ETH Price: $2,533.13 (-0.69%)

Transaction Decoder

Block:
19765931 at Apr-30-2024 05:07:11 AM +UTC
Transaction Fee:
0.000910295198828344 ETH $2.31
Gas Used:
123,592 Gas / 7.365324607 Gwei

Emitted Events:

244 frxETH.Transfer( from=0x0000000000000000000000000000000000000000, to=[Receiver] frxETHMinter, value=10000000000000000 )
245 frxETH.TokenMinterMinted( from=[Receiver] frxETHMinter, to=[Receiver] frxETHMinter, amount=10000000000000000 )
246 frxETHMinter.ETHSubmitted( sender=[Sender] 0x2e72c51e04b53952481d42ca4f17beb34c494e01, recipient=[Receiver] frxETHMinter, sent_amount=10000000000000000, withheld_amt=9800000000000000 )
247 frxETH.Approval( owner=[Receiver] frxETHMinter, spender=sfrxETH, value=10000000000000000 )
248 frxETH.Approval( owner=[Receiver] frxETHMinter, spender=sfrxETH, value=0 )
249 frxETH.Transfer( from=[Receiver] frxETHMinter, to=sfrxETH, value=10000000000000000 )
250 sfrxETH.Transfer( from=0x0000000000000000000000000000000000000000, to=[Sender] 0x2e72c51e04b53952481d42ca4f17beb34c494e01, amount=9218122741003930 )
251 sfrxETH.Deposit( caller=[Receiver] frxETHMinter, owner=[Sender] 0x2e72c51e04b53952481d42ca4f17beb34c494e01, assets=10000000000000000, shares=9218122741003930 )

Account State Difference:

  Address   Before After State Difference Code
(MEV Builder: 0x0Aa...667)
3.654781767414613492 Eth3.654782895405427652 Eth0.00000112799081416
0x2E72C51E...34C494E01
13.26690755790082273 Eth
Nonce: 6
13.255997262701994386 Eth
Nonce: 7
0.010910295198828344
0x5E842234...8E08CAa1f
0xac3E0184...16Abbe38F
0xbAFA44EF...C559c1138
(Frax Finance: frxETH Minter)
871.298403523146618476 Eth871.308403523146618476 Eth0.01

