Transaction Hash:
Block:
21861068 at Feb-16-2025 07:33:23 PM +UTC
Transaction Fee:
0.000564538820463072 ETH
$1.07
Gas Used:
194,831 Gas / 2.897582112 Gwei
Emitted Events:
88 |
WETH9.Deposit( dst=[Receiver] UniversalRouter, wad=10000000000000000 )
|
89 |
WETH9.Transfer( src=[Receiver] UniversalRouter, dst=UniswapV2Pair, wad=10000000000000000 )
|
90 |
DxStandardToken.Transfer( from=UniswapV2Pair, to=[Receiver] UniversalRouter, value=3090795221468944245252000187 )
|
91 |
UniswapV2Pair.Sync( reserve0=95909204778531055754747999813, reserve1=319375000000000000 )
|
92 |
UniswapV2Pair.Swap( sender=[Receiver] UniversalRouter, amount0In=0, amount1In=10000000000000000, amount0Out=3090795221468944245252000187, amount1Out=0, to=[Receiver] UniversalRouter )
|
93 |
DxStandardToken.Transfer( from=[Receiver] UniversalRouter, to=FeeCollector, value=7726988053672360613130000 )
|
94 |
DxStandardToken.Transfer( from=[Receiver] UniversalRouter, to=[Sender] 0xe306437d8157159510eddb3375640ff41a046a7b, value=3083068233415271884638870187 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x0b06BF34...1CBAaCD94 | |||||
0x1f9090aa...8e676c326
Miner
| 4.538332977666750512 Eth | 4.538722639666750512 Eth | 0.000389662 | ||
0x977cf831...3520bE284 | |||||
0xC02aaA39...83C756Cc2 | 2,993,700.929923243708460063 Eth | 2,993,700.939923243708460063 Eth | 0.01 | ||
0xe306437D...41a046a7b |
0.188836068948201657 Eth
Nonce: 263
|
0.178271530127738585 Eth
Nonce: 264
| 0.010564538820463072 |
Execution Trace
ETH 0.01
UniversalRouter.execute( commands=0x0B080604, inputs=[AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI4byb8EAAA==, AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI4byb8EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAwCqqObIj/o0KDlxPJ+rZCDx1bMIAAAAAAAAAAAAAAAALBr80ZFtr78haa/heB3txy6rNlA==, AAAAAAAAAAAAAAAACwa/NGRba+/IWmv4Xgd7ccuqzZQAAAAAAAAAAAAAAAAAAAD+4ToQOhDVk7muBrPgXy5+HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZ, AAAAAAAAAAAAAAAACwa/NGRba+/IWmv4Xgd7ccuqzZQAAAAAAAAAAAAAAADjBkN9gVcVlRDt2zN1ZA/0GgRqewAAAAAAAAAAAAAAAAAAAAAAAAAACfO04VUIkk1h/xlb], deadline=1739736187 )
- ETH 0.01
WETH9.CALL( )
-
WETH9.transfer( dst=0x977cf83118aa50400f1c4C0901e66773520bE284, wad=10000000000000000 ) => ( True )
-
DxStandardToken.balanceOf( account=0x66a9893cC07D91D95644AEDD05D03f95e1dBA8Af ) => ( 0 )
-
UniswapV2Pair.STATICCALL( )
-
WETH9.balanceOf( 0x977cf83118aa50400f1c4C0901e66773520bE284 ) => ( 319375000000000000 )
UniswapV2Pair.swap( amount0Out=3090795221468944245252000187, amount1Out=0, to=0x66a9893cC07D91D95644AEDD05D03f95e1dBA8Af, data=0x )
-
DxStandardToken.transfer( recipient=0x66a9893cC07D91D95644AEDD05D03f95e1dBA8Af, amount=3090795221468944245252000187 ) => ( True )
-
DxStandardToken.balanceOf( account=0x977cf83118aa50400f1c4C0901e66773520bE284 ) => ( 95909204778531055754747999813 )
-
WETH9.balanceOf( 0x977cf83118aa50400f1c4C0901e66773520bE284 ) => ( 319375000000000000 )
-
-
DxStandardToken.balanceOf( account=0x66a9893cC07D91D95644AEDD05D03f95e1dBA8Af ) => ( 3090795221468944245252000187 )
-
DxStandardToken.balanceOf( account=0x66a9893cC07D91D95644AEDD05D03f95e1dBA8Af ) => ( 3090795221468944245252000187 )
-
DxStandardToken.transfer( recipient=0x000000fee13a103A10D593b9AE06b3e05F2E7E1c, amount=7726988053672360613130000 ) => ( True )
-
DxStandardToken.balanceOf( account=0x66a9893cC07D91D95644AEDD05D03f95e1dBA8Af ) => ( 3083068233415271884638870187 )
-
DxStandardToken.transfer( recipient=0xe306437D8157159510EdDb3375640ff41a046a7b, amount=3083068233415271884638870187 ) => ( True )
File 1 of 5: UniversalRouter
File 2 of 5: WETH9
File 3 of 5: UniswapV2Pair
File 4 of 5: DxStandardToken
File 5 of 5: FeeCollector
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; // Command implementations import {Dispatcher} from './base/Dispatcher.sol'; import {RouterParameters} from './types/RouterParameters.sol'; import {PaymentsImmutables, PaymentsParameters} from './modules/PaymentsImmutables.sol'; import {UniswapImmutables, UniswapParameters} from './modules/uniswap/UniswapImmutables.sol'; import {V4SwapRouter} from './modules/uniswap/v4/V4SwapRouter.sol'; import {Commands} from './libraries/Commands.sol'; import {IUniversalRouter} from './interfaces/IUniversalRouter.sol'; import {MigratorImmutables, MigratorParameters} from './modules/MigratorImmutables.sol'; contract UniversalRouter is IUniversalRouter, Dispatcher { constructor(RouterParameters memory params) UniswapImmutables( UniswapParameters(params.v2Factory, params.v3Factory, params.pairInitCodeHash, params.poolInitCodeHash) ) V4SwapRouter(params.v4PoolManager) PaymentsImmutables(PaymentsParameters(params.permit2, params.weth9)) MigratorImmutables(MigratorParameters(params.v3NFTPositionManager, params.v4PositionManager)) {} modifier checkDeadline(uint256 deadline) { if (block.timestamp > deadline) revert TransactionDeadlinePassed(); _; } /// @notice To receive ETH from WETH receive() external payable { if (msg.sender != address(WETH9) && msg.sender != address(poolManager)) revert InvalidEthSender(); } /// @inheritdoc IUniversalRouter function execute(bytes calldata commands, bytes[] calldata inputs, uint256 deadline) external payable checkDeadline(deadline) { execute(commands, inputs); } /// @inheritdoc Dispatcher function execute(bytes calldata commands, bytes[] calldata inputs) public payable override isNotLocked { bool success; bytes memory output; uint256 numCommands = commands.length; if (inputs.length != numCommands) revert LengthMismatch(); // loop through all given commands, execute them and pass along outputs as defined for (uint256 commandIndex = 0; commandIndex < numCommands; commandIndex++) { bytes1 command = commands[commandIndex]; bytes calldata input = inputs[commandIndex]; (success, output) = dispatch(command, input); if (!success && successRequired(command)) { revert ExecutionFailed({commandIndex: commandIndex, message: output}); } } } function successRequired(bytes1 command) internal pure returns (bool) { return command & Commands.FLAG_ALLOW_REVERT == 0; } } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import {V2SwapRouter} from '../modules/uniswap/v2/V2SwapRouter.sol'; import {V3SwapRouter} from '../modules/uniswap/v3/V3SwapRouter.sol'; import {V4SwapRouter} from '../modules/uniswap/v4/V4SwapRouter.sol'; import {BytesLib} from '../modules/uniswap/v3/BytesLib.sol'; import {Payments} from '../modules/Payments.sol'; import {PaymentsImmutables} from '../modules/PaymentsImmutables.sol'; import {V3ToV4Migrator} from '../modules/V3ToV4Migrator.sol'; import {Commands} from '../libraries/Commands.sol'; import {Lock} from './Lock.sol'; import {ERC20} from 'solmate/src/tokens/ERC20.sol'; import {IAllowanceTransfer} from 'permit2/src/interfaces/IAllowanceTransfer.sol'; import {ActionConstants} from '@uniswap/v4-periphery/src/libraries/ActionConstants.sol'; import {CalldataDecoder} from '@uniswap/v4-periphery/src/libraries/CalldataDecoder.sol'; import {PoolKey} from '@uniswap/v4-core/src/types/PoolKey.sol'; import {IPoolManager} from '@uniswap/v4-core/src/interfaces/IPoolManager.sol'; /// @title Decodes and Executes Commands /// @notice Called by the UniversalRouter contract to efficiently decode and execute a singular command abstract contract Dispatcher is Payments, V2SwapRouter, V3SwapRouter, V4SwapRouter, V3ToV4Migrator, Lock { using BytesLib for bytes; using CalldataDecoder for bytes; error InvalidCommandType(uint256 commandType); error BalanceTooLow(); /// @notice Executes encoded commands along with provided inputs. /// @param commands A set of concatenated commands, each 1 byte in length /// @param inputs An array of byte strings containing abi encoded inputs for each command function execute(bytes calldata commands, bytes[] calldata inputs) external payable virtual; /// @notice Public view function to be used instead of msg.sender, as the contract performs self-reentrancy and at /// times msg.sender == address(this). Instead msgSender() returns the initiator of the lock /// @dev overrides BaseActionsRouter.msgSender in V4Router function msgSender() public view override returns (address) { return _getLocker(); } /// @notice Decodes and executes the given command with the given inputs /// @param commandType The command type to execute /// @param inputs The inputs to execute the command with /// @dev 2 masks are used to enable use of a nested-if statement in execution for efficiency reasons /// @return success True on success of the command, false on failure /// @return output The outputs or error messages, if any, from the command function dispatch(bytes1 commandType, bytes calldata inputs) internal returns (bool success, bytes memory output) { uint256 command = uint8(commandType & Commands.COMMAND_TYPE_MASK); success = true; // 0x00 <= command < 0x21 if (command < Commands.EXECUTE_SUB_PLAN) { // 0x00 <= command < 0x10 if (command < Commands.V4_SWAP) { // 0x00 <= command < 0x08 if (command < Commands.V2_SWAP_EXACT_IN) { if (command == Commands.V3_SWAP_EXACT_IN) { // equivalent: abi.decode(inputs, (address, uint256, uint256, bytes, bool)) address recipient; uint256 amountIn; uint256 amountOutMin; bool payerIsUser; assembly { recipient := calldataload(inputs.offset) amountIn := calldataload(add(inputs.offset, 0x20)) amountOutMin := calldataload(add(inputs.offset, 0x40)) // 0x60 offset is the path, decoded below payerIsUser := calldataload(add(inputs.offset, 0x80)) } bytes calldata path = inputs.toBytes(3); address payer = payerIsUser ? msgSender() : address(this); v3SwapExactInput(map(recipient), amountIn, amountOutMin, path, payer); } else if (command == Commands.V3_SWAP_EXACT_OUT) { // equivalent: abi.decode(inputs, (address, uint256, uint256, bytes, bool)) address recipient; uint256 amountOut; uint256 amountInMax; bool payerIsUser; assembly { recipient := calldataload(inputs.offset) amountOut := calldataload(add(inputs.offset, 0x20)) amountInMax := calldataload(add(inputs.offset, 0x40)) // 0x60 offset is the path, decoded below payerIsUser := calldataload(add(inputs.offset, 0x80)) } bytes calldata path = inputs.toBytes(3); address payer = payerIsUser ? msgSender() : address(this); v3SwapExactOutput(map(recipient), amountOut, amountInMax, path, payer); } else if (command == Commands.PERMIT2_TRANSFER_FROM) { // equivalent: abi.decode(inputs, (address, address, uint160)) address token; address recipient; uint160 amount; assembly { token := calldataload(inputs.offset) recipient := calldataload(add(inputs.offset, 0x20)) amount := calldataload(add(inputs.offset, 0x40)) } permit2TransferFrom(token, msgSender(), map(recipient), amount); } else if (command == Commands.PERMIT2_PERMIT_BATCH) { IAllowanceTransfer.PermitBatch calldata permitBatch; assembly { // this is a variable length struct, so calldataload(inputs.offset) contains the // offset from inputs.offset at which the struct begins permitBatch := add(inputs.offset, calldataload(inputs.offset)) } bytes calldata data = inputs.toBytes(1); (success, output) = address(PERMIT2).call( abi.encodeWithSignature( 'permit(address,((address,uint160,uint48,uint48)[],address,uint256),bytes)', msgSender(), permitBatch, data ) ); } else if (command == Commands.SWEEP) { // equivalent: abi.decode(inputs, (address, address, uint256)) address token; address recipient; uint160 amountMin; assembly { token := calldataload(inputs.offset) recipient := calldataload(add(inputs.offset, 0x20)) amountMin := calldataload(add(inputs.offset, 0x40)) } Payments.sweep(token, map(recipient), amountMin); } else if (command == Commands.TRANSFER) { // equivalent: abi.decode(inputs, (address, address, uint256)) address token; address recipient; uint256 value; assembly { token := calldataload(inputs.offset) recipient := calldataload(add(inputs.offset, 0x20)) value := calldataload(add(inputs.offset, 0x40)) } Payments.pay(token, map(recipient), value); } else if (command == Commands.PAY_PORTION) { // equivalent: abi.decode(inputs, (address, address, uint256)) address token; address recipient; uint256 bips; assembly { token := calldataload(inputs.offset) recipient := calldataload(add(inputs.offset, 0x20)) bips := calldataload(add(inputs.offset, 0x40)) } Payments.payPortion(token, map(recipient), bips); } else { // placeholder area for command 0x07 revert InvalidCommandType(command); } } else { // 0x08 <= command < 0x10 if (command == Commands.V2_SWAP_EXACT_IN) { // equivalent: abi.decode(inputs, (address, uint256, uint256, bytes, bool)) address recipient; uint256 amountIn; uint256 amountOutMin; bool payerIsUser; assembly { recipient := calldataload(inputs.offset) amountIn := calldataload(add(inputs.offset, 0x20)) amountOutMin := calldataload(add(inputs.offset, 0x40)) // 0x60 offset is the path, decoded below payerIsUser := calldataload(add(inputs.offset, 0x80)) } address[] calldata path = inputs.toAddressArray(3); address payer = payerIsUser ? msgSender() : address(this); v2SwapExactInput(map(recipient), amountIn, amountOutMin, path, payer); } else if (command == Commands.V2_SWAP_EXACT_OUT) { // equivalent: abi.decode(inputs, (address, uint256, uint256, bytes, bool)) address recipient; uint256 amountOut; uint256 amountInMax; bool payerIsUser; assembly { recipient := calldataload(inputs.offset) amountOut := calldataload(add(inputs.offset, 0x20)) amountInMax := calldataload(add(inputs.offset, 0x40)) // 0x60 offset is the path, decoded below payerIsUser := calldataload(add(inputs.offset, 0x80)) } address[] calldata path = inputs.toAddressArray(3); address payer = payerIsUser ? msgSender() : address(this); v2SwapExactOutput(map(recipient), amountOut, amountInMax, path, payer); } else if (command == Commands.PERMIT2_PERMIT) { // equivalent: abi.decode(inputs, (IAllowanceTransfer.PermitSingle, bytes)) IAllowanceTransfer.PermitSingle calldata permitSingle; assembly { permitSingle := inputs.offset } bytes calldata data = inputs.toBytes(6); // PermitSingle takes first 6 slots (0..5) (success, output) = address(PERMIT2).call( abi.encodeWithSignature( 'permit(address,((address,uint160,uint48,uint48),address,uint256),bytes)', msgSender(), permitSingle, data ) ); } else if (command == Commands.WRAP_ETH) { // equivalent: abi.decode(inputs, (address, uint256)) address recipient; uint256 amount; assembly { recipient := calldataload(inputs.offset) amount := calldataload(add(inputs.offset, 0x20)) } Payments.wrapETH(map(recipient), amount); } else if (command == Commands.UNWRAP_WETH) { // equivalent: abi.decode(inputs, (address, uint256)) address recipient; uint256 amountMin; assembly { recipient := calldataload(inputs.offset) amountMin := calldataload(add(inputs.offset, 0x20)) } Payments.unwrapWETH9(map(recipient), amountMin); } else if (command == Commands.PERMIT2_TRANSFER_FROM_BATCH) { IAllowanceTransfer.AllowanceTransferDetails[] calldata batchDetails; (uint256 length, uint256 offset) = inputs.toLengthOffset(0); assembly { batchDetails.length := length batchDetails.offset := offset } permit2TransferFrom(batchDetails, msgSender()); } else if (command == Commands.BALANCE_CHECK_ERC20) { // equivalent: abi.decode(inputs, (address, address, uint256)) address owner; address token; uint256 minBalance; assembly { owner := calldataload(inputs.offset) token := calldataload(add(inputs.offset, 0x20)) minBalance := calldataload(add(inputs.offset, 0x40)) } success = (ERC20(token).balanceOf(owner) >= minBalance); if (!success) output = abi.encodePacked(BalanceTooLow.selector); } else { // placeholder area for command 0x0f revert InvalidCommandType(command); } } } else { // 0x10 <= command < 0x21 if (command == Commands.V4_SWAP) { // pass the calldata provided to V4SwapRouter._executeActions (defined in BaseActionsRouter) _executeActions(inputs); // This contract MUST be approved to spend the token since its going to be doing the call on the position manager } else if (command == Commands.V3_POSITION_MANAGER_PERMIT) { _checkV3PermitCall(inputs); (success, output) = address(V3_POSITION_MANAGER).call(inputs); } else if (command == Commands.V3_POSITION_MANAGER_CALL) { _checkV3PositionManagerCall(inputs, msgSender()); (success, output) = address(V3_POSITION_MANAGER).call(inputs); } else if (command == Commands.V4_INITIALIZE_POOL) { PoolKey calldata poolKey; uint160 sqrtPriceX96; assembly { poolKey := inputs.offset sqrtPriceX96 := calldataload(add(inputs.offset, 0xa0)) } (success, output) = address(poolManager).call(abi.encodeCall(IPoolManager.initialize, (poolKey, sqrtPriceX96))); } else if (command == Commands.V4_POSITION_MANAGER_CALL) { // should only call modifyLiquidities() to mint _checkV4PositionManagerCall(inputs); (success, output) = address(V4_POSITION_MANAGER).call{value: address(this).balance}(inputs); } else { // placeholder area for commands 0x15-0x20 revert InvalidCommandType(command); } } } else { // 0x21 <= command if (command == Commands.EXECUTE_SUB_PLAN) { (bytes calldata _commands, bytes[] calldata _inputs) = inputs.decodeCommandsAndInputs(); (success, output) = (address(this)).call(abi.encodeCall(Dispatcher.execute, (_commands, _inputs))); } else { // placeholder area for commands 0x22-0x3f revert InvalidCommandType(command); } } } /// @notice Calculates the recipient address for a command /// @param recipient The recipient or recipient-flag for the command /// @return output The resultant recipient for the command function map(address recipient) internal view returns (address) { if (recipient == ActionConstants.MSG_SENDER) { return msgSender(); } else if (recipient == ActionConstants.ADDRESS_THIS) { return address(this); } else { return recipient; } } } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; struct RouterParameters { // Payment parameters address permit2; address weth9; // Uniswap swapping parameters address v2Factory; address v3Factory; bytes32 pairInitCodeHash; bytes32 poolInitCodeHash; address v4PoolManager; // Uniswap v3->v4 migration parameters address v3NFTPositionManager; address v4PositionManager; } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import {IWETH9} from '@uniswap/v4-periphery/src/interfaces/external/IWETH9.sol'; import {IPermit2} from 'permit2/src/interfaces/IPermit2.sol'; struct PaymentsParameters { address permit2; address weth9; } contract PaymentsImmutables { /// @notice WETH9 address IWETH9 internal immutable WETH9; /// @notice Permit2 address IPermit2 internal immutable PERMIT2; constructor(PaymentsParameters memory params) { WETH9 = IWETH9(params.weth9); PERMIT2 = IPermit2(params.permit2); } } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; struct UniswapParameters { address v2Factory; address v3Factory; bytes32 pairInitCodeHash; bytes32 poolInitCodeHash; } contract UniswapImmutables { /// @notice The address of UniswapV2Factory address internal immutable UNISWAP_V2_FACTORY; /// @notice The UniswapV2Pair initcodehash bytes32 internal immutable UNISWAP_V2_PAIR_INIT_CODE_HASH; /// @notice The address of UniswapV3Factory address internal immutable UNISWAP_V3_FACTORY; /// @notice The UniswapV3Pool initcodehash bytes32 internal immutable UNISWAP_V3_POOL_INIT_CODE_HASH; constructor(UniswapParameters memory params) { UNISWAP_V2_FACTORY = params.v2Factory; UNISWAP_V2_PAIR_INIT_CODE_HASH = params.pairInitCodeHash; UNISWAP_V3_FACTORY = params.v3Factory; UNISWAP_V3_POOL_INIT_CODE_HASH = params.poolInitCodeHash; } } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import {UniswapImmutables} from '../UniswapImmutables.sol'; import {Permit2Payments} from '../../Permit2Payments.sol'; import {V4Router} from '@uniswap/v4-periphery/src/V4Router.sol'; import {IPoolManager} from '@uniswap/v4-core/src/interfaces/IPoolManager.sol'; import {Currency} from '@uniswap/v4-core/src/types/Currency.sol'; /// @title Router for Uniswap v4 Trades abstract contract V4SwapRouter is V4Router, Permit2Payments { constructor(address _poolManager) V4Router(IPoolManager(_poolManager)) {} function _pay(Currency token, address payer, uint256 amount) internal override { payOrPermit2Transfer(Currency.unwrap(token), payer, address(poolManager), amount); } } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; /// @title Commands /// @notice Command Flags used to decode commands library Commands { // Masks to extract certain bits of commands bytes1 internal constant FLAG_ALLOW_REVERT = 0x80; bytes1 internal constant COMMAND_TYPE_MASK = 0x3f; // Command Types. Maximum supported command at this moment is 0x3f. // The commands are executed in nested if blocks to minimise gas consumption // Command Types where value<=0x07, executed in the first nested-if block uint256 constant V3_SWAP_EXACT_IN = 0x00; uint256 constant V3_SWAP_EXACT_OUT = 0x01; uint256 constant PERMIT2_TRANSFER_FROM = 0x02; uint256 constant PERMIT2_PERMIT_BATCH = 0x03; uint256 constant SWEEP = 0x04; uint256 constant TRANSFER = 0x05; uint256 constant PAY_PORTION = 0x06; // COMMAND_PLACEHOLDER = 0x07; // Command Types where 0x08<=value<=0x0f, executed in the second nested-if block uint256 constant V2_SWAP_EXACT_IN = 0x08; uint256 constant V2_SWAP_EXACT_OUT = 0x09; uint256 constant PERMIT2_PERMIT = 0x0a; uint256 constant WRAP_ETH = 0x0b; uint256 constant UNWRAP_WETH = 0x0c; uint256 constant PERMIT2_TRANSFER_FROM_BATCH = 0x0d; uint256 constant BALANCE_CHECK_ERC20 = 0x0e; // COMMAND_PLACEHOLDER = 0x0f; // Command Types where 0x10<=value<=0x20, executed in the third nested-if block uint256 constant V4_SWAP = 0x10; uint256 constant V3_POSITION_MANAGER_PERMIT = 0x11; uint256 constant V3_POSITION_MANAGER_CALL = 0x12; uint256 constant V4_INITIALIZE_POOL = 0x13; uint256 constant V4_POSITION_MANAGER_CALL = 0x14; // COMMAND_PLACEHOLDER = 0x15 -> 0x20 // Command Types where 0x21<=value<=0x3f uint256 constant EXECUTE_SUB_PLAN = 0x21; // COMMAND_PLACEHOLDER for 0x22 to 0x3f } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; interface IUniversalRouter { /// @notice Thrown when a required command has failed error ExecutionFailed(uint256 commandIndex, bytes message); /// @notice Thrown when attempting to send ETH directly to the contract error ETHNotAccepted(); /// @notice Thrown when executing commands with an expired deadline error TransactionDeadlinePassed(); /// @notice Thrown when attempting to execute commands and an incorrect number of inputs are provided error LengthMismatch(); // @notice Thrown when an address that isn't WETH tries to send ETH to the router without calldata error InvalidEthSender(); /// @notice Executes encoded commands along with provided inputs. Reverts if deadline has expired. /// @param commands A set of concatenated commands, each 1 byte in length /// @param inputs An array of byte strings containing abi encoded inputs for each command /// @param deadline The deadline by which the transaction must be executed function execute(bytes calldata commands, bytes[] calldata inputs, uint256 deadline) external payable; } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import {INonfungiblePositionManager} from '@uniswap/v3-periphery/contracts/interfaces/INonfungiblePositionManager.sol'; import {IPositionManager} from '@uniswap/v4-periphery/src/interfaces/IPositionManager.sol'; import {IPoolManager} from '@uniswap/v4-core/src/interfaces/IPoolManager.sol'; struct MigratorParameters { address v3PositionManager; address v4PositionManager; } /// @title Migrator Immutables /// @notice Immutable state for liquidity-migration contracts contract MigratorImmutables { /// @notice v3 PositionManager address INonfungiblePositionManager public immutable V3_POSITION_MANAGER; /// @notice v4 PositionManager address IPositionManager public immutable V4_POSITION_MANAGER; constructor(MigratorParameters memory params) { V3_POSITION_MANAGER = INonfungiblePositionManager(params.v3PositionManager); V4_POSITION_MANAGER = IPositionManager(params.v4PositionManager); } } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import {IUniswapV2Pair} from '@uniswap/v2-core/contracts/interfaces/IUniswapV2Pair.sol'; import {UniswapV2Library} from './UniswapV2Library.sol'; import {UniswapImmutables} from '../UniswapImmutables.sol'; import {Permit2Payments} from '../../Permit2Payments.sol'; import {Constants} from '../../../libraries/Constants.sol'; import {ERC20} from 'solmate/src/tokens/ERC20.sol'; /// @title Router for Uniswap v2 Trades abstract contract V2SwapRouter is UniswapImmutables, Permit2Payments { error V2TooLittleReceived(); error V2TooMuchRequested(); error V2InvalidPath(); function _v2Swap(address[] calldata path, address recipient, address pair) private { unchecked { if (path.length < 2) revert V2InvalidPath(); // cached to save on duplicate operations (address token0,) = UniswapV2Library.sortTokens(path[0], path[1]); uint256 finalPairIndex = path.length - 1; uint256 penultimatePairIndex = finalPairIndex - 1; for (uint256 i; i < finalPairIndex; i++) { (address input, address output) = (path[i], path[i + 1]); (uint256 reserve0, uint256 reserve1,) = IUniswapV2Pair(pair).getReserves(); (uint256 reserveInput, uint256 reserveOutput) = input == token0 ? (reserve0, reserve1) : (reserve1, reserve0); uint256 amountInput = ERC20(input).balanceOf(pair) - reserveInput; uint256 amountOutput = UniswapV2Library.getAmountOut(amountInput, reserveInput, reserveOutput); (uint256 amount0Out, uint256 amount1Out) = input == token0 ? (uint256(0), amountOutput) : (amountOutput, uint256(0)); address nextPair; (nextPair, token0) = i < penultimatePairIndex ? UniswapV2Library.pairAndToken0For( UNISWAP_V2_FACTORY, UNISWAP_V2_PAIR_INIT_CODE_HASH, output, path[i + 2] ) : (recipient, address(0)); IUniswapV2Pair(pair).swap(amount0Out, amount1Out, nextPair, new bytes(0)); pair = nextPair; } } } /// @notice Performs a Uniswap v2 exact input swap /// @param recipient The recipient of the output tokens /// @param amountIn The amount of input tokens for the trade /// @param amountOutMinimum The minimum desired amount of output tokens /// @param path The path of the trade as an array of token addresses /// @param payer The address that will be paying the input function v2SwapExactInput( address recipient, uint256 amountIn, uint256 amountOutMinimum, address[] calldata path, address payer ) internal { address firstPair = UniswapV2Library.pairFor(UNISWAP_V2_FACTORY, UNISWAP_V2_PAIR_INIT_CODE_HASH, path[0], path[1]); if ( amountIn != Constants.ALREADY_PAID // amountIn of 0 to signal that the pair already has the tokens ) { payOrPermit2Transfer(path[0], payer, firstPair, amountIn); } ERC20 tokenOut = ERC20(path[path.length - 1]); uint256 balanceBefore = tokenOut.balanceOf(recipient); _v2Swap(path, recipient, firstPair); uint256 amountOut = tokenOut.balanceOf(recipient) - balanceBefore; if (amountOut < amountOutMinimum) revert V2TooLittleReceived(); } /// @notice Performs a Uniswap v2 exact output swap /// @param recipient The recipient of the output tokens /// @param amountOut The amount of output tokens to receive for the trade /// @param amountInMaximum The maximum desired amount of input tokens /// @param path The path of the trade as an array of token addresses /// @param payer The address that will be paying the input function v2SwapExactOutput( address recipient, uint256 amountOut, uint256 amountInMaximum, address[] calldata path, address payer ) internal { (uint256 amountIn, address firstPair) = UniswapV2Library.getAmountInMultihop(UNISWAP_V2_FACTORY, UNISWAP_V2_PAIR_INIT_CODE_HASH, amountOut, path); if (amountIn > amountInMaximum) revert V2TooMuchRequested(); payOrPermit2Transfer(path[0], payer, firstPair, amountIn); _v2Swap(path, recipient, firstPair); } } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import {V3Path} from './V3Path.sol'; import {BytesLib} from './BytesLib.sol'; import {SafeCast} from '@uniswap/v3-core/contracts/libraries/SafeCast.sol'; import {IUniswapV3Pool} from '@uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol'; import {IUniswapV3SwapCallback} from '@uniswap/v3-core/contracts/interfaces/callback/IUniswapV3SwapCallback.sol'; import {ActionConstants} from '@uniswap/v4-periphery/src/libraries/ActionConstants.sol'; import {CalldataDecoder} from '@uniswap/v4-periphery/src/libraries/CalldataDecoder.sol'; import {Permit2Payments} from '../../Permit2Payments.sol'; import {UniswapImmutables} from '../UniswapImmutables.sol'; import {MaxInputAmount} from '../../../libraries/MaxInputAmount.sol'; import {ERC20} from 'solmate/src/tokens/ERC20.sol'; /// @title Router for Uniswap v3 Trades abstract contract V3SwapRouter is UniswapImmutables, Permit2Payments, IUniswapV3SwapCallback { using V3Path for bytes; using BytesLib for bytes; using CalldataDecoder for bytes; using SafeCast for uint256; error V3InvalidSwap(); error V3TooLittleReceived(); error V3TooMuchRequested(); error V3InvalidAmountOut(); error V3InvalidCaller(); /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK) uint160 internal constant MIN_SQRT_RATIO = 4295128739; /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK) uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342; function uniswapV3SwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external { if (amount0Delta <= 0 && amount1Delta <= 0) revert V3InvalidSwap(); // swaps entirely within 0-liquidity regions are not supported (, address payer) = abi.decode(data, (bytes, address)); bytes calldata path = data.toBytes(0); // because exact output swaps are executed in reverse order, in this case tokenOut is actually tokenIn (address tokenIn, uint24 fee, address tokenOut) = path.decodeFirstPool(); if (computePoolAddress(tokenIn, tokenOut, fee) != msg.sender) revert V3InvalidCaller(); (bool isExactInput, uint256 amountToPay) = amount0Delta > 0 ? (tokenIn < tokenOut, uint256(amount0Delta)) : (tokenOut < tokenIn, uint256(amount1Delta)); if (isExactInput) { // Pay the pool (msg.sender) payOrPermit2Transfer(tokenIn, payer, msg.sender, amountToPay); } else { // either initiate the next swap or pay if (path.hasMultiplePools()) { // this is an intermediate step so the payer is actually this contract path = path.skipToken(); _swap(-amountToPay.toInt256(), msg.sender, path, payer, false); } else { if (amountToPay > MaxInputAmount.get()) revert V3TooMuchRequested(); // note that because exact output swaps are executed in reverse order, tokenOut is actually tokenIn payOrPermit2Transfer(tokenOut, payer, msg.sender, amountToPay); } } } /// @notice Performs a Uniswap v3 exact input swap /// @param recipient The recipient of the output tokens /// @param amountIn The amount of input tokens for the trade /// @param amountOutMinimum The minimum desired amount of output tokens /// @param path The path of the trade as a bytes string /// @param payer The address that will be paying the input function v3SwapExactInput( address recipient, uint256 amountIn, uint256 amountOutMinimum, bytes calldata path, address payer ) internal { // use amountIn == ActionConstants.CONTRACT_BALANCE as a flag to swap the entire balance of the contract if (amountIn == ActionConstants.CONTRACT_BALANCE) { address tokenIn = path.decodeFirstToken(); amountIn = ERC20(tokenIn).balanceOf(address(this)); } uint256 amountOut; while (true) { bool hasMultiplePools = path.hasMultiplePools(); // the outputs of prior swaps become the inputs to subsequent ones (int256 amount0Delta, int256 amount1Delta, bool zeroForOne) = _swap( amountIn.toInt256(), hasMultiplePools ? address(this) : recipient, // for intermediate swaps, this contract custodies path.getFirstPool(), // only the first pool is needed payer, // for intermediate swaps, this contract custodies true ); amountIn = uint256(-(zeroForOne ? amount1Delta : amount0Delta)); // decide whether to continue or terminate if (hasMultiplePools) { payer = address(this); path = path.skipToken(); } else { amountOut = amountIn; break; } } if (amountOut < amountOutMinimum) revert V3TooLittleReceived(); } /// @notice Performs a Uniswap v3 exact output swap /// @param recipient The recipient of the output tokens /// @param amountOut The amount of output tokens to receive for the trade /// @param amountInMaximum The maximum desired amount of input tokens /// @param path The path of the trade as a bytes string /// @param payer The address that will be paying the input function v3SwapExactOutput( address recipient, uint256 amountOut, uint256 amountInMaximum, bytes calldata path, address payer ) internal { MaxInputAmount.set(amountInMaximum); (int256 amount0Delta, int256 amount1Delta, bool zeroForOne) = _swap(-amountOut.toInt256(), recipient, path, payer, false); uint256 amountOutReceived = zeroForOne ? uint256(-amount1Delta) : uint256(-amount0Delta); if (amountOutReceived != amountOut) revert V3InvalidAmountOut(); MaxInputAmount.set(0); } /// @dev Performs a single swap for both exactIn and exactOut /// For exactIn, `amount` is `amountIn`. For exactOut, `amount` is `-amountOut` function _swap(int256 amount, address recipient, bytes calldata path, address payer, bool isExactIn) private returns (int256 amount0Delta, int256 amount1Delta, bool zeroForOne) { (address tokenIn, uint24 fee, address tokenOut) = path.decodeFirstPool(); zeroForOne = isExactIn ? tokenIn < tokenOut : tokenOut < tokenIn; (amount0Delta, amount1Delta) = IUniswapV3Pool(computePoolAddress(tokenIn, tokenOut, fee)).swap( recipient, zeroForOne, amount, (zeroForOne ? MIN_SQRT_RATIO + 1 : MAX_SQRT_RATIO - 1), abi.encode(path, payer) ); } function computePoolAddress(address tokenA, address tokenB, uint24 fee) private view returns (address pool) { if (tokenA > tokenB) (tokenA, tokenB) = (tokenB, tokenA); pool = address( uint160( uint256( keccak256( abi.encodePacked( hex'ff', UNISWAP_V3_FACTORY, keccak256(abi.encode(tokenA, tokenB, fee)), UNISWAP_V3_POOL_INIT_CODE_HASH ) ) ) ) ); } } // SPDX-License-Identifier: GPL-3.0-or-later /// @title Library for Bytes Manipulation pragma solidity ^0.8.0; import {Constants} from '../../../libraries/Constants.sol'; import {CalldataDecoder} from '@uniswap/v4-periphery/src/libraries/CalldataDecoder.sol'; library BytesLib { using CalldataDecoder for bytes; error SliceOutOfBounds(); /// @notice Returns the address starting at byte 0 /// @dev length and overflow checks must be carried out before calling /// @param _bytes The input bytes string to slice /// @return _address The address starting at byte 0 function toAddress(bytes calldata _bytes) internal pure returns (address _address) { if (_bytes.length < Constants.ADDR_SIZE) revert SliceOutOfBounds(); assembly { _address := shr(96, calldataload(_bytes.offset)) } } /// @notice Returns the pool details starting at byte 0 /// @dev length and overflow checks must be carried out before calling /// @param _bytes The input bytes string to slice /// @return token0 The address at byte 0 /// @return fee The uint24 starting at byte 20 /// @return token1 The address at byte 23 function toPool(bytes calldata _bytes) internal pure returns (address token0, uint24 fee, address token1) { if (_bytes.length < Constants.V3_POP_OFFSET) revert SliceOutOfBounds(); assembly { let firstWord := calldataload(_bytes.offset) token0 := shr(96, firstWord) fee := and(shr(72, firstWord), 0xffffff) token1 := shr(96, calldataload(add(_bytes.offset, 23))) } } /// @notice Decode the `_arg`-th element in `_bytes` as a dynamic array /// @dev The decoding of `length` and `offset` is universal, /// whereas the type declaration of `res` instructs the compiler how to read it. /// @param _bytes The input bytes string to slice /// @param _arg The index of the argument to extract /// @return length Length of the array /// @return offset Pointer to the data part of the array function toLengthOffset(bytes calldata _bytes, uint256 _arg) internal pure returns (uint256 length, uint256 offset) { uint256 relativeOffset; assembly { // The offset of the `_arg`-th element is `32 * arg`, which stores the offset of the length pointer. // shl(5, x) is equivalent to mul(32, x) let lengthPtr := add(_bytes.offset, calldataload(add(_bytes.offset, shl(5, _arg)))) length := calldataload(lengthPtr) offset := add(lengthPtr, 0x20) relativeOffset := sub(offset, _bytes.offset) } if (_bytes.length < length + relativeOffset) revert SliceOutOfBounds(); } /// @notice Decode the `_arg`-th element in `_bytes` as `address[]` /// @param _bytes The input bytes string to extract an address array from /// @param _arg The index of the argument to extract function toAddressArray(bytes calldata _bytes, uint256 _arg) internal pure returns (address[] calldata res) { (uint256 length, uint256 offset) = toLengthOffset(_bytes, _arg); assembly { res.length := length res.offset := offset } } /// @notice Equivalent to abi.decode(bytes, bytes[]) /// @param _bytes The input bytes string to extract an parameters from function decodeCommandsAndInputs(bytes calldata _bytes) internal pure returns (bytes calldata, bytes[] calldata) { return _bytes.decodeActionsRouterParams(); } } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import {Constants} from '../libraries/Constants.sol'; import {ActionConstants} from '@uniswap/v4-periphery/src/libraries/ActionConstants.sol'; import {BipsLibrary} from '@uniswap/v4-periphery/src/libraries/BipsLibrary.sol'; import {PaymentsImmutables} from '../modules/PaymentsImmutables.sol'; import {SafeTransferLib} from 'solmate/src/utils/SafeTransferLib.sol'; import {ERC20} from 'solmate/src/tokens/ERC20.sol'; /// @title Payments contract /// @notice Performs various operations around the payment of ETH and tokens abstract contract Payments is PaymentsImmutables { using SafeTransferLib for ERC20; using SafeTransferLib for address; using BipsLibrary for uint256; error InsufficientToken(); error InsufficientETH(); /// @notice Pays an amount of ETH or ERC20 to a recipient /// @param token The token to pay (can be ETH using Constants.ETH) /// @param recipient The address that will receive the payment /// @param value The amount to pay function pay(address token, address recipient, uint256 value) internal { if (token == Constants.ETH) { recipient.safeTransferETH(value); } else { if (value == ActionConstants.CONTRACT_BALANCE) { value = ERC20(token).balanceOf(address(this)); } ERC20(token).safeTransfer(recipient, value); } } /// @notice Pays a proportion of the contract's ETH or ERC20 to a recipient /// @param token The token to pay (can be ETH using Constants.ETH) /// @param recipient The address that will receive payment /// @param bips Portion in bips of whole balance of the contract function payPortion(address token, address recipient, uint256 bips) internal { if (token == Constants.ETH) { uint256 balance = address(this).balance; uint256 amount = balance.calculatePortion(bips); recipient.safeTransferETH(amount); } else { uint256 balance = ERC20(token).balanceOf(address(this)); uint256 amount = balance.calculatePortion(bips); ERC20(token).safeTransfer(recipient, amount); } } /// @notice Sweeps all of the contract's ERC20 or ETH to an address /// @param token The token to sweep (can be ETH using Constants.ETH) /// @param recipient The address that will receive payment /// @param amountMinimum The minimum desired amount function sweep(address token, address recipient, uint256 amountMinimum) internal { uint256 balance; if (token == Constants.ETH) { balance = address(this).balance; if (balance < amountMinimum) revert InsufficientETH(); if (balance > 0) recipient.safeTransferETH(balance); } else { balance = ERC20(token).balanceOf(address(this)); if (balance < amountMinimum) revert InsufficientToken(); if (balance > 0) ERC20(token).safeTransfer(recipient, balance); } } /// @notice Wraps an amount of ETH into WETH /// @param recipient The recipient of the WETH /// @param amount The amount to wrap (can be CONTRACT_BALANCE) function wrapETH(address recipient, uint256 amount) internal { if (amount == ActionConstants.CONTRACT_BALANCE) { amount = address(this).balance; } else if (amount > address(this).balance) { revert InsufficientETH(); } if (amount > 0) { WETH9.deposit{value: amount}(); if (recipient != address(this)) { WETH9.transfer(recipient, amount); } } } /// @notice Unwraps all of the contract's WETH into ETH /// @param recipient The recipient of the ETH /// @param amountMinimum The minimum amount of ETH desired function unwrapWETH9(address recipient, uint256 amountMinimum) internal { uint256 value = WETH9.balanceOf(address(this)); if (value < amountMinimum) { revert InsufficientETH(); } if (value > 0) { WETH9.withdraw(value); if (recipient != address(this)) { recipient.safeTransferETH(value); } } } } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import {MigratorImmutables} from '../modules/MigratorImmutables.sol'; import {INonfungiblePositionManager} from '@uniswap/v3-periphery/contracts/interfaces/INonfungiblePositionManager.sol'; import {Actions} from '@uniswap/v4-periphery/src/libraries/Actions.sol'; import {IERC721Permit} from '@uniswap/v3-periphery/contracts/interfaces/IERC721Permit.sol'; import {CalldataDecoder} from '@uniswap/v4-periphery/src/libraries/CalldataDecoder.sol'; /// @title V3 to V4 Migrator /// @notice A contract that migrates liquidity from Uniswap V3 to V4 abstract contract V3ToV4Migrator is MigratorImmutables { using CalldataDecoder for bytes; error InvalidAction(bytes4 action); error OnlyMintAllowed(); error NotAuthorizedForToken(uint256 tokenId); /// @dev validate if an action is decreaseLiquidity, collect, or burn function _isValidAction(bytes4 selector) private pure returns (bool) { return selector == INonfungiblePositionManager.decreaseLiquidity.selector || selector == INonfungiblePositionManager.collect.selector || selector == INonfungiblePositionManager.burn.selector; } /// @dev the caller is authorized for the token if its the owner, spender, or operator function _isAuthorizedForToken(address caller, uint256 tokenId) private view returns (bool) { address owner = V3_POSITION_MANAGER.ownerOf(tokenId); return caller == owner || V3_POSITION_MANAGER.getApproved(tokenId) == caller || V3_POSITION_MANAGER.isApprovedForAll(owner, caller); } /// @dev check that a call is to the ERC721 permit function function _checkV3PermitCall(bytes calldata inputs) internal pure { bytes4 selector; assembly { selector := calldataload(inputs.offset) } if (selector != IERC721Permit.permit.selector) { revert InvalidAction(selector); } } /// @dev check that the v3 position manager call is a safe call function _checkV3PositionManagerCall(bytes calldata inputs, address caller) internal view { bytes4 selector; assembly { selector := calldataload(inputs.offset) } if (!_isValidAction(selector)) { revert InvalidAction(selector); } uint256 tokenId; assembly { // tokenId is always the first parameter in the valid actions tokenId := calldataload(add(inputs.offset, 0x04)) } // If any other address that is not the owner wants to call this function, it also needs to be approved (in addition to this contract) // This can be done in 2 ways: // 1. This contract is permitted for the specific token and the caller is approved for ALL of the owner's tokens // 2. This contract is permitted for ALL of the owner's tokens and the caller is permitted for the specific token if (!_isAuthorizedForToken(caller, tokenId)) { revert NotAuthorizedForToken(tokenId); } } /// @dev check that the v4 position manager call is a safe call /// of the position-altering Actions, we only allow Actions.MINT /// this is because, if a user could be tricked into approving the UniversalRouter for /// their position, an attacker could take their fees, or drain their entire position function _checkV4PositionManagerCall(bytes calldata inputs) internal view { bytes4 selector; assembly { selector := calldataload(inputs.offset) } if (selector != V4_POSITION_MANAGER.modifyLiquidities.selector) { revert InvalidAction(selector); } // slice is `abi.encode(bytes unlockData, uint256 deadline)` bytes calldata slice = inputs[4:]; // the first bytes(0) extracts the unlockData parameter from modifyLiquidities // unlockData = `abi.encode(bytes actions, bytes[] params)` // the second bytes(0) extracts the actions parameter from unlockData bytes calldata actions = slice.toBytes(0).toBytes(0); uint256 numActions = actions.length; for (uint256 actionIndex = 0; actionIndex < numActions; actionIndex++) { uint256 action = uint8(actions[actionIndex]); if ( action == Actions.INCREASE_LIQUIDITY || action == Actions.DECREASE_LIQUIDITY || action == Actions.BURN_POSITION ) { revert OnlyMintAllowed(); } } } } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import {Locker} from '../libraries/Locker.sol'; /// @title Lock /// @notice A contract that provides a reentrancy lock for external calls contract Lock { /// @notice Thrown when attempting to reenter a locked function from an external caller error ContractLocked(); /// @notice Modifier enforcing a reentrancy lock that allows self-reentrancy /// @dev If the contract is not locked, use msg.sender as the locker modifier isNotLocked() { // Apply a reentrancy lock for all external callers if (msg.sender != address(this)) { if (Locker.isLocked()) revert ContractLocked(); Locker.set(msg.sender); _; Locker.set(address(0)); } else { // The contract is allowed to reenter itself, so the lock is not checked _; } } /// @notice return the current locker of the contract function _getLocker() internal view returns (address) { return Locker.get(); } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol) /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol) /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it. abstract contract ERC20 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); /*////////////////////////////////////////////////////////////// METADATA STORAGE //////////////////////////////////////////////////////////////*/ string public name; string public symbol; uint8 public immutable decimals; /*////////////////////////////////////////////////////////////// ERC20 STORAGE //////////////////////////////////////////////////////////////*/ uint256 public totalSupply; mapping(address => uint256) public balanceOf; mapping(address => mapping(address => uint256)) public allowance; /*////////////////////////////////////////////////////////////// EIP-2612 STORAGE //////////////////////////////////////////////////////////////*/ uint256 internal immutable INITIAL_CHAIN_ID; bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR; mapping(address => uint256) public nonces; /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor( string memory _name, string memory _symbol, uint8 _decimals ) { name = _name; symbol = _symbol; decimals = _decimals; INITIAL_CHAIN_ID = block.chainid; INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator(); } /*////////////////////////////////////////////////////////////// ERC20 LOGIC //////////////////////////////////////////////////////////////*/ function approve(address spender, uint256 amount) public virtual returns (bool) { allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } function transfer(address to, uint256 amount) public virtual returns (bool) { balanceOf[msg.sender] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(msg.sender, to, amount); return true; } function transferFrom( address from, address to, uint256 amount ) public virtual returns (bool) { uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals. if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount; balanceOf[from] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(from, to, amount); return true; } /*////////////////////////////////////////////////////////////// EIP-2612 LOGIC //////////////////////////////////////////////////////////////*/ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED"); // Unchecked because the only math done is incrementing // the owner's nonce which cannot realistically overflow. unchecked { address recoveredAddress = ecrecover( keccak256( abi.encodePacked( "\\x19\\x01", DOMAIN_SEPARATOR(), keccak256( abi.encode( keccak256( "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)" ), owner, spender, value, nonces[owner]++, deadline ) ) ) ), v, r, s ); require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER"); allowance[recoveredAddress][spender] = value; } emit Approval(owner, spender, value); } function DOMAIN_SEPARATOR() public view virtual returns (bytes32) { return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator(); } function computeDomainSeparator() internal view virtual returns (bytes32) { return keccak256( abi.encode( keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"), keccak256(bytes(name)), keccak256("1"), block.chainid, address(this) ) ); } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint(address to, uint256 amount) internal virtual { totalSupply += amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(address(0), to, amount); } function _burn(address from, uint256 amount) internal virtual { balanceOf[from] -= amount; // Cannot underflow because a user's balance // will never be larger than the total supply. unchecked { totalSupply -= amount; } emit Transfer(from, address(0), amount); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {IEIP712} from "./IEIP712.sol"; /// @title AllowanceTransfer /// @notice Handles ERC20 token permissions through signature based allowance setting and ERC20 token transfers by checking allowed amounts /// @dev Requires user's token approval on the Permit2 contract interface IAllowanceTransfer is IEIP712 { /// @notice Thrown when an allowance on a token has expired. /// @param deadline The timestamp at which the allowed amount is no longer valid error AllowanceExpired(uint256 deadline); /// @notice Thrown when an allowance on a token has been depleted. /// @param amount The maximum amount allowed error InsufficientAllowance(uint256 amount); /// @notice Thrown when too many nonces are invalidated. error ExcessiveInvalidation(); /// @notice Emits an event when the owner successfully invalidates an ordered nonce. event NonceInvalidation( address indexed owner, address indexed token, address indexed spender, uint48 newNonce, uint48 oldNonce ); /// @notice Emits an event when the owner successfully sets permissions on a token for the spender. event Approval( address indexed owner, address indexed token, address indexed spender, uint160 amount, uint48 expiration ); /// @notice Emits an event when the owner successfully sets permissions using a permit signature on a token for the spender. event Permit( address indexed owner, address indexed token, address indexed spender, uint160 amount, uint48 expiration, uint48 nonce ); /// @notice Emits an event when the owner sets the allowance back to 0 with the lockdown function. event Lockdown(address indexed owner, address token, address spender); /// @notice The permit data for a token struct PermitDetails { // ERC20 token address address token; // the maximum amount allowed to spend uint160 amount; // timestamp at which a spender's token allowances become invalid uint48 expiration; // an incrementing value indexed per owner,token,and spender for each signature uint48 nonce; } /// @notice The permit message signed for a single token allowance struct PermitSingle { // the permit data for a single token alownce PermitDetails details; // address permissioned on the allowed tokens address spender; // deadline on the permit signature uint256 sigDeadline; } /// @notice The permit message signed for multiple token allowances struct PermitBatch { // the permit data for multiple token allowances PermitDetails[] details; // address permissioned on the allowed tokens address spender; // deadline on the permit signature uint256 sigDeadline; } /// @notice The saved permissions /// @dev This info is saved per owner, per token, per spender and all signed over in the permit message /// @dev Setting amount to type(uint160).max sets an unlimited approval struct PackedAllowance { // amount allowed uint160 amount; // permission expiry uint48 expiration; // an incrementing value indexed per owner,token,and spender for each signature uint48 nonce; } /// @notice A token spender pair. struct TokenSpenderPair { // the token the spender is approved address token; // the spender address address spender; } /// @notice Details for a token transfer. struct AllowanceTransferDetails { // the owner of the token address from; // the recipient of the token address to; // the amount of the token uint160 amount; // the token to be transferred address token; } /// @notice A mapping from owner address to token address to spender address to PackedAllowance struct, which contains details and conditions of the approval. /// @notice The mapping is indexed in the above order see: allowance[ownerAddress][tokenAddress][spenderAddress] /// @dev The packed slot holds the allowed amount, expiration at which the allowed amount is no longer valid, and current nonce thats updated on any signature based approvals. function allowance(address user, address token, address spender) external view returns (uint160 amount, uint48 expiration, uint48 nonce); /// @notice Approves the spender to use up to amount of the specified token up until the expiration /// @param token The token to approve /// @param spender The spender address to approve /// @param amount The approved amount of the token /// @param expiration The timestamp at which the approval is no longer valid /// @dev The packed allowance also holds a nonce, which will stay unchanged in approve /// @dev Setting amount to type(uint160).max sets an unlimited approval function approve(address token, address spender, uint160 amount, uint48 expiration) external; /// @notice Permit a spender to a given amount of the owners token via the owner's EIP-712 signature /// @dev May fail if the owner's nonce was invalidated in-flight by invalidateNonce /// @param owner The owner of the tokens being approved /// @param permitSingle Data signed over by the owner specifying the terms of approval /// @param signature The owner's signature over the permit data function permit(address owner, PermitSingle memory permitSingle, bytes calldata signature) external; /// @notice Permit a spender to the signed amounts of the owners tokens via the owner's EIP-712 signature /// @dev May fail if the owner's nonce was invalidated in-flight by invalidateNonce /// @param owner The owner of the tokens being approved /// @param permitBatch Data signed over by the owner specifying the terms of approval /// @param signature The owner's signature over the permit data function permit(address owner, PermitBatch memory permitBatch, bytes calldata signature) external; /// @notice Transfer approved tokens from one address to another /// @param from The address to transfer from /// @param to The address of the recipient /// @param amount The amount of the token to transfer /// @param token The token address to transfer /// @dev Requires the from address to have approved at least the desired amount /// of tokens to msg.sender. function transferFrom(address from, address to, uint160 amount, address token) external; /// @notice Transfer approved tokens in a batch /// @param transferDetails Array of owners, recipients, amounts, and tokens for the transfers /// @dev Requires the from addresses to have approved at least the desired amount /// of tokens to msg.sender. function transferFrom(AllowanceTransferDetails[] calldata transferDetails) external; /// @notice Enables performing a "lockdown" of the sender's Permit2 identity /// by batch revoking approvals /// @param approvals Array of approvals to revoke. function lockdown(TokenSpenderPair[] calldata approvals) external; /// @notice Invalidate nonces for a given (token, spender) pair /// @param token The token to invalidate nonces for /// @param spender The spender to invalidate nonces for /// @param newNonce The new nonce to set. Invalidates all nonces less than it. /// @dev Can't invalidate more than 2**16 nonces per transaction. function invalidateNonces(address token, address spender, uint48 newNonce) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title Action Constants /// @notice Common constants used in actions /// @dev Constants are gas efficient alternatives to their literal values library ActionConstants { /// @notice used to signal that an action should use the input value of the open delta on the pool manager /// or of the balance that the contract holds uint128 internal constant OPEN_DELTA = 0; /// @notice used to signal that an action should use the contract's entire balance of a currency /// This value is equivalent to 1<<255, i.e. a singular 1 in the most significant bit. uint256 internal constant CONTRACT_BALANCE = 0x8000000000000000000000000000000000000000000000000000000000000000; /// @notice used to signal that the recipient of an action should be the msgSender address internal constant MSG_SENDER = address(1); /// @notice used to signal that the recipient of an action should be the address(this) address internal constant ADDRESS_THIS = address(2); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {Currency} from "@uniswap/v4-core/src/types/Currency.sol"; import {IV4Router} from "../interfaces/IV4Router.sol"; import {PoolKey} from "@uniswap/v4-core/src/types/PoolKey.sol"; /// @title Library for abi decoding in calldata library CalldataDecoder { using CalldataDecoder for bytes; error SliceOutOfBounds(); /// @notice mask used for offsets and lengths to ensure no overflow /// @dev no sane abi encoding will pass in an offset or length greater than type(uint32).max /// (note that this does deviate from standard solidity behavior and offsets/lengths will /// be interpreted as mod type(uint32).max which will only impact malicious/buggy callers) uint256 constant OFFSET_OR_LENGTH_MASK = 0xffffffff; uint256 constant OFFSET_OR_LENGTH_MASK_AND_WORD_ALIGN = 0xffffffe0; /// @notice equivalent to SliceOutOfBounds.selector, stored in least-significant bits uint256 constant SLICE_ERROR_SELECTOR = 0x3b99b53d; /// @dev equivalent to: abi.decode(params, (bytes, bytes[])) in calldata (requires strict abi encoding) function decodeActionsRouterParams(bytes calldata _bytes) internal pure returns (bytes calldata actions, bytes[] calldata params) { assembly ("memory-safe") { // Strict encoding requires that the data begin with: // 0x00: 0x40 (offset to `actions.length`) // 0x20: 0x60 + actions.length (offset to `params.length`) // 0x40: `actions.length` // 0x60: beginning of actions // Verify actions offset matches strict encoding let invalidData := xor(calldataload(_bytes.offset), 0x40) actions.offset := add(_bytes.offset, 0x60) actions.length := and(calldataload(add(_bytes.offset, 0x40)), OFFSET_OR_LENGTH_MASK) // Round actions length up to be word-aligned, and add 0x60 (for the first 3 words of encoding) let paramsLengthOffset := add(and(add(actions.length, 0x1f), OFFSET_OR_LENGTH_MASK_AND_WORD_ALIGN), 0x60) // Verify params offset matches strict encoding invalidData := or(invalidData, xor(calldataload(add(_bytes.offset, 0x20)), paramsLengthOffset)) let paramsLengthPointer := add(_bytes.offset, paramsLengthOffset) params.length := and(calldataload(paramsLengthPointer), OFFSET_OR_LENGTH_MASK) params.offset := add(paramsLengthPointer, 0x20) // Expected offset for `params[0]` is params.length * 32 // As the first `params.length` slots are pointers to each of the array element lengths let tailOffset := shl(5, params.length) let expectedOffset := tailOffset for { let offset := 0 } lt(offset, tailOffset) { offset := add(offset, 32) } { let itemLengthOffset := calldataload(add(params.offset, offset)) // Verify that the offset matches the expected offset from strict encoding invalidData := or(invalidData, xor(itemLengthOffset, expectedOffset)) let itemLengthPointer := add(params.offset, itemLengthOffset) let length := add(and(add(calldataload(itemLengthPointer), 0x1f), OFFSET_OR_LENGTH_MASK_AND_WORD_ALIGN), 0x20) expectedOffset := add(expectedOffset, length) } // if the data encoding was invalid, or the provided bytes string isnt as long as the encoding says, revert if or(invalidData, lt(add(_bytes.length, _bytes.offset), add(params.offset, expectedOffset))) { mstore(0, SLICE_ERROR_SELECTOR) revert(0x1c, 4) } } } /// @dev equivalent to: abi.decode(params, (uint256, uint256, uint128, uint128, bytes)) in calldata function decodeModifyLiquidityParams(bytes calldata params) internal pure returns (uint256 tokenId, uint256 liquidity, uint128 amount0, uint128 amount1, bytes calldata hookData) { // no length check performed, as there is a length check in `toBytes` assembly ("memory-safe") { tokenId := calldataload(params.offset) liquidity := calldataload(add(params.offset, 0x20)) amount0 := calldataload(add(params.offset, 0x40)) amount1 := calldataload(add(params.offset, 0x60)) } hookData = params.toBytes(4); } /// @dev equivalent to: abi.decode(params, (uint256, uint128, uint128, bytes)) in calldata function decodeIncreaseLiquidityFromDeltasParams(bytes calldata params) internal pure returns (uint256 tokenId, uint128 amount0Max, uint128 amount1Max, bytes calldata hookData) { // no length check performed, as there is a length check in `toBytes` assembly ("memory-safe") { tokenId := calldataload(params.offset) amount0Max := calldataload(add(params.offset, 0x20)) amount1Max := calldataload(add(params.offset, 0x40)) } hookData = params.toBytes(3); } /// @dev equivalent to: abi.decode(params, (PoolKey, int24, int24, uint256, uint128, uint128, address, bytes)) in calldata function decodeMintParams(bytes calldata params) internal pure returns ( PoolKey calldata poolKey, int24 tickLower, int24 tickUpper, uint256 liquidity, uint128 amount0Max, uint128 amount1Max, address owner, bytes calldata hookData ) { // no length check performed, as there is a length check in `toBytes` assembly ("memory-safe") { poolKey := params.offset tickLower := calldataload(add(params.offset, 0xa0)) tickUpper := calldataload(add(params.offset, 0xc0)) liquidity := calldataload(add(params.offset, 0xe0)) amount0Max := calldataload(add(params.offset, 0x100)) amount1Max := calldataload(add(params.offset, 0x120)) owner := calldataload(add(params.offset, 0x140)) } hookData = params.toBytes(11); } /// @dev equivalent to: abi.decode(params, (PoolKey, int24, int24, uint128, uint128, address, bytes)) in calldata function decodeMintFromDeltasParams(bytes calldata params) internal pure returns ( PoolKey calldata poolKey, int24 tickLower, int24 tickUpper, uint128 amount0Max, uint128 amount1Max, address owner, bytes calldata hookData ) { // no length check performed, as there is a length check in `toBytes` assembly ("memory-safe") { poolKey := params.offset tickLower := calldataload(add(params.offset, 0xa0)) tickUpper := calldataload(add(params.offset, 0xc0)) amount0Max := calldataload(add(params.offset, 0xe0)) amount1Max := calldataload(add(params.offset, 0x100)) owner := calldataload(add(params.offset, 0x120)) } hookData = params.toBytes(10); } /// @dev equivalent to: abi.decode(params, (uint256, uint128, uint128, bytes)) in calldata function decodeBurnParams(bytes calldata params) internal pure returns (uint256 tokenId, uint128 amount0Min, uint128 amount1Min, bytes calldata hookData) { // no length check performed, as there is a length check in `toBytes` assembly ("memory-safe") { tokenId := calldataload(params.offset) amount0Min := calldataload(add(params.offset, 0x20)) amount1Min := calldataload(add(params.offset, 0x40)) } hookData = params.toBytes(3); } /// @dev equivalent to: abi.decode(params, (IV4Router.ExactInputParams)) function decodeSwapExactInParams(bytes calldata params) internal pure returns (IV4Router.ExactInputParams calldata swapParams) { // ExactInputParams is a variable length struct so we just have to look up its location assembly ("memory-safe") { // only safety checks for the minimum length, where path is empty // 0xa0 = 5 * 0x20 -> 3 elements, path offset, and path length 0 if lt(params.length, 0xa0) { mstore(0, SLICE_ERROR_SELECTOR) revert(0x1c, 4) } swapParams := add(params.offset, calldataload(params.offset)) } } /// @dev equivalent to: abi.decode(params, (IV4Router.ExactInputSingleParams)) function decodeSwapExactInSingleParams(bytes calldata params) internal pure returns (IV4Router.ExactInputSingleParams calldata swapParams) { // ExactInputSingleParams is a variable length struct so we just have to look up its location assembly ("memory-safe") { // only safety checks for the minimum length, where hookData is empty // 0x140 = 10 * 0x20 -> 8 elements, bytes offset, and bytes length 0 if lt(params.length, 0x140) { mstore(0, SLICE_ERROR_SELECTOR) revert(0x1c, 4) } swapParams := add(params.offset, calldataload(params.offset)) } } /// @dev equivalent to: abi.decode(params, (IV4Router.ExactOutputParams)) function decodeSwapExactOutParams(bytes calldata params) internal pure returns (IV4Router.ExactOutputParams calldata swapParams) { // ExactOutputParams is a variable length struct so we just have to look up its location assembly ("memory-safe") { // only safety checks for the minimum length, where path is empty // 0xa0 = 5 * 0x20 -> 3 elements, path offset, and path length 0 if lt(params.length, 0xa0) { mstore(0, SLICE_ERROR_SELECTOR) revert(0x1c, 4) } swapParams := add(params.offset, calldataload(params.offset)) } } /// @dev equivalent to: abi.decode(params, (IV4Router.ExactOutputSingleParams)) function decodeSwapExactOutSingleParams(bytes calldata params) internal pure returns (IV4Router.ExactOutputSingleParams calldata swapParams) { // ExactOutputSingleParams is a variable length struct so we just have to look up its location assembly ("memory-safe") { // only safety checks for the minimum length, where hookData is empty // 0x140 = 10 * 0x20 -> 8 elements, bytes offset, and bytes length 0 if lt(params.length, 0x140) { mstore(0, SLICE_ERROR_SELECTOR) revert(0x1c, 4) } swapParams := add(params.offset, calldataload(params.offset)) } } /// @dev equivalent to: abi.decode(params, (Currency)) in calldata function decodeCurrency(bytes calldata params) internal pure returns (Currency currency) { assembly ("memory-safe") { if lt(params.length, 0x20) { mstore(0, SLICE_ERROR_SELECTOR) revert(0x1c, 4) } currency := calldataload(params.offset) } } /// @dev equivalent to: abi.decode(params, (Currency, Currency)) in calldata function decodeCurrencyPair(bytes calldata params) internal pure returns (Currency currency0, Currency currency1) { assembly ("memory-safe") { if lt(params.length, 