ETH Price: $1,877.25 (-1.75%)

Transaction Decoder

Block:
18613346 at Nov-20-2023 01:37:59 PM +UTC
Transaction Fee:
0.003374573045459436 ETH $6.33
Gas Used:
137,133 Gas / 24.608030492 Gwei

Emitted Events:

504 Seaport.OrderFulfilled( orderHash=9A94257FB4695BFAB3AA94E55029A42D0D57DB2939D2F26F4F6458BE5966C2AF, offerer=0xa4ff83cccad4233fefa294b0f74db471fe15f77c, zone=0x004C0050...C00560C00, recipient=[Sender] 0xb0ded1ffda6d5f17cbf4ad5b419de6be224333ae, offer=, consideration= )
505 Degenheim.Transfer( from=0xa4ff83cccad4233fefa294b0f74db471fe15f77c, to=[Sender] 0xb0ded1ffda6d5f17cbf4ad5b419de6be224333ae, tokenId=7612 )

Account State Difference:

  Address   Before After State Difference Code
0x00000000...c0aAF14dC
(Seaport 1.5)
0x0000a26b...000fAa719
126.742542509680008139 Eth126.743417507180008139 Eth0.0008749975
0x8f6A4d8A...De5C7EB9e
(beaverbuild)
11.884029849062290903 Eth11.884043562362290903 Eth0.0000137133
0xA4ff83CC...1FE15f77c 0.000462426926529051 Eth0.034587329426529051 Eth0.0341249025
0xB0dEd1fF...E224333ae
0.101680099463427852 Eth
Nonce: 5
0.063305626417968416 Eth
Nonce: 6
0.038374473045459436

Execution Trace

ETH 0.0349999 Seaport.fulfillBasicOrder_efficient_6GL6yc( parameters=[{name:considerationToken, type:address, order:1, indexed:false, value:0x0000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000}, {name:considerationIdentifier, type:uint256, order:2, indexed:false, value:0, valueString:0}, {name:considerationAmount, type:uint256, order:3, indexed:false, value:34124902500000000, valueString:34124902500000000}, {name:offerer, type:address, order:4, indexed:false, value:0xA4ff83CCcad4233FEFa294b0f74db471FE15f77c, valueString:0xA4ff83CCcad4233FEFa294b0f74db471FE15f77c}, {name:zone, type:address, order:5, indexed:false, value:0x004C00500000aD104D7DBd00e3ae0A5C00560C00, valueString:0x004C00500000aD104D7DBd00e3ae0A5C00560C00}, {name:offerToken, type:address, order:6, indexed:false, value:0x8f6A4d8AD2493aDfD7D1540ccDbA11BDe5C7EB9e, valueString:0x8f6A4d8AD2493aDfD7D1540ccDbA11BDe5C7EB9e}, {name:offerIdentifier, type:uint256, order:7, indexed:false, value:7612, valueString:7612}, {name:offerAmount, type:uint256, order:8, indexed:false, value:1, valueString:1}, {name:basicOrderType, type:uint8, order:9, indexed:false, value:0, valueString:0}, {name:startTime, type:uint256, order:10, indexed:false, value:1700302462, valueString:1700302462}, {name:endTime, type:uint256, order:11, indexed:false, value:1702894453, valueString:1702894453}, {name:zoneHash, type:bytes32, order:12, indexed:false, value:0000000000000000000000000000000000000000000000000000000000000000, valueString:0000000000000000000000000000000000000000000000000000000000000000}, {name:salt, type:uint256, order:13, indexed:false, value:24446860302761739304752683030156737591518664810215442929817605811329382721852, valueString:24446860302761739304752683030156737591518664810215442929817605811329382721852}, {name:offererConduitKey, type:bytes32, order:14, indexed:false, value:0000007B02230091A7ED01230072F7006A004D60A8D4E71D599B8104250F0000, valueString:0000007B02230091A7ED01230072F7006A004D60A8D4E71D599B8104250F0000}, {name:fulfillerConduitKey, type:bytes32, order:15, indexed:false, value:0000007B02230091A7ED01230072F7006A004D60A8D4E71D599B8104250F0000, valueString:0000007B02230091A7ED01230072F7006A004D60A8D4E71D599B8104250F0000}, {name:totalOriginalAdditionalRecipients, type:uint256, order:16, indexed:false, value:1, valueString:1}, {name:additionalRecipients, type:tuple[], order:17, indexed:false}, {name:signature, type:bytes, order:18, indexed:false, value:0x5EB292D42EAEF6D6C92C0EAEE32BABCF866962B92624A57A31107944892D742B9B14065956468DC519C2A6CE10855BBFB9637072E207A0B40FCC6C8CEA9AAF4E, valueString:0x5EB292D42EAEF6D6C92C0EAEE32BABCF866962B92624A57A31107944892D742B9B14065956468DC519C2A6CE10855BBFB9637072E207A0B40FCC6C8CEA9AAF4E}] )
  • Null: 0x000...001.4cea4b4a( )
  • Conduit.execute( transfers= ) => ( transfers= )
    • Degenheim.transferFrom( from=0xA4ff83CCcad4233FEFa294b0f74db471FE15f77c, to=0xB0dEd1fFDa6D5F17cbF4Ad5B419DE6bE224333ae, tokenId=7612 )
    • ETH 0.0008749975 PayableProxy.CALL( )
    • ETH 0.0341249025 0xa4ff83cccad4233fefa294b0f74db471fe15f77c.CALL( )
      File 1 of 4: Seaport
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      import { Consideration } from "./lib/Consideration.sol";
      /**
       * @title Seaport
       * @custom:version 1.5
       * @author 0age (0age.eth)
       * @custom:coauthor d1ll0n (d1ll0n.eth)
       * @custom:coauthor transmissions11 (t11s.eth)
       * @custom:coauthor James Wenzel (emo.eth)
       * @custom:contributor Kartik (slokh.eth)
       * @custom:contributor LeFevre (lefevre.eth)
       * @custom:contributor Joseph Schiarizzi (CupOJoseph.eth)
       * @custom:contributor Aspyn Palatnick (stuckinaboot.eth)
       * @custom:contributor Stephan Min (stephanm.eth)
       * @custom:contributor Ryan Ghods (ralxz.eth)
       * @custom:contributor Daniel Viau (snotrocket.eth)
       * @custom:contributor hack3r-0m (hack3r-0m.eth)
       * @custom:contributor Diego Estevez (antidiego.eth)
       * @custom:contributor Chomtana (chomtana.eth)
       * @custom:contributor Saw-mon and Natalie (sawmonandnatalie.eth)
       * @custom:contributor 0xBeans (0xBeans.eth)
       * @custom:contributor 0x4non (punkdev.eth)
       * @custom:contributor Laurence E. Day (norsefire.eth)
       * @custom:contributor vectorized.eth (vectorized.eth)
       * @custom:contributor karmacoma (karmacoma.eth)
       * @custom:contributor horsefacts (horsefacts.eth)
       * @custom:contributor UncarvedBlock (uncarvedblock.eth)
       * @custom:contributor Zoraiz Mahmood (zorz.eth)
       * @custom:contributor William Poulin (wpoulin.eth)
       * @custom:contributor Rajiv Patel-O'Connor (rajivpoc.eth)
       * @custom:contributor tserg (tserg.eth)
       * @custom:contributor cygaar (cygaar.eth)
       * @custom:contributor Meta0xNull (meta0xnull.eth)
       * @custom:contributor gpersoon (gpersoon.eth)
       * @custom:contributor Matt Solomon (msolomon.eth)
       * @custom:contributor Weikang Song (weikangs.eth)
       * @custom:contributor zer0dot (zer0dot.eth)
       * @custom:contributor Mudit Gupta (mudit.eth)
       * @custom:contributor leonardoalt (leoalt.eth)
       * @custom:contributor cmichel (cmichel.eth)
       * @custom:contributor PraneshASP (pranesh.eth)
       * @custom:contributor JasperAlexander (jasperalexander.eth)
       * @custom:contributor Ellahi (ellahi.eth)
       * @custom:contributor zaz (1zaz1.eth)
       * @custom:contributor berndartmueller (berndartmueller.eth)
       * @custom:contributor dmfxyz (dmfxyz.eth)
       * @custom:contributor daltoncoder (dontkillrobots.eth)
       * @custom:contributor 0xf4ce (0xf4ce.eth)
       * @custom:contributor phaze (phaze.eth)
       * @custom:contributor hrkrshnn (hrkrshnn.eth)
       * @custom:contributor axic (axic.eth)
       * @custom:contributor leastwood (leastwood.eth)
       * @custom:contributor 0xsanson (sanson.eth)
       * @custom:contributor blockdev (blockd3v.eth)
       * @custom:contributor fiveoutofnine (fiveoutofnine.eth)
       * @custom:contributor shuklaayush (shuklaayush.eth)
       * @custom:contributor dravee (dravee.eth)
       * @custom:contributor 0xPatissier
       * @custom:contributor pcaversaccio
       * @custom:contributor David Eiber
       * @custom:contributor csanuragjain
       * @custom:contributor sach1r0
       * @custom:contributor twojoy0
       * @custom:contributor ori_dabush
       * @custom:contributor Daniel Gelfand
       * @custom:contributor okkothejawa
       * @custom:contributor FlameHorizon
       * @custom:contributor vdrg
       * @custom:contributor dmitriia
       * @custom:contributor bokeh-eth
       * @custom:contributor asutorufos
       * @custom:contributor rfart(rfa)
       * @custom:contributor Riley Holterhus
       * @custom:contributor big-tech-sux
       * @notice Seaport is a generalized native token/ERC20/ERC721/ERC1155
       *         marketplace with lightweight methods for common routes as well as
       *         more flexible methods for composing advanced orders or groups of
       *         orders. Each order contains an arbitrary number of items that may be
       *         spent (the "offer") along with an arbitrary number of items that must
       *         be received back by the indicated recipients (the "consideration").
       */
      contract Seaport is Consideration {
          /**
           * @notice Derive and set hashes, reference chainId, and associated domain
           *         separator during deployment.
           *
           * @param conduitController A contract that deploys conduits, or proxies
           *                          that may optionally be used to transfer approved
           *                          ERC20/721/1155 tokens.
           */
          constructor(address conduitController) Consideration(conduitController) {}
          /**
           * @dev Internal pure function to retrieve and return the name of this
           *      contract.
           *
           * @return The name of this contract.
           */
          function _name() internal pure override returns (string memory) {
              // Return the name of the contract.
              assembly {
                  mstore(0x20, 0x20)
                  mstore(0x47, 0x07536561706f7274)
                  return(0x20, 0x60)
              }
          }
          /**
           * @dev Internal pure function to retrieve the name of this contract as a
           *      string that will be used to derive the name hash in the constructor.
           *
           * @return The name of this contract as a string.
           */
          function _nameString() internal pure override returns (string memory) {
              // Return the name of the contract.
              return "Seaport";
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      import {
          ConsiderationInterface
      } from "../interfaces/ConsiderationInterface.sol";
      import {
          AdvancedOrder,
          BasicOrderParameters,
          CriteriaResolver,
          Execution,
          Fulfillment,
          FulfillmentComponent,
          Order,
          OrderComponents
      } from "./ConsiderationStructs.sol";
      import { OrderCombiner } from "./OrderCombiner.sol";
      import {
          CalldataStart,
          CalldataPointer
      } from "../helpers/PointerLibraries.sol";
      import {
          Offset_fulfillAdvancedOrder_criteriaResolvers,
          Offset_fulfillAvailableAdvancedOrders_cnsdrationFlflmnts,
          Offset_fulfillAvailableAdvancedOrders_criteriaResolvers,
          Offset_fulfillAvailableAdvancedOrders_offerFulfillments,
          Offset_fulfillAvailableOrders_considerationFulfillments,
          Offset_fulfillAvailableOrders_offerFulfillments,
          Offset_matchAdvancedOrders_criteriaResolvers,
          Offset_matchAdvancedOrders_fulfillments,
          Offset_matchOrders_fulfillments,
          OrderParameters_counter_offset
      } from "./ConsiderationConstants.sol";
      /**
       * @title Consideration
       * @author 0age (0age.eth)
       * @custom:coauthor d1ll0n (d1ll0n.eth)
       * @custom:coauthor transmissions11 (t11s.eth)
       * @custom:coauthor James Wenzel (emo.eth)
       * @custom:version 1.5
       * @notice Consideration is a generalized native token/ERC20/ERC721/ERC1155
       *         marketplace that provides lightweight methods for common routes as
       *         well as more flexible methods for composing advanced orders or groups
       *         of orders. Each order contains an arbitrary number of items that may
       *         be spent (the "offer") along with an arbitrary number of items that
       *         must be received back by the indicated recipients (the
       *         "consideration").
       */
      contract Consideration is ConsiderationInterface, OrderCombiner {
          /**
           * @notice Derive and set hashes, reference chainId, and associated domain
           *         separator during deployment.
           *
           * @param conduitController A contract that deploys conduits, or proxies
           *                          that may optionally be used to transfer approved
           *                          ERC20/721/1155 tokens.
           */
          constructor(address conduitController) OrderCombiner(conduitController) {}
          /**
           * @notice Accept native token transfers during execution that may then be
           *         used to facilitate native token transfers, where any tokens that
           *         remain will be transferred to the caller. Native tokens are only
           *         acceptable mid-fulfillment (and not during basic fulfillment).
           */
          receive() external payable {
              // Ensure the reentrancy guard is currently set to accept native tokens.
              _assertAcceptingNativeTokens();
          }
          /**
           * @notice Fulfill an order offering an ERC20, ERC721, or ERC1155 item by
           *         supplying Ether (or other native tokens), ERC20 tokens, an ERC721
           *         item, or an ERC1155 item as consideration. Six permutations are
           *         supported: Native token to ERC721, Native token to ERC1155, ERC20
           *         to ERC721, ERC20 to ERC1155, ERC721 to ERC20, and ERC1155 to
           *         ERC20 (with native tokens supplied as msg.value). For an order to
           *         be eligible for fulfillment via this method, it must contain a
           *         single offer item (though that item may have a greater amount if
           *         the item is not an ERC721). An arbitrary number of "additional
           *         recipients" may also be supplied which will each receive native
           *         tokens or ERC20 items from the fulfiller as consideration. Refer
           *         to the documentation for a more comprehensive summary of how to
           *         utilize this method and what orders are compatible with it.
           *
           * @param parameters Additional information on the fulfilled order. Note
           *                   that the offerer and the fulfiller must first approve
           *                   this contract (or their chosen conduit if indicated)
           *                   before any tokens can be transferred. Also note that
           *                   contract recipients of ERC1155 consideration items must
           *                   implement `onERC1155Received` to receive those items.
           *
           * @return fulfilled A boolean indicating whether the order has been
           *                   successfully fulfilled.
           */
          function fulfillBasicOrder(
              BasicOrderParameters calldata parameters
          ) external payable override returns (bool fulfilled) {
              // Validate and fulfill the basic order.
              fulfilled = _validateAndFulfillBasicOrder(parameters);
          }
          /**
           * @notice Fulfill an order offering an ERC20, ERC721, or ERC1155 item by
           *         supplying Ether (or other native tokens), ERC20 tokens, an ERC721
           *         item, or an ERC1155 item as consideration. Six permutations are
           *         supported: Native token to ERC721, Native token to ERC1155, ERC20
           *         to ERC721, ERC20 to ERC1155, ERC721 to ERC20, and ERC1155 to
           *         ERC20 (with native tokens supplied as msg.value). For an order to
           *         be eligible for fulfillment via this method, it must contain a
           *         single offer item (though that item may have a greater amount if
           *         the item is not an ERC721). An arbitrary number of "additional
           *         recipients" may also be supplied which will each receive native
           *         tokens or ERC20 items from the fulfiller as consideration. Refer
           *         to the documentation for a more comprehensive summary of how to
           *         utilize this method and what orders are compatible with it. Note
           *         that this function costs less gas than `fulfillBasicOrder` due to
           *         the zero bytes in the function selector (0x00000000) which also
           *         results in earlier function dispatch.
           *
           * @param parameters Additional information on the fulfilled order. Note
           *                   that the offerer and the fulfiller must first approve
           *                   this contract (or their chosen conduit if indicated)
           *                   before any tokens can be transferred. Also note that
           *                   contract recipients of ERC1155 consideration items must
           *                   implement `onERC1155Received` to receive those items.
           *
           * @return fulfilled A boolean indicating whether the order has been
           *                   successfully fulfilled.
           */
          function fulfillBasicOrder_efficient_6GL6yc(
              BasicOrderParameters calldata parameters
          ) external payable override returns (bool fulfilled) {
              // Validate and fulfill the basic order.
              fulfilled = _validateAndFulfillBasicOrder(parameters);
          }
          /**
           * @notice Fulfill an order with an arbitrary number of items for offer and
           *         consideration. Note that this function does not support
           *         criteria-based orders or partial filling of orders (though
           *         filling the remainder of a partially-filled order is supported).
           *
           * @custom:param order        The order to fulfill. Note that both the
           *                            offerer and the fulfiller must first approve
           *                            this contract (or the corresponding conduit if
           *                            indicated) to transfer any relevant tokens on
           *                            their behalf and that contracts must implement
           *                            `onERC1155Received` to receive ERC1155 tokens
           *                            as consideration.
           * @param fulfillerConduitKey A bytes32 value indicating what conduit, if
           *                            any, to source the fulfiller's token approvals
           *                            from. The zero hash signifies that no conduit
           *                            should be used (and direct approvals set on
           *                            this contract).
           *
           * @return fulfilled A boolean indicating whether the order has been
           *                   successfully fulfilled.
           */
          function fulfillOrder(
              /**
               * @custom:name order
               */
              Order calldata,
              bytes32 fulfillerConduitKey
          ) external payable override returns (bool fulfilled) {
              // Convert order to "advanced" order, then validate and fulfill it.
              fulfilled = _validateAndFulfillAdvancedOrder(
                  _toAdvancedOrderReturnType(_decodeOrderAsAdvancedOrder)(
                      CalldataStart.pptr()
                  ),
                  new CriteriaResolver[](0), // No criteria resolvers supplied.
                  fulfillerConduitKey,
                  msg.sender
              );
          }
          /**
           * @notice Fill an order, fully or partially, with an arbitrary number of
           *         items for offer and consideration alongside criteria resolvers
           *         containing specific token identifiers and associated proofs.
           *
           * @custom:param advancedOrder     The order to fulfill along with the
           *                                 fraction of the order to attempt to fill.
           *                                 Note that both the offerer and the
           *                                 fulfiller must first approve this
           *                                 contract (or their conduit if indicated
           *                                 by the order) to transfer any relevant
           *                                 tokens on their behalf and that contracts
           *                                 must implement `onERC1155Received` to
           *                                 receive ERC1155 tokens as consideration.
           *                                 Also note that all offer and
           *                                 consideration components must have no
           *                                 remainder after multiplication of the
           *                                 respective amount with the supplied
           *                                 fraction for the partial fill to be
           *                                 considered valid.
           * @custom:param criteriaResolvers An array where each element contains a
           *                                 reference to a specific offer or
           *                                 consideration, a token identifier, and a
           *                                 proof that the supplied token identifier
           *                                 is contained in the merkle root held by
           *                                 the item in question's criteria element.
           *                                 Note that an empty criteria indicates
           *                                 that any (transferable) token identifier
           *                                 on the token in question is valid and
           *                                 that no associated proof needs to be
           *                                 supplied.
           * @param fulfillerConduitKey      A bytes32 value indicating what conduit,
           *                                 if any, to source the fulfiller's token
           *                                 approvals from. The zero hash signifies
           *                                 that no conduit should be used (and
           *                                 direct approvals set on this contract).
           * @param recipient                The intended recipient for all received
           *                                 items, with `address(0)` indicating that
           *                                 the caller should receive the items.
           *
           * @return fulfilled A boolean indicating whether the order has been
           *                   successfully fulfilled.
           */
          function fulfillAdvancedOrder(
              /**
               * @custom:name advancedOrder
               */
              AdvancedOrder calldata,
              /**
               * @custom:name criteriaResolvers
               */
              CriteriaResolver[] calldata,
              bytes32 fulfillerConduitKey,
              address recipient
          ) external payable override returns (bool fulfilled) {
              // Validate and fulfill the order.
              fulfilled = _validateAndFulfillAdvancedOrder(
                  _toAdvancedOrderReturnType(_decodeAdvancedOrder)(
                      CalldataStart.pptr()
                  ),
                  _toCriteriaResolversReturnType(_decodeCriteriaResolvers)(
                      CalldataStart.pptr(
                          Offset_fulfillAdvancedOrder_criteriaResolvers
                      )
                  ),
                  fulfillerConduitKey,
                  _substituteCallerForEmptyRecipient(recipient)
              );
          }
          /**
           * @notice Attempt to fill a group of orders, each with an arbitrary number
           *         of items for offer and consideration. Any order that is not
           *         currently active, has already been fully filled, or has been
           *         cancelled will be omitted. Remaining offer and consideration
           *         items will then be aggregated where possible as indicated by the
           *         supplied offer and consideration component arrays and aggregated
           *         items will be transferred to the fulfiller or to each intended
           *         recipient, respectively. Note that a failing item transfer or an
           *         issue with order formatting will cause the entire batch to fail.
           *         Note that this function does not support criteria-based orders or
           *         partial filling of orders (though filling the remainder of a
           *         partially-filled order is supported).
           *
           * @custom:param orders                    The orders to fulfill. Note that
           *                                         both the offerer and the
           *                                         fulfiller must first approve this
           *                                         contract (or the corresponding
           *                                         conduit if indicated) to transfer
           *                                         any relevant tokens on their
           *                                         behalf and that contracts must
           *                                         implement `onERC1155Received` to
           *                                         receive ERC1155 tokens as
           *                                         consideration.
           * @custom:param offerFulfillments         An array of FulfillmentComponent
           *                                         arrays indicating which offer
           *                                         items to attempt to aggregate
           *                                         when preparing executions. Note
           *                                         that any offer items not included
           *                                         as part of a fulfillment will be
           *                                         sent unaggregated to the caller.
           * @custom:param considerationFulfillments An array of FulfillmentComponent
           *                                         arrays indicating which
           *                                         consideration items to attempt to
           *                                         aggregate when preparing
           *                                         executions.
           * @param fulfillerConduitKey              A bytes32 value indicating what
           *                                         conduit, if any, to source the
           *                                         fulfiller's token approvals from.
           *                                         The zero hash signifies that no
           *                                         conduit should be used (and
           *                                         direct approvals set on this
           *                                         contract).
           * @param maximumFulfilled                 The maximum number of orders to
           *                                         fulfill.
           *
           * @return availableOrders An array of booleans indicating if each order
           *                         with an index corresponding to the index of the
           *                         returned boolean was fulfillable or not.
           * @return executions      An array of elements indicating the sequence of
           *                         transfers performed as part of matching the given
           *                         orders.
           */
          function fulfillAvailableOrders(
              /**
               * @custom:name orders
               */
              Order[] calldata,
              /**
               * @custom:name offerFulfillments
               */
              FulfillmentComponent[][] calldata,
              /**
               * @custom:name considerationFulfillments
               */
              FulfillmentComponent[][] calldata,
              bytes32 fulfillerConduitKey,
              uint256 maximumFulfilled
          )
              external
              payable
              override
              returns (
                  bool[] memory /* availableOrders */,
                  Execution[] memory /* executions */
              )
          {
              // Convert orders to "advanced" orders and fulfill all available orders.
              return
                  _fulfillAvailableAdvancedOrders(
                      _toAdvancedOrdersReturnType(_decodeOrdersAsAdvancedOrders)(
                          CalldataStart.pptr()
                      ), // Convert to advanced orders.
                      new CriteriaResolver[](0), // No criteria resolvers supplied.
                      _toNestedFulfillmentComponentsReturnType(
                          _decodeNestedFulfillmentComponents
                      )(
                          CalldataStart.pptr(
                              Offset_fulfillAvailableOrders_offerFulfillments
                          )
                      ),
                      _toNestedFulfillmentComponentsReturnType(
                          _decodeNestedFulfillmentComponents
                      )(
                          CalldataStart.pptr(
                              Offset_fulfillAvailableOrders_considerationFulfillments
                          )
                      ),
                      fulfillerConduitKey,
                      msg.sender,
                      maximumFulfilled
                  );
          }
          /**
           * @notice Attempt to fill a group of orders, fully or partially, with an
           *         arbitrary number of items for offer and consideration per order
           *         alongside criteria resolvers containing specific token
           *         identifiers and associated proofs. Any order that is not
           *         currently active, has already been fully filled, or has been
           *         cancelled will be omitted. Remaining offer and consideration
           *         items will then be aggregated where possible as indicated by the
           *         supplied offer and consideration component arrays and aggregated
           *         items will be transferred to the fulfiller or to each intended
           *         recipient, respectively. Note that a failing item transfer or an
           *         issue with order formatting will cause the entire batch to fail.
           *
           * @custom:param advancedOrders            The orders to fulfill along with
           *                                         the fraction of those orders to
           *                                         attempt to fill. Note that both
           *                                         the offerer and the fulfiller
           *                                         must first approve this contract
           *                                         (or their conduit if indicated by
           *                                         the order) to transfer any
           *                                         relevant tokens on their behalf
           *                                         and that contracts must implement
           *                                         `onERC1155Received` to receive
           *                                         ERC1155 tokens as consideration.
           *                                         Also note that all offer and
           *                                         consideration components must
           *                                         have no remainder after
           *                                         multiplication of the respective
           *                                         amount with the supplied fraction
           *                                         for an order's partial fill
           *                                         amount to be considered valid.
           * @custom:param criteriaResolvers         An array where each element
           *                                         contains a reference to a
           *                                         specific offer or consideration,
           *                                         a token identifier, and a proof
           *                                         that the supplied token
           *                                         identifier is contained in the
           *                                         merkle root held by the item in
           *                                         question's criteria element. Note
           *                                         that an empty criteria indicates
           *                                         that any (transferable) token
           *                                         identifier on the token in
           *                                         question is valid and that no
           *                                         associated proof needs to be
           *                                         supplied.
           * @custom:param offerFulfillments         An array of FulfillmentComponent
           *                                         arrays indicating which offer
           *                                         items to attempt to aggregate
           *                                         when preparing executions. Note
           *                                         that any offer items not included
           *                                         as part of a fulfillment will be
           *                                         sent unaggregated to the caller.
           * @custom:param considerationFulfillments An array of FulfillmentComponent
           *                                         arrays indicating which
           *                                         consideration items to attempt to
           *                                         aggregate when preparing
           *                                         executions.
           * @param fulfillerConduitKey              A bytes32 value indicating what
           *                                         conduit, if any, to source the
           *                                         fulfiller's token approvals from.
           *                                         The zero hash signifies that no
           *                                         conduit should be used (and
           *                                         direct approvals set on this
           *                                         contract).
           * @param recipient                        The intended recipient for all
           *                                         received items, with `address(0)`
           *                                         indicating that the caller should
           *                                         receive the offer items.
           * @param maximumFulfilled                 The maximum number of orders to
           *                                         fulfill.
           *
           * @return availableOrders An array of booleans indicating if each order
           *                         with an index corresponding to the index of the
           *                         returned boolean was fulfillable or not.
           * @return executions      An array of elements indicating the sequence of
           *                         transfers performed as part of matching the given
           *                         orders.
           */
          function fulfillAvailableAdvancedOrders(
              /**
               * @custom:name advancedOrders
               */
              AdvancedOrder[] calldata,
              /**
               * @custom:name criteriaResolvers
               */
              CriteriaResolver[] calldata,
              /**
               * @custom:name offerFulfillments
               */
              FulfillmentComponent[][] calldata,
              /**
               * @custom:name considerationFulfillments
               */
              FulfillmentComponent[][] calldata,
              bytes32 fulfillerConduitKey,
              address recipient,
              uint256 maximumFulfilled
          )
              external
              payable
              override
              returns (
                  bool[] memory /* availableOrders */,
                  Execution[] memory /* executions */
              )
          {
              // Fulfill all available orders.
              return
                  _fulfillAvailableAdvancedOrders(
                      _toAdvancedOrdersReturnType(_decodeAdvancedOrders)(
                          CalldataStart.pptr()
                      ),
                      _toCriteriaResolversReturnType(_decodeCriteriaResolvers)(
                          CalldataStart.pptr(
                              Offset_fulfillAvailableAdvancedOrders_criteriaResolvers
                          )
                      ),
                      _toNestedFulfillmentComponentsReturnType(
                          _decodeNestedFulfillmentComponents
                      )(
                          CalldataStart.pptr(
                              Offset_fulfillAvailableAdvancedOrders_offerFulfillments
                          )
                      ),
                      _toNestedFulfillmentComponentsReturnType(
                          _decodeNestedFulfillmentComponents
                      )(
                          CalldataStart.pptr(
                              Offset_fulfillAvailableAdvancedOrders_cnsdrationFlflmnts
                          )
                      ),
                      fulfillerConduitKey,
                      _substituteCallerForEmptyRecipient(recipient),
                      maximumFulfilled
                  );
          }
          /**
           * @notice Match an arbitrary number of orders, each with an arbitrary
           *         number of items for offer and consideration along with a set of
           *         fulfillments allocating offer components to consideration
           *         components. Note that this function does not support
           *         criteria-based or partial filling of orders (though filling the
           *         remainder of a partially-filled order is supported). Any unspent
           *         offer item amounts or native tokens will be transferred to the
           *         caller.
           *
           * @custom:param orders       The orders to match. Note that both the
           *                            offerer and fulfiller on each order must first
           *                            approve this contract (or their conduit if
           *                            indicated by the order) to transfer any
           *                            relevant tokens on their behalf and each
           *                            consideration recipient must implement
           *                            `onERC1155Received` to receive ERC1155 tokens.
           * @custom:param fulfillments An array of elements allocating offer
           *                            components to consideration components. Note
           *                            that each consideration component must be
           *                            fully met for the match operation to be valid,
           *                            and that any unspent offer items will be sent
           *                            unaggregated to the caller.
           *
           * @return executions An array of elements indicating the sequence of
           *                    transfers performed as part of matching the given
           *                    orders. Note that unspent offer item amounts or native
           *                    tokens will not be reflected as part of this array.
           */
          function matchOrders(
              /**
               * @custom:name orders
               */
              Order[] calldata,
              /**
               * @custom:name fulfillments
               */
              Fulfillment[] calldata
          ) external payable override returns (Execution[] memory /* executions */) {
              // Convert to advanced, validate, and match orders using fulfillments.
              return
                  _matchAdvancedOrders(
                      _toAdvancedOrdersReturnType(_decodeOrdersAsAdvancedOrders)(
                          CalldataStart.pptr()
                      ),
                      new CriteriaResolver[](0), // No criteria resolvers supplied.
                      _toFulfillmentsReturnType(_decodeFulfillments)(
                          CalldataStart.pptr(Offset_matchOrders_fulfillments)
                      ),
                      msg.sender
                  );
          }
          /**
           * @notice Match an arbitrary number of full, partial, or contract orders,
           *         each with an arbitrary number of items for offer and
           *         consideration, supplying criteria resolvers containing specific
           *         token identifiers and associated proofs as well as fulfillments
           *         allocating offer components to consideration components. Any
           *         unspent offer item amounts will be transferred to the designated
           *         recipient (with the null address signifying to use the caller)
           *         and any unspent native tokens will be returned to the caller.
