ETH Price: $2,439.61 (+1.24%)

Transaction Decoder

Block:
21134821 at Nov-07-2024 09:16:23 AM +UTC
Transaction Fee:
0.001581313738807052 ETH $3.86
Gas Used:
68,044 Gas / 23.239576433 Gwei

Account State Difference:

  Address   Before After State Difference Code
(beaverbuild)
15.799999809209818519 Eth15.800131428478840491 Eth0.000131619269021972
0xb13af6c0...3a62080e5
0.30852846495657259 Eth
Nonce: 110
0.306947151217765538 Eth
Nonce: 111
0.001581313738807052
0xd1061Ff9...5C8B38f1D
0xeA7B7DC0...fD54e37E4

Execution Trace

SDAOTokenStaking.withdrawAndHarvest( _pid=0, _amount=23277802521, _to=0xb13af6c0f0483B841456dcE55F46D5C3a62080e5 )
  • HyperCycleToken.transfer( to=0xb13af6c0f0483B841456dcE55F46D5C3a62080e5, amount=23277802521 ) => ( True )
    File 1 of 2: SDAOTokenStaking
    // SPDX-License-Identifier: MIT
    pragma solidity 0.6.12;
    pragma experimental ABIEncoderV2;
    import "./libraries/BoringMath.sol";
    import "./libraries/SignedSafeMath.sol";
    import "./libraries/BoringERC20.sol";
    import "@openzeppelin/contracts/access/Ownable.sol";
    import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
    /************************************************************************************************
    Originally from
    https://github.com/sushiswap/sushiswap/blob/master/contracts/MasterChefV2.sol
    and
    https://github.com/sdaoswap/sushiswap/blob/master/contracts/MasterChef.sol
    This source code has been modified from the original, which was copied from the github repository
    at commit hash 10148a31d9192bc803dac5d24fe0319b52ae99a4.
    *************************************************************************************************/
    contract SDAOTokenStaking is Ownable,ReentrancyGuard {
      using BoringMath for uint256;
      using BoringERC20 for IERC20;
      using SignedSafeMath for int256;
      //==========  Structs  ==========
      
      /// @dev Info of each user.
      /// @param amount LP token amount the user has provided.
      /// @param rewardDebt The amount of rewards entitled to the user.
      struct UserInfo {
        uint256 amount;
        int256 rewardDebt;
      }
      /// @dev Info of each rewards pool.
      /// @param tokenPerBlock Reward tokens per block number.
      /// @param lpSupply Total staked amount.
      /// @param accRewardsPerShare Total rewards accumulated per staked token.
      /// @param lastRewardBlock Last time rewards were updated for the pool.
      /// @param endOfEpochBlock End of epoc block number for compute and to avoid deposits.
      struct PoolInfo {
        uint256 tokenPerBlock;
        uint256 lpSupply;
        uint256 accRewardsPerShare;
        uint256 lastRewardBlock;
        uint256 endOfEpochBlock;
      }
      //==========  Constants  ==========
      /// @dev For percision calculation while computing the rewards.
      uint256 private constant ACC_REWARDS_PRECISION = 1e18;
      /// @dev ERC20 token used to distribute rewards.   
      IERC20 public immutable rewardsToken;
      /** ==========  Storage  ========== */
      /// @dev Indicates whether a staking pool exists for a given staking token.
      //mapping(address => bool) public stakingPoolExists;
      
      /// @dev Info of each staking pool.
      PoolInfo[] public poolInfo;
      
      /// @dev Address of the LP token for each staking pool.
      mapping(uint256 => IERC20) public lpToken;
      
      /// @dev Info of each user that stakes tokens.
      mapping(uint256 => mapping(address => UserInfo)) public userInfo;
      /// @dev Total rewards received from governance for distribution.
      /// Used to return remaining rewards if staking is canceled.
      uint256 public totalRewardsReceived;
      // ==========  Events  ==========
      event Deposit(address indexed user, uint256 indexed pid, uint256 amount, address indexed to);
      event Withdraw(address indexed user, uint256 indexed pid, uint256 amount, address indexed to);
      event EmergencyWithdraw(address indexed user, uint256 indexed pid, uint256 amount, address indexed to);
      event Harvest(address indexed user, uint256 indexed pid, uint256 amount);
      event LogPoolAddition(uint256 indexed pid, IERC20 indexed lpToken);
      event LogUpdatePool(uint256 indexed pid, uint256 lastRewardBlock, uint256 lpSupply, uint256 accRewardsPerShare);
      event RewardsAdded(uint256 amount);
      event ExtendPool(uint256 indexed pid, uint256 rewardBlock, uint256 endOfEpochBlock);
      // ==========  Constructor  ==========
      /// @dev During the deployment of the contract pass the ERC-20 contract address used for rewards.
      constructor(address _rewardsToken) public {
        rewardsToken = IERC20(_rewardsToken);
      }
      /// @dev Add rewards to be distributed.
      /// Note: This function must be used to add rewards if the owner
      /// wants to retain the option to cancel distribution and reclaim
      /// undistributed tokens.  
      function addRewards(uint256 amount) external onlyOwner {
        
        require(rewardsToken.balanceOf(msg.sender) > 0, "ERC20: not enough tokens to transfer");
        totalRewardsReceived = totalRewardsReceived.add(amount);
        rewardsToken.safeTransferFrom(msg.sender, address(this), amount);
        
        emit RewardsAdded(amount);
      }
      // ==========  Pools  ==========
      
      /// @dev Add a new LP to the pool.
      /// Can only be called by the owner or the points allocator.
      /// @param _lpToken Address of the LP ERC-20 token.
      /// @param _sdaoPerBlock Rewards per block.
      /// @param _endOfEpochBlock Epocs end block number.
      function add(IERC20 _lpToken, uint256 _sdaoPerBlock, uint256 _endOfEpochBlock) public onlyOwner {
        //This is not needed as we are going to use the contract for multiple pools with the same LP Tokens
        //require(!stakingPoolExists[address(_lpToken)], " Staking pool already exists.");
        
        require(_endOfEpochBlock > block.number, "Cannot create the pool for past time.");
        uint256 pid = poolInfo.length;
        lpToken[pid] = _lpToken;
        poolInfo.push(PoolInfo({
          tokenPerBlock: _sdaoPerBlock,
          endOfEpochBlock:_endOfEpochBlock,
          lastRewardBlock: block.number,
          lpSupply:0,
          accRewardsPerShare: 0
        }));
        //stakingPoolExists[address(_lpToken)] = true;
        emit LogPoolAddition(pid, _lpToken);
      }
      /// @dev Add a new LP to the pool.
      /// Can only be called by the owner or the points allocator.
      /// @param _pid Pool Id to extend the schedule.
      /// @param _sdaoPerBlock Rewards per block.
      /// @param _endOfEpochBlock Epocs end block number.
      function extendPool(uint256 _pid, uint256 _sdaoPerBlock, uint256 _endOfEpochBlock) public onlyOwner {
        
