ETH Price: $2,400.20 (-1.12%)

Transaction Decoder

Block:
16824245 at Mar-14-2023 05:55:35 AM +UTC
Transaction Fee:
0.001073781436475712 ETH $2.58
Gas Used:
63,886 Gas / 16.807773792 Gwei

Emitted Events:

189 ToxicSkullsClubProxy.0x17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31( 0x17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31, 0x0000000000000000000000001aac86ed63aba157de1c942fb73f651b9bdf5b29, 0x0000000000000000000000001e0049783f008a0085193e00003d00cd54003c71, 0000000000000000000000000000000000000000000000000000000000000001 )

Account State Difference:

  Address   Before After State Difference Code
0x1aaC86Ed...B9BdF5b29
0.107022949531631479 Eth
Nonce: 50
0.105949168095155767 Eth
Nonce: 51
0.001073781436475712
9.756994272714748089 Eth9.757000661314748089 Eth0.0000063886
0x5ca8dd7f...403fbcDD8

Execution Trace

ToxicSkullsClubProxy.a22cb465( )
  • ToxicSkullsClub.setApprovalForAll( operator=0x1E0049783F008A0085193E00003D00cd54003c71, approved=True )
    • OperatorFilterRegistry.isOperatorAllowed( registrant=0x5ca8dd7f8E1Ee6D0c27a7BE6d9F33ef403fbcDD8, operator=0x1E0049783F008A0085193E00003D00cd54003c71 ) => ( True )
      setApprovalForAll[ToxicSkullsClub (ln:2319)]
      File 1 of 3: ToxicSkullsClubProxy
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
       * proxy whose upgrades are fully controlled by the current implementation.
       */
      interface IERC1822Proxiable {
          /**
           * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
           * address.
           *
           * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
           * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
           * function revert if invoked through a proxy.
           */
          function proxiableUUID() external view returns (bytes32);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (proxy/ERC1967/ERC1967Proxy.sol)
      pragma solidity ^0.8.0;
      import "../Proxy.sol";
      import "./ERC1967Upgrade.sol";
      /**
       * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
       * implementation address that can be changed. This address is stored in storage in the location specified by
       * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
       * implementation behind the proxy.
       */
      contract ERC1967Proxy is Proxy, ERC1967Upgrade {
          /**
           * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
           *
           * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
           * function call, and allows initializing the storage of the proxy like a Solidity constructor.
           */
          constructor(address _logic, bytes memory _data) payable {
              _upgradeToAndCall(_logic, _data, false);
          }
          /**
           * @dev Returns the current implementation address.
           */
          function _implementation() internal view virtual override returns (address impl) {
              return ERC1967Upgrade._getImplementation();
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (proxy/ERC1967/ERC1967Upgrade.sol)
      pragma solidity ^0.8.2;
      import "../beacon/IBeacon.sol";
      import "../../interfaces/draft-IERC1822.sol";
      import "../../utils/Address.sol";
      import "../../utils/StorageSlot.sol";
      /**
       * @dev This abstract contract provides getters and event emitting update functions for
       * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
       *
       * _Available since v4.1._
       */
      abstract contract ERC1967Upgrade {
          // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
          bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
          /**
           * @dev Storage slot with the address of the current implementation.
           * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
           * validated in the constructor.
           */
          bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
          /**
           * @dev Emitted when the implementation is upgraded.
           */
          event Upgraded(address indexed implementation);
          /**
           * @dev Returns the current implementation address.
           */
          function _getImplementation() internal view returns (address) {
              return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
          }
          /**
           * @dev Stores a new address in the EIP1967 implementation slot.
           */
          function _setImplementation(address newImplementation) private {
              require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
              StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
          }
          /**
           * @dev Perform implementation upgrade
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeTo(address newImplementation) internal {
              _setImplementation(newImplementation);
              emit Upgraded(newImplementation);
          }
          /**
           * @dev Perform implementation upgrade with additional setup call.
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {
              _upgradeTo(newImplementation);
              if (data.length > 0 || forceCall) {
                  Address.functionDelegateCall(newImplementation, data);
              }
          }
          /**
           * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeToAndCallUUPS(address newImplementation, bytes memory data, bool forceCall) internal {
              // Upgrades from old implementations will perform a rollback test. This test requires the new
              // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
              // this special case will break upgrade paths from old UUPS implementation to new ones.
              if (StorageSlot.getBooleanSlot(_ROLLBACK_SLOT).value) {
                  _setImplementation(newImplementation);
              } else {
                  try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                      require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
                  } catch {
                      revert("ERC1967Upgrade: new implementation is not UUPS");
                  }
                  _upgradeToAndCall(newImplementation, data, forceCall);
              }
          }
          /**
           * @dev Storage slot with the admin of the contract.
           * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
           * validated in the constructor.
           */
          bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
          /**
           * @dev Emitted when the admin account has changed.
           */
          event AdminChanged(address previousAdmin, address newAdmin);
          /**
           * @dev Returns the current admin.
           */
          function _getAdmin() internal view returns (address) {
              return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
          }
          /**
           * @dev Stores a new address in the EIP1967 admin slot.
           */
          function _setAdmin(address newAdmin) private {
              require(newAdmin != address(0), "ERC1967: new admin is the zero address");
              StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
          }
          /**
           * @dev Changes the admin of the proxy.
           *
           * Emits an {AdminChanged} event.
           */
          function _changeAdmin(address newAdmin) internal {
              emit AdminChanged(_getAdmin(), newAdmin);
              _setAdmin(newAdmin);
          }
          /**
           * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
           * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
           */
          bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
          /**
           * @dev Emitted when the beacon is upgraded.
           */
          event BeaconUpgraded(address indexed beacon);
          /**
           * @dev Returns the current beacon.
           */
          function _getBeacon() internal view returns (address) {
              return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
          }
          /**
           * @dev Stores a new beacon in the EIP1967 beacon slot.
           */
          function _setBeacon(address newBeacon) private {
              require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract");
              require(
                  Address.isContract(IBeacon(newBeacon).implementation()),
                  "ERC1967: beacon implementation is not a contract"
              );
              StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;
          }
          /**
           * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
           * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
           *
           * Emits a {BeaconUpgraded} event.
           */
          function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal {
              _setBeacon(newBeacon);
              emit BeaconUpgraded(newBeacon);
              if (data.length > 0 || forceCall) {
                  Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.6.0) (proxy/Proxy.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
       * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
       * be specified by overriding the virtual {_implementation} function.
       *
       * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
       * different contract through the {_delegate} function.
       *
       * The success and return data of the delegated call will be returned back to the caller of the proxy.
       */
      abstract contract Proxy {
          /**
           * @dev Delegates the current call to `implementation`.
           *
           * This function does not return to its internal call site, it will return directly to the external caller.
           */
          function _delegate(address implementation) internal virtual {
              assembly {
                  // Copy msg.data. We take full control of memory in this inline assembly
                  // block because it will not return to Solidity code. We overwrite the
                  // Solidity scratch pad at memory position 0.
                  calldatacopy(0, 0, calldatasize())
                  // Call the implementation.
                  // out and outsize are 0 because we don't know the size yet.
                  let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                  // Copy the returned data.
                  returndatacopy(0, 0, returndatasize())
                  switch result
                  // delegatecall returns 0 on error.
                  case 0 {
                      revert(0, returndatasize())
                  }
                  default {
                      return(0, returndatasize())
                  }
              }
          }
          /**
           * @dev This is a virtual function that should be overridden so it returns the address to which the fallback function
           * and {_fallback} should delegate.
           */
          function _implementation() internal view virtual returns (address);
          /**
           * @dev Delegates the current call to the address returned by `_implementation()`.
           *
           * This function does not return to its internal call site, it will return directly to the external caller.
           */
          function _fallback() internal virtual {
              _beforeFallback();
              _delegate(_implementation());
          }
          /**
           * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
           * function in the contract matches the call data.
           */
          fallback() external payable virtual {
              _fallback();
          }
          /**
           * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
           * is empty.
           */
          receive() external payable virtual {
              _fallback();
          }
          /**
           * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
           * call, or as part of the Solidity `fallback` or `receive` functions.
           *
           * If overridden should call `super._beforeFallback()`.
           */
          function _beforeFallback() internal virtual {}
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev This is the interface that {BeaconProxy} expects of its beacon.
       */
      interface IBeacon {
          /**
           * @dev Must return an address that can be used as a delegate call target.
           *
           * {BeaconProxy} will check that this address is a contract.
           */
          function implementation() external view returns (address);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
      pragma solidity ^0.8.1;
      /**
       * @dev Collection of functions related to the address type
       */
      library Address {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           *
           * Furthermore, `isContract` will also return true if the target contract within
           * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
           * which only has an effect at the end of a transaction.
           * ====
           *
           * [IMPORTANT]
           * ====
           * You shouldn't rely on `isContract` to protect against flash loan attacks!
           *
           * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
           * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
           * constructor.
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // This method relies on extcodesize/address.code.length, which returns 0
              // for contracts in construction, since the code is only stored at the end
              // of the constructor execution.
              return account.code.length > 0;
          }
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              require(address(this).balance >= amount, "Address: insufficient balance");
              (bool success, ) = recipient.call{value: amount}("");
              require(success, "Address: unable to send value, recipient may have reverted");
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain `call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason, it is bubbled up by this
           * function (like regular Solidity function calls).
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, "Address: low-level call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
           * `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
          }
          /**
           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
           * with `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(address(this).balance >= value, "Address: insufficient balance for call");
              (bool success, bytes memory returndata) = target.call{value: value}(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              return functionStaticCall(target, data, "Address: low-level static call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              (bool success, bytes memory returndata) = target.staticcall(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionDelegateCall(target, data, "Address: low-level delegate call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              (bool success, bytes memory returndata) = target.delegatecall(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
          /**
           * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
           * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
           *
           * _Available since v4.8._
           */
          function verifyCallResultFromTarget(
              address target,
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              if (success) {
                  if (returndata.length == 0) {
                      // only check isContract if the call was successful and the return data is empty
                      // otherwise we already know that it was a contract
                      require(isContract(target), "Address: call to non-contract");
                  }
                  return returndata;
              } else {
                  _revert(returndata, errorMessage);
              }
          }
          /**
           * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
           * revert reason or using the provided one.
           *
           * _Available since v4.3._
           */
          function verifyCallResult(
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal pure returns (bytes memory) {
              if (success) {
                  return returndata;
              } else {
                  _revert(returndata, errorMessage);
              }
          }
          function _revert(bytes memory returndata, string memory errorMessage) private pure {
              // Look for revert reason and bubble it up if present
              if (returndata.length > 0) {
                  // The easiest way to bubble the revert reason is using memory via assembly
                  /// @solidity memory-safe-assembly
                  assembly {
                      let returndata_size := mload(returndata)
                      revert(add(32, returndata), returndata_size)
                  }
              } else {
                  revert(errorMessage);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol)
      // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
      pragma solidity ^0.8.0;
      /**
       * @dev Library for reading and writing primitive types to specific storage slots.
       *
       * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
       * This library helps with reading and writing to such slots without the need for inline assembly.
       *
       * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
       *
       * Example usage to set ERC1967 implementation slot:
       * ```solidity
       * contract ERC1967 {
       *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
       *
       *     function _getImplementation() internal view returns (address) {
       *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
       *     }
       *
       *     function _setImplementation(address newImplementation) internal {
       *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
       *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
       *     }
       * }
       * ```
       *
       * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
       * _Available since v4.9 for `string`, `bytes`._
       */
      library StorageSlot {
          struct AddressSlot {
              address value;
          }
          struct BooleanSlot {
              bool value;
          }
          struct Bytes32Slot {
              bytes32 value;
          }
          struct Uint256Slot {
              uint256 value;
          }
          struct StringSlot {
              string value;
          }
          struct BytesSlot {
              bytes value;
          }
          /**
           * @dev Returns an `AddressSlot` with member `value` located at `slot`.
           */
          function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
           */
          function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
           */
          function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
           */
          function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `StringSlot` with member `value` located at `slot`.
           */
          function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
           */
          function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := store.slot
              }
          }
          /**
           * @dev Returns an `BytesSlot` with member `value` located at `slot`.
           */
          function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
           */
          function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := store.slot
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
       * proxy whose upgrades are fully controlled by the current implementation.
       */
      interface IERC1822ProxiableUpgradeable {
          /**
           * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
           * address.
           *
           * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
           * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
           * function revert if invoked through a proxy.
           */
          function proxiableUUID() external view returns (bytes32);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (proxy/ERC1967/ERC1967Upgrade.sol)
      pragma solidity ^0.8.2;
      import "../beacon/IBeaconUpgradeable.sol";
      import "../../interfaces/draft-IERC1822Upgradeable.sol";
      import "../../utils/AddressUpgradeable.sol";
      import "../../utils/StorageSlotUpgradeable.sol";
      import "../utils/Initializable.sol";
      /**
       * @dev This abstract contract provides getters and event emitting update functions for
       * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
       *
       * _Available since v4.1._
       */
      abstract contract ERC1967UpgradeUpgradeable is Initializable {
          function __ERC1967Upgrade_init() internal onlyInitializing {
          }
          function __ERC1967Upgrade_init_unchained() internal onlyInitializing {
          }
          // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
          bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
          /**
           * @dev Storage slot with the address of the current implementation.
           * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
           * validated in the constructor.
           */
          bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
          /**
           * @dev Emitted when the implementation is upgraded.
           */
          event Upgraded(address indexed implementation);
          /**
           * @dev Returns the current implementation address.
           */
          function _getImplementation() internal view returns (address) {
              return StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value;
          }
          /**
           * @dev Stores a new address in the EIP1967 implementation slot.
           */
          function _setImplementation(address newImplementation) private {
              require(AddressUpgradeable.isContract(newImplementation), "ERC1967: new implementation is not a contract");
              StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
          }
          /**
           * @dev Perform implementation upgrade
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeTo(address newImplementation) internal {
              _setImplementation(newImplementation);
              emit Upgraded(newImplementation);
          }
          /**
           * @dev Perform implementation upgrade with additional setup call.
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {
              _upgradeTo(newImplementation);
              if (data.length > 0 || forceCall) {
                  _functionDelegateCall(newImplementation, data);
              }
          }
          /**
           * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeToAndCallUUPS(address newImplementation, bytes memory data, bool forceCall) internal {
              // Upgrades from old implementations will perform a rollback test. This test requires the new
              // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
              // this special case will break upgrade paths from old UUPS implementation to new ones.
              if (StorageSlotUpgradeable.getBooleanSlot(_ROLLBACK_SLOT).value) {
                  _setImplementation(newImplementation);
              } else {
                  try IERC1822ProxiableUpgradeable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                      require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
                  } catch {
                      revert("ERC1967Upgrade: new implementation is not UUPS");
                  }
                  _upgradeToAndCall(newImplementation, data, forceCall);
              }
          }
          /**
           * @dev Storage slot with the admin of the contract.
           * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
           * validated in the constructor.
           */
          bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
          /**
           * @dev Emitted when the admin account has changed.
           */
          event AdminChanged(address previousAdmin, address newAdmin);
          /**
           * @dev Returns the current admin.
           */
          function _getAdmin() internal view returns (address) {
              return StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value;
          }
          /**
           * @dev Stores a new address in the EIP1967 admin slot.