Execution Trace

ETH 0.01 frxETHMinter.submitAndDeposit( recipient=0x2E72C51E04b53952481D42CA4F17beb34C494E01 ) => ( shares=9218122741003930 )
  • frxETH.minter_mint( m_address=0xbAFA44EFE7901E04E39Dad13167D089C559c1138, m_amount=10000000000000000 )
  • frxETH.approve( spender=0xac3E018457B222d93114458476f3E3416Abbe38F, amount=10000000000000000 ) => ( True )
  • sfrxETH.deposit( assets=10000000000000000, receiver=0x2E72C51E04b53952481D42CA4F17beb34C494E01 ) => ( shares=9218122741003930 )
    • frxETH.transferFrom( from=0xbAFA44EFE7901E04E39Dad13167D089C559c1138, to=0xac3E018457B222d93114458476f3E3416Abbe38F, amount=10000000000000000 ) => ( True )
      File 1 of 3: frxETHMinter
      // SPDX-License-Identifier: AGPL-3.0-only
      pragma solidity ^0.8.0;
      // ====================================================================
      // |     ______                   _______                             |
      // |    / _____________ __  __   / ____(_____  ____ _____  ________   |
      // |   / /_  / ___/ __ `| |/_/  / /_  / / __ \\/ __ `/ __ \\/ ___/ _ \\  |
      // |  / __/ / /  / /_/ _>  <   / __/ / / / / / /_/ / / / / /__/  __/  |
      // | /_/   /_/   \\__,_/_/|_|  /_/   /_/_/ /_/\\__,_/_/ /_/\\___/\\___/   |
      // |                                                                  |
      // ====================================================================
      // ============================ frxETHMinter ==========================
      // ====================================================================
      // Frax Finance: https://github.com/FraxFinance
      // Primary Author(s)
      // Jack Corddry: https://github.com/corddry
      // Justin Moore: https://github.com/0xJM
      // Reviewer(s) / Contributor(s)
      // Travis Moore: https://github.com/FortisFortuna
      // Dennis: https://github.com/denett
      // Jamie Turley: https://github.com/jyturley
      import { frxETH } from "./frxETH.sol";
      import { IsfrxETH } from "./IsfrxETH.sol";
      import "openzeppelin-contracts/contracts/security/ReentrancyGuard.sol";
      import "openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
      import { IDepositContract } from "./DepositContract.sol";
      import "./OperatorRegistry.sol";
      /// @title Authorized minter contract for frxETH
      /// @notice Accepts user-supplied ETH and converts it to frxETH (submit()), and also optionally inline stakes it for sfrxETH (submitAndDeposit())
      /** @dev Has permission to mint frxETH. 
          Once +32 ETH has accumulated, adds it to a validator, which then deposits it for ETH 2.0 staking (depositEther())
          Withhold ratio refers to what percentage of ETH this contract keeps whenever a user makes a deposit. 0% is kept initially */
      contract frxETHMinter is OperatorRegistry, ReentrancyGuard {    
          uint256 public constant DEPOSIT_SIZE = 32 ether; // ETH 2.0 minimum deposit size
          uint256 public constant RATIO_PRECISION = 1e6; // 1,000,000 
          uint256 public withholdRatio; // What we keep and don't deposit whenever someone submit()'s ETH
          uint256 public currentWithheldETH; // Needed for internal tracking
          mapping(bytes => bool) public activeValidators; // Tracks validators (via their pubkeys) that already have 32 ETH in them
          IDepositContract public immutable depositContract; // ETH 2.0 deposit contract
          frxETH public immutable frxETHToken;
          IsfrxETH public immutable sfrxETHToken;
          bool public submitPaused;
          bool public depositEtherPaused;
          constructor(
              address depositContractAddress, 
              address frxETHAddress, 
              address sfrxETHAddress, 
              address _owner, 
              address _timelock_address,
              bytes memory _withdrawalCredential
          ) OperatorRegistry(_owner, _timelock_address, _withdrawalCredential) {
              depositContract = IDepositContract(depositContractAddress);
              frxETHToken = frxETH(frxETHAddress);
              sfrxETHToken = IsfrxETH(sfrxETHAddress);
              withholdRatio = 0; // No ETH is withheld initially
              currentWithheldETH = 0;
          }
          /// @notice Mint frxETH and deposit it to receive sfrxETH in one transaction
          /** @dev Could try using EIP-712 / EIP-2612 here in the future if you replace this contract,
              but you might run into msg.sender vs tx.origin issues with the ERC4626 */
          function submitAndDeposit(address recipient) external payable returns (uint256 shares) {
              // Give the frxETH to this contract after it is generated
              _submit(address(this));
              // Approve frxETH to sfrxETH for staking
              frxETHToken.approve(address(sfrxETHToken), msg.value);
              // Deposit the frxETH and give the generated sfrxETH to the final recipient
              uint256 sfrxeth_recieved = sfrxETHToken.deposit(msg.value, recipient);
              require(sfrxeth_recieved > 0, 'No sfrxETH was returned');
              return sfrxeth_recieved;
          }
          /// @notice Mint frxETH to the recipient using sender's funds. Internal portion
          function _submit(address recipient) internal nonReentrant {
              // Initial pause and value checks
              require(!submitPaused, "Submit is paused");
              require(msg.value != 0, "Cannot submit 0");
              // Give the sender frxETH
              frxETHToken.minter_mint(recipient, msg.value);
              // Track the amount of ETH that we are keeping
              uint256 withheld_amt = 0;
              if (withholdRatio != 0) {
                  withheld_amt = (msg.value * withholdRatio) / RATIO_PRECISION;
                  currentWithheldETH += withheld_amt;
              }
              emit ETHSubmitted(msg.sender, recipient, msg.value, withheld_amt);
          }
          /// @notice Mint frxETH to the sender depending on the ETH value sent
          function submit() external payable {
              _submit(msg.sender);
          }
          /// @notice Mint frxETH to the recipient using sender's funds
          function submitAndGive(address recipient) external payable {
              _submit(recipient);
          }
          /// @notice Fallback to minting frxETH to the sender
          receive() external payable {
              _submit(msg.sender);
          }
          /// @notice Deposit batches of ETH to the ETH 2.0 deposit contract
          /// @dev Usually a bot will call this periodically
          /// @param max_deposits Used to prevent gassing out if a whale drops in a huge amount of ETH. Break it down into batches.
          function depositEther(uint256 max_deposits) external nonReentrant {
              // Initial pause check
              require(!depositEtherPaused, "Depositing ETH is paused");
              // See how many deposits can be made. Truncation desired.
              uint256 numDeposits = (address(this).balance - currentWithheldETH) / DEPOSIT_SIZE;
              require(numDeposits > 0, "Not enough ETH in contract");
              uint256 loopsToUse = numDeposits;
              if (max_deposits == 0) loopsToUse = numDeposits;
              else if (numDeposits > max_deposits) loopsToUse = max_deposits;
              // Give each deposit chunk to an empty validator
              for (uint256 i = 0; i < loopsToUse; ++i) {
                  // Get validator information
                  (
                      bytes memory pubKey,
                      bytes memory withdrawalCredential,
                      bytes memory signature,
                      bytes32 depositDataRoot
                  ) = getNextValidator(); // Will revert if there are not enough free validators
                  // Make sure the validator hasn't been deposited into already, to prevent stranding an extra 32 eth
                  // until withdrawals are allowed
                  require(!activeValidators[pubKey], "Validator already has 32 ETH");
                  // Deposit the ether in the ETH 2.0 deposit contract
                  depositContract.deposit{value: DEPOSIT_SIZE}(
                      pubKey,
                      withdrawalCredential,
                      signature,
                      depositDataRoot
                  );
                  // Set the validator as used so it won't get an extra 32 ETH
                  activeValidators[pubKey] = true;
                  emit DepositSent(pubKey, withdrawalCredential);
              }
          }
          /// @param newRatio of ETH that is sent to deposit contract vs withheld, 1e6 precision
          /// @notice An input of 1e6 results in 100% of Eth deposited, 0% withheld
          function setWithholdRatio(uint256 newRatio) external onlyByOwnGov {
              require (newRatio <= RATIO_PRECISION, "Ratio cannot surpass 100%");
              withholdRatio = newRatio;
              emit WithholdRatioSet(newRatio);
          }
          /// @notice Give the withheld ETH to the "to" address
          function moveWithheldETH(address payable to, uint256 amount) external onlyByOwnGov {
              require(amount <= currentWithheldETH, "Not enough withheld ETH in contract");
              currentWithheldETH -= amount;
              (bool success,) = payable(to).call{ value: amount }("");
              require(success, "Invalid transfer");
              emit WithheldETHMoved(to, amount);
          }
          /// @notice Toggle allowing submites
          function togglePauseSubmits() external onlyByOwnGov {
              submitPaused = !submitPaused;
              emit SubmitPaused(submitPaused);
          }
          /// @notice Toggle allowing depositing ETH to validators
          function togglePauseDepositEther() external onlyByOwnGov {
              depositEtherPaused = !depositEtherPaused;
              emit DepositEtherPaused(depositEtherPaused);
          }
          /// @notice For emergencies if something gets stuck
          function recoverEther(uint256 amount) external onlyByOwnGov {
              (bool success,) = address(owner).call{ value: amount }("");
              require(success, "Invalid transfer");
              emit EmergencyEtherRecovered(amount);
          }
          /// @notice For emergencies if someone accidentally sent some ERC20 tokens here
          function recoverERC20(address tokenAddress, uint256 tokenAmount) external onlyByOwnGov {
              require(IERC20(tokenAddress).transfer(owner, tokenAmount), "recoverERC20: Transfer failed");
              emit EmergencyERC20Recovered(tokenAddress, tokenAmount);
          }
          event EmergencyEtherRecovered(uint256 amount);
          event EmergencyERC20Recovered(address tokenAddress, uint256 tokenAmount);
          event ETHSubmitted(address indexed sender, address indexed recipient, uint256 sent_amount, uint256 withheld_amt);
          event DepositEtherPaused(bool new_status);
          event DepositSent(bytes indexed pubKey, bytes withdrawalCredential);
          event SubmitPaused(bool new_status);
          event WithheldETHMoved(address indexed to, uint256 amount);
          event WithholdRatioSet(uint256 newRatio);
      }
      // SPDX-License-Identifier: GPL-2.0-or-later
      pragma solidity ^0.8.0;
      // ====================================================================
      // |     ______                   _______                             |
      // |    / _____________ __  __   / ____(_____  ____ _____  ________   |
      // |   / /_  / ___/ __ `| |/_/  / /_  / / __ \\/ __ `/ __ \\/ ___/ _ \\  |
      // |  / __/ / /  / /_/ _>  <   / __/ / / / / / /_/ / / / / /__/  __/  |
      // | /_/   /_/   \\__,_/_/|_|  /_/   /_/_/ /_/\\__,_/_/ /_/\\___/\\___/   |
      // |                                                                  |
      // ====================================================================
      // ============================== frxETH ==============================
      // ====================================================================
      // Frax Finance: https://github.com/FraxFinance
      // Primary Author(s)
      // Jack Corddry: https://github.com/corddry
      // Nader Ghazvini: https://github.com/amirnader-ghazvini 
      // Reviewer(s) / Contributor(s)
      // Sam Kazemian: https://github.com/samkazemian
      // Dennis: https://github.com/denett
      // Travis Moore: https://github.com/FortisFortuna
      // Jamie Turley: https://github.com/jyturley
      /// @title Stablecoin pegged to Ether for use within the Frax ecosystem
      /** @notice Does not accrue ETH 2.0 staking yield: it must be staked at the sfrxETH contract first.
          ETH -> frxETH conversion is permanent, so a market will develop for the latter.
          Withdraws are not live (as of deploy time) so loosely pegged to eth but is possible will float */
      /// @dev frxETH adheres to EIP-712/EIP-2612 and can use permits
      import { ERC20PermitPermissionedMint } from "./ERC20/ERC20PermitPermissionedMint.sol";
      contract frxETH is ERC20PermitPermissionedMint {
          /* ========== CONSTRUCTOR ========== */
          constructor(
            address _creator_address,
            address _timelock_address
          ) 
          ERC20PermitPermissionedMint(_creator_address, _timelock_address, "Frax Ether", "frxETH") 
          {}
      }// SPDX-License-Identifier: GPL-2.0-or-later
      pragma solidity >=0.8.0;
      // Primarily added to prevent ERC20 name collisions in frxETHMinter.sol
      interface IsfrxETH {
          function DOMAIN_SEPARATOR() external view returns (bytes32);
          function allowance(address, address) external view returns (uint256);
          function approve(address spender, uint256 amount) external returns (bool);
          function asset() external view returns (address);
          function balanceOf(address) external view returns (uint256);
          function convertToAssets(uint256 shares) external view returns (uint256);
          function convertToShares(uint256 assets) external view returns (uint256);
          function decimals() external view returns (uint8);
          function deposit(uint256 assets, address receiver) external returns (uint256 shares);
          function depositWithSignature(uint256 assets, address receiver, uint256 deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s) external returns (uint256 shares);
          function lastRewardAmount() external view returns (uint192);
          function lastSync() external view returns (uint32);
          function maxDeposit(address) external view returns (uint256);
          function maxMint(address) external view returns (uint256);
          function maxRedeem(address owner) external view returns (uint256);
          function maxWithdraw(address owner) external view returns (uint256);
          function mint(uint256 shares, address receiver) external returns (uint256 assets);
          function name() external view returns (string memory);
          function nonces(address) external view returns (uint256);
          function permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) external;
          function previewDeposit(uint256 assets) external view returns (uint256);
          function previewMint(uint256 shares) external view returns (uint256);
          function previewRedeem(uint256 shares) external view returns (uint256);
          function previewWithdraw(uint256 assets) external view returns (uint256);
          function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
          function rewardsCycleEnd() external view returns (uint32);
          function rewardsCycleLength() external view returns (uint32);
          function symbol() external view returns (string memory);
          function syncRewards() external;
          function totalAssets() external view returns (uint256);
          function totalSupply() external view returns (uint256);
          function transfer(address to, uint256 amount) external returns (bool);
          function transferFrom(address from, address to, uint256 amount) external returns (bool);
          function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Contract module that helps prevent reentrant calls to a function.
       *
       * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
       * available, which can be applied to functions to make sure there are no nested
       * (reentrant) calls to them.
       *
       * Note that because there is a single `nonReentrant` guard, functions marked as
       * `nonReentrant` may not call one another. This can be worked around by making
       * those functions `private`, and then adding `external` `nonReentrant` entry
       * points to them.
       *
       * TIP: If you would like to learn more about reentrancy and alternative ways
       * to protect against it, check out our blog post
       * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
       */
      abstract contract ReentrancyGuard {
          // Booleans are more expensive than uint256 or any type that takes up a full
          // word because each write operation emits an extra SLOAD to first read the
          // slot's contents, replace the bits taken up by the boolean, and then write
          // back. This is the compiler's defense against contract upgrades and
          // pointer aliasing, and it cannot be disabled.
          // The values being non-zero value makes deployment a bit more expensive,
          // but in exchange the refund on every call to nonReentrant will be lower in
          // amount. Since refunds are capped to a percentage of the total
          // transaction's gas, it is best to keep them low in cases like this one, to
          // increase the likelihood of the full refund coming into effect.
          uint256 private constant _NOT_ENTERED = 1;
          uint256 private constant _ENTERED = 2;
          uint256 private _status;
          constructor() {
              _status = _NOT_ENTERED;
          }
          /**
           * @dev Prevents a contract from calling itself, directly or indirectly.
           * Calling a `nonReentrant` function from another `nonReentrant`
           * function is not supported. It is possible to prevent this from happening
           * by making the `nonReentrant` function external, and making it call a
           * `private` function that does the actual work.
           */
          modifier nonReentrant() {
              _nonReentrantBefore();
              _;
              _nonReentrantAfter();
          }
          function _nonReentrantBefore() private {
              // On the first call to nonReentrant, _status will be _NOT_ENTERED
              require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
              // Any calls to nonReentrant after this point will fail
              _status = _ENTERED;
          }
          function _nonReentrantAfter() private {
              // By storing the original value once again, a refund is triggered (see
              // https://eips.ethereum.org/EIPS/eip-2200)
              _status = _NOT_ENTERED;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Interface of the ERC20 standard as defined in the EIP.
       */
      interface IERC20 {
          /**
           * @dev Emitted when `value` tokens are moved from one account (`from`) to
           * another (`to`).
           *
           * Note that `value` may be zero.
           */
          event Transfer(address indexed from, address indexed to, uint256 value);
          /**
           * @dev Emitted when the allowance of a `spender` for an `owner` is set by
           * a call to {approve}. `value` is the new allowance.
           */
          event Approval(address indexed owner, address indexed spender, uint256 value);
          /**
           * @dev Returns the amount of tokens in existence.
           */
          function totalSupply() external view returns (uint256);
          /**
           * @dev Returns the amount of tokens owned by `account`.
           */
          function balanceOf(address account) external view returns (uint256);
          /**
           * @dev Moves `amount` tokens from the caller's account to `to`.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transfer(address to, uint256 amount) external returns (bool);
          /**
           * @dev Returns the remaining number of tokens that `spender` will be
           * allowed to spend on behalf of `owner` through {transferFrom}. This is
           * zero by default.
           *
           * This value changes when {approve} or {transferFrom} are called.
           */
          function allowance(address owner, address spender) external view returns (uint256);
          /**
           * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * IMPORTANT: Beware that changing an allowance with this method brings the risk
           * that someone may use both the old and the new allowance by unfortunate
           * transaction ordering. One possible solution to mitigate this race
           * condition is to first reduce the spender's allowance to 0 and set the
           * desired value afterwards:
           * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
           *
           * Emits an {Approval} event.
           */
          function approve(address spender, uint256 amount) external returns (bool);
          /**
           * @dev Moves `amount` tokens from `from` to `to` using the
           * allowance mechanism. `amount` is then deducted from the caller's
           * allowance.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(