           *
           * @custom:param advancedOrders    The advanced orders to match. Note that
           *                                 both the offerer and fulfiller on each
           *                                 order must first approve this contract
           *                                 (or their conduit if indicated by the
           *                                 order) to transfer any relevant tokens on
           *                                 their behalf and each consideration
           *                                 recipient must implement
           *                                 `onERC1155Received` to receive ERC1155
           *                                 tokens. Also note that the offer and
           *                                 consideration components for each order
           *                                 must have no remainder after multiplying
           *                                 the respective amount with the supplied
           *                                 fraction for the group of partial fills
           *                                 to be considered valid.
           * @custom:param criteriaResolvers An array where each element contains a
           *                                 reference to a specific offer or
           *                                 consideration, a token identifier, and a
           *                                 proof that the supplied token identifier
           *                                 is contained in the merkle root held by
           *                                 the item in question's criteria element.
           *                                 Note that an empty criteria indicates
           *                                 that any (transferable) token identifier
           *                                 on the token in question is valid and
           *                                 that no associated proof needs to be
           *                                 supplied.
           * @custom:param fulfillments      An array of elements allocating offer
           *                                 components to consideration components.
           *                                 Note that each consideration component
           *                                 must be fully met for the match operation
           *                                 to be valid, and that any unspent offer
           *                                 items will be sent unaggregated to the
           *                                 designated recipient.
           * @param recipient                The intended recipient for all unspent
           *                                 offer item amounts, or the caller if the
           *                                 null address is supplied.
           *
           * @return executions An array of elements indicating the sequence of
           *                     transfers performed as part of matching the given
           *                     orders. Note that unspent offer item amounts or
           *                     native tokens will not be reflected as part of this
           *                     array.
           */
          function matchAdvancedOrders(
              /**
               * @custom:name advancedOrders
               */
              AdvancedOrder[] calldata,
              /**
               * @custom:name criteriaResolvers
               */
              CriteriaResolver[] calldata,
              /**
               * @custom:name fulfillments
               */
              Fulfillment[] calldata,
              address recipient
          ) external payable override returns (Execution[] memory /* executions */) {
              // Validate and match the advanced orders using supplied fulfillments.
              return
                  _matchAdvancedOrders(
                      _toAdvancedOrdersReturnType(_decodeAdvancedOrders)(
                          CalldataStart.pptr()
                      ),
                      _toCriteriaResolversReturnType(_decodeCriteriaResolvers)(
                          CalldataStart.pptr(
                              Offset_matchAdvancedOrders_criteriaResolvers
                          )
                      ),
                      _toFulfillmentsReturnType(_decodeFulfillments)(
                          CalldataStart.pptr(Offset_matchAdvancedOrders_fulfillments)
                      ),
                      _substituteCallerForEmptyRecipient(recipient)
                  );
          }
          /**
           * @notice Cancel an arbitrary number of orders. Note that only the offerer
           *         or the zone of a given order may cancel it. Callers should ensure
           *         that the intended order was cancelled by calling `getOrderStatus`
           *         and confirming that `isCancelled` returns `true`.
           *
           * @param orders The orders to cancel.
           *
           * @return cancelled A boolean indicating whether the supplied orders have
           *                   been successfully cancelled.
           */
          function cancel(
              OrderComponents[] calldata orders
          ) external override returns (bool cancelled) {
              // Cancel the orders.
              cancelled = _cancel(orders);
          }
          /**
           * @notice Validate an arbitrary number of orders, thereby registering their
           *         signatures as valid and allowing the fulfiller to skip signature
           *         verification on fulfillment. Note that validated orders may still
           *         be unfulfillable due to invalid item amounts or other factors;
           *         callers should determine whether validated orders are fulfillable
           *         by simulating the fulfillment call prior to execution. Also note
           *         that anyone can validate a signed order, but only the offerer can
           *         validate an order without supplying a signature.
           *
           * @custom:param orders The orders to validate.
           *
           * @return validated A boolean indicating whether the supplied orders have
           *                   been successfully validated.
           */
          function validate(
              /**
               * @custom:name orders
               */
              Order[] calldata
          ) external override returns (bool /* validated */) {
              return
                  _validate(_toOrdersReturnType(_decodeOrders)(CalldataStart.pptr()));
          }
          /**
           * @notice Cancel all orders from a given offerer with a given zone in bulk
           *         by incrementing a counter. Note that only the offerer may
           *         increment the counter.
           *
           * @return newCounter The new counter.
           */
          function incrementCounter() external override returns (uint256 newCounter) {
              // Increment current counter for the supplied offerer.  Note that the
              // counter is incremented by a large, quasi-random interval.
              newCounter = _incrementCounter();
          }
          /**
           * @notice Retrieve the order hash for a given order.
           *
           * @custom:param order The components of the order.
           *
           * @return orderHash The order hash.
           */
          function getOrderHash(
              /**
               * @custom:name order
               */
              OrderComponents calldata
          ) external view override returns (bytes32 orderHash) {
              CalldataPointer orderPointer = CalldataStart.pptr();
              // Derive order hash by supplying order parameters along with counter.
              orderHash = _deriveOrderHash(
                  _toOrderParametersReturnType(
                      _decodeOrderComponentsAsOrderParameters
                  )(orderPointer),
                  // Read order counter
                  orderPointer.offset(OrderParameters_counter_offset).readUint256()
              );
          }
          /**
           * @notice Retrieve the status of a given order by hash, including whether
           *         the order has been cancelled or validated and the fraction of the
           *         order that has been filled. Since the _orderStatus[orderHash]
           *         does not get set for contract orders, getOrderStatus will always
           *         return (false, false, 0, 0) for those hashes. Note that this
           *         function is susceptible to view reentrancy and so should be used
           *         with care when calling from other contracts.
           *
           * @param orderHash The order hash in question.
           *
           * @return isValidated A boolean indicating whether the order in question
           *                     has been validated (i.e. previously approved or
           *                     partially filled).
           * @return isCancelled A boolean indicating whether the order in question
           *                     has been cancelled.
           * @return totalFilled The total portion of the order that has been filled
           *                     (i.e. the "numerator").
           * @return totalSize   The total size of the order that is either filled or
           *                     unfilled (i.e. the "denominator").
           */
          function getOrderStatus(
              bytes32 orderHash
          )
              external
              view
              override
              returns (
                  bool isValidated,
                  bool isCancelled,
                  uint256 totalFilled,
                  uint256 totalSize
              )
          {
              // Retrieve the order status using the order hash.
              return _getOrderStatus(orderHash);
          }
          /**
           * @notice Retrieve the current counter for a given offerer.
           *
           * @param offerer The offerer in question.
           *
           * @return counter The current counter.
           */
          function getCounter(
              address offerer
          ) external view override returns (uint256 counter) {
              // Return the counter for the supplied offerer.
              counter = _getCounter(offerer);
          }
          /**
           * @notice Retrieve configuration information for this contract.
           *
           * @return version           The contract version.
           * @return domainSeparator   The domain separator for this contract.
           * @return conduitController The conduit Controller set for this contract.
           */
          function information()
              external
              view
              override
              returns (
                  string memory version,
                  bytes32 domainSeparator,
                  address conduitController
              )
          {
              // Return the information for this contract.
              return _information();
          }
          /**
           * @dev Gets the contract offerer nonce for the specified contract offerer.
           *      Note that this function is susceptible to view reentrancy and so
           *      should be used with care when calling from other contracts.
           *
           * @param contractOfferer The contract offerer for which to get the nonce.
           *
           * @return nonce The contract offerer nonce.
           */
          function getContractOffererNonce(
              address contractOfferer
          ) external view override returns (uint256 nonce) {
              nonce = _contractNonces[contractOfferer];
          }
          /**
           * @notice Retrieve the name of this contract.
           *
           * @return contractName The name of this contract.
           */
          function name()
              external
              pure
              override
              returns (string memory /* contractName */)
          {
              // Return the name of the contract.
              return _name();
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      import { Side, ItemType, OrderType } from "./ConsiderationEnums.sol";
      import {
          AdvancedOrder,
          ConsiderationItem,
          CriteriaResolver,
          Execution,
          Fulfillment,
          FulfillmentComponent,
          OfferItem,
          OrderParameters,
          ReceivedItem
      } from "./ConsiderationStructs.sol";
      import { OrderFulfiller } from "./OrderFulfiller.sol";
      import { FulfillmentApplier } from "./FulfillmentApplier.sol";
      import {
          _revertConsiderationNotMet,
          _revertInsufficientNativeTokensSupplied,
          _revertInvalidNativeOfferItem,
          _revertNoSpecifiedOrdersAvailable
      } from "./ConsiderationErrors.sol";
      import {
          AccumulatorDisarmed,
          ConsiderationItem_recipient_offset,
          Execution_offerer_offset,
          NonMatchSelector_InvalidErrorValue,
          NonMatchSelector_MagicMask,
          OneWord,
          OneWordShift,
          OrdersMatchedTopic0,
          ReceivedItem_amount_offset,
          ReceivedItem_recipient_offset,
          TwoWords
      } from "./ConsiderationConstants.sol";
      /**
       * @title OrderCombiner
       * @author 0age
       * @notice OrderCombiner contains logic for fulfilling combinations of orders,
       *         either by matching offer items to consideration items or by
       *         fulfilling orders where available.
       */
      contract OrderCombiner is OrderFulfiller, FulfillmentApplier {
          /**
           * @dev Derive and set hashes, reference chainId, and associated domain
           *      separator during deployment.
           *
           * @param conduitController A contract that deploys conduits, or proxies
           *                          that may optionally be used to transfer approved
           *                          ERC20/721/1155 tokens.
           */
          constructor(address conduitController) OrderFulfiller(conduitController) {}
          /**
           * @notice Internal function to attempt to fill a group of orders, fully or
           *         partially, with an arbitrary number of items for offer and
           *         consideration per order alongside criteria resolvers containing
           *         specific token identifiers and associated proofs. Any order that
           *         is not currently active, has already been fully filled, or has
           *         been cancelled will be omitted. Remaining offer and consideration
           *         items will then be aggregated where possible as indicated by the
           *         supplied offer and consideration component arrays and aggregated
           *         items will be transferred to the fulfiller or to each intended
           *         recipient, respectively. Note that a failing item transfer or an
           *         issue with order formatting will cause the entire batch to fail.
           *
           * @param advancedOrders            The orders to fulfill along with the
           *                                  fraction of those orders to attempt to
           *                                  fill. Note that both the offerer and the
           *                                  fulfiller must first approve this
           *                                  contract (or a conduit if indicated by
           *                                  the order) to transfer any relevant
           *                                  tokens on their behalf and that
           *                                  contracts must implement
           *                                  `onERC1155Received` in order to receive
           *                                  ERC1155 tokens as consideration. Also
           *                                  note that all offer and consideration
           *                                  components must have no remainder after
           *                                  multiplication of the respective amount
           *                                  with the supplied fraction for an
           *                                  order's partial fill amount to be
           *                                  considered valid.
           * @param criteriaResolvers         An array where each element contains a
           *                                  reference to a specific offer or
           *                                  consideration, a token identifier, and a
           *                                  proof that the supplied token identifier
           *                                  is contained in the merkle root held by
           *                                  the item in question's criteria element.
           *                                  Note that an empty criteria indicates
           *                                  that any (transferable) token
           *                                  identifier on the token in question is
           *                                  valid and that no associated proof needs
           *                                  to be supplied.
           * @param offerFulfillments         An array of FulfillmentComponent arrays
           *                                  indicating which offer items to attempt
           *                                  to aggregate when preparing executions.
           * @param considerationFulfillments An array of FulfillmentComponent arrays
           *                                  indicating which consideration items to
           *                                  attempt to aggregate when preparing
           *                                  executions.
           * @param fulfillerConduitKey       A bytes32 value indicating what conduit,
           *                                  if any, to source the fulfiller's token
           *                                  approvals from. The zero hash signifies
           *                                  that no conduit should be used (and
           *                                  direct approvals set on Consideration).
           * @param recipient                 The intended recipient for all received
           *                                  items.
           * @param maximumFulfilled          The maximum number of orders to fulfill.
           *
           * @return availableOrders An array of booleans indicating if each order
           *                         with an index corresponding to the index of the
           *                         returned boolean was fulfillable or not.
           * @return executions      An array of elements indicating the sequence of
           *                         transfers performed as part of matching the given
           *                         orders.
           */
          function _fulfillAvailableAdvancedOrders(
              AdvancedOrder[] memory advancedOrders,
              CriteriaResolver[] memory criteriaResolvers,
              FulfillmentComponent[][] memory offerFulfillments,
              FulfillmentComponent[][] memory considerationFulfillments,
              bytes32 fulfillerConduitKey,
              address recipient,
              uint256 maximumFulfilled
          )
              internal
              returns (
                  bool[] memory /* availableOrders */,
                  Execution[] memory /* executions */
              )
          {
              // Validate orders, apply amounts, & determine if they use conduits.
              (
                  bytes32[] memory orderHashes,
                  bool containsNonOpen
              ) = _validateOrdersAndPrepareToFulfill(
                      advancedOrders,
                      criteriaResolvers,
                      false, // Signifies that invalid orders should NOT revert.
                      maximumFulfilled,
                      recipient
                  );
              // Aggregate used offer and consideration items and execute transfers.
              return
                  _executeAvailableFulfillments(
                      advancedOrders,
                      offerFulfillments,
                      considerationFulfillments,
                      fulfillerConduitKey,
                      recipient,
                      orderHashes,
                      containsNonOpen
                  );
          }
          /**
           * @dev Internal function to validate a group of orders, update their
           *      statuses, reduce amounts by their previously filled fractions, apply
           *      criteria resolvers, and emit OrderFulfilled events. Note that this
           *      function needs to be called before
           *      _aggregateValidFulfillmentConsiderationItems to set the memory
           *      layout that _aggregateValidFulfillmentConsiderationItems depends on.
           *
           * @param advancedOrders    The advanced orders to validate and reduce by
           *                          their previously filled amounts.
           * @param criteriaResolvers An array where each element contains a reference
           *                          to a specific order as well as that order's
           *                          offer or consideration, a token identifier, and
           *                          a proof that the supplied token identifier is
           *                          contained in the order's merkle root. Note that
           *                          a root of zero indicates that any transferable
           *                          token identifier is valid and that no proof
           *                          needs to be supplied.
           * @param revertOnInvalid   A boolean indicating whether to revert on any
           *                          order being invalid; setting this to false will
           *                          instead cause the invalid order to be skipped.
           * @param maximumFulfilled  The maximum number of orders to fulfill.
           * @param recipient         The intended recipient for all items that do not
           *                          already have a designated recipient and are not
           *                          already used as part of a provided fulfillment.
           *
           * @return orderHashes     The hashes of the orders being fulfilled.
           * @return containsNonOpen A boolean indicating whether any restricted or
           *                         contract orders are present within the provided
           *                         array of advanced orders.
           */
          function _validateOrdersAndPrepareToFulfill(
              AdvancedOrder[] memory advancedOrders,
              CriteriaResolver[] memory criteriaResolvers,
              bool revertOnInvalid,
              uint256 maximumFulfilled,
              address recipient
          ) internal returns (bytes32[] memory orderHashes, bool containsNonOpen) {
              // Ensure this function cannot be triggered during a reentrant call.
              _setReentrancyGuard(true); // Native tokens accepted during execution.
              // Declare an error buffer indicating status of any native offer items.
              // Native tokens may only be provided as part of contract orders or when
              // fulfilling via matchOrders or matchAdvancedOrders; if bits indicating
              // these conditions are not met have been set, throw.
              uint256 invalidNativeOfferItemErrorBuffer;
              // Use assembly to set the value for the second bit of the error buffer.
              assembly {
                  /**
                   * Use the 231st bit of the error buffer to indicate whether the
                   * current function is not matchAdvancedOrders or matchOrders.
                   *
                   * sig                                func
                   * -----------------------------------------------------------------
                   * 1010100000010111010001000 0 000100 matchOrders
                   * 1111001011010001001010110 0 010010 matchAdvancedOrders
                   * 1110110110011000101001010 1 110100 fulfillAvailableOrders
                   * 1000011100100000000110110 1 000001 fulfillAvailableAdvancedOrders
                   *                           ^ 7th bit
                   */
                  invalidNativeOfferItemErrorBuffer := and(
                      NonMatchSelector_MagicMask,
                      calldataload(0)
                  )
              }
              // Declare variables for later use.
              AdvancedOrder memory advancedOrder;
              uint256 terminalMemoryOffset;
              unchecked {
                  // Read length of orders array and place on the stack.
                  uint256 totalOrders = advancedOrders.length;
                  // Track the order hash for each order being fulfilled.
                  orderHashes = new bytes32[](totalOrders);
                  // Determine the memory offset to terminate on during loops.
                  terminalMemoryOffset = (totalOrders + 1) << OneWordShift;
              }
              // Skip overflow checks as all for loops are indexed starting at zero.
              unchecked {
                  // Declare inner variables.
                  OfferItem[] memory offer;
                  ConsiderationItem[] memory consideration;
                  // Iterate over each order.
                  for (uint256 i = OneWord; i < terminalMemoryOffset; i += OneWord) {
                      // Retrieve order using assembly to bypass out-of-range check.
                      assembly {
                          advancedOrder := mload(add(advancedOrders, i))
                      }
                      // Determine if max number orders have already been fulfilled.
                      if (maximumFulfilled == 0) {
                          // Mark fill fraction as zero as the order will not be used.
                          advancedOrder.numerator = 0;
                          // Continue iterating through the remaining orders.
                          continue;
                      }
                      // Validate it, update status, and determine fraction to fill.
                      (
                          bytes32 orderHash,
                          uint256 numerator,
                          uint256 denominator
                      ) = _validateOrderAndUpdateStatus(
                              advancedOrder,
                              revertOnInvalid
                          );
                      // Do not track hash or adjust prices if order is not fulfilled.
                      if (numerator == 0) {
                          // Mark fill fraction as zero if the order is not fulfilled.
                          advancedOrder.numerator = 0;
                          // Continue iterating through the remaining orders.
                          continue;
                      }
                      // Otherwise, track the order hash in question.
                      assembly {
                          mstore(add(orderHashes, i), orderHash)
                      }
                      // Decrement the number of fulfilled orders.
                      // Skip underflow check as the condition before
                      // implies that maximumFulfilled > 0.
                      --maximumFulfilled;
                      // Place the start time for the order on the stack.
                      uint256 startTime = advancedOrder.parameters.startTime;
                      // Place the end time for the order on the stack.
                      uint256 endTime = advancedOrder.parameters.endTime;
                      // Retrieve array of offer items for the order in question.
                      offer = advancedOrder.parameters.offer;
                      // Read length of offer array and place on the stack.
                      uint256 totalOfferItems = offer.length;
                      {
                          // Determine the order type, used to check for eligibility
                          // for native token offer items as well as for the presence
                          // of restricted and contract orders (or non-open orders).
                          OrderType orderType = advancedOrder.parameters.orderType;
                          // Utilize assembly to efficiently check for order types.
                          // Note that these checks expect that there are no order
                          // types beyond the current set (0-4) and will need to be
                          // modified if more order types are added.
                          assembly {
                              // Declare a variable indicating if the order is not a
                              // contract order. Cache in scratch space to avoid stack
                              // depth errors.
                              let isNonContract := lt(orderType, 4)
                              mstore(0, isNonContract)
                              // Update the variable indicating if the order is not an
                              // open order, remaining set if it has been set already.
                              containsNonOpen := or(containsNonOpen, gt(orderType, 1))
                          }
                      }
                      // Iterate over each offer item on the order.
                      for (uint256 j = 0; j < totalOfferItems; ++j) {
                          // Retrieve the offer item.
                          OfferItem memory offerItem = offer[j];
                          // If the offer item is for the native token and the order
                          // type is not a contract order type, set the first bit of
                          // the error buffer to true.
                          assembly {
                              invalidNativeOfferItemErrorBuffer := or(
                                  invalidNativeOfferItemErrorBuffer,
                                  lt(mload(offerItem), mload(0))
                              )
                          }
                          // Apply order fill fraction to offer item end amount.
                          uint256 endAmount = _getFraction(
                              numerator,
                              denominator,
                              offerItem.endAmount
                          );
                          // Reuse same fraction if start and end amounts are equal.
                          if (offerItem.startAmount == offerItem.endAmount) {
                              // Apply derived amount to both start and end amount.
                              offerItem.startAmount = endAmount;
                          } else {
                              // Apply order fill fraction to offer item start amount.
                              offerItem.startAmount = _getFraction(
                                  numerator,
                                  denominator,
                                  offerItem.startAmount
                              );
                          }
                          // Adjust offer amount using current time; round down.
                          uint256 currentAmount = _locateCurrentAmount(
                              offerItem.startAmount,
                              endAmount,
                              startTime,
                              endTime,
                              false // round down
                          );
                          // Update amounts in memory to match the current amount.
                          // Note that the end amount is used to track spent amounts.
                          offerItem.startAmount = currentAmount;
                          offerItem.endAmount = currentAmount;
                      }
                      // Retrieve array of consideration items for order in question.
                      consideration = (advancedOrder.parameters.consideration);
                      // Read length of consideration array and place on the stack.
                      uint256 totalConsiderationItems = consideration.length;
                      // Iterate over each consideration item on the order.
                      for (uint256 j = 0; j < totalConsiderationItems; ++j) {
                          // Retrieve the consideration item.
                          ConsiderationItem memory considerationItem = (
                              consideration[j]
                          );
                          // Apply fraction to consideration item end amount.
                          uint256 endAmount = _getFraction(
                              numerator,
                              denominator,
                              considerationItem.endAmount
                          );
                          // Reuse same fraction if start and end amounts are equal.
                          if (
                              considerationItem.startAmount ==
                              considerationItem.endAmount
                          ) {
                              // Apply derived amount to both start and end amount.
                              considerationItem.startAmount = endAmount;
                          } else {
                              // Apply fraction to consideration item start amount.
                              considerationItem.startAmount = _getFraction(
                                  numerator,
                                  denominator,
                                  considerationItem.startAmount
                              );
                          }
                          // Adjust consideration amount using current time; round up.
                          uint256 currentAmount = (
                              _locateCurrentAmount(
                                  considerationItem.startAmount,
                                  endAmount,
                                  startTime,
                                  endTime,
                                  true // round up
                              )
                          );
                          considerationItem.startAmount = currentAmount;
                          // Utilize assembly to manually "shift" the recipient value,
                          // then to copy the start amount to the recipient.
                          // Note that this sets up the memory layout that is
                          // subsequently relied upon by
                          // _aggregateValidFulfillmentConsiderationItems.
                          assembly {
                              // Derive the pointer to the recipient using the item
                              // pointer along with the offset to the recipient.
                              let considerationItemRecipientPtr := add(
                                  considerationItem,
                                  ConsiderationItem_recipient_offset // recipient
                              )
                              // Write recipient to endAmount, as endAmount is not
                              // used from this point on and can be repurposed to fit
                              // the layout of a ReceivedItem.
                              mstore(
                                  add(
                                      considerationItem,
                                      ReceivedItem_recipient_offset // old endAmount
                                  ),
                                  mload(considerationItemRecipientPtr)
                              )
                              // Write startAmount to recipient, as recipient is not
                              // used from this point on and can be repurposed to
                              // track received amounts.
                              mstore(considerationItemRecipientPtr, currentAmount)
                          }
                      }
                  }
              }
              // If the first bit is set, a native offer item was encountered on an
              // order that is not a contract order. If the 231st bit is set in the
              // error buffer, the current function is not matchOrders or
              // matchAdvancedOrders. If the value is 1 + (1 << 230), then both the
              // 1st and 231st bits were set; in that case, revert with an error.
              if (
                  invalidNativeOfferItemErrorBuffer ==
                  NonMatchSelector_InvalidErrorValue
              ) {
                  _revertInvalidNativeOfferItem();
              }
              // Apply criteria resolvers to each order as applicable.
              _applyCriteriaResolvers(advancedOrders, criteriaResolvers);
              // Emit an event for each order signifying that it has been fulfilled.
              // Skip overflow checks as all for loops are indexed starting at zero.
              unchecked {
                  bytes32 orderHash;
                  // Iterate over each order.
                  for (uint256 i = OneWord; i < terminalMemoryOffset; i += OneWord) {
                      assembly {
                          orderHash := mload(add(orderHashes, i))
                      }
                      // Do not emit an event if no order hash is present.
                      if (orderHash == bytes32(0)) {
                          continue;
                      }
                      // Retrieve order using assembly to bypass out-of-range check.
                      assembly {
                          advancedOrder := mload(add(advancedOrders, i))
                      }
                      // Retrieve parameters for the order in question.
                      OrderParameters memory orderParameters = (
                          advancedOrder.parameters
                      );
                      // Emit an OrderFulfilled event.
                      _emitOrderFulfilledEvent(
                          orderHash,
                          orderParameters.offerer,
                          orderParameters.zone,
                          recipient,
                          orderParameters.offer,
                          orderParameters.consideration
                      );
                  }
              }
          }
          /**
           * @dev Internal function to fulfill a group of validated orders, fully or
           *      partially, with an arbitrary number of items for offer and
           *      consideration per order and to execute transfers. Any order that is
           *      not currently active, has already been fully filled, or has been
           *      cancelled will be omitted. Remaining offer and consideration items
           *      will then be aggregated where possible as indicated by the supplied
           *      offer and consideration component arrays and aggregated items will
           *      be transferred to the fulfiller or to each intended recipient,
           *      respectively. Note that a failing item transfer or an issue with
           *      order formatting will cause the entire batch to fail.
           *
           * @param advancedOrders            The orders to fulfill along with the
           *                                  fraction of those orders to attempt to
           *                                  fill. Note that both the offerer and the
           *                                  fulfiller must first approve this
           *                                  contract (or the conduit if indicated by
           *                                  the order) to transfer any relevant
           *                                  tokens on their behalf and that
           *                                  contracts must implement
           *                                  `onERC1155Received` in order to receive
           *                                  ERC1155 tokens as consideration. Also
           *                                  note that all offer and consideration
           *                                  components must have no remainder after
           *                                  multiplication of the respective amount
           *                                  with the supplied fraction for an
           *                                  order's partial fill amount to be
           *                                  considered valid.
           * @param offerFulfillments         An array of FulfillmentComponent arrays
           *                                  indicating which offer items to attempt
           *                                  to aggregate when preparing executions.
           * @param considerationFulfillments An array of FulfillmentComponent arrays
           *                                  indicating which consideration items to
           *                                  attempt to aggregate when preparing
           *                                  executions.
           * @param fulfillerConduitKey       A bytes32 value indicating what conduit,
           *                                  if any, to source the fulfiller's token
           *                                  approvals from. The zero hash signifies
           *                                  that no conduit should be used, with
           *                                  direct approvals set on Consideration.
           * @param recipient                 The intended recipient for all items
           *                                  that do not already have a designated
           *                                  recipient and are not already used as
           *                                  part of a provided fulfillment.
           * @param orderHashes               An array of order hashes for each order.
           * @param containsNonOpen           A boolean indicating whether any
           *                                  restricted or contract orders are
           *                                  present within the provided array of
           *                                  advanced orders.
           *
           * @return availableOrders An array of booleans indicating if each order
           *                         with an index corresponding to the index of the
           *                         returned boolean was fulfillable or not.
           * @return executions      An array of elements indicating the sequence of
           *                         transfers performed as part of matching the given
           *                         orders.
           */
          function _executeAvailableFulfillments(
              AdvancedOrder[] memory advancedOrders,
              FulfillmentComponent[][] memory offerFulfillments,
              FulfillmentComponent[][] memory considerationFulfillments,
              bytes32 fulfillerConduitKey,
              address recipient,
              bytes32[] memory orderHashes,
              bool containsNonOpen
          )
              internal
              returns (bool[] memory availableOrders, Execution[] memory executions)
          {
              // Retrieve length of offer fulfillments array and place on the stack.
              uint256 totalOfferFulfillments = offerFulfillments.length;
              // Retrieve length of consideration fulfillments array & place on stack.
              uint256 totalConsiderationFulfillments = (
                  considerationFulfillments.length
              );
              // Allocate an execution for each offer and consideration fulfillment.
              executions = new Execution[](
                  totalOfferFulfillments + totalConsiderationFulfillments
              );
              // Skip overflow checks as all for loops are indexed starting at zero.
              unchecked {
                  // Track number of filtered executions.
                  uint256 totalFilteredExecutions = 0;
                  // Iterate over each offer fulfillment.
                  for (uint256 i = 0; i < totalOfferFulfillments; ) {
                      // Derive aggregated execution corresponding with fulfillment.
                      Execution memory execution = _aggregateAvailable(
                          advancedOrders,
                          Side.OFFER,
                          offerFulfillments[i],
                          fulfillerConduitKey,
                          recipient
                      );
                      // If the execution is filterable...
                      if (_isFilterableExecution(execution)) {
                          // Increment total filtered executions.
                          ++totalFilteredExecutions;
                      } else {
                          // Otherwise, assign the execution to the executions array.
                          executions[i - totalFilteredExecutions] = execution;
                      }
                      // Increment iterator.
                      ++i;
                  }
                  // Iterate over each consideration fulfillment.
                  for (uint256 i = 0; i < totalConsiderationFulfillments; ) {
                      // Derive aggregated execution corresponding with fulfillment.
                      Execution memory execution = _aggregateAvailable(
                          advancedOrders,
                          Side.CONSIDERATION,
                          considerationFulfillments[i],
                          fulfillerConduitKey,
                          address(0) // unused
                      );
                      // If the execution is filterable...
                      if (_isFilterableExecution(execution)) {
                          // Increment total filtered executions.
                          ++totalFilteredExecutions;
                      } else {
                          // Otherwise, assign the execution to the executions array.
                          executions[
                              i + totalOfferFulfillments - totalFilteredExecutions
                          ] = execution;
                      }
                      // Increment iterator.
                      ++i;
                  }
                  // If some number of executions have been filtered...
                  if (totalFilteredExecutions != 0) {
                      // reduce the total length of the executions array.
                      assembly {
                          mstore(
                              executions,
                              sub(mload(executions), totalFilteredExecutions)
                          )
                      }
                  }
              }
              // Revert if no orders are available.
              if (executions.length == 0) {
                  _revertNoSpecifiedOrdersAvailable();
              }
              // Perform final checks and return.
              availableOrders = _performFinalChecksAndExecuteOrders(
                  advancedOrders,
                  executions,
                  orderHashes,
                  recipient,
                  containsNonOpen
              );
              return (availableOrders, executions);
          }
          /**
           * @dev Internal function to perform a final check that each consideration
           *      item for an arbitrary number of fulfilled orders has been met and to
           *      trigger associated executions, transferring the respective items.
           *
           * @param advancedOrders  The orders to check and perform executions for.
           * @param executions      An array of elements indicating the sequence of
           *                        transfers to perform when fulfilling the given
           *                        orders.
           * @param orderHashes     An array of order hashes for each order.
           * @param recipient       The intended recipient for all items that do not
           *                        already have a designated recipient and are not
           *                        used as part of a provided fulfillment.
           * @param containsNonOpen A boolean indicating whether any restricted or
           *                        contract orders are present within the provided
           *                        array of advanced orders.
           *
           * @return availableOrders An array of booleans indicating if each order
           *                         with an index corresponding to the index of the
           *                         returned boolean was fulfillable or not.
