ETH Price: $2,444.57 (+1.62%)

Transaction Decoder

Block:
22272365 at Apr-15-2025 05:41:23 AM +UTC
Transaction Fee:
0.000022416614288893 ETH $0.05
Gas Used:
32,857 Gas / 0.682247749 Gwei

Emitted Events:

Account State Difference:

  Address   Before After State Difference Code
(beaverbuild)
11.625852084024004506 Eth11.625861962433017572 Eth0.000009878409013066
0xb2E88d6B...B43206296
0.00055324 Eth
Nonce: 0
0.000530823385711107 Eth
Nonce: 1
0.000022416614288893

Execution Trace

Token.transfer( to=0xb2E88d6B5dA30EB4a0BB96736d4A846B43206296, amount=127022693431437100149270 ) => ( True )
transfer[Token (ln:54)]
// SPDX-License-Identifier: MIT
//
// https://dgnapp.ai/
// https://t.me/dgnapp
// https://twitter.com/FollowAltcoins
pragma solidity ^0.8.0;
import "./BaseERC20Token.sol";
contract Token is BaseERC20Token {
    struct Fees {
        uint8 burnFee;
        uint8 marketingFee;
        uint8 summedFee;
    }
    Fees public fees;
    Fees public zeroFees;
    enum TransferType {MOVE, BUY, SELL}
    address public routerAddress;
    address public burnAddress;
    address public marketingAddress;
    address public teamAddress1;
    address public teamAddress2;
    address public operationAddress1;
    address public operationAddress2;
    mapping(address => bool) private taxFreeAddresses;
    constructor(
        address _teamAddress1,
        address _teamAddress2,
        address _operationAddress1,
        address _operationAddress2,
        address _marketingAddress
    ) {
        // erc-20 fields
        _name = "DGNAPP.AI";
        _symbol = "DEGAI";
        _totalSupply = 1_000_000_000 * 10 ** decimals();
        // fees
        fees.burnFee = 3;
        fees.marketingFee = 2;
        fees.summedFee = fees.burnFee + fees.marketingFee;
        // addresses
        burnAddress = address(0xdEaD);
        teamAddress1 = _teamAddress1;
        teamAddress2 = _teamAddress2;
        operationAddress1 = _operationAddress1;
        operationAddress2 = _operationAddress2;
        marketingAddress = _marketingAddress;
        taxFreeAddresses[address(this)] = true;
        taxFreeAddresses[marketingAddress] = true;
        taxFreeAddresses[owner()] = true;
        // coins distribution
        _balances[msg.sender] = _totalSupply;
        emit Transfer(address(0), msg.sender, _totalSupply);
    }
    function transfer(address to, uint256 amount) public override returns (bool) {
        address spender = _msgSender();
        return transferCoins(spender, to, amount);
    }
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) public override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        return transferCoins(from, to, amount);
    }
    function transferCoins(address from, address to, uint256 amount) internal returns (bool) {
        TransferType transferType;
        Fees memory transferFees;
        (transferType, transferFees) = getTransferTypeAndFees(from, to);
        if (transferFees.summedFee != 0) {
            uint256 burnFeeAmount = (amount * transferFees.burnFee) / 100;
            _transfer(from, burnAddress, burnFeeAmount);
            uint256 marketingFeeAmount = (amount * transferFees.marketingFee) / 100;
            _transfer(from, marketingAddress, marketingFeeAmount);
            amount -= burnFeeAmount;
            amount -= marketingFeeAmount;
        }
        _transfer(from, to, amount);
        return true;
    }
    function getTransferTypeAndFees(address from, address to) internal view returns (TransferType, Fees memory) {
        if (from == routerAddress)
            return (TransferType.BUY, zeroFees);
        else if (to == routerAddress)
            if (taxFreeAddresses[from] || taxFreeAddresses[to])
                return (TransferType.SELL, zeroFees);
            else
                return (TransferType.SELL, fees);
        else
            return (TransferType.MOVE, zeroFees);
    }
    function setRouterAddress(address _routerAddress) public onlyOwner {
        routerAddress = _routerAddress;
    }
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
abstract contract BaseERC20Token is Ownable, IERC20, IERC20Metadata {
    string internal _name;
    string internal _symbol;
    uint256 internal _totalSupply;
    mapping(address => uint256) internal _balances;
    mapping(address => mapping(address => uint256)) internal _allowances;
    /**
     * @dev Returns the name of the token.
     */
    function name() public view override returns (string memory) {
        return _name;
    }
    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view override returns (string memory) {
        return _symbol;
    }
    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless this function is
     * overridden;
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public pure override returns (uint8) {
        return 18;
    }
    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view override returns (uint256) {
        return _totalSupply;
    }
    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view override returns (uint256) {
        return _balances[account];
    }
    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view override returns (uint256) {
        return _allowances[owner][spender];
    }
    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }
    /**
     * @dev Moves `amount` of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     */
    function _transfer(
        address from,
        address to,
        uint256 amount
    ) internal {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");
        uint256 fromBalance = _balances[from];
        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
    unchecked {
        _balances[from] = fromBalance - amount;
        // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
        // decrementing then incrementing.
        _balances[to] += amount;
    }
        emit Transfer(from, to, amount);
    }
    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(
        address owner,
        address spender,
        uint256 amount
    ) internal {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");
        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }
    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
     *
     * Does not update the allowance amount in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Might emit an {Approval} event.
     */
    function _spendAllowance(
        address owner,
        address spender,
        uint256 amount
    ) internal {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(currentAllowance >= amount, "ERC20: insufficient allowance");
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }
    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);
    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);
    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);
    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);
    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);
    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);
    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);
    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);
    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;
    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }
    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }
    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }
    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }
    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }
    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }
    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}