        require(_endOfEpochBlock > block.number && _endOfEpochBlock > poolInfo[_pid].endOfEpochBlock, "Cannot extend the pool for past time.");
        // Update the accumulated rewards
        PoolInfo memory pool = updatePool(_pid);
        pool.tokenPerBlock = _sdaoPerBlock;
        pool.endOfEpochBlock = _endOfEpochBlock;
        pool.lastRewardBlock = block.number;
        // Update the Pool Storage
        poolInfo[_pid] = pool;
        emit ExtendPool(_pid, _sdaoPerBlock, _endOfEpochBlock);
      }
      /// @dev To get the rewards per block.
      function sdaoPerBlock(uint256 _pid) public view returns (uint256 amount) {
          PoolInfo memory pool = poolInfo[_pid];
          amount = pool.tokenPerBlock;
      }
      /// @dev Update reward variables for all pools in `pids`.
      /// Note: This can become very expensive.
      /// @param pids Pool IDs of all to be updated. Make sure to update all active pools.
      function massUpdatePools(uint256[] calldata pids) external onlyOwner {
        uint256 len = pids.length;
        for (uint256 i = 0; i < len; ++i) {
          updatePool(pids[i]);
        }
      }
      /// @dev Update reward variables of the given pool.
      /// @param _pid The index of the pool. See `poolInfo`.
      /// @return pool Returns the pool that was updated.
     function updatePool(uint256 _pid) private returns (PoolInfo memory pool) {
        pool = poolInfo[_pid];
        uint256 lpSupply = pool.lpSupply;
        if (block.number > pool.lastRewardBlock && pool.lastRewardBlock < pool.endOfEpochBlock) {
           if(lpSupply > 0){
             
               uint256 blocks;
               if(block.number < pool.endOfEpochBlock) {
                 blocks = block.number.sub(pool.lastRewardBlock);
               } else {
                 blocks = pool.endOfEpochBlock.sub(pool.lastRewardBlock);
              }
              uint256 sdaoReward = blocks.mul(sdaoPerBlock(_pid));
              pool.accRewardsPerShare = pool.accRewardsPerShare.add((sdaoReward.mul(ACC_REWARDS_PRECISION) / lpSupply));
           }
           pool.lastRewardBlock = block.number;
           poolInfo[_pid] = pool;
           emit LogUpdatePool(_pid, pool.lastRewardBlock, lpSupply, pool.accRewardsPerShare);
        }
      }
      // ==========  Users  ==========
      /// @dev View function to see pending rewards on frontend.
      /// @param _pid The index of the pool. See `poolInfo`.
      /// @param _user Address of user.
      /// @return pending rewards for a given user.
      function pendingRewards(uint256 _pid, address _user) external view returns (uint256 pending) {
        PoolInfo memory pool = poolInfo[_pid];
        UserInfo storage user = userInfo[_pid][_user];
        uint256 accRewardsPerShare = pool.accRewardsPerShare;
        uint256 lpSupply = pool.lpSupply;
        if (block.number > pool.lastRewardBlock && pool.lastRewardBlock < pool.endOfEpochBlock) {
          if(lpSupply > 0){
            uint256 blocks;
            if(block.number < pool.endOfEpochBlock) {
                blocks = block.number.sub(pool.lastRewardBlock);
            } else {
              blocks = pool.endOfEpochBlock.sub(pool.lastRewardBlock);
            }
            
            uint256 sdaoReward = blocks.mul(sdaoPerBlock(_pid));
            accRewardsPerShare = accRewardsPerShare.add(sdaoReward.mul(ACC_REWARDS_PRECISION) / lpSupply);
          }
        }
        pending = int256(user.amount.mul(accRewardsPerShare) / ACC_REWARDS_PRECISION).sub(user.rewardDebt).toUInt256();
      }
      /// @dev Deposit LP tokens to earn rewards.
      /// @param _pid The index of the pool. See `poolInfo`.
      /// @param _amount LP token amount to deposit.
      /// @param _to The receiver of `_amount` deposit benefit.
      function deposit(uint256 _pid, uint256 _amount, address _to) external nonReentrant {
        // Input Validation
        require(_amount > 0 && _to != address(0), "Invalid inputs for deposit.");
        PoolInfo memory pool = updatePool(_pid);
        UserInfo storage user = userInfo[_pid][_to];
        // check if epoch as ended or if pool doesnot exist 
        require (pool.endOfEpochBlock > block.number,"This pool epoch has ended. Please join staking new session.");
        
        user.amount = user.amount.add(_amount);
        user.rewardDebt = user.rewardDebt.add(int256(_amount.mul(pool.accRewardsPerShare) / ACC_REWARDS_PRECISION));
        // Add to total supply
        pool.lpSupply = pool.lpSupply.add(_amount);
        // Update the pool back
        poolInfo[_pid] = pool;
        // Interactions
        lpToken[_pid].safeTransferFrom(msg.sender, address(this), _amount);
        emit Deposit(msg.sender, _pid, _amount, _to);
      }
      /// @dev Withdraw LP tokens from the staking contract.
      /// @param _pid The index of the pool. See `poolInfo`.
      /// @param _amount LP token amount to withdraw.
      /// @param _to Receiver of the LP tokens.
      function withdraw(uint256 _pid, uint256 _amount, address _to) external nonReentrant {
        require(_to != address(0), "ERC20: transfer to the zero address");
        PoolInfo memory pool = updatePool(_pid);
        UserInfo storage user = userInfo[_pid][msg.sender];
        // Check whether user has deposited stake
        require(user.amount >= _amount && _amount > 0, "Invalid amount to withdraw.");
        // Effects
        user.rewardDebt = user.rewardDebt.sub(int256(_amount.mul(pool.accRewardsPerShare) / ACC_REWARDS_PRECISION));
        user.amount = user.amount.sub(_amount);
        // Subtract from total supply
        pool.lpSupply = pool.lpSupply.sub(_amount);
        // Update the pool back
        poolInfo[_pid] = pool;
        // Interactions
        lpToken[_pid].safeTransfer(_to, _amount);
        emit Withdraw(msg.sender, _pid, _amount, _to);
      }
       /// @dev Harvest proceeds for transaction sender to `_to`.
       /// @param _pid The index of the pool. See `poolInfo`.
       /// @param _to Receiver of rewards.
       function harvest(uint256 _pid, address _to) external nonReentrant {
        
        require(_to != address(0), "ERC20: transfer to the zero address");
        PoolInfo memory pool = updatePool(_pid);
        UserInfo storage user = userInfo[_pid][msg.sender];
        int256 accumulatedRewards = int256(user.amount.mul(pool.accRewardsPerShare) / ACC_REWARDS_PRECISION);
        uint256 _pendingRewards = accumulatedRewards.sub(user.rewardDebt).toUInt256();
        // Effects
        user.rewardDebt = accumulatedRewards;
        // Interactions
        if(_pendingRewards > 0 ) {
          rewardsToken.safeTransfer(_to, _pendingRewards);
        }
        