           */
          function _setAdmin(address newAdmin) private {
              require(newAdmin != address(0), "ERC1967: new admin is the zero address");
              StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
          }
          /**
           * @dev Changes the admin of the proxy.
           *
           * Emits an {AdminChanged} event.
           */
          function _changeAdmin(address newAdmin) internal {
              emit AdminChanged(_getAdmin(), newAdmin);
              _setAdmin(newAdmin);
          }
          /**
           * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
           * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
           */
          bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
          /**
           * @dev Emitted when the beacon is upgraded.
           */
          event BeaconUpgraded(address indexed beacon);
          /**
           * @dev Returns the current beacon.
           */
          function _getBeacon() internal view returns (address) {
              return StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value;
          }
          /**
           * @dev Stores a new beacon in the EIP1967 beacon slot.
           */
          function _setBeacon(address newBeacon) private {
              require(AddressUpgradeable.isContract(newBeacon), "ERC1967: new beacon is not a contract");
              require(
                  AddressUpgradeable.isContract(IBeaconUpgradeable(newBeacon).implementation()),
                  "ERC1967: beacon implementation is not a contract"
              );
              StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value = newBeacon;
          }
          /**
           * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
           * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
           *
           * Emits a {BeaconUpgraded} event.
           */
          function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal {
              _setBeacon(newBeacon);
              emit BeaconUpgraded(newBeacon);
              if (data.length > 0 || forceCall) {
                  _functionDelegateCall(IBeaconUpgradeable(newBeacon).implementation(), data);
              }
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function _functionDelegateCall(address target, bytes memory data) private returns (bytes memory) {
              require(AddressUpgradeable.isContract(target), "Address: delegate call to non-contract");
              // solhint-disable-next-line avoid-low-level-calls
              (bool success, bytes memory returndata) = target.delegatecall(data);
              return AddressUpgradeable.verifyCallResult(success, returndata, "Address: low-level delegate call failed");
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[50] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev This is the interface that {BeaconProxy} expects of its beacon.
       */
      interface IBeaconUpgradeable {
          /**
           * @dev Must return an address that can be used as a delegate call target.
           *
           * {BeaconProxy} will check that this address is a contract.
           */
          function implementation() external view returns (address);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.0) (proxy/utils/Initializable.sol)
      pragma solidity ^0.8.2;
      import "../../utils/AddressUpgradeable.sol";
      /**
       * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
       * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
       * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
       * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
       *
       * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
       * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
       * case an upgrade adds a module that needs to be initialized.
       *
       * For example:
       *
       * [.hljs-theme-light.nopadding]
       * ```solidity
       * contract MyToken is ERC20Upgradeable {
       *     function initialize() initializer public {
       *         __ERC20_init("MyToken", "MTK");
       *     }
       * }
       *
       * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
       *     function initializeV2() reinitializer(2) public {
       *         __ERC20Permit_init("MyToken");
       *     }
       * }
       * ```
       *
       * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
       * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
       *
       * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
       * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
       *
       * [CAUTION]
       * ====
       * Avoid leaving a contract uninitialized.
       *
       * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
       * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
       * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
       *
       * [.hljs-theme-light.nopadding]
       * ```
       * /// @custom:oz-upgrades-unsafe-allow constructor
       * constructor() {
       *     _disableInitializers();
       * }
       * ```
       * ====
       */
      abstract contract Initializable {
          /**
           * @dev Indicates that the contract has been initialized.
           * @custom:oz-retyped-from bool
           */
          uint8 private _initialized;
          /**
           * @dev Indicates that the contract is in the process of being initialized.
           */
          bool private _initializing;
          /**
           * @dev Triggered when the contract has been initialized or reinitialized.
           */
          event Initialized(uint8 version);
          /**
           * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
           * `onlyInitializing` functions can be used to initialize parent contracts.
           *
           * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
           * constructor.
           *
           * Emits an {Initialized} event.
           */
          modifier initializer() {
              bool isTopLevelCall = !_initializing;
              require(
                  (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                  "Initializable: contract is already initialized"
              );
              _initialized = 1;
              if (isTopLevelCall) {
                  _initializing = true;
              }
              _;
              if (isTopLevelCall) {
                  _initializing = false;
                  emit Initialized(1);
              }
          }
          /**
           * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
           * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
           * used to initialize parent contracts.
           *
           * A reinitializer may be used after the original initialization step. This is essential to configure modules that
           * are added through upgrades and that require initialization.
           *
           * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
           * cannot be nested. If one is invoked in the context of another, execution will revert.
           *
           * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
           * a contract, executing them in the right order is up to the developer or operator.
           *
           * WARNING: setting the version to 255 will prevent any future reinitialization.
           *
           * Emits an {Initialized} event.
           */
          modifier reinitializer(uint8 version) {
              require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
              _initialized = version;
              _initializing = true;
              _;
              _initializing = false;
              emit Initialized(version);
          }
          /**
           * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
           * {initializer} and {reinitializer} modifiers, directly or indirectly.
           */
          modifier onlyInitializing() {
              require(_initializing, "Initializable: contract is not initializing");
              _;
          }
          /**
           * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
           * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
           * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
           * through proxies.
           *
           * Emits an {Initialized} event the first time it is successfully executed.
           */
          function _disableInitializers() internal virtual {
              require(!_initializing, "Initializable: contract is initializing");
              if (_initialized != type(uint8).max) {
                  _initialized = type(uint8).max;
                  emit Initialized(type(uint8).max);
              }
          }
          /**
           * @dev Returns the highest version that has been initialized. See {reinitializer}.
           */
          function _getInitializedVersion() internal view returns (uint8) {
              return _initialized;
          }
          /**
           * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
           */
          function _isInitializing() internal view returns (bool) {
              return _initializing;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.0) (proxy/utils/UUPSUpgradeable.sol)
      pragma solidity ^0.8.0;
      import "../../interfaces/draft-IERC1822Upgradeable.sol";
      import "../ERC1967/ERC1967UpgradeUpgradeable.sol";
      import "./Initializable.sol";
      /**
       * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
       * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
       *
       * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
       * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
       * `UUPSUpgradeable` with a custom implementation of upgrades.
       *
       * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
       *
       * _Available since v4.1._
       */
      abstract contract UUPSUpgradeable is Initializable, IERC1822ProxiableUpgradeable, ERC1967UpgradeUpgradeable {
          function __UUPSUpgradeable_init() internal onlyInitializing {
          }
          function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
          }
          /// @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
          address private immutable __self = address(this);
          /**
           * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
           * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case
           * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
           * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
           * fail.
           */
          modifier onlyProxy() {
              require(address(this) != __self, "Function must be called through delegatecall");
              require(_getImplementation() == __self, "Function must be called through active proxy");
              _;
          }
          /**
           * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
           * callable on the implementing contract but not through proxies.
           */
          modifier notDelegated() {
              require(address(this) == __self, "UUPSUpgradeable: must not be called through delegatecall");
              _;
          }
          /**
           * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the
           * implementation. It is used to validate the implementation's compatibility when performing an upgrade.
           *
           * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
           * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
           * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
           */
          function proxiableUUID() external view virtual override notDelegated returns (bytes32) {
              return _IMPLEMENTATION_SLOT;
          }
          /**
           * @dev Upgrade the implementation of the proxy to `newImplementation`.
           *
           * Calls {_authorizeUpgrade}.
           *
           * Emits an {Upgraded} event.
           *
           * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
           */
          function upgradeTo(address newImplementation) public virtual onlyProxy {
              _authorizeUpgrade(newImplementation);
              _upgradeToAndCallUUPS(newImplementation, new bytes(0), false);
          }
          /**
           * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
           * encoded in `data`.
           *
           * Calls {_authorizeUpgrade}.
           *
           * Emits an {Upgraded} event.
           *
           * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
           */
          function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
              _authorizeUpgrade(newImplementation);
              _upgradeToAndCallUUPS(newImplementation, data, true);
          }
          /**
           * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
           * {upgradeTo} and {upgradeToAndCall}.
           *
           * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
           *
           * ```solidity
           * function _authorizeUpgrade(address) internal override onlyOwner {}
           * ```
           */
          function _authorizeUpgrade(address newImplementation) internal virtual;
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[50] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
      pragma solidity ^0.8.1;
      /**
       * @dev Collection of functions related to the address type
       */
      library AddressUpgradeable {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           *
           * Furthermore, `isContract` will also return true if the target contract within
           * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
           * which only has an effect at the end of a transaction.
           * ====
           *
           * [IMPORTANT]
           * ====
           * You shouldn't rely on `isContract` to protect against flash loan attacks!
           *
           * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
           * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
           * constructor.
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // This method relies on extcodesize/address.code.length, which returns 0
              // for contracts in construction, since the code is only stored at the end
              // of the constructor execution.
              return account.code.length > 0;
          }
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              require(address(this).balance >= amount, "Address: insufficient balance");
              (bool success, ) = recipient.call{value: amount}("");
              require(success, "Address: unable to send value, recipient may have reverted");
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain `call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason, it is bubbled up by this
           * function (like regular Solidity function calls).
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, "Address: low-level call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
           * `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
          }
          /**
           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
           * with `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(address(this).balance >= value, "Address: insufficient balance for call");
              (bool success, bytes memory returndata) = target.call{value: value}(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              return functionStaticCall(target, data, "Address: low-level static call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              (bool success, bytes memory returndata) = target.staticcall(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
          /**
           * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
           * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
           *
           * _Available since v4.8._
           */
          function verifyCallResultFromTarget(
              address target,
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              if (success) {
                  if (returndata.length == 0) {
                      // only check isContract if the call was successful and the return data is empty
                      // otherwise we already know that it was a contract
                      require(isContract(target), "Address: call to non-contract");
                  }
                  return returndata;
              } else {
                  _revert(returndata, errorMessage);
              }
          }
          /**
           * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
           * revert reason or using the provided one.
           *
           * _Available since v4.3._
           */
          function verifyCallResult(
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal pure returns (bytes memory) {
              if (success) {
                  return returndata;
              } else {
                  _revert(returndata, errorMessage);
              }
          }
          function _revert(bytes memory returndata, string memory errorMessage) private pure {
              // Look for revert reason and bubble it up if present
              if (returndata.length > 0) {
                  // The easiest way to bubble the revert reason is using memory via assembly
                  /// @solidity memory-safe-assembly
                  assembly {
                      let returndata_size := mload(returndata)
                      revert(add(32, returndata), returndata_size)
                  }
              } else {
                  revert(errorMessage);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol)
      // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
      pragma solidity ^0.8.0;
      /**
       * @dev Library for reading and writing primitive types to specific storage slots.
       *
       * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
       * This library helps with reading and writing to such slots without the need for inline assembly.
       *
       * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
       *
       * Example usage to set ERC1967 implementation slot:
       * ```solidity
       * contract ERC1967 {
       *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
       *
       *     function _getImplementation() internal view returns (address) {
       *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
       *     }
       *
       *     function _setImplementation(address newImplementation) internal {
       *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
       *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
       *     }
       * }
       * ```
       *
       * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
       * _Available since v4.9 for `string`, `bytes`._
       */
      library StorageSlotUpgradeable {
          struct AddressSlot {
              address value;
          }
          struct BooleanSlot {
              bool value;
          }
          struct Bytes32Slot {
              bytes32 value;
          }
          struct Uint256Slot {
              uint256 value;
          }
          struct StringSlot {
              string value;
          }
          struct BytesSlot {
              bytes value;
          }
          /**
           * @dev Returns an `AddressSlot` with member `value` located at `slot`.
           */
          function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
           */
          function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
           */
          function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
           */
          function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `StringSlot` with member `value` located at `slot`.
           */
          function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
           */
          function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := store.slot
              }
          }
          /**
           * @dev Returns an `BytesSlot` with member `value` located at `slot`.
           */
          function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
           */
          function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := store.slot
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.18;
      import {UUPSUpgradeable} from "@openzeppelin-upgradeable/contracts/proxy/utils/UUPSUpgradeable.sol";
      import {ERC1967Proxy} from "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol";
      /**
       * @title ToxicSkullsClubProxy
       * @custom:website www.toxicskullsclub.io
       * @author Lozz (@lozzereth / www.allthingsweb3.com)
       * @notice Delegation proxy contract for Toxic Skulls Club.
       */
      contract ToxicSkullsClubProxy is ERC1967Proxy {
          constructor(
              address _implementation,
              bytes memory _data
          ) ERC1967Proxy(_implementation, _data) {}
          receive() external payable virtual override {}
      }
      

      File 2 of 3: ToxicSkullsClub
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.4;
      /// @notice Optimized and flexible operator filterer to abide to OpenSea's
      /// mandatory on-chain royalty enforcement in order for new collections to
      /// receive royalties.
      /// For more information, see:
      /// See: https://github.com/ProjectOpenSea/operator-filter-registry
      abstract contract OperatorFilterer {
          /// @dev The default OpenSea operator blocklist subscription.
          address internal constant _DEFAULT_SUBSCRIPTION = 0x3cc6CddA760b79bAfa08dF41ECFA224f810dCeB6;
          /// @dev The OpenSea operator filter registry.
          address internal constant _OPERATOR_FILTER_REGISTRY = 0x000000000000AAeB6D7670E522A718067333cd4E;
          /// @dev Registers the current contract to OpenSea's operator filter,
          /// and subscribe to the default OpenSea operator blocklist.
          /// Note: Will not revert nor update existing settings for repeated registration.
          function _registerForOperatorFiltering() internal virtual {
              _registerForOperatorFiltering(_DEFAULT_SUBSCRIPTION, true);
          }
          /// @dev Registers the current contract to OpenSea's operator filter.
          /// Note: Will not revert nor update existing settings for repeated registration.
          function _registerForOperatorFiltering(address subscriptionOrRegistrantToCopy, bool subscribe)
              internal
              virtual
          {
              /// @solidity memory-safe-assembly
              assembly {
                  let functionSelector := 0x7d3e3dbe // `registerAndSubscribe(address,address)`.
                  // Clean the upper 96 bits of `subscriptionOrRegistrantToCopy` in case they are dirty.
                  subscriptionOrRegistrantToCopy := shr(96, shl(96, subscriptionOrRegistrantToCopy))
                  for {} iszero(subscribe) {} {
                      if iszero(subscriptionOrRegistrantToCopy) {
                          functionSelector := 0x4420e486 // `register(address)`.
                          break
                      }
                      functionSelector := 0xa0af2903 // `registerAndCopyEntries(address,address)`.
                      break
                  }
                  // Store the function selector.
                  mstore(0x00, shl(224, functionSelector))
                  // Store the `address(this)`.
                  mstore(0x04, address())
                  // Store the `subscriptionOrRegistrantToCopy`.
                  mstore(0x24, subscriptionOrRegistrantToCopy)
                  // Register into the registry.
                  pop(call(gas(), _OPERATOR_FILTER_REGISTRY, 0, 0x00, 0x44, 0x00, 0x00))
                  // Restore the part of the free memory pointer that was overwritten,
                  // which is guaranteed to be zero, because of Solidity's memory size limits.
                  mstore(0x24, 0)
              }
          }
          /// @dev Modifier to guard a function and revert if the caller is a blocked operator.
          modifier onlyAllowedOperator(address from) virtual {
              if (from != msg.sender) {
                  if (!_isPriorityOperator(msg.sender)) {
                      if (_operatorFilteringEnabled()) _revertIfBlocked(msg.sender);
                  }
              }
              _;
          }
          /// @dev Modifier to guard a function from approving a blocked operator..
          modifier onlyAllowedOperatorApproval(address operator) virtual {
              if (!_isPriorityOperator(operator)) {
                  if (_operatorFilteringEnabled()) _revertIfBlocked(operator);
              }
              _;
          }
          /// @dev Helper function that reverts if the `operator` is blocked by the registry.
          function _revertIfBlocked(address operator) private view {
              /// @solidity memory-safe-assembly
              assembly {
                  // Store the function selector of `isOperatorAllowed(address,address)`,
                  // shifted left by 6 bytes, which is enough for 8tb of memory.