              address from,
              address to,
              uint256 amount
          ) external returns (bool);
      }
      // ┏━━━┓━┏┓━┏┓━━┏━━━┓━━┏━━━┓━━━━┏━━━┓━━━━━━━━━━━━━━━━━━━┏┓━━━━━┏━━━┓━━━━━━━━━┏┓━━━━━━━━━━━━━━┏┓━
      // ┃┏━━┛┏┛┗┓┃┃━━┃┏━┓┃━━┃┏━┓┃━━━━┗┓┏┓┃━━━━━━━━━━━━━━━━━━┏┛┗┓━━━━┃┏━┓┃━━━━━━━━┏┛┗┓━━━━━━━━━━━━┏┛┗┓
      // ┃┗━━┓┗┓┏┛┃┗━┓┗┛┏┛┃━━┃┃━┃┃━━━━━┃┃┃┃┏━━┓┏━━┓┏━━┓┏━━┓┏┓┗┓┏┛━━━━┃┃━┗┛┏━━┓┏━┓━┗┓┏┛┏━┓┏━━┓━┏━━┓┗┓┏┛
      // ┃┏━━┛━┃┃━┃┏┓┃┏━┛┏┛━━┃┃━┃┃━━━━━┃┃┃┃┃┏┓┃┃┏┓┃┃┏┓┃┃━━┫┣┫━┃┃━━━━━┃┃━┏┓┃┏┓┃┃┏┓┓━┃┃━┃┏┛┗━┓┃━┃┏━┛━┃┃━
      // ┃┗━━┓━┃┗┓┃┃┃┃┃┃┗━┓┏┓┃┗━┛┃━━━━┏┛┗┛┃┃┃━┫┃┗┛┃┃┗┛┃┣━━┃┃┃━┃┗┓━━━━┃┗━┛┃┃┗┛┃┃┃┃┃━┃┗┓┃┃━┃┗┛┗┓┃┗━┓━┃┗┓
      // ┗━━━┛━┗━┛┗┛┗┛┗━━━┛┗┛┗━━━┛━━━━┗━━━┛┗━━┛┃┏━┛┗━━┛┗━━┛┗┛━┗━┛━━━━┗━━━┛┗━━┛┗┛┗┛━┗━┛┗┛━┗━━━┛┗━━┛━┗━┛
      // ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┃┃━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
      // ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┗┛━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
      // SPDX-License-Identifier: CC0-1.0
      pragma solidity ^0.8.0;
      // This interface is designed to be compatible with the Vyper version.
      /// @notice This is the Ethereum 2.0 deposit contract interface.
      /// For more information see the Phase 0 specification under https://github.com/ethereum/eth2.0-specs
      interface IDepositContract {
          /// @notice A processed deposit event.
          event DepositEvent(
              bytes pubkey,
              bytes withdrawal_credentials,
              bytes amount,
              bytes signature,
              bytes index
          );
          /// @notice Submit a Phase 0 DepositData object.
          /// @param pubkey A BLS12-381 public key.
          /// @param withdrawal_credentials Commitment to a public key for withdrawals.
          /// @param signature A BLS12-381 signature.
          /// @param deposit_data_root The SHA-256 hash of the SSZ-encoded DepositData object.
          /// Used as a protection against malformed input.
          function deposit(
              bytes calldata pubkey,
              bytes calldata withdrawal_credentials,
              bytes calldata signature,
              bytes32 deposit_data_root
          ) external payable;
          /// @notice Query the current deposit root hash.
          /// @return The deposit root hash.
          function get_deposit_root() external view returns (bytes32);
          /// @notice Query the current deposit count.
          /// @return The deposit count encoded as a little endian 64-bit number.
          function get_deposit_count() external view returns (bytes memory);
      }
      // Based on official specification in https://eips.ethereum.org/EIPS/eip-165
      interface ERC165 {
          /// @notice Query if a contract implements an interface
          /// @param interfaceId The interface identifier, as specified in ERC-165
          /// @dev Interface identification is specified in ERC-165. This function
          ///  uses less than 30,000 gas.
          /// @return `true` if the contract implements `interfaceId` and
          ///  `interfaceId` is not 0xffffffff, `false` otherwise
          function supportsInterface(bytes4 interfaceId) external pure returns (bool);
      }
      // This is a rewrite of the Vyper Eth2.0 deposit contract in Solidity.
      // It tries to stay as close as possible to the original source code.
      /// @notice This is the Ethereum 2.0 deposit contract interface.
      /// For more information see the Phase 0 specification under https://github.com/ethereum/eth2.0-specs
      contract DepositContract is IDepositContract, ERC165 {
          uint constant DEPOSIT_CONTRACT_TREE_DEPTH = 32;
          // NOTE: this also ensures `deposit_count` will fit into 64-bits
          uint constant MAX_DEPOSIT_COUNT = 2**DEPOSIT_CONTRACT_TREE_DEPTH - 1;
          bytes32[DEPOSIT_CONTRACT_TREE_DEPTH] branch;
          uint256 deposit_count;
          bytes32[DEPOSIT_CONTRACT_TREE_DEPTH] zero_hashes;
          constructor() public {
              // Compute hashes in empty sparse Merkle tree
              for (uint height = 0; height < DEPOSIT_CONTRACT_TREE_DEPTH - 1; height++)
                  zero_hashes[height + 1] = sha256(abi.encodePacked(zero_hashes[height], zero_hashes[height]));
          }
          function get_deposit_root() override external view returns (bytes32) {
              bytes32 node;
              uint size = deposit_count;
              for (uint height = 0; height < DEPOSIT_CONTRACT_TREE_DEPTH; height++) {
                  if ((size & 1) == 1)
                      node = sha256(abi.encodePacked(branch[height], node));
                  else
                      node = sha256(abi.encodePacked(node, zero_hashes[height]));
                  size /= 2;
              }
              return sha256(abi.encodePacked(
                  node,
                  to_little_endian_64(uint64(deposit_count)),
                  bytes24(0)
              ));
          }
          function get_deposit_count() override external view returns (bytes memory) {
              return to_little_endian_64(uint64(deposit_count));
          }
          function deposit(
              bytes calldata pubkey,
              bytes calldata withdrawal_credentials,
              bytes calldata signature,
              bytes32 deposit_data_root
          ) override external payable {
              // Extended ABI length checks since dynamic types are used.
              require(pubkey.length == 48, "DepositContract: invalid pubkey length");
              require(withdrawal_credentials.length == 32, "DepositContract: invalid withdrawal_credentials length");
              require(signature.length == 96, "DepositContract: invalid signature length");
              // Check deposit amount
              require(msg.value >= 1 ether, "DepositContract: deposit value too low");
              require(msg.value % 1 gwei == 0, "DepositContract: deposit value not multiple of gwei");
              uint deposit_amount = msg.value / 1 gwei;
              require(deposit_amount <= type(uint64).max, "DepositContract: deposit value too high");
              // Emit `DepositEvent` log
              bytes memory amount = to_little_endian_64(uint64(deposit_amount));
              emit DepositEvent(
                  pubkey,
                  withdrawal_credentials,
                  amount,
                  signature,
                  to_little_endian_64(uint64(deposit_count))
              );
              // Compute deposit data root (`DepositData` hash tree root)
              bytes32 pubkey_root = sha256(abi.encodePacked(pubkey, bytes16(0)));
              bytes32 signature_root = sha256(abi.encodePacked(
                  sha256(abi.encodePacked(signature[:64])),
                  sha256(abi.encodePacked(signature[64:], bytes32(0)))
              ));
              bytes32 node = sha256(abi.encodePacked(
                  sha256(abi.encodePacked(pubkey_root, withdrawal_credentials)),
                  sha256(abi.encodePacked(amount, bytes24(0), signature_root))
              ));
              // Verify computed and expected deposit data roots match
              require(node == deposit_data_root, "DepositContract: reconstructed DepositData does not match supplied deposit_data_root");
              // Avoid overflowing the Merkle tree (and prevent edge case in computing `branch`)
              require(deposit_count < MAX_DEPOSIT_COUNT, "DepositContract: merkle tree full");
              // Add deposit data root to Merkle tree (update a single `branch` node)
              deposit_count += 1;
              uint size = deposit_count;
              for (uint height = 0; height < DEPOSIT_CONTRACT_TREE_DEPTH; height++) {
                  if ((size & 1) == 1) {
                      branch[height] = node;
                      return;
                  }
                  node = sha256(abi.encodePacked(branch[height], node));
                  size /= 2;
              }
              // As the loop should always end prematurely with the `return` statement,
              // this code should be unreachable. We assert `false` just to be safe.
              assert(false);
          }
          function supportsInterface(bytes4 interfaceId) override external pure returns (bool) {
              return interfaceId == type(ERC165).interfaceId || interfaceId == type(IDepositContract).interfaceId;
          }
          function to_little_endian_64(uint64 value) internal pure returns (bytes memory ret) {
              ret = new bytes(8);
              bytes8 bytesValue = bytes8(value);
              // Byteswapping during copying to bytes.
              ret[0] = bytesValue[7];
              ret[1] = bytesValue[6];
              ret[2] = bytesValue[5];
              ret[3] = bytesValue[4];
              ret[4] = bytesValue[3];
              ret[5] = bytesValue[2];
              ret[6] = bytesValue[1];
              ret[7] = bytesValue[0];
          }
      }// SPDX-License-Identifier: AGPL-3.0-only
      pragma solidity ^0.8.0;
      // ====================================================================
      // |     ______                   _______                             |
      // |    / _____________ __  __   / ____(_____  ____ _____  ________   |
      // |   / /_  / ___/ __ `| |/_/  / /_  / / __ \\/ __ `/ __ \\/ ___/ _ \\  |
      // |  / __/ / /  / /_/ _>  <   / __/ / / / / / /_/ / / / / /__/  __/  |
      // | /_/   /_/   \\__,_/_/|_|  /_/   /_/_/ /_/\\__,_/_/ /_/\\___/\\___/   |
      // |                                                                  |
      // ====================================================================
      // ========================= OperatorRegistry =========================
      // ====================================================================
      // Frax Finance: https://github.com/FraxFinance
      // Primary Author(s)
      // Jack Corddry: https://github.com/corddry
      // Justin Moore: https://github.com/0xJM
      // Reviewer(s) / Contributor(s)
      // Travis Moore: https://github.com/FortisFortuna
      // Dennis: https://github.com/denett
      import "./Utils/Owned.sol";
      /// @title Keeps track of validators used for ETH 2.0 staking
      /// @notice A permissioned owner can add and removed them at will
      contract OperatorRegistry is Owned {
          struct Validator {
              bytes pubKey;
              bytes signature;
              bytes32 depositDataRoot;
          }
          Validator[] validators; // Array of unused / undeposited validators that can be used at a future time
          bytes curr_withdrawal_pubkey; // Pubkey for ETH 2.0 withdrawal creds. If you change it, you must empty the validators array
          address public timelock_address;
          constructor(address _owner, address _timelock_address, bytes memory _withdrawal_pubkey) Owned(_owner) {
              timelock_address = _timelock_address;
              curr_withdrawal_pubkey = _withdrawal_pubkey;
          }
          modifier onlyByOwnGov() {
              require(msg.sender == timelock_address || msg.sender == owner, "Not owner or timelock");
              _;
          }
          /// @notice Add a new validator
          /** @dev You should verify offchain that the validator is indeed valid before adding it
              Reason we don't do that here is for gas */
          function addValidator(Validator calldata validator) public onlyByOwnGov {
              validators.push(validator);
              emit ValidatorAdded(validator.pubKey, curr_withdrawal_pubkey);
          }
          /// @notice Add multiple new validators in one function call
          /** @dev You should verify offchain that the validators are indeed valid before adding them
              Reason we don't do that here is for gas */
          function addValidators(Validator[] calldata validatorArray) external onlyByOwnGov {
              uint arrayLength = validatorArray.length;
              for (uint256 i = 0; i < arrayLength; ++i) {
                  addValidator(validatorArray[i]);
              }
          }
          /// @notice Swap the location of one validator with another
          function swapValidator(uint256 from_idx, uint256 to_idx) public onlyByOwnGov {
              // Get the original values
              Validator memory fromVal = validators[from_idx];
              Validator memory toVal = validators[to_idx];
              // Set the swapped values
              validators[to_idx] = fromVal;
              validators[from_idx] = toVal;
              emit ValidatorsSwapped(fromVal.pubKey, toVal.pubKey, from_idx, to_idx);
          }
          /// @notice Remove validators from the end of the validators array, in case they were added in error
          function popValidators(uint256 times) public onlyByOwnGov {
              // Loop through and remove validator entries at the end
              for (uint256 i = 0; i < times; ++i) {
                  validators.pop();
              }
              emit ValidatorsPopped(times);
          }
          /** @notice Remove a validator from the array. If dont_care_about_ordering is true,  
              a swap and pop will occur instead of a more gassy loop */ 
          function removeValidator(uint256 remove_idx, bool dont_care_about_ordering) public onlyByOwnGov {
              // Get the pubkey for the validator to remove (for informational purposes)
              bytes memory removed_pubkey = validators[remove_idx].pubKey;
              // Less gassy to swap and pop
              if (dont_care_about_ordering){
                  // Swap the (validator to remove) with the (last validator in the array)
                  swapValidator(remove_idx, validators.length - 1);
                  // Pop off the validator to remove, which is now at the end of the array
                  validators.pop();
              }
              // More gassy, loop
              else {
                  // Save the original validators
                  Validator[] memory original_validators = validators;
                  // Clear the original validators list
                  delete validators;
                  // Fill the new validators array with all except the value to remove
                  for (uint256 i = 0; i < original_validators.length; ++i) {
                      if (i != remove_idx) {
                          validators.push(original_validators[i]);
                      }
                  }
              }
              emit ValidatorRemoved(removed_pubkey, remove_idx, dont_care_about_ordering);
          }
          // Internal
          /// @dev Remove the last validator from the validators array and return its information
          function getNextValidator()
              internal
              returns (
                  bytes memory pubKey,
                  bytes memory withdrawalCredentials,
                  bytes memory signature,
                  bytes32 depositDataRoot
              )
          {
              // Make sure there are free validators available
              uint numVals = numValidators();
              require(numVals != 0, "Validator stack is empty");
              // Pop the last validator off the array
              Validator memory popped = validators[numVals - 1];
              validators.pop();
              // Return the validator's information
              pubKey = popped.pubKey;
              withdrawalCredentials = curr_withdrawal_pubkey;
              signature = popped.signature;
              depositDataRoot = popped.depositDataRoot;
          }
          /// @notice Return the information of the i'th validator in the registry
          function getValidator(uint i) 
              view
              external
              returns (
                  bytes memory pubKey,
                  bytes memory withdrawalCredentials,
                  bytes memory signature,
                  bytes32 depositDataRoot
              )
          {
              Validator memory v = validators[i];
              // Return the validator's information
              pubKey = v.pubKey;
              withdrawalCredentials = curr_withdrawal_pubkey;
              signature = v.signature;
              depositDataRoot = v.depositDataRoot;
          }
          /// @notice Returns a Validator struct of the given inputs to make formatting addValidator inputs easier
          function getValidatorStruct(
              bytes memory pubKey, 
              bytes memory signature, 
              bytes32 depositDataRoot
          ) external pure returns (Validator memory) {
              return Validator(pubKey, signature, depositDataRoot);
          }
          /// @notice Requires empty validator stack as changing withdrawal creds invalidates signature
          /// @dev May need to call clearValidatorArray() first
          function setWithdrawalCredential(bytes memory _new_withdrawal_pubkey) external onlyByOwnGov {
              require(numValidators() == 0, "Clear validator array first");
              curr_withdrawal_pubkey = _new_withdrawal_pubkey;
              emit WithdrawalCredentialSet(_new_withdrawal_pubkey);
          }
          /// @notice Empties the validator array
          /// @dev Need to do this before setWithdrawalCredential()
          function clearValidatorArray() external onlyByOwnGov {
              delete validators;
              emit ValidatorArrayCleared();
          }
          /// @notice Returns the number of validators
          function numValidators() public view returns (uint256) {
              return validators.length;
          }
          /// @notice Set the timelock contract
          function setTimelock(address _timelock_address) external onlyByOwnGov {
              require(_timelock_address != address(0), "Zero address detected");
              timelock_address = _timelock_address;
              emit TimelockChanged(_timelock_address);
          }
          event TimelockChanged(address timelock_address);
          event WithdrawalCredentialSet(bytes _withdrawalCredential);
          event ValidatorAdded(bytes pubKey, bytes withdrawalCredential);
          event ValidatorArrayCleared();
          event ValidatorRemoved(bytes pubKey, uint256 remove_idx, bool dont_care_about_ordering);
          event ValidatorsPopped(uint256 times);
          event ValidatorsSwapped(bytes from_pubKey, bytes to_pubKey, uint256 from_idx, uint256 to_idx);
          event KeysCleared();
      }
      //SPDX-License-Identifier: Unlicense
      pragma solidity ^0.8.0;
      import "openzeppelin-contracts/contracts/token/ERC20/ERC20.sol";
      import "openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
      import "openzeppelin-contracts/contracts/token/ERC20/extensions/draft-ERC20Permit.sol";
      import "openzeppelin-contracts/contracts/token/ERC20/extensions/ERC20Burnable.sol";
      import "../Utils/Owned.sol";
      /// @title Parent contract for frxETH.sol
      /** @notice Combines Openzeppelin's ERC20Permit and ERC20Burnable with Synthetix's Owned. 
          Also includes a list of authorized minters */
      /// @dev frxETH adheres to EIP-712/EIP-2612 and can use permits
      contract ERC20PermitPermissionedMint is ERC20Permit, ERC20Burnable, Owned {
          // Core
          address public timelock_address;
          // Minters
          address[] public minters_array; // Allowed to mint
          mapping(address => bool) public minters; // Mapping is also used for faster verification
          /* ========== CONSTRUCTOR ========== */
          constructor(
              address _creator_address,
              address _timelock_address,
              string memory _name,
              string memory _symbol
          ) 
          ERC20(_name, _symbol)
          ERC20Permit(_name) 
          Owned(_creator_address)
          {
            timelock_address = _timelock_address;
          }
          /* ========== MODIFIERS ========== */
          modifier onlyByOwnGov() {
              require(msg.sender == timelock_address || msg.sender == owner, "Not owner or timelock");
              _;
          }
          modifier onlyMinters() {
             require(minters[msg.sender] == true, "Only minters");
              _;
          } 
          /* ========== RESTRICTED FUNCTIONS ========== */
          // Used by minters when user redeems
          function minter_burn_from(address b_address, uint256 b_amount) public onlyMinters {
              super.burnFrom(b_address, b_amount);
              emit TokenMinterBurned(b_address, msg.sender, b_amount);
          }
          // This function is what other minters will call to mint new tokens 
          function minter_mint(address m_address, uint256 m_amount) public onlyMinters {
              super._mint(m_address, m_amount);
              emit TokenMinterMinted(msg.sender, m_address, m_amount);
          }
          // Adds whitelisted minters 
          function addMinter(address minter_address) public onlyByOwnGov {
              require(minter_address != address(0), "Zero address detected");
              require(minters[minter_address] == false, "Address already exists");
              minters[minter_address] = true; 
              minters_array.push(minter_address);
              emit MinterAdded(minter_address);
          }
          // Remove a minter 
          function removeMinter(address minter_address) public onlyByOwnGov {
              require(minter_address != address(0), "Zero address detected");
              require(minters[minter_address] == true, "Address nonexistant");
              