        emit Harvest(msg.sender, _pid, _pendingRewards);
      }
      //// @dev Withdraw LP tokens and harvest accumulated rewards, sending both to `to`.
      /// @param _pid The index of the pool. See `poolInfo`.
      /// @param _amount LP token amount to withdraw.
      /// @param _to Receiver of the LP tokens and rewards.
      function withdrawAndHarvest(uint256 _pid, uint256 _amount, address _to) external nonReentrant {
        require(_to != address(0), "ERC20: transfer to the zero address");
        PoolInfo memory pool = updatePool(_pid);
        UserInfo storage user = userInfo[_pid][msg.sender];
        // Check if the user has stake in the pool
        require(user.amount >= _amount && _amount > 0, "Cannot withdraw more than staked.");
        int256 accumulatedRewards = int256(user.amount.mul(pool.accRewardsPerShare) / ACC_REWARDS_PRECISION);
        uint256 _pendingRewards = accumulatedRewards.sub(user.rewardDebt).toUInt256();
        // Effects
        user.rewardDebt = accumulatedRewards.sub(int256(_amount.mul(pool.accRewardsPerShare) / ACC_REWARDS_PRECISION));
        user.amount = user.amount.sub(_amount);
        // Subtract from total supply
        pool.lpSupply = pool.lpSupply.sub(_amount);
        // Update the pool back
        poolInfo[_pid] = pool;
        // Interactions
        if(_pendingRewards > 0) {
          rewardsToken.safeTransfer(_to, _pendingRewards);
        }
        lpToken[_pid].safeTransfer(_to, _amount);
        emit Harvest(msg.sender, _pid, _pendingRewards);
        emit Withdraw(msg.sender, _pid, _amount, _to);
      }
      /// @dev Withdraw without caring about rewards. EMERGENCY ONLY.
      /// @param _pid The index of the pool. See `poolInfo`.
      /// @param _to Receiver of the LP tokens.  
      function emergencyWithdraw(uint256 _pid, address _to) external nonReentrant { 
        require(_to != address(0), "ERC20: transfer to the zero address");
        UserInfo storage user = userInfo[_pid][msg.sender];
        uint256 amount = user.amount;
        user.amount = 0;
        user.rewardDebt = 0;
        PoolInfo memory pool = updatePool(_pid);
        pool.lpSupply = pool.lpSupply.sub(amount);
        // Update the pool back
        poolInfo[_pid] = pool;
        // Note: transfer can fail or succeed if `amount` is zero.
        lpToken[_pid].safeTransfer(_to, amount);
        emit EmergencyWithdraw(msg.sender, _pid, amount, _to);
      }
      function withdrawETHAndAnyTokens(address token) external onlyOwner {
        msg.sender.send(address(this).balance);
        IERC20 Token = IERC20(token);
        uint256 currentTokenBalance = Token.balanceOf(address(this));
        Token.safeTransfer(msg.sender, currentTokenBalance); 
      }
      // ==========  Getter Functions  ==========
      function poolLength() external view returns (uint256) {
        return poolInfo.length;
      }
    }// SPDX-License-Identifier: MIT
    pragma solidity 0.6.12;
    library SignedSafeMath {
      int256 constant private _INT256_MIN = -2**255;
      /**
        * @dev Returns the multiplication of two signed integers, reverting on
        * overflow.
        *
        * Counterpart to Solidity's `*` operator.
        *
        * Requirements:
        *
        * - Multiplication cannot overflow.
        */
      function mul(int256 a, int256 b) internal pure returns (int256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) {
          return 0;
        }
        require(!(a == -1 && b == _INT256_MIN), "SignedSafeMath: multiplication overflow");
        int256 c = a * b;
        require(c / a == b, "SignedSafeMath: multiplication overflow");
        return c;
      }
      /**
        * @dev Returns the integer division of two signed integers. Reverts on
        * division by zero. The result is rounded towards zero.
        *
        * Counterpart to Solidity's `/` operator. Note: this function uses a
        * `revert` opcode (which leaves remaining gas untouched) while Solidity
        * uses an invalid opcode to revert (consuming all remaining gas).
        *
        * Requirements:
        *
        * - The divisor cannot be zero.
        */
      function div(int256 a, int256 b) internal pure returns (int256) {
        require(b != 0, "SignedSafeMath: division by zero");
        require(!(b == -1 && a == _INT256_MIN), "SignedSafeMath: division overflow");
        int256 c = a / b;
        return c;
      }
      /**
        * @dev Returns the subtraction of two signed integers, reverting on
        * overflow.
        *
        * Counterpart to Solidity's `-` operator.
        *
        * Requirements:
        *
        * - Subtraction cannot overflow.
        */
      function sub(int256 a, int256 b) internal pure returns (int256) {
        int256 c = a - b;
        require((b >= 0 && c <= a) || (b < 0 && c > a), "SignedSafeMath: subtraction overflow");
        return c;
      }
      /**
        * @dev Returns the addition of two signed integers, reverting on
        * overflow.
        *
        * Counterpart to Solidity's `+` operator.
        *
        * Requirements:
        *
        * - Addition cannot overflow.
        */
      function add(int256 a, int256 b) internal pure returns (int256) {
        int256 c = a + b;
        require((b >= 0 && c >= a) || (b < 0 && c < a), "SignedSafeMath: addition overflow");
        return c;
      }
      function toUInt256(int256 a) internal pure returns (uint256) {
        require(a >= 0, "Integer < 0");
        return uint256(a);
      }
    }// SPDX-License-Identifier: MIT
    pragma solidity 0.6.12;
    /// @notice A library for performing overflow-/underflow-safe math,
    /// updated with awesomeness from of DappHub (https://github.com/dapphub/ds-math).
    library BoringMath {
        function add(uint256 a, uint256 b) internal pure returns (uint256 c) {
            require((c = a + b) >= b, "BoringMath: Add Overflow");
        }
        function sub(uint256 a, uint256 b) internal pure returns (uint256 c) {
            require((c = a - b) <= a, "BoringMath: Underflow");
        }
        function mul(uint256 a, uint256 b) internal pure returns (uint256 c) {
            require(b == 0 || (c = a * b) / b == a, "BoringMath: Mul Overflow");
        }
        function to128(uint256 a) internal pure returns (uint128 c) {
            require(a <= uint128(-1), "BoringMath: uint128 Overflow");
            c = uint128(a);
        }
        function to64(uint256 a) internal pure returns (uint64 c) {
            require(a <= uint64(-1), "BoringMath: uint64 Overflow");
            c = uint64(a);
        }
        function to32(uint256 a) internal pure returns (uint32 c) {
            require(a <= uint32(-1), "BoringMath: uint32 Overflow");
            c = uint32(a);
        }
    }
    /// @notice A library for performing overflow-/underflow-safe addition and subtraction on uint128.
    library BoringMath128 {
        function add(uint128 a, uint128 b) internal pure returns (uint128 c) {
            require((c = a + b) >= b, "BoringMath: Add Overflow");
        }
        function sub(uint128 a, uint128 b) internal pure returns (uint128 c) {
            require((c = a - b) <= a, "BoringMath: Underflow");
        }
    }
    /// @notice A library for performing overflow-/underflow-safe addition and subtraction on uint64.
    library BoringMath64 {
        function add(uint64 a, uint64 b) internal pure returns (uint64 c) {
            require((c = a + b) >= b, "BoringMath: Add Overflow");
        }
        function sub(uint64 a, uint64 b) internal pure returns (uint64 c) {
            require((c = a - b) <= a, "BoringMath: Underflow");
        }
    }
    /// @notice A library for performing overflow-/underflow-safe addition and subtraction on uint32.
    library BoringMath32 {
        function add(uint32 a, uint32 b) internal pure returns (uint32 c) {
            require((c = a + b) >= b, "BoringMath: Add Overflow");
        }
        function sub(uint32 a, uint32 b) internal pure returns (uint32 c) {
            require((c = a - b) <= a, "BoringMath: Underflow");
        }
    }// SPDX-License-Identifier: MIT
    pragma solidity 0.6.12;
    import "../interfaces/IERC20.sol";
    // solhint-disable avoid-low-level-calls
    library BoringERC20 {
        bytes4 private constant SIG_SYMBOL = 0x95d89b41; // symbol()
        bytes4 private constant SIG_NAME = 0x06fdde03; // name()
        bytes4 private constant SIG_DECIMALS = 0x313ce567; // decimals()