           */
          function _performFinalChecksAndExecuteOrders(
              AdvancedOrder[] memory advancedOrders,
              Execution[] memory executions,
              bytes32[] memory orderHashes,
              address recipient,
              bool containsNonOpen
          ) internal returns (bool[] memory /* availableOrders */) {
              // Retrieve the length of the advanced orders array and place on stack.
              uint256 totalOrders = advancedOrders.length;
              // Initialize array for tracking available orders.
              bool[] memory availableOrders = new bool[](totalOrders);
              // Initialize an accumulator array. From this point forward, no new
              // memory regions can be safely allocated until the accumulator is no
              // longer being utilized, as the accumulator operates in an open-ended
              // fashion from this memory pointer; existing memory may still be
              // accessed and modified, however.
              bytes memory accumulator = new bytes(AccumulatorDisarmed);
              {
                  // Declare a variable for the available native token balance.
                  uint256 nativeTokenBalance;
                  // Retrieve the length of the executions array and place on stack.
                  uint256 totalExecutions = executions.length;
                  // Iterate over each execution.
                  for (uint256 i = 0; i < totalExecutions; ) {
                      // Retrieve the execution and the associated received item.
                      Execution memory execution = executions[i];
                      ReceivedItem memory item = execution.item;
                      // If execution transfers native tokens, reduce value available.
                      if (item.itemType == ItemType.NATIVE) {
                          // Get the current available balance of native tokens.
                          assembly {
                              nativeTokenBalance := selfbalance()
                          }
                          // Ensure that sufficient native tokens are still available.
                          if (item.amount > nativeTokenBalance) {
                              _revertInsufficientNativeTokensSupplied();
                          }
                      }
                      // Transfer the item specified by the execution.
                      _transfer(
                          item,
                          execution.offerer,
                          execution.conduitKey,
                          accumulator
                      );
                      // Skip overflow check as for loop is indexed starting at zero.
                      unchecked {
                          ++i;
                      }
                  }
              }
              // Skip overflow checks as all for loops are indexed starting at zero.
              unchecked {
                  // Iterate over each order.
                  for (uint256 i = 0; i < totalOrders; ++i) {
                      // Retrieve the order in question.
                      AdvancedOrder memory advancedOrder = advancedOrders[i];
                      // Skip the order in question if not being not fulfilled.
                      if (advancedOrder.numerator == 0) {
                          // Explicitly set availableOrders at the given index to
                          // guard against the possibility of dirtied memory.
                          availableOrders[i] = false;
                          continue;
                      }
                      // Mark the order as available.
                      availableOrders[i] = true;
                      // Retrieve the order parameters.
                      OrderParameters memory parameters = advancedOrder.parameters;
                      {
                          // Retrieve offer items.
                          OfferItem[] memory offer = parameters.offer;
                          // Read length of offer array & place on the stack.
                          uint256 totalOfferItems = offer.length;
                          // Iterate over each offer item to restore it.
                          for (uint256 j = 0; j < totalOfferItems; ++j) {
                              // Retrieve the offer item in question.
                              OfferItem memory offerItem = offer[j];
                              // Transfer to recipient if unspent amount is not zero.
                              // Note that the transfer will not be reflected in the
                              // executions array.
                              if (offerItem.startAmount != 0) {
                                  // Replace the endAmount parameter with the recipient to
                                  // make offerItem compatible with the ReceivedItem input
                                  // to _transfer and cache the original endAmount so it
                                  // can be restored after the transfer.
                                  uint256 originalEndAmount = _replaceEndAmountWithRecipient(
                                          offerItem,
                                          recipient
                                      );
                                  // Transfer excess offer item amount to recipient.
                                  _toOfferItemInput(_transfer)(
                                      offerItem,
                                      parameters.offerer,
                                      parameters.conduitKey,
                                      accumulator
                                  );
                                  // Restore the original endAmount in offerItem.
                                  assembly {
                                      mstore(
                                          add(
                                              offerItem,
                                              ReceivedItem_recipient_offset
                                          ),
                                          originalEndAmount
                                      )
                                  }
                              }
                              // Restore original amount on the offer item.
                              offerItem.startAmount = offerItem.endAmount;
                          }
                      }
                      {
                          // Read consideration items & ensure they are fulfilled.
                          ConsiderationItem[] memory consideration = (
                              parameters.consideration
                          );
                          // Read length of consideration array & place on stack.
                          uint256 totalConsiderationItems = consideration.length;
                          // Iterate over each consideration item.
                          for (uint256 j = 0; j < totalConsiderationItems; ++j) {
                              ConsiderationItem memory considerationItem = (
                                  consideration[j]
                              );
                              // Retrieve remaining amount on consideration item.
                              uint256 unmetAmount = considerationItem.startAmount;
                              // Revert if the remaining amount is not zero.
                              if (unmetAmount != 0) {
                                  _revertConsiderationNotMet(i, j, unmetAmount);
                              }
                              // Utilize assembly to restore the original value.
                              assembly {
                                  // Write recipient to startAmount.
                                  mstore(
                                      add(
                                          considerationItem,
                                          ReceivedItem_amount_offset
                                      ),
                                      mload(
                                          add(
                                              considerationItem,
                                              ConsiderationItem_recipient_offset
                                          )
                                      )
                                  )
                              }
                          }
                      }
                  }
              }
              // Trigger any accumulated transfers via call to the conduit.
              _triggerIfArmed(accumulator);
              // Determine whether any native token balance remains.
              uint256 remainingNativeTokenBalance;
              assembly {
                  remainingNativeTokenBalance := selfbalance()
              }
              // Return any remaining native token balance to the caller.
              if (remainingNativeTokenBalance != 0) {
                  _transferNativeTokens(
                      payable(msg.sender),
                      remainingNativeTokenBalance
                  );
              }
              // If any restricted or contract orders are present in the group of
              // orders being fulfilled, perform any validateOrder or ratifyOrder
              // calls after all executions and related transfers are complete.
              if (containsNonOpen) {
                  // Iterate over each order a second time.
                  for (uint256 i = 0; i < totalOrders; ) {
                      // Ensure the order in question is being fulfilled.
                      if (availableOrders[i]) {
                          // Check restricted orders and contract orders.
                          _assertRestrictedAdvancedOrderValidity(
                              advancedOrders[i],
                              orderHashes,
                              orderHashes[i]
                          );
                      }
                      // Skip overflow checks as for loop is indexed starting at zero.
                      unchecked {
                          ++i;
                      }
                  }
              }
              // Clear the reentrancy guard.
              _clearReentrancyGuard();
              // Return the array containing available orders.
              return availableOrders;
          }
          /**
           * @dev Internal function to emit an OrdersMatched event using the same
           *      memory region as the existing order hash array.
           *
           * @param orderHashes An array of order hashes to include as an argument for
           *                    the OrdersMatched event.
           */
          function _emitOrdersMatched(bytes32[] memory orderHashes) internal {
              assembly {
                  // Load the array length from memory.
                  let length := mload(orderHashes)
                  // Get the full size of the event data - one word for the offset,
                  // one for the array length and one per hash.
                  let dataSize := add(TwoWords, shl(OneWordShift, length))
                  // Get pointer to start of data, reusing word before array length
                  // for the offset.
                  let dataPointer := sub(orderHashes, OneWord)
                  // Cache the existing word in memory at the offset pointer.
                  let cache := mload(dataPointer)
                  // Write an offset of 32.
                  mstore(dataPointer, OneWord)
                  // Emit the OrdersMatched event.
                  log1(dataPointer, dataSize, OrdersMatchedTopic0)
                  // Restore the cached word.
                  mstore(dataPointer, cache)
              }
          }
          /**
           * @dev Internal function to match an arbitrary number of full or partial
           *      orders, each with an arbitrary number of items for offer and
           *      consideration, supplying criteria resolvers containing specific
           *      token identifiers and associated proofs as well as fulfillments
           *      allocating offer components to consideration components.
           *
           * @param advancedOrders    The advanced orders to match. Note that both the
           *                          offerer and fulfiller on each order must first
           *                          approve this contract (or their conduit if
           *                          indicated by the order) to transfer any relevant
           *                          tokens on their behalf and each consideration
           *                          recipient must implement `onERC1155Received` in
           *                          order to receive ERC1155 tokens. Also note that
           *                          the offer and consideration components for each
           *                          order must have no remainder after multiplying
           *                          the respective amount with the supplied fraction
           *                          in order for the group of partial fills to be
           *                          considered valid.
           * @param criteriaResolvers An array where each element contains a reference
           *                          to a specific order as well as that order's
           *                          offer or consideration, a token identifier, and
           *                          a proof that the supplied token identifier is
           *                          contained in the order's merkle root. Note that
           *                          an empty root indicates that any (transferable)
           *                          token identifier is valid and that no associated
           *                          proof needs to be supplied.
           * @param fulfillments      An array of elements allocating offer components
           *                          to consideration components. Note that each
           *                          consideration component must be fully met in
           *                          order for the match operation to be valid.
           * @param recipient         The intended recipient for all unspent offer
           *                          item amounts.
           *
           * @return executions An array of elements indicating the sequence of
           *                    transfers performed as part of matching the given
           *                    orders.
           */
          function _matchAdvancedOrders(
              AdvancedOrder[] memory advancedOrders,
              CriteriaResolver[] memory criteriaResolvers,
              Fulfillment[] memory fulfillments,
              address recipient
          ) internal returns (Execution[] memory /* executions */) {
              // Validate orders, update order status, and determine item amounts.
              (
                  bytes32[] memory orderHashes,
                  bool containsNonOpen
              ) = _validateOrdersAndPrepareToFulfill(
                      advancedOrders,
                      criteriaResolvers,
                      true, // Signifies that invalid orders should revert.
                      advancedOrders.length,
                      recipient
                  );
              // Emit OrdersMatched event, providing an array of matched order hashes.
              _emitOrdersMatched(orderHashes);
              // Fulfill the orders using the supplied fulfillments and recipient.
              return
                  _fulfillAdvancedOrders(
                      advancedOrders,
                      fulfillments,
                      orderHashes,
                      recipient,
                      containsNonOpen
                  );
          }
          /**
           * @dev Internal function to fulfill an arbitrary number of orders, either
           *      full or partial, after validating, adjusting amounts, and applying
           *      criteria resolvers.
           *
           * @param advancedOrders  The orders to match, including a fraction to
           *                        attempt to fill for each order.
           * @param fulfillments    An array of elements allocating offer components
           *                        to consideration components. Note that the final
           *                        amount of each consideration component must be
           *                        zero for a match operation to be considered valid.
           * @param orderHashes     An array of order hashes for each order.
           * @param recipient       The intended recipient for all items that do not
           *                        already have a designated recipient and are not
           *                        used as part of a provided fulfillment.
           * @param containsNonOpen A boolean indicating whether any restricted or
           *                        contract orders are present within the provided
           *                        array of advanced orders.
           *
           * @return executions An array of elements indicating the sequence of
           *                    transfers performed as part of matching the given
           *                    orders.
           */
          function _fulfillAdvancedOrders(
              AdvancedOrder[] memory advancedOrders,
              Fulfillment[] memory fulfillments,
              bytes32[] memory orderHashes,
              address recipient,
              bool containsNonOpen
          ) internal returns (Execution[] memory executions) {
              // Retrieve fulfillments array length and place on the stack.
              uint256 totalFulfillments = fulfillments.length;
              // Allocate executions by fulfillment and apply them to each execution.
              executions = new Execution[](totalFulfillments);
              // Skip overflow checks as all for loops are indexed starting at zero.
              unchecked {
                  // Track number of filtered executions.
                  uint256 totalFilteredExecutions = 0;
                  // Iterate over each fulfillment.
                  for (uint256 i = 0; i < totalFulfillments; ++i) {
                      /// Retrieve the fulfillment in question.
                      Fulfillment memory fulfillment = fulfillments[i];
                      // Derive the execution corresponding with the fulfillment.
                      Execution memory execution = _applyFulfillment(
                          advancedOrders,
                          fulfillment.offerComponents,
                          fulfillment.considerationComponents,
                          i
                      );
                      // If the execution is filterable...
                      if (_isFilterableExecution(execution)) {
                          // Increment total filtered executions.
                          ++totalFilteredExecutions;
                      } else {
                          // Otherwise, assign the execution to the executions array.
                          executions[i - totalFilteredExecutions] = execution;
                      }
                  }
                  // If some number of executions have been filtered...
                  if (totalFilteredExecutions != 0) {
                      // reduce the total length of the executions array.
                      assembly {
                          mstore(
                              executions,
                              sub(mload(executions), totalFilteredExecutions)
                          )
                      }
                  }
              }
              // Perform final checks and execute orders.
              _performFinalChecksAndExecuteOrders(
                  advancedOrders,
                  executions,
                  orderHashes,
                  recipient,
                  containsNonOpen
              );
              // Return the executions array.
              return executions;
          }
          /**
           * @dev Internal pure function to determine whether a given execution is
           *      filterable and may be removed from the executions array. The offerer
           *      and the recipient must be the same address and the item type cannot
           *      indicate a native token transfer.
           *
           * @param execution The execution to check for filterability.
           *
           * @return filterable A boolean indicating whether the execution in question
           *                    can be filtered from the executions array.
           */
          function _isFilterableExecution(
              Execution memory execution
          ) internal pure returns (bool filterable) {
              // Utilize assembly to efficiently determine if execution is filterable.
              assembly {
                  // Retrieve the received item referenced by the execution.
                  let item := mload(execution)
                  // Determine whether the execution is filterable.
                  filterable := and(
                      // Determine if offerer and recipient are the same address.
                      eq(
                          // Retrieve the recipient's address from the received item.
                          mload(add(item, ReceivedItem_recipient_offset)),
                          // Retrieve the offerer's address from the execution.
                          mload(add(execution, Execution_offerer_offset))
                      ),
                      // Determine if received item's item type is non-zero, thereby
                      // indicating that the execution does not involve native tokens.
                      iszero(iszero(mload(item)))
                  )
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.13;
      /*
       * -------------------------- Disambiguation & Other Notes ---------------------
       *    - The term "head" is used as it is in the documentation for ABI encoding,
       *      but only in reference to dynamic types, i.e. it always refers to the
       *      offset or pointer to the body of a dynamic type. In calldata, the head
       *      is always an offset (relative to the parent object), while in memory,
       *      the head is always the pointer to the body. More information found here:
       *      https://docs.soliditylang.org/en/v0.8.17/abi-spec.html#argument-encoding
       *        - Note that the length of an array is separate from and precedes the
       *          head of the array.
       *
       *    - The term "body" is used in place of the term "head" used in the ABI
       *      documentation. It refers to the start of the data for a dynamic type,
       *      e.g. the first word of a struct or the first word of the first element
       *      in an array.
       *
       *    - The term "pointer" is used to describe the absolute position of a value
       *      and never an offset relative to another value.
       *        - The suffix "_ptr" refers to a memory pointer.
       *        - The suffix "_cdPtr" refers to a calldata pointer.
       *
       *    - The term "offset" is used to describe the position of a value relative
       *      to some parent value. For example, OrderParameters_conduit_offset is the
       *      offset to the "conduit" value in the OrderParameters struct relative to
       *      the start of the body.
       *        - Note: Offsets are used to derive pointers.
       *
       *    - Some structs have pointers defined for all of their fields in this file.
       *      Lines which are commented out are fields that are not used in the
       *      codebase but have been left in for readability.
       */
      // Declare constants for name, version, and reentrancy sentinel values.
      // Name is right padded, so it touches the length which is left padded. This
      // enables writing both values at once. Length goes at byte 95 in memory, and
      // name fills bytes 96-109, so both values can be written left-padded to 77.
      uint256 constant NameLengthPtr = 0x4D;
      uint256 constant NameWithLength = 0x0d436F6E73696465726174696F6E;
      uint256 constant information_version_offset = 0;
      uint256 constant information_version_cd_offset = 0x60;
      uint256 constant information_domainSeparator_offset = 0x20;
      uint256 constant information_conduitController_offset = 0x40;
      uint256 constant information_versionLengthPtr = 0x63;
      uint256 constant information_versionWithLength = 0x03312e35; // 1.5
      uint256 constant information_length = 0xa0;
      uint256 constant _NOT_ENTERED = 1;
      uint256 constant _ENTERED = 2;
      uint256 constant _ENTERED_AND_ACCEPTING_NATIVE_TOKENS = 3;
      uint256 constant Offset_fulfillAdvancedOrder_criteriaResolvers = 0x20;
      uint256 constant Offset_fulfillAvailableOrders_offerFulfillments = 0x20;
      uint256 constant Offset_fulfillAvailableOrders_considerationFulfillments = 0x40;
      uint256 constant Offset_fulfillAvailableAdvancedOrders_criteriaResolvers = 0x20;
      uint256 constant Offset_fulfillAvailableAdvancedOrders_offerFulfillments = 0x40;
      uint256 constant Offset_fulfillAvailableAdvancedOrders_cnsdrationFlflmnts = (
          0x60
      );
      uint256 constant Offset_matchOrders_fulfillments = 0x20;
      uint256 constant Offset_matchAdvancedOrders_criteriaResolvers = 0x20;
      uint256 constant Offset_matchAdvancedOrders_fulfillments = 0x40;
      // Common Offsets
      // Offsets for identically positioned fields shared by:
      // OfferItem, ConsiderationItem, SpentItem, ReceivedItem
      uint256 constant Selector_length = 0x4;
      uint256 constant Common_token_offset = 0x20;
      uint256 constant Common_identifier_offset = 0x40;
      uint256 constant Common_amount_offset = 0x60;
      uint256 constant Common_endAmount_offset = 0x80;
      uint256 constant SpentItem_size = 0x80;
      uint256 constant SpentItem_size_shift = 0x7;
      uint256 constant OfferItem_size = 0xa0;
      uint256 constant OfferItem_size_with_length = 0xc0;
      uint256 constant ReceivedItem_size_excluding_recipient = 0x80;
      uint256 constant ReceivedItem_size = 0xa0;
      uint256 constant ReceivedItem_amount_offset = 0x60;
      uint256 constant ReceivedItem_recipient_offset = 0x80;
      uint256 constant ReceivedItem_CommonParams_size = 0x60;
      uint256 constant ConsiderationItem_size = 0xc0;
      uint256 constant ConsiderationItem_size_with_length = 0xe0;
      uint256 constant ConsiderationItem_recipient_offset = 0xa0;
      // Store the same constant in an abbreviated format for a line length fix.
      uint256 constant ConsiderItem_recipient_offset = 0xa0;
      uint256 constant Execution_offerer_offset = 0x20;
      uint256 constant Execution_conduit_offset = 0x40;
      // uint256 constant OrderParameters_offerer_offset = 0x00;
      uint256 constant OrderParameters_zone_offset = 0x20;
      uint256 constant OrderParameters_offer_head_offset = 0x40;
      uint256 constant OrderParameters_consideration_head_offset = 0x60;
      // uint256 constant OrderParameters_orderType_offset = 0x80;
      uint256 constant OrderParameters_startTime_offset = 0xa0;
      uint256 constant OrderParameters_endTime_offset = 0xc0;
      uint256 constant OrderParameters_zoneHash_offset = 0xe0;
      // uint256 constant OrderParameters_salt_offset = 0x100;
      uint256 constant OrderParameters_conduit_offset = 0x120;
      uint256 constant OrderParameters_counter_offset = 0x140;
      uint256 constant Fulfillment_itemIndex_offset = 0x20;
      uint256 constant AdvancedOrder_head_size = 0xa0;
      uint256 constant AdvancedOrder_numerator_offset = 0x20;
      uint256 constant AdvancedOrder_denominator_offset = 0x40;
      uint256 constant AdvancedOrder_signature_offset = 0x60;
      uint256 constant AdvancedOrder_extraData_offset = 0x80;
      uint256 constant OrderStatus_ValidatedAndNotCancelled = 1;
      uint256 constant OrderStatus_filledNumerator_offset = 0x10;
      uint256 constant OrderStatus_filledDenominator_offset = 0x88;
      uint256 constant ThirtyOneBytes = 0x1f;
      uint256 constant OneWord = 0x20;
      uint256 constant TwoWords = 0x40;
      uint256 constant ThreeWords = 0x60;
      uint256 constant FourWords = 0x80;
      uint256 constant FiveWords = 0xa0;
      uint256 constant OneWordShift = 0x5;
      uint256 constant TwoWordsShift = 0x6;
      uint256 constant SixtyThreeBytes = 0x3f;
      uint256 constant OnlyFullWordMask = 0xffffffe0;
      uint256 constant FreeMemoryPointerSlot = 0x40;
      uint256 constant ZeroSlot = 0x60;
      uint256 constant DefaultFreeMemoryPointer = 0x80;
      uint256 constant Slot0x80 = 0x80;
      uint256 constant Slot0xA0 = 0xa0;
      // uint256 constant BasicOrder_endAmount_cdPtr = 0x104;
      uint256 constant BasicOrder_common_params_size = 0xa0;
      uint256 constant BasicOrder_considerationHashesArray_ptr = 0x160;
      uint256 constant BasicOrder_receivedItemByteMap = (
          0x0000010102030000000000000000000000000000000000000000000000000000
      );
      uint256 constant BasicOrder_offeredItemByteMap = (
          0x0203020301010000000000000000000000000000000000000000000000000000
      );
      bytes32 constant OrdersMatchedTopic0 = (
          0x4b9f2d36e1b4c93de62cc077b00b1a91d84b6c31b4a14e012718dcca230689e7
      );
      uint256 constant EIP712_Order_size = 0x180;
      uint256 constant EIP712_OfferItem_size = 0xc0;
      uint256 constant EIP712_ConsiderationItem_size = 0xe0;
      uint256 constant AdditionalRecipient_size = 0x40;
      uint256 constant AdditionalRecipient_size_shift = 0x6;
      uint256 constant EIP712_DomainSeparator_offset = 0x02;
      uint256 constant EIP712_OrderHash_offset = 0x22;
      uint256 constant EIP712_DigestPayload_size = 0x42;
      uint256 constant EIP712_domainData_nameHash_offset = 0x20;
      uint256 constant EIP712_domainData_versionHash_offset = 0x40;
      uint256 constant EIP712_domainData_chainId_offset = 0x60;
      uint256 constant EIP712_domainData_verifyingContract_offset = 0x80;
      uint256 constant EIP712_domainData_size = 0xa0;
      // Minimum BulkOrder proof size: 64 bytes for signature + 3 for key + 32 for 1
      // sibling. Maximum BulkOrder proof size: 65 bytes for signature + 3 for key +
      // 768 for 24 siblings.
      uint256 constant BulkOrderProof_minSize = 0x63;
      uint256 constant BulkOrderProof_rangeSize = 0x2e2;
      uint256 constant BulkOrderProof_lengthAdjustmentBeforeMask = 0x1d;
      uint256 constant BulkOrderProof_lengthRangeAfterMask = 0x2;
      uint256 constant BulkOrderProof_keyShift = 0xe8;
      uint256 constant BulkOrderProof_keySize = 0x3;
      uint256 constant BulkOrder_Typehash_Height_One = (
          0x3ca2711d29384747a8f61d60aad3c450405f7aaff5613541dee28df2d6986d32
      );
      uint256 constant BulkOrder_Typehash_Height_Two = (
          0xbf8e29b89f29ed9b529c154a63038ffca562f8d7cd1e2545dda53a1b582dde30
      );
      uint256 constant BulkOrder_Typehash_Height_Three = (
          0x53c6f6856e13104584dd0797ca2b2779202dc2597c6066a42e0d8fe990b0024d
      );
      uint256 constant BulkOrder_Typehash_Height_Four = (
          0xa02eb7ff164c884e5e2c336dc85f81c6a93329d8e9adf214b32729b894de2af1
      );
      uint256 constant BulkOrder_Typehash_Height_Five = (
          0x39c9d33c18e050dda0aeb9a8086fb16fc12d5d64536780e1da7405a800b0b9f6
      );
      uint256 constant BulkOrder_Typehash_Height_Six = (
          0x1c19f71958cdd8f081b4c31f7caf5c010b29d12950be2fa1c95070dc47e30b55
      );
      uint256 constant BulkOrder_Typehash_Height_Seven = (
          0xca74fab2fece9a1d58234a274220ad05ca096a92ef6a1ca1750b9d90c948955c
      );
      uint256 constant BulkOrder_Typehash_Height_Eight = (
          0x7ff98d9d4e55d876c5cfac10b43c04039522f3ddfb0ea9bfe70c68cfb5c7cc14
      );
      uint256 constant BulkOrder_Typehash_Height_Nine = (
          0xbed7be92d41c56f9e59ac7a6272185299b815ddfabc3f25deb51fe55fe2f9e8a
      );
      uint256 constant BulkOrder_Typehash_Height_Ten = (
          0xd1d97d1ef5eaa37a4ee5fbf234e6f6d64eb511eb562221cd7edfbdde0848da05
      );
      uint256 constant BulkOrder_Typehash_Height_Eleven = (
          0x896c3f349c4da741c19b37fec49ed2e44d738e775a21d9c9860a69d67a3dae53
      );
      uint256 constant BulkOrder_Typehash_Height_Twelve = (
          0xbb98d87cc12922b83759626c5f07d72266da9702d19ffad6a514c73a89002f5f
      );
      uint256 constant BulkOrder_Typehash_Height_Thirteen = (
          0xe6ae19322608dd1f8a8d56aab48ed9c28be489b689f4b6c91268563efc85f20e
      );
      uint256 constant BulkOrder_Typehash_Height_Fourteen = (
          0x6b5b04cbae4fcb1a9d78e7b2dfc51a36933d023cf6e347e03d517b472a852590
      );
      uint256 constant BulkOrder_Typehash_Height_Fifteen = (
          0xd1eb68309202b7106b891e109739dbbd334a1817fe5d6202c939e75cf5e35ca9
      );
      uint256 constant BulkOrder_Typehash_Height_Sixteen = (
          0x1da3eed3ecef6ebaa6e5023c057ec2c75150693fd0dac5c90f4a142f9879fde8
      );
      uint256 constant BulkOrder_Typehash_Height_Seventeen = (
          0xeee9a1392aa395c7002308119a58f2582777a75e54e0c1d5d5437bd2e8bf6222
      );
      uint256 constant BulkOrder_Typehash_Height_Eighteen = (
          0xc3939feff011e53ab8c35ca3370aad54c5df1fc2938cd62543174fa6e7d85877
      );
      uint256 constant BulkOrder_Typehash_Height_Nineteen = (
          0x0efca7572ac20f5ae84db0e2940674f7eca0a4726fa1060ffc2d18cef54b203d
      );
      uint256 constant BulkOrder_Typehash_Height_Twenty = (
          0x5a4f867d3d458dabecad65f6201ceeaba0096df2d0c491cc32e6ea4e64350017
      );
      uint256 constant BulkOrder_Typehash_Height_TwentyOne = (
          0x80987079d291feebf21c2230e69add0f283cee0b8be492ca8050b4185a2ff719
      );
      uint256 constant BulkOrder_Typehash_Height_TwentyTwo = (
          0x3bd8cff538aba49a9c374c806d277181e9651624b3e31111bc0624574f8bca1d
      );
      uint256 constant BulkOrder_Typehash_Height_TwentyThree = (
          0x5d6a3f098a0bc373f808c619b1bb4028208721b3c4f8d6bc8a874d659814eb76
      );
      uint256 constant BulkOrder_Typehash_Height_TwentyFour = (
          0x1d51df90cba8de7637ca3e8fe1e3511d1dc2f23487d05dbdecb781860c21ac1c
      );
      uint256 constant receivedItemsHash_ptr = 0x60;
      /*
       *  Memory layout in _prepareBasicFulfillmentFromCalldata of
       *  data for OrderFulfilled
       *
       *   event OrderFulfilled(
       *     bytes32 orderHash,
       *     address indexed offerer,
       *     address indexed zone,
       *     address fulfiller,
       *     SpentItem[] offer,
       *       > (itemType, token, id, amount)
       *     ReceivedItem[] consideration
       *       > (itemType, token, id, amount, recipient)
       *   )
       *
       *  - 0x00: orderHash
       *  - 0x20: fulfiller
       *  - 0x40: offer offset (0x80)
       *  - 0x60: consideration offset (0x120)
       *  - 0x80: offer.length (1)
       *  - 0xa0: offerItemType
       *  - 0xc0: offerToken
       *  - 0xe0: offerIdentifier
       *  - 0x100: offerAmount
       *  - 0x120: consideration.length (1 + additionalRecipients.length)
       *  - 0x140: considerationItemType
       *  - 0x160: considerationToken
       *  - 0x180: considerationIdentifier
       *  - 0x1a0: considerationAmount
       *  - 0x1c0: considerationRecipient
       *  - ...
       */
      // Minimum length of the OrderFulfilled event data.
      // Must be added to the size of the ReceivedItem array for additionalRecipients
      // (0xa0 * additionalRecipients.length) to calculate full size of the buffer.
      uint256 constant OrderFulfilled_baseSize = 0x1e0;
      uint256 constant OrderFulfilled_selector = (
          0x9d9af8e38d66c62e2c12f0225249fd9d721c54b83f48d9352c97c6cacdcb6f31
      );
      // Minimum offset in memory to OrderFulfilled event data.