                  // We waste 6-3 = 3 bytes to save on 6 runtime gas (PUSH1 0x224 SHL).
                  mstore(0x00, 0xc6171134001122334455)
                  // Store the `address(this)`.
                  mstore(0x1a, address())
                  // Store the `operator`.
                  mstore(0x3a, operator)
                  // `isOperatorAllowed` always returns true if it does not revert.
                  if iszero(staticcall(gas(), _OPERATOR_FILTER_REGISTRY, 0x16, 0x44, 0x00, 0x00)) {
                      // Bubble up the revert if the staticcall reverts.
                      returndatacopy(0x00, 0x00, returndatasize())
                      revert(0x00, returndatasize())
                  }
                  // We'll skip checking if `from` is inside the blacklist.
                  // Even though that can block transferring out of wrapper contracts,
                  // we don't want tokens to be stuck.
                  // Restore the part of the free memory pointer that was overwritten,
                  // which is guaranteed to be zero, if less than 8tb of memory is used.
                  mstore(0x3a, 0)
              }
          }
          /// @dev For deriving contracts to override, so that operator filtering
          /// can be turned on / off.
          /// Returns true by default.
          function _operatorFilteringEnabled() internal view virtual returns (bool) {
              return true;
          }
          /// @dev For deriving contracts to override, so that preferred marketplaces can
          /// skip operator filtering, helping users save gas.
          /// Returns false for all inputs by default.
          function _isPriorityOperator(address) internal view virtual returns (bool) {
              return false;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
      pragma solidity ^0.8.0;
      import "../utils/ContextUpgradeable.sol";
      import "../proxy/utils/Initializable.sol";
      /**
       * @dev Contract module which provides a basic access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * By default, the owner account will be the one that deploys the contract. This
       * can later be changed with {transferOwnership}.
       *
       * This module is used through inheritance. It will make available the modifier
       * `onlyOwner`, which can be applied to your functions to restrict their use to
       * the owner.
       */
      abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
          address private _owner;
          event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
          /**
           * @dev Initializes the contract setting the deployer as the initial owner.
           */
          function __Ownable_init() internal onlyInitializing {
              __Ownable_init_unchained();
          }
          function __Ownable_init_unchained() internal onlyInitializing {
              _transferOwnership(_msgSender());
          }
          /**
           * @dev Throws if called by any account other than the owner.
           */
          modifier onlyOwner() {
              _checkOwner();
              _;
          }
          /**
           * @dev Returns the address of the current owner.
           */
          function owner() public view virtual returns (address) {
              return _owner;
          }
          /**
           * @dev Throws if the sender is not the owner.
           */
          function _checkOwner() internal view virtual {
              require(owner() == _msgSender(), "Ownable: caller is not the owner");
          }
          /**
           * @dev Leaves the contract without owner. It will not be possible to call
           * `onlyOwner` functions anymore. Can only be called by the current owner.
           *
           * NOTE: Renouncing ownership will leave the contract without an owner,
           * thereby removing any functionality that is only available to the owner.
           */
          function renounceOwnership() public virtual onlyOwner {
              _transferOwnership(address(0));
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual onlyOwner {
              require(newOwner != address(0), "Ownable: new owner is the zero address");
              _transferOwnership(newOwner);
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Internal function without access restriction.
           */
          function _transferOwnership(address newOwner) internal virtual {
              address oldOwner = _owner;
              _owner = newOwner;
              emit OwnershipTransferred(oldOwner, newOwner);
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[49] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.6.0) (interfaces/IERC2981.sol)
      pragma solidity ^0.8.0;
      import "../utils/introspection/IERC165Upgradeable.sol";
      /**
       * @dev Interface for the NFT Royalty Standard.
       *
       * A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal
       * support for royalty payments across all NFT marketplaces and ecosystem participants.
       *
       * _Available since v4.5._
       */
      interface IERC2981Upgradeable is IERC165Upgradeable {
          /**
           * @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of
           * exchange. The royalty amount is denominated and should be paid in that same unit of exchange.
           */
          function royaltyInfo(
              uint256 tokenId,
              uint256 salePrice
          ) external view returns (address receiver, uint256 royaltyAmount);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
       * proxy whose upgrades are fully controlled by the current implementation.
       */
      interface IERC1822ProxiableUpgradeable {
          /**
           * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
           * address.
           *
           * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
           * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
           * function revert if invoked through a proxy.
           */
          function proxiableUUID() external view returns (bytes32);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (proxy/ERC1967/ERC1967Upgrade.sol)
      pragma solidity ^0.8.2;
      import "../beacon/IBeaconUpgradeable.sol";
      import "../../interfaces/draft-IERC1822Upgradeable.sol";
      import "../../utils/AddressUpgradeable.sol";
      import "../../utils/StorageSlotUpgradeable.sol";
      import "../utils/Initializable.sol";
      /**
       * @dev This abstract contract provides getters and event emitting update functions for
       * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
       *
       * _Available since v4.1._
       */
      abstract contract ERC1967UpgradeUpgradeable is Initializable {
          function __ERC1967Upgrade_init() internal onlyInitializing {
          }
          function __ERC1967Upgrade_init_unchained() internal onlyInitializing {
          }
          // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
          bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
          /**
           * @dev Storage slot with the address of the current implementation.
           * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
           * validated in the constructor.
           */
          bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
          /**
           * @dev Emitted when the implementation is upgraded.
           */
          event Upgraded(address indexed implementation);
          /**
           * @dev Returns the current implementation address.
           */
          function _getImplementation() internal view returns (address) {
              return StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value;
          }
          /**
           * @dev Stores a new address in the EIP1967 implementation slot.
           */
          function _setImplementation(address newImplementation) private {
              require(AddressUpgradeable.isContract(newImplementation), "ERC1967: new implementation is not a contract");
              StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
          }
          /**
           * @dev Perform implementation upgrade
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeTo(address newImplementation) internal {
              _setImplementation(newImplementation);
              emit Upgraded(newImplementation);
          }
          /**
           * @dev Perform implementation upgrade with additional setup call.
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {
              _upgradeTo(newImplementation);
              if (data.length > 0 || forceCall) {
                  _functionDelegateCall(newImplementation, data);
              }
          }
          /**
           * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeToAndCallUUPS(address newImplementation, bytes memory data, bool forceCall) internal {
              // Upgrades from old implementations will perform a rollback test. This test requires the new
              // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
              // this special case will break upgrade paths from old UUPS implementation to new ones.
              if (StorageSlotUpgradeable.getBooleanSlot(_ROLLBACK_SLOT).value) {
                  _setImplementation(newImplementation);
              } else {
                  try IERC1822ProxiableUpgradeable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                      require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
                  } catch {
                      revert("ERC1967Upgrade: new implementation is not UUPS");
                  }
                  _upgradeToAndCall(newImplementation, data, forceCall);
              }
          }
          /**
           * @dev Storage slot with the admin of the contract.
           * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
           * validated in the constructor.
           */
          bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
          /**
           * @dev Emitted when the admin account has changed.
           */
          event AdminChanged(address previousAdmin, address newAdmin);
          /**
           * @dev Returns the current admin.
           */
          function _getAdmin() internal view returns (address) {
              return StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value;
          }
          /**
           * @dev Stores a new address in the EIP1967 admin slot.
           */
          function _setAdmin(address newAdmin) private {
              require(newAdmin != address(0), "ERC1967: new admin is the zero address");
              StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
          }
          /**
           * @dev Changes the admin of the proxy.
           *
           * Emits an {AdminChanged} event.
           */
          function _changeAdmin(address newAdmin) internal {
              emit AdminChanged(_getAdmin(), newAdmin);
              _setAdmin(newAdmin);
          }
          /**
           * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
           * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
           */
          bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
          /**
           * @dev Emitted when the beacon is upgraded.
           */
          event BeaconUpgraded(address indexed beacon);
          /**
           * @dev Returns the current beacon.
           */
          function _getBeacon() internal view returns (address) {
              return StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value;
          }
          /**
           * @dev Stores a new beacon in the EIP1967 beacon slot.
           */
          function _setBeacon(address newBeacon) private {
              require(AddressUpgradeable.isContract(newBeacon), "ERC1967: new beacon is not a contract");
              require(
                  AddressUpgradeable.isContract(IBeaconUpgradeable(newBeacon).implementation()),
                  "ERC1967: beacon implementation is not a contract"
              );
              StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value = newBeacon;
          }
          /**
           * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
           * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
           *
           * Emits a {BeaconUpgraded} event.
           */
          function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal {
              _setBeacon(newBeacon);
              emit BeaconUpgraded(newBeacon);
              if (data.length > 0 || forceCall) {
                  _functionDelegateCall(IBeaconUpgradeable(newBeacon).implementation(), data);
              }
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function _functionDelegateCall(address target, bytes memory data) private returns (bytes memory) {
              require(AddressUpgradeable.isContract(target), "Address: delegate call to non-contract");
              // solhint-disable-next-line avoid-low-level-calls
              (bool success, bytes memory returndata) = target.delegatecall(data);
              return AddressUpgradeable.verifyCallResult(success, returndata, "Address: low-level delegate call failed");
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[50] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev This is the interface that {BeaconProxy} expects of its beacon.
       */
      interface IBeaconUpgradeable {
          /**
           * @dev Must return an address that can be used as a delegate call target.
           *
           * {BeaconProxy} will check that this address is a contract.
           */
          function implementation() external view returns (address);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.0) (proxy/utils/Initializable.sol)
      pragma solidity ^0.8.2;
      import "../../utils/AddressUpgradeable.sol";
      /**
       * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
       * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
       * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
       * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
       *
       * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
       * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
       * case an upgrade adds a module that needs to be initialized.
       *
       * For example:
       *
       * [.hljs-theme-light.nopadding]
       * ```solidity
       * contract MyToken is ERC20Upgradeable {
       *     function initialize() initializer public {
       *         __ERC20_init("MyToken", "MTK");
       *     }
       * }
       *
       * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
       *     function initializeV2() reinitializer(2) public {
       *         __ERC20Permit_init("MyToken");
       *     }
       * }
       * ```
       *
       * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
       * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
       *
       * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
       * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
       *
       * [CAUTION]
       * ====
       * Avoid leaving a contract uninitialized.
       *
       * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
       * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
       * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
       *
       * [.hljs-theme-light.nopadding]
       * ```
       * /// @custom:oz-upgrades-unsafe-allow constructor
       * constructor() {
       *     _disableInitializers();
       * }
       * ```
       * ====
       */
      abstract contract Initializable {
          /**
           * @dev Indicates that the contract has been initialized.
           * @custom:oz-retyped-from bool
           */
          uint8 private _initialized;
          /**
           * @dev Indicates that the contract is in the process of being initialized.
           */
          bool private _initializing;
          /**
           * @dev Triggered when the contract has been initialized or reinitialized.
           */
          event Initialized(uint8 version);
          /**
           * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
           * `onlyInitializing` functions can be used to initialize parent contracts.
           *
           * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
           * constructor.
           *
           * Emits an {Initialized} event.
           */
          modifier initializer() {
              bool isTopLevelCall = !_initializing;
              require(
                  (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                  "Initializable: contract is already initialized"
              );
              _initialized = 1;
              if (isTopLevelCall) {
                  _initializing = true;
              }
              _;
              if (isTopLevelCall) {
                  _initializing = false;
                  emit Initialized(1);
              }
          }
          /**
           * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
           * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
           * used to initialize parent contracts.
           *
           * A reinitializer may be used after the original initialization step. This is essential to configure modules that
           * are added through upgrades and that require initialization.
           *
           * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
           * cannot be nested. If one is invoked in the context of another, execution will revert.
           *
           * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
           * a contract, executing them in the right order is up to the developer or operator.
           *
           * WARNING: setting the version to 255 will prevent any future reinitialization.
           *
           * Emits an {Initialized} event.
           */
          modifier reinitializer(uint8 version) {
              require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
              _initialized = version;
              _initializing = true;
              _;
              _initializing = false;
              emit Initialized(version);
          }
          /**
           * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
           * {initializer} and {reinitializer} modifiers, directly or indirectly.
           */
          modifier onlyInitializing() {
              require(_initializing, "Initializable: contract is not initializing");
              _;
          }
          /**
           * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
           * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
           * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
           * through proxies.
           *
           * Emits an {Initialized} event the first time it is successfully executed.
           */
          function _disableInitializers() internal virtual {
              require(!_initializing, "Initializable: contract is initializing");
              if (_initialized != type(uint8).max) {
                  _initialized = type(uint8).max;
                  emit Initialized(type(uint8).max);
              }
          }
          /**
           * @dev Returns the highest version that has been initialized. See {reinitializer}.
           */
          function _getInitializedVersion() internal view returns (uint8) {
              return _initialized;
          }
          /**
           * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
           */
          function _isInitializing() internal view returns (bool) {
              return _initializing;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.0) (proxy/utils/UUPSUpgradeable.sol)
      pragma solidity ^0.8.0;
      import "../../interfaces/draft-IERC1822Upgradeable.sol";
      import "../ERC1967/ERC1967UpgradeUpgradeable.sol";
      import "./Initializable.sol";
      /**
       * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
       * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
       *
       * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
       * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
       * `UUPSUpgradeable` with a custom implementation of upgrades.
       *
       * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
       *
       * _Available since v4.1._
       */
      abstract contract UUPSUpgradeable is Initializable, IERC1822ProxiableUpgradeable, ERC1967UpgradeUpgradeable {
          function __UUPSUpgradeable_init() internal onlyInitializing {
          }
          function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
          }
          /// @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
          address private immutable __self = address(this);
          /**
           * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
           * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case
           * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
           * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
           * fail.
           */
          modifier onlyProxy() {
              require(address(this) != __self, "Function must be called through delegatecall");
              require(_getImplementation() == __self, "Function must be called through active proxy");
              _;
          }
          /**
           * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
           * callable on the implementing contract but not through proxies.
           */
          modifier notDelegated() {
              require(address(this) == __self, "UUPSUpgradeable: must not be called through delegatecall");
              _;
          }
          /**
           * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the
           * implementation. It is used to validate the implementation's compatibility when performing an upgrade.
           *
           * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
           * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
           * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
           */
          function proxiableUUID() external view virtual override notDelegated returns (bytes32) {
              return _IMPLEMENTATION_SLOT;
          }
          /**
           * @dev Upgrade the implementation of the proxy to `newImplementation`.
           *
           * Calls {_authorizeUpgrade}.
           *
           * Emits an {Upgraded} event.
           *
           * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
           */
          function upgradeTo(address newImplementation) public virtual onlyProxy {
              _authorizeUpgrade(newImplementation);
              _upgradeToAndCallUUPS(newImplementation, new bytes(0), false);
          }
          /**
           * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
           * encoded in `data`.