        bytes4 private constant SIG_TRANSFER = 0xa9059cbb; // transfer(address,uint256)
        bytes4 private constant SIG_TRANSFER_FROM = 0x23b872dd; // transferFrom(address,address,uint256)
        function returnDataToString(bytes memory data) internal pure returns (string memory) {
            if (data.length >= 64) {
                return abi.decode(data, (string));
            } else if (data.length == 32) {
                uint8 i = 0;
                while(i < 32 && data[i] != 0) {
                    i++;
                }
                bytes memory bytesArray = new bytes(i);
                for (i = 0; i < 32 && data[i] != 0; i++) {
                    bytesArray[i] = data[i];
                }
                return string(bytesArray);
            } else {
                return "???";
            }
        }
        /// @notice Provides a safe ERC20.symbol version which returns '???' as fallback string.
        /// @param token The address of the ERC-20 token contract.
        /// @return (string) Token symbol.
        function safeSymbol(IERC20 token) internal view returns (string memory) {
            (bool success, bytes memory data) = address(token).staticcall(abi.encodeWithSelector(SIG_SYMBOL));
            return success ? returnDataToString(data) : "???";
        }
        /// @notice Provides a safe ERC20.name version which returns '???' as fallback string.
        /// @param token The address of the ERC-20 token contract.
        /// @return (string) Token name.
        function safeName(IERC20 token) internal view returns (string memory) {
            (bool success, bytes memory data) = address(token).staticcall(abi.encodeWithSelector(SIG_NAME));
            return success ? returnDataToString(data) : "???";
        }
        /// @notice Provides a safe ERC20.decimals version which returns '18' as fallback value.
        /// @param token The address of the ERC-20 token contract.
        /// @return (uint8) Token decimals.
        function safeDecimals(IERC20 token) internal view returns (uint8) {
            (bool success, bytes memory data) = address(token).staticcall(abi.encodeWithSelector(SIG_DECIMALS));
            return success && data.length == 32 ? abi.decode(data, (uint8)) : 18;
        }
        /// @notice Provides a safe ERC20.transfer version for different ERC-20 implementations.
        /// Reverts on a failed transfer.
        /// @param token The address of the ERC-20 token.
        /// @param to Transfer tokens to.
        /// @param amount The token amount.
        function safeTransfer(
            IERC20 token,
            address to,
            uint256 amount
        ) internal {
            (bool success, bytes memory data) = address(token).call(abi.encodeWithSelector(SIG_TRANSFER, to, amount));
            require(success && (data.length == 0 || abi.decode(data, (bool))), "BoringERC20: Transfer failed");
        }
        /// @notice Provides a safe ERC20.transferFrom version for different ERC-20 implementations.
        /// Reverts on a failed transfer.
        /// @param token The address of the ERC-20 token.
        /// @param from Transfer tokens from.
        /// @param to Transfer tokens to.
        /// @param amount The token amount.
        function safeTransferFrom(
            IERC20 token,
            address from,
            address to,
            uint256 amount
        ) internal {
            (bool success, bytes memory data) = address(token).call(abi.encodeWithSelector(SIG_TRANSFER_FROM, from, to, amount));
            require(success && (data.length == 0 || abi.decode(data, (bool))), "BoringERC20: TransferFrom failed");
        }
    }// SPDX-License-Identifier: MIT
    pragma solidity 0.6.12;
    interface IERC20 {
        function totalSupply() external view returns (uint256);
        function balanceOf(address account) external view returns (uint256);
        function allowance(address owner, address spender) external view returns (uint256);
        function approve(address spender, uint256 amount) external returns (bool);
        event Transfer(address indexed from, address indexed to, uint256 value);
        event Approval(address indexed owner, address indexed spender, uint256 value);
        /// @notice EIP 2612
        function permit(
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) external;
    }// SPDX-License-Identifier: MIT
    pragma solidity ^0.6.0;
    /**
     * @dev Contract module that helps prevent reentrant calls to a function.
     *
     * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
     * available, which can be applied to functions to make sure there are no nested
     * (reentrant) calls to them.
     *
     * Note that because there is a single `nonReentrant` guard, functions marked as
     * `nonReentrant` may not call one another. This can be worked around by making
     * those functions `private`, and then adding `external` `nonReentrant` entry
     * points to them.
     *
     * TIP: If you would like to learn more about reentrancy and alternative ways
     * to protect against it, check out our blog post
     * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
     */
    contract ReentrancyGuard {
        // Booleans are more expensive than uint256 or any type that takes up a full
        // word because each write operation emits an extra SLOAD to first read the
        // slot's contents, replace the bits taken up by the boolean, and then write
        // back. This is the compiler's defense against contract upgrades and
        // pointer aliasing, and it cannot be disabled.
        // The values being non-zero value makes deployment a bit more expensive,
        // but in exchange the refund on every call to nonReentrant will be lower in
        // amount. Since refunds are capped to a percentage of the total
        // transaction's gas, it is best to keep them low in cases like this one, to
        // increase the likelihood of the full refund coming into effect.
        uint256 private constant _NOT_ENTERED = 1;
        uint256 private constant _ENTERED = 2;
        uint256 private _status;
        constructor () internal {
            _status = _NOT_ENTERED;
        }
        /**
         * @dev Prevents a contract from calling itself, directly or indirectly.
         * Calling a `nonReentrant` function from another `nonReentrant`
         * function is not supported. It is possible to prevent this from happening
         * by making the `nonReentrant` function external, and make it call a
         * `private` function that does the actual work.
         */
        modifier nonReentrant() {
            // On the first call to nonReentrant, _notEntered will be true
            require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
            // Any calls to nonReentrant after this point will fail
            _status = _ENTERED;
            _;
            // By storing the original value once again, a refund is triggered (see
            // https://eips.ethereum.org/EIPS/eip-2200)
            _status = _NOT_ENTERED;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.6.0;
    import "../GSN/Context.sol";
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    contract Ownable is Context {
        address private _owner;
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor () internal {
            address msgSender = _msgSender();
            _owner = msgSender;
            emit OwnershipTransferred(address(0), msgSender);
        }
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view returns (address) {
            return _owner;
        }
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            require(_owner == _msgSender(), "Ownable: caller is not the owner");
            _;
        }
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions anymore. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            emit OwnershipTransferred(_owner, address(0));
            _owner = address(0);
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            emit OwnershipTransferred(_owner, newOwner);
            _owner = newOwner;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.6.0;
    /*
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with GSN meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address payable) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes memory) {
            this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
            return msg.data;
        }
    }
    