              // Delete from the mapping
              delete minters[minter_address];
              // 'Delete' from the array by setting the address to 0x0
              for (uint i = 0; i < minters_array.length; i++){ 
                  if (minters_array[i] == minter_address) {
                      minters_array[i] = address(0); // This will leave a null in the array and keep the indices the same
                      break;
                  }
              }
              emit MinterRemoved(minter_address);
          }
          function setTimelock(address _timelock_address) public onlyByOwnGov {
              require(_timelock_address != address(0), "Zero address detected"); 
              timelock_address = _timelock_address;
              emit TimelockChanged(_timelock_address);
          }
          /* ========== EVENTS ========== */
          
          event TokenMinterBurned(address indexed from, address indexed to, uint256 amount);
          event TokenMinterMinted(address indexed from, address indexed to, uint256 amount);
          event MinterAdded(address minter_address);
          event MinterRemoved(address minter_address);
          event TimelockChanged(address timelock_address);
      }// SPDX-License-Identifier: GPL-2.0-or-later
      pragma solidity ^0.8.0;
      // https://docs.synthetix.io/contracts/Owned
      // NO NEED TO AUDIT
      contract Owned {
          address public owner;
          address public nominatedOwner;
          constructor (address _owner) {
              require(_owner != address(0), "Owner address cannot be 0");
              owner = _owner;
              emit OwnerChanged(address(0), _owner);
          }
          function nominateNewOwner(address _owner) external onlyOwner {
              nominatedOwner = _owner;
              emit OwnerNominated(_owner);
          }
          function acceptOwnership() external {
              require(msg.sender == nominatedOwner, "You must be nominated before you can accept ownership");
              emit OwnerChanged(owner, nominatedOwner);
              owner = nominatedOwner;
              nominatedOwner = address(0);
          }
          modifier onlyOwner {
              require(msg.sender == owner, "Only the contract owner may perform this action");
              _;
          }
          event OwnerNominated(address newOwner);
          event OwnerChanged(address oldOwner, address newOwner);
      }// SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/ERC20.sol)
      pragma solidity ^0.8.0;
      import "./IERC20.sol";
      import "./extensions/IERC20Metadata.sol";
      import "../../utils/Context.sol";
      /**
       * @dev Implementation of the {IERC20} interface.
       *
       * This implementation is agnostic to the way tokens are created. This means
       * that a supply mechanism has to be added in a derived contract using {_mint}.
       * For a generic mechanism see {ERC20PresetMinterPauser}.
       *
       * TIP: For a detailed writeup see our guide
       * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
       * to implement supply mechanisms].
       *
       * We have followed general OpenZeppelin Contracts guidelines: functions revert
       * instead returning `false` on failure. This behavior is nonetheless
       * conventional and does not conflict with the expectations of ERC20
       * applications.
       *
       * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
       * This allows applications to reconstruct the allowance for all accounts just
       * by listening to said events. Other implementations of the EIP may not emit
       * these events, as it isn't required by the specification.
       *
       * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
       * functions have been added to mitigate the well-known issues around setting
       * allowances. See {IERC20-approve}.
       */
      contract ERC20 is Context, IERC20, IERC20Metadata {
          mapping(address => uint256) private _balances;
          mapping(address => mapping(address => uint256)) private _allowances;
          uint256 private _totalSupply;
          string private _name;
          string private _symbol;
          /**
           * @dev Sets the values for {name} and {symbol}.
           *
           * The default value of {decimals} is 18. To select a different value for
           * {decimals} you should overload it.
           *
           * All two of these values are immutable: they can only be set once during
           * construction.
           */
          constructor(string memory name_, string memory symbol_) {
              _name = name_;
              _symbol = symbol_;
          }
          /**
           * @dev Returns the name of the token.
           */
          function name() public view virtual override returns (string memory) {
              return _name;
          }
          /**
           * @dev Returns the symbol of the token, usually a shorter version of the
           * name.
           */
          function symbol() public view virtual override returns (string memory) {
              return _symbol;
          }
          /**
           * @dev Returns the number of decimals used to get its user representation.
           * For example, if `decimals` equals `2`, a balance of `505` tokens should
           * be displayed to a user as `5.05` (`505 / 10 ** 2`).
           *
           * Tokens usually opt for a value of 18, imitating the relationship between
           * Ether and Wei. This is the value {ERC20} uses, unless this function is
           * overridden;
           *
           * NOTE: This information is only used for _display_ purposes: it in
           * no way affects any of the arithmetic of the contract, including
           * {IERC20-balanceOf} and {IERC20-transfer}.
           */
          function decimals() public view virtual override returns (uint8) {
              return 18;
          }
          /**
           * @dev See {IERC20-totalSupply}.
           */
          function totalSupply() public view virtual override returns (uint256) {
              return _totalSupply;
          }
          /**
           * @dev See {IERC20-balanceOf}.
           */
          function balanceOf(address account) public view virtual override returns (uint256) {
              return _balances[account];
          }
          /**
           * @dev See {IERC20-transfer}.
           *
           * Requirements:
           *
           * - `to` cannot be the zero address.
           * - the caller must have a balance of at least `amount`.
           */
          function transfer(address to, uint256 amount) public virtual override returns (bool) {
              address owner = _msgSender();
              _transfer(owner, to, amount);
              return true;
          }
          /**
           * @dev See {IERC20-allowance}.
           */
          function allowance(address owner, address spender) public view virtual override returns (uint256) {
              return _allowances[owner][spender];
          }
          /**
           * @dev See {IERC20-approve}.
           *
           * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
           * `transferFrom`. This is semantically equivalent to an infinite approval.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function approve(address spender, uint256 amount) public virtual override returns (bool) {
              address owner = _msgSender();
              _approve(owner, spender, amount);
              return true;
          }
          /**
           * @dev See {IERC20-transferFrom}.
           *
           * Emits an {Approval} event indicating the updated allowance. This is not
           * required by the EIP. See the note at the beginning of {ERC20}.
           *
           * NOTE: Does not update the allowance if the current allowance
           * is the maximum `uint256`.
           *
           * Requirements:
           *
           * - `from` and `to` cannot be the zero address.
           * - `from` must have a balance of at least `amount`.
           * - the caller must have allowance for ``from``'s tokens of at least
           * `amount`.
           */
          function transferFrom(
              address from,
              address to,
              uint256 amount
          ) public virtual override returns (bool) {
              address spender = _msgSender();
              _spendAllowance(from, spender, amount);
              _transfer(from, to, amount);
              return true;
          }
          /**
           * @dev Atomically increases the allowance granted to `spender` by the caller.
           *
           * This is an alternative to {approve} that can be used as a mitigation for
           * problems described in {IERC20-approve}.
           *
           * Emits an {Approval} event indicating the updated allowance.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
              address owner = _msgSender();
              _approve(owner, spender, allowance(owner, spender) + addedValue);
              return true;
          }
          /**
           * @dev Atomically decreases the allowance granted to `spender` by the caller.
           *
           * This is an alternative to {approve} that can be used as a mitigation for
           * problems described in {IERC20-approve}.
           *
           * Emits an {Approval} event indicating the updated allowance.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           * - `spender` must have allowance for the caller of at least
           * `subtractedValue`.
           */
          function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
              address owner = _msgSender();
              uint256 currentAllowance = allowance(owner, spender);
              require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
              unchecked {
                  _approve(owner, spender, currentAllowance - subtractedValue);
              }
              return true;
          }
          /**
           * @dev Moves `amount` of tokens from `from` to `to`.
           *
           * This internal function is equivalent to {transfer}, and can be used to
           * e.g. implement automatic token fees, slashing mechanisms, etc.
           *
           * Emits a {Transfer} event.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `from` must have a balance of at least `amount`.
           */
          function _transfer(
              address from,
              address to,
              uint256 amount
          ) internal virtual {
              require(from != address(0), "ERC20: transfer from the zero address");
              require(to != address(0), "ERC20: transfer to the zero address");
              _beforeTokenTransfer(from, to, amount);
              uint256 fromBalance = _balances[from];
              require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
              unchecked {
                  _balances[from] = fromBalance - amount;
                  // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
                  // decrementing then incrementing.
                  _balances[to] += amount;
              }
              emit Transfer(from, to, amount);
              _afterTokenTransfer(from, to, amount);
          }
          /** @dev Creates `amount` tokens and assigns them to `account`, increasing
           * the total supply.
           *
           * Emits a {Transfer} event with `from` set to the zero address.
           *
           * Requirements:
           *
           * - `account` cannot be the zero address.
           */
          function _mint(address account, uint256 amount) internal virtual {
              require(account != address(0), "ERC20: mint to the zero address");
              _beforeTokenTransfer(address(0), account, amount);
              _totalSupply += amount;
              unchecked {
                  // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
                  _balances[account] += amount;
              }
              emit Transfer(address(0), account, amount);
              _afterTokenTransfer(address(0), account, amount);
          }
          /**
           * @dev Destroys `amount` tokens from `account`, reducing the
           * total supply.
           *
           * Emits a {Transfer} event with `to` set to the zero address.
           *
           * Requirements:
           *
           * - `account` cannot be the zero address.
           * - `account` must have at least `amount` tokens.
           */
          function _burn(address account, uint256 amount) internal virtual {
              require(account != address(0), "ERC20: burn from the zero address");
              _beforeTokenTransfer(account, address(0), amount);
              uint256 accountBalance = _balances[account];
              require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
              unchecked {
                  _balances[account] = accountBalance - amount;
                  // Overflow not possible: amount <= accountBalance <= totalSupply.
                  _totalSupply -= amount;
              }
              emit Transfer(account, address(0), amount);
              _afterTokenTransfer(account, address(0), amount);
          }
          /**
           * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
           *
           * This internal function is equivalent to `approve`, and can be used to
           * e.g. set automatic allowances for certain subsystems, etc.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `owner` cannot be the zero address.
           * - `spender` cannot be the zero address.
           */
          function _approve(
              address owner,
              address spender,
              uint256 amount
          ) internal virtual {
              require(owner != address(0), "ERC20: approve from the zero address");
              require(spender != address(0), "ERC20: approve to the zero address");
              _allowances[owner][spender] = amount;
              emit Approval(owner, spender, amount);
          }
          /**
           * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
           *
           * Does not update the allowance amount in case of infinite allowance.
           * Revert if not enough allowance is available.
           *
           * Might emit an {Approval} event.
           */
          function _spendAllowance(
              address owner,
              address spender,
              uint256 amount
          ) internal virtual {
              uint256 currentAllowance = allowance(owner, spender);
              if (currentAllowance != type(uint256).max) {
                  require(currentAllowance >= amount, "ERC20: insufficient allowance");
                  unchecked {
                      _approve(owner, spender, currentAllowance - amount);
                  }
              }
          }
          /**
           * @dev Hook that is called before any transfer of tokens. This includes
           * minting and burning.
           *
           * Calling conditions:
           *
           * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
           * will be transferred to `to`.
           * - when `from` is zero, `amount` tokens will be minted for `to`.
           * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
           * - `from` and `to` are never both zero.
           *
           * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
           */
          function _beforeTokenTransfer(
              address from,
              address to,
              uint256 amount
          ) internal virtual {}
          /**
           * @dev Hook that is called after any transfer of tokens. This includes
           * minting and burning.
           *
           * Calling conditions:
           *
           * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
           * has been transferred to `to`.
           * - when `from` is zero, `amount` tokens have been minted for `to`.
           * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
           * - `from` and `to` are never both zero.
           *
           * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
           */
          function _afterTokenTransfer(
              address from,
              address to,
              uint256 amount
          ) internal virtual {}
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/extensions/draft-ERC20Permit.sol)
      pragma solidity ^0.8.0;
      import "./draft-IERC20Permit.sol";
      import "../ERC20.sol";
      import "../../../utils/cryptography/ECDSA.sol";
      import "../../../utils/cryptography/EIP712.sol";
      import "../../../utils/Counters.sol";
      /**
       * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
       * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
       *
       * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
       * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
       * need to send a transaction, and thus is not required to hold Ether at all.
       *
       * _Available since v3.4._
       */
      abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 {
          using Counters for Counters.Counter;
          mapping(address => Counters.Counter) private _nonces;
          // solhint-disable-next-line var-name-mixedcase
          bytes32 private constant _PERMIT_TYPEHASH =
              keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
          /**
           * @dev In previous versions `_PERMIT_TYPEHASH` was declared as `immutable`.
           * However, to ensure consistency with the upgradeable transpiler, we will continue
           * to reserve a slot.
           * @custom:oz-renamed-from _PERMIT_TYPEHASH
           */
          // solhint-disable-next-line var-name-mixedcase
          bytes32 private _PERMIT_TYPEHASH_DEPRECATED_SLOT;
          /**
           * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
           *
           * It's a good idea to use the same `name` that is defined as the ERC20 token name.
           */
          constructor(string memory name) EIP712(name, "1") {}
          /**
           * @dev See {IERC20Permit-permit}.
           */
          function permit(
              address owner,
              address spender,
              uint256 value,
              uint256 deadline,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) public virtual override {
              require(block.timestamp <= deadline, "ERC20Permit: expired deadline");
              bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));
              bytes32 hash = _hashTypedDataV4(structHash);
              address signer = ECDSA.recover(hash, v, r, s);
              require(signer == owner, "ERC20Permit: invalid signature");
              _approve(owner, spender, value);
          }
          /**
           * @dev See {IERC20Permit-nonces}.
           */
          function nonces(address owner) public view virtual override returns (uint256) {
              return _nonces[owner].current();
          }
          /**
           * @dev See {IERC20Permit-DOMAIN_SEPARATOR}.
           */
          // solhint-disable-next-line func-name-mixedcase
          function DOMAIN_SEPARATOR() external view override returns (bytes32) {
              return _domainSeparatorV4();
          }
          /**
           * @dev "Consume a nonce": return the current value and increment.
           *
           * _Available since v4.1._
           */
          function _useNonce(address owner) internal virtual returns (uint256 current) {
              Counters.Counter storage nonce = _nonces[owner];
              current = nonce.current();
              nonce.increment();
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/extensions/ERC20Burnable.sol)
      pragma solidity ^0.8.0;
      import "../ERC20.sol";
      import "../../../utils/Context.sol";
      /**
       * @dev Extension of {ERC20} that allows token holders to destroy both their own
       * tokens and those that they have an allowance for, in a way that can be
       * recognized off-chain (via event analysis).
       */
      abstract contract ERC20Burnable is Context, ERC20 {
          /**
           * @dev Destroys `amount` tokens from the caller.
           *
           * See {ERC20-_burn}.
           */
          function burn(uint256 amount) public virtual {
              _burn(_msgSender(), amount);
          }
          /**
           * @dev Destroys `amount` tokens from `account`, deducting from the caller's
           * allowance.
           *
           * See {ERC20-_burn} and {ERC20-allowance}.
           *
           * Requirements:
           *
           * - the caller must have allowance for ``accounts``'s tokens of at least
           * `amount`.
           */
          function burnFrom(address account, uint256 amount) public virtual {
              _spendAllowance(account, _msgSender(), amount);
              _burn(account, amount);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
      pragma solidity ^0.8.0;
      import "../IERC20.sol";
      /**
       * @dev Interface for the optional metadata functions from the ERC20 standard.
       *
       * _Available since v4.1._
       */
      interface IERC20Metadata is IERC20 {
          /**
           * @dev Returns the name of the token.
           */
          function name() external view returns (string memory);
          /**
           * @dev Returns the symbol of the token.
           */
          function symbol() external view returns (string memory);
          /**
           * @dev Returns the decimals places of the token.
           */
          function decimals() external view returns (uint8);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
       * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
       *
       * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
       * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
       * need to send a transaction, and thus is not required to hold Ether at all.
       */
      interface IERC20Permit {
          /**
           * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
           * given ``owner``'s signed approval.
           *
           * IMPORTANT: The same issues {IERC20-approve} has related to transaction
           * ordering also apply here.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           * - `deadline` must be a timestamp in the future.
           * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
           * over the EIP712-formatted function arguments.
           * - the signature must use ``owner``'s current nonce (see {nonces}).
           *
           * For more information on the signature format, see the
           * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
           * section].
           */
          function permit(
              address owner,
              address spender,
              uint256 value,
              uint256 deadline,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) external;
          /**
           * @dev Returns the current nonce for `owner`. This value must be
           * included whenever a signature is generated for {permit}.
           *
           * Every successful call to {permit} increases ``owner``'s nonce by one. This
           * prevents a signature from being used multiple times.
           */
          function nonces(address owner) external view returns (uint256);
          /**
           * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
           */
          // solhint-disable-next-line func-name-mixedcase
          function DOMAIN_SEPARATOR() external view returns (bytes32);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/cryptography/ECDSA.sol)
      pragma solidity ^0.8.0;
      import "../Strings.sol";
      /**
       * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
       *
       * These functions can be used to verify that a message was signed by the holder
       * of the private keys of a given address.
       */
      library ECDSA {
          enum RecoverError {
              NoError,
              InvalidSignature,
              InvalidSignatureLength,
              InvalidSignatureS,
              InvalidSignatureV // Deprecated in v4.8
          }
          function _throwError(RecoverError error) private pure {
              if (error == RecoverError.NoError) {
                  return; // no error: do nothing
              } else if (error == RecoverError.InvalidSignature) {
                  revert("ECDSA: invalid signature");
              } else if (error == RecoverError.InvalidSignatureLength) {
                  revert("ECDSA: invalid signature length");
              } else if (error == RecoverError.InvalidSignatureS) {
                  revert("ECDSA: invalid signature 's' value");
              }
          }
          /**
           * @dev Returns the address that signed a hashed message (`hash`) with
           * `signature` or error string. This address can then be used for verification purposes.
           *
           * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
           * this function rejects them by requiring the `s` value to be in the lower
           * half order, and the `v` value to be either 27 or 28.
           *
           * IMPORTANT: `hash` _must_ be the result of a hash operation for the
           * verification to be secure: it is possible to craft signatures that
           * recover to arbitrary addresses for non-hashed data. A safe way to ensure
           * this is by receiving a hash of the original message (which may otherwise
           * be too long), and then calling {toEthSignedMessageHash} on it.
           *
           * Documentation for signature generation:
           * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
           * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
           *
           * _Available since v4.3._
           */
          function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
              if (signature.length == 65) {
                  bytes32 r;
                  bytes32 s;
                  uint8 v;
                  // ecrecover takes the signature parameters, and the only way to get them
                  // currently is to use assembly.
                  /// @solidity memory-safe-assembly
                  assembly {
                      r := mload(add(signature, 0x20))
                      s := mload(add(signature, 0x40))
                      v := byte(0, mload(add(signature, 0x60)))
                  }
                  return tryRecover(hash, v, r, s);
              } else {
                  return (address(0), RecoverError.InvalidSignatureLength);
              }
          }
          /**
           * @dev Returns the address that signed a hashed message (`hash`) with
           * `signature`. This address can then be used for verification purposes.
           *
           * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
           * this function rejects them by requiring the `s` value to be in the lower
           * half order, and the `v` value to be either 27 or 28.
           *
           * IMPORTANT: `hash` _must_ be the result of a hash operation for the
           * verification to be secure: it is possible to craft signatures that
           * recover to arbitrary addresses for non-hashed data. A safe way to ensure
           * this is by receiving a hash of the original message (which may otherwise
           * be too long), and then calling {toEthSignedMessageHash} on it.
           */
          function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
              (address recovered, RecoverError error) = tryRecover(hash, signature);
              _throwError(error);
              return recovered;
          }
          /**
           * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
           *
           * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
           *
           * _Available since v4.3._
           */
          function tryRecover(
              bytes32 hash,
              bytes32 r,
              bytes32 vs
          ) internal pure returns (address, RecoverError) {
              bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
              uint8 v = uint8((uint256(vs) >> 255) + 27);
              return tryRecover(hash, v, r, s);
          }
          /**
           * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
           *
           * _Available since v4.2._
           */
          function recover(
              bytes32 hash,
              bytes32 r,
              bytes32 vs
          ) internal pure returns (address) {
              (address recovered, RecoverError error) = tryRecover(hash, r, vs);
              _throwError(error);
              return recovered;
          }
          /**
           * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
           * `r` and `s` signature fields separately.
           *
           * _Available since v4.3._
           */
          function tryRecover(
              bytes32 hash,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) internal pure returns (address, RecoverError) {
              // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
              // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
              // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
              // signatures from current libraries generate a unique signature with an s-value in the lower half order.
              //
              // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
              // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
              // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
              // these malleable signatures as well.
              if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
                  return (address(0), RecoverError.InvalidSignatureS);
              }
              // If the signature is valid (and not malleable), return the signer address
              address signer = ecrecover(hash, v, r, s);
              if (signer == address(0)) {
                  return (address(0), RecoverError.InvalidSignature);
              }
              return (signer, RecoverError.NoError);
          }
          /**
           * @dev Overload of {ECDSA-recover} that receives the `v`,
           * `r` and `s` signature fields separately.
           */
          function recover(
              bytes32 hash,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) internal pure returns (address) {
              (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
              _throwError(error);
              return recovered;
          }
          /**
           * @dev Returns an Ethereum Signed Message, created from a `hash`. This
           * produces hash corresponding to the one signed with the
           * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
           * JSON-RPC method as part of EIP-191.
           *
           * See {recover}.
           */
          function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
              // 32 is the length in bytes of hash,
              // enforced by the type signature above
              return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\
      32", hash));
          }
          /**
           * @dev Returns an Ethereum Signed Message, created from `s`. This
           * produces hash corresponding to the one signed with the
           * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
           * JSON-RPC method as part of EIP-191.
           *
           * See {recover}.
           */
          function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
              return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\
      ", Strings.toString(s.length), s));
          }
          /**
           * @dev Returns an Ethereum Signed Typed Data, created from a
           * `domainSeparator` and a `structHash`. This produces hash corresponding
           * to the one signed with the
           * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
           * JSON-RPC method as part of EIP-712.
           *
           * See {recover}.
           */
          function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
              return keccak256(abi.encodePacked("\\x19\\x01", domainSeparator, structHash));
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import "./ECDSA.sol";
      /**
       * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
       *
       * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
       * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
       * they need in their contracts using a combination of `abi.encode` and `keccak256`.
       *
       * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
       * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
       * ({_hashTypedDataV4}).
       *
       * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
       * the chain id to protect against replay attacks on an eventual fork of the chain.
       *
       * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
       * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
       *
       * _Available since v3.4._
       */
      abstract contract EIP712 {
          /* solhint-disable var-name-mixedcase */
          // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
          // invalidate the cached domain separator if the chain id changes.
          bytes32 private immutable _CACHED_DOMAIN_SEPARATOR;
          uint256 private immutable _CACHED_CHAIN_ID;
          address private immutable _CACHED_THIS;
          bytes32 private immutable _HASHED_NAME;
          bytes32 private immutable _HASHED_VERSION;
          bytes32 private immutable _TYPE_HASH;
          /* solhint-enable var-name-mixedcase */
          /**
           * @dev Initializes the domain separator and parameter caches.
           *
           * The meaning of `name` and `version` is specified in
           * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
           *
           * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
           * - `version`: the current major version of the signing domain.
           *
           * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
           * contract upgrade].
           */
          constructor(string memory name, string memory version) {
              bytes32 hashedName = keccak256(bytes(name));
              bytes32 hashedVersion = keccak256(bytes(version));
              bytes32 typeHash = keccak256(
                  "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
              );
              _HASHED_NAME = hashedName;
              _HASHED_VERSION = hashedVersion;
              _CACHED_CHAIN_ID = block.chainid;
              _CACHED_DOMAIN_SEPARATOR = _buildDomainSeparator(typeHash, hashedName, hashedVersion);
              _CACHED_THIS = address(this);
              _TYPE_HASH = typeHash;
          }
          /**
           * @dev Returns the domain separator for the current chain.
           */
          function _domainSeparatorV4() internal view returns (bytes32) {
              if (address(this) == _CACHED_THIS && block.chainid == _CACHED_CHAIN_ID) {
                  return _CACHED_DOMAIN_SEPARATOR;
              } else {
                  return _buildDomainSeparator(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION);
              }
          }
          function _buildDomainSeparator(
              bytes32 typeHash,
              bytes32 nameHash,
              bytes32 versionHash
          ) private view returns (bytes32) {
              return keccak256(abi.encode(typeHash, nameHash, versionHash, block.chainid, address(this)));
          }
          /**
           * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
           * function returns the hash of the fully encoded EIP712 message for this domain.
           *
           * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
           *
           * ```solidity
           * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
           *     keccak256("Mail(address to,string contents)"),
           *     mailTo,
           *     keccak256(bytes(mailContents))
           * )));
           * address signer = ECDSA.recover(digest, signature);
           * ```
           */
          function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
              return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)
      pragma solidity ^0.8.0;
      /**
       * @title Counters
       * @author Matt Condon (@shrugs)
       * @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
       * of elements in a mapping, issuing ERC721 ids, or counting request ids.
       *
       * Include with `using Counters for Counters.Counter;`
       */
      library Counters {
          struct Counter {
              // This variable should never be directly accessed by users of the library: interactions must be restricted to
              // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
              // this feature: see https://github.com/ethereum/solidity/issues/4637
              uint256 _value; // default: 0
          }
          function current(Counter storage counter) internal view returns (uint256) {
              return counter._value;
          }
          function increment(Counter storage counter) internal {
              unchecked {
                  counter._value += 1;
              }
          }
          function decrement(Counter storage counter) internal {
              uint256 value = counter._value;
              require(value > 0, "Counter: decrement overflow");
              unchecked {
                  counter._value = value - 1;
              }
          }
          function reset(Counter storage counter) internal {
              counter._value = 0;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/Strings.sol)
      pragma solidity ^0.8.0;
      import "./math/Math.sol";
      /**
       * @dev String operations.
       */
      library Strings {
          bytes16 private constant _SYMBOLS = "0123456789abcdef";
          uint8 private constant _ADDRESS_LENGTH = 20;
          /**
           * @dev Converts a `uint256` to its ASCII `string` decimal representation.
           */
          function toString(uint256 value) internal pure returns (string memory) {
              unchecked {
                  uint256 length = Math.log10(value) + 1;
                  string memory buffer = new string(length);
                  uint256 ptr;
                  /// @solidity memory-safe-assembly
                  assembly {
                      ptr := add(buffer, add(32, length))
                  }
                  while (true) {
                      ptr--;
                      /// @solidity memory-safe-assembly
                      assembly {
                          mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                      }
                      value /= 10;
                      if (value == 0) break;
                  }
                  return buffer;
              }
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
           */
          function toHexString(uint256 value) internal pure returns (string memory) {
              unchecked {
                  return toHexString(value, Math.log256(value) + 1);
              }
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
           */
          function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
              bytes memory buffer = new bytes(2 * length + 2);
              buffer[0] = "0";
              buffer[1] = "x";
              for (uint256 i = 2 * length + 1; i > 1; --i) {
                  buffer[i] = _SYMBOLS[value & 0xf];
                  value >>= 4;
              }
              require(value == 0, "Strings: hex length insufficient");
              return string(buffer);
          }
          /**
           * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
           */
          function toHexString(address addr) internal pure returns (string memory) {
              return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Standard math utilities missing in the Solidity language.
       */
      library Math {
          enum Rounding {
              Down, // Toward negative infinity
              Up, // Toward infinity
              Zero // Toward zero
          }
          /**
           * @dev Returns the largest of two numbers.
           */
          function max(uint256 a, uint256 b) internal pure returns (uint256) {
              return a > b ? a : b;
          }
          /**
           * @dev Returns the smallest of two numbers.
           */
          function min(uint256 a, uint256 b) internal pure returns (uint256) {
              return a < b ? a : b;
          }
          /**
           * @dev Returns the average of two numbers. The result is rounded towards
           * zero.
           */
          function average(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b) / 2 can overflow.
              return (a & b) + (a ^ b) / 2;
          }
          /**
           * @dev Returns the ceiling of the division of two numbers.
           *
           * This differs from standard division with `/` in that it rounds up instead
           * of rounding down.
           */
          function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b - 1) / b can overflow on addition, so we distribute.
              return a == 0 ? 0 : (a - 1) / b + 1;
          }
          /**
           * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
           * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
           * with further edits by Uniswap Labs also under MIT license.
           */
          function mulDiv(
              uint256 x,
              uint256 y,
              uint256 denominator
          ) internal pure returns (uint256 result) {
              unchecked {
                  // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                  // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                  // variables such that product = prod1 * 2^256 + prod0.
                  uint256 prod0; // Least significant 256 bits of the product
                  uint256 prod1; // Most significant 256 bits of the product
                  assembly {
                      let mm := mulmod(x, y, not(0))
                      prod0 := mul(x, y)
                      prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                  }
                  // Handle non-overflow cases, 256 by 256 division.
                  if (prod1 == 0) {
                      return prod0 / denominator;
                  }
                  // Make sure the result is less than 2^256. Also prevents denominator == 0.
                  require(denominator > prod1);
                  ///////////////////////////////////////////////
                  // 512 by 256 division.
                  ///////////////////////////////////////////////
                  // Make division exact by subtracting the remainder from [prod1 prod0].
                  uint256 remainder;
                  assembly {
                      // Compute remainder using mulmod.
                      remainder := mulmod(x, y, denominator)
                      // Subtract 256 bit number from 512 bit number.
                      prod1 := sub(prod1, gt(remainder, prod0))
                      prod0 := sub(prod0, remainder)
                  }
                  // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                  // See https://cs.stackexchange.com/q/138556/92363.
                  // Does not overflow because the denominator cannot be zero at this stage in the function.
                  uint256 twos = denominator & (~denominator + 1);
                  assembly {
                      // Divide denominator by twos.
                      denominator := div(denominator, twos)
                      // Divide [prod1 prod0] by twos.
                      prod0 := div(prod0, twos)
                      // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                      twos := add(div(sub(0, twos), twos), 1)
                  }
                  // Shift in bits from prod1 into prod0.
                  prod0 |= prod1 * twos;
                  // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                  // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                  // four bits. That is, denominator * inv = 1 mod 2^4.
                  uint256 inverse = (3 * denominator) ^ 2;
                  // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                  // in modular arithmetic, doubling the correct bits in each step.
                  inverse *= 2 - denominator * inverse; // inverse mod 2^8
                  inverse *= 2 - denominator * inverse; // inverse mod 2^16
                  inverse *= 2 - denominator * inverse; // inverse mod 2^32
                  inverse *= 2 - denominator * inverse; // inverse mod 2^64
                  inverse *= 2 - denominator * inverse; // inverse mod 2^128
                  inverse *= 2 - denominator * inverse; // inverse mod 2^256
                  // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                  // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                  // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                  // is no longer required.
                  result = prod0 * inverse;
                  return result;
              }
          }
          /**
           * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
           */
          function mulDiv(
              uint256 x,
              uint256 y,
              uint256 denominator,
              Rounding rounding
          ) internal pure returns (uint256) {
              uint256 result = mulDiv(x, y, denominator);
              if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                  result += 1;
              }
              return result;
          }
          /**
           * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
           *
           * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
           */
          function sqrt(uint256 a) internal pure returns (uint256) {
              if (a == 0) {
                  return 0;
              }
              // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
              //
              // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
              // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
              //
              // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
              // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
              // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
              //
              // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
              uint256 result = 1 << (log2(a) >> 1);
              // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
              // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
              // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
              // into the expected uint128 result.
              unchecked {
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  return min(result, a / result);
              }
          }
          /**
           * @notice Calculates sqrt(a), following the selected rounding direction.
           */
          function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = sqrt(a);
                  return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 2, rounded down, of a positive value.
           * Returns 0 if given 0.
           */
          function log2(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >> 128 > 0) {
                      value >>= 128;
                      result += 128;
                  }
                  if (value >> 64 > 0) {
                      value >>= 64;
                      result += 64;
                  }
                  if (value >> 32 > 0) {
                      value >>= 32;
                      result += 32;
                  }
                  if (value >> 16 > 0) {
                      value >>= 16;
                      result += 16;
                  }
                  if (value >> 8 > 0) {
                      value >>= 8;
                      result += 8;
                  }
                  if (value >> 4 > 0) {
                      value >>= 4;
                      result += 4;
                  }
                  if (value >> 2 > 0) {
                      value >>= 2;
                      result += 2;
                  }
                  if (value >> 1 > 0) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log2(value);
                  return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 10, rounded down, of a positive value.
           * Returns 0 if given 0.
           */
          function log10(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >= 10**64) {
                      value /= 10**64;
                      result += 64;
                  }
                  if (value >= 10**32) {
                      value /= 10**32;
                      result += 32;
                  }
                  if (value >= 10**16) {
                      value /= 10**16;
                      result += 16;
                  }
                  if (value >= 10**8) {
                      value /= 10**8;
                      result += 8;
                  }
                  if (value >= 10**4) {
                      value /= 10**4;
                      result += 4;
                  }
                  if (value >= 10**2) {
                      value /= 10**2;
                      result += 2;
                  }
                  if (value >= 10**1) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log10(value);
                  return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 256, rounded down, of a positive value.
           * Returns 0 if given 0.
           *
           * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
           */
          function log256(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >> 128 > 0) {
                      value >>= 128;
                      result += 16;
                  }
                  if (value >> 64 > 0) {
                      value >>= 64;
                      result += 8;
                  }
                  if (value >> 32 > 0) {
                      value >>= 32;
                      result += 4;
                  }
                  if (value >> 16 > 0) {
                      value >>= 16;
                      result += 2;
                  }
                  if (value >> 8 > 0) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log256(value);
                  return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
              }
          }
      }
      

      File 2 of 3: frxETH
      // SPDX-License-Identifier: GPL-2.0-or-later
      pragma solidity >=0.8.0;
      