0x40) { mstore(0, SLICE_ERROR_SELECTOR) revert(0x1c, 4) } currency0 := calldataload(params.offset) currency1 := calldataload(add(params.offset, 0x20)) } } /// @dev equivalent to: abi.decode(params, (Currency, Currency, address)) in calldata function decodeCurrencyPairAndAddress(bytes calldata params) internal pure returns (Currency currency0, Currency currency1, address _address) { assembly ("memory-safe") { if lt(params.length, 0x60) { mstore(0, SLICE_ERROR_SELECTOR) revert(0x1c, 4) } currency0 := calldataload(params.offset) currency1 := calldataload(add(params.offset, 0x20)) _address := calldataload(add(params.offset, 0x40)) } } /// @dev equivalent to: abi.decode(params, (Currency, address)) in calldata function decodeCurrencyAndAddress(bytes calldata params) internal pure returns (Currency currency, address _address) { assembly ("memory-safe") { if lt(params.length, 0x40) { mstore(0, SLICE_ERROR_SELECTOR) revert(0x1c, 4) } currency := calldataload(params.offset) _address := calldataload(add(params.offset, 0x20)) } } /// @dev equivalent to: abi.decode(params, (Currency, address, uint256)) in calldata function decodeCurrencyAddressAndUint256(bytes calldata params) internal pure returns (Currency currency, address _address, uint256 amount) { assembly ("memory-safe") { if lt(params.length, 0x60) { mstore(0, SLICE_ERROR_SELECTOR) revert(0x1c, 4) } currency := calldataload(params.offset) _address := calldataload(add(params.offset, 0x20)) amount := calldataload(add(params.offset, 0x40)) } } /// @dev equivalent to: abi.decode(params, (Currency, uint256)) in calldata function decodeCurrencyAndUint256(bytes calldata params) internal pure returns (Currency currency, uint256 amount) { assembly ("memory-safe") { if lt(params.length, 0x40) { mstore(0, SLICE_ERROR_SELECTOR) revert(0x1c, 4) } currency := calldataload(params.offset) amount := calldataload(add(params.offset, 0x20)) } } /// @dev equivalent to: abi.decode(params, (uint256)) in calldata function decodeUint256(bytes calldata params) internal pure returns (uint256 amount) { assembly ("memory-safe") { if lt(params.length, 0x20) { mstore(0, SLICE_ERROR_SELECTOR) revert(0x1c, 4) } amount := calldataload(params.offset) } } /// @dev equivalent to: abi.decode(params, (Currency, uint256, bool)) in calldata function decodeCurrencyUint256AndBool(bytes calldata params) internal pure returns (Currency currency, uint256 amount, bool boolean) { assembly ("memory-safe") { if lt(params.length, 0x60) { mstore(0, SLICE_ERROR_SELECTOR) revert(0x1c, 4) } currency := calldataload(params.offset) amount := calldataload(add(params.offset, 0x20)) boolean := calldataload(add(params.offset, 0x40)) } } /// @notice Decode the `_arg`-th element in `_bytes` as `bytes` /// @param _bytes The input bytes string to extract a bytes string from /// @param _arg The index of the argument to extract function toBytes(bytes calldata _bytes, uint256 _arg) internal pure returns (bytes calldata res) { uint256 length; assembly ("memory-safe") { // The offset of the `_arg`-th element is `32 * arg`, which stores the offset of the length pointer. // shl(5, x) is equivalent to mul(32, x) let lengthPtr := add(_bytes.offset, and(calldataload(add(_bytes.offset, shl(5, _arg))), OFFSET_OR_LENGTH_MASK)) // the number of bytes in the bytes string length := and(calldataload(lengthPtr), OFFSET_OR_LENGTH_MASK) // the offset where the bytes string begins let offset := add(lengthPtr, 0x20) // assign the return parameters res.length := length res.offset := offset // if the provided bytes string isnt as long as the encoding says, revert if lt(add(_bytes.length, _bytes.offset), add(length, offset)) { mstore(0, SLICE_ERROR_SELECTOR) revert(0x1c, 4) } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {Currency} from "./Currency.sol"; import {IHooks} from "../interfaces/IHooks.sol"; import {PoolIdLibrary} from "./PoolId.sol"; using PoolIdLibrary for PoolKey global; /// @notice Returns the key for identifying a pool struct PoolKey { /// @notice The lower currency of the pool, sorted numerically Currency currency0; /// @notice The higher currency of the pool, sorted numerically Currency currency1; /// @notice The pool LP fee, capped at 1_000_000. If the highest bit is 1, the pool has a dynamic fee and must be exactly equal to 0x800000 uint24 fee; /// @notice Ticks that involve positions must be a multiple of tick spacing int24 tickSpacing; /// @notice The hooks of the pool IHooks hooks; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.24; import {Currency} from "../types/Currency.sol"; import {PoolKey} from "../types/PoolKey.sol"; import {IHooks} from "./IHooks.sol"; import {IERC6909Claims} from "./external/IERC6909Claims.sol"; import {IProtocolFees} from "./IProtocolFees.sol"; import {BalanceDelta} from "../types/BalanceDelta.sol"; import {PoolId} from "../types/PoolId.sol"; import {IExtsload} from "./IExtsload.sol"; import {IExttload} from "./IExttload.sol"; /// @notice Interface for the PoolManager interface IPoolManager is IProtocolFees, IERC6909Claims, IExtsload, IExttload { /// @notice Thrown when a currency is not netted out after the contract is unlocked error CurrencyNotSettled(); /// @notice Thrown when trying to interact with a non-initialized pool error PoolNotInitialized(); /// @notice Thrown when unlock is called, but the contract is already unlocked error AlreadyUnlocked(); /// @notice Thrown when a function is called that requires the contract to be unlocked, but it is not error ManagerLocked(); /// @notice Pools are limited to type(int16).max tickSpacing in #initialize, to prevent overflow error TickSpacingTooLarge(int24 tickSpacing); /// @notice Pools must have a positive non-zero tickSpacing passed to #initialize error TickSpacingTooSmall(int24 tickSpacing); /// @notice PoolKey must have currencies where address(currency0) < address(currency1) error CurrenciesOutOfOrderOrEqual(address currency0, address currency1); /// @notice Thrown when a call to updateDynamicLPFee is made by an address that is not the hook, /// or on a pool that does not have a dynamic swap fee. error UnauthorizedDynamicLPFeeUpdate(); /// @notice Thrown when trying to swap amount of 0 error SwapAmountCannotBeZero(); ///@notice Thrown when native currency is passed to a non native settlement error NonzeroNativeValue(); /// @notice Thrown when `clear` is called with an amount that is not exactly equal to the open currency delta. error MustClearExactPositiveDelta(); /// @notice Emitted when a new pool is initialized /// @param id The abi encoded hash of the pool key struct for the new pool /// @param currency0 The first currency of the pool by address sort order /// @param currency1 The second currency of the pool by address sort order /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip /// @param tickSpacing The minimum number of ticks between initialized ticks /// @param hooks The hooks contract address for the pool, or address(0) if none /// @param sqrtPriceX96 The price of the pool on initialization /// @param tick The initial tick of the pool corresponding to the initialized price event Initialize( PoolId indexed id, Currency indexed currency0, Currency indexed currency1, uint24 fee, int24 tickSpacing, IHooks hooks, uint160 sqrtPriceX96, int24 tick ); /// @notice Emitted when a liquidity position is modified /// @param id The abi encoded hash of the pool key struct for the pool that was modified /// @param sender The address that modified the pool /// @param tickLower The lower tick of the position /// @param tickUpper The upper tick of the position /// @param liquidityDelta The amount of liquidity that was added or removed /// @param salt The extra data to make positions unique event ModifyLiquidity( PoolId indexed id, address indexed sender, int24 tickLower, int24 tickUpper, int256 liquidityDelta, bytes32 salt ); /// @notice Emitted for swaps between currency0 and currency1 /// @param id The abi encoded hash of the pool key struct for the pool that was modified /// @param sender The address that initiated the swap call, and that received the callback /// @param amount0 The delta of the currency0 balance of the pool /// @param amount1 The delta of the currency1 balance of the pool /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96 /// @param liquidity The liquidity of the pool after the swap /// @param tick The log base 1.0001 of the price of the pool after the swap /// @param fee The swap fee in hundredths of a bip event Swap( PoolId indexed id, address indexed sender, int128 amount0, int128 amount1, uint160 sqrtPriceX96, uint128 liquidity, int24 tick, uint24 fee ); /// @notice Emitted for donations /// @param id The abi encoded hash of the pool key struct for the pool that was donated to /// @param sender The address that initiated the donate call /// @param amount0 The amount donated in currency0 /// @param amount1 The amount donated in currency1 event Donate(PoolId indexed id, address indexed sender, uint256 amount0, uint256 amount1); /// @notice All interactions on the contract that account deltas require unlocking. A caller that calls `unlock` must implement /// `IUnlockCallback(msg.sender).unlockCallback(data)`, where they interact with the remaining functions on this contract. /// @dev The only functions callable without an unlocking are `initialize` and `updateDynamicLPFee` /// @param data Any data to pass to the callback, via `IUnlockCallback(msg.sender).unlockCallback(data)` /// @return The data returned by the call to `IUnlockCallback(msg.sender).unlockCallback(data)` function unlock(bytes calldata data) external returns (bytes memory); /// @notice Initialize the state for a given pool ID /// @dev A swap fee totaling MAX_SWAP_FEE (100%) makes exact output swaps impossible since the input is entirely consumed by the fee /// @param key The pool key for the pool to initialize /// @param sqrtPriceX96 The initial square root price /// @return tick The initial tick of the pool function initialize(PoolKey memory key, uint160 sqrtPriceX96) external returns (int24 tick); struct ModifyLiquidityParams { // the lower and upper tick of the position int24 tickLower; int24 tickUpper; // how to modify the liquidity int256 liquidityDelta; // a value to set if you want unique liquidity positions at the same range bytes32 salt; } /// @notice Modify the liquidity for the given pool /// @dev Poke by calling with a zero liquidityDelta /// @param key The pool to modify liquidity in /// @param params The parameters for modifying the liquidity /// @param hookData The data to pass through to the add/removeLiquidity hooks /// @return callerDelta The balance delta of the caller of modifyLiquidity. This is the total of both principal, fee deltas, and hook deltas if applicable /// @return feesAccrued The balance delta of the fees generated in the liquidity range. Returned for informational purposes /// @dev Note that feesAccrued can be artificially inflated by a malicious actor and integrators should be careful using the value /// For pools with a single liquidity position, actors can donate to themselves to inflate feeGrowthGlobal (and consequently feesAccrued) /// atomically donating and collecting fees in the same unlockCallback may make the inflated value more extreme function modifyLiquidity(PoolKey memory key, ModifyLiquidityParams memory params, bytes calldata hookData) external returns (BalanceDelta callerDelta, BalanceDelta feesAccrued); struct SwapParams { /// Whether to swap token0 for token1 or vice versa bool zeroForOne; /// The desired input amount if negative (exactIn), or the desired output amount if positive (exactOut) int256 amountSpecified; /// The sqrt price at which, if reached, the swap will stop executing uint160 sqrtPriceLimitX96; } /// @notice Swap against the given pool /// @param key The pool to swap in /// @param params The parameters for swapping /// @param hookData The data to pass through to the swap hooks /// @return swapDelta The balance delta of the address swapping /// @dev Swapping on low liquidity pools may cause unexpected swap amounts when liquidity available is less than amountSpecified. /// Additionally note that if interacting with hooks that have the BEFORE_SWAP_RETURNS_DELTA_FLAG or AFTER_SWAP_RETURNS_DELTA_FLAG /// the hook may alter the swap input/output. Integrators should perform checks on the returned swapDelta. function swap(PoolKey memory key, SwapParams memory params, bytes calldata hookData) external returns (BalanceDelta swapDelta); /// @notice Donate the given currency amounts to the in-range liquidity providers of a pool /// @dev Calls to donate can be frontrun adding just-in-time liquidity, with the aim of receiving a portion donated funds. /// Donors should keep this in mind when designing donation mechanisms. /// @dev This function donates to in-range LPs at slot0.tick. In certain edge-cases of the swap algorithm, the `sqrtPrice` of /// a pool can be at the lower boundary of tick `n`, but the `slot0.tick` of the pool is already `n - 1`. In this case a call to /// `donate` would donate to tick `n - 1` (slot0.tick) not tick `n` (getTickAtSqrtPrice(slot0.sqrtPriceX96)). /// Read the comments in `Pool.swap()` for more information about this. /// @param key The key of the pool to donate to /// @param amount0 The amount of currency0 to donate /// @param amount1 The amount of currency1 to donate /// @param hookData The data to pass through to the donate hooks /// @return BalanceDelta The delta of the caller after the donate function donate(PoolKey memory key, uint256 amount0, uint256 amount1, bytes calldata hookData) external returns (BalanceDelta); /// @notice Writes the current ERC20 balance of the specified currency to transient storage /// This is used to checkpoint balances for the manager and derive deltas for the caller. /// @dev This MUST be called before any ERC20 tokens are sent into the contract, but can be skipped /// for native tokens because the amount to settle is determined by the sent value. /// However, if an ERC20 token has been synced and not settled, and the caller instead wants to settle /// native funds, this function can be called with the native currency to then be able to settle the native currency function sync(Currency currency) external; /// @notice Called by the user to net out some value owed to the user /// @dev Will revert if the requested amount is not available, consider using `mint` instead /// @dev Can also be used as a mechanism for free flash loans /// @param currency The currency to withdraw from the pool manager /// @param to The address to withdraw to /// @param amount The amount of currency to withdraw function take(Currency currency, address to, uint256 amount) external; /// @notice Called by the user to pay what is owed /// @return paid The amount of currency settled function settle() external payable returns (uint256 paid); /// @notice Called by the user to pay on behalf of another address /// @param recipient The address to credit for the payment /// @return paid The amount of currency settled function settleFor(address recipient) external payable returns (uint256 paid); /// @notice WARNING - Any currency that is cleared, will be non-retrievable, and locked in the contract permanently. /// A call to clear will zero out a positive balance WITHOUT a corresponding transfer. /// @dev This could be used to clear a balance that is considered dust. /// Additionally, the amount must be the exact positive balance. This is to enforce that the caller is aware of the amount being cleared. function clear(Currency currency, uint256 amount) external; /// @notice Called by the user to move value into ERC6909 balance /// @param to The address to mint the tokens to /// @param id The currency address to mint to ERC6909s, as a uint256 /// @param amount The amount of currency to mint /// @dev The id is converted to a uint160 to correspond to a currency address /// If the upper 12 bytes are not 0, they will be 0-ed out function mint(address to, uint256 id, uint256 amount) external; /// @notice Called by the user to move value from ERC6909 balance /// @param from The address to burn the tokens from /// @param id The currency address to burn from ERC6909s, as a uint256 /// @param amount The amount of currency to burn /// @dev The id is converted to a uint160 to correspond to a currency address /// If the upper 12 bytes are not 0, they will be 0-ed out function burn(address from, uint256 id, uint256 amount) external; /// @notice Updates the pools lp fees for the a pool that has enabled dynamic lp fees. /// @dev A swap fee totaling MAX_SWAP_FEE (100%) makes exact output swaps impossible since the input is entirely consumed by the fee /// @param key The key of the pool to update dynamic LP fees for /// @param newDynamicLPFee The new dynamic pool LP fee function updateDynamicLPFee(PoolKey memory key, uint24 newDynamicLPFee) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; /// @title IWETH9 interface IWETH9 is IERC20 { /// @notice Deposit ether to get wrapped ether function deposit() external payable; /// @notice Withdraw wrapped ether to get ether function withdraw(uint256) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {ISignatureTransfer} from "./ISignatureTransfer.sol"; import {IAllowanceTransfer} from "./IAllowanceTransfer.sol"; /// @notice Permit2 handles signature-based transfers in SignatureTransfer and allowance-based transfers in AllowanceTransfer. /// @dev Users must approve Permit2 before calling any of the transfer functions. interface IPermit2 is ISignatureTransfer, IAllowanceTransfer { // IPermit2 unifies the two interfaces so users have maximal flexibility with their approval. } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import {IAllowanceTransfer} from 'permit2/src/interfaces/IAllowanceTransfer.sol'; import {SafeCast160} from 'permit2/src/libraries/SafeCast160.sol'; import {Payments} from './Payments.sol'; /// @title Payments through Permit2 /// @notice Performs interactions with Permit2 to transfer tokens abstract contract Permit2Payments is Payments { using SafeCast160 for uint256; error FromAddressIsNotOwner(); /// @notice Performs a transferFrom on Permit2 /// @param token The token to transfer /// @param from The address to transfer from /// @param to The recipient of the transfer /// @param amount The amount to transfer function permit2TransferFrom(address token, address from, address to, uint160 amount) internal { PERMIT2.transferFrom(from, to, amount, token); } /// @notice Performs a batch transferFrom on Permit2 /// @param batchDetails An array detailing each of the transfers that should occur /// @param owner The address that should be the owner of all transfers function permit2TransferFrom(IAllowanceTransfer.AllowanceTransferDetails[] calldata batchDetails, address owner) internal { uint256 batchLength = batchDetails.length; for (uint256 i = 0; i < batchLength; ++i) { if (batchDetails[i].from != owner) revert FromAddressIsNotOwner(); } PERMIT2.transferFrom(batchDetails); } /// @notice Either performs a regular payment or transferFrom on Permit2, depending on the payer address /// @param token The token to transfer /// @param payer The address to pay for the transfer /// @param recipient The recipient of the transfer /// @param amount The amount to transfer function payOrPermit2Transfer(address token, address payer, address recipient, uint256 amount) internal { if (payer == address(this)) pay(token, recipient, amount); else permit2TransferFrom(token, payer, recipient, amount.toUint160()); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.26; import {IPoolManager} from "@uniswap/v4-core/src/interfaces/IPoolManager.sol"; import {BalanceDelta} from "@uniswap/v4-core/src/types/BalanceDelta.sol"; import {PoolKey} from "@uniswap/v4-core/src/types/PoolKey.sol"; import {Currency} from "@uniswap/v4-core/src/types/Currency.sol"; import {TickMath} from "@uniswap/v4-core/src/libraries/TickMath.sol"; import {SafeCast} from "@uniswap/v4-core/src/libraries/SafeCast.sol"; import {PathKey} from "./libraries/PathKey.sol"; import {CalldataDecoder} from "./libraries/CalldataDecoder.sol"; import {IV4Router} from "./interfaces/IV4Router.sol"; import {BaseActionsRouter} from "./base/BaseActionsRouter.sol"; import {DeltaResolver} from "./base/DeltaResolver.sol"; import {Actions} from "./libraries/Actions.sol"; import {ActionConstants} from "./libraries/ActionConstants.sol"; import {BipsLibrary} from "./libraries/BipsLibrary.sol"; /// @title UniswapV4Router /// @notice Abstract contract that contains all internal logic needed for routing through Uniswap v4 pools /// @dev the entry point to executing actions in this contract is calling `BaseActionsRouter._executeActions` /// An inheriting contract should call _executeActions at the point that they wish actions to be executed abstract contract V4Router is IV4Router, BaseActionsRouter, DeltaResolver { using SafeCast for *; using CalldataDecoder for bytes; using BipsLibrary for uint256; constructor(IPoolManager _poolManager) BaseActionsRouter(_poolManager) {} function _handleAction(uint256 action, bytes calldata params) internal override { // swap actions and payment actions in different blocks for gas efficiency if (action < Actions.SETTLE) { if (action == Actions.SWAP_EXACT_IN) { IV4Router.ExactInputParams calldata swapParams = params.decodeSwapExactInParams(); _swapExactInput(swapParams); return; } else if (action == Actions.SWAP_EXACT_IN_SINGLE) { IV4Router.ExactInputSingleParams calldata swapParams = params.decodeSwapExactInSingleParams(); _swapExactInputSingle(swapParams); return; } else if (action == Actions.SWAP_EXACT_OUT) { IV4Router.ExactOutputParams calldata swapParams = params.decodeSwapExactOutParams(); _swapExactOutput(swapParams); return; } else if (action == Actions.SWAP_EXACT_OUT_SINGLE) { IV4Router.ExactOutputSingleParams calldata swapParams = params.decodeSwapExactOutSingleParams(); _swapExactOutputSingle(swapParams); return; } } else { if (action == Actions.SETTLE_ALL) { (Currency currency, uint256 maxAmount) = params.decodeCurrencyAndUint256(); uint256 amount = _getFullDebt(currency); if (amount > maxAmount) revert V4TooMuchRequested(maxAmount, amount); _settle(currency, msgSender(), amount); return; } else if (action == Actions.TAKE_ALL) { (Currency currency, uint256 minAmount) = params.decodeCurrencyAndUint256(); uint256 amount = _getFullCredit(currency); if (amount < minAmount) revert V4TooLittleReceived(minAmount, amount); _take(currency, msgSender(), amount); return; } else if (action == Actions.SETTLE) { (Currency currency, uint256 amount, bool payerIsUser) = params.decodeCurrencyUint256AndBool(); _settle(currency, _mapPayer(payerIsUser), _mapSettleAmount(amount, currency)); return; } else if (action == Actions.TAKE) { (Currency currency, address recipient, uint256 amount) = params.decodeCurrencyAddressAndUint256(); _take(currency, _mapRecipient(recipient), _mapTakeAmount(amount, currency)); return; } else if (action == Actions.TAKE_PORTION) { (Currency currency, address recipient, uint256 bips) = params.decodeCurrencyAddressAndUint256(); _take(currency, _mapRecipient(recipient), _getFullCredit(currency).calculatePortion(bips)); return; } } revert UnsupportedAction(action); } function _swapExactInputSingle(IV4Router.ExactInputSingleParams calldata params) private { uint128 amountIn = params.amountIn; if (amountIn == ActionConstants.OPEN_DELTA) { amountIn = _getFullCredit(params.zeroForOne ? params.poolKey.currency0 : params.poolKey.currency1).toUint128(); } uint128 amountOut = _swap(params.poolKey, params.zeroForOne, -int256(uint256(amountIn)), params.hookData).toUint128(); if (amountOut < params.amountOutMinimum) revert V4TooLittleReceived(params.amountOutMinimum, amountOut); } function _swapExactInput(IV4Router.ExactInputParams calldata params) private { unchecked { // Caching for gas savings uint256 pathLength = params.path.length; uint128 amountOut; Currency currencyIn = params.currencyIn; uint128 amountIn = params.amountIn; if (amountIn == ActionConstants.OPEN_DELTA) amountIn = _getFullCredit(currencyIn).toUint128(); PathKey calldata pathKey; for (uint256 i = 0; i < pathLength; i++) { pathKey = params.path[i]; (PoolKey memory poolKey, bool zeroForOne) = pathKey.getPoolAndSwapDirection(currencyIn); // The output delta will always be positive, except for when interacting with certain hook pools amountOut = _swap(poolKey, zeroForOne, -int256(uint256(amountIn)), pathKey.hookData).toUint128(); amountIn = amountOut; currencyIn = pathKey.intermediateCurrency; } if (amountOut < params.amountOutMinimum) revert V4TooLittleReceived(params.amountOutMinimum, amountOut); } } function _swapExactOutputSingle(IV4Router.ExactOutputSingleParams calldata params) private { uint128 amountOut = params.amountOut; if (amountOut == ActionConstants.OPEN_DELTA) { amountOut = _getFullDebt(params.zeroForOne ? params.poolKey.currency1 : params.poolKey.currency0).toUint128(); } uint128 amountIn = ( uint256(-int256(_swap(params.poolKey, params.zeroForOne, int256(uint256(amountOut)), params.hookData))) ).toUint128(); if (amountIn > params.amountInMaximum) revert V4TooMuchRequested(params.amountInMaximum, amountIn); } function _swapExactOutput(IV4Router.ExactOutputParams calldata params) private { unchecked { // Caching for gas savings uint256 pathLength = params.path.length; uint128 amountIn; uint128 amountOut = params.amountOut; Currency currencyOut = params.currencyOut; PathKey calldata pathKey; if (amountOut == ActionConstants.OPEN_DELTA) { amountOut = _getFullDebt(currencyOut).toUint128(); } for (uint256 i = pathLength; i > 0; i--) { pathKey = params.path[i - 1]; (PoolKey memory poolKey, bool oneForZero) = pathKey.getPoolAndSwapDirection(currencyOut); // The output delta will always be negative, except for when interacting with certain hook pools amountIn = (uint256(-int256(_swap(poolKey, !oneForZero, int256(uint256(amountOut)), pathKey.hookData)))) .toUint128(); amountOut = amountIn; currencyOut = pathKey.intermediateCurrency; } if (amountIn > params.amountInMaximum) revert V4TooMuchRequested(params.amountInMaximum, amountIn); } } function _swap(PoolKey memory poolKey, bool zeroForOne, int256 amountSpecified, bytes calldata hookData) private returns (int128 reciprocalAmount) { // for protection of exactOut swaps, sqrtPriceLimit is not exposed as a feature in this contract unchecked { BalanceDelta delta = poolManager.swap( poolKey, IPoolManager.SwapParams( zeroForOne, amountSpecified, zeroForOne ? TickMath.MIN_SQRT_PRICE + 1 : TickMath.MAX_SQRT_PRICE - 1 ), hookData ); reciprocalAmount = (zeroForOne == amountSpecified < 0) ? delta.amount1() : delta.amount0(); } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {IERC20Minimal} from "../interfaces/external/IERC20Minimal.sol"; import {CustomRevert} from "../libraries/CustomRevert.sol"; type Currency is address; using {greaterThan as >, lessThan as <, greaterThanOrEqualTo as >=, equals as ==} for Currency global; using CurrencyLibrary for Currency global; function equals(Currency currency, Currency other) pure returns (bool) { return Currency.unwrap(currency) == Currency.unwrap(other); } function greaterThan(Currency currency, Currency other) pure returns (bool) { return Currency.unwrap(currency) > Currency.unwrap(other); } function lessThan(Currency currency, Currency other) pure returns (bool) { return Currency.unwrap(currency) < Currency.unwrap(other); } function greaterThanOrEqualTo(Currency currency, Currency other) pure returns (bool) { return Currency.unwrap(currency) >= Currency.unwrap(other); } /// @title CurrencyLibrary /// @dev This library allows for transferring and holding native tokens and ERC20 tokens library CurrencyLibrary { /// @notice Additional context for ERC-7751 wrapped error when a native transfer fails error NativeTransferFailed(); /// @notice Additional context for ERC-7751 wrapped error when an ERC20 transfer fails error ERC20TransferFailed(); /// @notice A constant to represent the native currency Currency public constant ADDRESS_ZERO = Currency.wrap(address(0)); function transfer(Currency currency, address to, uint256 amount) internal { // altered from https://github.com/transmissions11/solmate/blob/44a9963d4c78111f77caa0e65d677b8b46d6f2e6/src/utils/SafeTransferLib.sol // modified custom error selectors bool success; if (currency.isAddressZero()) { assembly ("memory-safe") { // Transfer the ETH and revert if it fails. success := call(gas(), to, amount, 0, 0, 0, 0) } // revert with NativeTransferFailed, containing the bubbled up error as an argument if (!success) { CustomRevert.bubbleUpAndRevertWith(to, bytes4(0), NativeTransferFailed.selector); } } else { assembly ("memory-safe") { // Get a pointer to some free memory. let fmp := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(fmp, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) mstore(add(fmp, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument. mstore(add(fmp, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), currency, 0, fmp, 68, 0, 32) ) // Now clean the memory we used mstore(fmp, 0) // 4 byte `selector` and 28 bytes of `to` were stored here mstore(add(fmp, 0x20), 0) // 4 bytes of `to` and 28 bytes of `amount` were stored here mstore(add(fmp, 0x40), 0) // 4 bytes of `amount` were stored here } // revert with ERC20TransferFailed, containing the bubbled up error as an argument if (!success) { CustomRevert.bubbleUpAndRevertWith( Currency.unwrap(currency), IERC20Minimal.transfer.selector, ERC20TransferFailed.selector ); } } } function balanceOfSelf(Currency currency) internal view returns (uint256) { if (currency.isAddressZero()) { return address(this).balance; } else { return IERC20Minimal(Currency.unwrap(currency)).balanceOf(address(this)); } } function balanceOf(Currency currency, address owner) internal view returns (uint256) { if (currency.isAddressZero()) { return owner.balance; } else { return IERC20Minimal(Currency.unwrap(currency)).balanceOf(owner); } } function isAddressZero(Currency currency) internal pure returns (bool) { return Currency.unwrap(currency) == Currency.unwrap(ADDRESS_ZERO); } function toId(Currency currency) internal pure returns (uint256) { return uint160(Currency.unwrap(currency)); } // If the upper 12 bytes are non-zero, they will be zero-ed out // Therefore, fromId() and toId() are not inverses of each other function fromId(uint256 id) internal pure returns (Currency) { return Currency.wrap(address(uint160(id))); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.5; pragma abicoder v2; import '@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol'; import '@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol'; import './IPoolInitializer.sol'; import './IERC721Permit.sol'; import './IPeripheryPayments.sol'; import './IPeripheryImmutableState.sol'; import '../libraries/PoolAddress.sol'; /// @title Non-fungible token for positions /// @notice Wraps Uniswap V3 positions in a non-fungible token interface which allows for them to be transferred /// and authorized. interface INonfungiblePositionManager is IPoolInitializer, IPeripheryPayments, IPeripheryImmutableState, IERC721Metadata, IERC721Enumerable, IERC721Permit { /// @notice Emitted when liquidity is increased for a position NFT /// @dev Also emitted when a token is minted /// @param tokenId The ID of the token for which liquidity was increased /// @param liquidity The amount by which liquidity for the NFT position was increased /// @param amount0 The amount of token0 that was paid for the increase in liquidity /// @param amount1 The amount of token1 that was paid for the increase in liquidity event IncreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1); /// @notice Emitted when liquidity is decreased for a position NFT /// @param tokenId The ID of the token for which liquidity was decreased /// @param liquidity The amount by which liquidity for the NFT position was decreased /// @param amount0 The amount of token0 that was accounted for the decrease in liquidity /// @param amount1 The amount of token1 that was accounted for the decrease in liquidity event DecreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1); /// @notice Emitted when tokens are collected for a position NFT /// @dev The amounts reported may not be exactly equivalent to the amounts transferred, due to rounding behavior /// @param tokenId The ID of the token for which underlying tokens were collected /// @param recipient The address of the account that received the collected tokens /// @param amount0 The amount of token0 owed to the position that was collected /// @param amount1 The amount of token1 owed to the position that was collected event Collect(uint256 indexed tokenId, address recipient, uint256 amount0, uint256 amount1); /// @notice Returns the position information associated with a given token ID. /// @dev Throws if the token ID is not valid. /// @param tokenId The ID of the token that represents the position /// @return nonce The nonce for permits /// @return operator The address that is approved for spending /// @return token0 The address of the token0 for a specific