimParamHashStr ); } function _addressStringCreate(address addr, bool includeAddrChecksum) private pure returns (bytes memory addrStr) { addrStr = new bytes(ETH_ADDRESS_HEX_LEN); _hexStringFromData(addrStr, bytes32(bytes20(addr)), ETH_ADDRESS_BYTE_LEN); if (includeAddrChecksum) { bytes32 addrStrHash = keccak256(addrStr); uint256 offset = 0; for (uint256 i = 0; i < ETH_ADDRESS_BYTE_LEN; i++) { uint8 b = uint8(addrStrHash[i]); _addressStringChecksumChar(addrStr, offset++, b >> 4); _addressStringChecksumChar(addrStr, offset++, b & 0x0f); } } return addrStr; } function _addressStringChecksumChar(bytes memory addrStr, uint256 offset, uint8 hashNybble) private pure { bytes1 ch = addrStr[offset]; if (ch >= "a" && hashNybble >= 8) { addrStr[offset] = ch ^ 0x20; } } function _hexStringFromData(bytes memory hexStr, bytes32 data, uint256 dataLen) private pure { uint256 offset = 0; for (uint256 i = 0; i < dataLen; i++) { uint8 b = uint8(data[i]); hexStr[offset++] = HEX_DIGITS[b >> 4]; hexStr[offset++] = HEX_DIGITS[b & 0x0f]; } } /** * @dev sha256(sha256(data)) * @param data Data to be hashed * @return 32-byte hash */ function _hash256(bytes memory data) private pure returns (bytes32) { return sha256(abi.encodePacked(sha256(data))); } /** * @dev ripemd160(sha256(data)) * @param data Data to be hashed * @return 20-byte hash */ function _hash160(bytes memory data) private pure returns (bytes20) { return ripemd160(abi.encodePacked(sha256(data))); } } contract UTXORedeemableToken is UTXOClaimValidation { /** * @dev PUBLIC FACING: Claim a BTC address and its Satoshi balance in Hearts * crediting the appropriate amount to a specified Eth address. Bitcoin ECDSA * signature must be from that BTC address and must match the claim message * for the Eth address. * @param rawSatoshis Raw BTC address balance in Satoshis * @param proof Merkle tree proof * @param claimToAddr Destination Eth address to credit Hearts to * @param pubKeyX First half of uncompressed ECDSA public key for the BTC address * @param pubKeyY Second half of uncompressed ECDSA public key for the BTC address * @param claimFlags Claim flags specifying address and message formats * @param v v parameter of ECDSA signature * @param r r parameter of ECDSA signature * @param s s parameter of ECDSA signature * @param autoStakeDays Number of days to auto-stake, subject to minimum auto-stake days * @param referrerAddr Eth address of referring user (optional; 0x0 for no referrer) * @return Total number of Hearts credited, if successful */ function btcAddressClaim( uint256 rawSatoshis, bytes32[] calldata proof, address claimToAddr, bytes32 pubKeyX, bytes32 pubKeyY, uint8 claimFlags, uint8 v, bytes32 r, bytes32 s, uint256 autoStakeDays, address referrerAddr ) external returns (uint256) { /* Sanity check */ require(rawSatoshis <= MAX_BTC_ADDR_BALANCE_SATOSHIS, "HEX: CHK: rawSatoshis"); /* Enforce the minimum stake time for the auto-stake from this claim */ require(autoStakeDays >= MIN_AUTO_STAKE_DAYS, "HEX: autoStakeDays lower than minimum"); /* Ensure signature matches the claim message containing the Eth address and claimParamHash */ { bytes32 claimParamHash = 0; if (claimToAddr != msg.sender) { /* Claimer did not send this, so claim params must be signed */ claimParamHash = keccak256( abi.encodePacked(MERKLE_TREE_ROOT, autoStakeDays, referrerAddr) ); } require( claimMessageMatchesSignature( claimToAddr, claimParamHash, pubKeyX, pubKeyY, claimFlags, v, r, s ), "HEX: Signature mismatch" ); } /* Derive BTC address from public key */ bytes20 btcAddr = pubKeyToBtcAddress(pubKeyX, pubKeyY, claimFlags); /* Ensure BTC address has not yet been claimed */ require(!btcAddressClaims[btcAddr], "HEX: BTC address balance already claimed"); /* Ensure BTC address is part of the Merkle tree */ require( _btcAddressIsValid(btcAddr, rawSatoshis, proof), "HEX: BTC address or balance unknown" ); /* Mark BTC address as claimed */ btcAddressClaims[btcAddr] = true; return _satoshisClaimSync( rawSatoshis, claimToAddr, btcAddr, claimFlags, autoStakeDays, referrerAddr ); } function _satoshisClaimSync( uint256 rawSatoshis, address claimToAddr, bytes20 btcAddr, uint8 claimFlags, uint256 autoStakeDays, address referrerAddr ) private returns (uint256 totalClaimedHearts) { GlobalsCache memory g; GlobalsCache memory gSnapshot; _globalsLoad(g, gSnapshot); totalClaimedHearts = _satoshisClaim( g, rawSatoshis, claimToAddr, btcAddr, claimFlags, autoStakeDays, referrerAddr ); _globalsSync(g, gSnapshot); return totalClaimedHearts; } /** * @dev Credit an Eth address with the Hearts value of a raw Satoshis balance * @param g Cache of stored globals * @param rawSatoshis Raw BTC address balance in Satoshis * @param claimToAddr Destination Eth address for the claimed Hearts to be sent * @param btcAddr Bitcoin address (binary; no base58-check encoding) * @param autoStakeDays Number of days to auto-stake, subject to minimum auto-stake days * @param referrerAddr Eth address of referring user (optional; 0x0 for no referrer) * @return Total number of Hearts credited, if successful */ function _satoshisClaim( GlobalsCache memory g, uint256 rawSatoshis, address claimToAddr, bytes20 btcAddr, uint8 claimFlags, uint256 autoStakeDays, address referrerAddr ) private returns (uint256 totalClaimedHearts) { /* Allowed only during the claim phase */ require(g._currentDay >= CLAIM_PHASE_START_DAY, "HEX: Claim phase has not yet started"); require(g._currentDay < CLAIM_PHASE_END_DAY, "HEX: Claim phase has ended"); /* Check if log data needs to be updated */ _dailyDataUpdateAuto(g); /* Sanity check */ require( g._claimedBtcAddrCount < CLAIMABLE_BTC_ADDR_COUNT, "HEX: CHK: _claimedBtcAddrCount" ); (uint256 adjSatoshis, uint256 claimedHearts, uint256 claimBonusHearts) = _calcClaimValues( g, rawSatoshis ); /* Increment claim count to track viral rewards */ g._claimedBtcAddrCount++; totalClaimedHearts = _remitBonuses( claimToAddr, btcAddr, claimFlags, rawSatoshis, adjSatoshis, claimedHearts, claimBonusHearts, referrerAddr ); /* Auto-stake a percentage of the successful claim */ uint256 autoStakeHearts = totalClaimedHearts * AUTO_STAKE_CLAIM_PERCENT / 100; _stakeStart(g, autoStakeHearts, autoStakeDays, true); /* Mint remaining claimed Hearts to claim address */ _mint(claimToAddr, totalClaimedHearts - autoStakeHearts); return totalClaimedHearts; } function _remitBonuses( address claimToAddr, bytes20 btcAddr, uint8 claimFlags, uint256 rawSatoshis, uint256 adjSatoshis, uint256 claimedHearts, uint256 claimBonusHearts, address referrerAddr ) private returns (uint256 totalClaimedHearts) { totalClaimedHearts = claimedHearts + claimBonusHearts; uint256 originBonusHearts = claimBonusHearts; if (referrerAddr == address(0)) { /* No referrer */ _emitClaim( claimToAddr, btcAddr, claimFlags, rawSatoshis, adjSatoshis, totalClaimedHearts, referrerAddr ); } else { /* Referral bonus of 10% of total claimed Hearts to claimer */ uint256 referralBonusHearts = totalClaimedHearts / 10; totalClaimedHearts += referralBonusHearts; /* Then a cumulative referrer bonus of 20% to referrer */ uint256 referrerBonusHearts = totalClaimedHearts / 5; originBonusHearts += referralBonusHearts + referrerBonusHearts; if (referrerAddr == claimToAddr) { /* Self-referred */ totalClaimedHearts += referrerBonusHearts; _emitClaim( claimToAddr, btcAddr, claimFlags, rawSatoshis, adjSatoshis, totalClaimedHearts, referrerAddr ); } else { /* Referred by different address */ _emitClaim( claimToAddr, btcAddr, claimFlags, rawSatoshis, adjSatoshis, totalClaimedHearts, referrerAddr ); _mint(referrerAddr, referrerBonusHearts); } } _mint(ORIGIN_ADDR, originBonusHearts); return totalClaimedHearts; } function _emitClaim( address claimToAddr, bytes20 btcAddr, uint8 claimFlags, uint256 rawSatoshis, uint256 adjSatoshis, uint256 claimedHearts, address referrerAddr ) private { emit Claim( // (auto-generated event) uint256(uint40(block.timestamp)) | (uint256(uint56(rawSatoshis)) << 40) | (uint256(uint56(adjSatoshis)) << 96) | (uint256(claimFlags) << 152) | (uint256(uint72(claimedHearts)) << 160), uint256(uint160(msg.sender)), btcAddr, claimToAddr, referrerAddr ); if (claimToAddr == msg.sender) { return; } emit ClaimAssist( // (auto-generated event) uint256(uint40(block.timestamp)) | (uint256(uint160(btcAddr)) << 40) | (uint256(uint56(rawSatoshis)) << 200), uint256(uint56(adjSatoshis)) | (uint256(uint160(claimToAddr)) << 56) | (uint256(claimFlags) << 216), uint256(uint72(claimedHearts)) | (uint256(uint160(referrerAddr)) << 72), msg.sender ); } function _calcClaimValues(GlobalsCache memory g, uint256 rawSatoshis) private pure returns (uint256 adjSatoshis, uint256 claimedHearts, uint256 claimBonusHearts) { /* Apply Silly Whale reduction */ adjSatoshis = _adjustSillyWhale(rawSatoshis); require( g._claimedSatoshisTotal + adjSatoshis <= CLAIMABLE_SATOSHIS_TOTAL, "HEX: CHK: _claimedSatoshisTotal" ); g._claimedSatoshisTotal += adjSatoshis; uint256 daysRemaining = CLAIM_PHASE_END_DAY - g._currentDay; /* Apply late-claim reduction */ adjSatoshis = _adjustLateClaim(adjSatoshis, daysRemaining); g._unclaimedSatoshisTotal -= adjSatoshis; /* Convert to Hearts and calculate speed bonus */ claimedHearts = adjSatoshis * HEARTS_PER_SATOSHI; claimBonusHearts = _calcSpeedBonus(claimedHearts, daysRemaining); return (adjSatoshis, claimedHearts, claimBonusHearts); } /** * @dev Apply Silly Whale adjustment * @param rawSatoshis Raw BTC address balance in Satoshis * @return Adjusted BTC address balance in Satoshis */ function _adjustSillyWhale(uint256 rawSatoshis) private pure returns (uint256) { if (rawSatoshis < 1000e8) { /* For < 1,000 BTC: no penalty */ return rawSatoshis; } if (rawSatoshis >= 10000e8) { /* For >= 10,000 BTC: penalty is 75%, leaving 25% */ return rawSatoshis / 4; } /* For 1,000 <= BTC < 10,000: penalty scales linearly from 50% to 75% penaltyPercent = (btc - 1000) / (10000 - 1000) * (75 - 50) + 50 = (btc - 1000) / 9000 * 25 + 50 = (btc - 1000) / 360 + 50 appliedPercent = 100 - penaltyPercent = 100 - ((btc - 1000) / 360 + 50) = 100 - (btc - 1000) / 360 - 50 = 50 - (btc - 1000) / 360 = (18000 - (btc - 1000)) / 360 = (18000 - btc + 1000) / 360 = (19000 - btc) / 360 adjustedBtc = btc * appliedPercent / 100 = btc * ((19000 - btc) / 360) / 100 = btc * (19000 - btc) / 36000 adjustedSat = 1e8 * adjustedBtc = 1e8 * (btc * (19000 - btc) / 36000) = 1e8 * ((sat / 1e8) * (19000 - (sat / 1e8)) / 36000) = 1e8 * (sat / 1e8) * (19000 - (sat / 1e8)) / 36000 = (sat / 1e8) * 1e8 * (19000 - (sat / 1e8)) / 36000 = (sat / 1e8) * (19000e8 - sat) / 36000 = sat * (19000e8 - sat) / 36000e8 */ return rawSatoshis * (19000e8 - rawSatoshis) / 36000e8; } /** * @dev Apply late-claim adjustment to scale claim to zero by end of claim phase * @param adjSatoshis Adjusted BTC address balance in Satoshis (after Silly Whale) * @param daysRemaining Number of reward days remaining in claim phase * @return Adjusted BTC address balance in Satoshis (after Silly Whale and Late-Claim) */ function _adjustLateClaim(uint256 adjSatoshis, uint256 daysRemaining) private pure returns (uint256) { /* Only valid from CLAIM_PHASE_DAYS to 1, and only used during that time. adjustedSat = sat * (daysRemaining / CLAIM_PHASE_DAYS) * 100% = sat * daysRemaining / CLAIM_PHASE_DAYS */ return adjSatoshis * daysRemaining / CLAIM_PHASE_DAYS; } /** * @dev Calculates speed bonus for claiming earlier in the claim phase * @param claimedHearts Hearts claimed from adjusted BTC address balance Satoshis * @param daysRemaining Number of claim days remaining in claim phase * @return Speed bonus in Hearts */ function _calcSpeedBonus(uint256 claimedHearts, uint256 daysRemaining) private pure returns (uint256) { /* Only valid from CLAIM_PHASE_DAYS to 1, and only used during that time. Speed bonus is 20% ... 0% inclusive. bonusHearts = claimedHearts * ((daysRemaining - 1) / (CLAIM_PHASE_DAYS - 1)) * 20% = claimedHearts * ((daysRemaining - 1) / (CLAIM_PHASE_DAYS - 1)) * 20/100 = claimedHearts * ((daysRemaining - 1) / (CLAIM_PHASE_DAYS - 1)) / 5 = claimedHearts * (daysRemaining - 1) / ((CLAIM_PHASE_DAYS - 1) * 5) */ return claimedHearts * (daysRemaining - 1) / ((CLAIM_PHASE_DAYS - 1) * 5); } } contract TransformableToken is UTXORedeemableToken { /** * @dev PUBLIC FACING: Enter the tranform lobby for the current round * @param referrerAddr Eth address of referring user (optional; 0x0 for no referrer) */ function xfLobbyEnter(address referrerAddr) external payable { uint256 enterDay = _currentDay(); require(enterDay < CLAIM_PHASE_END_DAY, "HEX: Lobbies have ended"); uint256 rawAmount = msg.value; require(rawAmount != 0, "HEX: Amount required"); XfLobbyQueueStore storage qRef = xfLobbyMembers[enterDay][msg.sender]; uint256 entryIndex = qRef.tailIndex++; qRef.entries[entryIndex] = XfLobbyEntryStore(uint96(rawAmount), referrerAddr); xfLobby[enterDay] += rawAmount; _emitXfLobbyEnter(enterDay, entryIndex, rawAmount, referrerAddr); } /** * @dev PUBLIC FACING: Leave the transform lobby after the round is complete * @param enterDay Day number when the member entered * @param count Number of queued-enters to exit (optional; 0 for all) */ function xfLobbyExit(uint256 enterDay, uint256 count) external { require(enterDay < _currentDay(), "HEX: Round is not complete"); XfLobbyQueueStore storage qRef = xfLobbyMembers[enterDay][msg.sender]; uint256 headIndex = qRef.headIndex; uint256 endIndex; if (count != 0) { require(count <= qRef.tailIndex - headIndex, "HEX: count invalid"); endIndex = headIndex + count; } else { endIndex = qRef.tailIndex; require(headIndex < endIndex, "HEX: count invalid"); } uint256 waasLobby = _waasLobby(enterDay); uint256 _xfLobby = xfLobby[enterDay]; uint256 totalXfAmount = 0; uint256 originBonusHearts = 0; do { uint256 rawAmount = qRef.entries[headIndex].rawAmount; address referrerAddr = qRef.entries[headIndex].referrerAddr; delete qRef.entries[headIndex]; uint256 xfAmount = waasLobby * rawAmount / _xfLobby; if (referrerAddr == address(0)) { /* No referrer */ _emitXfLobbyExit(enterDay, headIndex, xfAmount, referrerAddr); } else { /* Referral bonus of 10% of xfAmount to member */ uint256 referralBonusHearts = xfAmount / 10; xfAmount += referralBonusHearts; /* Then a cumulative referrer bonus of 20% to referrer */ uint256 referrerBonusHearts = xfAmount / 5; if (referrerAddr == msg.sender) { /* Self-referred */ xfAmount += referrerBonusHearts; _emitXfLobbyExit(enterDay, headIndex, xfAmount, referrerAddr); } else { /* Referred by different address */ _emitXfLobbyExit(enterDay, headIndex, xfAmount, referrerAddr); _mint(referrerAddr, referrerBonusHearts); } originBonusHearts += referralBonusHearts + referrerBonusHearts; } totalXfAmount += xfAmount; } while (++headIndex < endIndex); qRef.headIndex = uint40(headIndex); if (originBonusHearts != 0) { _mint(ORIGIN_ADDR, originBonusHearts); } if (totalXfAmount != 0) { _mint(msg.sender, totalXfAmount); } } /** * @dev PUBLIC FACING: Release any value that has been sent to the contract */ function xfLobbyFlush() external { require(address(this).balance != 0, "HEX: No value"); FLUSH_ADDR.transfer(address(this).balance); } /** * @dev PUBLIC FACING: External helper to return multiple values of xfLobby[] with * a single call * @param beginDay First day of data range * @param endDay Last day (non-inclusive) of data range * @return Fixed array of values */ function xfLobbyRange(uint256 beginDay, uint256 endDay) external view returns (uint256[] memory list) { require( beginDay < endDay && endDay <= CLAIM_PHASE_END_DAY && endDay <= _currentDay(), "HEX: invalid range" ); list = new uint256[](endDay - beginDay); uint256 src = beginDay; uint256 dst = 0; do { list[dst++] = uint256(xfLobby[src++]); } while (src < endDay); return list; } /** * @dev PUBLIC FACING: Return a current lobby member queue entry. * Only needed due to limitations of the standard ABI encoder. * @param memberAddr Eth address of the lobby member * @param entryId 49 bit compound value. Top 9 bits: enterDay, Bottom 40 bits: entryIndex * @return 1: Raw amount that was entered with; 2: Referring Eth addr (optional; 0x0 for no referrer) */ function xfLobbyEntry(address memberAddr, uint256 entryId) external view returns (uint256 rawAmount, address referrerAddr) { uint256 enterDay = entryId >> XF_LOBBY_ENTRY_INDEX_SIZE; uint256 entryIndex = entryId & XF_LOBBY_ENTRY_INDEX_MASK; XfLobbyEntryStore storage entry = xfLobbyMembers[enterDay][memberAddr].entries[entryIndex]; require(entry.rawAmount != 0, "HEX: Param invalid"); return (entry.rawAmount, entry.referrerAddr); } /** * @dev PUBLIC FACING: Return the lobby days that a user is in with a single call * @param memberAddr Eth address of the user * @return Bit vector of lobby day numbers */ function xfLobbyPendingDays(address memberAddr) external view returns (uint256[XF_LOBBY_DAY_WORDS] memory words) { uint256 day = _currentDay() + 1; if (day > CLAIM_PHASE_END_DAY) { day = CLAIM_PHASE_END_DAY; } while (day-- != 0) { if (xfLobbyMembers[day][memberAddr].tailIndex > xfLobbyMembers[day][memberAddr].headIndex) { words[day >> 8] |= 1 << (day & 255); } } return words; } function _waasLobby(uint256 enterDay) private returns (uint256 waasLobby) { if (enterDay >= CLAIM_PHASE_START_DAY) { GlobalsCache memory g; GlobalsCache memory gSnapshot; _globalsLoad(g, gSnapshot); _dailyDataUpdateAuto(g); uint256 unclaimed = dailyData[enterDay].dayUnclaimedSatoshisTotal; waasLobby = unclaimed * HEARTS_PER_SATOSHI / CLAIM_PHASE_DAYS; _globalsSync(g, gSnapshot); } else { waasLobby = WAAS_LOBBY_SEED_HEARTS; } return waasLobby; } function _emitXfLobbyEnter( uint256 enterDay, uint256 entryIndex, uint256 rawAmount, address referrerAddr ) private { emit XfLobbyEnter( // (auto-generated event) uint256(uint40(block.timestamp)) | (uint256(uint96(rawAmount)) << 40), msg.sender, (enterDay << XF_LOBBY_ENTRY_INDEX_SIZE) | entryIndex, referrerAddr ); } function _emitXfLobbyExit( uint256 enterDay, uint256 entryIndex, uint256 xfAmount, address referrerAddr ) private { emit XfLobbyExit( // (auto-generated event) uint256(uint40(block.timestamp)) | (uint256(uint72(xfAmount)) << 40), msg.sender, (enterDay << XF_LOBBY_ENTRY_INDEX_SIZE) | entryIndex, referrerAddr ); } } contract HEX is TransformableToken { constructor() public { /* Initialize global shareRate to 1 */ globals.shareRate = uint40(1 * SHARE_RATE_SCALE); /* Initialize dailyDataCount to skip pre-claim period */ globals.dailyDataCount = uint16(PRE_CLAIM_DAYS); /* Add all Satoshis from UTXO snapshot to contract */ globals.claimStats = _claimStatsEncode( 0, // _claimedBtcAddrCount 0, // _claimedSatoshisTotal FULL_SATOSHIS_TOTAL // _unclaimedSatoshisTotal ); } function() external payable {} }
File 5 of 6: OneInchExchange
// File: @openzeppelin/contracts/GSN/Context.sol // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } // File: @openzeppelin/contracts/access/Ownable.sol pragma solidity ^0.6.0; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor () internal { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(_owner == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } // File: @openzeppelin/contracts/token/ERC20/IERC20.sol pragma solidity ^0.6.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // File: @openzeppelin/contracts/math/SafeMath.sol pragma solidity ^0.6.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } } // File: @openzeppelin/contracts/utils/Address.sol pragma solidity ^0.6.2; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies in extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) { require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: weiValue }(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // File: @openzeppelin/contracts/token/ERC20/SafeERC20.sol pragma solidity ^0.6.0; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using SafeMath for uint256; using Address for address; function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' // solhint-disable-next-line max-line-length require((value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).add(value); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional // solhint-disable-next-line max-line-length require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } // File: @openzeppelin/contracts/utils/Pausable.sol pragma solidity ^0.6.0; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ contract Pausable is Context { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ constructor () internal { _paused = false; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view returns (bool) { return _paused; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { require(!