    File 2 of 2: HyperCycleToken
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (access/AccessControl.sol)
    pragma solidity ^0.8.0;
    import "./IAccessControl.sol";
    import "../utils/Context.sol";
    import "../utils/Strings.sol";
    import "../utils/introspection/ERC165.sol";
    /**
     * @dev Contract module that allows children to implement role-based access
     * control mechanisms. This is a lightweight version that doesn't allow enumerating role
     * members except through off-chain means by accessing the contract event logs. Some
     * applications may benefit from on-chain enumerability, for those cases see
     * {AccessControlEnumerable}.
     *
     * Roles are referred to by their `bytes32` identifier. These should be exposed
     * in the external API and be unique. The best way to achieve this is by
     * using `public constant` hash digests:
     *
     * ```
     * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
     * ```
     *
     * Roles can be used to represent a set of permissions. To restrict access to a
     * function call, use {hasRole}:
     *
     * ```
     * function foo() public {
     *     require(hasRole(MY_ROLE, msg.sender));
     *     ...
     * }
     * ```
     *
     * Roles can be granted and revoked dynamically via the {grantRole} and
     * {revokeRole} functions. Each role has an associated admin role, and only
     * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
     *
     * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
     * that only accounts with this role will be able to grant or revoke other
     * roles. More complex role relationships can be created by using
     * {_setRoleAdmin}.
     *
     * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
     * grant and revoke this role. Extra precautions should be taken to secure
     * accounts that have been granted it.
     */
    abstract contract AccessControl is Context, IAccessControl, ERC165 {
        struct RoleData {
            mapping(address => bool) members;
            bytes32 adminRole;
        }
        mapping(bytes32 => RoleData) private _roles;
        bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
        /**
         * @dev Modifier that checks that an account has a specific role. Reverts
         * with a standardized message including the required role.
         *
         * The format of the revert reason is given by the following regular expression:
         *
         *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
         *
         * _Available since v4.1._
         */
        modifier onlyRole(bytes32 role) {
            _checkRole(role);
            _;
        }
        /**
         * @dev See {IERC165-supportsInterface}.
         */
        function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
            return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
        }
        /**
         * @dev Returns `true` if `account` has been granted `role`.
         */
        function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
            return _roles[role].members[account];
        }
        /**
         * @dev Revert with a standard message if `_msgSender()` is missing `role`.
         * Overriding this function changes the behavior of the {onlyRole} modifier.
         *
         * Format of the revert message is described in {_checkRole}.
         *
         * _Available since v4.6._
         */
        function _checkRole(bytes32 role) internal view virtual {
            _checkRole(role, _msgSender());
        }
        /**
         * @dev Revert with a standard message if `account` is missing `role`.
         *
         * The format of the revert reason is given by the following regular expression:
         *
         *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
         */
        function _checkRole(bytes32 role, address account) internal view virtual {
            if (!hasRole(role, account)) {
                revert(
                    string(
                        abi.encodePacked(
                            "AccessControl: account ",
                            Strings.toHexString(account),
                            " is missing role ",
                            Strings.toHexString(uint256(role), 32)
                        )
                    )
                );
            }
        }
        /**
         * @dev Returns the admin role that controls `role`. See {grantRole} and
         * {revokeRole}.
         *
         * To change a role's admin, use {_setRoleAdmin}.
         */
        function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
            return _roles[role].adminRole;
        }
        /**
         * @dev Grants `role` to `account`.
         *
         * If `account` had not been already granted `role`, emits a {RoleGranted}
         * event.
         *
         * Requirements:
         *
         * - the caller must have ``role``'s admin role.
         *
         * May emit a {RoleGranted} event.
         */
        function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
            _grantRole(role, account);
        }
        /**
         * @dev Revokes `role` from `account`.
         *
         * If `account` had been granted `role`, emits a {RoleRevoked} event.
         *
         * Requirements:
         *
         * - the caller must have ``role``'s admin role.
         *
         * May emit a {RoleRevoked} event.
         */
        function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
            _revokeRole(role, account);
        }
        /**
         * @dev Revokes `role` from the calling account.
         *
         * Roles are often managed via {grantRole} and {revokeRole}: this function's
         * purpose is to provide a mechanism for accounts to lose their privileges
         * if they are compromised (such as when a trusted device is misplaced).
         *
         * If the calling account had been revoked `role`, emits a {RoleRevoked}
         * event.
         *
         * Requirements:
         *
         * - the caller must be `account`.
         *
         * May emit a {RoleRevoked} event.
         */
        function renounceRole(bytes32 role, address account) public virtual override {
            require(account == _msgSender(), "AccessControl: can only renounce roles for self");
            _revokeRole(role, account);
        }
        /**
         * @dev Grants `role` to `account`.
         *
         * If `account` had not been already granted `role`, emits a {RoleGranted}
         * event. Note that unlike {grantRole}, this function doesn't perform any
         * checks on the calling account.
         *
         * May emit a {RoleGranted} event.
         *
         * [WARNING]
         * ====
         * This function should only be called from the constructor when setting
         * up the initial roles for the system.
         *
         * Using this function in any other way is effectively circumventing the admin
         * system imposed by {AccessControl}.
         * ====
         *
         * NOTE: This function is deprecated in favor of {_grantRole}.
         */
        function _setupRole(bytes32 role, address account) internal virtual {
            _grantRole(role, account);
        }
        /**
         * @dev Sets `adminRole` as ``role``'s admin role.
         *
         * Emits a {RoleAdminChanged} event.
         */
        function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
            bytes32 previousAdminRole = getRoleAdmin(role);
            _roles[role].adminRole = adminRole;
            emit RoleAdminChanged(role, previousAdminRole, adminRole);
        }
        /**
         * @dev Grants `role` to `account`.
         *
         * Internal function without access restriction.
         *
         * May emit a {RoleGranted} event.
         */
        function _grantRole(bytes32 role, address account) internal virtual {
            if (!hasRole(role, account)) {
                _roles[role].members[account] = true;
                emit RoleGranted(role, account, _msgSender());
            }
        }
        /**
         * @dev Revokes `role` from `account`.
         *
         * Internal function without access restriction.
         *
         * May emit a {RoleRevoked} event.
         */
        function _revokeRole(bytes32 role, address account) internal virtual {
            if (hasRole(role, account)) {
                _roles[role].members[account] = false;
                emit RoleRevoked(role, account, _msgSender());
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev External interface of AccessControl declared to support ERC165 detection.
     */
    interface IAccessControl {
        /**
         * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
         *
         * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
         * {RoleAdminChanged} not being emitted signaling this.
         *
         * _Available since v3.1._
         */
        event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
        /**
         * @dev Emitted when `account` is granted `role`.
         *
         * `sender` is the account that originated the contract call, an admin role
         * bearer except when using {AccessControl-_setupRole}.
         */
        event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
        /**
         * @dev Emitted when `account` is revoked `role`.
         *
         * `sender` is the account that originated the contract call:
         *   - if using `revokeRole`, it is the admin role bearer
         *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
         */
        event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
        /**
         * @dev Returns `true` if `account` has been granted `role`.
         */
        function hasRole(bytes32 role, address account) external view returns (bool);
        /**
         * @dev Returns the admin role that controls `role`. See {grantRole} and
         * {revokeRole}.
         *
         * To change a role's admin, use {AccessControl-_setRoleAdmin}.
         */
        function getRoleAdmin(bytes32 role) external view returns (bytes32);
        /**
         * @dev Grants `role` to `account`.
         *