      // Must be added to the size of the EIP712 hash array for additionalRecipients
      // (32 * additionalRecipients.length) to calculate the pointer to event data.
      uint256 constant OrderFulfilled_baseOffset = 0x180;
      uint256 constant OrderFulfilled_consideration_length_baseOffset = 0x2a0;
      uint256 constant OrderFulfilled_offer_length_baseOffset = 0x200;
      // Related constants used for restricted order checks on basic orders.
      uint256 constant OrderFulfilled_baseDataSize = 0x160;
      // uint256 constant ValidateOrder_offerDataOffset = 0x184;
      // uint256 constant RatifyOrder_offerDataOffset = 0xc4;
      // uint256 constant OrderFulfilled_orderHash_offset = 0x00;
      uint256 constant OrderFulfilled_fulfiller_offset = 0x20;
      uint256 constant OrderFulfilled_offer_head_offset = 0x40;
      uint256 constant OrderFulfilled_offer_body_offset = 0x80;
      uint256 constant OrderFulfilled_consideration_head_offset = 0x60;
      uint256 constant OrderFulfilled_consideration_body_offset = 0x120;
      // BasicOrderParameters
      uint256 constant BasicOrder_parameters_cdPtr = 0x04;
      uint256 constant BasicOrder_considerationToken_cdPtr = 0x24;
      uint256 constant BasicOrder_considerationIdentifier_cdPtr = 0x44;
      uint256 constant BasicOrder_considerationAmount_cdPtr = 0x64;
      uint256 constant BasicOrder_offerer_cdPtr = 0x84;
      uint256 constant BasicOrder_zone_cdPtr = 0xa4;
      uint256 constant BasicOrder_offerToken_cdPtr = 0xc4;
      uint256 constant BasicOrder_offerIdentifier_cdPtr = 0xe4;
      uint256 constant BasicOrder_offerAmount_cdPtr = 0x104;
      uint256 constant BasicOrder_basicOrderType_cdPtr = 0x124;
      uint256 constant BasicOrder_startTime_cdPtr = 0x144;
      uint256 constant BasicOrder_endTime_cdPtr = 0x164;
      // uint256 constant BasicOrder_zoneHash_cdPtr = 0x184;
      // uint256 constant BasicOrder_salt_cdPtr = 0x1a4;
      uint256 constant BasicOrder_offererConduit_cdPtr = 0x1c4;
      uint256 constant BasicOrder_fulfillerConduit_cdPtr = 0x1e4;
      uint256 constant BasicOrder_totalOriginalAdditionalRecipients_cdPtr = 0x204;
      uint256 constant BasicOrder_additionalRecipients_head_cdPtr = 0x224;
      uint256 constant BasicOrder_signature_cdPtr = 0x244;
      uint256 constant BasicOrder_additionalRecipients_length_cdPtr = 0x264;
      uint256 constant BasicOrder_additionalRecipients_data_cdPtr = 0x284;
      uint256 constant BasicOrder_parameters_ptr = 0x20;
      uint256 constant BasicOrder_basicOrderType_range = 0x18; // 24 values
      /*
       *  Memory layout in _prepareBasicFulfillmentFromCalldata of
       *  EIP712 data for ConsiderationItem
       *   - 0x80: ConsiderationItem EIP-712 typehash (constant)
       *   - 0xa0: itemType
       *   - 0xc0: token
       *   - 0xe0: identifier
       *   - 0x100: startAmount
       *   - 0x120: endAmount
       *   - 0x140: recipient
       */
      uint256 constant BasicOrder_considerationItem_typeHash_ptr = 0x80; // memoryPtr
      uint256 constant BasicOrder_considerationItem_itemType_ptr = 0xa0;
      uint256 constant BasicOrder_considerationItem_token_ptr = 0xc0;
      uint256 constant BasicOrder_considerationItem_identifier_ptr = 0xe0;
      uint256 constant BasicOrder_considerationItem_startAmount_ptr = 0x100;
      uint256 constant BasicOrder_considerationItem_endAmount_ptr = 0x120;
      // uint256 constant BasicOrder_considerationItem_recipient_ptr = 0x140;
      /*
       *  Memory layout in _prepareBasicFulfillmentFromCalldata of
       *  EIP712 data for OfferItem
       *   - 0x80:  OfferItem EIP-712 typehash (constant)
       *   - 0xa0:  itemType
       *   - 0xc0:  token
       *   - 0xe0:  identifier (reused for offeredItemsHash)
       *   - 0x100: startAmount
       *   - 0x120: endAmount
       */
      uint256 constant BasicOrder_offerItem_typeHash_ptr = 0x80;
      uint256 constant BasicOrder_offerItem_itemType_ptr = 0xa0;
      uint256 constant BasicOrder_offerItem_token_ptr = 0xc0;
      // uint256 constant BasicOrder_offerItem_identifier_ptr = 0xe0;
      // uint256 constant BasicOrder_offerItem_startAmount_ptr = 0x100;
      uint256 constant BasicOrder_offerItem_endAmount_ptr = 0x120;
      /*
       *  Memory layout in _prepareBasicFulfillmentFromCalldata of
       *  EIP712 data for Order
       *   - 0x80:   Order EIP-712 typehash (constant)
       *   - 0xa0:   orderParameters.offerer
       *   - 0xc0:   orderParameters.zone
       *   - 0xe0:   keccak256(abi.encodePacked(offerHashes))
       *   - 0x100:  keccak256(abi.encodePacked(considerationHashes))
       *   - 0x120:  orderType
       *   - 0x140:  startTime
       *   - 0x160:  endTime
       *   - 0x180:  zoneHash
       *   - 0x1a0:  salt
       *   - 0x1c0:  conduit
       *   - 0x1e0:  _counters[orderParameters.offerer] (from storage)
       */
      uint256 constant BasicOrder_order_typeHash_ptr = 0x80;
      uint256 constant BasicOrder_order_offerer_ptr = 0xa0;
      // uint256 constant BasicOrder_order_zone_ptr = 0xc0;
      uint256 constant BasicOrder_order_offerHashes_ptr = 0xe0;
      uint256 constant BasicOrder_order_considerationHashes_ptr = 0x100;
      uint256 constant BasicOrder_order_orderType_ptr = 0x120;
      uint256 constant BasicOrder_order_startTime_ptr = 0x140;
      // uint256 constant BasicOrder_order_endTime_ptr = 0x160;
      // uint256 constant BasicOrder_order_zoneHash_ptr = 0x180;
      // uint256 constant BasicOrder_order_salt_ptr = 0x1a0;
      // uint256 constant BasicOrder_order_conduitKey_ptr = 0x1c0;
      uint256 constant BasicOrder_order_counter_ptr = 0x1e0;
      uint256 constant BasicOrder_additionalRecipients_head_ptr = 0x240;
      uint256 constant BasicOrder_signature_ptr = 0x260;
      uint256 constant BasicOrder_startTimeThroughZoneHash_size = 0x60;
      uint256 constant ContractOrder_orderHash_offerer_shift = 0x60;
      uint256 constant Counter_blockhash_shift = 0x80;
      // Signature-related
      bytes32 constant EIP2098_allButHighestBitMask = (
          0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
      );
      bytes32 constant ECDSA_twentySeventhAndTwentyEighthBytesSet = (
          0x0000000000000000000000000000000000000000000000000000000101000000
      );
      uint256 constant ECDSA_MaxLength = 65;
      uint256 constant ECDSA_signature_s_offset = 0x40;
      uint256 constant ECDSA_signature_v_offset = 0x60;
      bytes32 constant EIP1271_isValidSignature_selector = (
          0x1626ba7e00000000000000000000000000000000000000000000000000000000
      );
      uint256 constant EIP1271_isValidSignature_digest_negativeOffset = 0x40;
      uint256 constant EIP1271_isValidSignature_selector_negativeOffset = 0x44;
      uint256 constant EIP1271_isValidSignature_calldata_baseLength = 0x64;
      uint256 constant EIP1271_isValidSignature_signature_head_offset = 0x40;
      uint256 constant EIP_712_PREFIX = (
          0x1901000000000000000000000000000000000000000000000000000000000000
      );
      uint256 constant ExtraGasBuffer = 0x20;
      uint256 constant CostPerWord = 0x3;
      uint256 constant MemoryExpansionCoefficientShift = 0x9;
      uint256 constant Create2AddressDerivation_ptr = 0x0b;
      uint256 constant Create2AddressDerivation_length = 0x55;
      uint256 constant MaskOverByteTwelve = (
          0x0000000000000000000000ff0000000000000000000000000000000000000000
      );
      uint256 constant MaskOverLastTwentyBytes = (
          0x000000000000000000000000ffffffffffffffffffffffffffffffffffffffff
      );
      uint256 constant AddressDirtyUpperBitThreshold = (
          0x0000000000000000000000010000000000000000000000000000000000000000
      );
      uint256 constant MaskOverFirstFourBytes = (
          0xffffffff00000000000000000000000000000000000000000000000000000000
      );
      uint256 constant Conduit_execute_signature = (
          0x4ce34aa200000000000000000000000000000000000000000000000000000000
      );
      uint256 constant MaxUint8 = 0xff;
      uint256 constant MaxUint120 = 0xffffffffffffffffffffffffffffff;
      uint256 constant Conduit_execute_ConduitTransfer_ptr = 0x20;
      uint256 constant Conduit_execute_ConduitTransfer_length = 0x01;
      uint256 constant Conduit_execute_ConduitTransfer_offset_ptr = 0x04;
      uint256 constant Conduit_execute_ConduitTransfer_length_ptr = 0x24;
      uint256 constant Conduit_execute_transferItemType_ptr = 0x44;
      uint256 constant Conduit_execute_transferToken_ptr = 0x64;
      uint256 constant Conduit_execute_transferFrom_ptr = 0x84;
      uint256 constant Conduit_execute_transferTo_ptr = 0xa4;
      uint256 constant Conduit_execute_transferIdentifier_ptr = 0xc4;
      uint256 constant Conduit_execute_transferAmount_ptr = 0xe4;
      uint256 constant OneConduitExecute_size = 0x104;
      // Sentinel value to indicate that the conduit accumulator is not armed.
      uint256 constant AccumulatorDisarmed = 0x20;
      uint256 constant AccumulatorArmed = 0x40;
      uint256 constant Accumulator_conduitKey_ptr = 0x20;
      uint256 constant Accumulator_selector_ptr = 0x40;
      uint256 constant Accumulator_array_offset_ptr = 0x44;
      uint256 constant Accumulator_array_length_ptr = 0x64;
      uint256 constant Accumulator_itemSizeOffsetDifference = 0x3c;
      uint256 constant Accumulator_array_offset = 0x20;
      uint256 constant Conduit_transferItem_size = 0xc0;
      uint256 constant Conduit_transferItem_token_ptr = 0x20;
      uint256 constant Conduit_transferItem_from_ptr = 0x40;
      uint256 constant Conduit_transferItem_to_ptr = 0x60;
      uint256 constant Conduit_transferItem_identifier_ptr = 0x80;
      uint256 constant Conduit_transferItem_amount_ptr = 0xa0;
      uint256 constant Ecrecover_precompile = 0x1;
      uint256 constant Ecrecover_args_size = 0x80;
      uint256 constant Signature_lower_v = 27;
      // Bitmask that only gives a non-zero value if masked with a non-match selector.
      uint256 constant NonMatchSelector_MagicMask = (
          0x4000000000000000000000000000000000000000000000000000000000
      );
      // First bit indicates that a NATIVE offer items has been used and the 231st bit
      // indicates that a non match selector has been called.
      uint256 constant NonMatchSelector_InvalidErrorValue = (
          0x4000000000000000000000000000000000000000000000000000000001
      );
      /**
       * @dev Selector and offsets for generateOrder
       *
       * function generateOrder(
       *   address fulfiller,
       *   SpentItem[] calldata minimumReceived,
       *   SpentItem[] calldata maximumSpent,
       *   bytes calldata context
       * )
       */
      uint256 constant generateOrder_selector = 0x98919765;
      uint256 constant generateOrder_selector_offset = 0x1c;
      uint256 constant generateOrder_head_offset = 0x04;
      uint256 constant generateOrder_minimumReceived_head_offset = 0x20;
      uint256 constant generateOrder_maximumSpent_head_offset = 0x40;
      uint256 constant generateOrder_context_head_offset = 0x60;
      uint256 constant generateOrder_base_tail_offset = 0x80;
      uint256 constant generateOrder_maximum_returndatasize = 0xffff;
      uint256 constant ratifyOrder_selector = 0xf4dd92ce;
      uint256 constant ratifyOrder_selector_offset = 0x1c;
      uint256 constant ratifyOrder_head_offset = 0x04;
      // uint256 constant ratifyOrder_offer_head_offset = 0x00;
      uint256 constant ratifyOrder_consideration_head_offset = 0x20;
      uint256 constant ratifyOrder_context_head_offset = 0x40;
      uint256 constant ratifyOrder_orderHashes_head_offset = 0x60;
      uint256 constant ratifyOrder_contractNonce_offset = 0x80;
      uint256 constant ratifyOrder_base_tail_offset = 0xa0;
      uint256 constant validateOrder_selector = 0x17b1f942;
      uint256 constant validateOrder_selector_offset = 0x1c;
      uint256 constant validateOrder_head_offset = 0x04;
      uint256 constant validateOrder_zoneParameters_offset = 0x20;
      // uint256 constant ZoneParameters_orderHash_offset = 0x00;
      uint256 constant ZoneParameters_fulfiller_offset = 0x20;
      uint256 constant ZoneParameters_offerer_offset = 0x40;
      uint256 constant ZoneParameters_offer_head_offset = 0x60;
      uint256 constant ZoneParameters_consideration_head_offset = 0x80;
      uint256 constant ZoneParameters_extraData_head_offset = 0xa0;
      uint256 constant ZoneParameters_orderHashes_head_offset = 0xc0;
      uint256 constant ZoneParameters_startTime_offset = 0xe0;
      uint256 constant ZoneParameters_endTime_offset = 0x100;
      uint256 constant ZoneParameters_zoneHash_offset = 0x120;
      uint256 constant ZoneParameters_base_tail_offset = 0x140;
      uint256 constant ZoneParameters_selectorAndPointer_length = 0x24;
      uint256 constant ZoneParameters_basicOrderFixedElements_length = 0x64;
      // ConsiderationDecoder Constants
      uint256 constant OrderParameters_head_size = 0x0160;
      uint256 constant OrderParameters_totalOriginalConsiderationItems_offset = (
          0x0140
      );
      uint256 constant AdvancedOrderPlusOrderParameters_head_size = 0x0200;
      uint256 constant Order_signature_offset = 0x20;
      uint256 constant Order_head_size = 0x40;
      uint256 constant AdvancedOrder_fixed_segment_0 = 0x40;
      uint256 constant CriteriaResolver_head_size = 0xa0;
      uint256 constant CriteriaResolver_fixed_segment_0 = 0x80;
      uint256 constant CriteriaResolver_criteriaProof_offset = 0x80;
      uint256 constant FulfillmentComponent_mem_tail_size = 0x40;
      uint256 constant FulfillmentComponent_mem_tail_size_shift = 0x6;
      uint256 constant Fulfillment_head_size = 0x40;
      uint256 constant Fulfillment_considerationComponents_offset = 0x20;
      uint256 constant OrderComponents_OrderParameters_common_head_size = 0x0140;
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.13;
      import {
          AdvancedOrder,
          BasicOrderParameters,
          CriteriaResolver,
          Execution,
          Fulfillment,
          FulfillmentComponent,
          Order,
          OrderComponents
      } from "../lib/ConsiderationStructs.sol";
      /**
       * @title ConsiderationInterface
       * @author 0age
       * @custom:version 1.5
       * @notice Consideration is a generalized native token/ERC20/ERC721/ERC1155
       *         marketplace. It minimizes external calls to the greatest extent
       *         possible and provides lightweight methods for common routes as well
       *         as more flexible methods for composing advanced orders.
       *
       * @dev ConsiderationInterface contains all external function interfaces for
       *      Consideration.
       */
      interface ConsiderationInterface {
          /**
           * @notice Fulfill an order offering an ERC721 token by supplying Ether (or
           *         the native token for the given chain) as consideration for the
           *         order. An arbitrary number of "additional recipients" may also be
           *         supplied which will each receive native tokens from the fulfiller
           *         as consideration.
           *
           * @param parameters Additional information on the fulfilled order. Note
           *                   that the offerer must first approve this contract (or
           *                   their preferred conduit if indicated by the order) for
           *                   their offered ERC721 token to be transferred.
           *
           * @return fulfilled A boolean indicating whether the order has been
           *                   successfully fulfilled.
           */
          function fulfillBasicOrder(
              BasicOrderParameters calldata parameters
          ) external payable returns (bool fulfilled);
          /**
           * @notice Fulfill an order with an arbitrary number of items for offer and
           *         consideration. Note that this function does not support
           *         criteria-based orders or partial filling of orders (though
           *         filling the remainder of a partially-filled order is supported).
           *
           * @param order               The order to fulfill. Note that both the
           *                            offerer and the fulfiller must first approve
           *                            this contract (or the corresponding conduit if
           *                            indicated) to transfer any relevant tokens on
           *                            their behalf and that contracts must implement
           *                            `onERC1155Received` to receive ERC1155 tokens
           *                            as consideration.
           * @param fulfillerConduitKey A bytes32 value indicating what conduit, if
           *                            any, to source the fulfiller's token approvals
           *                            from. The zero hash signifies that no conduit
           *                            should be used, with direct approvals set on
           *                            Consideration.
           *
           * @return fulfilled A boolean indicating whether the order has been
           *                   successfully fulfilled.
           */
          function fulfillOrder(
              Order calldata order,
              bytes32 fulfillerConduitKey
          ) external payable returns (bool fulfilled);
          /**
           * @notice Fill an order, fully or partially, with an arbitrary number of
           *         items for offer and consideration alongside criteria resolvers
           *         containing specific token identifiers and associated proofs.
           *
           * @param advancedOrder       The order to fulfill along with the fraction
           *                            of the order to attempt to fill. Note that
           *                            both the offerer and the fulfiller must first
           *                            approve this contract (or their preferred
           *                            conduit if indicated by the order) to transfer
           *                            any relevant tokens on their behalf and that
           *                            contracts must implement `onERC1155Received`
           *                            to receive ERC1155 tokens as consideration.
           *                            Also note that all offer and consideration
           *                            components must have no remainder after
           *                            multiplication of the respective amount with
           *                            the supplied fraction for the partial fill to
           *                            be considered valid.
           * @param criteriaResolvers   An array where each element contains a
           *                            reference to a specific offer or
           *                            consideration, a token identifier, and a proof
           *                            that the supplied token identifier is
           *                            contained in the merkle root held by the item
           *                            in question's criteria element. Note that an
           *                            empty criteria indicates that any
           *                            (transferable) token identifier on the token
           *                            in question is valid and that no associated
           *                            proof needs to be supplied.
           * @param fulfillerConduitKey A bytes32 value indicating what conduit, if
           *                            any, to source the fulfiller's token approvals
           *                            from. The zero hash signifies that no conduit
           *                            should be used, with direct approvals set on
           *                            Consideration.
           * @param recipient           The intended recipient for all received items,
           *                            with `address(0)` indicating that the caller
           *                            should receive the items.
           *
           * @return fulfilled A boolean indicating whether the order has been
           *                   successfully fulfilled.
           */
          function fulfillAdvancedOrder(
              AdvancedOrder calldata advancedOrder,
              CriteriaResolver[] calldata criteriaResolvers,
              bytes32 fulfillerConduitKey,
              address recipient
          ) external payable returns (bool fulfilled);
          /**
           * @notice Attempt to fill a group of orders, each with an arbitrary number
           *         of items for offer and consideration. Any order that is not
           *         currently active, has already been fully filled, or has been
           *         cancelled will be omitted. Remaining offer and consideration
           *         items will then be aggregated where possible as indicated by the
           *         supplied offer and consideration component arrays and aggregated
           *         items will be transferred to the fulfiller or to each intended
           *         recipient, respectively. Note that a failing item transfer or an
           *         issue with order formatting will cause the entire batch to fail.
           *         Note that this function does not support criteria-based orders or
           *         partial filling of orders (though filling the remainder of a
           *         partially-filled order is supported).
           *
           * @param orders                    The orders to fulfill. Note that both
           *                                  the offerer and the fulfiller must first
           *                                  approve this contract (or the
           *                                  corresponding conduit if indicated) to
           *                                  transfer any relevant tokens on their
           *                                  behalf and that contracts must implement
           *                                  `onERC1155Received` to receive ERC1155
           *                                  tokens as consideration.
           * @param offerFulfillments         An array of FulfillmentComponent arrays
           *                                  indicating which offer items to attempt
           *                                  to aggregate when preparing executions.
           * @param considerationFulfillments An array of FulfillmentComponent arrays
           *                                  indicating which consideration items to
           *                                  attempt to aggregate when preparing
           *                                  executions.
           * @param fulfillerConduitKey       A bytes32 value indicating what conduit,
           *                                  if any, to source the fulfiller's token
           *                                  approvals from. The zero hash signifies
           *                                  that no conduit should be used, with
           *                                  direct approvals set on this contract.
           * @param maximumFulfilled          The maximum number of orders to fulfill.
           *
           * @return availableOrders An array of booleans indicating if each order
           *                         with an index corresponding to the index of the
           *                         returned boolean was fulfillable or not.
           * @return executions      An array of elements indicating the sequence of
           *                         transfers performed as part of matching the given
           *                         orders. Note that unspent offer item amounts or
           *                         native tokens will not be reflected as part of
           *                         this array.
           */
          function fulfillAvailableOrders(
              Order[] calldata orders,
              FulfillmentComponent[][] calldata offerFulfillments,
              FulfillmentComponent[][] calldata considerationFulfillments,
              bytes32 fulfillerConduitKey,
              uint256 maximumFulfilled
          )
              external
              payable
              returns (bool[] memory availableOrders, Execution[] memory executions);
          /**
           * @notice Attempt to fill a group of orders, fully or partially, with an
           *         arbitrary number of items for offer and consideration per order
           *         alongside criteria resolvers containing specific token
           *         identifiers and associated proofs. Any order that is not
           *         currently active, has already been fully filled, or has been
           *         cancelled will be omitted. Remaining offer and consideration
           *         items will then be aggregated where possible as indicated by the
           *         supplied offer and consideration component arrays and aggregated
           *         items will be transferred to the fulfiller or to each intended
           *         recipient, respectively. Note that a failing item transfer or an
           *         issue with order formatting will cause the entire batch to fail.
           *
           * @param advancedOrders            The orders to fulfill along with the
           *                                  fraction of those orders to attempt to
           *                                  fill. Note that both the offerer and the
           *                                  fulfiller must first approve this
           *                                  contract (or their preferred conduit if
           *                                  indicated by the order) to transfer any
           *                                  relevant tokens on their behalf and that
           *                                  contracts must implement
           *                                  `onERC1155Received` to enable receipt of
           *                                  ERC1155 tokens as consideration. Also
           *                                  note that all offer and consideration
           *                                  components must have no remainder after
           *                                  multiplication of the respective amount
           *                                  with the supplied fraction for an
           *                                  order's partial fill amount to be
           *                                  considered valid.
           * @param criteriaResolvers         An array where each element contains a
           *                                  reference to a specific offer or
           *                                  consideration, a token identifier, and a
           *                                  proof that the supplied token identifier
           *                                  is contained in the merkle root held by
           *                                  the item in question's criteria element.
           *                                  Note that an empty criteria indicates
           *                                  that any (transferable) token
           *                                  identifier on the token in question is
           *                                  valid and that no associated proof needs
           *                                  to be supplied.
           * @param offerFulfillments         An array of FulfillmentComponent arrays
           *                                  indicating which offer items to attempt
           *                                  to aggregate when preparing executions.
           * @param considerationFulfillments An array of FulfillmentComponent arrays
           *                                  indicating which consideration items to
           *                                  attempt to aggregate when preparing
           *                                  executions.
           * @param fulfillerConduitKey       A bytes32 value indicating what conduit,
           *                                  if any, to source the fulfiller's token
           *                                  approvals from. The zero hash signifies
           *                                  that no conduit should be used, with
           *                                  direct approvals set on this contract.
           * @param recipient                 The intended recipient for all received
           *                                  items, with `address(0)` indicating that
           *                                  the caller should receive the items.
           * @param maximumFulfilled          The maximum number of orders to fulfill.
           *
           * @return availableOrders An array of booleans indicating if each order
           *                         with an index corresponding to the index of the
           *                         returned boolean was fulfillable or not.
           * @return executions      An array of elements indicating the sequence of
           *                         transfers performed as part of matching the given
           *                         orders. Note that unspent offer item amounts or
           *                         native tokens will not be reflected as part of
           *                         this array.
           */
          function fulfillAvailableAdvancedOrders(
              AdvancedOrder[] calldata advancedOrders,
              CriteriaResolver[] calldata criteriaResolvers,
              FulfillmentComponent[][] calldata offerFulfillments,
              FulfillmentComponent[][] calldata considerationFulfillments,
              bytes32 fulfillerConduitKey,
              address recipient,
              uint256 maximumFulfilled
          )
              external
              payable
              returns (bool[] memory availableOrders, Execution[] memory executions);
          /**
           * @notice Match an arbitrary number of orders, each with an arbitrary
           *         number of items for offer and consideration along with a set of
           *         fulfillments allocating offer components to consideration
           *         components. Note that this function does not support
           *         criteria-based or partial filling of orders (though filling the
           *         remainder of a partially-filled order is supported). Any unspent
           *         offer item amounts or native tokens will be transferred to the
           *         caller.
           *
           * @param orders       The orders to match. Note that both the offerer and
           *                     fulfiller on each order must first approve this
           *                     contract (or their conduit if indicated by the order)
           *                     to transfer any relevant tokens on their behalf and
           *                     each consideration recipient must implement
           *                     `onERC1155Received` to enable ERC1155 token receipt.
           * @param fulfillments An array of elements allocating offer components to
           *                     consideration components. Note that each
           *                     consideration component must be fully met for the
           *                     match operation to be valid.
           *
           * @return executions An array of elements indicating the sequence of
           *                    transfers performed as part of matching the given
           *                    orders. Note that unspent offer item amounts or
           *                    native tokens will not be reflected as part of this
           *                    array.
           */
          function matchOrders(
              Order[] calldata orders,
              Fulfillment[] calldata fulfillments
          ) external payable returns (Execution[] memory executions);
          /**
           * @notice Match an arbitrary number of full or partial orders, each with an
           *         arbitrary number of items for offer and consideration, supplying
           *         criteria resolvers containing specific token identifiers and
           *         associated proofs as well as fulfillments allocating offer
           *         components to consideration components. Any unspent offer item
           *         amounts will be transferred to the designated recipient (with the
           *         null address signifying to use the caller) and any unspent native
           *         tokens will be returned to the caller.
           *
           * @param orders            The advanced orders to match. Note that both the
           *                          offerer and fulfiller on each order must first
           *                          approve this contract (or a preferred conduit if
           *                          indicated by the order) to transfer any relevant
           *                          tokens on their behalf and each consideration
           *                          recipient must implement `onERC1155Received` in
           *                          order to receive ERC1155 tokens. Also note that
           *                          the offer and consideration components for each
           *                          order must have no remainder after multiplying
           *                          the respective amount with the supplied fraction
           *                          in order for the group of partial fills to be
           *                          considered valid.
           * @param criteriaResolvers An array where each element contains a reference
           *                          to a specific order as well as that order's
           *                          offer or consideration, a token identifier, and
           *                          a proof that the supplied token identifier is
           *                          contained in the order's merkle root. Note that
           *                          an empty root indicates that any (transferable)
           *                          token identifier is valid and that no associated
           *                          proof needs to be supplied.
           * @param fulfillments      An array of elements allocating offer components
           *                          to consideration components. Note that each
           *                          consideration component must be fully met in
           *                          order for the match operation to be valid.
           * @param recipient         The intended recipient for all unspent offer
           *                          item amounts, or the caller if the null address
           *                          is supplied.
           *
           * @return executions An array of elements indicating the sequence of
           *                    transfers performed as part of matching the given
           *                    orders. Note that unspent offer item amounts or native
           *                    tokens will not be reflected as part of this array.
           */
          function matchAdvancedOrders(
              AdvancedOrder[] calldata orders,
              CriteriaResolver[] calldata criteriaResolvers,
              Fulfillment[] calldata fulfillments,
              address recipient
          ) external payable returns (Execution[] memory executions);
          /**
           * @notice Cancel an arbitrary number of orders. Note that only the offerer
           *         or the zone of a given order may cancel it. Callers should ensure
           *         that the intended order was cancelled by calling `getOrderStatus`
           *         and confirming that `isCancelled` returns `true`.
           *
           * @param orders The orders to cancel.
           *
           * @return cancelled A boolean indicating whether the supplied orders have
           *                   been successfully cancelled.
           */
          function cancel(
              OrderComponents[] calldata orders
          ) external returns (bool cancelled);
          /**
           * @notice Validate an arbitrary number of orders, thereby registering their
           *         signatures as valid and allowing the fulfiller to skip signature
           *         verification on fulfillment. Note that validated orders may still
           *         be unfulfillable due to invalid item amounts or other factors;
           *         callers should determine whether validated orders are fulfillable
           *         by simulating the fulfillment call prior to execution. Also note
           *         that anyone can validate a signed order, but only the offerer can
           *         validate an order without supplying a signature.
           *
           * @param orders The orders to validate.
           *
           * @return validated A boolean indicating whether the supplied orders have
           *                   been successfully validated.
           */
          function validate(
              Order[] calldata orders
          ) external returns (bool validated);
          /**
           * @notice Cancel all orders from a given offerer with a given zone in bulk
           *         by incrementing a counter. Note that only the offerer may
           *         increment the counter.
           *
           * @return newCounter The new counter.
           */
          function incrementCounter() external returns (uint256 newCounter);
          /**
           * @notice Fulfill an order offering an ERC721 token by supplying Ether (or
           *         the native token for the given chain) as consideration for the
           *         order. An arbitrary number of "additional recipients" may also be
           *         supplied which will each receive native tokens from the fulfiller
           *         as consideration. Note that this function costs less gas than
           *         `fulfillBasicOrder` due to the zero bytes in the function
           *         selector (0x00000000) which also results in earlier function
           *         dispatch.
           *
           * @param parameters Additional information on the fulfilled order. Note
           *                   that the offerer must first approve this contract (or
           *                   their preferred conduit if indicated by the order) for
           *                   their offered ERC721 token to be transferred.
           *
           * @return fulfilled A boolean indicating whether the order has been
           *                   successfully fulfilled.
           */
          function fulfillBasicOrder_efficient_6GL6yc(
              BasicOrderParameters calldata parameters
          ) external payable returns (bool fulfilled);
          /**
           * @notice Retrieve the order hash for a given order.
           *
           * @param order The components of the order.
           *
           * @return orderHash The order hash.
           */
          function getOrderHash(
              OrderComponents calldata order
          ) external view returns (bytes32 orderHash);
          /**
           * @notice Retrieve the status of a given order by hash, including whether
           *         the order has been cancelled or validated and the fraction of the
           *         order that has been filled.
           *
           * @param orderHash The order hash in question.
           *
           * @return isValidated A boolean indicating whether the order in question
           *                     has been validated (i.e. previously approved or
           *                     partially filled).
           * @return isCancelled A boolean indicating whether the order in question
           *                     has been cancelled.
           * @return totalFilled The total portion of the order that has been filled
           *                     (i.e. the "numerator").
           * @return totalSize   The total size of the order that is either filled or
           *                     unfilled (i.e. the "denominator").
           */
          function getOrderStatus(
              bytes32 orderHash
          )
              external
              view
              returns (
                  bool isValidated,
                  bool isCancelled,
                  uint256 totalFilled,
                  uint256 totalSize
              );
          /**
           * @notice Retrieve the current counter for a given offerer.
           *
           * @param offerer The offerer in question.
           *
           * @return counter The current counter.
           */
          function getCounter(
              address offerer
          ) external view returns (uint256 counter);
          /**
           * @notice Retrieve configuration information for this contract.
           *
           * @return version           The contract version.
           * @return domainSeparator   The domain separator for this contract.
           * @return conduitController The conduit Controller set for this contract.
           */
          function information()
              external
              view
              returns (
                  string memory version,
                  bytes32 domainSeparator,
                  address conduitController
              );
          function getContractOffererNonce(
              address contractOfferer
          ) external view returns (uint256 nonce);
          /**
           * @notice Retrieve the name of this contract.
           *
           * @return contractName The name of this contract.
           */
          function name() external view returns (string memory contractName);
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.13;
      type CalldataPointer is uint256;
      type ReturndataPointer is uint256;
      type MemoryPointer is uint256;
      using CalldataPointerLib for CalldataPointer global;
      using MemoryPointerLib for MemoryPointer global;
      using ReturndataPointerLib for ReturndataPointer global;
      using CalldataReaders for CalldataPointer global;
      using ReturndataReaders for ReturndataPointer global;
      using MemoryReaders for MemoryPointer global;
      using MemoryWriters for MemoryPointer global;
      CalldataPointer constant CalldataStart = CalldataPointer.wrap(0x04);
      MemoryPointer constant FreeMemoryPPtr = MemoryPointer.wrap(0x40);
      uint256 constant IdentityPrecompileAddress = 0x4;
      uint256 constant OffsetOrLengthMask = 0xffffffff;
      uint256 constant _OneWord = 0x20;
      uint256 constant _FreeMemoryPointerSlot = 0x40;
      /// @dev Allocates `size` bytes in memory by increasing the free memory pointer
      ///    and returns the memory pointer to the first byte of the allocated region.
      // (Free functions cannot have visibility.)
      // solhint-disable-next-line func-visibility
      function malloc(uint256 size) pure returns (MemoryPointer mPtr) {
          assembly {
              mPtr := mload(_FreeMemoryPointerSlot)
              mstore(_FreeMemoryPointerSlot, add(mPtr, size))
          }
      }
      // (Free functions cannot have visibility.)
      // solhint-disable-next-line func-visibility
      function getFreeMemoryPointer() pure returns (MemoryPointer mPtr) {
          mPtr = FreeMemoryPPtr.readMemoryPointer();
      }
      // (Free functions cannot have visibility.)