      
      // ====================================================================
      // |     ______                   _______                             |
      // |    / _____________ __  __   / ____(_____  ____ _____  ________   |
      // |   / /_  / ___/ __ `| |/_/  / /_  / / __ \/ __ `/ __ \/ ___/ _ \  |
      // |  / __/ / /  / /_/ _>  <   / __/ / / / / / /_/ / / / / /__/  __/  |
      // | /_/   /_/   \__,_/_/|_|  /_/   /_/_/ /_/\__,_/_/ /_/\___/\___/   |
      // |                                                                  |
      // ====================================================================
      // ============================== frxETH ==============================
      // ====================================================================
      // Frax Finance: https://github.com/FraxFinance
      
      // Primary Author(s)
      // Jack Corddry: https://github.com/corddry
      // Nader Ghazvini: https://github.com/amirnader-ghazvini 
      
      // Reviewer(s) / Contributor(s)
      // Sam Kazemian: https://github.com/samkazemian
      // Dennis: https://github.com/denett
      // Travis Moore: https://github.com/FortisFortuna
      // Jamie Turley: https://github.com/jyturley
      
      /// @title Stablecoin pegged to Ether for use within the Frax ecosystem
      /** @notice Does not accrue ETH 2.0 staking yield: it must be staked at the sfrxETH contract first.
          ETH -> frxETH conversion is permanent, so a market will develop for the latter.
          Withdraws are not live (as of deploy time) so loosely pegged to eth but is possible will float */
      /// @dev frxETH adheres to EIP-712/EIP-2612 and can use permits
      
      // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/ERC20.sol)
      
      // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
      
      /**
       * @dev Interface of the ERC20 standard as defined in the EIP.
       */
      interface IERC20 {
          /**
           * @dev Emitted when `value` tokens are moved from one account (`from`) to
           * another (`to`).
           *
           * Note that `value` may be zero.
           */
          event Transfer(address indexed from, address indexed to, uint256 value);
      
          /**
           * @dev Emitted when the allowance of a `spender` for an `owner` is set by
           * a call to {approve}. `value` is the new allowance.
           */
          event Approval(address indexed owner, address indexed spender, uint256 value);
      
          /**
           * @dev Returns the amount of tokens in existence.
           */
          function totalSupply() external view returns (uint256);
      
          /**
           * @dev Returns the amount of tokens owned by `account`.
           */
          function balanceOf(address account) external view returns (uint256);
      
          /**
           * @dev Moves `amount` tokens from the caller's account to `to`.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transfer(address to, uint256 amount) external returns (bool);
      
          /**
           * @dev Returns the remaining number of tokens that `spender` will be
           * allowed to spend on behalf of `owner` through {transferFrom}. This is
           * zero by default.
           *
           * This value changes when {approve} or {transferFrom} are called.
           */
          function allowance(address owner, address spender) external view returns (uint256);
      
          /**
           * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * IMPORTANT: Beware that changing an allowance with this method brings the risk
           * that someone may use both the old and the new allowance by unfortunate
           * transaction ordering. One possible solution to mitigate this race
           * condition is to first reduce the spender's allowance to 0 and set the
           * desired value afterwards:
           * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
           *
           * Emits an {Approval} event.
           */
          function approve(address spender, uint256 amount) external returns (bool);
      
          /**
           * @dev Moves `amount` tokens from `from` to `to` using the
           * allowance mechanism. `amount` is then deducted from the caller's
           * allowance.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(
              address from,
              address to,
              uint256 amount
          ) external returns (bool);
      }
      
      // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
      
      /**
       * @dev Interface for the optional metadata functions from the ERC20 standard.
       *
       * _Available since v4.1._
       */
      interface IERC20Metadata is IERC20 {
          /**
           * @dev Returns the name of the token.
           */
          function name() external view returns (string memory);
      
          /**
           * @dev Returns the symbol of the token.
           */
          function symbol() external view returns (string memory);
      
          /**
           * @dev Returns the decimals places of the token.
           */
          function decimals() external view returns (uint8);
      }
      
      // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
      
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
      
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
      }
      
      /**
       * @dev Implementation of the {IERC20} interface.
       *
       * This implementation is agnostic to the way tokens are created. This means
       * that a supply mechanism has to be added in a derived contract using {_mint}.
       * For a generic mechanism see {ERC20PresetMinterPauser}.
       *
       * TIP: For a detailed writeup see our guide
       * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
       * to implement supply mechanisms].
       *
       * We have followed general OpenZeppelin Contracts guidelines: functions revert
       * instead returning `false` on failure. This behavior is nonetheless
       * conventional and does not conflict with the expectations of ERC20
       * applications.
       *
       * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
       * This allows applications to reconstruct the allowance for all accounts just
       * by listening to said events. Other implementations of the EIP may not emit
       * these events, as it isn't required by the specification.
       *
       * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
       * functions have been added to mitigate the well-known issues around setting
       * allowances. See {IERC20-approve}.
       */
      contract ERC20 is Context, IERC20, IERC20Metadata {
          mapping(address => uint256) private _balances;
      
          mapping(address => mapping(address => uint256)) private _allowances;
      
          uint256 private _totalSupply;
      
          string private _name;
          string private _symbol;
      
          /**
           * @dev Sets the values for {name} and {symbol}.
           *
           * The default value of {decimals} is 18. To select a different value for
           * {decimals} you should overload it.
           *
           * All two of these values are immutable: they can only be set once during
           * construction.
           */
          constructor(string memory name_, string memory symbol_) {
              _name = name_;
              _symbol = symbol_;
          }
      
          /**
           * @dev Returns the name of the token.
           */
          function name() public view virtual override returns (string memory) {
              return _name;
          }
      
          /**
           * @dev Returns the symbol of the token, usually a shorter version of the
           * name.
           */
          function symbol() public view virtual override returns (string memory) {
              return _symbol;
          }
      
          /**
           * @dev Returns the number of decimals used to get its user representation.
           * For example, if `decimals` equals `2`, a balance of `505` tokens should
           * be displayed to a user as `5.05` (`505 / 10 ** 2`).
           *
           * Tokens usually opt for a value of 18, imitating the relationship between
           * Ether and Wei. This is the value {ERC20} uses, unless this function is
           * overridden;
           *
           * NOTE: This information is only used for _display_ purposes: it in
           * no way affects any of the arithmetic of the contract, including
           * {IERC20-balanceOf} and {IERC20-transfer}.
           */
          function decimals() public view virtual override returns (uint8) {
              return 18;
          }
      
          /**
           * @dev See {IERC20-totalSupply}.
           */
          function totalSupply() public view virtual override returns (uint256) {
              return _totalSupply;
          }
      
          /**
           * @dev See {IERC20-balanceOf}.
           */
          function balanceOf(address account) public view virtual override returns (uint256) {
              return _balances[account];
          }
      
          /**
           * @dev See {IERC20-transfer}.
           *
           * Requirements:
           *
           * - `to` cannot be the zero address.
           * - the caller must have a balance of at least `amount`.
           */
          function transfer(address to, uint256 amount) public virtual override returns (bool) {
              address owner = _msgSender();
              _transfer(owner, to, amount);
              return true;
          }
      
          /**
           * @dev See {IERC20-allowance}.
           */
          function allowance(address owner, address spender) public view virtual override returns (uint256) {
              return _allowances[owner][spender];
          }
      
          /**
           * @dev See {IERC20-approve}.
           *
           * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
           * `transferFrom`. This is semantically equivalent to an infinite approval.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function approve(address spender, uint256 amount) public virtual override returns (bool) {
              address owner = _msgSender();
              _approve(owner, spender, amount);
              return true;
          }
      
          /**
           * @dev See {IERC20-transferFrom}.
           *
           * Emits an {Approval} event indicating the updated allowance. This is not
           * required by the EIP. See the note at the beginning of {ERC20}.
           *
           * NOTE: Does not update the allowance if the current allowance
           * is the maximum `uint256`.
           *
           * Requirements:
           *
           * - `from` and `to` cannot be the zero address.
           * - `from` must have a balance of at least `amount`.
           * - the caller must have allowance for ``from``'s tokens of at least
           * `amount`.
           */
          function transferFrom(
              address from,
              address to,
              uint256 amount
          ) public virtual override returns (bool) {
              address spender = _msgSender();
              _spendAllowance(from, spender, amount);
              _transfer(from, to, amount);
              return true;
          }
      
          /**
           * @dev Atomically increases the allowance granted to `spender` by the caller.
           *
           * This is an alternative to {approve} that can be used as a mitigation for
           * problems described in {IERC20-approve}.
           *
           * Emits an {Approval} event indicating the updated allowance.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
              address owner = _msgSender();
              _approve(owner, spender, allowance(owner, spender) + addedValue);
              return true;
          }
      
          /**
           * @dev Atomically decreases the allowance granted to `spender` by the caller.
           *
           * This is an alternative to {approve} that can be used as a mitigation for
           * problems described in {IERC20-approve}.
           *
           * Emits an {Approval} event indicating the updated allowance.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           * - `spender` must have allowance for the caller of at least
           * `subtractedValue`.
           */
          function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
              address owner = _msgSender();
              uint256 currentAllowance = allowance(owner, spender);
              require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
              unchecked {
                  _approve(owner, spender, currentAllowance - subtractedValue);
              }
      
              return true;
          }
      
          /**
           * @dev Moves `amount` of tokens from `from` to `to`.
           *
           * This internal function is equivalent to {transfer}, and can be used to
           * e.g. implement automatic token fees, slashing mechanisms, etc.
           *
           * Emits a {Transfer} event.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `from` must have a balance of at least `amount`.
           */
          function _transfer(
              address from,
              address to,
              uint256 amount
          ) internal virtual {
              require(from != address(0), "ERC20: transfer from the zero address");
              require(to != address(0), "ERC20: transfer to the zero address");
      
              _beforeTokenTransfer(from, to, amount);
      
              uint256 fromBalance = _balances[from];
              require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
              unchecked {
                  _balances[from] = fromBalance - amount;
                  // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
                  // decrementing then incrementing.
                  _balances[to] += amount;
              }
      
              emit Transfer(from, to, amount);
      
              _afterTokenTransfer(from, to, amount);
          }
      
          /** @dev Creates `amount` tokens and assigns them to `account`, increasing
           * the total supply.
           *
           * Emits a {Transfer} event with `from` set to the zero address.
           *
           * Requirements:
           *
           * - `account` cannot be the zero address.
           */
          function _mint(address account, uint256 amount) internal virtual {
              require(account != address(0), "ERC20: mint to the zero address");
      
              _beforeTokenTransfer(address(0), account, amount);
      
              _totalSupply += amount;
              unchecked {
                  // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
                  _balances[account] += amount;
              }
              emit Transfer(address(0), account, amount);
      
              _afterTokenTransfer(address(0), account, amount);
          }
      
          /**
           * @dev Destroys `amount` tokens from `account`, reducing the
           * total supply.
           *
           * Emits a {Transfer} event with `to` set to the zero address.
           *
           * Requirements:
           *
           * - `account` cannot be the zero address.
           * - `account` must have at least `amount` tokens.
           */
          function _burn(address account, uint256 amount) internal virtual {
              require(account != address(0), "ERC20: burn from the zero address");
      
              _beforeTokenTransfer(account, address(0), amount);
      
              uint256 accountBalance = _balances[account];
              require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
              unchecked {
                  _balances[account] = accountBalance - amount;
                  // Overflow not possible: amount <= accountBalance <= totalSupply.
                  _totalSupply -= amount;
              }
      
              emit Transfer(account, address(0), amount);
      
              _afterTokenTransfer(account, address(0), amount);
          }
      
          /**
           * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
           *
           * This internal function is equivalent to `approve`, and can be used to
           * e.g. set automatic allowances for certain subsystems, etc.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `owner` cannot be the zero address.
           * - `spender` cannot be the zero address.
           */
          function _approve(
              address owner,
              address spender,
              uint256 amount
          ) internal virtual {
              require(owner != address(0), "ERC20: approve from the zero address");
              require(spender != address(0), "ERC20: approve to the zero address");
      
              _allowances[owner][spender] = amount;
              emit Approval(owner, spender, amount);
          }
      
          /**
           * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
           *
           * Does not update the allowance amount in case of infinite allowance.
           * Revert if not enough allowance is available.
           *
           * Might emit an {Approval} event.
           */
          function _spendAllowance(
              address owner,
              address spender,
              uint256 amount
          ) internal virtual {
              uint256 currentAllowance = allowance(owner, spender);
              if (currentAllowance != type(uint256).max) {
                  require(currentAllowance >= amount, "ERC20: insufficient allowance");
                  unchecked {
                      _approve(owner, spender, currentAllowance - amount);
                  }
              }
          }
      
          /**
           * @dev Hook that is called before any transfer of tokens. This includes
           * minting and burning.
           *
           * Calling conditions:
           *
           * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
           * will be transferred to `to`.
           * - when `from` is zero, `amount` tokens will be minted for `to`.
           * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
           * - `from` and `to` are never both zero.
           *
           * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
           */
          function _beforeTokenTransfer(
              address from,
              address to,
              uint256 amount
          ) internal virtual {}
      
          /**
           * @dev Hook that is called after any transfer of tokens. This includes
           * minting and burning.
           *
           * Calling conditions:
           *
           * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
           * has been transferred to `to`.
           * - when `from` is zero, `amount` tokens have been minted for `to`.
           * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
           * - `from` and `to` are never both zero.
           *
           * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
           */
          function _afterTokenTransfer(
              address from,
              address to,
              uint256 amount
          ) internal virtual {}
      }
      
      // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/extensions/draft-ERC20Permit.sol)
      
      // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
      
      /**
       * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
       * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
       *
       * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
       * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
       * need to send a transaction, and thus is not required to hold Ether at all.
       */
      interface IERC20Permit {
          /**
           * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
           * given ``owner``'s signed approval.
           *
           * IMPORTANT: The same issues {IERC20-approve} has related to transaction
           * ordering also apply here.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           * - `deadline` must be a timestamp in the future.
           * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
           * over the EIP712-formatted function arguments.
           * - the signature must use ``owner``'s current nonce (see {nonces}).
           *
           * For more information on the signature format, see the
           * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
           * section].
           */
          function permit(
              address owner,
              address spender,
              uint256 value,
              uint256 deadline,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) external;
      
          /**
           * @dev Returns the current nonce for `owner`. This value must be
           * included whenever a signature is generated for {permit}.
           *
           * Every successful call to {permit} increases ``owner``'s nonce by one. This
           * prevents a signature from being used multiple times.
           */
          function nonces(address owner) external view returns (uint256);
      
          /**
           * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
           */
          // solhint-disable-next-line func-name-mixedcase
          function DOMAIN_SEPARATOR() external view returns (bytes32);
      }
      
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/cryptography/ECDSA.sol)
      
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/Strings.sol)
      
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
      
      /**
       * @dev Standard math utilities missing in the Solidity language.
       */
      library Math {
          enum Rounding {
              Down, // Toward negative infinity
              Up, // Toward infinity
              Zero // Toward zero
          }
      
          /**
           * @dev Returns the largest of two numbers.
           */
          function max(uint256 a, uint256 b) internal pure returns (uint256) {
              return a > b ? a : b;
          }
      
          /**
           * @dev Returns the smallest of two numbers.
           */
          function min(uint256 a, uint256 b) internal pure returns (uint256) {
              return a < b ? a : b;
          }
      
          /**
           * @dev Returns the average of two numbers. The result is rounded towards
           * zero.
           */
          function average(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b) / 2 can overflow.
              return (a & b) + (a ^ b) / 2;
          }
      
          /**
           * @dev Returns the ceiling of the division of two numbers.
           *
           * This differs from standard division with `/` in that it rounds up instead
           * of rounding down.
           */
          function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b - 1) / b can overflow on addition, so we distribute.
              return a == 0 ? 0 : (a - 1) / b + 1;
          }
      
          /**
           * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
           * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
           * with further edits by Uniswap Labs also under MIT license.
           */
          function mulDiv(
              uint256 x,
              uint256 y,
              uint256 denominator
          ) internal pure returns (uint256 result) {
              unchecked {
                  // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                  // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                  // variables such that product = prod1 * 2^256 + prod0.
                  uint256 prod0; // Least significant 256 bits of the product
                  uint256 prod1; // Most significant 256 bits of the product
                  assembly {
                      let mm := mulmod(x, y, not(0))
                      prod0 := mul(x, y)
                      prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                  }
      
                  // Handle non-overflow cases, 256 by 256 division.
                  if (prod1 == 0) {
                      return prod0 / denominator;
                  }
      
                  // Make sure the result is less than 2^256. Also prevents denominator == 0.
                  require(denominator > prod1);
      
                  ///////////////////////////////////////////////
                  // 512 by 256 division.
                  ///////////////////////////////////////////////
      
                  // Make division exact by subtracting the remainder from [prod1 prod0].
                  uint256 remainder;
                  assembly {
                      // Compute remainder using mulmod.
                      remainder := mulmod(x, y, denominator)
      
                      // Subtract 256 bit number from 512 bit number.
                      prod1 := sub(prod1, gt(remainder, prod0))
                      prod0 := sub(prod0, remainder)
                  }
      
                  // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                  // See https://cs.stackexchange.com/q/138556/92363.
      