pool /// @return token1 The address of the token1 for a specific pool /// @return fee The fee associated with the pool /// @return tickLower The lower end of the tick range for the position /// @return tickUpper The higher end of the tick range for the position /// @return liquidity The liquidity of the position /// @return feeGrowthInside0LastX128 The fee growth of token0 as of the last action on the individual position /// @return feeGrowthInside1LastX128 The fee growth of token1 as of the last action on the individual position /// @return tokensOwed0 The uncollected amount of token0 owed to the position as of the last computation /// @return tokensOwed1 The uncollected amount of token1 owed to the position as of the last computation function positions(uint256 tokenId) external view returns ( uint96 nonce, address operator, address token0, address token1, uint24 fee, int24 tickLower, int24 tickUpper, uint128 liquidity, uint256 feeGrowthInside0LastX128, uint256 feeGrowthInside1LastX128, uint128 tokensOwed0, uint128 tokensOwed1 ); struct MintParams { address token0; address token1; uint24 fee; int24 tickLower; int24 tickUpper; uint256 amount0Desired; uint256 amount1Desired; uint256 amount0Min; uint256 amount1Min; address recipient; uint256 deadline; } /// @notice Creates a new position wrapped in a NFT /// @dev Call this when the pool does exist and is initialized. Note that if the pool is created but not initialized /// a method does not exist, i.e. the pool is assumed to be initialized. /// @param params The params necessary to mint a position, encoded as `MintParams` in calldata /// @return tokenId The ID of the token that represents the minted position /// @return liquidity The amount of liquidity for this position /// @return amount0 The amount of token0 /// @return amount1 The amount of token1 function mint(MintParams calldata params) external payable returns ( uint256 tokenId, uint128 liquidity, uint256 amount0, uint256 amount1 ); struct IncreaseLiquidityParams { uint256 tokenId; uint256 amount0Desired; uint256 amount1Desired; uint256 amount0Min; uint256 amount1Min; uint256 deadline; } /// @notice Increases the amount of liquidity in a position, with tokens paid by the `msg.sender` /// @param params tokenId The ID of the token for which liquidity is being increased, /// amount0Desired The desired amount of token0 to be spent, /// amount1Desired The desired amount of token1 to be spent, /// amount0Min The minimum amount of token0 to spend, which serves as a slippage check, /// amount1Min The minimum amount of token1 to spend, which serves as a slippage check, /// deadline The time by which the transaction must be included to effect the change /// @return liquidity The new liquidity amount as a result of the increase /// @return amount0 The amount of token0 to acheive resulting liquidity /// @return amount1 The amount of token1 to acheive resulting liquidity function increaseLiquidity(IncreaseLiquidityParams calldata params) external payable returns ( uint128 liquidity, uint256 amount0, uint256 amount1 ); struct DecreaseLiquidityParams { uint256 tokenId; uint128 liquidity; uint256 amount0Min; uint256 amount1Min; uint256 deadline; } /// @notice Decreases the amount of liquidity in a position and accounts it to the position /// @param params tokenId The ID of the token for which liquidity is being decreased, /// amount The amount by which liquidity will be decreased, /// amount0Min The minimum amount of token0 that should be accounted for the burned liquidity, /// amount1Min The minimum amount of token1 that should be accounted for the burned liquidity, /// deadline The time by which the transaction must be included to effect the change /// @return amount0 The amount of token0 accounted to the position's tokens owed /// @return amount1 The amount of token1 accounted to the position's tokens owed function decreaseLiquidity(DecreaseLiquidityParams calldata params) external payable returns (uint256 amount0, uint256 amount1); struct CollectParams { uint256 tokenId; address recipient; uint128 amount0Max; uint128 amount1Max; } /// @notice Collects up to a maximum amount of fees owed to a specific position to the recipient /// @param params tokenId The ID of the NFT for which tokens are being collected, /// recipient The account that should receive the tokens, /// amount0Max The maximum amount of token0 to collect, /// amount1Max The maximum amount of token1 to collect /// @return amount0 The amount of fees collected in token0 /// @return amount1 The amount of fees collected in token1 function collect(CollectParams calldata params) external payable returns (uint256 amount0, uint256 amount1); /// @notice Burns a token ID, which deletes it from the NFT contract. The token must have 0 liquidity and all tokens /// must be collected first. /// @param tokenId The ID of the token that is being burned function burn(uint256 tokenId) external payable; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {PoolKey} from "@uniswap/v4-core/src/types/PoolKey.sol"; import {PositionInfo} from "../libraries/PositionInfoLibrary.sol"; import {INotifier} from "./INotifier.sol"; import {IImmutableState} from "./IImmutableState.sol"; import {IERC721Permit_v4} from "./IERC721Permit_v4.sol"; import {IEIP712_v4} from "./IEIP712_v4.sol"; import {IMulticall_v4} from "./IMulticall_v4.sol"; import {IPoolInitializer_v4} from "./IPoolInitializer_v4.sol"; import {IUnorderedNonce} from "./IUnorderedNonce.sol"; import {IPermit2Forwarder} from "./IPermit2Forwarder.sol"; /// @title IPositionManager /// @notice Interface for the PositionManager contract interface IPositionManager is INotifier, IImmutableState, IERC721Permit_v4, IEIP712_v4, IMulticall_v4, IPoolInitializer_v4, IUnorderedNonce, IPermit2Forwarder { /// @notice Thrown when the caller is not approved to modify a position error NotApproved(address caller); /// @notice Thrown when the block.timestamp exceeds the user-provided deadline error DeadlinePassed(uint256 deadline); /// @notice Thrown when calling transfer, subscribe, or unsubscribe when the PoolManager is unlocked. /// @dev This is to prevent hooks from being able to trigger notifications at the same time the position is being modified. error PoolManagerMustBeLocked(); /// @notice Unlocks Uniswap v4 PoolManager and batches actions for modifying liquidity /// @dev This is the standard entrypoint for the PositionManager /// @param unlockData is an encoding of actions, and parameters for those actions /// @param deadline is the deadline for the batched actions to be executed function modifyLiquidities(bytes calldata unlockData, uint256 deadline) external payable; /// @notice Batches actions for modifying liquidity without unlocking v4 PoolManager /// @dev This must be called by a contract that has already unlocked the v4 PoolManager /// @param actions the actions to perform /// @param params the parameters to provide for the actions function modifyLiquiditiesWithoutUnlock(bytes calldata actions, bytes[] calldata params) external payable; /// @notice Used to get the ID that will be used for the next minted liquidity position /// @return uint256 The next token ID function nextTokenId() external view returns (uint256); /// @notice Returns the liquidity of a position /// @param tokenId the ERC721 tokenId /// @return liquidity the position's liquidity, as a liquidityAmount /// @dev this value can be processed as an amount0 and amount1 by using the LiquidityAmounts library function getPositionLiquidity(uint256 tokenId) external view returns (uint128 liquidity); /// @notice Returns the pool key and position info of a position /// @param tokenId the ERC721 tokenId /// @return poolKey the pool key of the position /// @return PositionInfo a uint256 packed value holding information about the position including the range (tickLower, tickUpper) function getPoolAndPositionInfo(uint256 tokenId) external view returns (PoolKey memory, PositionInfo); /// @notice Returns the position info of a position /// @param tokenId the ERC721 tokenId /// @return a uint256 packed value holding information about the position including the range (tickLower, tickUpper) function positionInfo(uint256 tokenId) external view returns (PositionInfo); } pragma solidity >=0.5.0; interface IUniswapV2Pair { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); function DOMAIN_SEPARATOR() external view returns (bytes32); function PERMIT_TYPEHASH() external pure returns (bytes32); function nonces(address owner) external view returns (uint); function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external; event Mint(address indexed sender, uint amount0, uint amount1); event Burn(address indexed sender, uint amount0, uint amount1, address indexed to); event Swap( address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, address indexed to ); event Sync(uint112 reserve0, uint112 reserve1); function MINIMUM_LIQUIDITY() external pure returns (uint); function factory() external view returns (address); function token0() external view returns (address); function token1() external view returns (address); function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast); function price0CumulativeLast() external view returns (uint); function price1CumulativeLast() external view returns (uint); function kLast() external view returns (uint); function mint(address to) external returns (uint liquidity); function burn(address to) external returns (uint amount0, uint amount1); function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external; function skim(address to) external; function sync() external; function initialize(address, address) external; } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity >=0.8.0; import {IUniswapV2Pair} from '@uniswap/v2-core/contracts/interfaces/IUniswapV2Pair.sol'; /// @title Uniswap v2 Helper Library /// @notice Calculates the recipient address for a command library UniswapV2Library { error InvalidReserves(); error InvalidPath(); /// @notice Calculates the v2 address for a pair without making any external calls /// @param factory The address of the v2 factory /// @param initCodeHash The hash of the pair initcode /// @param tokenA One of the tokens in the pair /// @param tokenB The other token in the pair /// @return pair The resultant v2 pair address function pairFor(address factory, bytes32 initCodeHash, address tokenA, address tokenB) internal pure returns (address pair) { (address token0, address token1) = sortTokens(tokenA, tokenB); pair = pairForPreSorted(factory, initCodeHash, token0, token1); } /// @notice Calculates the v2 address for a pair and the pair's token0 /// @param factory The address of the v2 factory /// @param initCodeHash The hash of the pair initcode /// @param tokenA One of the tokens in the pair /// @param tokenB The other token in the pair /// @return pair The resultant v2 pair address /// @return token0 The token considered token0 in this pair function pairAndToken0For(address factory, bytes32 initCodeHash, address tokenA, address tokenB) internal pure returns (address pair, address token0) { address token1; (token0, token1) = sortTokens(tokenA, tokenB); pair = pairForPreSorted(factory, initCodeHash, token0, token1); } /// @notice Calculates the v2 address for a pair assuming the input tokens are pre-sorted /// @param factory The address of the v2 factory /// @param initCodeHash The hash of the pair initcode /// @param token0 The pair's token0 /// @param token1 The pair's token1 /// @return pair The resultant v2 pair address function pairForPreSorted(address factory, bytes32 initCodeHash, address token0, address token1) private pure returns (address pair) { pair = address( uint160( uint256( keccak256( abi.encodePacked(hex'ff', factory, keccak256(abi.encodePacked(token0, token1)), initCodeHash) ) ) ) ); } /// @notice Calculates the v2 address for a pair and fetches the reserves for each token /// @param factory The address of the v2 factory /// @param initCodeHash The hash of the pair initcode /// @param tokenA One of the tokens in the pair /// @param tokenB The other token in the pair /// @return pair The resultant v2 pair address /// @return reserveA The reserves for tokenA /// @return reserveB The reserves for tokenB function pairAndReservesFor(address factory, bytes32 initCodeHash, address tokenA, address tokenB) private view returns (address pair, uint256 reserveA, uint256 reserveB) { address token0; (pair, token0) = pairAndToken0For(factory, initCodeHash, tokenA, tokenB); (uint256 reserve0, uint256 reserve1,) = IUniswapV2Pair(pair).getReserves(); (reserveA, reserveB) = tokenA == token0 ? (reserve0, reserve1) : (reserve1, reserve0); } /// @notice Given an input asset amount returns the maximum output amount of the other asset /// @param amountIn The token input amount /// @param reserveIn The reserves available of the input token /// @param reserveOut The reserves available of the output token /// @return amountOut The output amount of the output token function getAmountOut(uint256 amountIn, uint256 reserveIn, uint256 reserveOut) internal pure returns (uint256 amountOut) { if (reserveIn == 0 || reserveOut == 0) revert InvalidReserves(); uint256 amountInWithFee = amountIn * 997; uint256 numerator = amountInWithFee * reserveOut; uint256 denominator = reserveIn * 1000 + amountInWithFee; amountOut = numerator / denominator; } /// @notice Returns the input amount needed for a desired output amount in a single-hop trade /// @param amountOut The desired output amount /// @param reserveIn The reserves available of the input token /// @param reserveOut The reserves available of the output token /// @return amountIn The input amount of the input token function getAmountIn(uint256 amountOut, uint256 reserveIn, uint256 reserveOut) internal pure returns (uint256 amountIn) { if (reserveIn == 0 || reserveOut == 0) revert InvalidReserves(); uint256 numerator = reserveIn * amountOut * 1000; uint256 denominator = (reserveOut - amountOut) * 997; amountIn = (numerator / denominator) + 1; } /// @notice Returns the input amount needed for a desired output amount in a multi-hop trade /// @param factory The address of the v2 factory /// @param initCodeHash The hash of the pair initcode /// @param amountOut The desired output amount /// @param path The path of the multi-hop trade /// @return amount The input amount of the input token /// @return pair The first pair in the trade function getAmountInMultihop(address factory, bytes32 initCodeHash, uint256 amountOut, address[] calldata path) internal view returns (uint256 amount, address pair) { if (path.length < 2) revert InvalidPath(); amount = amountOut; for (uint256 i = path.length - 1; i > 0; i--) { uint256 reserveIn; uint256 reserveOut; (pair, reserveIn, reserveOut) = pairAndReservesFor(factory, initCodeHash, path[i - 1], path[i]); amount = getAmountIn(amount, reserveIn, reserveOut); } } /// @notice Sorts two tokens to return token0 and token1 /// @param tokenA The first token to sort /// @param tokenB The other token to sort /// @return token0 The smaller token by address value /// @return token1 The larger token by address value function sortTokens(address tokenA, address tokenB) internal pure returns (address token0, address token1) { (token0, token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA); } } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; /// @title Constant state /// @notice Constant state used by the Universal Router library Constants { /// @dev Used for identifying cases when a v2 pair has already received input tokens uint256 internal constant ALREADY_PAID = 0; /// @dev Used as a flag for identifying the transfer of ETH instead of a token address internal constant ETH = address(0); /// @dev The length of the bytes encoded address uint256 internal constant ADDR_SIZE = 20; /// @dev The length of the bytes encoded fee uint256 internal constant V3_FEE_SIZE = 3; /// @dev The offset of a single token address (20) and pool fee (3) uint256 internal constant NEXT_V3_POOL_OFFSET = ADDR_SIZE + V3_FEE_SIZE; /// @dev The offset of an encoded pool key /// Token (20) + Fee (3) + Token (20) = 43 uint256 internal constant V3_POP_OFFSET = NEXT_V3_POOL_OFFSET + ADDR_SIZE; /// @dev The minimum length of an encoding that contains 2 or more pools uint256 internal constant MULTIPLE_V3_POOLS_MIN_LENGTH = V3_POP_OFFSET + NEXT_V3_POOL_OFFSET; } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity >=0.6.0; import {BytesLib} from './BytesLib.sol'; import {Constants} from '../../../libraries/Constants.sol'; /// @title Functions for manipulating path data for multihop swaps library V3Path { using BytesLib for bytes; /// @notice Returns true iff the path contains two or more pools /// @param path The encoded swap path /// @return True if path contains two or more pools, otherwise false function hasMultiplePools(bytes calldata path) internal pure returns (bool) { return path.length >= Constants.MULTIPLE_V3_POOLS_MIN_LENGTH; } /// @notice Decodes the first pool in path /// @param path The bytes encoded swap path /// @return tokenA The first token of the given pool /// @return fee The fee level of the pool /// @return tokenB The second token of the given pool function decodeFirstPool(bytes calldata path) internal pure returns (address, uint24, address) { return path.toPool(); } /// @notice Gets the segment corresponding to the first pool in the path /// @param path The bytes encoded swap path /// @return The segment containing all data necessary to target the first pool in the path function getFirstPool(bytes calldata path) internal pure returns (bytes calldata) { return path[:Constants.V3_POP_OFFSET]; } function decodeFirstToken(bytes calldata path) internal pure returns (address tokenA) { tokenA = path.toAddress(); } /// @notice Skips a token + fee element /// @param path The swap path function skipToken(bytes calldata path) internal pure returns (bytes calldata) { return path[Constants.NEXT_V3_POOL_OFFSET:]; } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Safe casting methods /// @notice Contains methods for safely casting between types library SafeCast { /// @notice Cast a uint256 to a uint160, revert on overflow /// @param y The uint256 to be downcasted /// @return z The downcasted integer, now type uint160 function toUint160(uint256 y) internal pure returns (uint160 z) { require((z = uint160(y)) == y); } /// @notice Cast a int256 to a int128, revert on overflow or underflow /// @param y The int256 to be downcasted /// @return z The downcasted integer, now type int128 function toInt128(int256 y) internal pure returns (int128 z) { require((z = int128(y)) == y); } /// @notice Cast a uint256 to a int256, revert on overflow /// @param y The uint256 to be casted /// @return z The casted integer, now type int256 function toInt256(uint256 y) internal pure returns (int256 z) { require(y < 2**255); z = int256(y); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; import './pool/IUniswapV3PoolImmutables.sol'; import './pool/IUniswapV3PoolState.sol'; import './pool/IUniswapV3PoolDerivedState.sol'; import './pool/IUniswapV3PoolActions.sol'; import './pool/IUniswapV3PoolOwnerActions.sol'; import './pool/IUniswapV3PoolEvents.sol'; /// @title The interface for a Uniswap V3 Pool /// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform /// to the ERC20 specification /// @dev The pool interface is broken up into many smaller pieces interface IUniswapV3Pool is IUniswapV3PoolImmutables, IUniswapV3PoolState, IUniswapV3PoolDerivedState, IUniswapV3PoolActions, IUniswapV3PoolOwnerActions, IUniswapV3PoolEvents { } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Callback for IUniswapV3PoolActions#swap /// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface interface IUniswapV3SwapCallback { /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap. /// @dev In the implementation you must pay the pool tokens owed for the swap. /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory. /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped. /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token0 to the pool. /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token1 to the pool. /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call function uniswapV3SwapCallback( int256 amount0Delta, int256 amount1Delta, bytes calldata data ) external; } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; /// @notice A library used to store the maximum desired amount of input tokens for exact output swaps; used for checking slippage library MaxInputAmount { // The slot holding the the maximum desired amount of input tokens, transiently. bytes32(uint256(keccak256("MaxAmountIn")) - 1) bytes32 constant MAX_AMOUNT_IN_SLOT = 0xaf28d9864a81dfdf71cab65f4e5d79a0cf9b083905fb8971425e6cb581b3f692; function set(uint256 maxAmountIn) internal { assembly ("memory-safe") { tstore(MAX_AMOUNT_IN_SLOT, maxAmountIn) } } function get() internal view returns (uint256 maxAmountIn) { assembly ("memory-safe") { maxAmountIn := tload(MAX_AMOUNT_IN_SLOT) } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title For calculating a percentage of an amount, using bips library BipsLibrary { uint256 internal constant BPS_DENOMINATOR = 10_000; /// @notice emitted when an invalid percentage is provided error InvalidBips(); /// @param amount The total amount to calculate a percentage of /// @param bips The percentage to calculate, in bips function calculatePortion(uint256 amount, uint256 bips) internal pure returns (uint256) { if (bips > BPS_DENOMINATOR) revert InvalidBips(); return (amount * bips) / BPS_DENOMINATOR; } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; import {ERC20} from "../tokens/ERC20.sol"; /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol) /// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer. /// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller. library SafeTransferLib { /*////////////////////////////////////////////////////////////// ETH OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferETH(address to, uint256 amount) internal { bool success; /// @solidity memory-safe-assembly assembly { // Transfer the ETH and store if it succeeded or not. success := call(gas(), to, amount, 0, 0, 0, 0) } require(success, "ETH_TRANSFER_FAILED"); } /*////////////////////////////////////////////////////////////// ERC20 OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferFrom( ERC20 token, address from, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), from) // Append the "from" argument. mstore(add(freeMemoryPointer, 36), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 100, 0, 32) ) } require(success, "TRANSFER_FROM_FAILED"); } function safeTransfer( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "TRANSFER_FAILED"); } function safeApprove( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "APPROVE_FAILED"); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @notice Library to define different pool actions. /// @dev These are suggested common commands, however additional commands should be defined as required /// Some of these actions are not supported in the Router contracts or Position Manager contracts, but are left as they may be helpful commands for other peripheral contracts. library Actions { // pool actions // liquidity actions uint256 internal constant INCREASE_LIQUIDITY = 0x00; uint256 internal constant DECREASE_LIQUIDITY = 0x01; uint256 internal constant MINT_POSITION = 0x02; uint256 internal constant BURN_POSITION = 0x03; uint256 internal constant INCREASE_LIQUIDITY_FROM_DELTAS = 0x04; uint256 internal constant MINT_POSITION_FROM_DELTAS = 0x05; // swapping uint256 internal constant SWAP_EXACT_IN_SINGLE = 0x06; uint256 internal constant SWAP_EXACT_IN = 0x07; uint256 internal constant SWAP_EXACT_OUT_SINGLE = 0x08; uint256 internal constant SWAP_EXACT_OUT = 0x09; // donate // note this is not supported in the position manager or router uint256 internal constant DONATE = 0x0a; // closing deltas on the pool manager // settling uint256 internal constant SETTLE = 0x0b; uint256 internal constant SETTLE_ALL = 0x0c; uint256 internal constant SETTLE_PAIR = 0x0d; // taking uint256 internal constant TAKE = 0x0e; uint256 internal constant TAKE_ALL = 0x0f; uint256 internal constant TAKE_PORTION = 0x10; uint256 internal constant TAKE_PAIR = 0x11; uint256 internal constant CLOSE_CURRENCY = 0x12; uint256 internal constant CLEAR_OR_TAKE = 0x13; uint256 internal constant SWEEP = 0x14; uint256 internal constant WRAP = 0x15; uint256 internal constant UNWRAP = 0x16; // minting/burning 6909s to close deltas // note this is not supported in the position manager or router uint256 internal constant MINT_6909 = 0x17; uint256 internal constant BURN_6909 = 0x18; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.5; import '@openzeppelin/contracts/token/ERC721/IERC721.sol'; /// @title ERC721 with permit /// @notice Extension to ERC721 that includes a permit function for signature based approvals interface IERC721Permit is IERC721 { /// @notice The permit typehash used in the permit signature /// @return The typehash for the permit function PERMIT_TYPEHASH() external pure returns (bytes32); /// @notice The domain separator used in the permit signature /// @return The domain seperator used in encoding of permit signature function DOMAIN_SEPARATOR() external view returns (bytes32); /// @notice Approve of a specific token ID for spending by spender via signature /// @param spender The account that is being approved /// @param tokenId The ID of the token that is being approved for spending /// @param deadline The deadline timestamp by which the call must be mined for the approve to work /// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s` /// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s` /// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v` function permit( address spender, uint256 tokenId, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external payable; } // SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; /// @notice A library to implement a reentrancy lock in transient storage. /// @dev Instead of storing a boolean, the locker's address is stored to allow the contract to know who locked the contract /// TODO: This library can be deleted when we have the transient keyword support in solidity. library Locker { // The slot holding the locker state, transiently. bytes32(uint256(keccak256("Locker")) - 1) bytes32 constant LOCKER_SLOT = 0x0e87e1788ebd9ed6a7e63c70a374cd3283e41cad601d21fbe27863899ed4a708; function set(address locker) internal { // The locker is always msg.sender or address(0) so does not need to be cleaned assembly ("memory-safe") { tstore(LOCKER_SLOT, locker) } } function get() internal view returns (address locker) { assembly ("memory-safe") { locker := tload(LOCKER_SLOT) } } function isLocked() internal view returns (bool) { return Locker.get() != address(0); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IEIP712 { function DOMAIN_SEPARATOR() external view returns (bytes32); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {PoolKey} from "@uniswap/v4-core/src/types/PoolKey.sol"; import {Currency} from "@uniswap/v4-core/src/types/Currency.sol"; import {PathKey} from "../libraries/PathKey.sol"; import {IImmutableState} from "./IImmutableState.sol"; /// @title IV4Router /// @notice Interface for the V4Router contract interface IV4Router is IImmutableState { /// @notice Emitted when an exactInput swap does not receive its minAmountOut error V4TooLittleReceived(uint256 minAmountOutReceived, uint256 amountReceived); /// @notice Emitted when an exactOutput is asked for more than its maxAmountIn error V4TooMuchRequested(uint256 maxAmountInRequested, uint256 amountRequested); /// @notice Parameters for a single-hop exact-input swap struct ExactInputSingleParams { PoolKey poolKey; bool zeroForOne; uint128 amountIn; uint128 amountOutMinimum; bytes hookData; } /// @notice Parameters for a multi-hop exact-input swap struct ExactInputParams { Currency currencyIn; PathKey[] path; uint128 amountIn; uint128 amountOutMinimum; } /// @notice Parameters for a single-hop exact-output swap struct ExactOutputSingleParams { PoolKey poolKey; bool zeroForOne; uint128 amountOut; uint128 amountInMaximum; bytes hookData; } /// @notice Parameters for a multi-hop exact-output swap struct ExactOutputParams { Currency currencyOut; PathKey[] path; uint128 amountOut; uint128 amountInMaximum; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {PoolKey} from "../types/PoolKey.sol"; import {BalanceDelta} from "../types/BalanceDelta.sol"; import {IPoolManager} from "./IPoolManager.sol"; import {BeforeSwapDelta} from "../types/BeforeSwapDelta.sol"; /// @notice V4 decides whether to invoke specific hooks by inspecting the least significant bits /// of the address that the hooks contract is deployed to. /// For example, a hooks contract deployed to address: 0x0000000000000000000000000000000000002400 /// has the lowest bits '10 0100 0000 0000' which would cause the 'before initialize' and 'after add liquidity' hooks to be used. /// See the Hooks library for the full spec. /// @dev Should only be callable by the v4 PoolManager. interface IHooks { /// @notice The hook called before the state of a pool is initialized /// @param sender The initial msg.sender for the initialize call /// @param key The key for the pool being initialized /// @param sqrtPriceX96 The sqrt(price) of the pool as a Q64.96 /// @return bytes4 The function selector for the hook function beforeInitialize(address sender, PoolKey calldata key, uint160 sqrtPriceX96) external returns (bytes4); /// @notice The hook called after the state of a pool is initialized /// @param sender The initial msg.sender for the initialize call /// @param key The key for the pool being initialized /// @param sqrtPriceX96 The sqrt(price) of the pool as a Q64.96 /// @param tick The current tick after the state of a pool is initialized /// @return bytes4 The function selector for the hook function afterInitialize(address sender, PoolKey calldata key, uint160 sqrtPriceX96, int24 tick) external returns (bytes4); /// @notice The hook called before liquidity is added /// @param sender The initial msg.sender for the add liquidity call /// @param key The key for the pool /// @param params The parameters for adding liquidity /// @param hookData Arbitrary data handed into the PoolManager by the liquidity provider to be passed on to the hook /// @return bytes4 The function selector for the hook function beforeAddLiquidity( address sender, PoolKey calldata key, IPoolManager.ModifyLiquidityParams calldata params, bytes calldata hookData ) external returns (bytes4); /// @notice The hook called after liquidity is added /// @param sender The initial msg.sender for the add liquidity call /// @param key The key for the pool /// @param params The parameters for adding liquidity /// @param delta The caller's balance delta after adding liquidity; the sum of principal delta, fees accrued, and hook delta /// @param feesAccrued The fees accrued since the last time fees were collected from this position /// @param hookData Arbitrary data handed into the PoolManager by the liquidity provider to be passed on to the hook /// @return bytes4 The function selector for the hook /// @return BalanceDelta The hook's delta in token0 and token1. Positive: the hook is owed/took currency, negative: the hook owes/sent currency function afterAddLiquidity( address sender, PoolKey calldata key, IPoolManager.ModifyLiquidityParams calldata params, BalanceDelta delta, BalanceDelta feesAccrued, bytes calldata hookData ) external returns (bytes4, BalanceDelta); /// @notice The hook called before liquidity is removed /// @param sender The initial msg.sender for the remove liquidity call /// @param key The key for the pool /// @param params The parameters for removing liquidity /// @param hookData Arbitrary data handed into the PoolManager by the liquidity provider to be be passed on to the hook /// @return bytes4 The function selector for the hook function beforeRemoveLiquidity( address sender, PoolKey calldata key, IPoolManager.ModifyLiquidityParams calldata params, bytes calldata hookData ) external returns (bytes4); /// @notice The hook called after liquidity is removed /// @param sender The initial msg.sender for the remove liquidity call /// @param key The key for the pool /// @param params The parameters for removing liquidity /// @param delta The caller's balance delta after removing liquidity; the sum of principal delta, fees accrued, and hook delta /// @param feesAccrued The fees accrued since the last time fees were collected from this position /// @param hookData Arbitrary data handed into the PoolManager by the liquidity provider to be be passed on to the hook /// @return bytes4 The function selector for the hook /// @return BalanceDelta The hook's delta in token0 and token1. Positive: the hook is owed/took currency, negative: the hook owes/sent currency function afterRemoveLiquidity( address sender, PoolKey calldata key, IPoolManager.ModifyLiquidityParams