         * If `account` had not been already granted `role`, emits a {RoleGranted}
         * event.
         *
         * Requirements:
         *
         * - the caller must have ``role``'s admin role.
         */
        function grantRole(bytes32 role, address account) external;
        /**
         * @dev Revokes `role` from `account`.
         *
         * If `account` had been granted `role`, emits a {RoleRevoked} event.
         *
         * Requirements:
         *
         * - the caller must have ``role``'s admin role.
         */
        function revokeRole(bytes32 role, address account) external;
        /**
         * @dev Revokes `role` from the calling account.
         *
         * Roles are often managed via {grantRole} and {revokeRole}: this function's
         * purpose is to provide a mechanism for accounts to lose their privileges
         * if they are compromised (such as when a trusted device is misplaced).
         *
         * If the calling account had been granted `role`, emits a {RoleRevoked}
         * event.
         *
         * Requirements:
         *
         * - the caller must be `account`.
         */
        function renounceRole(bytes32 role, address account) external;
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)
    pragma solidity ^0.8.0;
    import "../utils/Context.sol";
    /**
     * @dev Contract module which allows children to implement an emergency stop
     * mechanism that can be triggered by an authorized account.
     *
     * This module is used through inheritance. It will make available the
     * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
     * the functions of your contract. Note that they will not be pausable by
     * simply including this module, only once the modifiers are put in place.
     */
    abstract contract Pausable is Context {
        /**
         * @dev Emitted when the pause is triggered by `account`.
         */
        event Paused(address account);
        /**
         * @dev Emitted when the pause is lifted by `account`.
         */
        event Unpaused(address account);
        bool private _paused;
        /**
         * @dev Initializes the contract in unpaused state.
         */
        constructor() {
            _paused = false;
        }
        /**
         * @dev Modifier to make a function callable only when the contract is not paused.
         *
         * Requirements:
         *
         * - The contract must not be paused.
         */
        modifier whenNotPaused() {
            _requireNotPaused();
            _;
        }
        /**
         * @dev Modifier to make a function callable only when the contract is paused.
         *
         * Requirements:
         *
         * - The contract must be paused.
         */
        modifier whenPaused() {
            _requirePaused();
            _;
        }
        /**
         * @dev Returns true if the contract is paused, and false otherwise.
         */
        function paused() public view virtual returns (bool) {
            return _paused;
        }
        /**
         * @dev Throws if the contract is paused.
         */
        function _requireNotPaused() internal view virtual {
            require(!paused(), "Pausable: paused");
        }
        /**
         * @dev Throws if the contract is not paused.
         */
        function _requirePaused() internal view virtual {
            require(paused(), "Pausable: not paused");
        }
        /**
         * @dev Triggers stopped state.
         *
         * Requirements:
         *
         * - The contract must not be paused.
         */
        function _pause() internal virtual whenNotPaused {
            _paused = true;
            emit Paused(_msgSender());
        }
        /**
         * @dev Returns to normal state.
         *
         * Requirements:
         *
         * - The contract must be paused.
         */
        function _unpause() internal virtual whenPaused {
            _paused = false;
            emit Unpaused(_msgSender());
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol)
    pragma solidity ^0.8.0;
    import "./IERC20.sol";
    import "./extensions/IERC20Metadata.sol";
    import "../../utils/Context.sol";
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     * For a generic mechanism see {ERC20PresetMinterPauser}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * We have followed general OpenZeppelin Contracts guidelines: functions revert
     * instead returning `false` on failure. This behavior is nonetheless
     * conventional and does not conflict with the expectations of ERC20
     * applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See {IERC20-approve}.
     */
    contract ERC20 is Context, IERC20, IERC20Metadata {
        mapping(address => uint256) private _balances;
        mapping(address => mapping(address => uint256)) private _allowances;
        uint256 private _totalSupply;
        string private _name;
        string private _symbol;
        /**
         * @dev Sets the values for {name} and {symbol}.
         *
         * The default value of {decimals} is 18. To select a different value for
         * {decimals} you should overload it.
         *
         * All two of these values are immutable: they can only be set once during
         * construction.
         */
        constructor(string memory name_, string memory symbol_) {
            _name = name_;
            _symbol = symbol_;
        }
        /**
         * @dev Returns the name of the token.
         */
        function name() public view virtual override returns (string memory) {
            return _name;
        }
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view virtual override returns (string memory) {
            return _symbol;
        }
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5.05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the value {ERC20} uses, unless this function is
         * overridden;
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view virtual override returns (uint8) {
            return 18;
        }
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view virtual override returns (uint256) {
            return _totalSupply;
        }
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view virtual override returns (uint256) {
            return _balances[account];
        }
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address to, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _transfer(owner, to, amount);
            return true;
        }
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view virtual override returns (uint256) {
            return _allowances[owner][spender];
        }
        /**
         * @dev See {IERC20-approve}.
         *
         * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
         * `transferFrom`. This is semantically equivalent to an infinite approval.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, amount);
            return true;
        }
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20}.
         *
         * NOTE: Does not update the allowance if the current allowance
         * is the maximum `uint256`.
         *
         * Requirements:
         *
         * - `from` and `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         * - the caller must have allowance for ``from``'s tokens of at least
         * `amount`.
         */
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) public virtual override returns (bool) {
            address spender = _msgSender();
            _spendAllowance(from, spender, amount);
            _transfer(from, to, amount);
            return true;
        }
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, allowance(owner, spender) + addedValue);
            return true;
        }
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
            address owner = _msgSender();
            uint256 currentAllowance = allowance(owner, spender);
            require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
            unchecked {
                _approve(owner, spender, currentAllowance - subtractedValue);
            }
            return true;
        }
        /**
         * @dev Moves `amount` of tokens from `from` to `to`.
         *
         * This internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         */
        function _transfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {
            require(from != address(0), "ERC20: transfer from the zero address");
            require(to != address(0), "ERC20: transfer to the zero address");
            _beforeTokenTransfer(from, to, amount);
            uint256 fromBalance = _balances[from];
            require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
            unchecked {
                _balances[from] = fromBalance - amount;
                // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
                // decrementing then incrementing.
                _balances[to] += amount;
            }
            emit Transfer(from, to, amount);
            _afterTokenTransfer(from, to, amount);
        }
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: mint to the zero address");
            _beforeTokenTransfer(address(0), account, amount);
            _totalSupply += amount;
            unchecked {
                // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
                _balances[account] += amount;
            }
            emit Transfer(address(0), account, amount);
            _afterTokenTransfer(address(0), account, amount);
        }
        /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: burn from the zero address");
            _beforeTokenTransfer(account, address(0), amount);
            uint256 accountBalance = _balances[account];
            require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
            unchecked {
                _balances[account] = accountBalance - amount;
                // Overflow not possible: amount <= accountBalance <= totalSupply.
                _totalSupply -= amount;
            }
            emit Transfer(account, address(0), amount);
            _afterTokenTransfer(account, address(0), amount);
        }
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
         *