           *
           * Calls {_authorizeUpgrade}.
           *
           * Emits an {Upgraded} event.
           *
           * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
           */
          function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
              _authorizeUpgrade(newImplementation);
              _upgradeToAndCallUUPS(newImplementation, data, true);
          }
          /**
           * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
           * {upgradeTo} and {upgradeToAndCall}.
           *
           * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
           *
           * ```solidity
           * function _authorizeUpgrade(address) internal override onlyOwner {}
           * ```
           */
          function _authorizeUpgrade(address newImplementation) internal virtual;
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[50] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/ERC721.sol)
      pragma solidity ^0.8.0;
      import "./IERC721Upgradeable.sol";
      import "./IERC721ReceiverUpgradeable.sol";
      import "./extensions/IERC721MetadataUpgradeable.sol";
      import "../../utils/AddressUpgradeable.sol";
      import "../../utils/ContextUpgradeable.sol";
      import "../../utils/StringsUpgradeable.sol";
      import "../../utils/introspection/ERC165Upgradeable.sol";
      import "../../proxy/utils/Initializable.sol";
      /**
       * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including
       * the Metadata extension, but not including the Enumerable extension, which is available separately as
       * {ERC721Enumerable}.
       */
      contract ERC721Upgradeable is Initializable, ContextUpgradeable, ERC165Upgradeable, IERC721Upgradeable, IERC721MetadataUpgradeable {
          using AddressUpgradeable for address;
          using StringsUpgradeable for uint256;
          // Token name
          string private _name;
          // Token symbol
          string private _symbol;
          // Mapping from token ID to owner address
          mapping(uint256 => address) private _owners;
          // Mapping owner address to token count
          mapping(address => uint256) private _balances;
          // Mapping from token ID to approved address
          mapping(uint256 => address) private _tokenApprovals;
          // Mapping from owner to operator approvals
          mapping(address => mapping(address => bool)) private _operatorApprovals;
          /**
           * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
           */
          function __ERC721_init(string memory name_, string memory symbol_) internal onlyInitializing {
              __ERC721_init_unchained(name_, symbol_);
          }
          function __ERC721_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing {
              _name = name_;
              _symbol = symbol_;
          }
          /**
           * @dev See {IERC165-supportsInterface}.
           */
          function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165Upgradeable, IERC165Upgradeable) returns (bool) {
              return
                  interfaceId == type(IERC721Upgradeable).interfaceId ||
                  interfaceId == type(IERC721MetadataUpgradeable).interfaceId ||
                  super.supportsInterface(interfaceId);
          }
          /**
           * @dev See {IERC721-balanceOf}.
           */
          function balanceOf(address owner) public view virtual override returns (uint256) {
              require(owner != address(0), "ERC721: address zero is not a valid owner");
              return _balances[owner];
          }
          /**
           * @dev See {IERC721-ownerOf}.
           */
          function ownerOf(uint256 tokenId) public view virtual override returns (address) {
              address owner = _ownerOf(tokenId);
              require(owner != address(0), "ERC721: invalid token ID");
              return owner;
          }
          /**
           * @dev See {IERC721Metadata-name}.
           */
          function name() public view virtual override returns (string memory) {
              return _name;
          }
          /**
           * @dev See {IERC721Metadata-symbol}.
           */
          function symbol() public view virtual override returns (string memory) {
              return _symbol;
          }
          /**
           * @dev See {IERC721Metadata-tokenURI}.
           */
          function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
              _requireMinted(tokenId);
              string memory baseURI = _baseURI();
              return bytes(baseURI).length > 0 ? string(abi.encodePacked(baseURI, tokenId.toString())) : "";
          }
          /**
           * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
           * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
           * by default, can be overridden in child contracts.
           */
          function _baseURI() internal view virtual returns (string memory) {
              return "";
          }
          /**
           * @dev See {IERC721-approve}.
           */
          function approve(address to, uint256 tokenId) public virtual override {
              address owner = ERC721Upgradeable.ownerOf(tokenId);
              require(to != owner, "ERC721: approval to current owner");
              require(
                  _msgSender() == owner || isApprovedForAll(owner, _msgSender()),
                  "ERC721: approve caller is not token owner or approved for all"
              );
              _approve(to, tokenId);
          }
          /**
           * @dev See {IERC721-getApproved}.
           */
          function getApproved(uint256 tokenId) public view virtual override returns (address) {
              _requireMinted(tokenId);
              return _tokenApprovals[tokenId];
          }
          /**
           * @dev See {IERC721-setApprovalForAll}.
           */
          function setApprovalForAll(address operator, bool approved) public virtual override {
              _setApprovalForAll(_msgSender(), operator, approved);
          }
          /**
           * @dev See {IERC721-isApprovedForAll}.
           */
          function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
              return _operatorApprovals[owner][operator];
          }
          /**
           * @dev See {IERC721-transferFrom}.
           */
          function transferFrom(address from, address to, uint256 tokenId) public virtual override {
              //solhint-disable-next-line max-line-length
              require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved");
              _transfer(from, to, tokenId);
          }
          /**
           * @dev See {IERC721-safeTransferFrom}.
           */
          function safeTransferFrom(address from, address to, uint256 tokenId) public virtual override {
              safeTransferFrom(from, to, tokenId, "");
          }
          /**
           * @dev See {IERC721-safeTransferFrom}.
           */
          function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual override {
              require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved");
              _safeTransfer(from, to, tokenId, data);
          }
          /**
           * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
           * are aware of the ERC721 protocol to prevent tokens from being forever locked.
           *
           * `data` is additional data, it has no specified format and it is sent in call to `to`.
           *
           * This internal function is equivalent to {safeTransferFrom}, and can be used to e.g.
           * implement alternative mechanisms to perform token transfer, such as signature-based.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `tokenId` token must exist and be owned by `from`.
           * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
           *
           * Emits a {Transfer} event.
           */
          function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual {
              _transfer(from, to, tokenId);
              require(_checkOnERC721Received(from, to, tokenId, data), "ERC721: transfer to non ERC721Receiver implementer");
          }
          /**
           * @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
           */
          function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
              return _owners[tokenId];
          }
          /**
           * @dev Returns whether `tokenId` exists.
           *
           * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
           *
           * Tokens start existing when they are minted (`_mint`),
           * and stop existing when they are burned (`_burn`).
           */
          function _exists(uint256 tokenId) internal view virtual returns (bool) {
              return _ownerOf(tokenId) != address(0);
          }
          /**
           * @dev Returns whether `spender` is allowed to manage `tokenId`.
           *
           * Requirements:
           *
           * - `tokenId` must exist.
           */
          function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) {
              address owner = ERC721Upgradeable.ownerOf(tokenId);
              return (spender == owner || isApprovedForAll(owner, spender) || getApproved(tokenId) == spender);
          }
          /**
           * @dev Safely mints `tokenId` and transfers it to `to`.
           *
           * Requirements:
           *
           * - `tokenId` must not exist.
           * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
           *
           * Emits a {Transfer} event.
           */
          function _safeMint(address to, uint256 tokenId) internal virtual {
              _safeMint(to, tokenId, "");
          }
          /**
           * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
           * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
           */
          function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual {
              _mint(to, tokenId);
              require(
                  _checkOnERC721Received(address(0), to, tokenId, data),
                  "ERC721: transfer to non ERC721Receiver implementer"
              );
          }
          /**
           * @dev Mints `tokenId` and transfers it to `to`.
           *
           * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
           *
           * Requirements:
           *
           * - `tokenId` must not exist.
           * - `to` cannot be the zero address.
           *
           * Emits a {Transfer} event.
           */
          function _mint(address to, uint256 tokenId) internal virtual {
              require(to != address(0), "ERC721: mint to the zero address");
              require(!_exists(tokenId), "ERC721: token already minted");
              _beforeTokenTransfer(address(0), to, tokenId, 1);
              // Check that tokenId was not minted by `_beforeTokenTransfer` hook
              require(!_exists(tokenId), "ERC721: token already minted");
              unchecked {
                  // Will not overflow unless all 2**256 token ids are minted to the same owner.
                  // Given that tokens are minted one by one, it is impossible in practice that
                  // this ever happens. Might change if we allow batch minting.
                  // The ERC fails to describe this case.
                  _balances[to] += 1;
              }
              _owners[tokenId] = to;
              emit Transfer(address(0), to, tokenId);
              _afterTokenTransfer(address(0), to, tokenId, 1);
          }
          /**
           * @dev Destroys `tokenId`.
           * The approval is cleared when the token is burned.
           * This is an internal function that does not check if the sender is authorized to operate on the token.
           *
           * Requirements:
           *
           * - `tokenId` must exist.
           *
           * Emits a {Transfer} event.
           */
          function _burn(uint256 tokenId) internal virtual {
              address owner = ERC721Upgradeable.ownerOf(tokenId);
              _beforeTokenTransfer(owner, address(0), tokenId, 1);
              // Update ownership in case tokenId was transferred by `_beforeTokenTransfer` hook
              owner = ERC721Upgradeable.ownerOf(tokenId);
              // Clear approvals
              delete _tokenApprovals[tokenId];
              unchecked {
                  // Cannot overflow, as that would require more tokens to be burned/transferred
                  // out than the owner initially received through minting and transferring in.
                  _balances[owner] -= 1;
              }
              delete _owners[tokenId];
              emit Transfer(owner, address(0), tokenId);
              _afterTokenTransfer(owner, address(0), tokenId, 1);
          }
          /**
           * @dev Transfers `tokenId` from `from` to `to`.
           *  As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
           *
           * Requirements:
           *
           * - `to` cannot be the zero address.
           * - `tokenId` token must be owned by `from`.
           *
           * Emits a {Transfer} event.
           */
          function _transfer(address from, address to, uint256 tokenId) internal virtual {
              require(ERC721Upgradeable.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner");
              require(to != address(0), "ERC721: transfer to the zero address");
              _beforeTokenTransfer(from, to, tokenId, 1);
              // Check that tokenId was not transferred by `_beforeTokenTransfer` hook
              require(ERC721Upgradeable.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner");
              // Clear approvals from the previous owner
              delete _tokenApprovals[tokenId];
              unchecked {
                  // `_balances[from]` cannot overflow for the same reason as described in `_burn`:
                  // `from`'s balance is the number of token held, which is at least one before the current
                  // transfer.
                  // `_balances[to]` could overflow in the conditions described in `_mint`. That would require
                  // all 2**256 token ids to be minted, which in practice is impossible.
                  _balances[from] -= 1;
                  _balances[to] += 1;
              }
              _owners[tokenId] = to;
              emit Transfer(from, to, tokenId);
              _afterTokenTransfer(from, to, tokenId, 1);
          }
          /**
           * @dev Approve `to` to operate on `tokenId`
           *
           * Emits an {Approval} event.
           */
          function _approve(address to, uint256 tokenId) internal virtual {
              _tokenApprovals[tokenId] = to;
              emit Approval(ERC721Upgradeable.ownerOf(tokenId), to, tokenId);
          }
          /**
           * @dev Approve `operator` to operate on all of `owner` tokens
           *
           * Emits an {ApprovalForAll} event.
           */
          function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
              require(owner != operator, "ERC721: approve to caller");
              _operatorApprovals[owner][operator] = approved;
              emit ApprovalForAll(owner, operator, approved);
          }
          /**
           * @dev Reverts if the `tokenId` has not been minted yet.
           */
          function _requireMinted(uint256 tokenId) internal view virtual {
              require(_exists(tokenId), "ERC721: invalid token ID");
          }
          /**
           * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address.
           * The call is not executed if the target address is not a contract.
           *
           * @param from address representing the previous owner of the given token ID
           * @param to target address that will receive the tokens
           * @param tokenId uint256 ID of the token to be transferred
           * @param data bytes optional data to send along with the call
           * @return bool whether the call correctly returned the expected magic value
           */
          function _checkOnERC721Received(
              address from,
              address to,
              uint256 tokenId,
              bytes memory data
          ) private returns (bool) {
              if (to.isContract()) {
                  try IERC721ReceiverUpgradeable(to).onERC721Received(_msgSender(), from, tokenId, data) returns (bytes4 retval) {
                      return retval == IERC721ReceiverUpgradeable.onERC721Received.selector;
                  } catch (bytes memory reason) {
                      if (reason.length == 0) {
                          revert("ERC721: transfer to non ERC721Receiver implementer");
                      } else {
                          /// @solidity memory-safe-assembly
                          assembly {
                              revert(add(32, reason), mload(reason))
                          }
                      }
                  }
              } else {
                  return true;
              }
          }
          /**
           * @dev Hook that is called before any token transfer. This includes minting and burning. If {ERC721Consecutive} is
           * used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1.
           *
           * Calling conditions:
           *
           * - When `from` and `to` are both non-zero, ``from``'s tokens will be transferred to `to`.
           * - When `from` is zero, the tokens will be minted for `to`.
           * - When `to` is zero, ``from``'s tokens will be burned.
           * - `from` and `to` are never both zero.
           * - `batchSize` is non-zero.
           *
           * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
           */
          function _beforeTokenTransfer(
              address from,
              address to,
              uint256 /* firstTokenId */,
              uint256 batchSize
          ) internal virtual {
              if (batchSize > 1) {
                  if (from != address(0)) {
                      _balances[from] -= batchSize;
                  }
                  if (to != address(0)) {
                      _balances[to] += batchSize;
                  }
              }
          }
          /**
           * @dev Hook that is called after any token transfer. This includes minting and burning. If {ERC721Consecutive} is
           * used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1.
           *
           * Calling conditions:
           *
           * - When `from` and `to` are both non-zero, ``from``'s tokens were transferred to `to`.
           * - When `from` is zero, the tokens were minted for `to`.
           * - When `to` is zero, ``from``'s tokens were burned.
           * - `from` and `to` are never both zero.
           * - `batchSize` is non-zero.
           *
           * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
           */
          function _afterTokenTransfer(address from, address to, uint256 firstTokenId, uint256 batchSize) internal virtual {}
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[44] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)
      pragma solidity ^0.8.0;
      /**
       * @title ERC721 token receiver interface
       * @dev Interface for any contract that wants to support safeTransfers
       * from ERC721 asset contracts.
       */
      interface IERC721ReceiverUpgradeable {
          /**
           * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
           * by `operator` from `from`, this function is called.
           *
           * It must return its Solidity selector to confirm the token transfer.
           * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
           *
           * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
           */
          function onERC721Received(
              address operator,
              address from,
              uint256 tokenId,
              bytes calldata data
          ) external returns (bytes4);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol)
      pragma solidity ^0.8.0;
      import "../../utils/introspection/IERC165Upgradeable.sol";
      /**
       * @dev Required interface of an ERC721 compliant contract.
       */
      interface IERC721Upgradeable is IERC165Upgradeable {
          /**
           * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
           */
          event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
          /**
           * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
           */
          event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
          /**
           * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
           */
          event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
          /**
           * @dev Returns the number of tokens in ``owner``'s account.
           */
          function balanceOf(address owner) external view returns (uint256 balance);
          /**
           * @dev Returns the owner of the `tokenId` token.
           *
           * Requirements:
           *
           * - `tokenId` must exist.