                  // Does not overflow because the denominator cannot be zero at this stage in the function.
                  uint256 twos = denominator & (~denominator + 1);
                  assembly {
                      // Divide denominator by twos.
                      denominator := div(denominator, twos)
      
                      // Divide [prod1 prod0] by twos.
                      prod0 := div(prod0, twos)
      
                      // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                      twos := add(div(sub(0, twos), twos), 1)
                  }
      
                  // Shift in bits from prod1 into prod0.
                  prod0 |= prod1 * twos;
      
                  // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                  // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                  // four bits. That is, denominator * inv = 1 mod 2^4.
                  uint256 inverse = (3 * denominator) ^ 2;
      
                  // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                  // in modular arithmetic, doubling the correct bits in each step.
                  inverse *= 2 - denominator * inverse; // inverse mod 2^8
                  inverse *= 2 - denominator * inverse; // inverse mod 2^16
                  inverse *= 2 - denominator * inverse; // inverse mod 2^32
                  inverse *= 2 - denominator * inverse; // inverse mod 2^64
                  inverse *= 2 - denominator * inverse; // inverse mod 2^128
                  inverse *= 2 - denominator * inverse; // inverse mod 2^256
      
                  // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                  // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                  // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                  // is no longer required.
                  result = prod0 * inverse;
                  return result;
              }
          }
      
          /**
           * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
           */
          function mulDiv(
              uint256 x,
              uint256 y,
              uint256 denominator,
              Rounding rounding
          ) internal pure returns (uint256) {
              uint256 result = mulDiv(x, y, denominator);
              if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                  result += 1;
              }
              return result;
          }
      
          /**
           * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
           *
           * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
           */
          function sqrt(uint256 a) internal pure returns (uint256) {
              if (a == 0) {
                  return 0;
              }
      
              // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
              //
              // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
              // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
              //
              // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
              // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
              // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
              //
              // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
              uint256 result = 1 << (log2(a) >> 1);
      
              // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
              // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
              // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
              // into the expected uint128 result.
              unchecked {
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  return min(result, a / result);
              }
          }
      
          /**
           * @notice Calculates sqrt(a), following the selected rounding direction.
           */
          function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = sqrt(a);
                  return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
              }
          }
      
          /**
           * @dev Return the log in base 2, rounded down, of a positive value.
           * Returns 0 if given 0.
           */
          function log2(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >> 128 > 0) {
                      value >>= 128;
                      result += 128;
                  }
                  if (value >> 64 > 0) {
                      value >>= 64;
                      result += 64;
                  }
                  if (value >> 32 > 0) {
                      value >>= 32;
                      result += 32;
                  }
                  if (value >> 16 > 0) {
                      value >>= 16;
                      result += 16;
                  }
                  if (value >> 8 > 0) {
                      value >>= 8;
                      result += 8;
                  }
                  if (value >> 4 > 0) {
                      value >>= 4;
                      result += 4;
                  }
                  if (value >> 2 > 0) {
                      value >>= 2;
                      result += 2;
                  }
                  if (value >> 1 > 0) {
                      result += 1;
                  }
              }
              return result;
          }
      
          /**
           * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log2(value);
                  return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
              }
          }
      
          /**
           * @dev Return the log in base 10, rounded down, of a positive value.
           * Returns 0 if given 0.
           */
          function log10(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >= 10**64) {
                      value /= 10**64;
                      result += 64;
                  }
                  if (value >= 10**32) {
                      value /= 10**32;
                      result += 32;
                  }
                  if (value >= 10**16) {
                      value /= 10**16;
                      result += 16;
                  }
                  if (value >= 10**8) {
                      value /= 10**8;
                      result += 8;
                  }
                  if (value >= 10**4) {
                      value /= 10**4;
                      result += 4;
                  }
                  if (value >= 10**2) {
                      value /= 10**2;
                      result += 2;
                  }
                  if (value >= 10**1) {
                      result += 1;
                  }
              }
              return result;
          }
      
          /**
           * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log10(value);
                  return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
              }
          }
      
          /**
           * @dev Return the log in base 256, rounded down, of a positive value.
           * Returns 0 if given 0.
           *
           * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
           */
          function log256(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >> 128 > 0) {
                      value >>= 128;
                      result += 16;
                  }
                  if (value >> 64 > 0) {
                      value >>= 64;
                      result += 8;
                  }
                  if (value >> 32 > 0) {
                      value >>= 32;
                      result += 4;
                  }
                  if (value >> 16 > 0) {
                      value >>= 16;
                      result += 2;
                  }
                  if (value >> 8 > 0) {
                      result += 1;
                  }
              }
              return result;
          }
      
          /**
           * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log256(value);
                  return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
              }
          }
      }
      
      /**
       * @dev String operations.
       */
      library Strings {
          bytes16 private constant _SYMBOLS = "0123456789abcdef";
          uint8 private constant _ADDRESS_LENGTH = 20;
      
          /**
           * @dev Converts a `uint256` to its ASCII `string` decimal representation.
           */
          function toString(uint256 value) internal pure returns (string memory) {
              unchecked {
                  uint256 length = Math.log10(value) + 1;
                  string memory buffer = new string(length);
                  uint256 ptr;
                  /// @solidity memory-safe-assembly
                  assembly {
                      ptr := add(buffer, add(32, length))
                  }
                  while (true) {
                      ptr--;
                      /// @solidity memory-safe-assembly
                      assembly {
                          mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                      }
                      value /= 10;
                      if (value == 0) break;
                  }
                  return buffer;
              }
          }
      
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
           */
          function toHexString(uint256 value) internal pure returns (string memory) {
              unchecked {
                  return toHexString(value, Math.log256(value) + 1);
              }
          }
      
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
           */
          function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
              bytes memory buffer = new bytes(2 * length + 2);
              buffer[0] = "0";
              buffer[1] = "x";
              for (uint256 i = 2 * length + 1; i > 1; --i) {
                  buffer[i] = _SYMBOLS[value & 0xf];
                  value >>= 4;
              }
              require(value == 0, "Strings: hex length insufficient");
              return string(buffer);
          }
      
          /**
           * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
           */
          function toHexString(address addr) internal pure returns (string memory) {
              return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
          }
      }
      
      /**
       * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
       *
       * These functions can be used to verify that a message was signed by the holder
       * of the private keys of a given address.
       */
      library ECDSA {
          enum RecoverError {
              NoError,
              InvalidSignature,
              InvalidSignatureLength,
              InvalidSignatureS,
              InvalidSignatureV // Deprecated in v4.8
          }
      
          function _throwError(RecoverError error) private pure {
              if (error == RecoverError.NoError) {
                  return; // no error: do nothing
              } else if (error == RecoverError.InvalidSignature) {
                  revert("ECDSA: invalid signature");
              } else if (error == RecoverError.InvalidSignatureLength) {
                  revert("ECDSA: invalid signature length");
              } else if (error == RecoverError.InvalidSignatureS) {
                  revert("ECDSA: invalid signature 's' value");
              }
          }
      
          /**
           * @dev Returns the address that signed a hashed message (`hash`) with
           * `signature` or error string. This address can then be used for verification purposes.
           *
           * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
           * this function rejects them by requiring the `s` value to be in the lower
           * half order, and the `v` value to be either 27 or 28.
           *
           * IMPORTANT: `hash` _must_ be the result of a hash operation for the
           * verification to be secure: it is possible to craft signatures that
           * recover to arbitrary addresses for non-hashed data. A safe way to ensure
           * this is by receiving a hash of the original message (which may otherwise
           * be too long), and then calling {toEthSignedMessageHash} on it.
           *
           * Documentation for signature generation:
           * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
           * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
           *
           * _Available since v4.3._
           */
          function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
              if (signature.length == 65) {
                  bytes32 r;
                  bytes32 s;
                  uint8 v;
                  // ecrecover takes the signature parameters, and the only way to get them
                  // currently is to use assembly.
                  /// @solidity memory-safe-assembly
                  assembly {
                      r := mload(add(signature, 0x20))
                      s := mload(add(signature, 0x40))
                      v := byte(0, mload(add(signature, 0x60)))
                  }
                  return tryRecover(hash, v, r, s);
              } else {
                  return (address(0), RecoverError.InvalidSignatureLength);
              }
          }
      
          /**
           * @dev Returns the address that signed a hashed message (`hash`) with
           * `signature`. This address can then be used for verification purposes.
           *
           * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
           * this function rejects them by requiring the `s` value to be in the lower
           * half order, and the `v` value to be either 27 or 28.
           *
           * IMPORTANT: `hash` _must_ be the result of a hash operation for the
           * verification to be secure: it is possible to craft signatures that
           * recover to arbitrary addresses for non-hashed data. A safe way to ensure
           * this is by receiving a hash of the original message (which may otherwise
           * be too long), and then calling {toEthSignedMessageHash} on it.
           */
          function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
              (address recovered, RecoverError error) = tryRecover(hash, signature);
              _throwError(error);
              return recovered;
          }
      
          /**
           * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
           *
           * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
           *
           * _Available since v4.3._
           */
          function tryRecover(
              bytes32 hash,
              bytes32 r,
              bytes32 vs
          ) internal pure returns (address, RecoverError) {
              bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
              uint8 v = uint8((uint256(vs) >> 255) + 27);
              return tryRecover(hash, v, r, s);
          }
      
          /**
           * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
           *
           * _Available since v4.2._
           */
          function recover(
              bytes32 hash,
              bytes32 r,
              bytes32 vs
          ) internal pure returns (address) {
              (address recovered, RecoverError error) = tryRecover(hash, r, vs);
              _throwError(error);
              return recovered;
          }
      
          /**
           * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
           * `r` and `s` signature fields separately.
           *
           * _Available since v4.3._
           */
          function tryRecover(
              bytes32 hash,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) internal pure returns (address, RecoverError) {
              // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
              // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
              // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
              // signatures from current libraries generate a unique signature with an s-value in the lower half order.
              //
              // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
              // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
              // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
              // these malleable signatures as well.
              if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
                  return (address(0), RecoverError.InvalidSignatureS);
              }
      
              // If the signature is valid (and not malleable), return the signer address
              address signer = ecrecover(hash, v, r, s);
              if (signer == address(0)) {
                  return (address(0), RecoverError.InvalidSignature);
              }
      
              return (signer, RecoverError.NoError);
          }
      
          /**
           * @dev Overload of {ECDSA-recover} that receives the `v`,
           * `r` and `s` signature fields separately.
           */
          function recover(
              bytes32 hash,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) internal pure returns (address) {
              (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
              _throwError(error);
              return recovered;
          }
      
          /**
           * @dev Returns an Ethereum Signed Message, created from a `hash`. This
           * produces hash corresponding to the one signed with the
           * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
           * JSON-RPC method as part of EIP-191.
           *
           * See {recover}.
           */
          function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
              // 32 is the length in bytes of hash,
              // enforced by the type signature above
              return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
          }
      
          /**
           * @dev Returns an Ethereum Signed Message, created from `s`. This
           * produces hash corresponding to the one signed with the
           * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
           * JSON-RPC method as part of EIP-191.
           *
           * See {recover}.
           */
          function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
              return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
          }
      
          /**
           * @dev Returns an Ethereum Signed Typed Data, created from a
           * `domainSeparator` and a `structHash`. This produces hash corresponding
           * to the one signed with the
           * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
           * JSON-RPC method as part of EIP-712.
           *
           * See {recover}.
           */
          function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
              return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
          }
      }
      
      /**
       * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
       *
       * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
       * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
       * they need in their contracts using a combination of `abi.encode` and `keccak256`.
       *
       * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
       * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
       * ({_hashTypedDataV4}).
       *
       * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
       * the chain id to protect against replay attacks on an eventual fork of the chain.
       *
       * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
       * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
       *
       * _Available since v3.4._
       */
      abstract contract EIP712 {
          /* solhint-disable var-name-mixedcase */
          // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
          // invalidate the cached domain separator if the chain id changes.
          bytes32 private immutable _CACHED_DOMAIN_SEPARATOR;
          uint256 private immutable _CACHED_CHAIN_ID;
          address private immutable _CACHED_THIS;
      
          bytes32 private immutable _HASHED_NAME;
          bytes32 private immutable _HASHED_VERSION;
          bytes32 private immutable _TYPE_HASH;
      
          /* solhint-enable var-name-mixedcase */
      
          /**
           * @dev Initializes the domain separator and parameter caches.
           *
           * The meaning of `name` and `version` is specified in
           * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
           *
           * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
           * - `version`: the current major version of the signing domain.
           *
           * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
           * contract upgrade].
           */
          constructor(string memory name, string memory version) {
              bytes32 hashedName = keccak256(bytes(name));
              bytes32 hashedVersion = keccak256(bytes(version));
              bytes32 typeHash = keccak256(
                  "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
              );
              _HASHED_NAME = hashedName;
              _HASHED_VERSION = hashedVersion;
              _CACHED_CHAIN_ID = block.chainid;
              _CACHED_DOMAIN_SEPARATOR = _buildDomainSeparator(typeHash, hashedName, hashedVersion);
              _CACHED_THIS = address(this);
              _TYPE_HASH = typeHash;
          }
      
          /**
           * @dev Returns the domain separator for the current chain.
           */
          function _domainSeparatorV4() internal view returns (bytes32) {
              if (address(this) == _CACHED_THIS && block.chainid == _CACHED_CHAIN_ID) {
                  return _CACHED_DOMAIN_SEPARATOR;
              } else {
                  return _buildDomainSeparator(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION);
              }
          }
      
          function _buildDomainSeparator(
              bytes32 typeHash,
              bytes32 nameHash,
              bytes32 versionHash
          ) private view returns (bytes32) {
              return keccak256(abi.encode(typeHash, nameHash, versionHash, block.chainid, address(this)));
          }
      
          /**
           * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
           * function returns the hash of the fully encoded EIP712 message for this domain.
           *
           * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
           *
           * ```solidity
           * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
           *     keccak256("Mail(address to,string contents)"),
           *     mailTo,
           *     keccak256(bytes(mailContents))
           * )));
           * address signer = ECDSA.recover(digest, signature);
           * ```
           */
          function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
              return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
          }
      }
      
      // OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)
      
      /**
       * @title Counters
       * @author Matt Condon (@shrugs)
       * @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
       * of elements in a mapping, issuing ERC721 ids, or counting request ids.
       *
       * Include with `using Counters for Counters.Counter;`
       */
      library Counters {
          struct Counter {
              // This variable should never be directly accessed by users of the library: interactions must be restricted to
              // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
              // this feature: see https://github.com/ethereum/solidity/issues/4637
              uint256 _value; // default: 0
          }
      
          function current(Counter storage counter) internal view returns (uint256) {
              return counter._value;
          }
      
          function increment(Counter storage counter) internal {
              unchecked {
                  counter._value += 1;
              }
          }
      
          function decrement(Counter storage counter) internal {
              uint256 value = counter._value;
              require(value > 0, "Counter: decrement overflow");
              unchecked {
                  counter._value = value - 1;
              }
          }
      
          function reset(Counter storage counter) internal {
              counter._value = 0;
          }
      }
      
      /**
       * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
       * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
       *
       * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
       * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
       * need to send a transaction, and thus is not required to hold Ether at all.
       *
       * _Available since v3.4._
       */
      abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 {
          using Counters for Counters.Counter;
      
          mapping(address => Counters.Counter) private _nonces;
      
          // solhint-disable-next-line var-name-mixedcase
          bytes32 private constant _PERMIT_TYPEHASH =
              keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
          /**
           * @dev In previous versions `_PERMIT_TYPEHASH` was declared as `immutable`.
           * However, to ensure consistency with the upgradeable transpiler, we will continue
           * to reserve a slot.
           * @custom:oz-renamed-from _PERMIT_TYPEHASH
           */
          // solhint-disable-next-line var-name-mixedcase
          bytes32 private _PERMIT_TYPEHASH_DEPRECATED_SLOT;
      
          /**
           * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
           *
           * It's a good idea to use the same `name` that is defined as the ERC20 token name.
           */
          constructor(string memory name) EIP712(name, "1") {}
      
          /**
           * @dev See {IERC20Permit-permit}.
           */
          function permit(
              address owner,
              address spender,
              uint256 value,
              uint256 deadline,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) public virtual override {
              require(block.timestamp <= deadline, "ERC20Permit: expired deadline");
      
              bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));
      
              bytes32 hash = _hashTypedDataV4(structHash);
      
              address signer = ECDSA.recover(hash, v, r, s);
              require(signer == owner, "ERC20Permit: invalid signature");
      
              _approve(owner, spender, value);
          }
      
          /**
           * @dev See {IERC20Permit-nonces}.
           */
          function nonces(address owner) public view virtual override returns (uint256) {
              return _nonces[owner].current();
          }
      
          /**
           * @dev See {IERC20Permit-DOMAIN_SEPARATOR}.
           */
          // solhint-disable-next-line func-name-mixedcase
          function DOMAIN_SEPARATOR() external view override returns (bytes32) {
              return _domainSeparatorV4();
          }
      
          /**
           * @dev "Consume a nonce": return the current value and increment.
           *
           * _Available since v4.1._
           */
          function _useNonce(address owner) internal virtual returns (uint256 current) {
              Counters.Counter storage nonce = _nonces[owner];
              current = nonce.current();
              nonce.increment();
          }
      }
      
      // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/extensions/ERC20Burnable.sol)
      
      /**
       * @dev Extension of {ERC20} that allows token holders to destroy both their own
       * tokens and those that they have an allowance for, in a way that can be
       * recognized off-chain (via event analysis).
       */
      abstract contract ERC20Burnable is Context, ERC20 {
          /**
           * @dev Destroys `amount` tokens from the caller.
           *
           * See {ERC20-_burn}.
           */
          function burn(uint256 amount) public virtual {
              _burn(_msgSender(), amount);
          }
      
          /**
           * @dev Destroys `amount` tokens from `account`, deducting from the caller's
           * allowance.
           *
           * See {ERC20-_burn} and {ERC20-allowance}.
           *
           * Requirements:
           *
           * - the caller must have allowance for ``accounts``'s tokens of at least
           * `amount`.
           */
          function burnFrom(address account, uint256 amount) public virtual {
              _spendAllowance(account, _msgSender(), amount);
              _burn(account, amount);
          }
      }
      
      // https://docs.synthetix.io/contracts/Owned
      // NO NEED TO AUDIT
      contract Owned {
          address public owner;
          address public nominatedOwner;
      
          constructor (address _owner) {
              require(_owner != address(0), "Owner address cannot be 0");
              owner = _owner;
              emit OwnerChanged(address(0), _owner);
          }
      
          function nominateNewOwner(address _owner) external onlyOwner {
              nominatedOwner = _owner;
              emit OwnerNominated(_owner);
          }
      
          function acceptOwnership() external {
              require(msg.sender == nominatedOwner, "You must be nominated before you can accept ownership");
              emit OwnerChanged(owner, nominatedOwner);
              owner = nominatedOwner;
              nominatedOwner = address(0);
          }
      
          modifier onlyOwner {
              require(msg.sender == owner, "Only the contract owner may perform this action");
              _;
          }
      
          event OwnerNominated(address newOwner);
          event OwnerChanged(address oldOwner, address newOwner);
      }
      
      /// @title Parent contract for frxETH.sol
      /** @notice Combines Openzeppelin's ERC20Permit and ERC20Burnable with Synthetix's Owned. 
          Also includes a list of authorized minters */
      /// @dev frxETH adheres to EIP-712/EIP-2612 and can use permits
      contract ERC20PermitPermissionedMint is ERC20Permit, ERC20Burnable, Owned {
          // Core
          address public timelock_address;
      
          // Minters
          address[] public minters_array; // Allowed to mint
          mapping(address => bool) public minters; // Mapping is also used for faster verification
      