_paused, "Pausable: paused"); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { require(_paused, "Pausable: not paused"); _; } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } } // File: contracts/interfaces/IChi.sol pragma solidity ^0.6.12; interface IChi is IERC20 { function mint(uint256 value) external; function free(uint256 value) external returns (uint256 freed); function freeFromUpTo(address from, uint256 value) external returns (uint256 freed); } // File: contracts/interfaces/IERC20Permit.sol pragma solidity ^0.6.12; interface IERC20Permit { function permit(address owner, address spender, uint256 amount, uint256 deadline, uint8 v, bytes32 r, bytes32 s) external; } // File: contracts/interfaces/IGasDiscountExtension.sol pragma solidity ^0.6.12; interface IGasDiscountExtension { function calculateGas(uint256 gasUsed, uint256 flags, uint256 calldataLength) external pure returns (IChi, uint256); } // File: contracts/interfaces/ISafeERC20Extension.sol pragma solidity ^0.6.12; interface ISafeERC20Extension { function safeApprove(IERC20 token, address spender, uint256 amount) external; function safeTransfer(IERC20 token, address payable target, uint256 amount) external; } // File: contracts/interfaces/IOneInchCaller.sol pragma solidity ^0.6.12; pragma experimental ABIEncoderV2; interface IOneInchCaller is ISafeERC20Extension, IGasDiscountExtension { struct CallDescription { uint256 targetWithMandatory; uint256 gasLimit; uint256 value; bytes data; } function makeCall(CallDescription memory desc) external; function makeCalls(CallDescription[] memory desc) external payable; } // File: contracts/helpers/RevertReasonParser.sol pragma solidity ^0.6.12; library RevertReasonParser { function parse(bytes memory data, string memory prefix) internal pure returns (string memory) { // https://solidity.readthedocs.io/en/latest/control-structures.html#revert // We assume that revert reason is abi-encoded as Error(string) // 68 = 4-byte selector 0x08c379a0 + 32 bytes offset + 32 bytes length if (data.length >= 68 && data[0] == "\x08" && data[1] == "\xc3" && data[2] == "\x79" && data[3] == "\xa0") { string memory reason; // solhint-disable no-inline-assembly assembly { // 68 = 32 bytes data length + 4-byte selector + 32 bytes offset reason := add(data, 68) } /* revert reason is padded up to 32 bytes with ABI encoder: Error(string) also sometimes there is extra 32 bytes of zeros padded in the end: https://github.com/ethereum/solidity/issues/10170 because of that we can't check for equality and instead check that string length + extra 68 bytes is less than overall data length */ require(data.length >= 68 + bytes(reason).length, "Invalid revert reason"); return string(abi.encodePacked(prefix, "Error(", reason, ")")); } // 36 = 4-byte selector 0x4e487b71 + 32 bytes integer else if (data.length == 36 && data[0] == "\x4e" && data[1] == "\x48" && data[2] == "\x7b" && data[3] == "\x71") { uint256 code; // solhint-disable no-inline-assembly assembly { // 36 = 32 bytes data length + 4-byte selector code := mload(add(data, 36)) } return string(abi.encodePacked(prefix, "Panic(", _toHex(code), ")")); } return string(abi.encodePacked(prefix, "Unknown()")); } function _toHex(uint256 value) private pure returns(string memory) { return _toHex(abi.encodePacked(value)); } function _toHex(bytes memory data) private pure returns(string memory) { bytes memory alphabet = "0123456789abcdef"; bytes memory str = new bytes(2 + data.length * 2); str[0] = "0"; str[1] = "x"; for (uint256 i = 0; i < data.length; i++) { str[2 * i + 2] = alphabet[uint8(data[i] >> 4)]; str[2 * i + 3] = alphabet[uint8(data[i] & 0x0f)]; } return string(str); } } // File: contracts/helpers/UniERC20.sol pragma solidity ^0.6.12; library UniERC20 { using SafeMath for uint256; using SafeERC20 for IERC20; IERC20 private constant _ETH_ADDRESS = IERC20(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE); IERC20 private constant _ZERO_ADDRESS = IERC20(0); function isETH(IERC20 token) internal pure returns (bool) { return (token == _ZERO_ADDRESS || token == _ETH_ADDRESS); } function uniBalanceOf(IERC20 token, address account) internal view returns (uint256) { if (isETH(token)) { return account.balance; } else { return token.balanceOf(account); } } function uniTransfer(IERC20 token, address payable to, uint256 amount) internal { if (amount > 0) { if (isETH(token)) { to.transfer(amount); } else { token.safeTransfer(to, amount); } } } function uniApprove(IERC20 token, address to, uint256 amount) internal { require(!isETH(token), "Approve called on ETH"); if (amount == 0) { token.safeApprove(to, 0); } else { uint256 allowance = token.allowance(address(this), to); if (allowance < amount) { if (allowance > 0) { token.safeApprove(to, 0); } token.safeApprove(to, amount); } } } } // File: contracts/OneInchExchange.sol pragma solidity ^0.6.12; contract OneInchExchange is Ownable, Pausable { using SafeMath for uint256; using SafeERC20 for IERC20; using UniERC20 for IERC20; uint256 private constant _PARTIAL_FILL = 0x01; uint256 private constant _REQUIRES_EXTRA_ETH = 0x02; uint256 private constant _SHOULD_CLAIM = 0x04; uint256 private constant _BURN_FROM_MSG_SENDER = 0x08; uint256 private constant _BURN_FROM_TX_ORIGIN = 0x10; struct SwapDescription { IERC20 srcToken; IERC20 dstToken; address srcReceiver; address dstReceiver; uint256 amount; uint256 minReturnAmount; uint256 guaranteedAmount; uint256 flags; address referrer; bytes permit; } event Swapped( address indexed sender, IERC20 indexed srcToken, IERC20 indexed dstToken, address dstReceiver, uint256 amount, uint256 spentAmount, uint256 returnAmount, uint256 minReturnAmount, uint256 guaranteedAmount, address referrer ); event Error( string reason ); function discountedSwap( IOneInchCaller caller, SwapDescription calldata desc, IOneInchCaller.CallDescription[] calldata calls ) external payable returns (uint256 returnAmount) { uint256 initialGas = gasleft(); address chiSource = address(0); if (desc.flags & _BURN_FROM_MSG_SENDER != 0) { chiSource = msg.sender; } else