      // solhint-disable-next-line func-visibility
      function setFreeMemoryPointer(MemoryPointer mPtr) pure {
          FreeMemoryPPtr.write(mPtr);
      }
      library CalldataPointerLib {
          function lt(
              CalldataPointer a,
              CalldataPointer b
          ) internal pure returns (bool c) {
              assembly {
                  c := lt(a, b)
              }
          }
          function gt(
              CalldataPointer a,
              CalldataPointer b
          ) internal pure returns (bool c) {
              assembly {
                  c := gt(a, b)
              }
          }
          function eq(
              CalldataPointer a,
              CalldataPointer b
          ) internal pure returns (bool c) {
              assembly {
                  c := eq(a, b)
              }
          }
          function isNull(CalldataPointer a) internal pure returns (bool b) {
              assembly {
                  b := iszero(a)
              }
          }
          /// @dev Resolves an offset stored at `cdPtr + headOffset` to a calldata.
          ///      pointer `cdPtr` must point to some parent object with a dynamic
          ///      type's head stored at `cdPtr + headOffset`.
          function pptr(
              CalldataPointer cdPtr,
              uint256 headOffset
          ) internal pure returns (CalldataPointer cdPtrChild) {
              cdPtrChild = cdPtr.offset(
                  cdPtr.offset(headOffset).readUint256() & OffsetOrLengthMask
              );
          }
          /// @dev Resolves an offset stored at `cdPtr` to a calldata pointer.
          ///      `cdPtr` must point to some parent object with a dynamic type as its
          ///      first member, e.g. `struct { bytes data; }`
          function pptr(
              CalldataPointer cdPtr
          ) internal pure returns (CalldataPointer cdPtrChild) {
              cdPtrChild = cdPtr.offset(cdPtr.readUint256() & OffsetOrLengthMask);
          }
          /// @dev Returns the calldata pointer one word after `cdPtr`.
          function next(
              CalldataPointer cdPtr
          ) internal pure returns (CalldataPointer cdPtrNext) {
              assembly {
                  cdPtrNext := add(cdPtr, _OneWord)
              }
          }
          /// @dev Returns the calldata pointer `_offset` bytes after `cdPtr`.
          function offset(
              CalldataPointer cdPtr,
              uint256 _offset
          ) internal pure returns (CalldataPointer cdPtrNext) {
              assembly {
                  cdPtrNext := add(cdPtr, _offset)
              }
          }
          /// @dev Copies `size` bytes from calldata starting at `src` to memory at
          ///      `dst`.
          function copy(
              CalldataPointer src,
              MemoryPointer dst,
              uint256 size
          ) internal pure {
              assembly {
                  calldatacopy(dst, src, size)
              }
          }
      }
      library ReturndataPointerLib {
          function lt(
              ReturndataPointer a,
              ReturndataPointer b
          ) internal pure returns (bool c) {
              assembly {
                  c := lt(a, b)
              }
          }
          function gt(
              ReturndataPointer a,
              ReturndataPointer b
          ) internal pure returns (bool c) {
              assembly {
                  c := gt(a, b)
              }
          }
          function eq(
              ReturndataPointer a,
              ReturndataPointer b
          ) internal pure returns (bool c) {
              assembly {
                  c := eq(a, b)
              }
          }
          function isNull(ReturndataPointer a) internal pure returns (bool b) {
              assembly {
                  b := iszero(a)
              }
          }
          /// @dev Resolves an offset stored at `rdPtr + headOffset` to a returndata
          ///      pointer. `rdPtr` must point to some parent object with a dynamic
          ///      type's head stored at `rdPtr + headOffset`.
          function pptr(
              ReturndataPointer rdPtr,
              uint256 headOffset
          ) internal pure returns (ReturndataPointer rdPtrChild) {
              rdPtrChild = rdPtr.offset(
                  rdPtr.offset(headOffset).readUint256() & OffsetOrLengthMask
              );
          }
          /// @dev Resolves an offset stored at `rdPtr` to a returndata pointer.
          ///    `rdPtr` must point to some parent object with a dynamic type as its
          ///    first member, e.g. `struct { bytes data; }`
          function pptr(
              ReturndataPointer rdPtr
          ) internal pure returns (ReturndataPointer rdPtrChild) {
              rdPtrChild = rdPtr.offset(rdPtr.readUint256() & OffsetOrLengthMask);
          }
          /// @dev Returns the returndata pointer one word after `cdPtr`.
          function next(
              ReturndataPointer rdPtr
          ) internal pure returns (ReturndataPointer rdPtrNext) {
              assembly {
                  rdPtrNext := add(rdPtr, _OneWord)
              }
          }
          /// @dev Returns the returndata pointer `_offset` bytes after `cdPtr`.
          function offset(
              ReturndataPointer rdPtr,
              uint256 _offset
          ) internal pure returns (ReturndataPointer rdPtrNext) {
              assembly {
                  rdPtrNext := add(rdPtr, _offset)
              }
          }
          /// @dev Copies `size` bytes from returndata starting at `src` to memory at
          /// `dst`.
          function copy(
              ReturndataPointer src,
              MemoryPointer dst,
              uint256 size
          ) internal pure {
              assembly {
                  returndatacopy(dst, src, size)
              }
          }
      }
      library MemoryPointerLib {
          function copy(
              MemoryPointer src,
              MemoryPointer dst,
              uint256 size
          ) internal view {
              assembly {
                  let success := staticcall(
                      gas(),
                      IdentityPrecompileAddress,
                      src,
                      size,
                      dst,
                      size
                  )
                  if or(iszero(returndatasize()), iszero(success)) {
                      revert(0, 0)
                  }
              }
          }
          function lt(
              MemoryPointer a,
              MemoryPointer b
          ) internal pure returns (bool c) {
              assembly {
                  c := lt(a, b)
              }
          }
          function gt(
              MemoryPointer a,
              MemoryPointer b
          ) internal pure returns (bool c) {
              assembly {
                  c := gt(a, b)
              }
          }
          function eq(
              MemoryPointer a,
              MemoryPointer b
          ) internal pure returns (bool c) {
              assembly {
                  c := eq(a, b)
              }
          }
          function isNull(MemoryPointer a) internal pure returns (bool b) {
              assembly {
                  b := iszero(a)
              }
          }
          function hash(
              MemoryPointer ptr,
              uint256 length
          ) internal pure returns (bytes32 _hash) {
              assembly {
                  _hash := keccak256(ptr, length)
              }
          }
          /// @dev Returns the memory pointer one word after `mPtr`.
          function next(
              MemoryPointer mPtr
          ) internal pure returns (MemoryPointer mPtrNext) {
              assembly {
                  mPtrNext := add(mPtr, _OneWord)
              }
          }
          /// @dev Returns the memory pointer `_offset` bytes after `mPtr`.
          function offset(
              MemoryPointer mPtr,
              uint256 _offset
          ) internal pure returns (MemoryPointer mPtrNext) {
              assembly {
                  mPtrNext := add(mPtr, _offset)
              }
          }
          /// @dev Resolves a pointer at `mPtr + headOffset` to a memory
          ///    pointer. `mPtr` must point to some parent object with a dynamic
          ///    type's pointer stored at `mPtr + headOffset`.
          function pptr(
              MemoryPointer mPtr,
              uint256 headOffset
          ) internal pure returns (MemoryPointer mPtrChild) {
              mPtrChild = mPtr.offset(headOffset).readMemoryPointer();
          }
          /// @dev Resolves a pointer stored at `mPtr` to a memory pointer.
          ///    `mPtr` must point to some parent object with a dynamic type as its
          ///    first member, e.g. `struct { bytes data; }`
          function pptr(
              MemoryPointer mPtr
          ) internal pure returns (MemoryPointer mPtrChild) {
              mPtrChild = mPtr.readMemoryPointer();
          }
      }
      library CalldataReaders {
          /// @dev Reads the value at `cdPtr` and applies a mask to return only the
          ///    last 4 bytes.
          function readMaskedUint256(
              CalldataPointer cdPtr
          ) internal pure returns (uint256 value) {
              value = cdPtr.readUint256() & OffsetOrLengthMask;
          }
          /// @dev Reads the bool at `cdPtr` in calldata.
          function readBool(
              CalldataPointer cdPtr
          ) internal pure returns (bool value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the address at `cdPtr` in calldata.
          function readAddress(
              CalldataPointer cdPtr
          ) internal pure returns (address value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes1 at `cdPtr` in calldata.
          function readBytes1(
              CalldataPointer cdPtr
          ) internal pure returns (bytes1 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes2 at `cdPtr` in calldata.
          function readBytes2(
              CalldataPointer cdPtr
          ) internal pure returns (bytes2 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes3 at `cdPtr` in calldata.
          function readBytes3(
              CalldataPointer cdPtr
          ) internal pure returns (bytes3 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes4 at `cdPtr` in calldata.
          function readBytes4(
              CalldataPointer cdPtr
          ) internal pure returns (bytes4 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes5 at `cdPtr` in calldata.
          function readBytes5(
              CalldataPointer cdPtr
          ) internal pure returns (bytes5 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes6 at `cdPtr` in calldata.
          function readBytes6(
              CalldataPointer cdPtr
          ) internal pure returns (bytes6 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes7 at `cdPtr` in calldata.
          function readBytes7(
              CalldataPointer cdPtr
          ) internal pure returns (bytes7 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes8 at `cdPtr` in calldata.
          function readBytes8(
              CalldataPointer cdPtr
          ) internal pure returns (bytes8 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes9 at `cdPtr` in calldata.
          function readBytes9(
              CalldataPointer cdPtr
          ) internal pure returns (bytes9 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes10 at `cdPtr` in calldata.
          function readBytes10(
              CalldataPointer cdPtr
          ) internal pure returns (bytes10 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes11 at `cdPtr` in calldata.
          function readBytes11(
              CalldataPointer cdPtr
          ) internal pure returns (bytes11 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes12 at `cdPtr` in calldata.
          function readBytes12(
              CalldataPointer cdPtr
          ) internal pure returns (bytes12 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes13 at `cdPtr` in calldata.
          function readBytes13(
              CalldataPointer cdPtr
          ) internal pure returns (bytes13 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes14 at `cdPtr` in calldata.
          function readBytes14(
              CalldataPointer cdPtr
          ) internal pure returns (bytes14 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes15 at `cdPtr` in calldata.
          function readBytes15(
              CalldataPointer cdPtr
          ) internal pure returns (bytes15 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes16 at `cdPtr` in calldata.
          function readBytes16(
              CalldataPointer cdPtr
          ) internal pure returns (bytes16 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes17 at `cdPtr` in calldata.
          function readBytes17(
              CalldataPointer cdPtr
          ) internal pure returns (bytes17 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes18 at `cdPtr` in calldata.
          function readBytes18(
              CalldataPointer cdPtr
          ) internal pure returns (bytes18 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes19 at `cdPtr` in calldata.
          function readBytes19(
              CalldataPointer cdPtr
          ) internal pure returns (bytes19 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes20 at `cdPtr` in calldata.
          function readBytes20(
              CalldataPointer cdPtr
          ) internal pure returns (bytes20 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes21 at `cdPtr` in calldata.
          function readBytes21(
              CalldataPointer cdPtr
          ) internal pure returns (bytes21 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes22 at `cdPtr` in calldata.
          function readBytes22(
              CalldataPointer cdPtr
          ) internal pure returns (bytes22 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes23 at `cdPtr` in calldata.
          function readBytes23(
              CalldataPointer cdPtr
          ) internal pure returns (bytes23 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes24 at `cdPtr` in calldata.
          function readBytes24(
              CalldataPointer cdPtr
          ) internal pure returns (bytes24 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes25 at `cdPtr` in calldata.
          function readBytes25(
              CalldataPointer cdPtr
          ) internal pure returns (bytes25 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes26 at `cdPtr` in calldata.
          function readBytes26(
              CalldataPointer cdPtr
          ) internal pure returns (bytes26 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes27 at `cdPtr` in calldata.
          function readBytes27(
              CalldataPointer cdPtr
          ) internal pure returns (bytes27 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes28 at `cdPtr` in calldata.
          function readBytes28(
              CalldataPointer cdPtr
          ) internal pure returns (bytes28 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes29 at `cdPtr` in calldata.
          function readBytes29(
              CalldataPointer cdPtr
          ) internal pure returns (bytes29 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes30 at `cdPtr` in calldata.
          function readBytes30(
              CalldataPointer cdPtr
          ) internal pure returns (bytes30 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes31 at `cdPtr` in calldata.
          function readBytes31(
              CalldataPointer cdPtr
          ) internal pure returns (bytes31 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the bytes32 at `cdPtr` in calldata.
          function readBytes32(
              CalldataPointer cdPtr
          ) internal pure returns (bytes32 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint8 at `cdPtr` in calldata.
          function readUint8(
              CalldataPointer cdPtr
          ) internal pure returns (uint8 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint16 at `cdPtr` in calldata.
          function readUint16(
              CalldataPointer cdPtr
          ) internal pure returns (uint16 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint24 at `cdPtr` in calldata.
          function readUint24(
              CalldataPointer cdPtr
          ) internal pure returns (uint24 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint32 at `cdPtr` in calldata.
          function readUint32(
              CalldataPointer cdPtr
          ) internal pure returns (uint32 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint40 at `cdPtr` in calldata.
          function readUint40(
              CalldataPointer cdPtr
          ) internal pure returns (uint40 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint48 at `cdPtr` in calldata.
          function readUint48(
              CalldataPointer cdPtr
          ) internal pure returns (uint48 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint56 at `cdPtr` in calldata.
          function readUint56(
              CalldataPointer cdPtr
          ) internal pure returns (uint56 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint64 at `cdPtr` in calldata.
          function readUint64(
              CalldataPointer cdPtr
          ) internal pure returns (uint64 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint72 at `cdPtr` in calldata.
          function readUint72(
              CalldataPointer cdPtr
          ) internal pure returns (uint72 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint80 at `cdPtr` in calldata.
          function readUint80(
              CalldataPointer cdPtr
          ) internal pure returns (uint80 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint88 at `cdPtr` in calldata.
          function readUint88(
              CalldataPointer cdPtr
          ) internal pure returns (uint88 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint96 at `cdPtr` in calldata.
          function readUint96(
              CalldataPointer cdPtr
          ) internal pure returns (uint96 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint104 at `cdPtr` in calldata.
          function readUint104(
              CalldataPointer cdPtr
          ) internal pure returns (uint104 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint112 at `cdPtr` in calldata.
          function readUint112(
              CalldataPointer cdPtr
          ) internal pure returns (uint112 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint120 at `cdPtr` in calldata.
          function readUint120(
              CalldataPointer cdPtr
          ) internal pure returns (uint120 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint128 at `cdPtr` in calldata.
          function readUint128(
              CalldataPointer cdPtr
          ) internal pure returns (uint128 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint136 at `cdPtr` in calldata.
          function readUint136(
              CalldataPointer cdPtr
          ) internal pure returns (uint136 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint144 at `cdPtr` in calldata.
          function readUint144(
              CalldataPointer cdPtr
          ) internal pure returns (uint144 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint152 at `cdPtr` in calldata.
          function readUint152(
              CalldataPointer cdPtr
          ) internal pure returns (uint152 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint160 at `cdPtr` in calldata.
          function readUint160(
              CalldataPointer cdPtr
          ) internal pure returns (uint160 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint168 at `cdPtr` in calldata.
          function readUint168(
              CalldataPointer cdPtr
          ) internal pure returns (uint168 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint176 at `cdPtr` in calldata.
          function readUint176(
              CalldataPointer cdPtr
          ) internal pure returns (uint176 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint184 at `cdPtr` in calldata.
          function readUint184(
              CalldataPointer cdPtr
          ) internal pure returns (uint184 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint192 at `cdPtr` in calldata.
          function readUint192(
              CalldataPointer cdPtr
          ) internal pure returns (uint192 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint200 at `cdPtr` in calldata.
          function readUint200(
              CalldataPointer cdPtr
          ) internal pure returns (uint200 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint208 at `cdPtr` in calldata.
          function readUint208(
              CalldataPointer cdPtr
          ) internal pure returns (uint208 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint216 at `cdPtr` in calldata.
          function readUint216(
              CalldataPointer cdPtr
          ) internal pure returns (uint216 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint224 at `cdPtr` in calldata.
          function readUint224(
              CalldataPointer cdPtr
          ) internal pure returns (uint224 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint232 at `cdPtr` in calldata.
          function readUint232(
              CalldataPointer cdPtr
          ) internal pure returns (uint232 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint240 at `cdPtr` in calldata.
          function readUint240(
              CalldataPointer cdPtr
          ) internal pure returns (uint240 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint248 at `cdPtr` in calldata.
          function readUint248(
              CalldataPointer cdPtr
          ) internal pure returns (uint248 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the uint256 at `cdPtr` in calldata.
          function readUint256(
              CalldataPointer cdPtr
          ) internal pure returns (uint256 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int8 at `cdPtr` in calldata.
          function readInt8(
              CalldataPointer cdPtr
          ) internal pure returns (int8 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int16 at `cdPtr` in calldata.
          function readInt16(
              CalldataPointer cdPtr
          ) internal pure returns (int16 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int24 at `cdPtr` in calldata.
          function readInt24(
              CalldataPointer cdPtr
          ) internal pure returns (int24 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int32 at `cdPtr` in calldata.
          function readInt32(
              CalldataPointer cdPtr
          ) internal pure returns (int32 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int40 at `cdPtr` in calldata.
          function readInt40(
              CalldataPointer cdPtr
          ) internal pure returns (int40 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int48 at `cdPtr` in calldata.
          function readInt48(
              CalldataPointer cdPtr
          ) internal pure returns (int48 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int56 at `cdPtr` in calldata.
          function readInt56(
              CalldataPointer cdPtr
          ) internal pure returns (int56 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int64 at `cdPtr` in calldata.
          function readInt64(
              CalldataPointer cdPtr
          ) internal pure returns (int64 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int72 at `cdPtr` in calldata.
          function readInt72(
              CalldataPointer cdPtr
          ) internal pure returns (int72 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int80 at `cdPtr` in calldata.
          function readInt80(
              CalldataPointer cdPtr
          ) internal pure returns (int80 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int88 at `cdPtr` in calldata.
          function readInt88(
              CalldataPointer cdPtr
          ) internal pure returns (int88 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int96 at `cdPtr` in calldata.
          function readInt96(
              CalldataPointer cdPtr
          ) internal pure returns (int96 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int104 at `cdPtr` in calldata.
          function readInt104(
              CalldataPointer cdPtr
          ) internal pure returns (int104 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int112 at `cdPtr` in calldata.
          function readInt112(
              CalldataPointer cdPtr
          ) internal pure returns (int112 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int120 at `cdPtr` in calldata.
          function readInt120(
              CalldataPointer cdPtr
          ) internal pure returns (int120 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int128 at `cdPtr` in calldata.
          function readInt128(
              CalldataPointer cdPtr
          ) internal pure returns (int128 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int136 at `cdPtr` in calldata.
          function readInt136(
              CalldataPointer cdPtr
          ) internal pure returns (int136 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int144 at `cdPtr` in calldata.
          function readInt144(
              CalldataPointer cdPtr
          ) internal pure returns (int144 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int152 at `cdPtr` in calldata.
          function readInt152(
              CalldataPointer cdPtr
          ) internal pure returns (int152 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int160 at `cdPtr` in calldata.
          function readInt160(
              CalldataPointer cdPtr
          ) internal pure returns (int160 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int168 at `cdPtr` in calldata.
          function readInt168(
              CalldataPointer cdPtr
          ) internal pure returns (int168 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int176 at `cdPtr` in calldata.
          function readInt176(
              CalldataPointer cdPtr
          ) internal pure returns (int176 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int184 at `cdPtr` in calldata.
          function readInt184(
              CalldataPointer cdPtr
          ) internal pure returns (int184 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int192 at `cdPtr` in calldata.
          function readInt192(
              CalldataPointer cdPtr
          ) internal pure returns (int192 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int200 at `cdPtr` in calldata.
          function readInt200(
              CalldataPointer cdPtr
          ) internal pure returns (int200 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int208 at `cdPtr` in calldata.
          function readInt208(
              CalldataPointer cdPtr
          ) internal pure returns (int208 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int216 at `cdPtr` in calldata.
          function readInt216(
              CalldataPointer cdPtr
          ) internal pure returns (int216 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int224 at `cdPtr` in calldata.
          function readInt224(
              CalldataPointer cdPtr
          ) internal pure returns (int224 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int232 at `cdPtr` in calldata.
          function readInt232(
              CalldataPointer cdPtr
          ) internal pure returns (int232 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int240 at `cdPtr` in calldata.
          function readInt240(
              CalldataPointer cdPtr
          ) internal pure returns (int240 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int248 at `cdPtr` in calldata.
          function readInt248(
              CalldataPointer cdPtr
          ) internal pure returns (int248 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
          /// @dev Reads the int256 at `cdPtr` in calldata.
          function readInt256(
              CalldataPointer cdPtr
          ) internal pure returns (int256 value) {
              assembly {
                  value := calldataload(cdPtr)
              }
          }
      }
      library ReturndataReaders {
          /// @dev Reads value at `rdPtr` & applies a mask to return only last 4 bytes
          function readMaskedUint256(
              ReturndataPointer rdPtr
          ) internal pure returns (uint256 value) {
              value = rdPtr.readUint256() & OffsetOrLengthMask;
          }
          /// @dev Reads the bool at `rdPtr` in returndata.
          function readBool(
              ReturndataPointer rdPtr
          ) internal pure returns (bool value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the address at `rdPtr` in returndata.
          function readAddress(
              ReturndataPointer rdPtr
          ) internal pure returns (address value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes1 at `rdPtr` in returndata.
          function readBytes1(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes1 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes2 at `rdPtr` in returndata.
          function readBytes2(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes2 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes3 at `rdPtr` in returndata.
          function readBytes3(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes3 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes4 at `rdPtr` in returndata.
          function readBytes4(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes4 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes5 at `rdPtr` in returndata.
          function readBytes5(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes5 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes6 at `rdPtr` in returndata.
          function readBytes6(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes6 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes7 at `rdPtr` in returndata.
          function readBytes7(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes7 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes8 at `rdPtr` in returndata.
          function readBytes8(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes8 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes9 at `rdPtr` in returndata.
          function readBytes9(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes9 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes10 at `rdPtr` in returndata.
          function readBytes10(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes10 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes11 at `rdPtr` in returndata.
          function readBytes11(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes11 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes12 at `rdPtr` in returndata.
          function readBytes12(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes12 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes13 at `rdPtr` in returndata.
          function readBytes13(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes13 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes14 at `rdPtr` in returndata.
          function readBytes14(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes14 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes15 at `rdPtr` in returndata.
          function readBytes15(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes15 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes16 at `rdPtr` in returndata.
          function readBytes16(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes16 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes17 at `rdPtr` in returndata.
          function readBytes17(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes17 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes18 at `rdPtr` in returndata.
          function readBytes18(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes18 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes19 at `rdPtr` in returndata.
          function readBytes19(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes19 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes20 at `rdPtr` in returndata.
          function readBytes20(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes20 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes21 at `rdPtr` in returndata.
          function readBytes21(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes21 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes22 at `rdPtr` in returndata.
          function readBytes22(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes22 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes23 at `rdPtr` in returndata.
          function readBytes23(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes23 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes24 at `rdPtr` in returndata.
          function readBytes24(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes24 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes25 at `rdPtr` in returndata.
          function readBytes25(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes25 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes26 at `rdPtr` in returndata.
          function readBytes26(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes26 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes27 at `rdPtr` in returndata.
          function readBytes27(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes27 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes28 at `rdPtr` in returndata.
          function readBytes28(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes28 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes29 at `rdPtr` in returndata.
          function readBytes29(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes29 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes30 at `rdPtr` in returndata.
          function readBytes30(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes30 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes31 at `rdPtr` in returndata.
          function readBytes31(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes31 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the bytes32 at `rdPtr` in returndata.
          function readBytes32(
              ReturndataPointer rdPtr
          ) internal pure returns (bytes32 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint8 at `rdPtr` in returndata.
          function readUint8(
              ReturndataPointer rdPtr
          ) internal pure returns (uint8 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint16 at `rdPtr` in returndata.
          function readUint16(
              ReturndataPointer rdPtr
          ) internal pure returns (uint16 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint24 at `rdPtr` in returndata.
          function readUint24(
              ReturndataPointer rdPtr
          ) internal pure returns (uint24 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint32 at `rdPtr` in returndata.
          function readUint32(
              ReturndataPointer rdPtr
          ) internal pure returns (uint32 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint40 at `rdPtr` in returndata.
          function readUint40(
              ReturndataPointer rdPtr
          ) internal pure returns (uint40 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint48 at `rdPtr` in returndata.
          function readUint48(
              ReturndataPointer rdPtr
          ) internal pure returns (uint48 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint56 at `rdPtr` in returndata.
          function readUint56(
              ReturndataPointer rdPtr
          ) internal pure returns (uint56 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint64 at `rdPtr` in returndata.
          function readUint64(
              ReturndataPointer rdPtr
          ) internal pure returns (uint64 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint72 at `rdPtr` in returndata.
          function readUint72(
              ReturndataPointer rdPtr
          ) internal pure returns (uint72 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint80 at `rdPtr` in returndata.
          function readUint80(
              ReturndataPointer rdPtr
          ) internal pure returns (uint80 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint88 at `rdPtr` in returndata.
          function readUint88(
              ReturndataPointer rdPtr
          ) internal pure returns (uint88 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint96 at `rdPtr` in returndata.
          function readUint96(
              ReturndataPointer rdPtr
          ) internal pure returns (uint96 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint104 at `rdPtr` in returndata.
          function readUint104(
              ReturndataPointer rdPtr
          ) internal pure returns (uint104 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint112 at `rdPtr` in returndata.
          function readUint112(
              ReturndataPointer rdPtr
          ) internal pure returns (uint112 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint120 at `rdPtr` in returndata.
          function readUint120(
              ReturndataPointer rdPtr
          ) internal pure returns (uint120 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint128 at `rdPtr` in returndata.
          function readUint128(
              ReturndataPointer rdPtr
          ) internal pure returns (uint128 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint136 at `rdPtr` in returndata.
          function readUint136(
              ReturndataPointer rdPtr
          ) internal pure returns (uint136 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint144 at `rdPtr` in returndata.
          function readUint144(
              ReturndataPointer rdPtr
          ) internal pure returns (uint144 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint152 at `rdPtr` in returndata.
          function readUint152(
              ReturndataPointer rdPtr
          ) internal pure returns (uint152 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint160 at `rdPtr` in returndata.
          function readUint160(
              ReturndataPointer rdPtr
          ) internal pure returns (uint160 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint168 at `rdPtr` in returndata.
          function readUint168(
              ReturndataPointer rdPtr
          ) internal pure returns (uint168 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint176 at `rdPtr` in returndata.
          function readUint176(
              ReturndataPointer rdPtr
          ) internal pure returns (uint176 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint184 at `rdPtr` in returndata.
          function readUint184(
              ReturndataPointer rdPtr
          ) internal pure returns (uint184 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint192 at `rdPtr` in returndata.
          function readUint192(
              ReturndataPointer rdPtr
          ) internal pure returns (uint192 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint200 at `rdPtr` in returndata.
          function readUint200(
              ReturndataPointer rdPtr
          ) internal pure returns (uint200 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint208 at `rdPtr` in returndata.
          function readUint208(
              ReturndataPointer rdPtr
          ) internal pure returns (uint208 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint216 at `rdPtr` in returndata.
          function readUint216(
              ReturndataPointer rdPtr
          ) internal pure returns (uint216 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint224 at `rdPtr` in returndata.
          function readUint224(
              ReturndataPointer rdPtr
          ) internal pure returns (uint224 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint232 at `rdPtr` in returndata.
          function readUint232(
              ReturndataPointer rdPtr
          ) internal pure returns (uint232 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint240 at `rdPtr` in returndata.
          function readUint240(
              ReturndataPointer rdPtr
          ) internal pure returns (uint240 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint248 at `rdPtr` in returndata.
          function readUint248(
              ReturndataPointer rdPtr
          ) internal pure returns (uint248 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the uint256 at `rdPtr` in returndata.
          function readUint256(
              ReturndataPointer rdPtr
          ) internal pure returns (uint256 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int8 at `rdPtr` in returndata.
          function readInt8(
              ReturndataPointer rdPtr
          ) internal pure returns (int8 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int16 at `rdPtr` in returndata.
          function readInt16(
              ReturndataPointer rdPtr
          ) internal pure returns (int16 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int24 at `rdPtr` in returndata.
          function readInt24(
              ReturndataPointer rdPtr
          ) internal pure returns (int24 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int32 at `rdPtr` in returndata.
          function readInt32(
              ReturndataPointer rdPtr
          ) internal pure returns (int32 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int40 at `rdPtr` in returndata.
          function readInt40(
              ReturndataPointer rdPtr
          ) internal pure returns (int40 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int48 at `rdPtr` in returndata.
          function readInt48(
              ReturndataPointer rdPtr
          ) internal pure returns (int48 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int56 at `rdPtr` in returndata.
          function readInt56(
              ReturndataPointer rdPtr
          ) internal pure returns (int56 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int64 at `rdPtr` in returndata.
          function readInt64(
              ReturndataPointer rdPtr
          ) internal pure returns (int64 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int72 at `rdPtr` in returndata.
          function readInt72(
              ReturndataPointer rdPtr
          ) internal pure returns (int72 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int80 at `rdPtr` in returndata.
          function readInt80(
              ReturndataPointer rdPtr
          ) internal pure returns (int80 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int88 at `rdPtr` in returndata.
          function readInt88(
              ReturndataPointer rdPtr
          ) internal pure returns (int88 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int96 at `rdPtr` in returndata.
          function readInt96(
              ReturndataPointer rdPtr
          ) internal pure returns (int96 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int104 at `rdPtr` in returndata.
          function readInt104(
              ReturndataPointer rdPtr
          ) internal pure returns (int104 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int112 at `rdPtr` in returndata.
          function readInt112(
              ReturndataPointer rdPtr
          ) internal pure returns (int112 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int120 at `rdPtr` in returndata.
          function readInt120(
              ReturndataPointer rdPtr
          ) internal pure returns (int120 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int128 at `rdPtr` in returndata.
          function readInt128(
              ReturndataPointer rdPtr
          ) internal pure returns (int128 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int136 at `rdPtr` in returndata.
          function readInt136(
              ReturndataPointer rdPtr
          ) internal pure returns (int136 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int144 at `rdPtr` in returndata.
          function readInt144(
              ReturndataPointer rdPtr
          ) internal pure returns (int144 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int152 at `rdPtr` in returndata.
          function readInt152(
              ReturndataPointer rdPtr
          ) internal pure returns (int152 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int160 at `rdPtr` in returndata.
          function readInt160(
              ReturndataPointer rdPtr
          ) internal pure returns (int160 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int168 at `rdPtr` in returndata.
          function readInt168(
              ReturndataPointer rdPtr
          ) internal pure returns (int168 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int176 at `rdPtr` in returndata.
          function readInt176(
              ReturndataPointer rdPtr
          ) internal pure returns (int176 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int184 at `rdPtr` in returndata.
          function readInt184(
              ReturndataPointer rdPtr
          ) internal pure returns (int184 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int192 at `rdPtr` in returndata.
          function readInt192(
              ReturndataPointer rdPtr
          ) internal pure returns (int192 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int200 at `rdPtr` in returndata.
          function readInt200(
              ReturndataPointer rdPtr
          ) internal pure returns (int200 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int208 at `rdPtr` in returndata.
          function readInt208(
              ReturndataPointer rdPtr
          ) internal pure returns (int208 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int216 at `rdPtr` in returndata.
          function readInt216(
              ReturndataPointer rdPtr
          ) internal pure returns (int216 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int224 at `rdPtr` in returndata.