          /* ========== CONSTRUCTOR ========== */
      
          constructor(
              address _creator_address,
              address _timelock_address,
              string memory _name,
              string memory _symbol
          ) 
          ERC20(_name, _symbol)
          ERC20Permit(_name) 
          Owned(_creator_address)
          {
            timelock_address = _timelock_address;
          }
      
          /* ========== MODIFIERS ========== */
      
          modifier onlyByOwnGov() {
              require(msg.sender == timelock_address || msg.sender == owner, "Not owner or timelock");
              _;
          }
      
          modifier onlyMinters() {
             require(minters[msg.sender] == true, "Only minters");
              _;
          } 
      
          /* ========== RESTRICTED FUNCTIONS ========== */
      
          // Used by minters when user redeems
          function minter_burn_from(address b_address, uint256 b_amount) public onlyMinters {
              super.burnFrom(b_address, b_amount);
              emit TokenMinterBurned(b_address, msg.sender, b_amount);
          }
      
          // This function is what other minters will call to mint new tokens 
          function minter_mint(address m_address, uint256 m_amount) public onlyMinters {
              super._mint(m_address, m_amount);
              emit TokenMinterMinted(msg.sender, m_address, m_amount);
          }
      
          // Adds whitelisted minters 
          function addMinter(address minter_address) public onlyByOwnGov {
              require(minter_address != address(0), "Zero address detected");
      
              require(minters[minter_address] == false, "Address already exists");
              minters[minter_address] = true; 
              minters_array.push(minter_address);
      
              emit MinterAdded(minter_address);
          }
      
          // Remove a minter 
          function removeMinter(address minter_address) public onlyByOwnGov {
              require(minter_address != address(0), "Zero address detected");
              require(minters[minter_address] == true, "Address nonexistant");
              
              // Delete from the mapping
              delete minters[minter_address];
      
              // 'Delete' from the array by setting the address to 0x0
              for (uint i = 0; i < minters_array.length; i++){ 
                  if (minters_array[i] == minter_address) {
                      minters_array[i] = address(0); // This will leave a null in the array and keep the indices the same
                      break;
                  }
              }
      
              emit MinterRemoved(minter_address);
          }
      
          function setTimelock(address _timelock_address) public onlyByOwnGov {
              require(_timelock_address != address(0), "Zero address detected"); 
              timelock_address = _timelock_address;
              emit TimelockChanged(_timelock_address);
          }
      
          /* ========== EVENTS ========== */
          
          event TokenMinterBurned(address indexed from, address indexed to, uint256 amount);
          event TokenMinterMinted(address indexed from, address indexed to, uint256 amount);
          event MinterAdded(address minter_address);
          event MinterRemoved(address minter_address);
          event TimelockChanged(address timelock_address);
      }
      
      contract frxETH is ERC20PermitPermissionedMint {
      
          /* ========== CONSTRUCTOR ========== */
          constructor(
            address _creator_address,
            address _timelock_address
          ) 
          ERC20PermitPermissionedMint(_creator_address, _timelock_address, "Frax Ether", "frxETH") 
          {}
      
      }

      File 3 of 3: sfrxETH
      // SPDX-License-Identifier: GPL-2.0-or-later
      pragma solidity >=0.8.0;
      
      
      // ====================================================================
      // |     ______                   _______                             |
      // |    / _____________ __  __   / ____(_____  ____ _____  ________   |
      // |   / /_  / ___/ __ `| |/_/  / /_  / / __ \/ __ `/ __ \/ ___/ _ \  |
      // |  / __/ / /  / /_/ _>  <   / __/ / / / / / /_/ / / / / /__/  __/  |
      // | /_/   /_/   \__,_/_/|_|  /_/   /_/_/ /_/\__,_/_/ /_/\___/\___/   |
      // |                                                                  |
      // ====================================================================
      // ============================== sfrxETH =============================
      // ====================================================================
      // Frax Finance: https://github.com/FraxFinance
      
      // Primary Author(s)
      // Jack Corddry: https://github.com/corddry
      // Nader Ghazvini: https://github.com/amirnader-ghazvini 
      
      // Reviewer(s) / Contributor(s)
      // Sam Kazemian: https://github.com/samkazemian
      // Dennett: https://github.com/denett
      // Travis Moore: https://github.com/FortisFortuna
      // Jamie Turley: https://github.com/jyturley
      
      // Rewards logic inspired by xERC20 (https://github.com/ZeframLou/playpen/blob/main/src/xERC20.sol)
      
      /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
      /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
      /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
      /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
      abstract contract ERC20 {
          /*//////////////////////////////////////////////////////////////
                                       EVENTS
          //////////////////////////////////////////////////////////////*/
      
          event Transfer(address indexed from, address indexed to, uint256 amount);
      
          event Approval(address indexed owner, address indexed spender, uint256 amount);
      
          /*//////////////////////////////////////////////////////////////
                                  METADATA STORAGE
          //////////////////////////////////////////////////////////////*/
      
          string public name;
      
          string public symbol;
      
          uint8 public immutable decimals;
      
          /*//////////////////////////////////////////////////////////////
                                    ERC20 STORAGE
          //////////////////////////////////////////////////////////////*/
      
          uint256 public totalSupply;
      
          mapping(address => uint256) public balanceOf;
      
          mapping(address => mapping(address => uint256)) public allowance;
      
          /*//////////////////////////////////////////////////////////////
                                  EIP-2612 STORAGE
          //////////////////////////////////////////////////////////////*/
      
          uint256 internal immutable INITIAL_CHAIN_ID;
      
          bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;
      
          mapping(address => uint256) public nonces;
      
          /*//////////////////////////////////////////////////////////////
                                     CONSTRUCTOR
          //////////////////////////////////////////////////////////////*/
      
          constructor(
              string memory _name,
              string memory _symbol,
              uint8 _decimals
          ) {
              name = _name;
              symbol = _symbol;
              decimals = _decimals;
      
              INITIAL_CHAIN_ID = block.chainid;
              INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
          }
      
          /*//////////////////////////////////////////////////////////////
                                     ERC20 LOGIC
          //////////////////////////////////////////////////////////////*/
      
          function approve(address spender, uint256 amount) public virtual returns (bool) {
              allowance[msg.sender][spender] = amount;
      
              emit Approval(msg.sender, spender, amount);
      
              return true;
          }
      
          function transfer(address to, uint256 amount) public virtual returns (bool) {
              balanceOf[msg.sender] -= amount;
      
              // Cannot overflow because the sum of all user
              // balances can't exceed the max uint256 value.
              unchecked {
                  balanceOf[to] += amount;
              }
      
              emit Transfer(msg.sender, to, amount);
      
              return true;
          }
      
          function transferFrom(
              address from,
              address to,
              uint256 amount
          ) public virtual returns (bool) {
              uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.
      
              if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;
      
              balanceOf[from] -= amount;
      
              // Cannot overflow because the sum of all user
              // balances can't exceed the max uint256 value.
              unchecked {
                  balanceOf[to] += amount;
              }
      
              emit Transfer(from, to, amount);
      
              return true;
          }
      
          /*//////////////////////////////////////////////////////////////
                                   EIP-2612 LOGIC
          //////////////////////////////////////////////////////////////*/
      
          function permit(
              address owner,
              address spender,
              uint256 value,
              uint256 deadline,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) public virtual {
              require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");
      
              // Unchecked because the only math done is incrementing
              // the owner's nonce which cannot realistically overflow.
              unchecked {
                  address recoveredAddress = ecrecover(
                      keccak256(
                          abi.encodePacked(
                              "\x19\x01",
                              DOMAIN_SEPARATOR(),
                              keccak256(
                                  abi.encode(
                                      keccak256(
                                          "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                                      ),
                                      owner,
                                      spender,
                                      value,
                                      nonces[owner]++,
                                      deadline
                                  )
                              )
                          )
                      ),
                      v,
                      r,
                      s
                  );
      
                  require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");
      
                  allowance[recoveredAddress][spender] = value;
              }
      
              emit Approval(owner, spender, value);
          }
      
          function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
              return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
          }
      
          function computeDomainSeparator() internal view virtual returns (bytes32) {
              return
                  keccak256(
                      abi.encode(
                          keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                          keccak256(bytes(name)),
                          keccak256("1"),
                          block.chainid,
                          address(this)
                      )
                  );
          }
      
          /*//////////////////////////////////////////////////////////////
                              INTERNAL MINT/BURN LOGIC
          //////////////////////////////////////////////////////////////*/
      
          function _mint(address to, uint256 amount) internal virtual {
              totalSupply += amount;
      
              // Cannot overflow because the sum of all user
              // balances can't exceed the max uint256 value.
              unchecked {
                  balanceOf[to] += amount;
              }
      
              emit Transfer(address(0), to, amount);
          }
      
          function _burn(address from, uint256 amount) internal virtual {
              balanceOf[from] -= amount;
      
              // Cannot underflow because a user's balance
              // will never be larger than the total supply.
              unchecked {
                  totalSupply -= amount;
              }
      
              emit Transfer(from, address(0), amount);
          }
      }
      
      /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
      /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
      /// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer.
      /// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller.
      library SafeTransferLib {
          /*//////////////////////////////////////////////////////////////
                                   ETH OPERATIONS
          //////////////////////////////////////////////////////////////*/
      
          function safeTransferETH(address to, uint256 amount) internal {
              bool success;
      
              assembly {
                  // Transfer the ETH and store if it succeeded or not.
                  success := call(gas(), to, amount, 0, 0, 0, 0)
              }
      
              require(success, "ETH_TRANSFER_FAILED");
          }
      
          /*//////////////////////////////////////////////////////////////
                                  ERC20 OPERATIONS
          //////////////////////////////////////////////////////////////*/
      
          function safeTransferFrom(
              ERC20 token,
              address from,
              address to,
              uint256 amount
          ) internal {
              bool success;
      
              assembly {
                  // Get a pointer to some free memory.
                  let freeMemoryPointer := mload(0x40)
      
                  // Write the abi-encoded calldata into memory, beginning with the function selector.
                  mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
                  mstore(add(freeMemoryPointer, 4), from) // Append the "from" argument.
                  mstore(add(freeMemoryPointer, 36), to) // Append the "to" argument.
                  mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument.
      
                  success := and(
                      // Set success to whether the call reverted, if not we check it either
                      // returned exactly 1 (can't just be non-zero data), or had no return data.
                      or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                      // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3.
                      // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                      // Counterintuitively, this call must be positioned second to the or() call in the
                      // surrounding and() call or else returndatasize() will be zero during the computation.
                      call(gas(), token, 0, freeMemoryPointer, 100, 0, 32)
                  )
              }
      
              require(success, "TRANSFER_FROM_FAILED");
          }
      
          function safeTransfer(
              ERC20 token,
              address to,
              uint256 amount
          ) internal {
              bool success;
      
              assembly {
                  // Get a pointer to some free memory.
                  let freeMemoryPointer := mload(0x40)
      
                  // Write the abi-encoded calldata into memory, beginning with the function selector.
                  mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
                  mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument.
                  mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument.
      
                  success := and(
                      // Set success to whether the call reverted, if not we check it either
                      // returned exactly 1 (can't just be non-zero data), or had no return data.
                      or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                      // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                      // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                      // Counterintuitively, this call must be positioned second to the or() call in the
                      // surrounding and() call or else returndatasize() will be zero during the computation.
                      call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
                  )
              }
      
              require(success, "TRANSFER_FAILED");
          }
      
          function safeApprove(
              ERC20 token,
              address to,
              uint256 amount
          ) internal {
              bool success;
      
              assembly {
                  // Get a pointer to some free memory.
                  let freeMemoryPointer := mload(0x40)
      
                  // Write the abi-encoded calldata into memory, beginning with the function selector.
                  mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
                  mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument.
                  mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument.
      
                  success := and(
                      // Set success to whether the call reverted, if not we check it either
                      // returned exactly 1 (can't just be non-zero data), or had no return data.
                      or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                      // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                      // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                      // Counterintuitively, this call must be positioned second to the or() call in the
                      // surrounding and() call or else returndatasize() will be zero during the computation.
                      call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
                  )
              }
      
              require(success, "APPROVE_FAILED");
          }
      }
      
      /// @notice Arithmetic library with operations for fixed-point numbers.
      /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
      /// @author Inspired by USM (https://github.com/usmfum/USM/blob/master/contracts/WadMath.sol)
      library FixedPointMathLib {
          /*//////////////////////////////////////////////////////////////
                          SIMPLIFIED FIXED POINT OPERATIONS
          //////////////////////////////////////////////////////////////*/
      
          uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
      
          function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
              return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
          }
      
          function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
              return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
          }
      
          function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
              return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
          }
      
          function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
              return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
          }
      
          /*//////////////////////////////////////////////////////////////
                          LOW LEVEL FIXED POINT OPERATIONS
          //////////////////////////////////////////////////////////////*/
      
          function mulDivDown(
              uint256 x,
              uint256 y,
              uint256 denominator
          ) internal pure returns (uint256 z) {
              assembly {
                  // Store x * y in z for now.
                  z := mul(x, y)
      
                  // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                  if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                      revert(0, 0)
                  }
      
                  // Divide z by the denominator.
                  z := div(z, denominator)
              }
          }
      
          function mulDivUp(
              uint256 x,
              uint256 y,
              uint256 denominator
          ) internal pure returns (uint256 z) {
              assembly {
                  // Store x * y in z for now.
                  z := mul(x, y)
      
                  // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                  if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                      revert(0, 0)
                  }
      
                  // First, divide z - 1 by the denominator and add 1.
                  // We allow z - 1 to underflow if z is 0, because we multiply the
                  // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                  z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
              }
          }
      
          function rpow(
              uint256 x,
              uint256 n,
              uint256 scalar
          ) internal pure returns (uint256 z) {
              assembly {
                  switch x
                  case 0 {
                      switch n
                      case 0 {
                          // 0 ** 0 = 1
                          z := scalar
                      }
                      default {
                          // 0 ** n = 0
                          z := 0
                      }
                  }
                  default {
                      switch mod(n, 2)
                      case 0 {
                          // If n is even, store scalar in z for now.
                          z := scalar
                      }
                      default {
                          // If n is odd, store x in z for now.
                          z := x
                      }
      
                      // Shifting right by 1 is like dividing by 2.
                      let half := shr(1, scalar)
      
                      for {
                          // Shift n right by 1 before looping to halve it.
                          n := shr(1, n)
                      } n {
                          // Shift n right by 1 each iteration to halve it.
                          n := shr(1, n)
                      } {
                          // Revert immediately if x ** 2 would overflow.
                          // Equivalent to iszero(eq(div(xx, x), x)) here.
                          if shr(128, x) {
                              revert(0, 0)
                          }
      
                          // Store x squared.
                          let xx := mul(x, x)
      
                          // Round to the nearest number.
                          let xxRound := add(xx, half)
      
                          // Revert if xx + half overflowed.
                          if lt(xxRound, xx) {
                              revert(0, 0)
                          }
      
                          // Set x to scaled xxRound.
                          x := div(xxRound, scalar)
      
                          // If n is even:
                          if mod(n, 2) {
                              // Compute z * x.
                              let zx := mul(z, x)
      
                              // If z * x overflowed:
                              if iszero(eq(div(zx, x), z)) {
                                  // Revert if x is non-zero.
                                  if iszero(iszero(x)) {
                                      revert(0, 0)
                                  }
                              }
      
                              // Round to the nearest number.
                              let zxRound := add(zx, half)
      
                              // Revert if zx + half overflowed.
                              if lt(zxRound, zx) {
                                  revert(0, 0)
                              }
      
                              // Return properly scaled zxRound.
                              z := div(zxRound, scalar)
                          }
                      }
                  }
              }
          }
      
          /*//////////////////////////////////////////////////////////////
                              GENERAL NUMBER UTILITIES
          //////////////////////////////////////////////////////////////*/
      
          function sqrt(uint256 x) internal pure returns (uint256 z) {
              assembly {
                  let y := x // We start y at x, which will help us make our initial estimate.
      
                  z := 181 // The "correct" value is 1, but this saves a multiplication later.
      
                  // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                  // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
      
                  // We check y >= 2^(k + 8) but shift right by k bits
                  // each branch to ensure that if x >= 256, then y >= 256.
                  if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                      y := shr(128, y)
                      z := shl(64, z)
                  }
                  if iszero(lt(y, 0x1000000000000000000)) {
                      y := shr(64, y)
                      z := shl(32, z)
                  }
                  if iszero(lt(y, 0x10000000000)) {
                      y := shr(32, y)
                      z := shl(16, z)
                  }
                  if iszero(lt(y, 0x1000000)) {
                      y := shr(16, y)
                      z := shl(8, z)
                  }
      
                  // Goal was to get z*z*y within a small factor of x. More iterations could
                  // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                  // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                  // That's not possible if x < 256 but we can just verify those cases exhaustively.
      
                  // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                  // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                  // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
      
                  // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                  // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
      
                  // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                  // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
      
                  // There is no overflow risk here since y < 2^136 after the first branch above.
                  z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
      
                  // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
      
                  // If x+1 is a perfect square, the Babylonian method cycles between
                  // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                  // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                  // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                  // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                  z := sub(z, lt(div(x, z), z))
              }
          }
      
          function unsafeMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
              assembly {
                  // Mod x by y. Note this will return
                  // 0 instead of reverting if y is zero.
                  z := mod(x, y)
              }
          }
      
          function unsafeDiv(uint256 x, uint256 y) internal pure returns (uint256 r) {
              assembly {
                  // Divide x by y. Note this will return
                  // 0 instead of reverting if y is zero.
                  r := div(x, y)
              }
          }
      
          function unsafeDivUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
              assembly {
                  // Add 1 to x * y if x % y > 0. Note this will
                  // return 0 instead of reverting if y is zero.
                  z := add(gt(mod(x, y), 0), div(x, y))
              }
          }
      }
      
      /// @notice Minimal ERC4626 tokenized Vault implementation.
      /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/mixins/ERC4626.sol)
      abstract contract ERC4626 is ERC20 {
          using SafeTransferLib for ERC20;
          using FixedPointMathLib for uint256;
      
          /*//////////////////////////////////////////////////////////////
                                       EVENTS
          //////////////////////////////////////////////////////////////*/
      
          event Deposit(address indexed caller, address indexed owner, uint256 assets, uint256 shares);
      
          event Withdraw(
              address indexed caller,
              address indexed receiver,
              address indexed owner,
              uint256 assets,
              uint256 shares
          );
      
          /*//////////////////////////////////////////////////////////////
                                     IMMUTABLES
          //////////////////////////////////////////////////////////////*/
      
          ERC20 public immutable asset;
      
          constructor(
              ERC20 _asset,
              string memory _name,
              string memory _symbol
          ) ERC20(_name, _symbol, _asset.decimals()) {
              asset = _asset;
          }
      
          /*//////////////////////////////////////////////////////////////
                              DEPOSIT/WITHDRAWAL LOGIC
          //////////////////////////////////////////////////////////////*/
      
          function deposit(uint256 assets, address receiver) public virtual returns (uint256 shares) {
              // Check for rounding error since we round down in previewDeposit.
              require((shares = previewDeposit(assets)) != 0, "ZERO_SHARES");
      
              // Need to transfer before minting or ERC777s could reenter.
              asset.safeTransferFrom(msg.sender, address(this), assets);
      
              _mint(receiver, shares);
      
              emit Deposit(msg.sender, receiver, assets, shares);
      
              afterDeposit(assets, shares);
          }
      
          function mint(uint256 shares, address receiver) public virtual returns (uint256 assets) {
              assets = previewMint(shares); // No need to check for rounding error, previewMint rounds up.
      