           */
          function ownerOf(uint256 tokenId) external view returns (address owner);
          /**
           * @dev Safely transfers `tokenId` token from `from` to `to`.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `tokenId` token must exist and be owned by `from`.
           * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
           * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
           *
           * Emits a {Transfer} event.
           */
          function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
          /**
           * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
           * are aware of the ERC721 protocol to prevent tokens from being forever locked.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `tokenId` token must exist and be owned by `from`.
           * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
           * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
           *
           * Emits a {Transfer} event.
           */
          function safeTransferFrom(address from, address to, uint256 tokenId) external;
          /**
           * @dev Transfers `tokenId` token from `from` to `to`.
           *
           * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
           * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
           * understand this adds an external call which potentially creates a reentrancy vulnerability.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `tokenId` token must be owned by `from`.
           * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(address from, address to, uint256 tokenId) external;
          /**
           * @dev Gives permission to `to` to transfer `tokenId` token to another account.
           * The approval is cleared when the token is transferred.
           *
           * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
           *
           * Requirements:
           *
           * - The caller must own the token or be an approved operator.
           * - `tokenId` must exist.
           *
           * Emits an {Approval} event.
           */
          function approve(address to, uint256 tokenId) external;
          /**
           * @dev Approve or remove `operator` as an operator for the caller.
           * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
           *
           * Requirements:
           *
           * - The `operator` cannot be the caller.
           *
           * Emits an {ApprovalForAll} event.
           */
          function setApprovalForAll(address operator, bool approved) external;
          /**
           * @dev Returns the account approved for `tokenId` token.
           *
           * Requirements:
           *
           * - `tokenId` must exist.
           */
          function getApproved(uint256 tokenId) external view returns (address operator);
          /**
           * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
           *
           * See {setApprovalForAll}
           */
          function isApprovedForAll(address owner, address operator) external view returns (bool);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)
      pragma solidity ^0.8.0;
      import "../IERC721Upgradeable.sol";
      /**
       * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
       * @dev See https://eips.ethereum.org/EIPS/eip-721
       */
      interface IERC721MetadataUpgradeable is IERC721Upgradeable {
          /**
           * @dev Returns the token collection name.
           */
          function name() external view returns (string memory);
          /**
           * @dev Returns the token collection symbol.
           */
          function symbol() external view returns (string memory);
          /**
           * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
           */
          function tokenURI(uint256 tokenId) external view returns (string memory);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (token/common/ERC2981.sol)
      pragma solidity ^0.8.0;
      import "../../interfaces/IERC2981Upgradeable.sol";
      import "../../utils/introspection/ERC165Upgradeable.sol";
      import "../../proxy/utils/Initializable.sol";
      /**
       * @dev Implementation of the NFT Royalty Standard, a standardized way to retrieve royalty payment information.
       *
       * Royalty information can be specified globally for all token ids via {_setDefaultRoyalty}, and/or individually for
       * specific token ids via {_setTokenRoyalty}. The latter takes precedence over the first.
       *
       * Royalty is specified as a fraction of sale price. {_feeDenominator} is overridable but defaults to 10000, meaning the
       * fee is specified in basis points by default.
       *
       * IMPORTANT: ERC-2981 only specifies a way to signal royalty information and does not enforce its payment. See
       * https://eips.ethereum.org/EIPS/eip-2981#optional-royalty-payments[Rationale] in the EIP. Marketplaces are expected to
       * voluntarily pay royalties together with sales, but note that this standard is not yet widely supported.
       *
       * _Available since v4.5._
       */
      abstract contract ERC2981Upgradeable is Initializable, IERC2981Upgradeable, ERC165Upgradeable {
          function __ERC2981_init() internal onlyInitializing {
          }
          function __ERC2981_init_unchained() internal onlyInitializing {
          }
          struct RoyaltyInfo {
              address receiver;
              uint96 royaltyFraction;
          }
          RoyaltyInfo private _defaultRoyaltyInfo;
          mapping(uint256 => RoyaltyInfo) private _tokenRoyaltyInfo;
          /**
           * @dev See {IERC165-supportsInterface}.
           */
          function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165Upgradeable, ERC165Upgradeable) returns (bool) {
              return interfaceId == type(IERC2981Upgradeable).interfaceId || super.supportsInterface(interfaceId);
          }
          /**
           * @inheritdoc IERC2981Upgradeable
           */
          function royaltyInfo(uint256 tokenId, uint256 salePrice) public view virtual override returns (address, uint256) {
              RoyaltyInfo memory royalty = _tokenRoyaltyInfo[tokenId];
              if (royalty.receiver == address(0)) {
                  royalty = _defaultRoyaltyInfo;
              }
              uint256 royaltyAmount = (salePrice * royalty.royaltyFraction) / _feeDenominator();
              return (royalty.receiver, royaltyAmount);
          }
          /**
           * @dev The denominator with which to interpret the fee set in {_setTokenRoyalty} and {_setDefaultRoyalty} as a
           * fraction of the sale price. Defaults to 10000 so fees are expressed in basis points, but may be customized by an
           * override.
           */
          function _feeDenominator() internal pure virtual returns (uint96) {
              return 10000;
          }
          /**
           * @dev Sets the royalty information that all ids in this contract will default to.
           *
           * Requirements:
           *
           * - `receiver` cannot be the zero address.
           * - `feeNumerator` cannot be greater than the fee denominator.
           */
          function _setDefaultRoyalty(address receiver, uint96 feeNumerator) internal virtual {
              require(feeNumerator <= _feeDenominator(), "ERC2981: royalty fee will exceed salePrice");
              require(receiver != address(0), "ERC2981: invalid receiver");
              _defaultRoyaltyInfo = RoyaltyInfo(receiver, feeNumerator);
          }
          /**
           * @dev Removes default royalty information.
           */
          function _deleteDefaultRoyalty() internal virtual {
              delete _defaultRoyaltyInfo;
          }
          /**
           * @dev Sets the royalty information for a specific token id, overriding the global default.
           *
           * Requirements:
           *
           * - `receiver` cannot be the zero address.
           * - `feeNumerator` cannot be greater than the fee denominator.
           */
          function _setTokenRoyalty(uint256 tokenId, address receiver, uint96 feeNumerator) internal virtual {
              require(feeNumerator <= _feeDenominator(), "ERC2981: royalty fee will exceed salePrice");
              require(receiver != address(0), "ERC2981: Invalid parameters");
              _tokenRoyaltyInfo[tokenId] = RoyaltyInfo(receiver, feeNumerator);
          }
          /**
           * @dev Resets royalty information for the token id back to the global default.
           */
          function _resetTokenRoyalty(uint256 tokenId) internal virtual {
              delete _tokenRoyaltyInfo[tokenId];
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[48] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
      pragma solidity ^0.8.1;
      /**
       * @dev Collection of functions related to the address type
       */
      library AddressUpgradeable {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           *
           * Furthermore, `isContract` will also return true if the target contract within
           * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
           * which only has an effect at the end of a transaction.
           * ====
           *
           * [IMPORTANT]
           * ====
           * You shouldn't rely on `isContract` to protect against flash loan attacks!
           *
           * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
           * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
           * constructor.
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // This method relies on extcodesize/address.code.length, which returns 0
              // for contracts in construction, since the code is only stored at the end
              // of the constructor execution.
              return account.code.length > 0;
          }
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              require(address(this).balance >= amount, "Address: insufficient balance");
              (bool success, ) = recipient.call{value: amount}("");
              require(success, "Address: unable to send value, recipient may have reverted");
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain `call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason, it is bubbled up by this
           * function (like regular Solidity function calls).
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, "Address: low-level call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
           * `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
          }
          /**
           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
           * with `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(address(this).balance >= value, "Address: insufficient balance for call");
              (bool success, bytes memory returndata) = target.call{value: value}(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              return functionStaticCall(target, data, "Address: low-level static call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              (bool success, bytes memory returndata) = target.staticcall(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
          /**
           * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
           * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
           *
           * _Available since v4.8._
           */
          function verifyCallResultFromTarget(
              address target,
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              if (success) {
                  if (returndata.length == 0) {
                      // only check isContract if the call was successful and the return data is empty
                      // otherwise we already know that it was a contract
                      require(isContract(target), "Address: call to non-contract");
                  }
                  return returndata;
              } else {
                  _revert(returndata, errorMessage);
              }
          }
          /**
           * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
           * revert reason or using the provided one.
           *
           * _Available since v4.3._
           */
          function verifyCallResult(
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal pure returns (bytes memory) {
              if (success) {
                  return returndata;
              } else {
                  _revert(returndata, errorMessage);
              }
          }
          function _revert(bytes memory returndata, string memory errorMessage) private pure {
              // Look for revert reason and bubble it up if present
              if (returndata.length > 0) {
                  // The easiest way to bubble the revert reason is using memory via assembly
                  /// @solidity memory-safe-assembly
                  assembly {
                      let returndata_size := mload(returndata)
                      revert(add(32, returndata), returndata_size)
                  }
              } else {
                  revert(errorMessage);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
      pragma solidity ^0.8.0;
      import "../proxy/utils/Initializable.sol";
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract ContextUpgradeable is Initializable {
          function __Context_init() internal onlyInitializing {
          }
          function __Context_init_unchained() internal onlyInitializing {
          }
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[50] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol)
      // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
      pragma solidity ^0.8.0;
      /**
       * @dev Library for reading and writing primitive types to specific storage slots.
       *
       * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
       * This library helps with reading and writing to such slots without the need for inline assembly.
       *
       * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
       *
       * Example usage to set ERC1967 implementation slot:
       * ```solidity
       * contract ERC1967 {
       *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
       *
       *     function _getImplementation() internal view returns (address) {
       *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
       *     }
       *
       *     function _setImplementation(address newImplementation) internal {
       *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
       *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
       *     }
       * }
       * ```
       *
       * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
       * _Available since v4.9 for `string`, `bytes`._
       */
      library StorageSlotUpgradeable {
          struct AddressSlot {
              address value;
          }
          struct BooleanSlot {
              bool value;
          }
          struct Bytes32Slot {
              bytes32 value;
          }
          struct Uint256Slot {
              uint256 value;
          }
          struct StringSlot {
              string value;
          }
          struct BytesSlot {
              bytes value;
          }
          /**
           * @dev Returns an `AddressSlot` with member `value` located at `slot`.
           */
          function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
           */
          function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
           */
          function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
           */
          function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `StringSlot` with member `value` located at `slot`.
           */
          function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
           */
          function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := store.slot
              }
          }
          /**
           * @dev Returns an `BytesSlot` with member `value` located at `slot`.
           */
          function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
           */
          function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := store.slot
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
      pragma solidity ^0.8.0;
      import "./math/MathUpgradeable.sol";
      import "./math/SignedMathUpgradeable.sol";
      /**
       * @dev String operations.
       */
      library StringsUpgradeable {
          bytes16 private constant _SYMBOLS = "0123456789abcdef";
          uint8 private constant _ADDRESS_LENGTH = 20;
          /**
           * @dev Converts a `uint256` to its ASCII `string` decimal representation.
           */
          function toString(uint256 value) internal pure returns (string memory) {
              unchecked {
                  uint256 length = MathUpgradeable.log10(value) + 1;
                  string memory buffer = new string(length);
                  uint256 ptr;
                  /// @solidity memory-safe-assembly
                  assembly {
                      ptr := add(buffer, add(32, length))
                  }
                  while (true) {
                      ptr--;
                      /// @solidity memory-safe-assembly
                      assembly {
                          mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                      }
                      value /= 10;
                      if (value == 0) break;
                  }
                  return buffer;
              }
          }
          /**
           * @dev Converts a `int256` to its ASCII `string` decimal representation.
           */
          function toString(int256 value) internal pure returns (string memory) {
              return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMathUpgradeable.abs(value))));
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
           */
          function toHexString(uint256 value) internal pure returns (string memory) {
              unchecked {
                  return toHexString(value, MathUpgradeable.log256(value) + 1);
              }
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
           */
          function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
              bytes memory buffer = new bytes(2 * length + 2);
              buffer[0] = "0";
              buffer[1] = "x";
              for (uint256 i = 2 * length + 1; i > 1; --i) {
                  buffer[i] = _SYMBOLS[value & 0xf];
                  value >>= 4;
              }
              require(value == 0, "Strings: hex length insufficient");
              return string(buffer);
          }
          /**
           * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
           */
          function toHexString(address addr) internal pure returns (string memory) {
              return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
          }
          /**
           * @dev Returns true if the two strings are equal.
           */
          function equal(string memory a, string memory b) internal pure returns (bool) {
              return keccak256(bytes(a)) == keccak256(bytes(b));
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
      pragma solidity ^0.8.0;
      import "./IERC165Upgradeable.sol";
      import "../../proxy/utils/Initializable.sol";
      /**
       * @dev Implementation of the {IERC165} interface.
       *
       * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
       * for the additional interface id that will be supported. For example:
       *
       * ```solidity
       * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
       *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
       * }
       * ```
       *
       * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
       */
      abstract contract ERC165Upgradeable is Initializable, IERC165Upgradeable {
          function __ERC165_init() internal onlyInitializing {
          }
          function __ERC165_init_unchained() internal onlyInitializing {
          }
          /**
           * @dev See {IERC165-supportsInterface}.
           */
          function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
              return interfaceId == type(IERC165Upgradeable).interfaceId;
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[50] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Interface of the ERC165 standard, as defined in the
       * https://eips.ethereum.org/EIPS/eip-165[EIP].
       *
       * Implementers can declare support of contract interfaces, which can then be
       * queried by others ({ERC165Checker}).
       *
       * For an implementation, see {ERC165}.
       */
      interface IERC165Upgradeable {
          /**
           * @dev Returns true if this contract implements the interface defined by
           * `interfaceId`. See the corresponding
           * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
           * to learn more about how these ids are created.
           *
           * This function call must use less than 30 000 gas.
           */
          function supportsInterface(bytes4 interfaceId) external view returns (bool);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Standard math utilities missing in the Solidity language.
       */
      library MathUpgradeable {
          enum Rounding {
              Down, // Toward negative infinity
              Up, // Toward infinity
              Zero // Toward zero
          }
          /**
           * @dev Returns the largest of two numbers.
           */
          function max(uint256 a, uint256 b) internal pure returns (uint256) {
              return a > b ? a : b;
          }
          /**
           * @dev Returns the smallest of two numbers.
           */
          function min(uint256 a, uint256 b) internal pure returns (uint256) {
              return a < b ? a : b;
          }
          /**
           * @dev Returns the average of two numbers. The result is rounded towards
           * zero.
           */
          function average(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b) / 2 can overflow.
              return (a & b) + (a ^ b) / 2;
          }
          /**
           * @dev Returns the ceiling of the division of two numbers.
           *
           * This differs from standard division with `/` in that it rounds up instead
           * of rounding down.
           */
          function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b - 1) / b can overflow on addition, so we distribute.
              return a == 0 ? 0 : (a - 1) / b + 1;
          }
          /**
           * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
           * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
           * with further edits by Uniswap Labs also under MIT license.
           */
          function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
              unchecked {
                  // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                  // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                  // variables such that product = prod1 * 2^256 + prod0.
                  uint256 prod0; // Least significant 256 bits of the product
                  uint256 prod1; // Most significant 256 bits of the product
                  assembly {
                      let mm := mulmod(x, y, not(0))
                      prod0 := mul(x, y)
                      prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                  }
                  // Handle non-overflow cases, 256 by 256 division.
                  if (prod1 == 0) {
                      return prod0 / denominator;
                  }
                  // Make sure the result is less than 2^256. Also prevents denominator == 0.
                  require(denominator > prod1, "Math: mulDiv overflow");
                  ///////////////////////////////////////////////
                  // 512 by 256 division.