calldata params, BalanceDelta delta, BalanceDelta feesAccrued, bytes calldata hookData ) external returns (bytes4, BalanceDelta); /// @notice The hook called before a swap /// @param sender The initial msg.sender for the swap call /// @param key The key for the pool /// @param params The parameters for the swap /// @param hookData Arbitrary data handed into the PoolManager by the swapper to be be passed on to the hook /// @return bytes4 The function selector for the hook /// @return BeforeSwapDelta The hook's delta in specified and unspecified currencies. Positive: the hook is owed/took currency, negative: the hook owes/sent currency /// @return uint24 Optionally override the lp fee, only used if three conditions are met: 1. the Pool has a dynamic fee, 2. the value's 2nd highest bit is set (23rd bit, 0x400000), and 3. the value is less than or equal to the maximum fee (1 million) function beforeSwap( address sender, PoolKey calldata key, IPoolManager.SwapParams calldata params, bytes calldata hookData ) external returns (bytes4, BeforeSwapDelta, uint24); /// @notice The hook called after a swap /// @param sender The initial msg.sender for the swap call /// @param key The key for the pool /// @param params The parameters for the swap /// @param delta The amount owed to the caller (positive) or owed to the pool (negative) /// @param hookData Arbitrary data handed into the PoolManager by the swapper to be be passed on to the hook /// @return bytes4 The function selector for the hook /// @return int128 The hook's delta in unspecified currency. Positive: the hook is owed/took currency, negative: the hook owes/sent currency function afterSwap( address sender, PoolKey calldata key, IPoolManager.SwapParams calldata params, BalanceDelta delta, bytes calldata hookData ) external returns (bytes4, int128); /// @notice The hook called before donate /// @param sender The initial msg.sender for the donate call /// @param key The key for the pool /// @param amount0 The amount of token0 being donated /// @param amount1 The amount of token1 being donated /// @param hookData Arbitrary data handed into the PoolManager by the donor to be be passed on to the hook /// @return bytes4 The function selector for the hook function beforeDonate( address sender, PoolKey calldata key, uint256 amount0, uint256 amount1, bytes calldata hookData ) external returns (bytes4); /// @notice The hook called after donate /// @param sender The initial msg.sender for the donate call /// @param key The key for the pool /// @param amount0 The amount of token0 being donated /// @param amount1 The amount of token1 being donated /// @param hookData Arbitrary data handed into the PoolManager by the donor to be be passed on to the hook /// @return bytes4 The function selector for the hook function afterDonate( address sender, PoolKey calldata key, uint256 amount0, uint256 amount1, bytes calldata hookData ) external returns (bytes4); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {PoolKey} from "./PoolKey.sol"; type PoolId is bytes32; /// @notice Library for computing the ID of a pool library PoolIdLibrary { /// @notice Returns value equal to keccak256(abi.encode(poolKey)) function toId(PoolKey memory poolKey) internal pure returns (PoolId poolId) { assembly ("memory-safe") { // 0xa0 represents the total size of the poolKey struct (5 slots of 32 bytes) poolId := keccak256(poolKey, 0xa0) } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @notice Interface for claims over a contract balance, wrapped as a ERC6909 interface IERC6909Claims { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event OperatorSet(address indexed owner, address indexed operator, bool approved); event Approval(address indexed owner, address indexed spender, uint256 indexed id, uint256 amount); event Transfer(address caller, address indexed from, address indexed to, uint256 indexed id, uint256 amount); /*////////////////////////////////////////////////////////////// FUNCTIONS //////////////////////////////////////////////////////////////*/ /// @notice Owner balance of an id. /// @param owner The address of the owner. /// @param id The id of the token. /// @return amount The balance of the token. function balanceOf(address owner, uint256 id) external view returns (uint256 amount); /// @notice Spender allowance of an id. /// @param owner The address of the owner. /// @param spender The address of the spender. /// @param id The id of the token. /// @return amount The allowance of the token. function allowance(address owner, address spender, uint256 id) external view returns (uint256 amount); /// @notice Checks if a spender is approved by an owner as an operator /// @param owner The address of the owner. /// @param spender The address of the spender. /// @return approved The approval status. function isOperator(address owner, address spender) external view returns (bool approved); /// @notice Transfers an amount of an id from the caller to a receiver. /// @param receiver The address of the receiver. /// @param id The id of the token. /// @param amount The amount of the token. /// @return bool True, always, unless the function reverts function transfer(address receiver, uint256 id, uint256 amount) external returns (bool); /// @notice Transfers an amount of an id from a sender to a receiver. /// @param sender The address of the sender. /// @param receiver The address of the receiver. /// @param id The id of the token. /// @param amount The amount of the token. /// @return bool True, always, unless the function reverts function transferFrom(address sender, address receiver, uint256 id, uint256 amount) external returns (bool); /// @notice Approves an amount of an id to a spender. /// @param spender The address of the spender. /// @param id The id of the token. /// @param amount The amount of the token. /// @return bool True, always function approve(address spender, uint256 id, uint256 amount) external returns (bool); /// @notice Sets or removes an operator for the caller. /// @param operator The address of the operator. /// @param approved The approval status. /// @return bool True, always function setOperator(address operator, bool approved) external returns (bool); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {Currency} from "../types/Currency.sol"; import {PoolId} from "../types/PoolId.sol"; import {PoolKey} from "../types/PoolKey.sol"; /// @notice Interface for all protocol-fee related functions in the pool manager interface IProtocolFees { /// @notice Thrown when protocol fee is set too high error ProtocolFeeTooLarge(uint24 fee); /// @notice Thrown when collectProtocolFees or setProtocolFee is not called by the controller. error InvalidCaller(); /// @notice Thrown when collectProtocolFees is attempted on a token that is synced. error ProtocolFeeCurrencySynced(); /// @notice Emitted when the protocol fee controller address is updated in setProtocolFeeController. event ProtocolFeeControllerUpdated(address indexed protocolFeeController); /// @notice Emitted when the protocol fee is updated for a pool. event ProtocolFeeUpdated(PoolId indexed id, uint24 protocolFee); /// @notice Given a currency address, returns the protocol fees accrued in that currency /// @param currency The currency to check /// @return amount The amount of protocol fees accrued in the currency function protocolFeesAccrued(Currency currency) external view returns (uint256 amount); /// @notice Sets the protocol fee for the given pool /// @param key The key of the pool to set a protocol fee for /// @param newProtocolFee The fee to set function setProtocolFee(PoolKey memory key, uint24 newProtocolFee) external; /// @notice Sets the protocol fee controller /// @param controller The new protocol fee controller function setProtocolFeeController(address controller) external; /// @notice Collects the protocol fees for a given recipient and currency, returning the amount collected /// @dev This will revert if the contract is unlocked /// @param recipient The address to receive the protocol fees /// @param currency The currency to withdraw /// @param amount The amount of currency to withdraw /// @return amountCollected The amount of currency successfully withdrawn function collectProtocolFees(address recipient, Currency currency, uint256 amount) external returns (uint256 amountCollected); /// @notice Returns the current protocol fee controller address /// @return address The current protocol fee controller address function protocolFeeController() external view returns (address); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {SafeCast} from "../libraries/SafeCast.sol"; /// @dev Two `int128` values packed into a single `int256` where the upper 128 bits represent the amount0 /// and the lower 128 bits represent the amount1. type BalanceDelta is int256; using {add as +, sub as -, eq as ==, neq as !=} for BalanceDelta global; using BalanceDeltaLibrary for BalanceDelta global; using SafeCast for int256; function toBalanceDelta(int128 _amount0, int128 _amount1) pure returns (BalanceDelta balanceDelta) { assembly ("memory-safe") { balanceDelta := or(shl(128, _amount0), and(sub(shl(128, 1), 1), _amount1)) } } function add(BalanceDelta a, BalanceDelta b) pure returns (BalanceDelta) { int256 res0; int256 res1; assembly ("memory-safe") { let a0 := sar(128, a) let a1 := signextend(15, a) let b0 := sar(128, b) let b1 := signextend(15, b) res0 := add(a0, b0) res1 := add(a1, b1) } return toBalanceDelta(res0.toInt128(), res1.toInt128()); } function sub(BalanceDelta a, BalanceDelta b) pure returns (BalanceDelta) { int256 res0; int256 res1; assembly ("memory-safe") { let a0 := sar(128, a) let a1 := signextend(15, a) let b0 := sar(128, b) let b1 := signextend(15, b) res0 := sub(a0, b0) res1 := sub(a1, b1) } return toBalanceDelta(res0.toInt128(), res1.toInt128()); } function eq(BalanceDelta a, BalanceDelta b) pure returns (bool) { return BalanceDelta.unwrap(a) == BalanceDelta.unwrap(b); } function neq(BalanceDelta a, BalanceDelta b) pure returns (bool) { return BalanceDelta.unwrap(a) != BalanceDelta.unwrap(b); } /// @notice Library for getting the amount0 and amount1 deltas from the BalanceDelta type library BalanceDeltaLibrary { /// @notice A BalanceDelta of 0 BalanceDelta public constant ZERO_DELTA = BalanceDelta.wrap(0); function amount0(BalanceDelta balanceDelta) internal pure returns (int128 _amount0) { assembly ("memory-safe") { _amount0 := sar(128, balanceDelta) } } function amount1(BalanceDelta balanceDelta) internal pure returns (int128 _amount1) { assembly ("memory-safe") { _amount1 := signextend(15, balanceDelta) } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @notice Interface for functions to access any storage slot in a contract interface IExtsload { /// @notice Called by external contracts to access granular pool state /// @param slot Key of slot to sload /// @return value The value of the slot as bytes32 function extsload(bytes32 slot) external view returns (bytes32 value); /// @notice Called by external contracts to access granular pool state /// @param startSlot Key of slot to start sloading from /// @param nSlots Number of slots to load into return value /// @return values List of loaded values. function extsload(bytes32 startSlot, uint256 nSlots) external view returns (bytes32[] memory values); /// @notice Called by external contracts to access sparse pool state /// @param slots List of slots to SLOAD from. /// @return values List of loaded values. function extsload(bytes32[] calldata slots) external view returns (bytes32[] memory values); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.24; /// @notice Interface for functions to access any transient storage slot in a contract interface IExttload { /// @notice Called by external contracts to access transient storage of the contract /// @param slot Key of slot to tload /// @return value The value of the slot as bytes32 function exttload(bytes32 slot) external view returns (bytes32 value); /// @notice Called by external contracts to access sparse transient pool state /// @param slots List of slots to tload /// @return values List of loaded values function exttload(bytes32[] calldata slots) external view returns (bytes32[] memory values); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {IEIP712} from "./IEIP712.sol"; /// @title SignatureTransfer /// @notice Handles ERC20 token transfers through signature based actions /// @dev Requires user's token approval on the Permit2 contract interface ISignatureTransfer is IEIP712 { /// @notice Thrown when the requested amount for a transfer is larger than the permissioned amount /// @param maxAmount The maximum amount a spender can request to transfer error InvalidAmount(uint256 maxAmount); /// @notice Thrown when the number of tokens permissioned to a spender does not match the number of tokens being transferred /// @dev If the spender does not need to transfer the number of tokens permitted, the spender can request amount 0 to be transferred error LengthMismatch(); /// @notice Emits an event when the owner successfully invalidates an unordered nonce. event UnorderedNonceInvalidation(address indexed owner, uint256 word, uint256 mask); /// @notice The token and amount details for a transfer signed in the permit transfer signature struct TokenPermissions { // ERC20 token address address token; // the maximum amount that can be spent uint256 amount; } /// @notice The signed permit message for a single token transfer struct PermitTransferFrom { TokenPermissions permitted; // a unique value for every token owner's signature to prevent signature replays uint256 nonce; // deadline on the permit signature uint256 deadline; } /// @notice Specifies the recipient address and amount for batched transfers. /// @dev Recipients and amounts correspond to the index of the signed token permissions array. /// @dev Reverts if the requested amount is greater than the permitted signed amount. struct SignatureTransferDetails { // recipient address address to; // spender requested amount uint256 requestedAmount; } /// @notice Used to reconstruct the signed permit message for multiple token transfers /// @dev Do not need to pass in spender address as it is required that it is msg.sender /// @dev Note that a user still signs over a spender address struct PermitBatchTransferFrom { // the tokens and corresponding amounts permitted for a transfer TokenPermissions[] permitted; // a unique value for every token owner's signature to prevent signature replays uint256 nonce; // deadline on the permit signature uint256 deadline; } /// @notice A map from token owner address and a caller specified word index to a bitmap. Used to set bits in the bitmap to prevent against signature replay protection /// @dev Uses unordered nonces so that permit messages do not need to be spent in a certain order /// @dev The mapping is indexed first by the token owner, then by an index specified in the nonce /// @dev It returns a uint256 bitmap /// @dev The index, or wordPosition is capped at type(uint248).max function nonceBitmap(address, uint256) external view returns (uint256); /// @notice Transfers a token using a signed permit message /// @dev Reverts if the requested amount is greater than the permitted signed amount /// @param permit The permit data signed over by the owner /// @param owner The owner of the tokens to transfer /// @param transferDetails The spender's requested transfer details for the permitted token /// @param signature The signature to verify function permitTransferFrom( PermitTransferFrom memory permit, SignatureTransferDetails calldata transferDetails, address owner, bytes calldata signature ) external; /// @notice Transfers a token using a signed permit message /// @notice Includes extra data provided by the caller to verify signature over /// @dev The witness type string must follow EIP712 ordering of nested structs and must include the TokenPermissions type definition /// @dev Reverts if the requested amount is greater than the permitted signed amount /// @param permit The permit data signed over by the owner /// @param owner The owner of the tokens to transfer /// @param transferDetails The spender's requested transfer details for the permitted token /// @param witness Extra data to include when checking the user signature /// @param witnessTypeString The EIP-712 type definition for remaining string stub of the typehash /// @param signature The signature to verify function permitWitnessTransferFrom( PermitTransferFrom memory permit, SignatureTransferDetails calldata transferDetails, address owner, bytes32 witness, string calldata witnessTypeString, bytes calldata signature ) external; /// @notice Transfers multiple tokens using a signed permit message /// @param permit The permit data signed over by the owner /// @param owner The owner of the tokens to transfer /// @param transferDetails Specifies the recipient and requested amount for the token transfer /// @param signature The signature to verify function permitTransferFrom( PermitBatchTransferFrom memory permit, SignatureTransferDetails[] calldata transferDetails, address owner, bytes calldata signature ) external; /// @notice Transfers multiple tokens using a signed permit message /// @dev The witness type string must follow EIP712 ordering of nested structs and must include the TokenPermissions type definition /// @notice Includes extra data provided by the caller to verify signature over /// @param permit The permit data signed over by the owner /// @param owner The owner of the tokens to transfer /// @param transferDetails Specifies the recipient and requested amount for the token transfer /// @param witness Extra data to include when checking the user signature /// @param witnessTypeString The EIP-712 type definition for remaining string stub of the typehash /// @param signature The signature to verify function permitWitnessTransferFrom( PermitBatchTransferFrom memory permit, SignatureTransferDetails[] calldata transferDetails, address owner, bytes32 witness, string calldata witnessTypeString, bytes calldata signature ) external; /// @notice Invalidates the bits specified in mask for the bitmap at the word position /// @dev The wordPos is maxed at type(uint248).max /// @param wordPos A number to index the nonceBitmap at /// @param mask A bitmap masked against msg.sender's current bitmap at the word position function invalidateUnorderedNonces(uint256 wordPos, uint256 mask) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; library SafeCast160 { /// @notice Thrown when a valude greater than type(uint160).max is cast to uint160 error UnsafeCast(); /// @notice Safely casts uint256 to uint160 /// @param value The uint256 to be cast function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) revert UnsafeCast(); return uint160(value); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {BitMath} from "./BitMath.sol"; import {CustomRevert} from "./CustomRevert.sol"; /// @title Math library for computing sqrt prices from ticks and vice versa /// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports /// prices between 2**-128 and 2**128 library TickMath { using CustomRevert for bytes4; /// @notice Thrown when the tick passed to #getSqrtPriceAtTick is not between MIN_TICK and MAX_TICK error InvalidTick(int24 tick); /// @notice Thrown when the price passed to #getTickAtSqrtPrice does not correspond to a price between MIN_TICK and MAX_TICK error InvalidSqrtPrice(uint160 sqrtPriceX96); /// @dev The minimum tick that may be passed to #getSqrtPriceAtTick computed from log base 1.0001 of 2**-128 /// @dev If ever MIN_TICK and MAX_TICK are not centered around 0, the absTick logic in getSqrtPriceAtTick cannot be used int24 internal constant MIN_TICK = -887272; /// @dev The maximum tick that may be passed to #getSqrtPriceAtTick computed from log base 1.0001 of 2**128 /// @dev If ever MIN_TICK and MAX_TICK are not centered around 0, the absTick logic in getSqrtPriceAtTick cannot be used int24 internal constant MAX_TICK = 887272; /// @dev The minimum tick spacing value drawn from the range of type int16 that is greater than 0, i.e. min from the range [1, 32767] int24 internal constant MIN_TICK_SPACING = 1; /// @dev The maximum tick spacing value drawn from the range of type int16, i.e. max from the range [1, 32767] int24 internal constant MAX_TICK_SPACING = type(int16).max; /// @dev The minimum value that can be returned from #getSqrtPriceAtTick. Equivalent to getSqrtPriceAtTick(MIN_TICK) uint160 internal constant MIN_SQRT_PRICE = 4295128739; /// @dev The maximum value that can be returned from #getSqrtPriceAtTick. Equivalent to getSqrtPriceAtTick(MAX_TICK) uint160 internal constant MAX_SQRT_PRICE = 1461446703485210103287273052203988822378723970342; /// @dev A threshold used for optimized bounds check, equals `MAX_SQRT_PRICE - MIN_SQRT_PRICE - 1` uint160 internal constant MAX_SQRT_PRICE_MINUS_MIN_SQRT_PRICE_MINUS_ONE = 1461446703485210103287273052203988822378723970342 - 4295128739 - 1; /// @notice Given a tickSpacing, compute the maximum usable tick function maxUsableTick(int24 tickSpacing) internal pure returns (int24) { unchecked { return (MAX_TICK / tickSpacing) * tickSpacing; } } /// @notice Given a tickSpacing, compute the minimum usable tick function minUsableTick(int24 tickSpacing) internal pure returns (int24) { unchecked { return (MIN_TICK / tickSpacing) * tickSpacing; } } /// @notice Calculates sqrt(1.0001^tick) * 2^96 /// @dev Throws if |tick| > max tick /// @param tick The input tick for the above formula /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the price of the two assets (currency1/currency0) /// at the given tick function getSqrtPriceAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) { unchecked { uint256 absTick; assembly ("memory-safe") { tick := signextend(2, tick) // mask = 0 if tick >= 0 else -1 (all 1s) let mask := sar(255, tick) // if tick >= 0, |tick| = tick = 0 ^ tick // if tick < 0, |tick| = ~~|tick| = ~(-|tick| - 1) = ~(tick - 1) = (-1) ^ (tick - 1) // either way, |tick| = mask ^ (tick + mask) absTick := xor(mask, add(mask, tick)) } if (absTick > uint256(int256(MAX_TICK))) InvalidTick.selector.revertWith(tick); // The tick is decomposed into bits, and for each bit with index i that is set, the product of 1/sqrt(1.0001^(2^i)) // is calculated (using Q128.128). The constants used for this calculation are rounded to the nearest integer // Equivalent to: // price = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000; // or price = int(2**128 / sqrt(1.0001)) if (absTick & 0x1) else 1 << 128 uint256 price; assembly ("memory-safe") { price := xor(shl(128, 1), mul(xor(shl(128, 1), 0xfffcb933bd6fad37aa2d162d1a594001), and(absTick, 0x1))) } if (absTick & 0x2 != 0) price = (price * 0xfff97272373d413259a46990580e213a) >> 128; if (absTick & 0x4 != 0) price = (price * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128; if (absTick & 0x8 != 0) price = (price * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128; if (absTick & 0x10 != 0) price = (price * 0xffcb9843d60f6159c9db58835c926644) >> 128; if (absTick & 0x20 != 0) price = (price * 0xff973b41fa98c081472e6896dfb254c0) >> 128; if (absTick & 0x40 != 0) price = (price * 0xff2ea16466c96a3843ec78b326b52861) >> 128; if (absTick & 0x80 != 0) price = (price * 0xfe5dee046a99a2a811c461f1969c3053) >> 128; if (absTick & 0x100 != 0) price = (price * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128; if (absTick & 0x200 != 0) price = (price * 0xf987a7253ac413176f2b074cf7815e54) >> 128; if (absTick & 0x400 != 0) price = (price * 0xf3392b0822b70005940c7a398e4b70f3) >> 128; if (absTick & 0x800 != 0) price = (price * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128; if (absTick & 0x1000 != 0) price = (price * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128; if (absTick & 0x2000 != 0) price = (price * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128; if (absTick & 0x4000 != 0) price = (price * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128; if (absTick & 0x8000 != 0) price = (price * 0x31be135f97d08fd981231505542fcfa6) >> 128; if (absTick & 0x10000 != 0) price = (price * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128; if (absTick & 0x20000 != 0) price = (price * 0x5d6af8dedb81196699c329225ee604) >> 128; if (absTick & 0x40000 != 0) price = (price * 0x2216e584f5fa1ea926041bedfe98) >> 128; if (absTick & 0x80000 != 0) price = (price * 0x48a170391f7dc42444e8fa2) >> 128; assembly ("memory-safe") { // if (tick > 0) price = type(uint256).max / price; if sgt(tick, 0) { price := div(not(0), price) } // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96. // we then downcast because we know the result always fits within 160 bits due to our tick input constraint // we round up in the division so getTickAtSqrtPrice of the output price is always consistent // `sub(shl(32, 1), 1)` is `type(uint32).max` // `price + type(uint32).max` will not overflow because `price` fits in 192 bits sqrtPriceX96 := shr(32, add(price, sub(shl(32, 1), 1))) } } } /// @notice Calculates the greatest tick value such that getSqrtPriceAtTick(tick) <= sqrtPriceX96 /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_PRICE, as MIN_SQRT_PRICE is the lowest value getSqrtPriceAtTick may /// ever return. /// @param sqrtPriceX96 The sqrt price for which to compute the tick as a Q64.96 /// @return tick The greatest tick for which the getSqrtPriceAtTick(tick) is less than or equal to the input sqrtPriceX96 function getTickAtSqrtPrice(uint160 sqrtPriceX96) internal pure returns (int24 tick) { unchecked { // Equivalent: if (sqrtPriceX96 < MIN_SQRT_PRICE || sqrtPriceX96 >= MAX_SQRT_PRICE) revert InvalidSqrtPrice(); // second inequality must be >= because the price can never reach the price at the max tick // if sqrtPriceX96 < MIN_SQRT_PRICE, the `sub` underflows and `gt` is true // if sqrtPriceX96 >= MAX_SQRT_PRICE, sqrtPriceX96 - MIN_SQRT_PRICE > MAX_SQRT_PRICE - MIN_SQRT_PRICE - 1 if ((sqrtPriceX96 - MIN_SQRT_PRICE) > MAX_SQRT_PRICE_MINUS_MIN_SQRT_PRICE_MINUS_ONE) { InvalidSqrtPrice.selector.revertWith(sqrtPriceX96); } uint256 price = uint256(sqrtPriceX96) << 32; uint256 r = price; uint256 msb = BitMath.mostSignificantBit(r); if (msb >= 128) r = price >> (msb - 127); else r = price << (127 - msb); int256 log_2 = (int256(msb) - 128) << 64; assembly ("memory-safe") { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(63, f)) r := shr(f, r) } assembly ("memory-safe") { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(62, f)) r := shr(f, r) } assembly ("memory-safe") { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(61, f)) r := shr(f, r) } assembly ("memory-safe") { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(60, f)) r := shr(f, r) } assembly ("memory-safe") { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(59, f)) r := shr(f, r) } assembly ("memory-safe") { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(58, f)) r := shr(f, r) } assembly ("memory-safe") { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(57, f)) r := shr(f, r) } assembly ("memory-safe") { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(56, f)) r := shr(f, r) } assembly ("memory-safe") { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(55, f)) r := shr(f, r) } assembly ("memory-safe") { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(54, f)) r := shr(f, r) } assembly ("memory-safe") { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(53, f)) r := shr(f, r) } assembly ("memory-safe") { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(52, f)) r := shr(f, r) } assembly ("memory-safe") { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(51, f)) r := shr(f, r) } assembly ("memory-safe") { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(50, f)) } int256 log_sqrt10001 = log_2 * 255738958999603826347141; // Q22.128 number // Magic number represents the ceiling of the maximum value of the error when approximating log_sqrt10001(x) int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128); // Magic number represents the minimum value of the error when approximating log_sqrt10001(x), when // sqrtPrice is from the range (2^-64, 2^64). This is safe as MIN_SQRT_PRICE is more than 2^-64. If MIN_SQRT_PRICE // is changed, this may need to be changed too int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128); tick = tickLow == tickHi ? tickLow : getSqrtPriceAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow; } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {CustomRevert} from "./CustomRevert.sol"; /// @title Safe casting methods /// @notice Contains methods for safely casting between types library SafeCast { using CustomRevert for bytes4; error SafeCastOverflow(); /// @notice Cast a uint256 to a uint160, revert on overflow /// @param x The uint256 to be downcasted /// @return y The downcasted integer, now type uint160 function toUint160(uint256 x) internal pure returns (uint160 y) { y = uint160(x); if (y != x) SafeCastOverflow.selector.revertWith(); } /// @notice Cast a uint256 to a uint128, revert on overflow /// @param x The uint256 to be downcasted /// @return y The downcasted integer, now type uint128 function toUint128(uint256 x) internal pure returns (uint128 y) { y = uint128(x); if (x != y) SafeCastOverflow.selector.revertWith(); } /// @notice Cast a int128 to a uint128, revert on overflow or underflow /// @param x The int128 to be casted /// @return y The casted integer, now type uint128 function toUint128(int128 x) internal pure returns (uint128 y) { if (x < 0) SafeCastOverflow.selector.revertWith(); y = uint128(x); } /// @notice Cast a int256 to a int128, revert on overflow or underflow /// @param x The int256 to be downcasted /// @return y The downcasted integer, now type int128 function toInt128(int256 x) internal pure returns (int128 y) { y = int128(x); if (y != x) SafeCastOverflow.selector.revertWith(); } /// @notice Cast a uint256 to a int256, revert on overflow /// @param x The uint256 to be casted /// @return y The casted integer, now type int256 function toInt256(uint256 x) internal pure returns (int256 y) { y = int256(x); if (y < 0) SafeCastOverflow.selector.revertWith(); } /// @notice Cast a uint256 to a int128, revert on overflow /// @param x The uint256 to be downcasted /// @return The downcasted integer, now type int128 function toInt128(uint256 x) internal pure returns (int128) { if (x >= 1 << 127) SafeCastOverflow.selector.revertWith(); return int128(int256(x)); } } //SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {Currency} from "@uniswap/v4-core/src/types/Currency.sol"; import {IHooks} from "@uniswap/v4-core/src/interfaces/IHooks.sol"; import {PoolKey} from "@uniswap/v4-core/src/types/PoolKey.sol"; struct PathKey { Currency intermediateCurrency; uint24 fee; int24 tickSpacing; IHooks hooks; bytes hookData; } using PathKeyLibrary for PathKey global; /// @title PathKey Library /// @notice Functions for working with PathKeys library PathKeyLibrary { /// @notice Get the pool and swap direction for a given PathKey /// @param params the given PathKey /// @param currencyIn the input currency /// @return poolKey the pool key of the swap /// @return zeroForOne the direction of the swap, true if currency0 is being swapped for currency1 function getPoolAndSwapDirection(PathKey calldata params, Currency currencyIn) internal pure returns (PoolKey memory poolKey, bool zeroForOne) { Currency currencyOut = params.intermediateCurrency; (Currency currency0, Currency currency1) = currencyIn < currencyOut ? (currencyIn, currencyOut) : (currencyOut, currencyIn); zeroForOne = currencyIn == currency0; poolKey = PoolKey(currency0, currency1, params.fee, params.tickSpacing, params.hooks); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {IPoolManager} from "@uniswap/v4-core/src/interfaces/IPoolManager.sol"; import {SafeCallback} from "./SafeCallback.sol"; import {CalldataDecoder} from "../libraries/CalldataDecoder.sol"; import {ActionConstants} from "../libraries/ActionConstants.sol"; /// @notice Abstract contract for performing a combination of actions on Uniswap v4. /// @dev Suggested uint256 action values are defined in Actions.sol, however any definition can be used abstract contract BaseActionsRouter is SafeCallback { using CalldataDecoder for bytes; /// @notice emitted when different numbers of parameters and actions are provided error InputLengthMismatch(); /// @notice emitted when an inheriting contract does not support an action error UnsupportedAction(uint256 action); constructor(IPoolManager _poolManager) SafeCallback(_poolManager) {} /// @notice internal function that triggers the execution of a set of actions on v4 /// @dev inheriting contracts should call this function to trigger execution function _executeActions(bytes calldata unlockData) internal { poolManager.unlock(unlockData); } /// @notice function that is called by the PoolManager through the SafeCallback.unlockCallback /// @param data Abi encoding of (bytes actions, bytes[] params) /// where params[i] is the encoded parameters for actions[i] function _unlockCallback(bytes calldata data) internal override returns (bytes memory) { // abi.decode(data, (bytes, bytes[])); (bytes calldata actions, bytes[] calldata params) = data.decodeActionsRouterParams(); _executeActionsWithoutUnlock(actions, params); return ""; } function _executeActionsWithoutUnlock(bytes calldata actions, bytes[] calldata params) internal { uint256 numActions = actions.length; if (numActions != params.length) revert InputLengthMismatch(); for (uint256 actionIndex = 0; actionIndex < numActions; actionIndex++) { uint256 action = uint8(actions[actionIndex]); _handleAction(action, params[actionIndex]); } } /// @notice function to handle the parsing and execution of an action and its parameters function _handleAction(uint256 action, bytes calldata params) internal virtual; /// @notice function that returns address considered executor of the actions /// @dev The other context functions, _msgData and _msgValue, are not supported by this contract /// In many contracts this will be the address that calls the initial entry point that calls `_executeActions` /// `msg.sender` shouldn't be used, as this will be the v4 pool manager contract that calls `unlockCallback` /// If using ReentrancyLock.sol, this function can return _getLocker() function msgSender() public view virtual returns (address); /// @notice Calculates the address for a action function _mapRecipient(address recipient) internal view returns (address) { if (recipient == ActionConstants.MSG_SENDER) { return msgSender(); } else if (recipient == ActionConstants.ADDRESS_THIS) { return address(this); } else { return recipient; } } /// @notice Calculates the payer for an action function _mapPayer(bool payerIsUser) internal view returns (address) { return payerIsUser ? msgSender() : address(this); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.24; import {Currency} from "@uniswap/v4-core/src/types/Currency.sol"; import {TransientStateLibrary} from "@uniswap/v4-core/src/libraries/TransientStateLibrary.sol"; import {IPoolManager} from "@uniswap/v4-core/src/interfaces/IPoolManager.sol"; import {ImmutableState} from "./ImmutableState.sol"; import {ActionConstants} from "../libraries/ActionConstants.sol"; /// @notice Abstract contract used to sync, send, and settle funds to the pool manager /// @dev Note that sync() is called before any erc-20 transfer in `settle`. abstract contract DeltaResolver is ImmutableState { using TransientStateLibrary for IPoolManager; /// @notice Emitted trying to settle a positive delta. error DeltaNotPositive(Currency currency); /// @notice Emitted trying to take a negative delta. error DeltaNotNegative(Currency currency); /// @notice Emitted when the contract does not have enough balance to wrap or unwrap. error InsufficientBalance(); /// @notice Take an amount of currency out of the PoolManager /// @param currency Currency to take /// @param recipient Address to receive the currency /// @param amount Amount to take /// @dev Returns early if the amount is 0 function _take(Currency currency, address recipient, uint256 amount) internal { if (amount == 0) return; poolManager.take(currency, recipient, amount); } /// @notice Pay and settle a currency to the PoolManager /// @dev The implementing contract must ensure that the `payer` is a secure address /// @param currency Currency to settle /// @param payer Address of the payer /// @param amount Amount to send /// @dev Returns early if the amount is 0 function _settle(Currency currency, address payer, uint256 amount) internal { if (amount == 0) return; poolManager.sync(currency); if (currency.isAddressZero()) { poolManager.settle{value: amount}(); } else { _pay(currency, payer, amount); poolManager.settle(); } } /// @notice Abstract function for contracts to implement paying tokens to the poolManager /// @dev The recipient of the payment should be the poolManager /// @param token The token to settle. This is known not to be the native currency /// @param payer The address who should pay tokens /// @param amount The number of tokens to send function _pay(Currency token, address payer, uint256 amount) internal virtual; /// @notice Obtain the full amount owed by this contract (negative delta) /// @param currency Currency to get the delta for /// @return amount The amount owed by this contract as a uint256 function _getFullDebt(Currency currency) internal view returns (uint256 amount) { int256 _amount = poolManager.currencyDelta(address(this), currency); // If the amount is positive, it should be taken not settled. if (_amount > 0) revert DeltaNotNegative(currency); // Casting is safe due to limits on the total supply of a pool amount = uint256(-_amount); } /// @notice Obtain the full credit owed to this contract (positive delta) /// @param currency Currency to get the delta for /// @return amount The amount owed to this contract as a uint256 function _getFullCredit(Currency currency) internal view returns (uint256 amount) { int256 _amount = poolManager.currencyDelta(address(this), currency); // If the amount is negative, it should be settled not taken. if (_amount < 0) revert DeltaNotPositive(currency); amount = uint256(_amount); } /// @notice Calculates the amount for a settle action function _mapSettleAmount(uint256 amount, Currency currency) internal view returns (uint256) { if (amount == ActionConstants.CONTRACT_BALANCE) { return currency.balanceOfSelf(); } else if (amount == ActionConstants.OPEN_DELTA) { return _getFullDebt(currency); } else { return amount; } } /// @notice Calculates the amount for a take action function _mapTakeAmount(uint256 amount, Currency currency) internal view returns (uint256) { if (amount == ActionConstants.OPEN_DELTA) { return _getFullCredit(currency); } else { return amount; } } /// @notice Calculates the sanitized amount before wrapping/unwrapping. /// @param inputCurrency The currency, either native or wrapped native, that this contract holds /// @param amount The amount to wrap or unwrap. Can be CONTRACT_BALANCE, OPEN_DELTA or a specific amount /// @param outputCurrency The currency after the wrap/unwrap that the user may owe a balance in on the poolManager function _mapWrapUnwrapAmount(Currency inputCurrency, uint256 amount, Currency outputCurrency) internal view returns (uint256) { // if wrapping, the balance in this contract is in ETH // if unwrapping, the balance in this contract is in WETH uint256 balance = inputCurrency.balanceOf(address(this)); if (amount == ActionConstants.CONTRACT_BALANCE) { // return early to avoid unnecessary balance check return balance; } if (amount == ActionConstants.OPEN_DELTA) { // if wrapping, the open currency on the PoolManager is WETH. // if unwrapping, the open currency on the PoolManager is ETH. // note that we use the DEBT amount. Positive deltas can be taken and then wrapped. amount = _getFullDebt(outputCurrency); } if (amount > balance) revert InsufficientBalance(); return amount; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title Minimal ERC20 interface for Uniswap /// @notice Contains a subset of the full ERC20 interface that is used in Uniswap V3 interface IERC20Minimal { /// @notice Returns an account's balance in the token /// @param account The account for which to look up the number of tokens it has, i.e. its balance /// @return The number of tokens held by the account function balanceOf(address account) external view returns (uint256); /// @notice Transfers the amount of token from the `msg.sender` to the recipient /// @param recipient The account that will receive the amount transferred /// @param amount The number of tokens to send from the sender to the recipient /// @return Returns true for a successful transfer, false for an unsuccessful transfer function transfer(address recipient, uint256 amount) external returns (bool); /// @notice Returns the current allowance given to a spender by an owner /// @param owner The account of the token owner /// @param spender The account of the token spender /// @return The current allowance granted by `owner` to `spender` function allowance(address owner, address spender) external view returns (uint256); /// @notice Sets the allowance of a spender from the `msg.sender` to the value `amount` /// @param spender The account which will be allowed to spend a given amount of the owners tokens /// @param amount The amount of tokens allowed to be used by `spender` /// @return Returns true for a successful approval, false for unsuccessful function approve(address spender, uint256 amount) external returns (bool); /// @notice Transfers `amount` tokens from `sender` to `recipient` up to the allowance given to the `msg.sender` /// @param sender The account from which the transfer will be initiated /// @param recipient The recipient of the transfer /// @param amount The amount of the transfer /// @return Returns true for a successful transfer, false for unsuccessful function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /// @notice Event emitted when tokens are transferred from one address to another, either via `#transfer` or `#transferFrom`. /// @param from The account from which the tokens were sent, i.e. the balance decreased /// @param to The account to which the tokens were sent, i.e. the balance increased /// @param value The amount of tokens that were transferred event Transfer(address indexed from, address indexed to, uint256 value); /// @notice Event emitted when the approval amount for the spender of a given owner's tokens changes. /// @param owner The account that approved spending of its tokens /// @param spender The account for which the spending allowance was modified /// @param value The new allowance from the owner to the spender event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title Library for reverting with custom errors efficiently /// @notice Contains functions for reverting with custom errors with different argument types efficiently /// @dev To use this library, declare `using CustomRevert for bytes4;` and replace `revert CustomError()` with /// `CustomError.selector.revertWith()` /// @dev The functions may tamper with the free memory pointer but it is fine since the call context is exited immediately library CustomRevert { /// @dev ERC-7751 error for wrapping bubbled up reverts error WrappedError(address target, bytes4 selector, bytes reason, bytes details); /// @dev Reverts with the selector of a custom error in the scratch space function revertWith(bytes4 selector) internal pure { assembly ("memory-safe") { mstore(0, selector) revert(0, 0x04) } } /// @dev Reverts with a custom error with an address argument in the scratch space function revertWith(bytes4 selector, address addr) internal pure { assembly ("memory-safe") { mstore(0, selector) mstore(0x04, and(addr, 0xffffffffffffffffffffffffffffffffffffffff)) revert(0, 0x24) } } /// @dev Reverts with a custom error with an int24 argument in the scratch space function revertWith(bytes4 selector, int24 value) internal pure { assembly ("memory-safe") { mstore(0, selector) mstore(0x04, signextend(2, value)) revert(0, 0x24) } } /// @dev Reverts with a custom error with a uint160 argument in the scratch space function revertWith(bytes4 selector, uint160 value) internal pure { assembly ("memory-safe") { mstore(0, selector) mstore(0x04, and(value, 0xffffffffffffffffffffffffffffffffffffffff)) revert(0, 0x24) } } /// @dev Reverts with a custom error with two int24 arguments function revertWith(bytes4 selector, int24 value1, int24 value2) internal pure { assembly ("memory-safe") { let fmp := mload(0x40) mstore(fmp, selector) mstore(add(fmp, 0x04), signextend(2, value1)) mstore(add(fmp, 0x24), signextend(2, value2)) revert(fmp, 0x44) } } /// @dev Reverts with a custom error with two uint160 arguments function revertWith(bytes4 selector, uint160 value1, uint160 value2) internal pure { assembly ("memory-safe") { let fmp := mload(0x40) mstore(fmp, selector) mstore(add(fmp, 0x04), and(value1, 0xffffffffffffffffffffffffffffffffffffffff)) mstore(add(fmp, 0x24), and(value2, 0xffffffffffffffffffffffffffffffffffffffff)) revert(fmp, 0x44) } } /// @dev Reverts with a custom error with two address arguments function revertWith(bytes4 selector, address value1, address value2) internal pure { assembly ("memory-safe") { let fmp := mload(0x40) mstore(fmp, selector) mstore(add(fmp, 0x04), and(value1, 0xffffffffffffffffffffffffffffffffffffffff)) mstore(add(fmp, 0x24), and(value2, 0xffffffffffffffffffffffffffffffffffffffff)) revert(fmp, 0x44) } } /// @notice bubble up the revert message returned by a call and revert with a wrapped ERC-7751 error /// @dev this method can be vulnerable to revert data bombs function bubbleUpAndRevertWith( address revertingContract, bytes4 revertingFunctionSelector, bytes4 additionalContext ) internal pure { bytes4 wrappedErrorSelector = WrappedError.selector; assembly ("memory-safe") { // Ensure the size of the revert data is a multiple of 32 bytes let encodedDataSize := mul(div(add(returndatasize(), 31), 32), 32) let fmp := mload(0x40) // Encode wrapped error selector, address, function selector, offset, additional context, size, revert reason mstore(fmp, wrappedErrorSelector) mstore(add(fmp, 0x04), and(revertingContract, 0xffffffffffffffffffffffffffffffffffffffff)) mstore( add(fmp, 0x24), and(revertingFunctionSelector, 0xffffffff00000000000000000000000000000000000000000000000000000000) ) // offset revert reason mstore(add(fmp, 0x44), 0x80) // offset additional context mstore(add(fmp, 0x64), add(0xa0, encodedDataSize)) // size revert reason mstore(add(fmp, 0x84), returndatasize()) // revert reason returndatacopy(add(fmp, 0xa4), 0, returndatasize()) // size additional context mstore(add(fmp, add(0xa4, encodedDataSize)), 0x04) // additional context mstore( add(fmp, add(0xc4, encodedDataSize)), and(additionalContext, 0xffffffff00000000000000000000000000000000000000000000000000000000) ) revert(fmp, add(0xe4, encodedDataSize)) } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol) pragma solidity ^0.8.0; import "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional metadata extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Metadata is IERC721 { /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC721/extensions/IERC721Enumerable.sol) pragma solidity ^0.8.0; import "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Enumerable is IERC721 { /** * @dev Returns the total amount of tokens stored by the contract. */ function totalSupply() external view returns (uint256); /** * @dev Returns a token ID owned by `owner` at a given `index` of its token list. * Use along with {balanceOf} to enumerate all of ``owner``'s tokens. */ function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256); /** * @dev Returns a token ID at a given `index` of all the tokens stored by the contract. * Use along with {totalSupply} to enumerate all tokens. */ function tokenByIndex(uint256 index) external view returns (uint256); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.5; pragma abicoder v2; /// @title Creates and initializes V3 Pools /// @notice Provides a method for creating and initializing a pool, if necessary, for bundling with other methods that /// require the pool to exist. interface IPoolInitializer { /// @notice Creates a new pool if it does not exist, then initializes if not initialized /// @dev This method can be bundled with others via IMulticall for the first action (e.g. mint) performed against a pool /// @param token0 The contract address of token0 of the pool /// @param token1 The contract address of token1 of the pool /// @param fee The fee amount of the v3 pool for the specified token pair /// @param sqrtPriceX96 The initial square root price of the pool as a Q64.96 value /// @return pool Returns the pool address based on the pair of tokens and fee, will return the newly created pool address if necessary function createAndInitializePoolIfNecessary( address token0, address token1, uint24 fee, uint160 sqrtPriceX96 ) external payable returns (address pool); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.5; /// @title Periphery Payments /// @notice Functions to ease deposits and withdrawals of ETH interface IPeripheryPayments { /// @notice Unwraps the contract's WETH9 balance and sends it to recipient as ETH. /// @dev The amountMinimum parameter prevents malicious contracts from stealing WETH9 from users. /// @param amountMinimum The minimum amount of WETH9 to unwrap /// @param recipient The address receiving ETH function unwrapWETH9(uint256 amountMinimum, address recipient) external payable; /// @notice Refunds any ETH balance held by this contract to the `msg.sender` /// @dev Useful for bundling with mint or increase liquidity that uses ether, or exact output swaps /// that use ether for the input amount function refundETH() external payable; /// @notice Transfers the full amount of a token held by this contract to recipient /// @dev The amountMinimum parameter prevents malicious contracts from stealing the token from users /// @param token The contract address of the token which will be transferred to `recipient` /// @param amountMinimum The minimum amount of token required for a transfer /// @param recipient The destination address of the token function sweepToken( address token, uint256 amountMinimum, address recipient ) external payable; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Immutable state /// @notice Functions that return immutable state of the router interface IPeripheryImmutableState { /// @return Returns the address of the Uniswap V3 factory function factory() external view returns (address); /// @return Returns the address of WETH9 function WETH9() external view returns (address); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Provides functions for deriving a pool address from the factory, tokens, and the fee library PoolAddress { bytes32 internal constant POOL_INIT_CODE_HASH = 0xa598dd2fba360510c5a8f02f44423a4468e902df5857dbce3ca162a43a3a31ff; /// @notice The identifying key of the pool struct PoolKey { address token0; address token1; uint24 fee; } /// @notice Returns PoolKey: the ordered tokens with the matched fee levels /// @param tokenA The first token of a pool, unsorted /// @param tokenB The second token of a pool, unsorted /// @param fee The fee level of the pool /// @return Poolkey The pool details with ordered token0 and token1 assignments function getPoolKey( address tokenA, address tokenB, uint24 fee ) internal pure returns (PoolKey memory) { if (tokenA > tokenB) (tokenA, tokenB) = (tokenB, tokenA); return PoolKey({token0: tokenA, token1: tokenB, fee: fee}); } /// @notice Deterministically computes the pool address given the factory and PoolKey /// @param factory The Uniswap V3 factory contract address /// @param key The PoolKey /// @return pool The contract address of the V3 pool function computeAddress(address factory, PoolKey memory key) internal pure returns (address pool) { require(key.token0 < key.token1); pool = address( uint160( uint256( keccak256( abi.encodePacked( hex'ff', factory, keccak256(abi.encode(key.token0, key.token1, key.fee)), POOL_INIT_CODE_HASH ) ) ) ) ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.24; import {PoolKey} from "@uniswap/v4-core/src/types/PoolKey.sol"; import {PoolId} from "@uniswap/v4-core/src/types/PoolId.sol"; /** * @dev PositionInfo is a packed version of solidity structure. * Using the packaged version saves gas and memory by not storing the structure fields in memory slots. * * Layout: * 200 bits poolId | 24 bits tickUpper | 24 bits tickLower | 8 bits hasSubscriber * * Fields in the direction from the least significant bit: * * A flag to know if the tokenId is subscribed to an address * uint8 hasSubscriber; * * The tickUpper of the position * int24 tickUpper; * * The tickLower of the position * int24 tickLower; * * The truncated poolId. Truncates a bytes32 value so the most signifcant (highest) 200 bits are used. * bytes25 poolId; * * Note: If more bits are needed, hasSubscriber can be a single bit. * */ type PositionInfo is uint256; using PositionInfoLibrary for PositionInfo global; library PositionInfoLibrary { PositionInfo internal constant EMPTY_POSITION_INFO = PositionInfo.wrap(0); uint256 internal constant MASK_UPPER_200_BITS = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000000000; uint256 internal constant MASK_8_BITS = 0xFF; uint24 internal constant MASK_24_BITS = 0xFFFFFF; uint256 internal constant SET_UNSUBSCRIBE = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00; uint256 internal constant SET_SUBSCRIBE = 0x01; uint8 internal constant TICK_LOWER_OFFSET = 8; uint8 internal constant TICK_UPPER_OFFSET = 32; /// @dev This poolId is NOT compatible with the poolId used in UniswapV4 core. It is truncated to 25 bytes, and just used to lookup PoolKey in the poolKeys mapping. function poolId(PositionInfo info) internal pure returns (bytes25 _poolId) { assembly ("memory-safe") { _poolId := and(MASK_UPPER_200_BITS, info) } } function tickLower(PositionInfo info) internal pure returns (int24 _tickLower) { assembly ("memory-safe") { _tickLower := signextend(2, shr(TICK_LOWER_OFFSET, info)) } } function tickUpper(PositionInfo info) internal pure returns (int24 _tickUpper) { assembly ("memory-safe") { _tickUpper := signextend(2, shr(TICK_UPPER_OFFSET, info)) } } function hasSubscriber(PositionInfo info) internal pure returns (bool _hasSubscriber) { assembly ("memory-safe") { _hasSubscriber := and(MASK_8_BITS, info) } } /// @dev this does not actually set any storage function setSubscribe(PositionInfo info) internal pure returns (PositionInfo _info) { assembly ("memory-safe") { _info := or(info, SET_SUBSCRIBE) } } /// @dev this does not actually set any storage function setUnsubscribe(PositionInfo info) internal pure returns (PositionInfo _info) { assembly ("memory-safe") { _info := and(info, SET_UNSUBSCRIBE) } } /// @notice Creates the default PositionInfo struct /// @dev Called when minting a new position /// @param _poolKey the pool key of the position /// @param _tickLower the lower tick of the position /// @param _tickUpper the upper tick of the position /// @return info packed position info, with the truncated poolId and the hasSubscriber flag set to false function initialize(PoolKey memory _poolKey, int24 _tickLower, int24 _tickUpper) internal pure returns (PositionInfo info) { bytes25 _poolId = bytes25(PoolId.unwrap(_poolKey.toId())); assembly { info := or( or(and(MASK_UPPER_200_BITS, _poolId), shl(TICK_UPPER_OFFSET, and(MASK_24_BITS, _tickUpper))), shl(TICK_LOWER_OFFSET, and(MASK_24_BITS, _tickLower)) ) } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {ISubscriber} from "./ISubscriber.sol"; /// @title INotifier /// @notice Interface for the Notifier contract interface INotifier { /// @notice Thrown when unsubscribing without a subscriber error NotSubscribed(); /// @notice Thrown when a subscriber does not have code error NoCodeSubscriber(); /// @notice Thrown when a user specifies a gas limit too low to avoid valid unsubscribe notifications error GasLimitTooLow(); /// @notice Wraps the revert message of the subscriber contract on a reverting subscription error SubscriptionReverted(address subscriber, bytes reason); /// @notice Wraps the revert message of the subscriber contract on a reverting modify liquidity notification error ModifyLiquidityNotificationReverted(address subscriber, bytes reason); /// @notice Wraps the revert message of the subscriber contract on a reverting burn notification error BurnNotificationReverted(address subscriber, bytes reason); /// @notice Thrown when a tokenId already has a subscriber error AlreadySubscribed(uint256 tokenId, address subscriber); /// @notice Emitted on a successful call to subscribe event Subscription(uint256 indexed tokenId, address indexed subscriber); /// @notice Emitted on a successful call to unsubscribe event Unsubscription(uint256 indexed tokenId, address indexed subscriber); /// @notice Returns the subscriber for a respective position /// @param tokenId the ERC721 tokenId /// @return subscriber the subscriber contract function subscriber(uint256 tokenId) external view returns (ISubscriber subscriber); /// @notice Enables the subscriber to receive notifications for a respective position /// @param tokenId the ERC721 tokenId /// @param newSubscriber the address of the subscriber contract /// @param data caller-provided data that's forwarded to the subscriber contract /// @dev Calling subscribe when a position is already subscribed will revert /// @dev payable so it can be multicalled with NATIVE related actions /// @dev will revert if pool manager is locked function subscribe(uint256 tokenId, address newSubscriber, bytes calldata data) external payable; /// @notice Removes the subscriber from receiving notifications for a respective position /// @param tokenId the ERC721 tokenId /// @dev Callers must specify a high gas limit (remaining gas should be higher than unsubscriberGasLimit) such that the subscriber can be notified /// @dev payable so it can be multicalled with NATIVE related actions /// @dev Must always allow a user to unsubscribe. In the case of a malicious subscriber, a user can always unsubscribe safely, ensuring liquidity is always modifiable. /// @dev will revert if pool manager is locked function unsubscribe(uint256 tokenId) external payable; /// @notice Returns and determines the maximum allowable gas-used for notifying unsubscribe /// @return uint256 the maximum gas limit when notifying a subscriber's `notifyUnsubscribe` function function unsubscribeGasLimit() external view returns (uint256); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {IPoolManager} from "@uniswap/v4-core/src/interfaces/IPoolManager.sol"; /// @title IImmutableState /// @notice Interface for the ImmutableState contract interface IImmutableState { /// @notice The Uniswap v4 PoolManager contract function poolManager() external view returns (IPoolManager); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title IERC721Permit_v4 /// @notice Interface for the ERC721Permit_v4 contract interface IERC721Permit_v4 { error SignatureDeadlineExpired(); error NoSelfPermit(); error Unauthorized(); /// @notice Approve of a specific token ID for spending by spender via signature /// @param spender The account that is being approved /// @param tokenId The ID of the token that is being approved for spending /// @param deadline The deadline timestamp by which the call must be mined for the approve to work /// @param nonce a unique value, for an owner, to prevent replay attacks; an unordered nonce where the top 248 bits correspond to a word and the bottom 8 bits calculate the bit position of the word /// @param signature Concatenated data from a valid secp256k1 signature from the holder, i.e. abi.encodePacked(r, s, v) /// @dev payable so it can be multicalled with NATIVE related actions function permit(address spender, uint256 tokenId, uint256 deadline, uint256 nonce, bytes calldata signature) external payable; /// @notice Set an operator with full permission to an owner's tokens via signature /// @param owner The address that is setting the operator /// @param operator The address that will be set as an operator for the owner /// @param approved The permission to set on the operator /// @param deadline The deadline timestamp by which the call must be mined for the approve to work /// @param nonce a unique value, for an owner, to prevent replay attacks; an unordered nonce where the top 248 bits correspond to a word and the bottom 8 bits calculate the bit position of the word /// @param signature Concatenated data from a valid secp256k1 signature from the holder, i.e. abi.encodePacked(r, s, v) /// @dev payable so it can be multicalled with NATIVE related actions function permitForAll( address owner, address operator, bool approved, uint256 deadline, uint256 nonce, bytes calldata signature ) external payable; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title IEIP712_v4 /// @notice Interface for the EIP712 contract interface IEIP712_v4 { /// @notice Returns the domain separator for the current chain. /// @return bytes32 The domain separator function DOMAIN_SEPARATOR() external view returns (bytes32); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title IMulticall_v4 /// @notice Interface for the Multicall_v4 contract interface IMulticall_v4 { /// @notice Call multiple functions in the current contract and return the data from all of them if they all succeed /// @dev The `msg.value` is passed onto all subcalls, even if a previous subcall has consumed the ether. /// Subcalls can instead use `address(this).value` to see the available ETH, and consume it using {value: x}. /// @param data The encoded function data for each of the calls to make to this contract /// @return results The results from each of the calls passed in via data function multicall(bytes[] calldata data) external payable returns (bytes[] memory results); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {PoolKey} from "@uniswap/v4-core/src/types/PoolKey.sol"; /// @title IPoolInitializer_v4 /// @notice Interface for the PoolInitializer_v4 contract interface IPoolInitializer_v4 { /// @notice Initialize a Uniswap v4 Pool /// @dev If the pool is already initialized, this function will not revert and just return type(int24).max /// @param key The PoolKey of the pool to initialize /// @param sqrtPriceX96 The initial starting price of the pool, expressed as a sqrtPriceX96 /// @return The current tick of the pool, or type(int24).max if the pool creation failed, or the pool already existed function initializePool(PoolKey calldata key, uint160 sqrtPriceX96) external payable returns (int24); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title IUnorderedNonce /// @notice Interface for the UnorderedNonce contract interface IUnorderedNonce { error NonceAlreadyUsed(); /// @notice mapping of nonces consumed by each address, where a nonce is a single bit on the 256-bit bitmap /// @dev word is at most type(uint248).max function nonces(address owner, uint256 word) external view returns (uint256); /// @notice Revoke a nonce by spending it, preventing it from being used again /// @dev Used in cases where a valid nonce has not been broadcasted onchain, and the owner wants to revoke the validity of the nonce /// @dev payable so it can be multicalled with native-token related actions function revokeNonce(uint256 nonce) external payable; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {IAllowanceTransfer} from "permit2/src/interfaces/IAllowanceTransfer.sol"; /// @title IPermit2Forwarder /// @notice Interface for the Permit2Forwarder contract interface IPermit2Forwarder { /// @notice allows forwarding a single permit to permit2 /// @dev this function is payable to allow multicall with NATIVE based actions /// @param owner the owner of the tokens /// @param permitSingle the permit data /// @param signature the signature of the permit; abi.encodePacked(r, s, v) /// @return err the error returned by a reverting permit call, empty if successful function permit(address owner, IAllowanceTransfer.PermitSingle calldata permitSingle, bytes calldata signature) external payable returns (bytes memory err); /// @notice allows forwarding batch permits to permit2 /// @dev this function is payable to allow multicall with NATIVE based actions /// @param owner the owner of the tokens /// @param _permitBatch a batch of approvals /// @param signature the signature of the permit; abi.encodePacked(r, s, v) /// @return err the error returned by a reverting permit call, empty if successful function permitBatch(address owner, IAllowanceTransfer.PermitBatch calldata _permitBatch, bytes calldata signature) external payable returns (bytes memory err); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Pool state that never changes /// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values interface IUniswapV3PoolImmutables { /// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface /// @return The contract address function factory() external view returns (address); /// @notice The first of the two tokens of the pool, sorted by address /// @return The token contract address function token0() external view returns (address); /// @notice The second of the two tokens of the pool, sorted by address /// @return The token contract address function token1() external view returns (address); /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6 /// @return The fee function fee() external view returns (uint24); /// @notice The pool tick spacing /// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive /// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ... /// This value is an int24 to avoid casting even though it is always positive. /// @return The tick spacing function tickSpacing() external view returns (int24); /// @notice The maximum amount of position liquidity that can use any tick in the range /// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and /// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool /// @return The max amount of