          function readInt224(
              ReturndataPointer rdPtr
          ) internal pure returns (int224 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int232 at `rdPtr` in returndata.
          function readInt232(
              ReturndataPointer rdPtr
          ) internal pure returns (int232 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int240 at `rdPtr` in returndata.
          function readInt240(
              ReturndataPointer rdPtr
          ) internal pure returns (int240 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int248 at `rdPtr` in returndata.
          function readInt248(
              ReturndataPointer rdPtr
          ) internal pure returns (int248 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
          /// @dev Reads the int256 at `rdPtr` in returndata.
          function readInt256(
              ReturndataPointer rdPtr
          ) internal pure returns (int256 value) {
              assembly {
                  returndatacopy(0, rdPtr, _OneWord)
                  value := mload(0)
              }
          }
      }
      library MemoryReaders {
          /// @dev Reads the memory pointer at `mPtr` in memory.
          function readMemoryPointer(
              MemoryPointer mPtr
          ) internal pure returns (MemoryPointer value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads value at `mPtr` & applies a mask to return only last 4 bytes
          function readMaskedUint256(
              MemoryPointer mPtr
          ) internal pure returns (uint256 value) {
              value = mPtr.readUint256() & OffsetOrLengthMask;
          }
          /// @dev Reads the bool at `mPtr` in memory.
          function readBool(MemoryPointer mPtr) internal pure returns (bool value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the address at `mPtr` in memory.
          function readAddress(
              MemoryPointer mPtr
          ) internal pure returns (address value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes1 at `mPtr` in memory.
          function readBytes1(
              MemoryPointer mPtr
          ) internal pure returns (bytes1 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes2 at `mPtr` in memory.
          function readBytes2(
              MemoryPointer mPtr
          ) internal pure returns (bytes2 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes3 at `mPtr` in memory.
          function readBytes3(
              MemoryPointer mPtr
          ) internal pure returns (bytes3 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes4 at `mPtr` in memory.
          function readBytes4(
              MemoryPointer mPtr
          ) internal pure returns (bytes4 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes5 at `mPtr` in memory.
          function readBytes5(
              MemoryPointer mPtr
          ) internal pure returns (bytes5 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes6 at `mPtr` in memory.
          function readBytes6(
              MemoryPointer mPtr
          ) internal pure returns (bytes6 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes7 at `mPtr` in memory.
          function readBytes7(
              MemoryPointer mPtr
          ) internal pure returns (bytes7 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes8 at `mPtr` in memory.
          function readBytes8(
              MemoryPointer mPtr
          ) internal pure returns (bytes8 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes9 at `mPtr` in memory.
          function readBytes9(
              MemoryPointer mPtr
          ) internal pure returns (bytes9 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes10 at `mPtr` in memory.
          function readBytes10(
              MemoryPointer mPtr
          ) internal pure returns (bytes10 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes11 at `mPtr` in memory.
          function readBytes11(
              MemoryPointer mPtr
          ) internal pure returns (bytes11 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes12 at `mPtr` in memory.
          function readBytes12(
              MemoryPointer mPtr
          ) internal pure returns (bytes12 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes13 at `mPtr` in memory.
          function readBytes13(
              MemoryPointer mPtr
          ) internal pure returns (bytes13 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes14 at `mPtr` in memory.
          function readBytes14(
              MemoryPointer mPtr
          ) internal pure returns (bytes14 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes15 at `mPtr` in memory.
          function readBytes15(
              MemoryPointer mPtr
          ) internal pure returns (bytes15 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes16 at `mPtr` in memory.
          function readBytes16(
              MemoryPointer mPtr
          ) internal pure returns (bytes16 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes17 at `mPtr` in memory.
          function readBytes17(
              MemoryPointer mPtr
          ) internal pure returns (bytes17 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes18 at `mPtr` in memory.
          function readBytes18(
              MemoryPointer mPtr
          ) internal pure returns (bytes18 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes19 at `mPtr` in memory.
          function readBytes19(
              MemoryPointer mPtr
          ) internal pure returns (bytes19 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes20 at `mPtr` in memory.
          function readBytes20(
              MemoryPointer mPtr
          ) internal pure returns (bytes20 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes21 at `mPtr` in memory.
          function readBytes21(
              MemoryPointer mPtr
          ) internal pure returns (bytes21 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes22 at `mPtr` in memory.
          function readBytes22(
              MemoryPointer mPtr
          ) internal pure returns (bytes22 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes23 at `mPtr` in memory.
          function readBytes23(
              MemoryPointer mPtr
          ) internal pure returns (bytes23 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes24 at `mPtr` in memory.
          function readBytes24(
              MemoryPointer mPtr
          ) internal pure returns (bytes24 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes25 at `mPtr` in memory.
          function readBytes25(
              MemoryPointer mPtr
          ) internal pure returns (bytes25 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes26 at `mPtr` in memory.
          function readBytes26(
              MemoryPointer mPtr
          ) internal pure returns (bytes26 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes27 at `mPtr` in memory.
          function readBytes27(
              MemoryPointer mPtr
          ) internal pure returns (bytes27 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes28 at `mPtr` in memory.
          function readBytes28(
              MemoryPointer mPtr
          ) internal pure returns (bytes28 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes29 at `mPtr` in memory.
          function readBytes29(
              MemoryPointer mPtr
          ) internal pure returns (bytes29 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes30 at `mPtr` in memory.
          function readBytes30(
              MemoryPointer mPtr
          ) internal pure returns (bytes30 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes31 at `mPtr` in memory.
          function readBytes31(
              MemoryPointer mPtr
          ) internal pure returns (bytes31 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the bytes32 at `mPtr` in memory.
          function readBytes32(
              MemoryPointer mPtr
          ) internal pure returns (bytes32 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint8 at `mPtr` in memory.
          function readUint8(MemoryPointer mPtr) internal pure returns (uint8 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint16 at `mPtr` in memory.
          function readUint16(
              MemoryPointer mPtr
          ) internal pure returns (uint16 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint24 at `mPtr` in memory.
          function readUint24(
              MemoryPointer mPtr
          ) internal pure returns (uint24 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint32 at `mPtr` in memory.
          function readUint32(
              MemoryPointer mPtr
          ) internal pure returns (uint32 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint40 at `mPtr` in memory.
          function readUint40(
              MemoryPointer mPtr
          ) internal pure returns (uint40 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint48 at `mPtr` in memory.
          function readUint48(
              MemoryPointer mPtr
          ) internal pure returns (uint48 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint56 at `mPtr` in memory.
          function readUint56(
              MemoryPointer mPtr
          ) internal pure returns (uint56 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint64 at `mPtr` in memory.
          function readUint64(
              MemoryPointer mPtr
          ) internal pure returns (uint64 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint72 at `mPtr` in memory.
          function readUint72(
              MemoryPointer mPtr
          ) internal pure returns (uint72 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint80 at `mPtr` in memory.
          function readUint80(
              MemoryPointer mPtr
          ) internal pure returns (uint80 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint88 at `mPtr` in memory.
          function readUint88(
              MemoryPointer mPtr
          ) internal pure returns (uint88 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint96 at `mPtr` in memory.
          function readUint96(
              MemoryPointer mPtr
          ) internal pure returns (uint96 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint104 at `mPtr` in memory.
          function readUint104(
              MemoryPointer mPtr
          ) internal pure returns (uint104 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint112 at `mPtr` in memory.
          function readUint112(
              MemoryPointer mPtr
          ) internal pure returns (uint112 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint120 at `mPtr` in memory.
          function readUint120(
              MemoryPointer mPtr
          ) internal pure returns (uint120 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint128 at `mPtr` in memory.
          function readUint128(
              MemoryPointer mPtr
          ) internal pure returns (uint128 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint136 at `mPtr` in memory.
          function readUint136(
              MemoryPointer mPtr
          ) internal pure returns (uint136 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint144 at `mPtr` in memory.
          function readUint144(
              MemoryPointer mPtr
          ) internal pure returns (uint144 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint152 at `mPtr` in memory.
          function readUint152(
              MemoryPointer mPtr
          ) internal pure returns (uint152 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint160 at `mPtr` in memory.
          function readUint160(
              MemoryPointer mPtr
          ) internal pure returns (uint160 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint168 at `mPtr` in memory.
          function readUint168(
              MemoryPointer mPtr
          ) internal pure returns (uint168 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint176 at `mPtr` in memory.
          function readUint176(
              MemoryPointer mPtr
          ) internal pure returns (uint176 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint184 at `mPtr` in memory.
          function readUint184(
              MemoryPointer mPtr
          ) internal pure returns (uint184 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint192 at `mPtr` in memory.
          function readUint192(
              MemoryPointer mPtr
          ) internal pure returns (uint192 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint200 at `mPtr` in memory.
          function readUint200(
              MemoryPointer mPtr
          ) internal pure returns (uint200 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint208 at `mPtr` in memory.
          function readUint208(
              MemoryPointer mPtr
          ) internal pure returns (uint208 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint216 at `mPtr` in memory.
          function readUint216(
              MemoryPointer mPtr
          ) internal pure returns (uint216 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint224 at `mPtr` in memory.
          function readUint224(
              MemoryPointer mPtr
          ) internal pure returns (uint224 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint232 at `mPtr` in memory.
          function readUint232(
              MemoryPointer mPtr
          ) internal pure returns (uint232 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint240 at `mPtr` in memory.
          function readUint240(
              MemoryPointer mPtr
          ) internal pure returns (uint240 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint248 at `mPtr` in memory.
          function readUint248(
              MemoryPointer mPtr
          ) internal pure returns (uint248 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the uint256 at `mPtr` in memory.
          function readUint256(
              MemoryPointer mPtr
          ) internal pure returns (uint256 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int8 at `mPtr` in memory.
          function readInt8(MemoryPointer mPtr) internal pure returns (int8 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int16 at `mPtr` in memory.
          function readInt16(MemoryPointer mPtr) internal pure returns (int16 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int24 at `mPtr` in memory.
          function readInt24(MemoryPointer mPtr) internal pure returns (int24 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int32 at `mPtr` in memory.
          function readInt32(MemoryPointer mPtr) internal pure returns (int32 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int40 at `mPtr` in memory.
          function readInt40(MemoryPointer mPtr) internal pure returns (int40 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int48 at `mPtr` in memory.
          function readInt48(MemoryPointer mPtr) internal pure returns (int48 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int56 at `mPtr` in memory.
          function readInt56(MemoryPointer mPtr) internal pure returns (int56 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int64 at `mPtr` in memory.
          function readInt64(MemoryPointer mPtr) internal pure returns (int64 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int72 at `mPtr` in memory.
          function readInt72(MemoryPointer mPtr) internal pure returns (int72 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int80 at `mPtr` in memory.
          function readInt80(MemoryPointer mPtr) internal pure returns (int80 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int88 at `mPtr` in memory.
          function readInt88(MemoryPointer mPtr) internal pure returns (int88 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int96 at `mPtr` in memory.
          function readInt96(MemoryPointer mPtr) internal pure returns (int96 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int104 at `mPtr` in memory.
          function readInt104(
              MemoryPointer mPtr
          ) internal pure returns (int104 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int112 at `mPtr` in memory.
          function readInt112(
              MemoryPointer mPtr
          ) internal pure returns (int112 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int120 at `mPtr` in memory.
          function readInt120(
              MemoryPointer mPtr
          ) internal pure returns (int120 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int128 at `mPtr` in memory.
          function readInt128(
              MemoryPointer mPtr
          ) internal pure returns (int128 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int136 at `mPtr` in memory.
          function readInt136(
              MemoryPointer mPtr
          ) internal pure returns (int136 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int144 at `mPtr` in memory.
          function readInt144(
              MemoryPointer mPtr
          ) internal pure returns (int144 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int152 at `mPtr` in memory.
          function readInt152(
              MemoryPointer mPtr
          ) internal pure returns (int152 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int160 at `mPtr` in memory.
          function readInt160(
              MemoryPointer mPtr
          ) internal pure returns (int160 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int168 at `mPtr` in memory.
          function readInt168(
              MemoryPointer mPtr
          ) internal pure returns (int168 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int176 at `mPtr` in memory.
          function readInt176(
              MemoryPointer mPtr
          ) internal pure returns (int176 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int184 at `mPtr` in memory.
          function readInt184(
              MemoryPointer mPtr
          ) internal pure returns (int184 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int192 at `mPtr` in memory.
          function readInt192(
              MemoryPointer mPtr
          ) internal pure returns (int192 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int200 at `mPtr` in memory.
          function readInt200(
              MemoryPointer mPtr
          ) internal pure returns (int200 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int208 at `mPtr` in memory.
          function readInt208(
              MemoryPointer mPtr
          ) internal pure returns (int208 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int216 at `mPtr` in memory.
          function readInt216(
              MemoryPointer mPtr
          ) internal pure returns (int216 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int224 at `mPtr` in memory.
          function readInt224(
              MemoryPointer mPtr
          ) internal pure returns (int224 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int232 at `mPtr` in memory.
          function readInt232(
              MemoryPointer mPtr
          ) internal pure returns (int232 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int240 at `mPtr` in memory.
          function readInt240(
              MemoryPointer mPtr
          ) internal pure returns (int240 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int248 at `mPtr` in memory.
          function readInt248(
              MemoryPointer mPtr
          ) internal pure returns (int248 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
          /// @dev Reads the int256 at `mPtr` in memory.
          function readInt256(
              MemoryPointer mPtr
          ) internal pure returns (int256 value) {
              assembly {
                  value := mload(mPtr)
              }
          }
      }
      library MemoryWriters {
          /// @dev Writes `valuePtr` to memory at `mPtr`.
          function write(MemoryPointer mPtr, MemoryPointer valuePtr) internal pure {
              assembly {
                  mstore(mPtr, valuePtr)
              }
          }
          /// @dev Writes a boolean `value` to `mPtr` in memory.
          function write(MemoryPointer mPtr, bool value) internal pure {
              assembly {
                  mstore(mPtr, value)
              }
          }
          /// @dev Writes an address `value` to `mPtr` in memory.
          function write(MemoryPointer mPtr, address value) internal pure {
              assembly {
                  mstore(mPtr, value)
              }
          }
          /// @dev Writes a bytes32 `value` to `mPtr` in memory.
          /// Separate name to disambiguate literal write parameters.
          function writeBytes32(MemoryPointer mPtr, bytes32 value) internal pure {
              assembly {
                  mstore(mPtr, value)
              }
          }
          /// @dev Writes a uint256 `value` to `mPtr` in memory.
          function write(MemoryPointer mPtr, uint256 value) internal pure {
              assembly {
                  mstore(mPtr, value)
              }
          }
          /// @dev Writes an int256 `value` to `mPtr` in memory.
          /// Separate name to disambiguate literal write parameters.
          function writeInt(MemoryPointer mPtr, int256 value) internal pure {
              assembly {
                  mstore(mPtr, value)
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.13;
      import {
          BasicOrderType,
          ItemType,
          OrderType,
          Side
      } from "./ConsiderationEnums.sol";
      import {
          CalldataPointer,
          MemoryPointer
      } from "../helpers/PointerLibraries.sol";
      /**
       * @dev An order contains eleven components: an offerer, a zone (or account that
       *      can cancel the order or restrict who can fulfill the order depending on
       *      the type), the order type (specifying partial fill support as well as
       *      restricted order status), the start and end time, a hash that will be
       *      provided to the zone when validating restricted orders, a salt, a key
       *      corresponding to a given conduit, a counter, and an arbitrary number of
       *      offer items that can be spent along with consideration items that must
       *      be received by their respective recipient.
       */
      struct OrderComponents {
          address offerer;
          address zone;
          OfferItem[] offer;
          ConsiderationItem[] consideration;
          OrderType orderType;
          uint256 startTime;
          uint256 endTime;
          bytes32 zoneHash;
          uint256 salt;
          bytes32 conduitKey;
          uint256 counter;
      }
      /**
       * @dev An offer item has five components: an item type (ETH or other native
       *      tokens, ERC20, ERC721, and ERC1155, as well as criteria-based ERC721 and
       *      ERC1155), a token address, a dual-purpose "identifierOrCriteria"
       *      component that will either represent a tokenId or a merkle root
       *      depending on the item type, and a start and end amount that support
       *      increasing or decreasing amounts over the duration of the respective
       *      order.
       */
      struct OfferItem {
          ItemType itemType;
          address token;
          uint256 identifierOrCriteria;
          uint256 startAmount;
          uint256 endAmount;
      }
      /**
       * @dev A consideration item has the same five components as an offer item and
       *      an additional sixth component designating the required recipient of the
       *      item.
       */
      struct ConsiderationItem {
          ItemType itemType;
          address token;
          uint256 identifierOrCriteria;
          uint256 startAmount;
          uint256 endAmount;
          address payable recipient;
      }
      /**
       * @dev A spent item is translated from a utilized offer item and has four
       *      components: an item type (ETH or other native tokens, ERC20, ERC721, and
       *      ERC1155), a token address, a tokenId, and an amount.
       */
      struct SpentItem {
          ItemType itemType;
          address token;
          uint256 identifier;
          uint256 amount;
      }
      /**
       * @dev A received item is translated from a utilized consideration item and has
       *      the same four components as a spent item, as well as an additional fifth
       *      component designating the required recipient of the item.
       */
      struct ReceivedItem {
          ItemType itemType;
          address token;
          uint256 identifier;
          uint256 amount;
          address payable recipient;
      }
      /**
       * @dev For basic orders involving ETH / native / ERC20 <=> ERC721 / ERC1155
       *      matching, a group of six functions may be called that only requires a
       *      subset of the usual order arguments. Note the use of a "basicOrderType"
       *      enum; this represents both the usual order type as well as the "route"
       *      of the basic order (a simple derivation function for the basic order
       *      type is `basicOrderType = orderType + (4 * basicOrderRoute)`.)
       */
      struct BasicOrderParameters {
          // calldata offset
          address considerationToken; // 0x24
          uint256 considerationIdentifier; // 0x44
          uint256 considerationAmount; // 0x64
          address payable offerer; // 0x84
          address zone; // 0xa4
          address offerToken; // 0xc4
          uint256 offerIdentifier; // 0xe4
          uint256 offerAmount; // 0x104
          BasicOrderType basicOrderType; // 0x124
          uint256 startTime; // 0x144
          uint256 endTime; // 0x164
          bytes32 zoneHash; // 0x184
          uint256 salt; // 0x1a4
          bytes32 offererConduitKey; // 0x1c4
          bytes32 fulfillerConduitKey; // 0x1e4
          uint256 totalOriginalAdditionalRecipients; // 0x204
          AdditionalRecipient[] additionalRecipients; // 0x224
          bytes signature; // 0x244
          // Total length, excluding dynamic array data: 0x264 (580)
      }
      /**
       * @dev Basic orders can supply any number of additional recipients, with the
       *      implied assumption that they are supplied from the offered ETH (or other
       *      native token) or ERC20 token for the order.
       */
      struct AdditionalRecipient {
          uint256 amount;
          address payable recipient;
      }
      /**
       * @dev The full set of order components, with the exception of the counter,
       *      must be supplied when fulfilling more sophisticated orders or groups of
       *      orders. The total number of original consideration items must also be
       *      supplied, as the caller may specify additional consideration items.
       */
      struct OrderParameters {
          address offerer; // 0x00
          address zone; // 0x20
          OfferItem[] offer; // 0x40
          ConsiderationItem[] consideration; // 0x60
          OrderType orderType; // 0x80
          uint256 startTime; // 0xa0
          uint256 endTime; // 0xc0
          bytes32 zoneHash; // 0xe0
          uint256 salt; // 0x100
          bytes32 conduitKey; // 0x120
          uint256 totalOriginalConsiderationItems; // 0x140
          // offer.length                          // 0x160
      }
      /**
       * @dev Orders require a signature in addition to the other order parameters.
       */
      struct Order {
          OrderParameters parameters;
          bytes signature;
      }
      /**
       * @dev Advanced orders include a numerator (i.e. a fraction to attempt to fill)
       *      and a denominator (the total size of the order) in addition to the
       *      signature and other order parameters. It also supports an optional field
       *      for supplying extra data; this data will be provided to the zone if the
       *      order type is restricted and the zone is not the caller, or will be
       *      provided to the offerer as context for contract order types.
       */
      struct AdvancedOrder {
          OrderParameters parameters;
          uint120 numerator;
          uint120 denominator;
          bytes signature;
          bytes extraData;
      }
      /**
       * @dev Orders can be validated (either explicitly via `validate`, or as a
       *      consequence of a full or partial fill), specifically cancelled (they can
       *      also be cancelled in bulk via incrementing a per-zone counter), and
       *      partially or fully filled (with the fraction filled represented by a
       *      numerator and denominator).
       */
      struct OrderStatus {
          bool isValidated;
          bool isCancelled;
          uint120 numerator;
          uint120 denominator;
      }
      /**
       * @dev A criteria resolver specifies an order, side (offer vs. consideration),
       *      and item index. It then provides a chosen identifier (i.e. tokenId)
       *      alongside a merkle proof demonstrating the identifier meets the required
       *      criteria.
       */
      struct CriteriaResolver {
          uint256 orderIndex;
          Side side;
          uint256 index;
          uint256 identifier;
          bytes32[] criteriaProof;
      }
      /**
       * @dev A fulfillment is applied to a group of orders. It decrements a series of
       *      offer and consideration items, then generates a single execution
       *      element. A given fulfillment can be applied to as many offer and
       *      consideration items as desired, but must contain at least one offer and
       *      at least one consideration that match. The fulfillment must also remain
       *      consistent on all key parameters across all offer items (same offerer,
       *      token, type, tokenId, and conduit preference) as well as across all
       *      consideration items (token, type, tokenId, and recipient).
       */
      struct Fulfillment {
          FulfillmentComponent[] offerComponents;
          FulfillmentComponent[] considerationComponents;
      }
      /**
       * @dev Each fulfillment component contains one index referencing a specific
       *      order and another referencing a specific offer or consideration item.
       */
      struct FulfillmentComponent {
          uint256 orderIndex;
          uint256 itemIndex;
      }
      /**
       * @dev An execution is triggered once all consideration items have been zeroed
       *      out. It sends the item in question from the offerer to the item's
       *      recipient, optionally sourcing approvals from either this contract
       *      directly or from the offerer's chosen conduit if one is specified. An
       *      execution is not provided as an argument, but rather is derived via
       *      orders, criteria resolvers, and fulfillments (where the total number of
       *      executions will be less than or equal to the total number of indicated
       *      fulfillments) and returned as part of `matchOrders`.
       */
      struct Execution {
          ReceivedItem item;
          address offerer;
          bytes32 conduitKey;
      }
      /**
       * @dev Restricted orders are validated post-execution by calling validateOrder
       *      on the zone. This struct provides context about the order fulfillment
       *      and any supplied extraData, as well as all order hashes fulfilled in a
       *      call to a match or fulfillAvailable method.
       */
      struct ZoneParameters {
          bytes32 orderHash;
          address fulfiller;
          address offerer;
          SpentItem[] offer;
          ReceivedItem[] consideration;
          bytes extraData;
          bytes32[] orderHashes;
          uint256 startTime;
          uint256 endTime;
          bytes32 zoneHash;
      }
      /**
       * @dev Zones and contract offerers can communicate which schemas they implement
       *      along with any associated metadata related to each schema.
       */
      struct Schema {
          uint256 id;
          bytes metadata;
      }
      using StructPointers for OrderComponents global;
      using StructPointers for OfferItem global;
      using StructPointers for ConsiderationItem global;
      using StructPointers for SpentItem global;
      using StructPointers for ReceivedItem global;
      using StructPointers for BasicOrderParameters global;
      using StructPointers for AdditionalRecipient global;
      using StructPointers for OrderParameters global;
      using StructPointers for Order global;
      using StructPointers for AdvancedOrder global;
      using StructPointers for OrderStatus global;
      using StructPointers for CriteriaResolver global;
      using StructPointers for Fulfillment global;
      using StructPointers for FulfillmentComponent global;
      using StructPointers for Execution global;
      using StructPointers for ZoneParameters global;
      /**
       * @dev This library provides a set of functions for converting structs to
       *      pointers.
       */
      library StructPointers {
          /**
           * @dev Get a MemoryPointer from OrderComponents.
           *
           * @param obj The OrderComponents object.
           *
           * @return ptr The MemoryPointer.
           */
          function toMemoryPointer(
              OrderComponents memory obj
          ) internal pure returns (MemoryPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a CalldataPointer from OrderComponents.
           *
           * @param obj The OrderComponents object.
           *
           * @return ptr The CalldataPointer.
           */
          function toCalldataPointer(
              OrderComponents calldata obj
          ) internal pure returns (CalldataPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a MemoryPointer from OfferItem.
           *
           * @param obj The OfferItem object.
           *
           * @return ptr The MemoryPointer.
           */
          function toMemoryPointer(
              OfferItem memory obj
          ) internal pure returns (MemoryPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a CalldataPointer from OfferItem.
           *
           * @param obj The OfferItem object.
           *
           * @return ptr The CalldataPointer.
           */
          function toCalldataPointer(
              OfferItem calldata obj
          ) internal pure returns (CalldataPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a MemoryPointer from ConsiderationItem.
           *
           * @param obj The ConsiderationItem object.
           *
           * @return ptr The MemoryPointer.
           */
          function toMemoryPointer(
              ConsiderationItem memory obj
          ) internal pure returns (MemoryPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a CalldataPointer from ConsiderationItem.
           *
           * @param obj The ConsiderationItem object.
           *
           * @return ptr The CalldataPointer.
           */
          function toCalldataPointer(
              ConsiderationItem calldata obj
          ) internal pure returns (CalldataPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a MemoryPointer from SpentItem.
           *
           * @param obj The SpentItem object.
           *
           * @return ptr The MemoryPointer.
           */
          function toMemoryPointer(
              SpentItem memory obj
          ) internal pure returns (MemoryPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a CalldataPointer from SpentItem.
           *
           * @param obj The SpentItem object.
           *
           * @return ptr The CalldataPointer.
           */
          function toCalldataPointer(
              SpentItem calldata obj
          ) internal pure returns (CalldataPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a MemoryPointer from ReceivedItem.
           *
           * @param obj The ReceivedItem object.
           *
           * @return ptr The MemoryPointer.
           */
          function toMemoryPointer(
              ReceivedItem memory obj
          ) internal pure returns (MemoryPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a CalldataPointer from ReceivedItem.
           *
           * @param obj The ReceivedItem object.
           *
           * @return ptr The CalldataPointer.
           */
          function toCalldataPointer(
              ReceivedItem calldata obj
          ) internal pure returns (CalldataPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a MemoryPointer from BasicOrderParameters.
           *
           * @param obj The BasicOrderParameters object.
           *
           * @return ptr The MemoryPointer.
           */
          function toMemoryPointer(
              BasicOrderParameters memory obj
          ) internal pure returns (MemoryPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a CalldataPointer from BasicOrderParameters.
           *
           * @param obj The BasicOrderParameters object.
           *
           * @return ptr The CalldataPointer.
           */
          function toCalldataPointer(
              BasicOrderParameters calldata obj
          ) internal pure returns (CalldataPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a MemoryPointer from AdditionalRecipient.
           *
           * @param obj The AdditionalRecipient object.
           *
           * @return ptr The MemoryPointer.
           */
          function toMemoryPointer(
              AdditionalRecipient memory obj
          ) internal pure returns (MemoryPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a CalldataPointer from AdditionalRecipient.
           *
           * @param obj The AdditionalRecipient object.
           *
           * @return ptr The CalldataPointer.
           */
          function toCalldataPointer(
              AdditionalRecipient calldata obj
          ) internal pure returns (CalldataPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a MemoryPointer from OrderParameters.
           *
           * @param obj The OrderParameters object.
           *
           * @return ptr The MemoryPointer.
           */
          function toMemoryPointer(
              OrderParameters memory obj
          ) internal pure returns (MemoryPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a CalldataPointer from OrderParameters.
           *
           * @param obj The OrderParameters object.
           *
           * @return ptr The CalldataPointer.
           */
          function toCalldataPointer(
              OrderParameters calldata obj
          ) internal pure returns (CalldataPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a MemoryPointer from Order.
           *
           * @param obj The Order object.
           *
           * @return ptr The MemoryPointer.
           */
          function toMemoryPointer(
              Order memory obj
          ) internal pure returns (MemoryPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a CalldataPointer from Order.
           *
           * @param obj The Order object.
           *
           * @return ptr The CalldataPointer.
           */
          function toCalldataPointer(
              Order calldata obj
          ) internal pure returns (CalldataPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a MemoryPointer from AdvancedOrder.
           *
           * @param obj The AdvancedOrder object.
           *
           * @return ptr The MemoryPointer.
           */
          function toMemoryPointer(
              AdvancedOrder memory obj
          ) internal pure returns (MemoryPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a CalldataPointer from AdvancedOrder.
           *
           * @param obj The AdvancedOrder object.
           *
           * @return ptr The CalldataPointer.
           */
          function toCalldataPointer(
              AdvancedOrder calldata obj
          ) internal pure returns (CalldataPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a MemoryPointer from OrderStatus.
           *
           * @param obj The OrderStatus object.
           *
           * @return ptr The MemoryPointer.
           */
          function toMemoryPointer(
              OrderStatus memory obj
          ) internal pure returns (MemoryPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a CalldataPointer from OrderStatus.
           *
           * @param obj The OrderStatus object.
           *
           * @return ptr The CalldataPointer.
           */
          function toCalldataPointer(
              OrderStatus calldata obj
          ) internal pure returns (CalldataPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a MemoryPointer from CriteriaResolver.
           *
           * @param obj The CriteriaResolver object.
           *
           * @return ptr The MemoryPointer.
           */
          function toMemoryPointer(
              CriteriaResolver memory obj
          ) internal pure returns (MemoryPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a CalldataPointer from CriteriaResolver.
           *
           * @param obj The CriteriaResolver object.
           *
           * @return ptr The CalldataPointer.
           */
          function toCalldataPointer(
              CriteriaResolver calldata obj
          ) internal pure returns (CalldataPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a MemoryPointer from Fulfillment.
           *
           * @param obj The Fulfillment object.
           *
           * @return ptr The MemoryPointer.
           */
          function toMemoryPointer(
              Fulfillment memory obj
          ) internal pure returns (MemoryPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a CalldataPointer from Fulfillment.
           *
           * @param obj The Fulfillment object.
           *
           * @return ptr The CalldataPointer.
           */
          function toCalldataPointer(
              Fulfillment calldata obj
          ) internal pure returns (CalldataPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a MemoryPointer from FulfillmentComponent.
           *
           * @param obj The FulfillmentComponent object.
           *
           * @return ptr The MemoryPointer.
           */
          function toMemoryPointer(
              FulfillmentComponent memory obj
          ) internal pure returns (MemoryPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a CalldataPointer from FulfillmentComponent.
           *
           * @param obj The FulfillmentComponent object.
           *
           * @return ptr The CalldataPointer.
           */
          function toCalldataPointer(
              FulfillmentComponent calldata obj
          ) internal pure returns (CalldataPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a MemoryPointer from Execution.
           *
           * @param obj The Execution object.
           *
           * @return ptr The MemoryPointer.
           */
          function toMemoryPointer(
              Execution memory obj
          ) internal pure returns (MemoryPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a CalldataPointer from Execution.
           *
           * @param obj The Execution object.
           *
           * @return ptr The CalldataPointer.
           */
          function toCalldataPointer(
              Execution calldata obj
          ) internal pure returns (CalldataPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a MemoryPointer from ZoneParameters.
           *
           * @param obj The ZoneParameters object.
           *
           * @return ptr The MemoryPointer.
           */
          function toMemoryPointer(
              ZoneParameters memory obj
          ) internal pure returns (MemoryPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Get a CalldataPointer from ZoneParameters.