                  ///////////////////////////////////////////////
                  // Make division exact by subtracting the remainder from [prod1 prod0].
                  uint256 remainder;
                  assembly {
                      // Compute remainder using mulmod.
                      remainder := mulmod(x, y, denominator)
                      // Subtract 256 bit number from 512 bit number.
                      prod1 := sub(prod1, gt(remainder, prod0))
                      prod0 := sub(prod0, remainder)
                  }
                  // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                  // See https://cs.stackexchange.com/q/138556/92363.
                  // Does not overflow because the denominator cannot be zero at this stage in the function.
                  uint256 twos = denominator & (~denominator + 1);
                  assembly {
                      // Divide denominator by twos.
                      denominator := div(denominator, twos)
                      // Divide [prod1 prod0] by twos.
                      prod0 := div(prod0, twos)
                      // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                      twos := add(div(sub(0, twos), twos), 1)
                  }
                  // Shift in bits from prod1 into prod0.
                  prod0 |= prod1 * twos;
                  // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                  // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                  // four bits. That is, denominator * inv = 1 mod 2^4.
                  uint256 inverse = (3 * denominator) ^ 2;
                  // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                  // in modular arithmetic, doubling the correct bits in each step.
                  inverse *= 2 - denominator * inverse; // inverse mod 2^8
                  inverse *= 2 - denominator * inverse; // inverse mod 2^16
                  inverse *= 2 - denominator * inverse; // inverse mod 2^32
                  inverse *= 2 - denominator * inverse; // inverse mod 2^64
                  inverse *= 2 - denominator * inverse; // inverse mod 2^128
                  inverse *= 2 - denominator * inverse; // inverse mod 2^256
                  // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                  // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                  // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                  // is no longer required.
                  result = prod0 * inverse;
                  return result;
              }
          }
          /**
           * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
           */
          function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
              uint256 result = mulDiv(x, y, denominator);
              if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                  result += 1;
              }
              return result;
          }
          /**
           * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
           *
           * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
           */
          function sqrt(uint256 a) internal pure returns (uint256) {
              if (a == 0) {
                  return 0;
              }
              // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
              //
              // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
              // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
              //
              // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
              // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
              // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
              //
              // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
              uint256 result = 1 << (log2(a) >> 1);
              // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
              // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
              // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
              // into the expected uint128 result.
              unchecked {
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  return min(result, a / result);
              }
          }
          /**
           * @notice Calculates sqrt(a), following the selected rounding direction.
           */
          function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = sqrt(a);
                  return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 2, rounded down, of a positive value.
           * Returns 0 if given 0.
           */
          function log2(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >> 128 > 0) {
                      value >>= 128;
                      result += 128;
                  }
                  if (value >> 64 > 0) {
                      value >>= 64;
                      result += 64;
                  }
                  if (value >> 32 > 0) {
                      value >>= 32;
                      result += 32;
                  }
                  if (value >> 16 > 0) {
                      value >>= 16;
                      result += 16;
                  }
                  if (value >> 8 > 0) {
                      value >>= 8;
                      result += 8;
                  }
                  if (value >> 4 > 0) {
                      value >>= 4;
                      result += 4;
                  }
                  if (value >> 2 > 0) {
                      value >>= 2;
                      result += 2;
                  }
                  if (value >> 1 > 0) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log2(value);
                  return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 10, rounded down, of a positive value.
           * Returns 0 if given 0.
           */
          function log10(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >= 10 ** 64) {
                      value /= 10 ** 64;
                      result += 64;
                  }
                  if (value >= 10 ** 32) {
                      value /= 10 ** 32;
                      result += 32;
                  }
                  if (value >= 10 ** 16) {
                      value /= 10 ** 16;
                      result += 16;
                  }
                  if (value >= 10 ** 8) {
                      value /= 10 ** 8;
                      result += 8;
                  }
                  if (value >= 10 ** 4) {
                      value /= 10 ** 4;
                      result += 4;
                  }
                  if (value >= 10 ** 2) {
                      value /= 10 ** 2;
                      result += 2;
                  }
                  if (value >= 10 ** 1) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log10(value);
                  return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 256, rounded down, of a positive value.
           * Returns 0 if given 0.
           *
           * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
           */
          function log256(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >> 128 > 0) {
                      value >>= 128;
                      result += 16;
                  }
                  if (value >> 64 > 0) {
                      value >>= 64;
                      result += 8;
                  }
                  if (value >> 32 > 0) {
                      value >>= 32;
                      result += 4;
                  }
                  if (value >> 16 > 0) {
                      value >>= 16;
                      result += 2;
                  }
                  if (value >> 8 > 0) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log256(value);
                  return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Standard signed math utilities missing in the Solidity language.
       */
      library SignedMathUpgradeable {
          /**
           * @dev Returns the largest of two signed numbers.
           */
          function max(int256 a, int256 b) internal pure returns (int256) {
              return a > b ? a : b;
          }
          /**
           * @dev Returns the smallest of two signed numbers.
           */
          function min(int256 a, int256 b) internal pure returns (int256) {
              return a < b ? a : b;
          }
          /**
           * @dev Returns the average of two signed numbers without overflow.
           * The result is rounded towards zero.
           */
          function average(int256 a, int256 b) internal pure returns (int256) {
              // Formula from the book "Hacker's Delight"
              int256 x = (a & b) + ((a ^ b) >> 1);
              return x + (int256(uint256(x) >> 255) & (a ^ b));
          }
          /**
           * @dev Returns the absolute unsigned value of a signed value.
           */
          function abs(int256 n) internal pure returns (uint256) {
              unchecked {
                  // must be unchecked in order to support `n = type(int256).min`
                  return uint256(n >= 0 ? n : -n);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.17;
      import {IERC721Upgradeable} from "@openzeppelin-upgradeable/contracts/token/ERC721/IERC721Upgradeable.sol";
      /**
       * @title IToxicSkullsClub
       * @custom:website www.toxicskullsclub.io
       * @author Lozz (@lozzereth / www.allthingsweb3.com)
       * @notice Interface for the Toxic Skulls Club implementation contract.
       */
      interface IToxicSkullsClub is IERC721Upgradeable {
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.18;
      import {OwnableUpgradeable} from "@openzeppelin-upgradeable/contracts/access/OwnableUpgradeable.sol";
      import {Initializable} from "@openzeppelin-upgradeable/contracts/proxy/utils/Initializable.sol";
      import {UUPSUpgradeable} from "@openzeppelin-upgradeable/contracts/proxy/utils/UUPSUpgradeable.sol";
      import {ERC721Upgradeable, IERC721Upgradeable, IERC165Upgradeable} from "@openzeppelin-upgradeable/contracts/token/ERC721/ERC721Upgradeable.sol";
      import {ERC2981Upgradeable} from "@openzeppelin-upgradeable/contracts/token/common/ERC2981Upgradeable.sol";
      import {StringsUpgradeable} from "@openzeppelin-upgradeable/contracts/utils/StringsUpgradeable.sol";
      import {OperatorFilterer} from "@closedsea/OperatorFilterer.sol";
      import {IToxicSkullsClub} from "./IToxicSkullsClub.sol";
      /**
       * @title ToxicSkullsClub
       * @custom:website www.ToxicSkullsClub.com
       * @author Lozz (@lozzereth / www.allthingsweb3.com)
       * @notice Toxic Skulls Club implementation contract.
       */
      contract ToxicSkullsClub is
          Initializable,
          UUPSUpgradeable,
          OwnableUpgradeable,
          ERC721Upgradeable,
          ERC2981Upgradeable,
          IToxicSkullsClub,
          OperatorFilterer
      {
          using StringsUpgradeable for uint256;
          /// @notice Maximum supply for the collection
          uint256 public constant MAX_SUPPLY = 9999;
          /// @notice Total supply
          uint256 private _totalMinted;
          /// @notice Base URI for the token
          string private _nftBaseURI;
          function initialize(string memory baseURI_) public initializer {
              __ERC721_init("Toxic Skulls Club", "TSC");
              __ERC2981_init();
              __Ownable_init();
              __UUPSUpgradeable_init();
              _setDefaultRoyalty(
                  address(0x1ff63DF1077a40ec7A4f5a85a07eA7aC773EF368),
                  750
              );
              _registerForOperatorFiltering();
              _nftBaseURI = baseURI_;
          }
          /**
           * @notice Airdrop NFTs to
           * @param owners Owners to airdrop to
           * @param tokenIds Token IDs to issue
           */
          function airdrop(
              address[] calldata owners,
              uint256[] calldata tokenIds
          ) external onlyOwner {
              uint256 inputSize = tokenIds.length;
              require(owners.length == inputSize);
              uint256 newTotalMinted = _totalMinted + inputSize;
              require(newTotalMinted <= MAX_SUPPLY);
              for (uint256 i; i < inputSize; ) {
                  _mint(owners[i], tokenIds[i]);
                  unchecked {
                      ++i;
                  }
              }
              _totalMinted = newTotalMinted;
          }
          /**
           * @notice Track the owned NFTs of an address
           * @dev Intended for off-chain computation having O(totalSupply) complexity
           * @param account Account to query
           * @return tokenIds
           */
          function tokensOfOwner(
              address account
          ) external view returns (uint256[] memory) {
              unchecked {
                  uint256 tokenIdsIdx;
                  uint256 tokenIdsLength = balanceOf(account);
                  uint256[] memory tokenIds = new uint256[](tokenIdsLength);
                  for (uint256 i; tokenIdsIdx != tokenIdsLength; ++i) {
                      if (!_exists(i)) {
                          continue;
                      }
                      if (ownerOf(i) == account) {
                          tokenIds[tokenIdsIdx++] = i;
                      }
                  }
                  return tokenIds;
              }
          }
          /**
           * @notice Total supply of the collection
           * @return uint256 The total supply
           */
          function totalSupply() public view returns (uint256) {
              return _totalMinted;
          }
          /**
           * @inheritdoc ERC721Upgradeable
           */
          function isApprovedForAll(
              address owner,
              address operator
          )
              public
              view
              virtual
              override(ERC721Upgradeable, IERC721Upgradeable)
              returns (bool)
          {
              return super.isApprovedForAll(owner, operator);
          }
          /**
           * @inheritdoc ERC721Upgradeable
           */
          function setApprovalForAll(
              address operator,
              bool approved
          )
              public
              override(ERC721Upgradeable, IERC721Upgradeable)
              onlyAllowedOperatorApproval(operator)
          {
              super.setApprovalForAll(operator, approved);
          }
          /**
           * @inheritdoc ERC721Upgradeable
           */
          function approve(
              address operator,
              uint256 tokenId
          )
              public
              override(ERC721Upgradeable, IERC721Upgradeable)
              onlyAllowedOperatorApproval(operator)
          {
              super.approve(operator, tokenId);
          }
          /**
           * @inheritdoc ERC721Upgradeable
           */
          function transferFrom(
              address from,
              address to,
              uint256 tokenId
          )
              public
              override(ERC721Upgradeable, IERC721Upgradeable)
              onlyAllowedOperator(from)
          {
              super.transferFrom(from, to, tokenId);
          }
          /**
           * @inheritdoc ERC721Upgradeable
           */
          function safeTransferFrom(
              address from,
              address to,
              uint256 tokenId
          )
              public
              override(ERC721Upgradeable, IERC721Upgradeable)
              onlyAllowedOperator(from)
          {
              super.safeTransferFrom(from, to, tokenId);
          }
          /**
           * @inheritdoc ERC721Upgradeable
           */
          function safeTransferFrom(
              address from,
              address to,
              uint256 tokenId,
              bytes memory data
          )
              public
              override(ERC721Upgradeable, IERC721Upgradeable)
              onlyAllowedOperator(from)
          {
              super.safeTransferFrom(from, to, tokenId, data);
          }
          /**
           * @notice Set the Base URI
           * @param baseURI_ Base URI
           */
          function setBaseURI(string memory baseURI_) external onlyOwner {
              _nftBaseURI = baseURI_;
          }
          /**
           * @inheritdoc ERC721Upgradeable
           */
          function tokenURI(
              uint256 tokenId
          ) public view virtual override returns (string memory) {
              _requireMinted(tokenId);
              return string(abi.encodePacked(_nftBaseURI, tokenId.toString()));
          }
          /**
           * @notice Sets the default royalty for the contract
           * @param receiver Receiving royalty address
           * @param feeNumerator Numerator of the fee (10000 = 100%)
           */
          function setDefaultRoyalty(
              address receiver,
              uint96 feeNumerator
          ) external onlyOwner {
              _setDefaultRoyalty(receiver, feeNumerator);
          }
          /**
           * @inheritdoc UUPSUpgradeable
           */
          function _authorizeUpgrade(
              address newImplementation
          ) internal override onlyOwner {}
          /**
           * @notice Return the implementation contract
           * @return address The implementation contract address
           */
          function getImplementation() external view returns (address) {
              return _getImplementation();
          }
          /**
           * @inheritdoc ERC721Upgradeable
           */
          function supportsInterface(
              bytes4 interfaceId
          )
              public
              view
              override(ERC721Upgradeable, ERC2981Upgradeable, IERC165Upgradeable)
              returns (bool)
          {
              return super.supportsInterface(interfaceId);
          }
      }
      

      File 3 of 3: OperatorFilterRegistry
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
      pragma solidity ^0.8.0;
      import "../utils/Context.sol";
      /**
       * @dev Contract module which provides a basic access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * By default, the owner account will be the one that deploys the contract. This
       * can later be changed with {transferOwnership}.
       *
       * This module is used through inheritance. It will make available the modifier
       * `onlyOwner`, which can be applied to your functions to restrict their use to
       * the owner.
       */
      abstract contract Ownable is Context {
          address private _owner;
          event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
          /**
           * @dev Initializes the contract setting the deployer as the initial owner.
           */
          constructor() {
              _transferOwnership(_msgSender());
          }
          /**
           * @dev Throws if called by any account other than the owner.
           */
          modifier onlyOwner() {
              _checkOwner();
              _;
          }
          /**
           * @dev Returns the address of the current owner.
           */
          function owner() public view virtual returns (address) {
              return _owner;
          }
          /**
           * @dev Throws if the sender is not the owner.
           */
          function _checkOwner() internal view virtual {
              require(owner() == _msgSender(), "Ownable: caller is not the owner");
          }
          /**
           * @dev Leaves the contract without owner. It will not be possible to call
           * `onlyOwner` functions anymore. Can only be called by the current owner.
           *
           * NOTE: Renouncing ownership will leave the contract without an owner,
           * thereby removing any functionality that is only available to the owner.
           */
          function renounceOwnership() public virtual onlyOwner {
              _transferOwnership(address(0));
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual onlyOwner {
              require(newOwner != address(0), "Ownable: new owner is the zero address");
              _transferOwnership(newOwner);
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Internal function without access restriction.
           */
          function _transferOwnership(address newOwner) internal virtual {
              address oldOwner = _owner;
              _owner = newOwner;
              emit OwnershipTransferred(oldOwner, newOwner);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/structs/EnumerableSet.sol)
      // This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
      pragma solidity ^0.8.0;
      /**
       * @dev Library for managing
       * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
       * types.