liquidity per tick function maxLiquidityPerTick() external view returns (uint128); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Pool state that can change /// @notice These methods compose the pool's state, and can change with any frequency including multiple times /// per transaction interface IUniswapV3PoolState { /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas /// when accessed externally. /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value /// tick The current tick of the pool, i.e. according to the last tick transition that was run. /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick /// boundary. /// observationIndex The index of the last oracle observation that was written, /// observationCardinality The current maximum number of observations stored in the pool, /// observationCardinalityNext The next maximum number of observations, to be updated when the observation. /// feeProtocol The protocol fee for both tokens of the pool. /// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0 /// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee. /// unlocked Whether the pool is currently locked to reentrancy function slot0() external view returns ( uint160 sqrtPriceX96, int24 tick, uint16 observationIndex, uint16 observationCardinality, uint16 observationCardinalityNext, uint8 feeProtocol, bool unlocked ); /// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool /// @dev This value can overflow the uint256 function feeGrowthGlobal0X128() external view returns (uint256); /// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool /// @dev This value can overflow the uint256 function feeGrowthGlobal1X128() external view returns (uint256); /// @notice The amounts of token0 and token1 that are owed to the protocol /// @dev Protocol fees will never exceed uint128 max in either token function protocolFees() external view returns (uint128 token0, uint128 token1); /// @notice The currently in range liquidity available to the pool /// @dev This value has no relationship to the total liquidity across all ticks function liquidity() external view returns (uint128); /// @notice Look up information about a specific tick in the pool /// @param tick The tick to look up /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or /// tick upper, /// liquidityNet how much liquidity changes when the pool price crosses the tick, /// feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0, /// feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1, /// tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick /// secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick, /// secondsOutside the seconds spent on the other side of the tick from the current tick, /// initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false. /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0. /// In addition, these values are only relative and must be used only in comparison to previous snapshots for /// a specific position. function ticks(int24 tick) external view returns ( uint128 liquidityGross, int128 liquidityNet, uint256 feeGrowthOutside0X128, uint256 feeGrowthOutside1X128, int56 tickCumulativeOutside, uint160 secondsPerLiquidityOutsideX128, uint32 secondsOutside, bool initialized ); /// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information function tickBitmap(int16 wordPosition) external view returns (uint256); /// @notice Returns the information about a position by the position's key /// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper /// @return _liquidity The amount of liquidity in the position, /// Returns feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke, /// Returns feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke, /// Returns tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke, /// Returns tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke function positions(bytes32 key) external view returns ( uint128 _liquidity, uint256 feeGrowthInside0LastX128, uint256 feeGrowthInside1LastX128, uint128 tokensOwed0, uint128 tokensOwed1 ); /// @notice Returns data about a specific observation index /// @param index The element of the observations array to fetch /// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time /// ago, rather than at a specific index in the array. /// @return blockTimestamp The timestamp of the observation, /// Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp, /// Returns secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp, /// Returns initialized whether the observation has been initialized and the values are safe to use function observations(uint256 index) external view returns ( uint32 blockTimestamp, int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128, bool initialized ); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Pool state that is not stored /// @notice Contains view functions to provide information about the pool that is computed rather than stored on the /// blockchain. The functions here may have variable gas costs. interface IUniswapV3PoolDerivedState { /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick, /// you must call it with secondsAgos = [3600, 0]. /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio. /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block /// timestamp function observe(uint32[] calldata secondsAgos) external view returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s); /// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range /// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed. /// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first /// snapshot is taken and the second snapshot is taken. /// @param tickLower The lower tick of the range /// @param tickUpper The upper tick of the range /// @return tickCumulativeInside The snapshot of the tick accumulator for the range /// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range /// @return secondsInside The snapshot of seconds per liquidity for the range function snapshotCumulativesInside(int24 tickLower, int24 tickUpper) external view returns ( int56 tickCumulativeInside, uint160 secondsPerLiquidityInsideX128, uint32 secondsInside ); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Permissionless pool actions /// @notice Contains pool methods that can be called by anyone interface IUniswapV3PoolActions { /// @notice Sets the initial price for the pool /// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value /// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96 function initialize(uint160 sqrtPriceX96) external; /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position /// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback /// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends /// on tickLower, tickUpper, the amount of liquidity, and the current price. /// @param recipient The address for which the liquidity will be created /// @param tickLower The lower tick of the position in which to add liquidity /// @param tickUpper The upper tick of the position in which to add liquidity /// @param amount The amount of liquidity to mint /// @param data Any data that should be passed through to the callback /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback function mint( address recipient, int24 tickLower, int24 tickUpper, uint128 amount, bytes calldata data ) external returns (uint256 amount0, uint256 amount1); /// @notice Collects tokens owed to a position /// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity. /// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or /// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the /// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity. /// @param recipient The address which should receive the fees collected /// @param tickLower The lower tick of the position for which to collect fees /// @param tickUpper The upper tick of the position for which to collect fees /// @param amount0Requested How much token0 should be withdrawn from the fees owed /// @param amount1Requested How much token1 should be withdrawn from the fees owed /// @return amount0 The amount of fees collected in token0 /// @return amount1 The amount of fees collected in token1 function collect( address recipient, int24 tickLower, int24 tickUpper, uint128 amount0Requested, uint128 amount1Requested ) external returns (uint128 amount0, uint128 amount1); /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position /// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0 /// @dev Fees must be collected separately via a call to #collect /// @param tickLower The lower tick of the position for which to burn liquidity /// @param tickUpper The upper tick of the position for which to burn liquidity /// @param amount How much liquidity to burn /// @return amount0 The amount of token0 sent to the recipient /// @return amount1 The amount of token1 sent to the recipient function burn( int24 tickLower, int24 tickUpper, uint128 amount ) external returns (uint256 amount0, uint256 amount1); /// @notice Swap token0 for token1, or token1 for token0 /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback /// @param recipient The address to receive the output of the swap /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0 /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative) /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this /// value after the swap. If one for zero, the price cannot be greater than this value after the swap /// @param data Any data to be passed through to the callback /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive function swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96, bytes calldata data ) external returns (int256 amount0, int256 amount1); /// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback /// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback /// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling /// with 0 amount{0,1} and sending the donation amount(s) from the callback /// @param recipient The address which will receive the token0 and token1 amounts /// @param amount0 The amount of token0 to send /// @param amount1 The amount of token1 to send /// @param data Any data to be passed through to the callback function flash( address recipient, uint256 amount0, uint256 amount1, bytes calldata data ) external; /// @notice Increase the maximum number of price and liquidity observations that this pool will store /// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to /// the input observationCardinalityNext. /// @param observationCardinalityNext The desired minimum number of observations for the pool to store function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Permissioned pool actions /// @notice Contains pool methods that may only be called by the factory owner interface IUniswapV3PoolOwnerActions { /// @notice Set the denominator of the protocol's % share of the fees /// @param feeProtocol0 new protocol fee for token0 of the pool /// @param feeProtocol1 new protocol fee for token1 of the pool function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external; /// @notice Collect the protocol fee accrued to the pool /// @param recipient The address to which collected protocol fees should be sent /// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1 /// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0 /// @return amount0 The protocol fee collected in token0 /// @return amount1 The protocol fee collected in token1 function collectProtocol( address recipient, uint128 amount0Requested, uint128 amount1Requested ) external returns (uint128 amount0, uint128 amount1); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Events emitted by a pool /// @notice Contains all events emitted by the pool interface IUniswapV3PoolEvents { /// @notice Emitted exactly once by a pool when #initialize is first called on the pool /// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize /// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96 /// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool event Initialize(uint160 sqrtPriceX96, int24 tick); /// @notice Emitted when liquidity is minted for a given position /// @param sender The address that minted the liquidity /// @param owner The owner of the position and recipient of any minted liquidity /// @param tickLower The lower tick of the position /// @param tickUpper The upper tick of the position /// @param amount The amount of liquidity minted to the position range /// @param amount0 How much token0 was required for the minted liquidity /// @param amount1 How much token1 was required for the minted liquidity event Mint( address sender, address indexed owner, int24 indexed tickLower, int24 indexed tickUpper, uint128 amount, uint256 amount0, uint256 amount1 ); /// @notice Emitted when fees are collected by the owner of a position /// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees /// @param owner The owner of the position for which fees are collected /// @param tickLower The lower tick of the position /// @param tickUpper The upper tick of the position /// @param amount0 The amount of token0 fees collected /// @param amount1 The amount of token1 fees collected event Collect( address indexed owner, address recipient, int24 indexed tickLower, int24 indexed tickUpper, uint128 amount0, uint128 amount1 ); /// @notice Emitted when a position's liquidity is removed /// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect /// @param owner The owner of the position for which liquidity is removed /// @param tickLower The lower tick of the position /// @param tickUpper The upper tick of the position /// @param amount The amount of liquidity to remove /// @param amount0 The amount of token0 withdrawn /// @param amount1 The amount of token1 withdrawn event Burn( address indexed owner, int24 indexed tickLower, int24 indexed tickUpper, uint128 amount, uint256 amount0, uint256 amount1 ); /// @notice Emitted by the pool for any swaps between token0 and token1 /// @param sender The address that initiated the swap call, and that received the callback /// @param recipient The address that received the output of the swap /// @param amount0 The delta of the token0 balance of the pool /// @param amount1 The delta of the token1 balance of the pool /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96 /// @param liquidity The liquidity of the pool after the swap /// @param tick The log base 1.0001 of price of the pool after the swap event Swap( address indexed sender, address indexed recipient, int256 amount0, int256 amount1, uint160 sqrtPriceX96, uint128 liquidity, int24 tick ); /// @notice Emitted by the pool for any flashes of token0/token1 /// @param sender The address that initiated the swap call, and that received the callback /// @param recipient The address that received the tokens from flash /// @param amount0 The amount of token0 that was flashed /// @param amount1 The amount of token1 that was flashed /// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee /// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee event Flash( address indexed sender, address indexed recipient, uint256 amount0, uint256 amount1, uint256 paid0, uint256 paid1 ); /// @notice Emitted by the pool for increases to the number of observations that can be stored /// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index /// just before a mint/swap/burn. /// @param observationCardinalityNextOld The previous value of the next observation cardinality /// @param observationCardinalityNextNew The updated value of the next observation cardinality event IncreaseObservationCardinalityNext( uint16 observationCardinalityNextOld, uint16 observationCardinalityNextNew ); /// @notice Emitted when the protocol fee is changed by the pool /// @param feeProtocol0Old The previous value of the token0 protocol fee /// @param feeProtocol1Old The previous value of the token1 protocol fee /// @param feeProtocol0New The updated value of the token0 protocol fee /// @param feeProtocol1New The updated value of the token1 protocol fee event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New); /// @notice Emitted when the collected protocol fees are withdrawn by the factory owner /// @param sender The address that collects the protocol fees /// @param recipient The address that receives the collected protocol fees /// @param amount0 The amount of token0 protocol fees that is withdrawn /// @param amount0 The amount of token1 protocol fees that is withdrawn event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.0; import "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes calldata data ) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; // Return type of the beforeSwap hook. // Upper 128 bits is the delta in specified tokens. Lower 128 bits is delta in unspecified tokens (to match the afterSwap hook) type BeforeSwapDelta is int256; // Creates a BeforeSwapDelta from specified and unspecified function toBeforeSwapDelta(int128 deltaSpecified, int128 deltaUnspecified) pure returns (BeforeSwapDelta beforeSwapDelta) { assembly ("memory-safe") { beforeSwapDelta := or(shl(128, deltaSpecified), and(sub(shl(128, 1), 1), deltaUnspecified)) } } /// @notice Library for getting the specified and unspecified deltas from the BeforeSwapDelta type library BeforeSwapDeltaLibrary { /// @notice A BeforeSwapDelta of 0 BeforeSwapDelta public constant ZERO_DELTA = BeforeSwapDelta.wrap(0); /// extracts int128 from the upper 128 bits of the BeforeSwapDelta /// returned by beforeSwap function getSpecifiedDelta(BeforeSwapDelta delta) internal pure returns (int128 deltaSpecified) { assembly ("memory-safe") { deltaSpecified := sar(128, delta) } } /// extracts int128 from the lower 128 bits of the BeforeSwapDelta /// returned by beforeSwap and afterSwap function getUnspecifiedDelta(BeforeSwapDelta delta) internal pure returns (int128 deltaUnspecified) { assembly ("memory-safe") { deltaUnspecified := signextend(15, delta) } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title BitMath /// @dev This library provides functionality for computing bit properties of an unsigned integer /// @author Solady (https://github.com/Vectorized/solady/blob/8200a70e8dc2a77ecb074fc2e99a2a0d36547522/src/utils/LibBit.sol) library BitMath { /// @notice Returns the index of the most significant bit of the number, /// where the least significant bit is at index 0 and the most significant bit is at index 255 /// @param x the value for which to compute the most significant bit, must be greater than 0 /// @return r the index of the most significant bit function mostSignificantBit(uint256 x) internal pure returns (uint8 r) { require(x > 0); assembly ("memory-safe") { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) // forgefmt: disable-next-item r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)), 0x0706060506020500060203020504000106050205030304010505030400000000)) } } /// @notice Returns the index of the least significant bit of the number, /// where the least significant bit is at index 0 and the most significant bit is at index 255 /// @param x the value for which to compute the least significant bit, must be greater than 0 /// @return r the index of the least significant bit function leastSignificantBit(uint256 x) internal pure returns (uint8 r) { require(x > 0); assembly ("memory-safe") { // Isolate the least significant bit. x := and(x, sub(0, x)) // For the upper 3 bits of the result, use a De Bruijn-like lookup. // Credit to adhusson: https://blog.adhusson.com/cheap-find-first-set-evm/ // forgefmt: disable-next-item r := shl(5, shr(252, shl(shl(2, shr(250, mul(x, 0xb6db6db6ddddddddd34d34d349249249210842108c6318c639ce739cffffffff))), 0x8040405543005266443200005020610674053026020000107506200176117077))) // For the lower 5 bits of the result, use a De Bruijn lookup. // forgefmt: disable-next-item r := or(r, byte(and(div(0xd76453e0, shr(r, x)), 0x1f), 0x001f0d1e100c1d070f090b19131c1706010e11080a1a141802121b1503160405)) } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {IUnlockCallback} from "@uniswap/v4-core/src/interfaces/callback/IUnlockCallback.sol"; import {IPoolManager} from "@uniswap/v4-core/src/interfaces/IPoolManager.sol"; import {ImmutableState} from "./ImmutableState.sol"; /// @title Safe Callback /// @notice A contract that only allows the Uniswap v4 PoolManager to call the unlockCallback abstract contract SafeCallback is ImmutableState, IUnlockCallback { /// @notice Thrown when calling unlockCallback where the caller is not PoolManager error NotPoolManager(); constructor(IPoolManager _poolManager) ImmutableState(_poolManager) {} /// @notice Only allow calls from the PoolManager contract modifier onlyPoolManager() { if (msg.sender != address(poolManager)) revert NotPoolManager(); _; } /// @inheritdoc IUnlockCallback /// @dev We force the onlyPoolManager modifier by exposing a virtual function after the onlyPoolManager check. function unlockCallback(bytes calldata data) external onlyPoolManager returns (bytes memory) { return _unlockCallback(data); } /// @dev to be implemented by the child contract, to safely guarantee the logic is only executed by the PoolManager function _unlockCallback(bytes calldata data) internal virtual returns (bytes memory); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.24; import {IPoolManager} from "../interfaces/IPoolManager.sol"; import {Currency} from "../types/Currency.sol"; import {CurrencyReserves} from "./CurrencyReserves.sol"; import {NonzeroDeltaCount} from "./NonzeroDeltaCount.sol"; import {Lock} from "./Lock.sol"; /// @notice A helper library to provide state getters that use exttload library TransientStateLibrary { /// @notice returns the reserves for the synced currency /// @param manager The pool manager contract. /// @return uint256 The reserves of the currency. /// @dev returns 0 if the reserves are not synced or value is 0. /// Checks the synced currency to only return valid reserve values (after a sync and before a settle). function getSyncedReserves(IPoolManager manager) internal view returns (uint256) { if (getSyncedCurrency(manager).isAddressZero()) return 0; return uint256(manager.exttload(CurrencyReserves.RESERVES_OF_SLOT)); } function getSyncedCurrency(IPoolManager manager) internal view returns (Currency) { return Currency.wrap(address(uint160(uint256(manager.exttload(CurrencyReserves.CURRENCY_SLOT))))); } /// @notice Returns the number of nonzero deltas open on the PoolManager that must be zeroed out before the contract is locked function getNonzeroDeltaCount(IPoolManager manager) internal view returns (uint256) { return uint256(manager.exttload(NonzeroDeltaCount.NONZERO_DELTA_COUNT_SLOT)); } /// @notice Get the current delta for a caller in the given currency /// @param target The credited account address /// @param currency The currency for which to lookup the delta function currencyDelta(IPoolManager manager, address target, Currency currency) internal view returns (int256) { bytes32 key; assembly ("memory-safe") { mstore(0, and(target, 0xffffffffffffffffffffffffffffffffffffffff)) mstore(32, and(currency, 0xffffffffffffffffffffffffffffffffffffffff)) key := keccak256(0, 64) } return int256(uint256(manager.exttload(key))); } /// @notice Returns whether the contract is unlocked or not function isUnlocked(IPoolManager manager) internal view returns (bool) { return manager.exttload(Lock.IS_UNLOCKED_SLOT) != 0x0; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {IPoolManager} from "@uniswap/v4-core/src/interfaces/IPoolManager.sol"; import {IImmutableState} from "../interfaces/IImmutableState.sol"; /// @title Immutable State /// @notice A collection of immutable state variables, commonly used across multiple contracts contract ImmutableState is IImmutableState { /// @inheritdoc IImmutableState IPoolManager public immutable poolManager; constructor(IPoolManager _poolManager) { poolManager = _poolManager; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {BalanceDelta} from "@uniswap/v4-core/src/types/BalanceDelta.sol"; import {PositionInfo} from "../libraries/PositionInfoLibrary.sol"; /// @title ISubscriber /// @notice Interface that a Subscriber contract should implement to receive updates from the v4 position manager interface ISubscriber { /// @notice Called when a position subscribes to this subscriber contract /// @param tokenId the token ID of the position /// @param data additional data passed in by the caller function notifySubscribe(uint256 tokenId, bytes memory data) external; /// @notice Called when a position unsubscribes from the subscriber /// @dev This call's gas is capped at `unsubscribeGasLimit` (set at deployment) /// @dev Because of EIP-150, solidity may only allocate 63/64 of gasleft() /// @param tokenId the token ID of the position function notifyUnsubscribe(uint256 tokenId) external; /// @notice Called when a position is burned /// @param tokenId the token ID of the position /// @param owner the current owner of the tokenId /// @param info information about the position /// @param liquidity the amount of liquidity decreased in the position, may be 0 /// @param feesAccrued the fees accrued by the position if liquidity was decreased function notifyBurn(uint256 tokenId, address owner, PositionInfo info, uint256 liquidity, BalanceDelta feesAccrued) external; /// @notice Called when a position modifies its liquidity or collects fees /// @param tokenId the token ID of the position /// @param liquidityChange the change in liquidity on the underlying position /// @param feesAccrued the fees to be collected from the position as a result of the modifyLiquidity call /// @dev Note that feesAccrued can be artificially inflated by a malicious user /// Pools with a single liquidity position can inflate feeGrowthGlobal (and consequently feesAccrued) by donating to themselves; /// atomically donating and collecting fees within the same unlockCallback may further inflate feeGrowthGlobal/feesAccrued function notifyModifyLiquidity(uint256 tokenId, int256 liquidityChange, BalanceDelta feesAccrued) external; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @notice Interface for the callback executed when an address unlocks the pool manager interface IUnlockCallback { /// @notice Called by the pool manager on `msg.sender` when the manager is unlocked /// @param data The data that was passed to the call to unlock /// @return Any data that you want to be returned from the unlock call function unlockCallback(bytes calldata data) external returns (bytes memory); } // SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.24; import {Currency} from "../types/Currency.sol"; import {CustomRevert} from "./CustomRevert.sol"; library CurrencyReserves { using CustomRevert for bytes4; /// bytes32(uint256(keccak256("ReservesOf")) - 1) bytes32 constant RESERVES_OF_SLOT = 0x1e0745a7db1623981f0b2a5d4232364c00787266eb75ad546f190e6cebe9bd95; /// bytes32(uint256(keccak256("Currency")) - 1) bytes32 constant CURRENCY_SLOT = 0x27e098c505d44ec3574004bca052aabf76bd35004c182099d8c575fb238593b9; function getSyncedCurrency() internal view returns (Currency currency) { assembly ("memory-safe") { currency := tload(CURRENCY_SLOT) } } function resetCurrency() internal { assembly ("memory-safe") { tstore(CURRENCY_SLOT, 0) } } function syncCurrencyAndReserves(Currency currency, uint256 value) internal { assembly ("memory-safe") { tstore(CURRENCY_SLOT, and(currency, 0xffffffffffffffffffffffffffffffffffffffff)) tstore(RESERVES_OF_SLOT, value) } } function getSyncedReserves() internal view returns (uint256 value) { assembly ("memory-safe") { value := tload(RESERVES_OF_SLOT) } } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.24; /// @notice This is a temporary library that allows us to use transient storage (tstore/tload) /// for the nonzero delta count. /// TODO: This library can be deleted when we have the transient keyword support in solidity. library NonzeroDeltaCount { // The slot holding the number of nonzero deltas. bytes32(uint256(keccak256("NonzeroDeltaCount")) - 1) bytes32 internal constant NONZERO_DELTA_COUNT_SLOT = 0x7d4b3164c6e45b97e7d87b7125a44c5828d005af88f9d751cfd78729c5d99a0b; function read() internal view returns (uint256 count) { assembly ("memory-safe") { count := tload(NONZERO_DELTA_COUNT_SLOT) } } function increment() internal { assembly ("memory-safe") { let count := tload(NONZERO_DELTA_COUNT_SLOT) count := add(count, 1) tstore(NONZERO_DELTA_COUNT_SLOT, count) } } /// @notice Potential to underflow. Ensure checks are performed by integrating contracts to ensure this does not happen. /// Current usage ensures this will not happen because we call decrement with known boundaries (only up to the number of times we call increment). function decrement() internal { assembly ("memory-safe") { let count := tload(NONZERO_DELTA_COUNT_SLOT) count := sub(count, 1) tstore(NONZERO_DELTA_COUNT_SLOT, count) } } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.24; /// @notice This is a temporary library that allows us to use transient storage (tstore/tload) /// TODO: This library can be deleted when we have the transient keyword support in solidity. library Lock { // The slot holding the unlocked state, transiently. bytes32(uint256(keccak256("Unlocked")) - 1) bytes32 internal constant IS_UNLOCKED_SLOT = 0xc090fc4683624cfc3884e9d8de5eca132f2d0ec062aff75d43c0465d5ceeab23; function unlock() internal { assembly ("memory-safe") { // unlock tstore(IS_UNLOCKED_SLOT, true) } } function lock() internal { assembly ("memory-safe") { tstore(IS_UNLOCKED_SLOT, false) } } function isUnlocked() internal view returns (bool unlocked) { assembly ("memory-safe") { unlocked := tload(IS_UNLOCKED_SLOT) } } }
File 2 of 5: WETH9
// Copyright (C) 2015, 2016, 2017 Dapphub // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.4.18; contract WETH9 { string public name = "Wrapped Ether"; string public symbol = "WETH"; uint8 public decimals = 18; event Approval(address indexed src, address indexed guy, uint wad); event Transfer(address indexed src, address indexed dst, uint wad); event Deposit(address indexed dst, uint wad); event Withdrawal(address indexed src, uint wad); mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; function() public payable { deposit(); } function deposit() public payable { balanceOf[msg.sender] += msg.value; Deposit(msg.sender, msg.value); } function withdraw(uint wad) public { require(balanceOf[msg.sender] >= wad); balanceOf[msg.sender] -= wad; msg.sender.transfer(wad); Withdrawal(msg.sender, wad); } function totalSupply() public view returns (uint) { return this.balance; } function approve(address guy, uint wad) public returns (bool) { allowance[msg.sender][guy] = wad; Approval(msg.sender, guy, wad); return true; } function transfer(address dst, uint wad) public returns (bool) { return transferFrom(msg.sender, dst, wad); } function transferFrom(address src, address dst, uint wad) public returns (bool) { require(balanceOf[src] >= wad); if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) { require(allowance[src][msg.sender] >= wad); allowance[src][msg.sender] -= wad; } balanceOf[src] -= wad; balanceOf[dst] += wad; Transfer(src, dst, wad); return true; } } /* GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The GNU General Public License is a free, copyleft license for software and other kinds of works. The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions. Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free. The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS 0. Definitions. "This License" refers to version 3 of the GNU General Public License. "Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks. "The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you". "Licensees" and "recipients" may be individuals or organizations. To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a "modified version" of the earlier work or a work "based on" the earlier work. A "covered work" means either the unmodified Program or a work based on the Program. To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. To "convey" a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying. An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. 1. Source Code. The "source code" for a work means the preferred form of the work for making modifications to it. "Object code" means any non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language. The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it. The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source. The Corresponding Source for a work in source code form is that same work. 2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary. 3. Protecting Users' Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures. When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. 4. Conveying Verbatim Copies. You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program. You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee. 5. Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions: a) The work must carry prominent notices stating that you modified it, and giving a relevant date. b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to "keep intact all notices". c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it. d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so. A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an "aggregate" if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate. 6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways: a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange. b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge. c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements. e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product. "Installation Information" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made. If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM). The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying. 7. Additional Terms. "Additional permissions" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions. When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission. Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms: a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or d) Limiting the use for publicity purposes of names of licensors or authors of the material; or e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors. All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way. 8. Termination. You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so. 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License. An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it. 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's "contributor version". A contributor's "essential patent claims" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, "control" includes the right to grant patent sublicenses in a manner consistent with the requirements of this License. Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To "grant" such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. "Knowingly relying" means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid. If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it. A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. 12. No Surrender of Others' Freedom. If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program. 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such. 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program. Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version. 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. <one line to give the program's name and a brief idea of what it does.> Copyright (C) <year> <name of author> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. Also add information on how to contact you by electronic and paper mail. If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode: <program> Copyright (C) <year> <name of author> This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see <http://www.gnu.org/licenses/>. The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read <http://www.gnu.org/philosophy/why-not-lgpl.html>. */