           *
           * @param obj The ZoneParameters object.
           *
           * @return ptr The CalldataPointer.
           */
          function toCalldataPointer(
              ZoneParameters calldata obj
          ) internal pure returns (CalldataPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      import { Side } from "./ConsiderationEnums.sol";
      import {
          BadFraction_error_length,
          BadFraction_error_selector,
          CannotCancelOrder_error_length,
          CannotCancelOrder_error_selector,
          ConsiderationLengthNotEqualToTotalOriginal_error_length,
          ConsiderationLengthNotEqualToTotalOriginal_error_selector,
          ConsiderationNotMet_error_considerationIndex_ptr,
          ConsiderationNotMet_error_length,
          ConsiderationNotMet_error_orderIndex_ptr,
          ConsiderationNotMet_error_selector,
          ConsiderationNotMet_error_shortfallAmount_ptr,
          CriteriaNotEnabledForItem_error_length,
          CriteriaNotEnabledForItem_error_selector,
          Error_selector_offset,
          InsufficientNativeTokensSupplied_error_length,
          InsufficientNativeTokensSupplied_error_selector,
          InvalidBasicOrderParameterEncoding_error_length,
          InvalidBasicOrderParameterEncoding_error_selector,
          InvalidCallToConduit_error_conduit_ptr,
          InvalidCallToConduit_error_length,
          InvalidCallToConduit_error_selector,
          InvalidConduit_error_conduit_ptr,
          InvalidConduit_error_conduitKey_ptr,
          InvalidConduit_error_length,
          InvalidConduit_error_selector,
          InvalidContractOrder_error_length,
          InvalidContractOrder_error_orderHash_ptr,
          InvalidContractOrder_error_selector,
          InvalidERC721TransferAmount_error_amount_ptr,
          InvalidERC721TransferAmount_error_length,
          InvalidERC721TransferAmount_error_selector,
          InvalidMsgValue_error_length,
          InvalidMsgValue_error_selector,
          InvalidMsgValue_error_value_ptr,
          InvalidNativeOfferItem_error_length,
          InvalidNativeOfferItem_error_selector,
          InvalidProof_error_length,
          InvalidProof_error_selector,
          InvalidTime_error_endTime_ptr,
          InvalidTime_error_length,
          InvalidTime_error_selector,
          InvalidTime_error_startTime_ptr,
          MismatchedOfferAndConsiderationComponents_error_idx_ptr,
          MismatchedOfferAndConsiderationComponents_error_length,
          MismatchedOfferAndConsiderationComponents_error_selector,
          MissingFulfillmentComponentOnAggregation_error_length,
          MissingFulfillmentComponentOnAggregation_error_selector,
          MissingFulfillmentComponentOnAggregation_error_side_ptr,
          MissingOriginalConsiderationItems_error_length,
          MissingOriginalConsiderationItems_error_selector,
          NoReentrantCalls_error_length,
          NoReentrantCalls_error_selector,
          NoSpecifiedOrdersAvailable_error_length,
          NoSpecifiedOrdersAvailable_error_selector,
          OfferAndConsiderationRequiredOnFulfillment_error_length,
          OfferAndConsiderationRequiredOnFulfillment_error_selector,
          OrderAlreadyFilled_error_length,
          OrderAlreadyFilled_error_orderHash_ptr,
          OrderAlreadyFilled_error_selector,
          OrderCriteriaResolverOutOfRange_error_length,
          OrderCriteriaResolverOutOfRange_error_selector,
          OrderCriteriaResolverOutOfRange_error_side_ptr,
          OrderIsCancelled_error_length,
          OrderIsCancelled_error_orderHash_ptr,
          OrderIsCancelled_error_selector,
          OrderPartiallyFilled_error_length,
          OrderPartiallyFilled_error_orderHash_ptr,
          OrderPartiallyFilled_error_selector,
          PartialFillsNotEnabledForOrder_error_length,
          PartialFillsNotEnabledForOrder_error_selector,
          UnresolvedConsiderationCriteria_error_considerationIdx_ptr,
          UnresolvedConsiderationCriteria_error_length,
          UnresolvedConsiderationCriteria_error_orderIndex_ptr,
          UnresolvedConsiderationCriteria_error_selector,
          UnresolvedOfferCriteria_error_length,
          UnresolvedOfferCriteria_error_offerIndex_ptr,
          UnresolvedOfferCriteria_error_orderIndex_ptr,
          UnresolvedOfferCriteria_error_selector,
          UnusedItemParameters_error_length,
          UnusedItemParameters_error_selector
      } from "./ConsiderationErrorConstants.sol";
      /**
       * @dev Reverts the current transaction with a "BadFraction" error message.
       */
      function _revertBadFraction() pure {
          assembly {
              // Store left-padded selector with push4 (reduces bytecode),
              // mem[28:32] = selector
              mstore(0, BadFraction_error_selector)
              // revert(abi.encodeWithSignature("BadFraction()"))
              revert(Error_selector_offset, BadFraction_error_length)
          }
      }
      /**
       * @dev Reverts the current transaction with a "ConsiderationNotMet" error
       *      message, including the provided order index, consideration index, and
       *      shortfall amount.
       *
       * @param orderIndex         The index of the order that did not meet the
       *                           consideration criteria.
       * @param considerationIndex The index of the consideration item that did not
       *                           meet its criteria.
       * @param shortfallAmount    The amount by which the consideration criteria were
       *                           not met.
       */
      function _revertConsiderationNotMet(
          uint256 orderIndex,
          uint256 considerationIndex,
          uint256 shortfallAmount
      ) pure {
          assembly {
              // Store left-padded selector with push4 (reduces bytecode),
              // mem[28:32] = selector
              mstore(0, ConsiderationNotMet_error_selector)
              // Store arguments.
              mstore(ConsiderationNotMet_error_orderIndex_ptr, orderIndex)
              mstore(
                  ConsiderationNotMet_error_considerationIndex_ptr,
                  considerationIndex
              )
              mstore(ConsiderationNotMet_error_shortfallAmount_ptr, shortfallAmount)
              // revert(abi.encodeWithSignature(
              //     "ConsiderationNotMet(uint256,uint256,uint256)",
              //     orderIndex,
              //     considerationIndex,
              //     shortfallAmount
              // ))
              revert(Error_selector_offset, ConsiderationNotMet_error_length)
          }
      }
      /**
       * @dev Reverts the current transaction with a "CriteriaNotEnabledForItem" error
       *      message.
       */
      function _revertCriteriaNotEnabledForItem() pure {
          assembly {
              // Store left-padded selector with push4 (reduces bytecode),
              // mem[28:32] = selector
              mstore(0, CriteriaNotEnabledForItem_error_selector)
              // revert(abi.encodeWithSignature("CriteriaNotEnabledForItem()"))
              revert(Error_selector_offset, CriteriaNotEnabledForItem_error_length)
          }
      }
      /**
       * @dev Reverts the current transaction with an
       *      "InsufficientNativeTokensSupplied" error message.
       */
      function _revertInsufficientNativeTokensSupplied() pure {
          assembly {
              // Store left-padded selector with push4 (reduces bytecode),
              // mem[28:32] = selector
              mstore(0, InsufficientNativeTokensSupplied_error_selector)
              // revert(abi.encodeWithSignature("InsufficientNativeTokensSupplied()"))
              revert(
                  Error_selector_offset,
                  InsufficientNativeTokensSupplied_error_length
              )
          }
      }
      /**
       * @dev Reverts the current transaction with an
       *      "InvalidBasicOrderParameterEncoding" error message.
       */
      function _revertInvalidBasicOrderParameterEncoding() pure {
          assembly {
              // Store left-padded selector with push4 (reduces bytecode),
              // mem[28:32] = selector
              mstore(0, InvalidBasicOrderParameterEncoding_error_selector)
              // revert(abi.encodeWithSignature(
              //     "InvalidBasicOrderParameterEncoding()"
              // ))
              revert(
                  Error_selector_offset,
                  InvalidBasicOrderParameterEncoding_error_length
              )
          }
      }
      /**
       * @dev Reverts the current transaction with an "InvalidCallToConduit" error
       *      message, including the provided address of the conduit that was called
       *      improperly.
       *
       * @param conduit The address of the conduit that was called improperly.
       */
      function _revertInvalidCallToConduit(address conduit) pure {
          assembly {
              // Store left-padded selector with push4 (reduces bytecode),
              // mem[28:32] = selector
              mstore(0, InvalidCallToConduit_error_selector)
              // Store argument.
              mstore(InvalidCallToConduit_error_conduit_ptr, conduit)
              // revert(abi.encodeWithSignature(
              //     "InvalidCallToConduit(address)",
              //     conduit
              // ))
              revert(Error_selector_offset, InvalidCallToConduit_error_length)
          }
      }
      /**
       * @dev Reverts the current transaction with an "CannotCancelOrder" error
       *      message.
       */
      function _revertCannotCancelOrder() pure {
          assembly {
              // Store left-padded selector with push4 (reduces bytecode),
              // mem[28:32] = selector
              mstore(0, CannotCancelOrder_error_selector)
              // revert(abi.encodeWithSignature("CannotCancelOrder()"))
              revert(Error_selector_offset, CannotCancelOrder_error_length)
          }
      }
      /**
       * @dev Reverts the current transaction with an "InvalidConduit" error message,
       *      including the provided key and address of the invalid conduit.
       *
       * @param conduitKey    The key of the invalid conduit.
       * @param conduit       The address of the invalid conduit.
       */
      function _revertInvalidConduit(bytes32 conduitKey, address conduit) pure {
          assembly {
              // Store left-padded selector with push4 (reduces bytecode),
              // mem[28:32] = selector
              mstore(0, InvalidConduit_error_selector)
              // Store arguments.
              mstore(InvalidConduit_error_conduitKey_ptr, conduitKey)
              mstore(InvalidConduit_error_conduit_ptr, conduit)
              // revert(abi.encodeWithSignature(
              //     "InvalidConduit(bytes32,address)",
              //     conduitKey,
              //     conduit
              // ))
              revert(Error_selector_offset, InvalidConduit_error_length)
          }
      }
      /**
       * @dev Reverts the current transaction with an "InvalidERC721TransferAmount"
       *      error message.
       *
       * @param amount The invalid amount.
       */
      function _revertInvalidERC721TransferAmount(uint256 amount) pure {
          assembly {
              // Store left-padded selector with push4 (reduces bytecode),
              // mem[28:32] = selector
              mstore(0, InvalidERC721TransferAmount_error_selector)
              // Store argument.
              mstore(InvalidERC721TransferAmount_error_amount_ptr, amount)
              // revert(abi.encodeWithSignature(
              //     "InvalidERC721TransferAmount(uint256)",
              //     amount
              // ))
              revert(Error_selector_offset, InvalidERC721TransferAmount_error_length)
          }
      }
      /**
       * @dev Reverts the current transaction with an "InvalidMsgValue" error message,
       *      including the invalid value that was sent in the transaction's
       *      `msg.value` field.
       *
       * @param value The invalid value that was sent in the transaction's `msg.value`
       *              field.
       */
      function _revertInvalidMsgValue(uint256 value) pure {
          assembly {
              // Store left-padded selector with push4 (reduces bytecode),
              // mem[28:32] = selector
              mstore(0, InvalidMsgValue_error_selector)
              // Store argument.
              mstore(InvalidMsgValue_error_value_ptr, value)
              // revert(abi.encodeWithSignature("InvalidMsgValue(uint256)", value))
              revert(Error_selector_offset, InvalidMsgValue_error_length)
          }
      }
      /**
       * @dev Reverts the current transaction with an "InvalidNativeOfferItem" error
       *      message.
       */
      function _revertInvalidNativeOfferItem() pure {
          assembly {
              // Store left-padded selector with push4 (reduces bytecode),
              // mem[28:32] = selector
              mstore(0, InvalidNativeOfferItem_error_selector)
              // revert(abi.encodeWithSignature("InvalidNativeOfferItem()"))
              revert(Error_selector_offset, InvalidNativeOfferItem_error_length)
          }
      }
      /**
       * @dev Reverts the current transaction with an "InvalidProof" error message.
       */
      function _revertInvalidProof() pure {
          assembly {
              // Store left-padded selector with push4 (reduces bytecode),
              // mem[28:32] = selector
              mstore(0, InvalidProof_error_selector)
              // revert(abi.encodeWithSignature("InvalidProof()"))
              revert(Error_selector_offset, InvalidProof_error_length)
          }
      }
      /**
       * @dev Reverts the current transaction with an "InvalidContractOrder" error
       *      message.
       *
       * @param orderHash The hash of the contract order that caused the error.
       */
      function _revertInvalidContractOrder(bytes32 orderHash) pure {
          assembly {
              // Store left-padded selector with push4 (reduces bytecode),
              // mem[28:32] = selector
              mstore(0, InvalidContractOrder_error_selector)
              // Store arguments.
              mstore(InvalidContractOrder_error_orderHash_ptr, orderHash)
              // revert(abi.encodeWithSignature(
              //     "InvalidContractOrder(bytes32)",
              //     orderHash
              // ))
              revert(Error_selector_offset, InvalidContractOrder_error_length)
          }
      }
      /**
       * @dev Reverts the current transaction with an "InvalidTime" error message.
       *
       * @param startTime       The time at which the order becomes active.
       * @param endTime         The time at which the order becomes inactive.
       */
      function _revertInvalidTime(uint256 startTime, uint256 endTime) pure {
          assembly {
              // Store left-padded selector with push4 (reduces bytecode),
              // mem[28:32] = selector
              mstore(0, InvalidTime_error_selector)
              // Store arguments.
              mstore(InvalidTime_error_startTime_ptr, startTime)
              mstore(InvalidTime_error_endTime_ptr, endTime)
              // revert(abi.encodeWithSignature(
              //     "InvalidTime(uint256,uint256)",
              //     startTime,
              //     endTime
              // ))
              revert(Error_selector_offset, InvalidTime_error_length)
          }
      }
      /**
       * @dev Reverts execution with a
       *      "MismatchedFulfillmentOfferAndConsiderationComponents" error message.
       *
       * @param fulfillmentIndex         The index of the fulfillment that caused the
       *                                 error.
       */
      function _revertMismatchedFulfillmentOfferAndConsiderationComponents(
          uint256 fulfillmentIndex
      ) pure {
          assembly {
              // Store left-padded selector with push4 (reduces bytecode),
              // mem[28:32] = selector
              mstore(0, MismatchedOfferAndConsiderationComponents_error_selector)
              // Store fulfillment index argument.
              mstore(
                  MismatchedOfferAndConsiderationComponents_error_idx_ptr,
                  fulfillmentIndex
              )
              // revert(abi.encodeWithSignature(
              //     "MismatchedFulfillmentOfferAndConsiderationComponents(uint256)",
              //     fulfillmentIndex
              // ))
              revert(
                  Error_selector_offset,
                  MismatchedOfferAndConsiderationComponents_error_length
              )
          }
      }
      /**
       * @dev Reverts execution with a "MissingFulfillmentComponentOnAggregation"
       *       error message.
       *
       * @param side The side of the fulfillment component that is missing (0 for
       *             offer, 1 for consideration).
       *
       */
      function _revertMissingFulfillmentComponentOnAggregation(Side side) pure {
          assembly {
              // Store left-padded selector with push4 (reduces bytecode),
              // mem[28:32] = selector
              mstore(0, MissingFulfillmentComponentOnAggregation_error_selector)
              // Store argument.
              mstore(MissingFulfillmentComponentOnAggregation_error_side_ptr, side)
              // revert(abi.encodeWithSignature(
              //     "MissingFulfillmentComponentOnAggregation(uint8)",
              //     side
              // ))
              revert(
                  Error_selector_offset,
                  MissingFulfillmentComponentOnAggregation_error_length
              )
          }
      }
      /**
       * @dev Reverts execution with a "MissingOriginalConsiderationItems" error
       *      message.
       */
      function _revertMissingOriginalConsiderationItems() pure {
          assembly {
              // Store left-padded selector with push4 (reduces bytecode),
              // mem[28:32] = selector
              mstore(0, MissingOriginalConsiderationItems_error_selector)
              // revert(abi.encodeWithSignature(
              //     "MissingOriginalConsiderationItems()"
              // ))
              revert(
                  Error_selector_offset,
                  MissingOriginalConsiderationItems_error_length
              )
          }
      }
      /**
       * @dev Reverts execution with a "NoReentrantCalls" error message.
       */
      function _revertNoReentrantCalls() pure {
          assembly {
              // Store left-padded selector with push4 (reduces bytecode),
              // mem[28:32] = selector
              mstore(0, NoReentrantCalls_error_selector)
              // revert(abi.encodeWithSignature("NoReentrantCalls()"))
              revert(Error_selector_offset, NoReentrantCalls_error_length)
          }
      }
      /**
       * @dev Reverts execution with a "NoSpecifiedOrdersAvailable" error message.
       */
      function _revertNoSpecifiedOrdersAvailable() pure {
          assembly {
              // Store left-padded selector with push4 (reduces bytecode),
              // mem[28:32] = selector
              mstore(0, NoSpecifiedOrdersAvailable_error_selector)
              // revert(abi.encodeWithSignature("NoSpecifiedOrdersAvailable()"))
              revert(Error_selector_offset, NoSpecifiedOrdersAvailable_error_length)
          }
      }
      /**
       * @dev Reverts execution with a "OfferAndConsiderationRequiredOnFulfillment"
       *      error message.
       */
      function _revertOfferAndConsiderationRequiredOnFulfillment() pure {
          assembly {
              // Store left-padded selector with push4 (reduces bytecode),
              // mem[28:32] = selector
              mstore(0, OfferAndConsiderationRequiredOnFulfillment_error_selector)
              // revert(abi.encodeWithSignature(
              //     "OfferAndConsiderationRequiredOnFulfillment()"
              // ))
              revert(
                  Error_selector_offset,
                  OfferAndConsiderationRequiredOnFulfillment_error_length
              )
          }
      }
      /**
       * @dev Reverts execution with an "OrderAlreadyFilled" error message.
       *
       * @param orderHash The hash of the order that has already been filled.
       */
      function _revertOrderAlreadyFilled(bytes32 orderHash) pure {
          assembly {
              // Store left-padded selector with push4 (reduces bytecode),
              // mem[28:32] = selector
              mstore(0, OrderAlreadyFilled_error_selector)
              // Store argument.
              mstore(OrderAlreadyFilled_error_orderHash_ptr, orderHash)
              // revert(abi.encodeWithSignature(
              //     "OrderAlreadyFilled(bytes32)",
              //     orderHash
              // ))
              revert(Error_selector_offset, OrderAlreadyFilled_error_length)
          }
      }
      /**
       * @dev Reverts execution with an "OrderCriteriaResolverOutOfRange" error
       *      message.
       *
       * @param side The side of the criteria that is missing (0 for offer, 1 for
       *             consideration).
       *
       */
      function _revertOrderCriteriaResolverOutOfRange(Side side) pure {
          assembly {
              // Store left-padded selector with push4 (reduces bytecode),
              // mem[28:32] = selector
              mstore(0, OrderCriteriaResolverOutOfRange_error_selector)
              // Store argument.
              mstore(OrderCriteriaResolverOutOfRange_error_side_ptr, side)
              // revert(abi.encodeWithSignature(
              //     "OrderCriteriaResolverOutOfRange(uint8)",
              //     side
              // ))
              revert(
                  Error_selector_offset,
                  OrderCriteriaResolverOutOfRange_error_length
              )
          }
      }
      /**
       * @dev Reverts execution with an "OrderIsCancelled" error message.
       *
       * @param orderHash The hash of the order that has already been cancelled.
       */
      function _revertOrderIsCancelled(bytes32 orderHash) pure {
          assembly {
              // Store left-padded selector with push4 (reduces bytecode),
              // mem[28:32] = selector
              mstore(0, OrderIsCancelled_error_selector)
              // Store argument.
              mstore(OrderIsCancelled_error_orderHash_ptr, orderHash)
              // revert(abi.encodeWithSignature(
              //     "OrderIsCancelled(bytes32)",
              //     orderHash
              // ))
              revert(Error_selector_offset, OrderIsCancelled_error_length)
          }
      }
      /**
       * @dev Reverts execution with an "OrderPartiallyFilled" error message.
       *
       * @param orderHash The hash of the order that has already been partially
       *                  filled.
       */
      function _revertOrderPartiallyFilled(bytes32 orderHash) pure {
          assembly {
              // Store left-padded selector with push4 (reduces bytecode),
              // mem[28:32] = selector
              mstore(0, OrderPartiallyFilled_error_selector)
              // Store argument.
              mstore(OrderPartiallyFilled_error_orderHash_ptr, orderHash)
              // revert(abi.encodeWithSignature(
              //     "OrderPartiallyFilled(bytes32)",
              //     orderHash
              // ))
              revert(Error_selector_offset, OrderPartiallyFilled_error_length)
          }
      }
      /**
       * @dev Reverts execution with a "PartialFillsNotEnabledForOrder" error message.
       */
      function _revertPartialFillsNotEnabledForOrder() pure {
          assembly {
              // Store left-padded selector with push4 (reduces bytecode),
              // mem[28:32] = selector
              mstore(0, PartialFillsNotEnabledForOrder_error_selector)
              // revert(abi.encodeWithSignature("PartialFillsNotEnabledForOrder()"))
              revert(
                  Error_selector_offset,
                  PartialFillsNotEnabledForOrder_error_length
              )
          }
      }
      /**
       * @dev Reverts execution with an "UnresolvedConsiderationCriteria" error
       *      message.
       */
      function _revertUnresolvedConsiderationCriteria(
          uint256 orderIndex,
          uint256 considerationIndex
      ) pure {
          assembly {
              // Store left-padded selector with push4 (reduces bytecode),
              // mem[28:32] = selector
              mstore(0, UnresolvedConsiderationCriteria_error_selector)
              // Store orderIndex and considerationIndex arguments.
              mstore(UnresolvedConsiderationCriteria_error_orderIndex_ptr, orderIndex)
              mstore(
                  UnresolvedConsiderationCriteria_error_considerationIdx_ptr,
                  considerationIndex
              )
              // revert(abi.encodeWithSignature(
              //     "UnresolvedConsiderationCriteria(uint256, uint256)",
              //     orderIndex,
              //     considerationIndex
              // ))
              revert(
                  Error_selector_offset,
                  UnresolvedConsiderationCriteria_error_length
              )
          }
      }
      /**
       * @dev Reverts execution with an "UnresolvedOfferCriteria" error message.
       */
      function _revertUnresolvedOfferCriteria(
          uint256 orderIndex,
          uint256 offerIndex
      ) pure {
          assembly {
              // Store left-padded selector with push4 (reduces bytecode),
              // mem[28:32] = selector
              mstore(0, UnresolvedOfferCriteria_error_selector)
              // Store arguments.
              mstore(UnresolvedOfferCriteria_error_orderIndex_ptr, orderIndex)
              mstore(UnresolvedOfferCriteria_error_offerIndex_ptr, offerIndex)
              // revert(abi.encodeWithSignature(
              //     "UnresolvedOfferCriteria(uint256, uint256)",
              //     orderIndex,
              //     offerIndex
              // ))
              revert(Error_selector_offset, UnresolvedOfferCriteria_error_length)
          }
      }
      /**
       * @dev Reverts execution with an "UnusedItemParameters" error message.
       */
      function _revertUnusedItemParameters() pure {
          assembly {
              // Store left-padded selector with push4 (reduces bytecode),
              // mem[28:32] = selector
              mstore(0, UnusedItemParameters_error_selector)
              // revert(abi.encodeWithSignature("UnusedItemParameters()"))
              revert(Error_selector_offset, UnusedItemParameters_error_length)
          }
      }
      /**
       * @dev Reverts execution with a "ConsiderationLengthNotEqualToTotalOriginal"
       *      error message.
       */
      function _revertConsiderationLengthNotEqualToTotalOriginal() pure {
          assembly {
              // Store left-padded selector with push4 (reduces bytecode),
              // mem[28:32] = selector
              mstore(0, ConsiderationLengthNotEqualToTotalOriginal_error_selector)
              // revert(abi.encodeWithSignature(
              //     "ConsiderationLengthNotEqualToTotalOriginal()"
              // ))
              revert(
                  Error_selector_offset,
                  ConsiderationLengthNotEqualToTotalOriginal_error_length
              )
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.13;
      enum OrderType {
          // 0: no partial fills, anyone can execute
          FULL_OPEN,
          // 1: partial fills supported, anyone can execute
          PARTIAL_OPEN,
          // 2: no partial fills, only offerer or zone can execute
          FULL_RESTRICTED,
          // 3: partial fills supported, only offerer or zone can execute
          PARTIAL_RESTRICTED,
          // 4: contract order type
          CONTRACT
      }
      enum BasicOrderType {
          // 0: no partial fills, anyone can execute
          ETH_TO_ERC721_FULL_OPEN,
          // 1: partial fills supported, anyone can execute
          ETH_TO_ERC721_PARTIAL_OPEN,
          // 2: no partial fills, only offerer or zone can execute
          ETH_TO_ERC721_FULL_RESTRICTED,
          // 3: partial fills supported, only offerer or zone can execute
          ETH_TO_ERC721_PARTIAL_RESTRICTED,
          // 4: no partial fills, anyone can execute
          ETH_TO_ERC1155_FULL_OPEN,
          // 5: partial fills supported, anyone can execute
          ETH_TO_ERC1155_PARTIAL_OPEN,
          // 6: no partial fills, only offerer or zone can execute
          ETH_TO_ERC1155_FULL_RESTRICTED,
          // 7: partial fills supported, only offerer or zone can execute
          ETH_TO_ERC1155_PARTIAL_RESTRICTED,
          // 8: no partial fills, anyone can execute
          ERC20_TO_ERC721_FULL_OPEN,
          // 9: partial fills supported, anyone can execute
          ERC20_TO_ERC721_PARTIAL_OPEN,
          // 10: no partial fills, only offerer or zone can execute
          ERC20_TO_ERC721_FULL_RESTRICTED,
          // 11: partial fills supported, only offerer or zone can execute
          ERC20_TO_ERC721_PARTIAL_RESTRICTED,
          // 12: no partial fills, anyone can execute
          ERC20_TO_ERC1155_FULL_OPEN,
          // 13: partial fills supported, anyone can execute
          ERC20_TO_ERC1155_PARTIAL_OPEN,
          // 14: no partial fills, only offerer or zone can execute
          ERC20_TO_ERC1155_FULL_RESTRICTED,
          // 15: partial fills supported, only offerer or zone can execute
          ERC20_TO_ERC1155_PARTIAL_RESTRICTED,
          // 16: no partial fills, anyone can execute
          ERC721_TO_ERC20_FULL_OPEN,
          // 17: partial fills supported, anyone can execute
          ERC721_TO_ERC20_PARTIAL_OPEN,
          // 18: no partial fills, only offerer or zone can execute
          ERC721_TO_ERC20_FULL_RESTRICTED,
          // 19: partial fills supported, only offerer or zone can execute
          ERC721_TO_ERC20_PARTIAL_RESTRICTED,
          // 20: no partial fills, anyone can execute
          ERC1155_TO_ERC20_FULL_OPEN,
          // 21: partial fills supported, anyone can execute
          ERC1155_TO_ERC20_PARTIAL_OPEN,
          // 22: no partial fills, only offerer or zone can execute
          ERC1155_TO_ERC20_FULL_RESTRICTED,
          // 23: partial fills supported, only offerer or zone can execute
          ERC1155_TO_ERC20_PARTIAL_RESTRICTED
      }
      enum BasicOrderRouteType {
          // 0: provide Ether (or other native token) to receive offered ERC721 item.
          ETH_TO_ERC721,
          // 1: provide Ether (or other native token) to receive offered ERC1155 item.
          ETH_TO_ERC1155,
          // 2: provide ERC20 item to receive offered ERC721 item.
          ERC20_TO_ERC721,
          // 3: provide ERC20 item to receive offered ERC1155 item.
          ERC20_TO_ERC1155,
          // 4: provide ERC721 item to receive offered ERC20 item.
          ERC721_TO_ERC20,
          // 5: provide ERC1155 item to receive offered ERC20 item.
          ERC1155_TO_ERC20
      }
      enum ItemType {
          // 0: ETH on mainnet, MATIC on polygon, etc.
          NATIVE,
          // 1: ERC20 items (ERC777 and ERC20 analogues could also technically work)
          ERC20,
          // 2: ERC721 items
          ERC721,
          // 3: ERC1155 items
          ERC1155,
          // 4: ERC721 items where a number of tokenIds are supported
          ERC721_WITH_CRITERIA,
          // 5: ERC1155 items where a number of ids are supported
          ERC1155_WITH_CRITERIA
      }
      enum Side {
          // 0: Items that can be spent
          OFFER,
          // 1: Items that must be received
          CONSIDERATION
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      import { ItemType, Side } from "./ConsiderationEnums.sol";
      import {
          AdvancedOrder,
          Execution,
          FulfillmentComponent,
          ReceivedItem
      } from "./ConsiderationStructs.sol";
      import {
          _revertMismatchedFulfillmentOfferAndConsiderationComponents,
          _revertMissingFulfillmentComponentOnAggregation,
          _revertOfferAndConsiderationRequiredOnFulfillment
      } from "./ConsiderationErrors.sol";
      import {
          FulfillmentApplicationErrors
      } from "../interfaces/FulfillmentApplicationErrors.sol";
      import {
          AdvancedOrder_numerator_offset,
          Common_amount_offset,
          Common_identifier_offset,
          Common_token_offset,
          Execution_conduit_offset,
          Execution_offerer_offset,
          Fulfillment_itemIndex_offset,
          OneWord,
          OneWordShift,
          OrderParameters_conduit_offset,
          OrderParameters_consideration_head_offset,
          OrderParameters_offer_head_offset,
          ReceivedItem_CommonParams_size,
          ReceivedItem_recipient_offset,
          ReceivedItem_size
      } from "./ConsiderationConstants.sol";
      import {
          Error_selector_offset,
          InvalidFulfillmentComponentData_error_length,
          InvalidFulfillmentComponentData_error_selector,
          MissingItemAmount_error_length,
          MissingItemAmount_error_selector,
          Panic_arithmetic,
          Panic_error_code_ptr,
          Panic_error_length,
          Panic_error_selector
      } from "./ConsiderationErrorConstants.sol";
      /**
       * @title FulfillmentApplier
       * @author 0age
       * @notice FulfillmentApplier contains logic related to applying fulfillments,
       *         both as part of order matching (where offer items are matched to
       *         consideration items) as well as fulfilling available orders (where
       *         order items and consideration items are independently aggregated).
       */
      contract FulfillmentApplier is FulfillmentApplicationErrors {
          /**
           * @dev Internal pure function to match offer items to consideration items
           *      on a group of orders via a supplied fulfillment.
           *
           * @param advancedOrders          The orders to match.
           * @param offerComponents         An array designating offer components to
           *                                match to consideration components.
           * @param considerationComponents An array designating consideration
           *                                components to match to offer components.
           *                                Note that each consideration amount must
           *                                be zero in order for the match operation
           *                                to be valid.
           * @param fulfillmentIndex        The index of the fulfillment being
           *                                applied.
           *
           * @return execution The transfer performed as a result of the fulfillment.
           */
          function _applyFulfillment(
              AdvancedOrder[] memory advancedOrders,
              FulfillmentComponent[] memory offerComponents,
              FulfillmentComponent[] memory considerationComponents,
              uint256 fulfillmentIndex
          ) internal pure returns (Execution memory execution) {
              // Ensure 1+ of both offer and consideration components are supplied.
              if (
                  offerComponents.length == 0 || considerationComponents.length == 0
              ) {
                  _revertOfferAndConsiderationRequiredOnFulfillment();
              }
              // Declare a new Execution struct.