       *
       * Sets have the following properties:
       *
       * - Elements are added, removed, and checked for existence in constant time
       * (O(1)).
       * - Elements are enumerated in O(n). No guarantees are made on the ordering.
       *
       * ```
       * contract Example {
       *     // Add the library methods
       *     using EnumerableSet for EnumerableSet.AddressSet;
       *
       *     // Declare a set state variable
       *     EnumerableSet.AddressSet private mySet;
       * }
       * ```
       *
       * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
       * and `uint256` (`UintSet`) are supported.
       *
       * [WARNING]
       * ====
       * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
       * unusable.
       * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
       *
       * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
       * array of EnumerableSet.
       * ====
       */
      library EnumerableSet {
          // To implement this library for multiple types with as little code
          // repetition as possible, we write it in terms of a generic Set type with
          // bytes32 values.
          // The Set implementation uses private functions, and user-facing
          // implementations (such as AddressSet) are just wrappers around the
          // underlying Set.
          // This means that we can only create new EnumerableSets for types that fit
          // in bytes32.
          struct Set {
              // Storage of set values
              bytes32[] _values;
              // Position of the value in the `values` array, plus 1 because index 0
              // means a value is not in the set.
              mapping(bytes32 => uint256) _indexes;
          }
          /**
           * @dev Add a value to a set. O(1).
           *
           * Returns true if the value was added to the set, that is if it was not
           * already present.
           */
          function _add(Set storage set, bytes32 value) private returns (bool) {
              if (!_contains(set, value)) {
                  set._values.push(value);
                  // The value is stored at length-1, but we add 1 to all indexes
                  // and use 0 as a sentinel value
                  set._indexes[value] = set._values.length;
                  return true;
              } else {
                  return false;
              }
          }
          /**
           * @dev Removes a value from a set. O(1).
           *
           * Returns true if the value was removed from the set, that is if it was
           * present.
           */
          function _remove(Set storage set, bytes32 value) private returns (bool) {
              // We read and store the value's index to prevent multiple reads from the same storage slot
              uint256 valueIndex = set._indexes[value];
              if (valueIndex != 0) {
                  // Equivalent to contains(set, value)
                  // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
                  // the array, and then remove the last element (sometimes called as 'swap and pop').
                  // This modifies the order of the array, as noted in {at}.
                  uint256 toDeleteIndex = valueIndex - 1;
                  uint256 lastIndex = set._values.length - 1;
                  if (lastIndex != toDeleteIndex) {
                      bytes32 lastValue = set._values[lastIndex];
                      // Move the last value to the index where the value to delete is
                      set._values[toDeleteIndex] = lastValue;
                      // Update the index for the moved value
                      set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
                  }
                  // Delete the slot where the moved value was stored
                  set._values.pop();
                  // Delete the index for the deleted slot
                  delete set._indexes[value];
                  return true;
              } else {
                  return false;
              }
          }
          /**
           * @dev Returns true if the value is in the set. O(1).
           */
          function _contains(Set storage set, bytes32 value) private view returns (bool) {
              return set._indexes[value] != 0;
          }
          /**
           * @dev Returns the number of values on the set. O(1).
           */
          function _length(Set storage set) private view returns (uint256) {
              return set._values.length;
          }
          /**
           * @dev Returns the value stored at position `index` in the set. O(1).
           *
           * Note that there are no guarantees on the ordering of values inside the
           * array, and it may change when more values are added or removed.
           *
           * Requirements:
           *
           * - `index` must be strictly less than {length}.
           */
          function _at(Set storage set, uint256 index) private view returns (bytes32) {
              return set._values[index];
          }
          /**
           * @dev Return the entire set in an array
           *
           * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
           * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
           * this function has an unbounded cost, and using it as part of a state-changing function may render the function
           * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
           */
          function _values(Set storage set) private view returns (bytes32[] memory) {
              return set._values;
          }
          // Bytes32Set
          struct Bytes32Set {
              Set _inner;
          }
          /**
           * @dev Add a value to a set. O(1).
           *
           * Returns true if the value was added to the set, that is if it was not
           * already present.
           */
          function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
              return _add(set._inner, value);
          }
          /**
           * @dev Removes a value from a set. O(1).
           *
           * Returns true if the value was removed from the set, that is if it was
           * present.
           */
          function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
              return _remove(set._inner, value);
          }
          /**
           * @dev Returns true if the value is in the set. O(1).
           */
          function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
              return _contains(set._inner, value);
          }
          /**
           * @dev Returns the number of values in the set. O(1).
           */
          function length(Bytes32Set storage set) internal view returns (uint256) {
              return _length(set._inner);
          }
          /**
           * @dev Returns the value stored at position `index` in the set. O(1).
           *
           * Note that there are no guarantees on the ordering of values inside the
           * array, and it may change when more values are added or removed.
           *
           * Requirements:
           *
           * - `index` must be strictly less than {length}.
           */
          function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
              return _at(set._inner, index);
          }
          /**
           * @dev Return the entire set in an array
           *
           * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
           * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
           * this function has an unbounded cost, and using it as part of a state-changing function may render the function
           * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
           */
          function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
              bytes32[] memory store = _values(set._inner);
              bytes32[] memory result;
              /// @solidity memory-safe-assembly
              assembly {
                  result := store
              }
              return result;
          }
          // AddressSet
          struct AddressSet {
              Set _inner;
          }
          /**
           * @dev Add a value to a set. O(1).
           *
           * Returns true if the value was added to the set, that is if it was not
           * already present.
           */
          function add(AddressSet storage set, address value) internal returns (bool) {
              return _add(set._inner, bytes32(uint256(uint160(value))));
          }
          /**
           * @dev Removes a value from a set. O(1).
           *
           * Returns true if the value was removed from the set, that is if it was
           * present.
           */
          function remove(AddressSet storage set, address value) internal returns (bool) {
              return _remove(set._inner, bytes32(uint256(uint160(value))));
          }
          /**
           * @dev Returns true if the value is in the set. O(1).
           */
          function contains(AddressSet storage set, address value) internal view returns (bool) {
              return _contains(set._inner, bytes32(uint256(uint160(value))));
          }
          /**
           * @dev Returns the number of values in the set. O(1).
           */
          function length(AddressSet storage set) internal view returns (uint256) {
              return _length(set._inner);
          }
          /**
           * @dev Returns the value stored at position `index` in the set. O(1).
           *
           * Note that there are no guarantees on the ordering of values inside the
           * array, and it may change when more values are added or removed.
           *
           * Requirements:
           *
           * - `index` must be strictly less than {length}.
           */
          function at(AddressSet storage set, uint256 index) internal view returns (address) {
              return address(uint160(uint256(_at(set._inner, index))));
          }
          /**
           * @dev Return the entire set in an array
           *
           * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
           * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
           * this function has an unbounded cost, and using it as part of a state-changing function may render the function
           * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
           */
          function values(AddressSet storage set) internal view returns (address[] memory) {
              bytes32[] memory store = _values(set._inner);
              address[] memory result;
              /// @solidity memory-safe-assembly
              assembly {
                  result := store
              }
              return result;
          }
          // UintSet
          struct UintSet {
              Set _inner;
          }
          /**
           * @dev Add a value to a set. O(1).
           *
           * Returns true if the value was added to the set, that is if it was not
           * already present.
           */
          function add(UintSet storage set, uint256 value) internal returns (bool) {
              return _add(set._inner, bytes32(value));
          }
          /**
           * @dev Removes a value from a set. O(1).
           *
           * Returns true if the value was removed from the set, that is if it was
           * present.
           */
          function remove(UintSet storage set, uint256 value) internal returns (bool) {
              return _remove(set._inner, bytes32(value));
          }
          /**
           * @dev Returns true if the value is in the set. O(1).
           */
          function contains(UintSet storage set, uint256 value) internal view returns (bool) {
              return _contains(set._inner, bytes32(value));
          }
          /**
           * @dev Returns the number of values in the set. O(1).
           */
          function length(UintSet storage set) internal view returns (uint256) {
              return _length(set._inner);
          }
          /**
           * @dev Returns the value stored at position `index` in the set. O(1).
           *
           * Note that there are no guarantees on the ordering of values inside the
           * array, and it may change when more values are added or removed.
           *
           * Requirements:
           *
           * - `index` must be strictly less than {length}.
           */
          function at(UintSet storage set, uint256 index) internal view returns (uint256) {
              return uint256(_at(set._inner, index));
          }
          /**
           * @dev Return the entire set in an array
           *
           * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
           * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
           * this function has an unbounded cost, and using it as part of a state-changing function may render the function
           * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
           */
          function values(UintSet storage set) internal view returns (uint256[] memory) {
              bytes32[] memory store = _values(set._inner);
              uint256[] memory result;
              /// @solidity memory-safe-assembly
              assembly {
                  result := store
              }
              return result;
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.13;
      import {EnumerableSet} from "openzeppelin-contracts/utils/structs/EnumerableSet.sol";
      interface IOperatorFilterRegistry {
          function isOperatorAllowed(address registrant, address operator) external returns (bool);
          function register(address registrant) external;
          function registerAndSubscribe(address registrant, address subscription) external;
          function registerAndCopyEntries(address registrant, address registrantToCopy) external;
          function updateOperator(address registrant, address operator, bool filtered) external;
          function updateOperators(address registrant, address[] calldata operators, bool filtered) external;
          function updateCodeHash(address registrant, bytes32 codehash, bool filtered) external;
          function updateCodeHashes(address registrant, bytes32[] calldata codeHashes, bool filtered) external;
          function subscribe(address registrant, address registrantToSubscribe) external;
          function unsubscribe(address registrant, bool copyExistingEntries) external;
          function subscriptionOf(address addr) external returns (address registrant);
          function subscribers(address registrant) external returns (address[] memory);
          function subscriberAt(address registrant, uint256 index) external returns (address);
          function copyEntriesOf(address registrant, address registrantToCopy) external;
          function isOperatorFiltered(address registrant, address operator) external returns (bool);
          function isCodeHashOfFiltered(address registrant, address operatorWithCode) external returns (bool);
          function isCodeHashFiltered(address registrant, bytes32 codeHash) external returns (bool);
          function filteredOperators(address addr) external returns (address[] memory);
          function filteredCodeHashes(address addr) external returns (bytes32[] memory);
          function filteredOperatorAt(address registrant, uint256 index) external returns (address);
          function filteredCodeHashAt(address registrant, uint256 index) external returns (bytes32);
          function isRegistered(address addr) external returns (bool);
          function codeHashOf(address addr) external returns (bytes32);
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.13;
      import {IOperatorFilterRegistry} from "./IOperatorFilterRegistry.sol";
      import {Ownable} from "openzeppelin-contracts/access/Ownable.sol";
      import {EnumerableSet} from "openzeppelin-contracts/utils/structs/EnumerableSet.sol";
      import {OperatorFilterRegistryErrorsAndEvents} from "./OperatorFilterRegistryErrorsAndEvents.sol";
      /**
       * @title  OperatorFilterRegistry
       * @notice Borrows heavily from the QQL BlacklistOperatorFilter contract:
       *         https://github.com/qql-art/contracts/blob/main/contracts/BlacklistOperatorFilter.sol
       * @notice This contracts allows tokens or token owners to register specific addresses or codeHashes that may be
       * *       restricted according to the isOperatorAllowed function.
       */
      contract OperatorFilterRegistry is IOperatorFilterRegistry, OperatorFilterRegistryErrorsAndEvents {
          using EnumerableSet for EnumerableSet.AddressSet;
          using EnumerableSet for EnumerableSet.Bytes32Set;
          /// @dev initialized accounts have a nonzero codehash (see https://eips.ethereum.org/EIPS/eip-1052)
          /// Note that this will also be a smart contract's codehash when making calls from its constructor.
          bytes32 constant EOA_CODEHASH = keccak256("");
          mapping(address => EnumerableSet.AddressSet) private _filteredOperators;
          mapping(address => EnumerableSet.Bytes32Set) private _filteredCodeHashes;
          mapping(address => address) private _registrations;
          mapping(address => EnumerableSet.AddressSet) private _subscribers;
          /**
           * @notice restricts method caller to the address or EIP-173 "owner()"
           */
          modifier onlyAddressOrOwner(address addr) {
              if (msg.sender != addr) {
                  try Ownable(addr).owner() returns (address owner) {
                      if (msg.sender != owner) {
                          revert OnlyAddressOrOwner();
                      }
                  } catch (bytes memory reason) {
                      if (reason.length == 0) {
                          revert NotOwnable();
                      } else {
                          /// @solidity memory-safe-assembly
                          assembly {
                              revert(add(32, reason), mload(reason))
                          }
                      }
                  }
              }
              _;
          }
          /**
           * @notice Returns true if operator is not filtered for a given token, either by address or codeHash. Also returns
           *         true if supplied registrant address is not registered.
           */
          function isOperatorAllowed(address registrant, address operator) external view returns (bool) {
              address registration = _registrations[registrant];
              if (registration != address(0)) {
                  EnumerableSet.AddressSet storage filteredOperatorsRef;
                  EnumerableSet.Bytes32Set storage filteredCodeHashesRef;
                  filteredOperatorsRef = _filteredOperators[registration];
                  filteredCodeHashesRef = _filteredCodeHashes[registration];
                  if (filteredOperatorsRef.contains(operator)) {
                      revert AddressFiltered(operator);
                  }
                  if (operator.code.length > 0) {
                      bytes32 codeHash = operator.codehash;
                      if (filteredCodeHashesRef.contains(codeHash)) {
                          revert CodeHashFiltered(operator, codeHash);
                      }
                  }
              }
              return true;
          }
          //////////////////
          // AUTH METHODS //
          //////////////////
          /**
           * @notice Registers an address with the registry. May be called by address itself or by EIP-173 owner.
           */
          function register(address registrant) external onlyAddressOrOwner(registrant) {
              if (_registrations[registrant] != address(0)) {
                  revert AlreadyRegistered();
              }
              _registrations[registrant] = registrant;
              emit RegistrationUpdated(registrant, true);
          }
          /**
           * @notice Unregisters an address with the registry and removes its subscription. May be called by address itself or by EIP-173 owner.
           *         Note that this does not remove any filtered addresses or codeHashes.
           *         Also note that any subscriptions to this registrant will still be active and follow the existing filtered addresses and codehashes.
           */
          function unregister(address registrant) external onlyAddressOrOwner(registrant) {
              address registration = _registrations[registrant];
              if (registration == address(0)) {
                  revert NotRegistered(registrant);
              }
              if (registration != registrant) {
                  _subscribers[registration].remove(registrant);
                  emit SubscriptionUpdated(registrant, registration, false);
              }
              _registrations[registrant] = address(0);
              emit RegistrationUpdated(registrant, false);
          }
          /**
           * @notice Registers an address with the registry and "subscribes" to another address's filtered operators and codeHashes.