              // Need to transfer before minting or ERC777s could reenter.
              asset.safeTransferFrom(msg.sender, address(this), assets);
      
              _mint(receiver, shares);
      
              emit Deposit(msg.sender, receiver, assets, shares);
      
              afterDeposit(assets, shares);
          }
      
          function withdraw(
              uint256 assets,
              address receiver,
              address owner
          ) public virtual returns (uint256 shares) {
              shares = previewWithdraw(assets); // No need to check for rounding error, previewWithdraw rounds up.
      
              if (msg.sender != owner) {
                  uint256 allowed = allowance[owner][msg.sender]; // Saves gas for limited approvals.
      
                  if (allowed != type(uint256).max) allowance[owner][msg.sender] = allowed - shares;
              }
      
              beforeWithdraw(assets, shares);
      
              _burn(owner, shares);
      
              emit Withdraw(msg.sender, receiver, owner, assets, shares);
      
              asset.safeTransfer(receiver, assets);
          }
      
          function redeem(
              uint256 shares,
              address receiver,
              address owner
          ) public virtual returns (uint256 assets) {
              if (msg.sender != owner) {
                  uint256 allowed = allowance[owner][msg.sender]; // Saves gas for limited approvals.
      
                  if (allowed != type(uint256).max) allowance[owner][msg.sender] = allowed - shares;
              }
      
              // Check for rounding error since we round down in previewRedeem.
              require((assets = previewRedeem(shares)) != 0, "ZERO_ASSETS");
      
              beforeWithdraw(assets, shares);
      
              _burn(owner, shares);
      
              emit Withdraw(msg.sender, receiver, owner, assets, shares);
      
              asset.safeTransfer(receiver, assets);
          }
      
          /*//////////////////////////////////////////////////////////////
                                  ACCOUNTING LOGIC
          //////////////////////////////////////////////////////////////*/
      
          function totalAssets() public view virtual returns (uint256);
      
          function convertToShares(uint256 assets) public view virtual returns (uint256) {
              uint256 supply = totalSupply; // Saves an extra SLOAD if totalSupply is non-zero.
      
              return supply == 0 ? assets : assets.mulDivDown(supply, totalAssets());
          }
      
          function convertToAssets(uint256 shares) public view virtual returns (uint256) {
              uint256 supply = totalSupply; // Saves an extra SLOAD if totalSupply is non-zero.
      
              return supply == 0 ? shares : shares.mulDivDown(totalAssets(), supply);
          }
      
          function previewDeposit(uint256 assets) public view virtual returns (uint256) {
              return convertToShares(assets);
          }
      
          function previewMint(uint256 shares) public view virtual returns (uint256) {
              uint256 supply = totalSupply; // Saves an extra SLOAD if totalSupply is non-zero.
      
              return supply == 0 ? shares : shares.mulDivUp(totalAssets(), supply);
          }
      
          function previewWithdraw(uint256 assets) public view virtual returns (uint256) {
              uint256 supply = totalSupply; // Saves an extra SLOAD if totalSupply is non-zero.
      
              return supply == 0 ? assets : assets.mulDivUp(supply, totalAssets());
          }
      
          function previewRedeem(uint256 shares) public view virtual returns (uint256) {
              return convertToAssets(shares);
          }
      
          /*//////////////////////////////////////////////////////////////
                           DEPOSIT/WITHDRAWAL LIMIT LOGIC
          //////////////////////////////////////////////////////////////*/
      
          function maxDeposit(address) public view virtual returns (uint256) {
              return type(uint256).max;
          }
      
          function maxMint(address) public view virtual returns (uint256) {
              return type(uint256).max;
          }
      
          function maxWithdraw(address owner) public view virtual returns (uint256) {
              return convertToAssets(balanceOf[owner]);
          }
      
          function maxRedeem(address owner) public view virtual returns (uint256) {
              return balanceOf[owner];
          }
      
          /*//////////////////////////////////////////////////////////////
                                INTERNAL HOOKS LOGIC
          //////////////////////////////////////////////////////////////*/
      
          function beforeWithdraw(uint256 assets, uint256 shares) internal virtual {}
      
          function afterDeposit(uint256 assets, uint256 shares) internal virtual {}
      }
      
      /// @notice Safe unsigned integer casting library that reverts on overflow.
      /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeCastLib.sol)
      /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeCast.sol)
      library SafeCastLib {
          function safeCastTo248(uint256 x) internal pure returns (uint248 y) {
              require(x < 1 << 248);
      
              y = uint248(x);
          }
      
          function safeCastTo224(uint256 x) internal pure returns (uint224 y) {
              require(x < 1 << 224);
      
              y = uint224(x);
          }
      
          function safeCastTo192(uint256 x) internal pure returns (uint192 y) {
              require(x < 1 << 192);
      
              y = uint192(x);
          }
      
          function safeCastTo160(uint256 x) internal pure returns (uint160 y) {
              require(x < 1 << 160);
      
              y = uint160(x);
          }
      
          function safeCastTo128(uint256 x) internal pure returns (uint128 y) {
              require(x < 1 << 128);
      
              y = uint128(x);
          }
      
          function safeCastTo96(uint256 x) internal pure returns (uint96 y) {
              require(x < 1 << 96);
      
              y = uint96(x);
          }
      
          function safeCastTo64(uint256 x) internal pure returns (uint64 y) {
              require(x < 1 << 64);
      
              y = uint64(x);
          }
      
          function safeCastTo32(uint256 x) internal pure returns (uint32 y) {
              require(x < 1 << 32);
      
              y = uint32(x);
          }
      
          function safeCastTo24(uint256 x) internal pure returns (uint24 y) {
              require(x < 1 << 24);
      
              y = uint24(x);
          }
      
          function safeCastTo16(uint256 x) internal pure returns (uint16 y) {
              require(x < 1 << 16);
      
              y = uint16(x);
          }
      
          function safeCastTo8(uint256 x) internal pure returns (uint8 y) {
              require(x < 1 << 8);
      
              y = uint8(x);
          }
      }
      
      // Rewards logic inspired by xERC20 (https://github.com/ZeframLou/playpen/blob/main/src/xERC20.sol)
      
      /** 
       @title  An xERC4626 Single Staking Contract Interface
       @notice This contract allows users to autocompound rewards denominated in an underlying reward token. 
               It is fully compatible with [ERC4626](https://eips.ethereum.org/EIPS/eip-4626) allowing for DeFi composability.
               It maintains balances using internal accounting to prevent instantaneous changes in the exchange rate.
               NOTE: an exception is at contract creation, when a reward cycle begins before the first deposit. After the first deposit, exchange rate updates smoothly.
      
               Operates on "cycles" which distribute the rewards surplus over the internal balance to users linearly over the remainder of the cycle window.
      */
      interface IxERC4626 {
          /*////////////////////////////////////////////////////////
                              Custom Errors
          ////////////////////////////////////////////////////////*/
      
          /// @dev thrown when syncing before cycle ends.
          error SyncError();
      
          /*////////////////////////////////////////////////////////
                                  Events
          ////////////////////////////////////////////////////////*/
      
          /// @dev emit every time a new rewards cycle starts
          event NewRewardsCycle(uint32 indexed cycleEnd, uint256 rewardAmount);
      
          /*////////////////////////////////////////////////////////
                              View Methods
          ////////////////////////////////////////////////////////*/
      
          /// @notice the maximum length of a rewards cycle
          function rewardsCycleLength() external view returns (uint32);
      
          /// @notice the effective start of the current cycle
          /// NOTE: This will likely be after `rewardsCycleEnd - rewardsCycleLength` as this is set as block.timestamp of the last `syncRewards` call.
          function lastSync() external view returns (uint32);
      
          /// @notice the end of the current cycle. Will always be evenly divisible by `rewardsCycleLength`.
          function rewardsCycleEnd() external view returns (uint32);
      
          /// @notice the amount of rewards distributed in a the most recent cycle
          function lastRewardAmount() external view returns (uint192);
      
          /*////////////////////////////////////////////////////////
                          State Changing Methods
          ////////////////////////////////////////////////////////*/
      
          /// @notice Distributes rewards to xERC4626 holders.
          /// All surplus `asset` balance of the contract over the internal balance becomes queued for the next cycle.
          function syncRewards() external;
      }
      
      /** 
       @title  An xERC4626 Single Staking Contract
       @notice This contract allows users to autocompound rewards denominated in an underlying reward token. 
               It is fully compatible with [ERC4626](https://eips.ethereum.org/EIPS/eip-4626) allowing for DeFi composability.
               It maintains balances using internal accounting to prevent instantaneous changes in the exchange rate.
               NOTE: an exception is at contract creation, when a reward cycle begins before the first deposit. After the first deposit, exchange rate updates smoothly.
      
               Operates on "cycles" which distribute the rewards surplus over the internal balance to users linearly over the remainder of the cycle window.
      */
      abstract contract xERC4626 is IxERC4626, ERC4626 {
          using SafeCastLib for *;
      
          /// @notice the maximum length of a rewards cycle
          uint32 public immutable rewardsCycleLength;
      
          /// @notice the effective start of the current cycle
          uint32 public lastSync;
      
          /// @notice the end of the current cycle. Will always be evenly divisible by `rewardsCycleLength`.
          uint32 public rewardsCycleEnd;
      
          /// @notice the amount of rewards distributed in a the most recent cycle.
          uint192 public lastRewardAmount;
      
          uint256 internal storedTotalAssets;
      
          constructor(uint32 _rewardsCycleLength) {
              rewardsCycleLength = _rewardsCycleLength;
              // seed initial rewardsCycleEnd
              rewardsCycleEnd = (block.timestamp.safeCastTo32() / rewardsCycleLength) * rewardsCycleLength;
          }
      
          /// @notice Compute the amount of tokens available to share holders.
          ///         Increases linearly during a reward distribution period from the sync call, not the cycle start.
          function totalAssets() public view override returns (uint256) {
              // cache global vars
              uint256 storedTotalAssets_ = storedTotalAssets;
              uint192 lastRewardAmount_ = lastRewardAmount;
              uint32 rewardsCycleEnd_ = rewardsCycleEnd;
              uint32 lastSync_ = lastSync;
      
              if (block.timestamp >= rewardsCycleEnd_) {
                  // no rewards or rewards fully unlocked
                  // entire reward amount is available
                  return storedTotalAssets_ + lastRewardAmount_;
              }
      
              // rewards not fully unlocked
              // add unlocked rewards to stored total
              uint256 unlockedRewards = (lastRewardAmount_ * (block.timestamp - lastSync_)) / (rewardsCycleEnd_ - lastSync_);
              return storedTotalAssets_ + unlockedRewards;
          }
      
          // Update storedTotalAssets on withdraw/redeem
          function beforeWithdraw(uint256 amount, uint256 shares) internal virtual override {
              super.beforeWithdraw(amount, shares);
              storedTotalAssets -= amount;
          }
      
          // Update storedTotalAssets on deposit/mint
          function afterDeposit(uint256 amount, uint256 shares) internal virtual override {
              storedTotalAssets += amount;
              super.afterDeposit(amount, shares);
          }
      
          /// @notice Distributes rewards to xERC4626 holders.
          /// All surplus `asset` balance of the contract over the internal balance becomes queued for the next cycle.
          function syncRewards() public virtual {
              uint192 lastRewardAmount_ = lastRewardAmount;
              uint32 timestamp = block.timestamp.safeCastTo32();
      
              if (timestamp < rewardsCycleEnd) revert SyncError();
      
              uint256 storedTotalAssets_ = storedTotalAssets;
              uint256 nextRewards = asset.balanceOf(address(this)) - storedTotalAssets_ - lastRewardAmount_;
      
              storedTotalAssets = storedTotalAssets_ + lastRewardAmount_; // SSTORE
      
              uint32 end = ((timestamp + rewardsCycleLength) / rewardsCycleLength) * rewardsCycleLength;
      
              if (end - timestamp < rewardsCycleLength / 20) {
                  end += rewardsCycleLength;
              }
      
              // Combined single SSTORE
              lastRewardAmount = nextRewards.safeCastTo192();
              lastSync = timestamp;
              rewardsCycleEnd = end;
      
              emit NewRewardsCycle(end, nextRewards);
          }
      }
      
      // OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol)
      
      /**
       * @dev Contract module that helps prevent reentrant calls to a function.
       *
       * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
       * available, which can be applied to functions to make sure there are no nested
       * (reentrant) calls to them.
       *
       * Note that because there is a single `nonReentrant` guard, functions marked as
       * `nonReentrant` may not call one another. This can be worked around by making
       * those functions `private`, and then adding `external` `nonReentrant` entry
       * points to them.
       *
       * TIP: If you would like to learn more about reentrancy and alternative ways
       * to protect against it, check out our blog post
       * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
       */
      abstract contract ReentrancyGuard {
          // Booleans are more expensive than uint256 or any type that takes up a full
          // word because each write operation emits an extra SLOAD to first read the
          // slot's contents, replace the bits taken up by the boolean, and then write
          // back. This is the compiler's defense against contract upgrades and
          // pointer aliasing, and it cannot be disabled.
      
          // The values being non-zero value makes deployment a bit more expensive,
          // but in exchange the refund on every call to nonReentrant will be lower in
          // amount. Since refunds are capped to a percentage of the total
          // transaction's gas, it is best to keep them low in cases like this one, to
          // increase the likelihood of the full refund coming into effect.
          uint256 private constant _NOT_ENTERED = 1;
          uint256 private constant _ENTERED = 2;
      
          uint256 private _status;
      
          constructor() {
              _status = _NOT_ENTERED;
          }
      
          /**
           * @dev Prevents a contract from calling itself, directly or indirectly.
           * Calling a `nonReentrant` function from another `nonReentrant`
           * function is not supported. It is possible to prevent this from happening
           * by making the `nonReentrant` function external, and making it call a
           * `private` function that does the actual work.
           */
          modifier nonReentrant() {
              _nonReentrantBefore();
              _;
              _nonReentrantAfter();
          }
      
          function _nonReentrantBefore() private {
              // On the first call to nonReentrant, _status will be _NOT_ENTERED
              require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
      
              // Any calls to nonReentrant after this point will fail
              _status = _ENTERED;
          }
      
          function _nonReentrantAfter() private {
              // By storing the original value once again, a refund is triggered (see
              // https://eips.ethereum.org/EIPS/eip-2200)
              _status = _NOT_ENTERED;
          }
      }
      
      /// @title Vault token for staked frxETH
      /// @notice Is a vault that takes frxETH and gives you sfrxETH erc20 tokens
      /** @dev Exchange rate between frxETH and sfrxETH floats, you can convert your sfrxETH for more frxETH over time.
          Exchange rate increases as the frax msig mints new frxETH corresponding to the staking yield and drops it into the vault (sfrxETH contract).
          There is a short time period, “cycles” which the exchange rate increases linearly over. This is to prevent gaming the exchange rate (MEV).
          The cycles are constant length, but calling syncRewards slightly into a would-be cycle keeps the same would-be endpoint (so cycle ends are every X seconds).
          Someone must call syncRewards, which queues any new frxETH in the contract to be added to the redeemable amount.
          sfrxETH adheres to ERC-4626 vault specs 
          Mint vs Deposit
          mint() - deposit targeting a specific number of sfrxETH out
          deposit() - deposit knowing a specific number of frxETH in */
      contract sfrxETH is xERC4626, ReentrancyGuard {
      
          modifier andSync {
              if (block.timestamp >= rewardsCycleEnd) { syncRewards(); } 
              _;
          }
      
          /* ========== CONSTRUCTOR ========== */
          constructor(ERC20 _underlying, uint32 _rewardsCycleLength)
              ERC4626(_underlying, "Staked Frax Ether", "sfrxETH")
              xERC4626(_rewardsCycleLength)
          {}
      
          /// @notice inlines syncRewards with deposits when able
          function deposit(uint256 assets, address receiver) public override andSync returns (uint256 shares) {
              return super.deposit(assets, receiver);
          }
          
          /// @notice inlines syncRewards with mints when able
          function mint(uint256 shares, address receiver) public override andSync returns (uint256 assets) {
              return super.mint(shares, receiver);
          }
      
          /// @notice inlines syncRewards with withdrawals when able
          function withdraw(
              uint256 assets,
              address receiver,
              address owner
          ) public override andSync returns (uint256 shares) {
              return super.withdraw(assets, receiver, owner);
          }
      
          /// @notice inlines syncRewards with redemptions when able
          function redeem(
              uint256 shares,
              address receiver,
              address owner
          ) public override andSync returns (uint256 assets) {
              return super.redeem(shares, receiver, owner);
          }
      
          /// @notice How much frxETH is 1E18 sfrxETH worth. Price is in ETH, not USD
          function pricePerShare() public view returns (uint256) {
              return convertToAssets(1e18);
          }
      
          /// @notice Approve and deposit() in one transaction
          function depositWithSignature(
              uint256 assets,
              address receiver,
              uint256 deadline,
              bool approveMax,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) external nonReentrant returns (uint256 shares) {
              uint256 amount = approveMax ? type(uint256).max : assets;
              asset.permit(msg.sender, address(this), amount, deadline, v, r, s);
              return (deposit(assets, receiver));
          }
      
      }