if (desc.flags & _BURN_FROM_TX_ORIGIN != 0) { chiSource = tx.origin; // solhint-disable-line avoid-tx-origin } else { revert("Incorrect CHI burn flags"); } // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory data) = address(this).delegatecall(abi.encodeWithSelector(this.swap.selector, caller, desc, calls)); if (success) { returnAmount = abi.decode(data, (uint256)); } else { if (msg.value > 0) { msg.sender.transfer(msg.value); } emit Error(RevertReasonParser.parse(data, "Swap failed: ")); } (IChi chi, uint256 amount) = caller.calculateGas(initialGas.sub(gasleft()), desc.flags, msg.data.length); chi.freeFromUpTo(chiSource, amount); } function swap( IOneInchCaller caller, SwapDescription calldata desc, IOneInchCaller.CallDescription[] calldata calls ) external payable whenNotPaused returns (uint256 returnAmount) { require(desc.minReturnAmount > 0, "Min return should not be 0"); require(calls.length > 0, "Call data should exist"); uint256 flags = desc.flags; IERC20 srcToken = desc.srcToken; IERC20 dstToken = desc.dstToken; if (flags & _REQUIRES_EXTRA_ETH != 0) { require(msg.value > (srcToken.isETH() ? desc.amount : 0), "Invalid msg.value"); } else { require(msg.value == (srcToken.isETH() ? desc.amount : 0), "Invalid msg.value"); } if (flags & _SHOULD_CLAIM != 0) { require(!srcToken.isETH(), "Claim token is ETH"); _claim(srcToken, desc.srcReceiver, desc.amount, desc.permit); } address dstReceiver = (desc.dstReceiver == address(0)) ? msg.sender : desc.dstReceiver; uint256 initialSrcBalance = (flags & _PARTIAL_FILL != 0) ? srcToken.uniBalanceOf(msg.sender) : 0; uint256 initialDstBalance = dstToken.uniBalanceOf(dstReceiver); caller.makeCalls{value: msg.value}(calls); uint256 spentAmount = desc.amount; returnAmount = dstToken.uniBalanceOf(dstReceiver).sub(initialDstBalance); if (flags & _PARTIAL_FILL != 0) { spentAmount = initialSrcBalance.add(desc.amount).sub(srcToken.uniBalanceOf(msg.sender)); require(returnAmount.mul(desc.amount) >= desc.minReturnAmount.mul(spentAmount), "Return amount is not enough"); } else { require(returnAmount >= desc.minReturnAmount, "Return amount is not enough"); } _emitSwapped(desc, srcToken, dstToken, dstReceiver, spentAmount, returnAmount); } function _emitSwapped( SwapDescription calldata desc, IERC20 srcToken, IERC20 dstToken, address dstReceiver, uint256 spentAmount, uint256 returnAmount ) private { emit Swapped( msg.sender, srcToken, dstToken, dstReceiver, desc.amount, spentAmount, returnAmount, desc.minReturnAmount, desc.guaranteedAmount, desc.referrer ); } function _claim(IERC20 token, address dst, uint256 amount, bytes calldata permit) private { // TODO: Is it safe to call permit on tokens without implemented permit? Fallback will be called. Is it bad for proxies? if (permit.length == 32 * 7) { // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory result) = address(token).call(abi.encodeWithSelector(IERC20Permit.permit.selector, permit)); if (!success) { revert(RevertReasonParser.parse(result, "Permit call failed: ")); } } token.safeTransferFrom(msg.sender, dst, amount); } function rescueFunds(IERC20 token, uint256 amount) external onlyOwner { token.uniTransfer(msg.sender, amount); } function pause() external onlyOwner { _pause(); } }
File 6 of 6: Vyper_contract
# @title Uniswap Exchange Interface V1 # @notice Source code found at https://github.com/uniswap # @notice Use at your own risk contract Factory(): def getExchange(token_addr: address) -> address: constant contract Exchange(): def getEthToTokenOutputPrice(tokens_bought: uint256) -> uint256(wei): constant def ethToTokenTransferInput(min_tokens: uint256, deadline: timestamp, recipient: address) -> uint256: modifying def ethToTokenTransferOutput(tokens_bought: uint256, deadline: timestamp, recipient: address) -> uint256(wei): modifying TokenPurchase: event({buyer: indexed(address), eth_sold: indexed(uint256(wei)), tokens_bought: indexed(uint256)}) EthPurchase: event({buyer: indexed(address), tokens_sold: indexed(uint256), eth_bought: indexed(uint256(wei))}) AddLiquidity: event({provider: indexed(address), eth_amount: indexed(uint256(wei)), token_amount: indexed(uint256)}) RemoveLiquidity: event({provider: indexed(address), eth_amount: indexed(uint256(wei)), token_amount: indexed(uint256)}) Transfer: event({_from: indexed(address), _to: indexed(address), _value: uint256}) Approval: event({_owner: indexed(address), _spender: indexed(address), _value: uint256}) name: public(bytes32) # Uniswap V1 symbol: public(bytes32) # UNI-V1 decimals: public(uint256) # 18 totalSupply: public(uint256) # total number of UNI in existence balances: uint256[address] # UNI balance of an address allowances: (uint256[address])[address] # UNI allowance of one address on another token: address(ERC20) # address of the ERC20 token traded on this contract factory: Factory # interface for the factory that created this contract # @dev This function acts as a contract constructor which is not currently supported in contracts deployed # using create_with_code_of(). It is called once by the factory during contract creation. @public def setup(token_addr: address): assert (self.factory == ZERO_ADDRESS and self.token == ZERO_ADDRESS) and token_addr != ZERO_ADDRESS self.factory = msg.sender self.token = token_addr self.name = 0x556e697377617020563100000000000000000000000000000000000000000000 self.symbol = 0x554e492d56310000000000000000000000000000000000000000000000000000 self.decimals = 18 # @notice Deposit ETH and Tokens (self.token) at current ratio to mint UNI tokens. # @dev min_liquidity does nothing when total UNI supply is 0. # @param min_liquidity Minimum number of UNI sender will mint if total UNI supply is greater than 0. # @param max_tokens Maximum number of tokens deposited. Deposits max amount if total UNI supply is 0. # @param deadline Time after which this transaction can no longer be executed. # @return The amount of UNI minted. @public @payable def addLiquidity(min_liquidity: uint256, max_tokens: uint256, deadline: timestamp) -> uint256: assert deadline > block.timestamp and (max_tokens > 0 and msg.value > 0) total_liquidity: uint256 = self.totalSupply if total_liquidity > 0: assert min_liquidity > 0 eth_reserve: uint256(wei) = self.balance - msg.value token_reserve: uint256 = self.token.balanceOf(self) token_amount: uint256 = msg.value * token_reserve / eth_reserve + 1 liquidity_minted: uint256 = msg.value * total_liquidity / eth_reserve assert max_tokens >= token_amount and liquidity_minted >= min_liquidity self.balances[msg.sender] += liquidity_minted self.totalSupply = total_liquidity + liquidity_minted assert