         * This internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
            _allowances[owner][spender] = amount;
            emit Approval(owner, spender, amount);
        }
        /**
         * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
         *
         * Does not update the allowance amount in case of infinite allowance.
         * Revert if not enough allowance is available.
         *
         * Might emit an {Approval} event.
         */
        function _spendAllowance(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            uint256 currentAllowance = allowance(owner, spender);
            if (currentAllowance != type(uint256).max) {
                require(currentAllowance >= amount, "ERC20: insufficient allowance");
                unchecked {
                    _approve(owner, spender, currentAllowance - amount);
                }
            }
        }
        /**
         * @dev Hook that is called before any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * will be transferred to `to`.
         * - when `from` is zero, `amount` tokens will be minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _beforeTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
        /**
         * @dev Hook that is called after any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * has been transferred to `to`.
         * - when `from` is zero, `amount` tokens have been minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _afterTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/extensions/ERC20Burnable.sol)
    pragma solidity ^0.8.0;
    import "../ERC20.sol";
    import "../../../utils/Context.sol";
    /**
     * @dev Extension of {ERC20} that allows token holders to destroy both their own
     * tokens and those that they have an allowance for, in a way that can be
     * recognized off-chain (via event analysis).
     */
    abstract contract ERC20Burnable is Context, ERC20 {
        /**
         * @dev Destroys `amount` tokens from the caller.
         *
         * See {ERC20-_burn}.
         */
        function burn(uint256 amount) public virtual {
            _burn(_msgSender(), amount);
        }
        /**
         * @dev Destroys `amount` tokens from `account`, deducting from the caller's
         * allowance.
         *
         * See {ERC20-_burn} and {ERC20-allowance}.
         *
         * Requirements:
         *
         * - the caller must have allowance for ``accounts``'s tokens of at least
         * `amount`.
         */
        function burnFrom(address account, uint256 amount) public virtual {
            _spendAllowance(account, _msgSender(), amount);
            _burn(account, amount);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
    pragma solidity ^0.8.0;
    import "../IERC20.sol";
    /**
     * @dev Interface for the optional metadata functions from the ERC20 standard.
     *
     * _Available since v4.1._
     */
    interface IERC20Metadata is IERC20 {
        /**
         * @dev Returns the name of the token.
         */
        function name() external view returns (string memory);
        /**
         * @dev Returns the symbol of the token.
         */
        function symbol() external view returns (string memory);
        /**
         * @dev Returns the decimals places of the token.
         */
        function decimals() external view returns (uint8);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Moves `amount` tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 amount) external returns (bool);
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
        /**
         * @dev Moves `amount` tokens from `from` to `to` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) external returns (bool);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
    pragma solidity ^0.8.0;
    import "./IERC165.sol";
    /**
     * @dev Implementation of the {IERC165} interface.
     *
     * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
     * for the additional interface id that will be supported. For example:
     *
     * ```solidity
     * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
     *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
     * }
     * ```
     *
     * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
     */
    abstract contract ERC165 is IERC165 {
        /**
         * @dev See {IERC165-supportsInterface}.
         */
        function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
            return interfaceId == type(IERC165).interfaceId;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC165 standard, as defined in the
     * https://eips.ethereum.org/EIPS/eip-165[EIP].
     *
     * Implementers can declare support of contract interfaces, which can then be
     * queried by others ({ERC165Checker}).
     *
     * For an implementation, see {ERC165}.
     */
    interface IERC165 {
        /**
         * @dev Returns true if this contract implements the interface defined by
         * `interfaceId`. See the corresponding
         * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
         * to learn more about how these ids are created.
         *
         * This function call must use less than 30 000 gas.
         */
        function supportsInterface(bytes4 interfaceId) external view returns (bool);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Standard math utilities missing in the Solidity language.
     */
    library Math {
        enum Rounding {
            Down, // Toward negative infinity
            Up, // Toward infinity
            Zero // Toward zero
        }
        /**
         * @dev Returns the largest of two numbers.
         */
        function max(uint256 a, uint256 b) internal pure returns (uint256) {
            return a > b ? a : b;
        }
        /**
         * @dev Returns the smallest of two numbers.
         */
        function min(uint256 a, uint256 b) internal pure returns (uint256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two numbers. The result is rounded towards
         * zero.
         */
        function average(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b) / 2 can overflow.
            return (a & b) + (a ^ b) / 2;
        }
        /**
         * @dev Returns the ceiling of the division of two numbers.
         *
         * This differs from standard division with `/` in that it rounds up instead
         * of rounding down.
         */
        function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b - 1) / b can overflow on addition, so we distribute.
            return a == 0 ? 0 : (a - 1) / b + 1;
        }
        /**
         * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
         * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
         * with further edits by Uniswap Labs also under MIT license.
         */
        function mulDiv(
            uint256 x,
            uint256 y,
            uint256 denominator
        ) internal pure returns (uint256 result) {
            unchecked {
                // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                // variables such that product = prod1 * 2^256 + prod0.
                uint256 prod0; // Least significant 256 bits of the product
                uint256 prod1; // Most significant 256 bits of the product
                assembly {
                    let mm := mulmod(x, y, not(0))
                    prod0 := mul(x, y)
                    prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                }
                // Handle non-overflow cases, 256 by 256 division.
                if (prod1 == 0) {
                    return prod0 / denominator;
                }
                // Make sure the result is less than 2^256. Also prevents denominator == 0.
                require(denominator > prod1);
                ///////////////////////////////////////////////
                // 512 by 256 division.
                ///////////////////////////////////////////////
                // Make division exact by subtracting the remainder from [prod1 prod0].
                uint256 remainder;
                assembly {
                    // Compute remainder using mulmod.
                    remainder := mulmod(x, y, denominator)
                    // Subtract 256 bit number from 512 bit number.
                    prod1 := sub(prod1, gt(remainder, prod0))
                    prod0 := sub(prod0, remainder)
                }
                // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                // See https://cs.stackexchange.com/q/138556/92363.
                // Does not overflow because the denominator cannot be zero at this stage in the function.
                uint256 twos = denominator & (~denominator + 1);
                assembly {
                    // Divide denominator by twos.
                    denominator := div(denominator, twos)
                    // Divide [prod1 prod0] by twos.
                    prod0 := div(prod0, twos)
                    // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                    twos := add(div(sub(0, twos), twos), 1)
                }
                // Shift in bits from prod1 into prod0.
                prod0 |= prod1 * twos;
                // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                // four bits. That is, denominator * inv = 1 mod 2^4.
                uint256 inverse = (3 * denominator) ^ 2;
                // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                // in modular arithmetic, doubling the correct bits in each step.
                inverse *= 2 - denominator * inverse; // inverse mod 2^8
                inverse *= 2 - denominator * inverse; // inverse mod 2^16
                inverse *= 2 - denominator * inverse; // inverse mod 2^32
                inverse *= 2 - denominator * inverse; // inverse mod 2^64
                inverse *= 2 - denominator * inverse; // inverse mod 2^128
                inverse *= 2 - denominator * inverse; // inverse mod 2^256
                // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                // is no longer required.
                result = prod0 * inverse;
                return result;
            }
        }
        /**
         * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
         */