           */
          function registerAndSubscribe(address registrant, address subscription) external onlyAddressOrOwner(registrant) {
              address registration = _registrations[registrant];
              if (registration != address(0)) {
                  revert AlreadyRegistered();
              }
              if (registrant == subscription) {
                  revert CannotSubscribeToSelf();
              }
              address subscriptionRegistration = _registrations[subscription];
              if (subscriptionRegistration == address(0)) {
                  revert NotRegistered(subscription);
              }
              if (subscriptionRegistration != subscription) {
                  revert CannotSubscribeToRegistrantWithSubscription(subscription);
              }
              _registrations[registrant] = subscription;
              _subscribers[subscription].add(registrant);
              emit RegistrationUpdated(registrant, true);
              emit SubscriptionUpdated(registrant, subscription, true);
          }
          /**
           * @notice Registers an address with the registry and copies the filtered operators and codeHashes from another
           *         address without subscribing.
           */
          function registerAndCopyEntries(address registrant, address registrantToCopy)
              external
              onlyAddressOrOwner(registrant)
          {
              if (registrantToCopy == registrant) {
                  revert CannotCopyFromSelf();
              }
              address registration = _registrations[registrant];
              if (registration != address(0)) {
                  revert AlreadyRegistered();
              }
              address registrantRegistration = _registrations[registrantToCopy];
              if (registrantRegistration == address(0)) {
                  revert NotRegistered(registrantToCopy);
              }
              _registrations[registrant] = registrant;
              emit RegistrationUpdated(registrant, true);
              _copyEntries(registrant, registrantToCopy);
          }
          /**
           * @notice Update an operator address for a registered address - when filtered is true, the operator is filtered.
           */
          function updateOperator(address registrant, address operator, bool filtered)
              external
              onlyAddressOrOwner(registrant)
          {
              address registration = _registrations[registrant];
              if (registration == address(0)) {
                  revert NotRegistered(registrant);
              }
              if (registration != registrant) {
                  revert CannotUpdateWhileSubscribed(registration);
              }
              EnumerableSet.AddressSet storage filteredOperatorsRef = _filteredOperators[registrant];
              if (!filtered) {
                  bool removed = filteredOperatorsRef.remove(operator);
                  if (!removed) {
                      revert AddressNotFiltered(operator);
                  }
              } else {
                  bool added = filteredOperatorsRef.add(operator);
                  if (!added) {
                      revert AddressAlreadyFiltered(operator);
                  }
              }
              emit OperatorUpdated(registrant, operator, filtered);
          }
          /**
           * @notice Update a codeHash for a registered address - when filtered is true, the codeHash is filtered.
           */
          function updateCodeHash(address registrant, bytes32 codeHash, bool filtered)
              external
              onlyAddressOrOwner(registrant)
          {
              if (codeHash == EOA_CODEHASH) {
                  revert CannotFilterEOAs();
              }
              address registration = _registrations[registrant];
              if (registration == address(0)) {
                  revert NotRegistered(registrant);
              }
              if (registration != registrant) {
                  revert CannotUpdateWhileSubscribed(registration);
              }
              EnumerableSet.Bytes32Set storage filteredCodeHashesRef = _filteredCodeHashes[registrant];
              if (!filtered) {
                  bool removed = filteredCodeHashesRef.remove(codeHash);
                  if (!removed) {
                      revert CodeHashNotFiltered(codeHash);
                  }
              } else {
                  bool added = filteredCodeHashesRef.add(codeHash);
                  if (!added) {
                      revert CodeHashAlreadyFiltered(codeHash);
                  }
              }
              emit CodeHashUpdated(registrant, codeHash, filtered);
          }
          /**
           * @notice Update multiple operators for a registered address - when filtered is true, the operators will be filtered. Reverts on duplicates.
           */
          function updateOperators(address registrant, address[] calldata operators, bool filtered)
              external
              onlyAddressOrOwner(registrant)
          {
              address registration = _registrations[registrant];
              if (registration == address(0)) {
                  revert NotRegistered(registrant);
              }
              if (registration != registrant) {
                  revert CannotUpdateWhileSubscribed(registration);
              }
              EnumerableSet.AddressSet storage filteredOperatorsRef = _filteredOperators[registrant];
              uint256 operatorsLength = operators.length;
              unchecked {
                  if (!filtered) {
                      for (uint256 i = 0; i < operatorsLength; ++i) {
                          address operator = operators[i];
                          bool removed = filteredOperatorsRef.remove(operator);
                          if (!removed) {
                              revert AddressNotFiltered(operator);
                          }
                      }
                  } else {
                      for (uint256 i = 0; i < operatorsLength; ++i) {
                          address operator = operators[i];
                          bool added = filteredOperatorsRef.add(operator);
                          if (!added) {
                              revert AddressAlreadyFiltered(operator);
                          }
                      }
                  }
              }
              emit OperatorsUpdated(registrant, operators, filtered);
          }
          /**
           * @notice Update multiple codeHashes for a registered address - when filtered is true, the codeHashes will be filtered. Reverts on duplicates.
           */
          function updateCodeHashes(address registrant, bytes32[] calldata codeHashes, bool filtered)
              external
              onlyAddressOrOwner(registrant)
          {
              address registration = _registrations[registrant];
              if (registration == address(0)) {
                  revert NotRegistered(registrant);
              }
              if (registration != registrant) {
                  revert CannotUpdateWhileSubscribed(registration);
              }
              EnumerableSet.Bytes32Set storage filteredCodeHashesRef = _filteredCodeHashes[registrant];
              uint256 codeHashesLength = codeHashes.length;
              unchecked {
                  if (!filtered) {
                      for (uint256 i = 0; i < codeHashesLength; ++i) {
                          bytes32 codeHash = codeHashes[i];
                          bool removed = filteredCodeHashesRef.remove(codeHash);
                          if (!removed) {
                              revert CodeHashNotFiltered(codeHash);
                          }
                      }
                  } else {
                      for (uint256 i = 0; i < codeHashesLength; ++i) {
                          bytes32 codeHash = codeHashes[i];
                          if (codeHash == EOA_CODEHASH) {
                              revert CannotFilterEOAs();
                          }
                          bool added = filteredCodeHashesRef.add(codeHash);
                          if (!added) {
                              revert CodeHashAlreadyFiltered(codeHash);
                          }
                      }
                  }
              }
              emit CodeHashesUpdated(registrant, codeHashes, filtered);
          }
          /**
           * @notice Subscribe an address to another registrant's filtered operators and codeHashes. Will remove previous
           *         subscription if present.
           *         Note that accounts with subscriptions may go on to subscribe to other accounts - in this case,
           *         subscriptions will not be forwarded. Instead the former subscription's existing entries will still be
           *         used.
           */
          function subscribe(address registrant, address newSubscription) external onlyAddressOrOwner(registrant) {
              if (registrant == newSubscription) {
                  revert CannotSubscribeToSelf();
              }
              if (newSubscription == address(0)) {
                  revert CannotSubscribeToZeroAddress();
              }
              address registration = _registrations[registrant];
              if (registration == address(0)) {
                  revert NotRegistered(registrant);
              }
              if (registration == newSubscription) {
                  revert AlreadySubscribed(newSubscription);
              }
              address newSubscriptionRegistration = _registrations[newSubscription];
              if (newSubscriptionRegistration == address(0)) {
                  revert NotRegistered(newSubscription);
              }
              if (newSubscriptionRegistration != newSubscription) {
                  revert CannotSubscribeToRegistrantWithSubscription(newSubscription);
              }
              if (registration != registrant) {
                  _subscribers[registration].remove(registrant);
                  emit SubscriptionUpdated(registrant, registration, false);
              }
              _registrations[registrant] = newSubscription;
              _subscribers[newSubscription].add(registrant);
              emit SubscriptionUpdated(registrant, newSubscription, true);
          }
          /**
           * @notice Unsubscribe an address from its current subscribed registrant, and optionally copy its filtered operators and codeHashes.
           */
          function unsubscribe(address registrant, bool copyExistingEntries) external onlyAddressOrOwner(registrant) {
              address registration = _registrations[registrant];
              if (registration == address(0)) {
                  revert NotRegistered(registrant);
              }
              if (registration == registrant) {
                  revert NotSubscribed();
              }
              _subscribers[registration].remove(registrant);
              _registrations[registrant] = registrant;
              emit SubscriptionUpdated(registrant, registration, false);
              if (copyExistingEntries) {
                  _copyEntries(registrant, registration);
              }
          }
          /**
           * @notice Copy filtered operators and codeHashes from a different registrantToCopy to addr.
           */
          function copyEntriesOf(address registrant, address registrantToCopy) external onlyAddressOrOwner(registrant) {
              if (registrant == registrantToCopy) {
                  revert CannotCopyFromSelf();
              }
              address registration = _registrations[registrant];
              if (registration == address(0)) {
                  revert NotRegistered(registrant);
              }
              if (registration != registrant) {
                  revert CannotUpdateWhileSubscribed(registration);
              }
              address registrantRegistration = _registrations[registrantToCopy];
              if (registrantRegistration == address(0)) {
                  revert NotRegistered(registrantToCopy);
              }
              _copyEntries(registrant, registrantToCopy);
          }
          /// @dev helper to copy entries from registrantToCopy to registrant and emit events
          function _copyEntries(address registrant, address registrantToCopy) private {
              EnumerableSet.AddressSet storage filteredOperatorsRef = _filteredOperators[registrantToCopy];
              EnumerableSet.Bytes32Set storage filteredCodeHashesRef = _filteredCodeHashes[registrantToCopy];
              uint256 filteredOperatorsLength = filteredOperatorsRef.length();
              uint256 filteredCodeHashesLength = filteredCodeHashesRef.length();
              unchecked {
                  for (uint256 i = 0; i < filteredOperatorsLength; ++i) {
                      address operator = filteredOperatorsRef.at(i);
                      bool added = _filteredOperators[registrant].add(operator);
                      if (added) {
                          emit OperatorUpdated(registrant, operator, true);
                      }
                  }
                  for (uint256 i = 0; i < filteredCodeHashesLength; ++i) {
                      bytes32 codehash = filteredCodeHashesRef.at(i);
                      bool added = _filteredCodeHashes[registrant].add(codehash);
                      if (added) {
                          emit CodeHashUpdated(registrant, codehash, true);
                      }
                  }
              }
          }
          //////////////////
          // VIEW METHODS //
          //////////////////
          /**
           * @notice Get the subscription address of a given registrant, if any.
           */
          function subscriptionOf(address registrant) external view returns (address subscription) {
              subscription = _registrations[registrant];
              if (subscription == address(0)) {
                  revert NotRegistered(registrant);
              } else if (subscription == registrant) {
                  subscription = address(0);
              }
          }
          /**
           * @notice Get the set of addresses subscribed to a given registrant.
           *         Note that order is not guaranteed as updates are made.
           */
          function subscribers(address registrant) external view returns (address[] memory) {
              return _subscribers[registrant].values();
          }
          /**
           * @notice Get the subscriber at a given index in the set of addresses subscribed to a given registrant.
           *         Note that order is not guaranteed as updates are made.
           */
          function subscriberAt(address registrant, uint256 index) external view returns (address) {
              return _subscribers[registrant].at(index);
          }
          /**
           * @notice Returns true if operator is filtered by a given address or its subscription.
           */
          function isOperatorFiltered(address registrant, address operator) external view returns (bool) {
              address registration = _registrations[registrant];
              if (registration != registrant) {
                  return _filteredOperators[registration].contains(operator);
              }
              return _filteredOperators[registrant].contains(operator);
          }
          /**
           * @notice Returns true if a codeHash is filtered by a given address or its subscription.
           */
          function isCodeHashFiltered(address registrant, bytes32 codeHash) external view returns (bool) {
              address registration = _registrations[registrant];
              if (registration != registrant) {
                  return _filteredCodeHashes[registration].contains(codeHash);
              }
              return _filteredCodeHashes[registrant].contains(codeHash);
          }
          /**
           * @notice Returns true if the hash of an address's code is filtered by a given address or its subscription.
           */
          function isCodeHashOfFiltered(address registrant, address operatorWithCode) external view returns (bool) {
              bytes32 codeHash = operatorWithCode.codehash;
              address registration = _registrations[registrant];
              if (registration != registrant) {
                  return _filteredCodeHashes[registration].contains(codeHash);
              }
              return _filteredCodeHashes[registrant].contains(codeHash);
          }
          /**
           * @notice Returns true if an address has registered
           */
          function isRegistered(address registrant) external view returns (bool) {
              return _registrations[registrant] != address(0);
          }
          /**
           * @notice Returns a list of filtered operators for a given address or its subscription.
           */
          function filteredOperators(address registrant) external view returns (address[] memory) {
              address registration = _registrations[registrant];
              if (registration != registrant) {
                  return _filteredOperators[registration].values();
              }
              return _filteredOperators[registrant].values();
          }
          /**
           * @notice Returns the set of filtered codeHashes for a given address or its subscription.
           *         Note that order is not guaranteed as updates are made.
           */
          function filteredCodeHashes(address registrant) external view returns (bytes32[] memory) {
              address registration = _registrations[registrant];
              if (registration != registrant) {
                  return _filteredCodeHashes[registration].values();
              }
              return _filteredCodeHashes[registrant].values();
          }
          /**
           * @notice Returns the filtered operator at the given index of the set of filtered operators for a given address or
           *         its subscription.
           *         Note that order is not guaranteed as updates are made.
           */
          function filteredOperatorAt(address registrant, uint256 index) external view returns (address) {
              address registration = _registrations[registrant];
              if (registration != registrant) {
                  return _filteredOperators[registration].at(index);
              }
              return _filteredOperators[registrant].at(index);
          }
          /**
           * @notice Returns the filtered codeHash at the given index of the list of filtered codeHashes for a given address or
           *         its subscription.
           *         Note that order is not guaranteed as updates are made.
           */
          function filteredCodeHashAt(address registrant, uint256 index) external view returns (bytes32) {
              address registration = _registrations[registrant];
              if (registration != registrant) {
                  return _filteredCodeHashes[registration].at(index);
              }
              return _filteredCodeHashes[registrant].at(index);
          }
          /// @dev Convenience method to compute the code hash of an arbitrary contract
          function codeHashOf(address a) external view returns (bytes32) {
              return a.codehash;
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.13;
      contract OperatorFilterRegistryErrorsAndEvents {
          error CannotFilterEOAs();
          error AddressAlreadyFiltered(address operator);
          error AddressNotFiltered(address operator);
          error CodeHashAlreadyFiltered(bytes32 codeHash);
          error CodeHashNotFiltered(bytes32 codeHash);
          error OnlyAddressOrOwner();
          error NotRegistered(address registrant);
          error AlreadyRegistered();
          error AlreadySubscribed(address subscription);
          error NotSubscribed();
          error CannotUpdateWhileSubscribed(address subscription);
          error CannotSubscribeToSelf();
          error CannotSubscribeToZeroAddress();
          error NotOwnable();
          error AddressFiltered(address filtered);
          error CodeHashFiltered(address account, bytes32 codeHash);
          error CannotSubscribeToRegistrantWithSubscription(address registrant);
          error CannotCopyFromSelf();
          event RegistrationUpdated(address indexed registrant, bool indexed registered);
          event OperatorUpdated(address indexed registrant, address indexed operator, bool indexed filtered);
          event OperatorsUpdated(address indexed registrant, address[] operators, bool indexed filtered);
          event CodeHashUpdated(address indexed registrant, bytes32 indexed codeHash, bool indexed filtered);
          event CodeHashesUpdated(address indexed registrant, bytes32[] codeHashes, bool indexed filtered);
          event SubscriptionUpdated(address indexed registrant, address indexed subscription, bool indexed subscribed);
      }