self.token.transferFrom(msg.sender, self, token_amount) log.AddLiquidity(msg.sender, msg.value, token_amount) log.Transfer(ZERO_ADDRESS, msg.sender, liquidity_minted) return liquidity_minted else: assert (self.factory != ZERO_ADDRESS and self.token != ZERO_ADDRESS) and msg.value >= 1000000000 assert self.factory.getExchange(self.token) == self token_amount: uint256 = max_tokens initial_liquidity: uint256 = as_unitless_number(self.balance) self.totalSupply = initial_liquidity self.balances[msg.sender] = initial_liquidity assert self.token.transferFrom(msg.sender, self, token_amount) log.AddLiquidity(msg.sender, msg.value, token_amount) log.Transfer(ZERO_ADDRESS, msg.sender, initial_liquidity) return initial_liquidity # @dev Burn UNI tokens to withdraw ETH and Tokens at current ratio. # @param amount Amount of UNI burned. # @param min_eth Minimum ETH withdrawn. # @param min_tokens Minimum Tokens withdrawn. # @param deadline Time after which this transaction can no longer be executed. # @return The amount of ETH and Tokens withdrawn. @public def removeLiquidity(amount: uint256, min_eth: uint256(wei), min_tokens: uint256, deadline: timestamp) -> (uint256(wei), uint256): assert (amount > 0 and deadline > block.timestamp) and (min_eth > 0 and min_tokens > 0) total_liquidity: uint256 = self.totalSupply assert total_liquidity > 0 token_reserve: uint256 = self.token.balanceOf(self) eth_amount: uint256(wei) = amount * self.balance / total_liquidity token_amount: uint256 = amount * token_reserve / total_liquidity assert eth_amount >= min_eth and token_amount >= min_tokens self.balances[msg.sender] -= amount self.totalSupply = total_liquidity - amount send(msg.sender, eth_amount) assert self.token.transfer(msg.sender, token_amount) log.RemoveLiquidity(msg.sender, eth_amount, token_amount) log.Transfer(msg.sender, ZERO_ADDRESS, amount) return eth_amount, token_amount # @dev Pricing function for converting between ETH and Tokens. # @param input_amount Amount of ETH or Tokens being sold. # @param input_reserve Amount of ETH or Tokens (input type) in exchange reserves. # @param output_reserve Amount of ETH or Tokens (output type) in exchange reserves. # @return Amount of ETH or Tokens bought. @private @constant def getInputPrice(input_amount: uint256, input_reserve: uint256, output_reserve: uint256) -> uint256: assert input_reserve > 0 and output_reserve > 0 input_amount_with_fee: uint256 = input_amount * 997 numerator: uint256 = input_amount_with_fee * output_reserve denominator: uint256 = (input_reserve * 1000) + input_amount_with_fee return numerator / denominator # @dev Pricing function for converting between ETH and Tokens. # @param output_amount Amount of ETH or Tokens being bought. # @param input_reserve Amount of ETH or Tokens (input type) in exchange reserves. # @param output_reserve Amount of ETH or Tokens (output type) in exchange reserves. # @return Amount of ETH or Tokens sold. @private @constant def getOutputPrice(output_amount: uint256, input_reserve: uint256, output_reserve: uint256) -> uint256: assert input_reserve > 0 and output_reserve > 0 numerator: uint256 = input_reserve * output_amount * 1000 denominator: uint256 = (output_reserve - output_amount) * 997 return numerator / denominator + 1 @private def ethToTokenInput(eth_sold: uint256(wei), min_tokens: uint256, deadline: timestamp, buyer: address, recipient: address) -> uint256: assert deadline >= block.timestamp and (eth_sold > 0 and min_tokens > 0) token_reserve: uint256 = self.token.balanceOf(self) tokens_bought: uint256 = self.getInputPrice(as_unitless_number(eth_sold), as_unitless_number(self.balance - eth_sold), token_reserve) assert tokens_bought >= min_tokens assert self.token.transfer(recipient, tokens_bought) log.TokenPurchase(buyer, eth_sold, tokens_bought) return tokens_bought # @notice Convert ETH to Tokens. # @dev User specifies exact input (msg.value). # @dev User cannot specify minimum output or deadline. @public @payable def __default__(): self.ethToTokenInput(msg.value, 1, block.timestamp, msg.sender, msg.sender) # @notice Convert ETH to Tokens. # @dev User specifies exact input (msg.value) and minimum output. # @param min_tokens Minimum Tokens bought. # @param deadline Time after which this transaction can no longer be executed. # @return Amount of Tokens bought. @public @payable def ethToTokenSwapInput(min_tokens: uint256, deadline: timestamp) -> uint256: return self.ethToTokenInput(msg.value, min_tokens, deadline, msg.sender, msg.sender) # @notice Convert ETH to Tokens and transfers Tokens to recipient. # @dev User specifies exact input (msg.value) and minimum output # @param min_tokens Minimum Tokens bought. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output Tokens. # @return Amount of Tokens bought. @public @payable def ethToTokenTransferInput(min_tokens: uint256, deadline: timestamp, recipient: address) -> uint256: assert recipient != self and recipient != ZERO_ADDRESS return self.ethToTokenInput(msg.value, min_tokens, deadline, msg.sender, recipient) @private def ethToTokenOutput(tokens_bought: uint256, max_eth: uint256(wei), deadline: timestamp, buyer: address, recipient: address) -> uint256(wei): assert deadline >= block.timestamp and (tokens_bought > 0 and max_eth > 0) token_reserve: uint256 = self.token.balanceOf(self) eth_sold: uint256 = self.getOutputPrice(tokens_bought, as_unitless_number(self.balance - max_eth), token_reserve) # Throws if eth_sold > max_eth eth_refund: uint256(wei) = max_eth - as_wei_value(eth_sold, 'wei') if eth_refund > 0: send(buyer, eth_refund) assert self.token.transfer(recipient, tokens_bought) log.TokenPurchase(buyer, as_wei_value(eth_sold, 'wei'), tokens_bought) return as_wei_value(eth_sold, 'wei') # @notice Convert ETH to Tokens. # @dev User specifies maximum input (msg.value) and exact output. # @param tokens_bought Amount of tokens bought. # @param deadline Time after which this transaction can no longer be executed. # @return Amount of ETH sold. @public @payable def ethToTokenSwapOutput(tokens_bought: uint256, deadline: timestamp) -> uint256(wei): return self.ethToTokenOutput(tokens_bought, msg.value, deadline, msg.sender, msg.sender) # @notice Convert ETH to Tokens and transfers Tokens to recipient. # @dev User specifies maximum input (msg.value) and exact output. # @param tokens_bought Amount of tokens bought. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output Tokens. # @return Amount of ETH sold. @public @payable def ethToTokenTransferOutput(tokens_bought: uint256, deadline: timestamp, recipient: address) -> uint256(wei): assert recipient != self and recipient != ZERO_ADDRESS return self.ethToTokenOutput(tokens_bought, msg.value, deadline, msg.sender, recipient) @private def tokenToEthInput(tokens_sold: uint256, min_eth: uint256(wei), deadline: timestamp, buyer: address, recipient: address) -> uint256(wei): assert deadline >= block.timestamp and (tokens_sold > 0 and min_eth > 0) token_reserve: uint256 = self.token.balanceOf(self) eth_bought: uint256 = self.getInputPrice(tokens_sold, token_reserve, as_unitless_number(self.balance)) wei_bought: uint256(wei) = as_wei_value(eth_bought, 'wei') assert wei_bought >= min_eth send(recipient, wei_bought) assert self.token.transferFrom(buyer, self, tokens_sold) log.EthPurchase(buyer, tokens_sold, wei_bought) return wei_bought # @notice Convert Tokens to ETH. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_eth Minimum ETH purchased. # @param deadline Time after which this transaction can no longer be executed. # @return Amount of ETH bought. @public def tokenToEthSwapInput(tokens_sold: uint256, min_eth: uint256(wei), deadline: timestamp) -> uint256(wei): return self.tokenToEthInput(tokens_sold, min_eth, deadline, msg.sender, msg.sender) # @notice Convert Tokens to ETH and transfers ETH to recipient. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_eth Minimum ETH purchased. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @return Amount of ETH bought. @public def tokenToEthTransferInput(tokens_sold: uint256, min_eth: uint256(wei), deadline: timestamp, recipient: address) -> uint256(wei): assert recipient != self and recipient != ZERO_ADDRESS return self.tokenToEthInput(tokens_sold, min_eth, deadline, msg.sender, recipient) @private def tokenToEthOutput(eth_bought: uint256(wei), max_tokens: uint256, deadline: timestamp, buyer: address, recipient: address) -> uint256: assert deadline >= block.timestamp and eth_bought > 0 token_reserve: uint256 = self.token.balanceOf(self) tokens_sold: uint256 = self.getOutputPrice(as_unitless_number(eth_bought), token_reserve, as_unitless_number(self.balance)) # tokens sold is always > 0 assert max_tokens >= tokens_sold send(recipient, eth_bought) assert self.token.transferFrom(buyer, self, tokens_sold) log.EthPurchase(buyer, tokens_sold, eth_bought) return tokens_sold # @notice Convert Tokens to ETH. # @dev User specifies maximum input and exact output. # @param eth_bought Amount of ETH purchased. # @param max_tokens Maximum Tokens sold. # @param deadline Time after which this transaction can no longer be executed. # @return Amount of Tokens sold. @public def tokenToEthSwapOutput(eth_bought: uint256(wei), max_tokens: uint256, deadline: timestamp) -> uint256: return self.tokenToEthOutput(eth_bought, max_tokens, deadline, msg.sender, msg.sender) # @notice Convert Tokens to ETH and transfers ETH to recipient. # @dev User specifies maximum input and exact output. # @param eth_bought Amount of ETH purchased. # @param max_tokens Maximum Tokens sold. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @return Amount of Tokens sold. @public def tokenToEthTransferOutput(eth_bought: uint256(wei), max_tokens: uint256, deadline: timestamp, recipient: address) -> uint256: assert recipient != self and recipient != ZERO_ADDRESS return self.tokenToEthOutput(eth_bought, max_tokens, deadline, msg.sender, recipient) @private def tokenToTokenInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, buyer: address, recipient: address, exchange_addr: address) -> uint256: assert (deadline >= block.timestamp and tokens_sold > 0) and (min_tokens_bought > 0 and min_eth_bought > 0) assert exchange_addr != self and exchange_addr != ZERO_ADDRESS token_reserve: uint256 = self.token.balanceOf(self) eth_bought: uint256 = self.getInputPrice(tokens_sold, token_reserve, as_unitless_number(self.balance)) wei_bought: uint256(wei) = as_wei_value(eth_bought, 'wei') assert wei_bought >= min_eth_bought assert self.token.transferFrom(buyer, self, tokens_sold) tokens_bought: uint256 = Exchange(exchange_addr).ethToTokenTransferInput(min_tokens_bought, deadline, recipient, value=wei_bought) log.EthPurchase(buyer, tokens_sold, wei_bought) return tokens_bought # @notice Convert Tokens (self.token) to Tokens (token_addr). # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_tokens_bought Minimum Tokens (token_addr) purchased. # @param min_eth_bought Minimum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (token_addr) bought. @public def tokenToTokenSwapInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, token_addr: address) -> uint256: exchange_addr: address = self.factory.getExchange(token_addr) return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, msg.sender, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (token_addr) and transfers # Tokens (token_addr) to recipient. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_tokens_bought Minimum Tokens (token_addr) purchased. # @param min_eth_bought Minimum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (token_addr) bought. @public def tokenToTokenTransferInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, recipient: address, token_addr: address) -> uint256: exchange_addr: address = self.factory.getExchange(token_addr) return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, recipient, exchange_addr) @private def tokenToTokenOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, buyer: address, recipient: address, exchange_addr: address) -> uint256: assert deadline >= block.timestamp and (tokens_bought > 0 and max_eth_sold > 0) assert exchange_addr != self and exchange_addr != ZERO_ADDRESS eth_bought: uint256(wei) = Exchange(exchange_addr).getEthToTokenOutputPrice(tokens_bought) token_reserve: uint256 = self.token.balanceOf(self) tokens_sold: uint256 = self.getOutputPrice(as_unitless_number(eth_bought), token_reserve, as_unitless_number(self.balance)) # tokens sold is always > 0 assert max_tokens_sold >= tokens_sold and max_eth_sold >= eth_bought assert self.token.transferFrom(buyer, self, tokens_sold) eth_sold: uint256(wei) = Exchange(exchange_addr).ethToTokenTransferOutput(tokens_bought, deadline, recipient, value=eth_bought) log.EthPurchase(buyer, tokens_sold, eth_bought) return tokens_sold # @notice Convert Tokens (self.token) to Tokens (token_addr). # @dev User specifies maximum input and exact output. # @param tokens_bought Amount of Tokens (token_addr) bought. # @param max_tokens_sold Maximum Tokens (self.token) sold. # @param max_eth_sold Maximum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (self.token) sold. @public def tokenToTokenSwapOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, token_addr: address) -> uint256: exchange_addr: address = self.factory.getExchange(token_addr) return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, msg.sender, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (token_addr) and transfers # Tokens (token_addr) to recipient. # @dev User specifies maximum input and exact output. # @param tokens_bought Amount of Tokens (token_addr) bought. # @param max_tokens_sold Maximum Tokens (self.token) sold. # @param max_eth_sold Maximum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (self.token) sold. @public def tokenToTokenTransferOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, recipient: address, token_addr: address) -> uint256: exchange_addr: address = self.factory.getExchange(token_addr) return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, recipient, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token). # @dev Allows trades through contracts that were not deployed from the same factory. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_tokens_bought Minimum Tokens (token_addr) purchased. # @param min_eth_bought Minimum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param exchange_addr The address of the exchange for the token being purchased. # @return Amount of Tokens (exchange_addr.token) bought. @public def tokenToExchangeSwapInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, exchange_addr: address) -> uint256: return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, msg.sender, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token) and transfers # Tokens (exchange_addr.token) to recipient. # @dev Allows trades through contracts that were not deployed from the same factory. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_tokens_bought Minimum Tokens (token_addr) purchased. # @param min_eth_bought Minimum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @param exchange_addr The address of the exchange for the token being purchased. # @return Amount of Tokens (exchange_addr.token) bought. @public def tokenToExchangeTransferInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, recipient: address, exchange_addr: address) -> uint256: assert recipient != self return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, recipient, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token). # @dev Allows trades through contracts that were not deployed from the same factory. # @dev User specifies maximum input and exact output. # @param tokens_bought Amount of Tokens (token_addr) bought. # @param max_tokens_sold Maximum Tokens (self.token) sold. # @param max_eth_sold Maximum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param exchange_addr The address of the exchange for the token being purchased. # @return Amount of Tokens (self.token) sold. @public def tokenToExchangeSwapOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, exchange_addr: address) -> uint256: return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, msg.sender, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token) and transfers # Tokens (exchange_addr.token) to recipient. # @dev Allows trades through contracts that were not deployed from the same factory. # @dev User specifies maximum input and exact output. # @param tokens_bought Amount of Tokens (token_addr) bought. # @param max_tokens_sold Maximum Tokens (self.token) sold. # @param max_eth_sold Maximum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (self.token) sold. @public def tokenToExchangeTransferOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, recipient: address, exchange_addr: address) -> uint256: assert recipient != self return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, recipient, exchange_addr) # @notice Public price function for ETH to Token trades with an exact input. # @param eth_sold Amount of ETH sold. # @return Amount of Tokens that can be bought with input ETH. @public @constant def getEthToTokenInputPrice(eth_sold: uint256(wei)) -> uint256: assert eth_sold > 0 token_reserve: uint256 = self.token.balanceOf(self) return self.getInputPrice(as_unitless_number(eth_sold), as_unitless_number(self.balance), token_reserve) # @notice Public price function for ETH to Token trades with an exact output. # @param tokens_bought Amount of Tokens bought. # @return Amount of ETH needed to buy output Tokens. @public @constant def getEthToTokenOutputPrice(tokens_bought: uint256) -> uint256(wei): assert tokens_bought > 0 token_reserve: uint256 = self.token.balanceOf(self) eth_sold: uint256 = self.getOutputPrice(tokens_bought, as_unitless_number(self.balance), token_reserve) return as_wei_value(eth_sold, 'wei') # @notice Public price function for Token to ETH trades with an exact input. # @param tokens_sold Amount of Tokens sold. # @return Amount of ETH that can be bought with input Tokens. @public @constant def getTokenToEthInputPrice(tokens_sold: uint256) -> uint256(wei): assert tokens_sold > 0 token_reserve: uint256 = self.token.balanceOf(self) eth_bought: uint256 = self.getInputPrice(tokens_sold, token_reserve, as_unitless_number(self.balance)) return as_wei_value(eth_bought, 'wei') # @notice Public price function for Token to ETH trades with an exact output. # @param eth_bought Amount of output ETH. # @return Amount of Tokens needed to buy output ETH. @public @constant def getTokenToEthOutputPrice(eth_bought: uint256(wei)) -> uint256: assert eth_bought > 0 token_reserve: uint256 = self.token.balanceOf(self) return self.getOutputPrice(as_unitless_number(eth_bought), token_reserve, as_unitless_number(self.balance)) # @return Address of Token that is sold on this exchange. @public @constant def tokenAddress() -> address: return self.token # @return Address of factory that created this exchange. @public @constant def factoryAddress() -> address(Factory): return self.factory # ERC20 compatibility for exchange liquidity modified from # https://github.com/ethereum/vyper/blob/master/examples/tokens/ERC20.vy @public @constant def balanceOf(_owner : address) -> uint256: return self.balances[_owner] @public def transfer(_to : address, _value : uint256) -> bool: self.balances[msg.sender] -= _value self.balances[_to] += _value log.Transfer(msg.sender, _to, _value) return True @public def transferFrom(_from : address, _to : address, _value : uint256) -> bool: self.balances[_from] -= _value self.balances[_to] += _value self.allowances[_from][msg.sender] -= _value log.Transfer(_from, _to, _value) return True @public def approve(_spender : address, _value : uint256) -> bool: self.allowances[msg.sender][_spender] = _value log.Approval(msg.sender, _spender, _value) return True @public @constant def allowance(_owner : address, _spender : address) -> uint256: return self.allowances[_owner][_spender]