        function mulDiv(
            uint256 x,
            uint256 y,
            uint256 denominator,
            Rounding rounding
        ) internal pure returns (uint256) {
            uint256 result = mulDiv(x, y, denominator);
            if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                result += 1;
            }
            return result;
        }
        /**
         * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
         *
         * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
         */
        function sqrt(uint256 a) internal pure returns (uint256) {
            if (a == 0) {
                return 0;
            }
            // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
            //
            // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
            // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
            //
            // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
            // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
            // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
            //
            // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
            uint256 result = 1 << (log2(a) >> 1);
            // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
            // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
            // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
            // into the expected uint128 result.
            unchecked {
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                return min(result, a / result);
            }
        }
        /**
         * @notice Calculates sqrt(a), following the selected rounding direction.
         */
        function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = sqrt(a);
                return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 2, rounded down, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 128;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 64;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 32;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 16;
                }
                if (value >> 8 > 0) {
                    value >>= 8;
                    result += 8;
                }
                if (value >> 4 > 0) {
                    value >>= 4;
                    result += 4;
                }
                if (value >> 2 > 0) {
                    value >>= 2;
                    result += 2;
                }
                if (value >> 1 > 0) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log2(value);
                return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 10, rounded down, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >= 10**64) {
                    value /= 10**64;
                    result += 64;
                }
                if (value >= 10**32) {
                    value /= 10**32;
                    result += 32;
                }
                if (value >= 10**16) {
                    value /= 10**16;
                    result += 16;
                }
                if (value >= 10**8) {
                    value /= 10**8;
                    result += 8;
                }
                if (value >= 10**4) {
                    value /= 10**4;
                    result += 4;
                }
                if (value >= 10**2) {
                    value /= 10**2;
                    result += 2;
                }
                if (value >= 10**1) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log10(value);
                return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 256, rounded down, of a positive value.
         * Returns 0 if given 0.
         *
         * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
         */
        function log256(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 16;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 8;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 4;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 2;
                }
                if (value >> 8 > 0) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log256(value);
                return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
    pragma solidity ^0.8.0;
    import "./math/Math.sol";
    /**
     * @dev String operations.
     */
    library Strings {
        bytes16 private constant _SYMBOLS = "0123456789abcdef";
        uint8 private constant _ADDRESS_LENGTH = 20;
        /**
         * @dev Converts a `uint256` to its ASCII `string` decimal representation.
         */
        function toString(uint256 value) internal pure returns (string memory) {
            unchecked {
                uint256 length = Math.log10(value) + 1;
                string memory buffer = new string(length);
                uint256 ptr;
                /// @solidity memory-safe-assembly
                assembly {
                    ptr := add(buffer, add(32, length))
                }
                while (true) {
                    ptr--;
                    /// @solidity memory-safe-assembly
                    assembly {
                        mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                    }
                    value /= 10;
                    if (value == 0) break;
                }
                return buffer;
            }
        }
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
         */
        function toHexString(uint256 value) internal pure returns (string memory) {
            unchecked {
                return toHexString(value, Math.log256(value) + 1);
            }
        }
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
         */
        function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
            bytes memory buffer = new bytes(2 * length + 2);
            buffer[0] = "0";
            buffer[1] = "x";
            for (uint256 i = 2 * length + 1; i > 1; --i) {
                buffer[i] = _SYMBOLS[value & 0xf];
                value >>= 4;
            }
            require(value == 0, "Strings: hex length insufficient");
            return string(buffer);
        }
        /**
         * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
         */
        function toHexString(address addr) internal pure returns (string memory) {
            return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.9;
    import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
    import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
    import "@openzeppelin/contracts/security/Pausable.sol";
    import "@openzeppelin/contracts/access/AccessControl.sol";
    /**
     * @dev {ERC20} token, including:
     *
     *  - ability for holders to burn (destroy) their tokens
     *  - a minter role that allows for token minting (creation)
     *  - a pauser role that allows to stop all token transfers
     *
     * This contract uses {AccessControl} to lock permissioned functions using the
     * different roles - head to its documentation for details.
     *
     * The account that deploys the contract will be granted the minter and pauser
     * roles, as well as the default admin role, which will let it grant both minter
     * and pauser roles to other accounts.
     */
    contract HyperCycleToken is AccessControl, ERC20Burnable, Pausable {
        bytes32 public constant MINTER_ROLE = keccak256("MINTER_ROLE");
        bytes32 public constant PAUSER_ROLE = keccak256("PAUSER_ROLE");
        uint256 public constant MAX_SUPPLY = 2147483648 * 10**uint256(6);
        /**
         * @dev Grants `DEFAULT_ADMIN_ROLE`, `MINTER_ROLE` and `PAUSER_ROLE` to the
         * account that deploys the contract.
         *
         * See {ERC20-constructor}.
         */
        constructor(string memory name, string memory symbol) ERC20(name, symbol) {
            _grantRole(DEFAULT_ADMIN_ROLE, _msgSender());
            _grantRole(MINTER_ROLE, _msgSender());
            _grantRole(PAUSER_ROLE, _msgSender());
        }
        /**
         * @dev Creates `amount` new tokens for `to`.
         *
         * See {ERC20-_mint}.
         *
         * Requirements:
         *
         * - the caller must have the `MINTER_ROLE`.
         */
        function mint(address to, uint256 amount) external {
            require(
                hasRole(MINTER_ROLE, _msgSender()), 
                "ERC20PresetMinterPauser: must have minter role to mint"
            );
            require(
                (totalSupply() + amount) <= MAX_SUPPLY, 
                "Mint: Cannot mint more than initial supply"
            );
            _mint(to, amount);
        }
        /**
         * @dev Pauses all token transfers.
         *
         * See {ERC20Pausable} and {Pausable-_pause}.
         *
         * Requirements:
         *
         * - the caller must have the `PAUSER_ROLE`.
         */
        function pause() external {
            require(
                hasRole(PAUSER_ROLE, _msgSender()), 
                "ERC20PresetMinterPauser: must have pauser role to pause"
            );
            _pause();
        }
        /**
         * @dev Unpauses all token transfers.
         *
         * See {ERC20Pausable} and {Pausable-_unpause}.
         *
         * Requirements:
         *
         * - the caller must have the `PAUSER_ROLE`.
         */
        function unpause() external {
            require(
                hasRole(PAUSER_ROLE, _msgSender()), 
                "ERC20PresetMinterPauser: must have pauser role to unpause"
            );
            _unpause();
        }
        /**
         * @dev Set the decimals to 6 decimals.
         *
         * See {ERC20-decimals}.
         *
         * Requirements:
         *
         * - The HyperCycle token should be 6 decimals instead of default decimals. 
         * This is only for display purpose.
         */
        function decimals() public view virtual override returns (uint8) {
            return 6;
        }
        function _beforeTokenTransfer(
            address from, 
            address to, 
            uint256 amount
        ) 
            internal 
            override 
            whenNotPaused 
        {
            super._beforeTokenTransfer(from, to, amount);
        }
    }