File 3 of 5: UniswapV2Pair
// File: contracts/interfaces/IUniswapV2Pair.sol pragma solidity >=0.5.0; interface IUniswapV2Pair { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); function DOMAIN_SEPARATOR() external view returns (bytes32); function PERMIT_TYPEHASH() external pure returns (bytes32); function nonces(address owner) external view returns (uint); function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external; event Mint(address indexed sender, uint amount0, uint amount1); event Burn(address indexed sender, uint amount0, uint amount1, address indexed to); event Swap( address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, address indexed to ); event Sync(uint112 reserve0, uint112 reserve1); function MINIMUM_LIQUIDITY() external pure returns (uint); function factory() external view returns (address); function token0() external view returns (address); function token1() external view returns (address); function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast); function price0CumulativeLast() external view returns (uint); function price1CumulativeLast() external view returns (uint); function kLast() external view returns (uint); function mint(address to) external returns (uint liquidity); function burn(address to) external returns (uint amount0, uint amount1); function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external; function skim(address to) external; function sync() external; function initialize(address, address) external; } // File: contracts/interfaces/IUniswapV2ERC20.sol pragma solidity >=0.5.0; interface IUniswapV2ERC20 { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); function DOMAIN_SEPARATOR() external view returns (bytes32); function PERMIT_TYPEHASH() external pure returns (bytes32); function nonces(address owner) external view returns (uint); function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external; } // File: contracts/libraries/SafeMath.sol pragma solidity =0.5.16; // a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math) library SafeMath { function add(uint x, uint y) internal pure returns (uint z) { require((z = x + y) >= x, 'ds-math-add-overflow'); } function sub(uint x, uint y) internal pure returns (uint z) { require((z = x - y) <= x, 'ds-math-sub-underflow'); } function mul(uint x, uint y) internal pure returns (uint z) { require(y == 0 || (z = x * y) / y == x, 'ds-math-mul-overflow'); } } // File: contracts/UniswapV2ERC20.sol pragma solidity =0.5.16; contract UniswapV2ERC20 is IUniswapV2ERC20 { using SafeMath for uint; string public constant name = 'Uniswap V2'; string public constant symbol = 'UNI-V2'; uint8 public constant decimals = 18; uint public totalSupply; mapping(address => uint) public balanceOf; mapping(address => mapping(address => uint)) public allowance; bytes32 public DOMAIN_SEPARATOR; // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9; mapping(address => uint) public nonces; event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); constructor() public { uint chainId; assembly { chainId := chainid } DOMAIN_SEPARATOR = keccak256( abi.encode( keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)'), keccak256(bytes(name)), keccak256(bytes('1')), chainId, address(this) ) ); } function _mint(address to, uint value) internal { totalSupply = totalSupply.add(value); balanceOf[to] = balanceOf[to].add(value); emit Transfer(address(0), to, value); } function _burn(address from, uint value) internal { balanceOf[from] = balanceOf[from].sub(value); totalSupply = totalSupply.sub(value); emit Transfer(from, address(0), value); } function _approve(address owner, address spender, uint value) private { allowance[owner][spender] = value; emit Approval(owner, spender, value); } function _transfer(address from, address to, uint value) private { balanceOf[from] = balanceOf[from].sub(value); balanceOf[to] = balanceOf[to].add(value); emit Transfer(from, to, value); } function approve(address spender, uint value) external returns (bool) { _approve(msg.sender, spender, value); return true; } function transfer(address to, uint value) external returns (bool) { _transfer(msg.sender, to, value); return true; } function transferFrom(address from, address to, uint value) external returns (bool) { if (allowance[from][msg.sender] != uint(-1)) { allowance[from][msg.sender] = allowance[from][msg.sender].sub(value); } _transfer(from, to, value); return true; } function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external { require(deadline >= block.timestamp, 'UniswapV2: EXPIRED'); bytes32 digest = keccak256( abi.encodePacked( '\x19\x01', DOMAIN_SEPARATOR, keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline)) ) ); address recoveredAddress = ecrecover(digest, v, r, s); require(recoveredAddress != address(0) && recoveredAddress == owner, 'UniswapV2: INVALID_SIGNATURE'); _approve(owner, spender, value); } } // File: contracts/libraries/Math.sol pragma solidity =0.5.16; // a library for performing various math operations library Math { function min(uint x, uint y) internal pure returns (uint z) { z = x < y ? x : y; } // babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method) function sqrt(uint y) internal pure returns (uint z) { if (y > 3) { z = y; uint x = y / 2 + 1; while (x < z) { z = x; x = (y / x + x) / 2; } } else if (y != 0) { z = 1; } } } // File: contracts/libraries/UQ112x112.sol pragma solidity =0.5.16; // a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format)) // range: [0, 2**112 - 1] // resolution: 1 / 2**112 library UQ112x112 { uint224 constant Q112 = 2**112; // encode a uint112 as a UQ112x112 function encode(uint112 y) internal pure returns (uint224 z) { z = uint224(y) * Q112; // never overflows } // divide a UQ112x112 by a uint112, returning a UQ112x112 function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) { z = x / uint224(y); } } // File: contracts/interfaces/IERC20.sol pragma solidity >=0.5.0; interface IERC20 { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external view returns (string memory); function symbol() external view returns (string memory); function decimals() external view returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); } // File: contracts/interfaces/IUniswapV2Factory.sol pragma solidity >=0.5.0; interface IUniswapV2Factory { event PairCreated(address indexed token0, address indexed token1, address pair, uint); function feeTo() external view returns (address); function feeToSetter() external view returns (address); function getPair(address tokenA, address tokenB) external view returns (address pair); function allPairs(uint) external view returns (address pair); function allPairsLength() external view returns (uint); function createPair(address tokenA, address tokenB) external returns (address pair); function setFeeTo(address) external; function setFeeToSetter(address) external; } // File: contracts/interfaces/IUniswapV2Callee.sol pragma solidity >=0.5.0; interface IUniswapV2Callee { function uniswapV2Call(address sender, uint amount0, uint amount1, bytes calldata data) external; } // File: contracts/UniswapV2Pair.sol pragma solidity =0.5.16; contract UniswapV2Pair is IUniswapV2Pair, UniswapV2ERC20 { using SafeMath for uint; using UQ112x112 for uint224; uint public constant MINIMUM_LIQUIDITY = 10**3; bytes4 private constant SELECTOR = bytes4(keccak256(bytes('transfer(address,uint256)'))); address public factory; address public token0; address public token1; uint112 private reserve0; // uses single storage slot, accessible via getReserves uint112 private reserve1; // uses single storage slot, accessible via getReserves uint32 private blockTimestampLast; // uses single storage slot, accessible via getReserves uint public price0CumulativeLast; uint public price1CumulativeLast; uint public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event uint private unlocked = 1; modifier lock() { require(unlocked == 1, 'UniswapV2: LOCKED'); unlocked = 0; _; unlocked = 1; } function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) { _reserve0 = reserve0; _reserve1 = reserve1; _blockTimestampLast = blockTimestampLast; } function _safeTransfer(address token, address to, uint value) private { (bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value)); require(success && (data.length == 0 || abi.decode(data, (bool))), 'UniswapV2: TRANSFER_FAILED'); } event Mint(address indexed sender, uint amount0, uint amount1); event Burn(address indexed sender, uint amount0, uint amount1, address indexed to); event Swap( address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, address indexed to ); event Sync(uint112 reserve0, uint112 reserve1); constructor() public { factory = msg.sender; } // called once by the factory at time of deployment function initialize(address _token0, address _token1) external { require(msg.sender == factory, 'UniswapV2: FORBIDDEN'); // sufficient check token0 = _token0; token1 = _token1; } // update reserves and, on the first call per block, price accumulators function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) private { require(balance0 <= uint112(-1) && balance1 <= uint112(-1), 'UniswapV2: OVERFLOW'); uint32 blockTimestamp = uint32(block.timestamp % 2**32); uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) { // * never overflows, and + overflow is desired price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed; price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed; } reserve0 = uint112(balance0); reserve1 = uint112(balance1); blockTimestampLast = blockTimestamp; emit Sync(reserve0, reserve1); } // if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k) function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) { address feeTo = IUniswapV2Factory(factory).feeTo(); feeOn = feeTo != address(0); uint _kLast = kLast; // gas savings if (feeOn) { if (_kLast != 0) { uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1)); uint rootKLast = Math.sqrt(_kLast); if (rootK > rootKLast) { uint numerator = totalSupply.mul(rootK.sub(rootKLast)); uint denominator = rootK.mul(5).add(rootKLast); uint liquidity = numerator / denominator; if (liquidity > 0) _mint(feeTo, liquidity); } } } else if (_kLast != 0) { kLast = 0; } } // this low-level function should be called from a contract which performs important safety checks function mint(address to) external lock returns (uint liquidity) { (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings uint balance0 = IERC20(token0).balanceOf(address(this)); uint balance1 = IERC20(token1).balanceOf(address(this)); uint amount0 = balance0.sub(_reserve0); uint amount1 = balance1.sub(_reserve1); bool feeOn = _mintFee(_reserve0, _reserve1); uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee if (_totalSupply == 0) { liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY); _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens } else { liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1); } require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED'); _mint(to, liquidity); _update(balance0, balance1, _reserve0, _reserve1); if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date emit Mint(msg.sender, amount0, amount1); } // this low-level function should be called from a contract which performs important safety checks function burn(address to) external lock returns (uint amount0, uint amount1) { (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings address _token0 = token0; // gas savings address _token1 = token1; // gas savings uint balance0 = IERC20(_token0).balanceOf(address(this)); uint balance1 = IERC20(_token1).balanceOf(address(this)); uint liquidity = balanceOf[address(this)]; bool feeOn = _mintFee(_reserve0, _reserve1); uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED'); _burn(address(this), liquidity); _safeTransfer(_token0, to, amount0); _safeTransfer(_token1, to, amount1); balance0 = IERC20(_token0).balanceOf(address(this)); balance1 = IERC20(_token1).balanceOf(address(this)); _update(balance0, balance1, _reserve0, _reserve1); if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date emit Burn(msg.sender, amount0, amount1, to); } // this low-level function should be called from a contract which performs important safety checks function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock { require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT'); (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY'); uint balance0; uint balance1; { // scope for _token{0,1}, avoids stack too deep errors address _token0 = token0; address _token1 = token1; require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO'); if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data); balance0 = IERC20(_token0).balanceOf(address(this)); balance1 = IERC20(_token1).balanceOf(address(this)); } uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0; uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0; require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT'); { // scope for reserve{0,1}Adjusted, avoids stack too deep errors uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3)); uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3)); require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K'); } _update(balance0, balance1, _reserve0, _reserve1); emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to); } // force balances to match reserves function skim(address to) external lock { address _token0 = token0; // gas savings address _token1 = token1; // gas savings _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0)); _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1)); } // force reserves to match balances function sync() external lock { _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1); } }
File 4 of 5: DxStandardToken
/* // Official DxStandard Token // To Mint your own token visit https://dx.app // DxMint verified tokens are unruggable through code // To view the audit certificate for this token search it in https://dx.app/dxmint // Please ensure one wallet doesn't hold too much supply of tokens! */ // SPDX-License-Identifier: MIT pragma solidity 0.8.7; pragma experimental ABIEncoderV2; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); } /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); } /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } contract DxStandardToken is Context, IERC20, IERC20Metadata,Ownable { mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowances; bool public mintedByDxsale = true; uint256 private _totalSupply; bool public mintingFinishedPermanent = false; string private _name; string private _symbol; uint8 private _decimals; address public _creator; /** * @dev Sets the values for {name}, {symbol} and {decimals}. * * * All two of these values are immutable: they can only be set once during * construction. */ constructor (address creator_,string memory name_, string memory symbol_,uint8 decimals_, uint256 tokenSupply_) { _name = name_; _symbol = symbol_; _decimals = decimals_; _creator = creator_; _mint(_creator,tokenSupply_); mintingFinishedPermanent = true; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless this function is * overridden; * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * Requirements: * * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _transfer(sender, recipient, amount); uint256 currentAllowance = _allowances[sender][_msgSender()]; require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance"); _approve(sender, _msgSender(), currentAllowance - amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { uint256 currentAllowance = _allowances[_msgSender()][spender]; require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); _approve(_msgSender(), spender, currentAllowance - subtractedValue); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); uint256 senderBalance = _balances[sender]; require(senderBalance >= amount, "ERC20: transfer amount exceeds balance"); _balances[sender] = senderBalance - amount; _balances[recipient] += amount; emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(!mintingFinishedPermanent,"cant be minted anymore!"); require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; _balances[account] += amount; emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); _balances[account] = accountBalance - amount; _totalSupply -= amount; emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } }
File 5 of 5: FeeCollector
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import {Owned} from "solmate/auth/Owned.sol"; import {ERC20} from "solmate/tokens/ERC20.sol"; import {SafeTransferLib} from "solmate/utils/SafeTransferLib.sol"; import {IFeeCollector} from "./interfaces/IFeeCollector.sol"; import {IPermit2} from "./external/IPermit2.sol"; /// @notice The collector of protocol fees that will be used to swap and send to a fee recipient address. contract FeeCollector is Owned, IFeeCollector { using SafeTransferLib for ERC20; address public universalRouter; ERC20 public immutable feeToken; IPermit2 public immutable permit2; uint256 public constant MAX_APPROVAL_AMOUNT = type(uint256).max; uint160 public constant MAX_PERMIT2_APPROVAL_AMOUNT = type(uint160).max; uint48 public constant MAX_PERMIT2_DEADLINE = type(uint48).max; constructor(address _owner, address _universalRouter, address _permit2, address _feeToken) Owned(_owner) { universalRouter = _universalRouter; feeToken = ERC20(_feeToken); permit2 = IPermit2(_permit2); } /// @inheritdoc IFeeCollector function swapBalance(bytes calldata swapData, uint256 nativeValue) external onlyOwner { _execute(swapData, nativeValue); } /// @inheritdoc IFeeCollector function swapBalance(bytes calldata swapData, uint256 nativeValue, ERC20[] calldata tokensToApprove) external onlyOwner { unchecked { for (uint256 i = 0; i < tokensToApprove.length; i++) { tokensToApprove[i].safeApprove(address(permit2), MAX_APPROVAL_AMOUNT); permit2.approve( address(tokensToApprove[i]), universalRouter, MAX_PERMIT2_APPROVAL_AMOUNT, MAX_PERMIT2_DEADLINE ); } } _execute(swapData, nativeValue); } /// @notice Helper function to call UniversalRouter. /// @param swapData The bytes call data to be forwarded to UniversalRouter. /// @param nativeValue The amount of native currency to send to UniversalRouter. function _execute(bytes calldata swapData, uint256 nativeValue) internal { (bool success,) = universalRouter.call{value: nativeValue}(swapData); if (!success) revert UniversalRouterCallFailed(); } /// @inheritdoc IFeeCollector function revokeTokenApprovals(ERC20[] calldata tokensToRevoke) external onlyOwner { unchecked { for (uint256 i = 0; i < tokensToRevoke.length; i++) { tokensToRevoke[i].safeApprove(address(permit2), 0); } } } /// @inheritdoc IFeeCollector function revokePermit2Approvals(IPermit2.TokenSpenderPair[] calldata approvals) external onlyOwner { permit2.lockdown(approvals); } /// @inheritdoc IFeeCollector function withdrawFeeToken(address feeRecipient, uint256 amount) external onlyOwner { feeToken.safeTransfer(feeRecipient, amount); } /// @inheritdoc IFeeCollector function setUniversalRouter(address _universalRouter) external onlyOwner { emit UniversalRouterChanged(universalRouter, _universalRouter); universalRouter = _universalRouter; } receive() external payable {} } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Simple single owner authorization mixin. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/auth/Owned.sol) abstract contract Owned { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event OwnershipTransferred(address indexed user, address indexed newOwner); /*////////////////////////////////////////////////////////////// OWNERSHIP STORAGE //////////////////////////////////////////////////////////////*/ address public owner; modifier onlyOwner() virtual { require(msg.sender == owner, "UNAUTHORIZED"); _; } /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor(address _owner) { owner = _owner; emit OwnershipTransferred(address(0), _owner); } /*////////////////////////////////////////////////////////////// OWNERSHIP LOGIC //////////////////////////////////////////////////////////////*/ function transferOwnership(address newOwner) public virtual onlyOwner { owner = newOwner; emit OwnershipTransferred(msg.sender, newOwner); } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol) /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol) /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it. abstract contract ERC20 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); /*////////////////////////////////////////////////////////////// METADATA STORAGE //////////////////////////////////////////////////////////////*/ string public name; string public symbol; uint8 public immutable decimals; /*////////////////////////////////////////////////////////////// ERC20 STORAGE //////////////////////////////////////////////////////////////*/ uint256 public totalSupply; mapping(address => uint256) public balanceOf; mapping(address => mapping(address => uint256)) public allowance; /*////////////////////////////////////////////////////////////// EIP-2612 STORAGE //////////////////////////////////////////////////////////////*/ uint256 internal immutable INITIAL_CHAIN_ID; bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR; mapping(address => uint256) public nonces; /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor( string memory _name, string memory _symbol, uint8 _decimals ) { name = _name; symbol = _symbol; decimals = _decimals; INITIAL_CHAIN_ID = block.chainid; INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator(); } /*////////////////////////////////////////////////////////////// ERC20 LOGIC //////////////////////////////////////////////////////////////*/ function approve(address spender, uint256 amount) public virtual returns (bool) { allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } function transfer(address to, uint256 amount) public virtual returns (bool) { balanceOf[msg.sender] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(msg.sender, to, amount); return true; } function transferFrom( address from, address to, uint256 amount ) public virtual returns (bool) { uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals. if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount; balanceOf[from] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(from, to, amount); return true; } /*////////////////////////////////////////////////////////////// EIP-2612 LOGIC //////////////////////////////////////////////////////////////*/ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED"); // Unchecked because the only math done is incrementing // the owner's nonce which cannot realistically overflow. unchecked { address recoveredAddress = ecrecover( keccak256( abi.encodePacked( "\\x19\\x01", DOMAIN_SEPARATOR(), keccak256( abi.encode( keccak256( "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)" ), owner, spender, value, nonces[owner]++, deadline ) ) ) ), v, r, s ); require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER"); allowance[recoveredAddress][spender] = value; } emit Approval(owner, spender, value); } function DOMAIN_SEPARATOR() public view virtual returns (bytes32) { return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator(); } function computeDomainSeparator() internal view virtual returns (bytes32) { return keccak256( abi.encode( keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"), keccak256(bytes(name)), keccak256("1"), block.chainid, address(this) ) ); } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint(address to, uint256 amount) internal virtual { totalSupply += amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(address(0), to, amount); } function _burn(address from, uint256 amount) internal virtual { balanceOf[from] -= amount; // Cannot underflow because a user's balance // will never be larger than the total supply. unchecked { totalSupply -= amount; } emit Transfer(from, address(0), amount); } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; import {ERC20} from "../tokens/ERC20.sol"; /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol) /// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer. /// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller. library SafeTransferLib { /*////////////////////////////////////////////////////////////// ETH OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferETH(address to, uint256 amount) internal { bool success; /// @solidity memory-safe-assembly assembly { // Transfer the ETH and store if it succeeded or not. success := call(gas(), to, amount, 0, 0, 0, 0) } require(success, "ETH_TRANSFER_FAILED"); } /*////////////////////////////////////////////////////////////// ERC20 OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferFrom( ERC20 token, address from, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), and(from, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "from" argument. mstore(add(freeMemoryPointer, 36), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument. mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 100, 0, 32) ) } require(success, "TRANSFER_FROM_FAILED"); } function safeTransfer( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "TRANSFER_FAILED"); } function safeApprove( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "APPROVE_FAILED"); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.13; import {ERC20} from "solmate/tokens/ERC20.sol"; import {IPermit2} from "../external/IPermit2.sol"; /// @notice The collector of protocol fees that will be used to swap and send to a fee recipient address. interface IFeeCollector { /// @notice Error thrown when the call to UniversalRouter fails. error UniversalRouterCallFailed(); /// @notice Emitted when the UniversalRouter address is changed. /// @param oldUniversalRouter The old router address. /// @param newUniversalRouter The new router address. event UniversalRouterChanged(address oldUniversalRouter, address newUniversalRouter); /// @notice Swaps the contract balance. /// @param swapData The bytes call data to be forwarded to UniversalRouter. /// @param nativeValue The amount of native currency to send to UniversalRouter. function swapBalance(bytes calldata swapData, uint256 nativeValue) external; /// @notice Approves tokens for swapping and then swaps the contract balance. /// @param swapData The bytes call data to be forwarded to UniversalRouter. /// @param nativeValue The amount of native currency to send to UniversalRouter. /// @param tokensToApprove An array of ERC20 tokens to approve for spending. function swapBalance(bytes calldata swapData, uint256 nativeValue, ERC20[] calldata tokensToApprove) external; /// @notice Revokes approvals on tokens by setting their allowance to 0. /// @param tokensToRevoke The token to revoke the approval for. function revokeTokenApprovals(ERC20[] calldata tokensToRevoke) external; /// @notice Revokes the permit2 allowance of a spender by setting token allowances to 0. /// @param approvals The approvals to revoke. function revokePermit2Approvals(IPermit2.TokenSpenderPair[] calldata approvals) external; /// @notice Transfers the fee token balance from this contract to the fee recipient. /// @param feeRecipient The address to send the fee token balance to. /// @param amount The amount to withdraw. function withdrawFeeToken(address feeRecipient, uint256 amount) external; /// @notice Sets the address of the UniversalRouter contract. /// @param _universalRouter The address of the UniversalRouter contract. function setUniversalRouter(address _universalRouter) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {IAllowanceTransfer} from "./IAllowanceTransfer.sol"; /// @notice Permit2 handles signature-based transfers in SignatureTransfer and allowance-based transfers in AllowanceTransfer. /// @dev Users must approve Permit2 before calling any of the transfer functions. interface IPermit2 is IAllowanceTransfer { // IPermit2 unifies the two interfaces so users have maximal flexibility with their approval. } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {IEIP712} from "./IEIP712.sol"; /// @title AllowanceTransfer /// @notice Handles ERC20 token permissions through signature based allowance setting and ERC20 token transfers by checking allowed amounts /// @dev Requires user's token approval on the Permit2 contract interface IAllowanceTransfer is IEIP712 { /// @notice A token spender pair. struct TokenSpenderPair { // the token the spender is approved address token; // the spender address address spender; } /// @notice A mapping from owner address to token address to spender address to PackedAllowance struct, which contains details and conditions of the approval. /// @notice The mapping is indexed in the above order see: allowance[ownerAddress][tokenAddress][spenderAddress] /// @dev The packed slot holds the allowed amount, expiration at which the allowed amount is no longer valid, and current nonce thats updated on any signature based approvals. function allowance(address user, address token, address spender) external view returns (uint160 amount, uint48 expiration, uint48 nonce); /// @notice Approves the spender to use up to amount of the specified token up until the expiration /// @param token The token to approve /// @param spender The spender address to approve /// @param amount The approved amount of the token /// @param expiration The timestamp at which the approval is no longer valid /// @dev The packed allowance also holds a nonce, which will stay unchanged in approve /// @dev Setting amount to type(uint160).max sets an unlimited approval function approve(address token, address spender, uint160 amount, uint48 expiration) external; /// @notice Enables performing a "lockdown" of the sender's Permit2 identity /// by batch revoking approvals /// @param approvals Array of approvals to revoke. function lockdown(TokenSpenderPair[] calldata approvals) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IEIP712 { function DOMAIN_SEPARATOR() external view returns (bytes32); }