              Execution memory considerationExecution;
              // Validate & aggregate consideration items to new Execution object.
              _aggregateValidFulfillmentConsiderationItems(
                  advancedOrders,
                  considerationComponents,
                  considerationExecution
              );
              // Retrieve the consideration item from the execution struct.
              ReceivedItem memory considerationItem = considerationExecution.item;
              // Skip aggregating offer items if no consideration items are available.
              if (considerationItem.amount == 0) {
                  // Set the offerer and recipient to null address and the item type
                  // to a non-native item type if the execution amount is zero. This
                  // will cause the execution item to be skipped.
                  considerationExecution.offerer = address(0);
                  considerationExecution.item.recipient = payable(0);
                  considerationExecution.item.itemType = ItemType.ERC20;
                  return considerationExecution;
              }
              // Recipient does not need to be specified because it will always be set
              // to that of the consideration.
              // Validate & aggregate offer items to Execution object.
              _aggregateValidFulfillmentOfferItems(
                  advancedOrders,
                  offerComponents,
                  execution
              );
              // Ensure offer & consideration item types, tokens, & identifiers match.
              // (a != b || c != d || e != f) == (((a ^ b) | (c ^ d) | (e ^ f)) != 0),
              // but the second expression requires less gas to evaluate.
              if (
                  ((uint8(execution.item.itemType) ^
                      uint8(considerationItem.itemType)) |
                      (uint160(execution.item.token) ^
                          uint160(considerationItem.token)) |
                      (execution.item.identifier ^ considerationItem.identifier)) != 0
              ) {
                  _revertMismatchedFulfillmentOfferAndConsiderationComponents(
                      fulfillmentIndex
                  );
              }
              // If total consideration amount exceeds the offer amount...
              if (considerationItem.amount > execution.item.amount) {
                  // Retrieve the first consideration component from the fulfillment.
                  FulfillmentComponent memory targetComponent = (
                      considerationComponents[0]
                  );
                  // Skip underflow check as the conditional being true implies that
                  // considerationItem.amount > execution.item.amount.
                  unchecked {
                      // Add excess consideration item amount to original order array.
                      advancedOrders[targetComponent.orderIndex]
                          .parameters
                          .consideration[targetComponent.itemIndex]
                          .startAmount = (considerationItem.amount -
                          execution.item.amount);
                  }
              } else {
                  // Retrieve the first offer component from the fulfillment.
                  FulfillmentComponent memory targetComponent = offerComponents[0];
                  // Skip underflow check as the conditional being false implies that
                  // execution.item.amount >= considerationItem.amount.
                  unchecked {
                      // Add excess offer item amount to the original array of orders.
                      advancedOrders[targetComponent.orderIndex]
                          .parameters
                          .offer[targetComponent.itemIndex]
                          .startAmount = (execution.item.amount -
                          considerationItem.amount);
                  }
                  // Reduce total offer amount to equal the consideration amount.
                  execution.item.amount = considerationItem.amount;
              }
              // Reuse consideration recipient.
              execution.item.recipient = considerationItem.recipient;
              // Return the final execution that will be triggered for relevant items.
              return execution; // Execution(considerationItem, offerer, conduitKey);
          }
          /**
           * @dev Internal view function to aggregate offer or consideration items
           *      from a group of orders into a single execution via a supplied array
           *      of fulfillment components. Items that are not available to aggregate
           *      will not be included in the aggregated execution.
           *
           * @param advancedOrders        The orders to aggregate.
           * @param side                  The side (i.e. offer or consideration).
           * @param fulfillmentComponents An array designating item components to
           *                              aggregate if part of an available order.
           * @param fulfillerConduitKey   A bytes32 value indicating what conduit, if
           *                              any, to source the fulfiller's token
           *                              approvals from. The zero hash signifies that
           *                              no conduit should be used, with approvals
           *                              set directly on this contract.
           * @param recipient             The intended recipient for all received
           *                              items.
           *
           * @return execution The transfer performed as a result of the fulfillment.
           */
          function _aggregateAvailable(
              AdvancedOrder[] memory advancedOrders,
              Side side,
              FulfillmentComponent[] memory fulfillmentComponents,
              bytes32 fulfillerConduitKey,
              address recipient
          ) internal view returns (Execution memory execution) {
              // Skip overflow / underflow checks; conditions checked or unreachable.
              unchecked {
                  // Retrieve fulfillment components array length and place on stack.
                  // Ensure at least one fulfillment component has been supplied.
                  if (fulfillmentComponents.length == 0) {
                      _revertMissingFulfillmentComponentOnAggregation(side);
                  }
                  // Retrieve the received item on the execution being returned.
                  ReceivedItem memory item = execution.item;
                  // If the fulfillment components are offer components...
                  if (side == Side.OFFER) {
                      // Set the supplied recipient on the execution item.
                      item.recipient = payable(recipient);
                      // Return execution for aggregated items provided by offerer.
                      _aggregateValidFulfillmentOfferItems(
                          advancedOrders,
                          fulfillmentComponents,
                          execution
                      );
                  } else {
                      // Otherwise, fulfillment components are consideration
                      // components. Return execution for aggregated items provided by
                      // the fulfiller.
                      _aggregateValidFulfillmentConsiderationItems(
                          advancedOrders,
                          fulfillmentComponents,
                          execution
                      );
                      // Set the caller as the offerer on the execution.
                      execution.offerer = msg.sender;
                      // Set fulfiller conduit key as the conduit key on execution.
                      execution.conduitKey = fulfillerConduitKey;
                  }
                  // Set the offerer and recipient to null address and the item type
                  // to a non-native item type if the execution amount is zero. This
                  // will cause the execution item to be skipped.
                  if (item.amount == 0) {
                      execution.offerer = address(0);
                      item.recipient = payable(0);
                      item.itemType = ItemType.ERC20;
                  }
              }
          }
          /**
           * @dev Internal pure function to aggregate a group of offer items using
           *      supplied directives on which component items are candidates for
           *      aggregation, skipping items on orders that are not available.
           *
           * @param advancedOrders  The orders to aggregate offer items from.
           * @param offerComponents An array of FulfillmentComponent structs
           *                        indicating the order index and item index of each
           *                        candidate offer item for aggregation.
           * @param execution       The execution to apply the aggregation to.
           */
          function _aggregateValidFulfillmentOfferItems(
              AdvancedOrder[] memory advancedOrders,
              FulfillmentComponent[] memory offerComponents,
              Execution memory execution
          ) internal pure {
              assembly {
                  // Declare a variable for the final aggregated item amount.
                  let amount
                  // Declare a variable to track errors encountered with amount.
                  let errorBuffer
                  // Declare a variable for the hash of itemType, token, & identifier.
                  let dataHash
                  // Iterate over each offer component.
                  for {
                      // Create variable to track position in offerComponents head.
                      let fulfillmentHeadPtr := offerComponents
                      // Get position one word past last element in head of array.
                      let endPtr := add(
                          offerComponents,
                          shl(OneWordShift, mload(offerComponents))
                      )
                  } lt(fulfillmentHeadPtr, endPtr) {
                  } {
                      // Increment position in considerationComponents head.
                      fulfillmentHeadPtr := add(fulfillmentHeadPtr, OneWord)
                      // Retrieve the order index using the fulfillment pointer.
                      let orderIndex := mload(mload(fulfillmentHeadPtr))
                      // Ensure that the order index is not out of range.
                      if iszero(lt(orderIndex, mload(advancedOrders))) {
                          throwInvalidFulfillmentComponentData()
                      }
                      // Read advancedOrders[orderIndex] pointer from its array head.
                      let orderPtr := mload(
                          // Calculate head position of advancedOrders[orderIndex].
                          add(
                              add(advancedOrders, OneWord),
                              shl(OneWordShift, orderIndex)
                          )
                      )
                      // Read the pointer to OrderParameters from the AdvancedOrder.
                      let paramsPtr := mload(orderPtr)
                      // Retrieve item index using an offset of fulfillment pointer.
                      let itemIndex := mload(
                          add(mload(fulfillmentHeadPtr), Fulfillment_itemIndex_offset)
                      )
                      let offerItemPtr
                      {
                          // Load the offer array pointer.
                          let offerArrPtr := mload(
                              add(paramsPtr, OrderParameters_offer_head_offset)
                          )
                          // If the offer item index is out of range or the numerator
                          // is zero, skip this item.
                          if or(
                              iszero(lt(itemIndex, mload(offerArrPtr))),
                              iszero(
                                  mload(add(orderPtr, AdvancedOrder_numerator_offset))
                              )
                          ) {
                              continue
                          }
                          // Retrieve offer item pointer using the item index.
                          offerItemPtr := mload(
                              add(
                                  // Get pointer to beginning of receivedItem.
                                  add(offerArrPtr, OneWord),
                                  // Calculate offset to pointer for desired order.
                                  shl(OneWordShift, itemIndex)
                              )
                          )
                      }
                      // Declare a separate scope for the amount update.
                      {
                          // Retrieve amount pointer using consideration item pointer.
                          let amountPtr := add(offerItemPtr, Common_amount_offset)
                          // Add offer item amount to execution amount.
                          let newAmount := add(amount, mload(amountPtr))
                          // Update error buffer:
                          // 1 = zero amount, 2 = overflow, 3 = both.
                          errorBuffer := or(
                              errorBuffer,
                              or(
                                  shl(1, lt(newAmount, amount)),
                                  iszero(mload(amountPtr))
                              )
                          )
                          // Update the amount to the new, summed amount.
                          amount := newAmount
                          // Zero out amount on original item to indicate it is spent.
                          mstore(amountPtr, 0)
                      }
                      // Retrieve ReceivedItem pointer from Execution.
                      let receivedItem := mload(execution)
                      // Check if this is the first valid fulfillment item.
                      switch iszero(dataHash)
                      case 1 {
                          // On first valid item, populate the received item in memory
                          // for later comparison.
                          // Set the item type on the received item.
                          mstore(receivedItem, mload(offerItemPtr))
                          // Set the token on the received item.
                          mstore(
                              add(receivedItem, Common_token_offset),
                              mload(add(offerItemPtr, Common_token_offset))
                          )
                          // Set the identifier on the received item.
                          mstore(
                              add(receivedItem, Common_identifier_offset),
                              mload(add(offerItemPtr, Common_identifier_offset))
                          )
                          // Set offerer on returned execution using order pointer.
                          mstore(
                              add(execution, Execution_offerer_offset),
                              mload(paramsPtr)
                          )
                          // Set execution conduitKey via order pointer offset.
                          mstore(
                              add(execution, Execution_conduit_offset),
                              mload(add(paramsPtr, OrderParameters_conduit_offset))
                          )
                          // Calculate the hash of (itemType, token, identifier).
                          dataHash := keccak256(
                              receivedItem,
                              ReceivedItem_CommonParams_size
                          )
                          // If component index > 0, swap component pointer with
                          // pointer to first component so that any remainder after
                          // fulfillment can be added back to the first item.
                          let firstFulfillmentHeadPtr := add(offerComponents, OneWord)
                          if xor(firstFulfillmentHeadPtr, fulfillmentHeadPtr) {
                              let firstFulfillmentPtr := mload(
                                  firstFulfillmentHeadPtr
                              )
                              let fulfillmentPtr := mload(fulfillmentHeadPtr)
                              mstore(firstFulfillmentHeadPtr, fulfillmentPtr)
                          }
                      }
                      default {
                          // Compare every subsequent item to the first.
                          if or(
                              or(
                                  // The offerer must match on both items.
                                  xor(
                                      mload(paramsPtr),
                                      mload(add(execution, Execution_offerer_offset))
                                  ),
                                  // The conduit key must match on both items.
                                  xor(
                                      mload(
                                          add(
                                              paramsPtr,
                                              OrderParameters_conduit_offset
                                          )
                                      ),
                                      mload(add(execution, Execution_conduit_offset))
                                  )
                              ),
                              // The itemType, token, and identifier must match.
                              xor(
                                  dataHash,
                                  keccak256(
                                      offerItemPtr,
                                      ReceivedItem_CommonParams_size
                                  )
                              )
                          ) {
                              // Throw if any of the requirements are not met.
                              throwInvalidFulfillmentComponentData()
                          }
                      }
                  }
                  // Write final amount to execution.
                  mstore(add(mload(execution), Common_amount_offset), amount)
                  // Determine whether the error buffer contains a nonzero error code.
                  if errorBuffer {
                      // If errorBuffer is 1, an item had an amount of zero.
                      if eq(errorBuffer, 1) {
                          // Store left-padded selector with push4 (reduces bytecode)
                          // mem[28:32] = selector
                          mstore(0, MissingItemAmount_error_selector)
                          // revert(abi.encodeWithSignature("MissingItemAmount()"))
                          revert(
                              Error_selector_offset,
                              MissingItemAmount_error_length
                          )
                      }
                      // If errorBuffer is not 1 or 0, the sum overflowed.
                      // Panic!
                      throwOverflow()
                  }
                  // Declare function for reverts on invalid fulfillment data.
                  function throwInvalidFulfillmentComponentData() {
                      // Store left-padded selector (uses push4 and reduces code size)
                      mstore(0, InvalidFulfillmentComponentData_error_selector)
                      // revert(abi.encodeWithSignature(
                      //     "InvalidFulfillmentComponentData()"
                      // ))
                      revert(
                          Error_selector_offset,
                          InvalidFulfillmentComponentData_error_length
                      )
                  }
                  // Declare function for reverts due to arithmetic overflows.
                  function throwOverflow() {
                      // Store the Panic error signature.
                      mstore(0, Panic_error_selector)
                      // Store the arithmetic (0x11) panic code.
                      mstore(Panic_error_code_ptr, Panic_arithmetic)
                      // revert(abi.encodeWithSignature("Panic(uint256)", 0x11))
                      revert(Error_selector_offset, Panic_error_length)
                  }
              }
          }
          /**
           * @dev Internal pure function to aggregate a group of consideration items
           *      using supplied directives on which component items are candidates
           *      for aggregation, skipping items on orders that are not available.
           *      Note that this function depends on memory layout affected by an
           *      earlier call to _validateOrdersAndPrepareToFulfill.  The memory for
           *      the consideration arrays needs to be updated before calling
           *      _aggregateValidFulfillmentConsiderationItems.
           *      _validateOrdersAndPrepareToFulfill is called in _matchAdvancedOrders
           *      and _fulfillAvailableAdvancedOrders in the current version.
           *
           * @param advancedOrders          The orders to aggregate consideration
           *                                items from.
           * @param considerationComponents An array of FulfillmentComponent structs
           *                                indicating the order index and item index
           *                                of each candidate consideration item for
           *                                aggregation.
           * @param execution               The execution to apply the aggregation to.
           */
          function _aggregateValidFulfillmentConsiderationItems(
              AdvancedOrder[] memory advancedOrders,
              FulfillmentComponent[] memory considerationComponents,
              Execution memory execution
          ) internal pure {
              // Utilize assembly in order to efficiently aggregate the items.
              assembly {
                  // Declare a variable for the final aggregated item amount.
                  let amount
                  // Create variable to track errors encountered with amount.
                  let errorBuffer
                  // Declare variable for hash(itemType, token, identifier, recipient)
                  let dataHash
                  // Iterate over each consideration component.
                  for {
                      // Track position in considerationComponents head.
                      let fulfillmentHeadPtr := considerationComponents
                      // Get position one word past last element in head of array.
                      let endPtr := add(
                          considerationComponents,
                          shl(OneWordShift, mload(considerationComponents))
                      )
                  } lt(fulfillmentHeadPtr, endPtr) {
                  } {
                      // Increment position in considerationComponents head.
                      fulfillmentHeadPtr := add(fulfillmentHeadPtr, OneWord)
                      // Retrieve the order index using the fulfillment pointer.
                      let orderIndex := mload(mload(fulfillmentHeadPtr))
                      // Ensure that the order index is not out of range.
                      if iszero(lt(orderIndex, mload(advancedOrders))) {
                          throwInvalidFulfillmentComponentData()
                      }
                      // Read advancedOrders[orderIndex] pointer from its array head.
                      let orderPtr := mload(
                          // Calculate head position of advancedOrders[orderIndex].
                          add(
                              add(advancedOrders, OneWord),
                              shl(OneWordShift, orderIndex)
                          )
                      )
                      // Retrieve item index using an offset of fulfillment pointer.
                      let itemIndex := mload(
                          add(mload(fulfillmentHeadPtr), Fulfillment_itemIndex_offset)
                      )
                      let considerationItemPtr
                      {
                          // Load consideration array pointer.
                          let considerationArrPtr := mload(
                              add(
                                  // Read OrderParameters pointer from AdvancedOrder.
                                  mload(orderPtr),
                                  OrderParameters_consideration_head_offset
                              )
                          )
                          // If the consideration item index is out of range or the
                          // numerator is zero, skip this item.
                          if or(
                              iszero(lt(itemIndex, mload(considerationArrPtr))),
                              iszero(
                                  mload(add(orderPtr, AdvancedOrder_numerator_offset))
                              )
                          ) {
                              continue
                          }
                          // Retrieve consideration item pointer using the item index.
                          considerationItemPtr := mload(
                              add(
                                  // Get pointer to beginning of receivedItem.
                                  add(considerationArrPtr, OneWord),
                                  // Calculate offset to pointer for desired order.
                                  shl(OneWordShift, itemIndex)
                              )
                          )
                      }
                      // Declare a separate scope for the amount update.
                      {
                          // Retrieve amount pointer using consideration item pointer.
                          let amountPtr := add(
                              considerationItemPtr,
                              Common_amount_offset
                          )
                          // Add consideration item amount to execution amount.
                          let newAmount := add(amount, mload(amountPtr))
                          // Update error buffer:
                          // 1 = zero amount, 2 = overflow, 3 = both.
                          errorBuffer := or(
                              errorBuffer,
                              or(
                                  shl(1, lt(newAmount, amount)),
                                  iszero(mload(amountPtr))
                              )
                          )
                          // Update the amount to the new, summed amount.
                          amount := newAmount
                          // Zero out original item amount to indicate it is credited.
                          mstore(amountPtr, 0)
                      }
                      // Retrieve ReceivedItem pointer from Execution.
                      let receivedItem := mload(execution)
                      switch iszero(dataHash)
                      case 1 {
                          // On first valid item, populate the received item in
                          // memory for later comparison.
                          // Set the item type on the received item.
                          mstore(receivedItem, mload(considerationItemPtr))
                          // Set the token on the received item.
                          mstore(
                              add(receivedItem, Common_token_offset),
                              mload(add(considerationItemPtr, Common_token_offset))
                          )
                          // Set the identifier on the received item.
                          mstore(
                              add(receivedItem, Common_identifier_offset),
                              mload(
                                  add(considerationItemPtr, Common_identifier_offset)
                              )
                          )
                          // Set the recipient on the received item. Note that this
                          // depends on the memory layout established by the
                          // _validateOrdersAndPrepareToFulfill function.
                          mstore(
                              add(receivedItem, ReceivedItem_recipient_offset),
                              mload(
                                  add(
                                      considerationItemPtr,
                                      ReceivedItem_recipient_offset
                                  )
                              )
                          )
                          // Calculate the hash of (itemType, token, identifier,
                          // recipient). This is run after amount is set to zero, so
                          // there will be one blank word after identifier included in
                          // the hash buffer.
                          dataHash := keccak256(
                              considerationItemPtr,
                              ReceivedItem_size
                          )
                          // If component index > 0, swap component pointer with
                          // pointer to first component so that any remainder after
                          // fulfillment can be added back to the first item.
                          let firstFulfillmentHeadPtr := add(
                              considerationComponents,
                              OneWord
                          )
                          if xor(firstFulfillmentHeadPtr, fulfillmentHeadPtr) {
                              let firstFulfillmentPtr := mload(
                                  firstFulfillmentHeadPtr
                              )
                              let fulfillmentPtr := mload(fulfillmentHeadPtr)
                              mstore(firstFulfillmentHeadPtr, fulfillmentPtr)
                          }
                      }
                      default {
                          // Compare every subsequent item to the first; the item
                          // type, token, identifier and recipient must match.
                          if xor(
                              dataHash,
                              // Calculate the hash of (itemType, token, identifier,
                              // recipient). This is run after amount is set to zero,
                              // so there will be one blank word after identifier
                              // included in the hash buffer.
                              keccak256(considerationItemPtr, ReceivedItem_size)
                          ) {
                              // Throw if any of the requirements are not met.
                              throwInvalidFulfillmentComponentData()
                          }
                      }
                  }
                  // Retrieve ReceivedItem pointer from Execution.
                  let receivedItem := mload(execution)
                  // Write final amount to execution.
                  mstore(add(receivedItem, Common_amount_offset), amount)
                  // Determine whether the error buffer contains a nonzero error code.
                  if errorBuffer {
                      // If errorBuffer is 1, an item had an amount of zero.
                      if eq(errorBuffer, 1) {
                          // Store left-padded selector with push4, mem[28:32]
                          mstore(0, MissingItemAmount_error_selector)
                          // revert(abi.encodeWithSignature("MissingItemAmount()"))
                          revert(
                              Error_selector_offset,
                              MissingItemAmount_error_length
                          )
                      }
                      // If errorBuffer is not 1 or 0, `amount` overflowed.
                      // Panic!
                      throwOverflow()
                  }
                  // Declare function for reverts on invalid fulfillment data.
                  function throwInvalidFulfillmentComponentData() {
                      // Store the InvalidFulfillmentComponentData error signature.
                      mstore(0, InvalidFulfillmentComponentData_error_selector)
                      // revert(abi.encodeWithSignature(
                      //     "InvalidFulfillmentComponentData()"
                      // ))
                      revert(
                          Error_selector_offset,
                          InvalidFulfillmentComponentData_error_length
                      )
                  }
                  // Declare function for reverts due to arithmetic overflows.
                  function throwOverflow() {
                      // Store the Panic error signature.
                      mstore(0, Panic_error_selector)
                      // Store the arithmetic (0x11) panic code.
                      mstore(Panic_error_code_ptr, Panic_arithmetic)
                      // revert(abi.encodeWithSignature("Panic(uint256)", 0x11))
                      revert(Error_selector_offset, Panic_error_length)
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      import { ItemType, OrderType } from "./ConsiderationEnums.sol";
      import {
          AdvancedOrder,
          ConsiderationItem,
          CriteriaResolver,
          OfferItem,
          OrderParameters,
          ReceivedItem,
          SpentItem
      } from "./ConsiderationStructs.sol";
      import { BasicOrderFulfiller } from "./BasicOrderFulfiller.sol";
      import { CriteriaResolution } from "./CriteriaResolution.sol";
      import { AmountDeriver } from "./AmountDeriver.sol";
      import {
          _revertInsufficientNativeTokensSupplied,
          _revertInvalidNativeOfferItem
      } from "./ConsiderationErrors.sol";
      import {
          AccumulatorDisarmed,
          ConsiderationItem_recipient_offset,
          ReceivedItem_amount_offset,
          ReceivedItem_recipient_offset
      } from "./ConsiderationConstants.sol";
      /**
       * @title OrderFulfiller
       * @author 0age
       * @notice OrderFulfiller contains logic related to order fulfillment where a
       *         single order is being fulfilled and where basic order fulfillment is
       *         not available as an option.
       */
      contract OrderFulfiller is
          BasicOrderFulfiller,
          CriteriaResolution,
          AmountDeriver
      {
          /**
           * @dev Derive and set hashes, reference chainId, and associated domain
           *      separator during deployment.
           *
           * @param conduitController A contract that deploys conduits, or proxies
           *                          that may optionally be used to transfer approved
           *                          ERC20/721/1155 tokens.
           */
          constructor(
              address conduitController
          ) BasicOrderFulfiller(conduitController) {}
          /**
           * @dev Internal function to validate an order and update its status, adjust
           *      prices based on current time, apply criteria resolvers, determine
           *      what portion to fill, and transfer relevant tokens.
           *
           * @param advancedOrder       The order to fulfill as well as the fraction
           *                            to fill. Note that all offer and consideration
           *                            components must divide with no remainder for
           *                            the partial fill to be valid.
           * @param criteriaResolvers   An array where each element contains a
           *                            reference to a specific offer or
           *                            consideration, a token identifier, and a proof
           *                            that the supplied token identifier is
           *                            contained in the order's merkle root. Note
           *                            that a criteria of zero indicates that any
           *                            (transferable) token identifier is valid and
           *                            that no proof needs to be supplied.
           * @param fulfillerConduitKey A bytes32 value indicating what conduit, if
           *                            any, to source the fulfiller's token approvals
           *                            from. The zero hash signifies that no conduit
           *                            should be used, with direct approvals set on
           *                            Consideration.
           * @param recipient           The intended recipient for all received items.
           *
           * @return A boolean indicating whether the order has been fulfilled.
           */
          function _validateAndFulfillAdvancedOrder(
              AdvancedOrder memory advancedOrder,
              CriteriaResolver[] memory criteriaResolvers,
              bytes32 fulfillerConduitKey,
              address recipient
          ) internal returns (bool) {
              // Ensure this function cannot be triggered during a reentrant call.
              _setReentrancyGuard(
                  // Native tokens accepted during execution for contract order types.
                  advancedOrder.parameters.orderType == OrderType.CONTRACT
              );
              // Validate order, update status, and determine fraction to fill.
              (
                  bytes32 orderHash,
                  uint256 fillNumerator,
                  uint256 fillDenominator
              ) = _validateOrderAndUpdateStatus(advancedOrder, true);
              // Create an array with length 1 containing the order.
              AdvancedOrder[] memory advancedOrders = new AdvancedOrder[](1);
              // Populate the order as the first and only element of the new array.
              advancedOrders[0] = advancedOrder;
              // Apply criteria resolvers using generated orders and details arrays.
              _applyCriteriaResolvers(advancedOrders, criteriaResolvers);
              // Retrieve the order parameters after applying criteria resolvers.
              OrderParameters memory orderParameters = advancedOrders[0].parameters;
              // Perform each item transfer with the appropriate fractional amount.
              _applyFractionsAndTransferEach(
                  orderParameters,
                  fillNumerator,
                  fillDenominator,
                  fulfillerConduitKey,
                  recipient
              );
              // Declare empty bytes32 array and populate with the order hash.
              bytes32[] memory orderHashes = new bytes32[](1);
              orderHashes[0] = orderHash;
              // Ensure restricted orders have a valid submitter or pass a zone check.
              _assertRestrictedAdvancedOrderValidity(
                  advancedOrders[0],
                  orderHashes,
                  orderHash
              );
              // Emit an event signifying that the order has been fulfilled.
              _emitOrderFulfilledEvent(
                  orderHash,
                  orderParameters.offerer,
                  orderParameters.zone,
                  recipient,
                  orderParameters.offer,
                  orderParameters.consideration
              );
              // Clear the reentrancy guard.
              _clearReentrancyGuard();
              return true;
          }
          /**
           * @dev Internal function to transfer each item contained in a given single
           *      order fulfillment after applying a respective fraction to the amount
           *      being transferred.
           *
           * @param orderParameters     The parameters for the fulfilled order.
           * @param numerator           A value indicating the portion of the order
           *                            that should be filled.
           * @param denominator         A value indicating the total order size.
           * @param fulfillerConduitKey A bytes32 value indicating what conduit, if
           *                            any, to source the fulfiller's token approvals
           *                            from. The zero hash signifies that no conduit
           *                            should be used, with direct approvals set on
           *                            Consideration.
           * @param recipient           The intended recipient for all received items.
           */
          function _applyFractionsAndTransferEach(
              OrderParameters memory orderParameters,
              uint256 numerator,
              uint256 denominator,
              bytes32 fulfillerConduitKey,
              address recipient
          ) internal {
              // Read start time & end time from order parameters and place on stack.
              uint256 startTime = orderParameters.startTime;
              uint256 endTime = orderParameters.endTime;
              // Initialize an accumulator array. From this point forward, no new
              // memory regions can be safely allocated until the accumulator is no
              // longer being utilized, as the accumulator operates in an open-ended
              // fashion from this memory pointer; existing memory may still be
              // accessed and modified, however.
              bytes memory accumulator = new bytes(AccumulatorDisarmed);
              // As of solidity 0.6.0, inline assembly cannot directly access function
              // definitions, but can still access locally scoped function variables.
              // This means that a local variable to reference the internal function
              // definition (using the same type), along with a local variable with
              // the desired type, must first be created. Then, the original function
              // pointer can be recast to the desired type.
              /**
               * Repurpose existing OfferItem memory regions on the offer array for
               * the order by overriding the _transfer function pointer to accept a
               * modified OfferItem argument in place of the usual ReceivedItem:
               *
               *   ========= OfferItem ==========   ====== ReceivedItem ======
               *   ItemType itemType; ------------> ItemType itemType;
               *   address token; ----------------> address token;
               *   uint256 identifierOrCriteria; -> uint256 identifier;
               *   uint256 startAmount; ----------> uint256 amount;
               *   uint256 endAmount; ------------> address recipient;
               */
              // Declare a nested scope to minimize stack depth.
              unchecked {
                  // Read offer array length from memory and place on stack.
                  uint256 totalOfferItems = orderParameters.offer.length;
                  // Create a variable to indicate whether the order has any
                  // native offer items
                  uint256 anyNativeItems;
                  // Iterate over each offer on the order.
                  // Skip overflow check as for loop is indexed starting at zero.
                  for (uint256 i = 0; i < totalOfferItems; ++i) {
                      // Retrieve the offer item.
                      OfferItem memory offerItem = orderParameters.offer[i];
                      // Offer items for the native token can not be received outside
                      // of a match order function except as part of a contract order.
                      {
                          ItemType itemType = offerItem.itemType;
                          assembly {
                              anyNativeItems := or(anyNativeItems, iszero(itemType))
                          }
                      }
                      // Declare an additional nested scope to minimize stack depth.
                      {
                          // Apply fill fraction to get offer item amount to transfer.
                          uint256 amount = _applyFraction(
                              offerItem.startAmount,
                              offerItem.endAmount,
                              numerator,
                              denominator,
                              startTime,
                              endTime,
                              false
                          );
                          // Utilize assembly to set overloaded offerItem arguments.
                          assembly {
                              // Write new fractional amount to startAmount as amount.
                              mstore(
                                  add(offerItem, ReceivedItem_amount_offset),
                                  amount
                              )
                              // Write recipient to endAmount.
                              mstore(
                                  add(offerItem, ReceivedItem_recipient_offset),
                                  recipient
                              )
                          }
                      }
                      // Transfer the item from the offerer to the recipient.
                      _toOfferItemInput(_transfer)(
                          offerItem,
                          orderParameters.offerer,
                          orderParameters.conduitKey,
                          accumulator
                      );
                  }
                  // If a non-contract order has native offer items, throw with an
                  // `InvalidNativeOfferItem` custom error.
                  {
                      OrderType orderType = orderParameters.orderType;
                      uint256 invalidNativeOfferItem;
                      assembly {
                          invalidNativeOfferItem := and(
                              // Note that this check requires that there are no order
                              // types beyond the current set (0-4).  It will need to
                              // be modified if more order types are added.
                              lt(orderType, 4),
                              anyNativeItems
                          )
                      }
                      if (invalidNativeOfferItem != 0) {
                          _revertInvalidNativeOfferItem();
                      }
                  }
              }
              // Declare a variable for the available native token balance.
              uint256 nativeTokenBalance;
              /**
               * Repurpose existing ConsiderationItem memory regions on the
               * consideration array for the order by overriding the _transfer
               * function pointer to accept a modified ConsiderationItem argument in
               * place of the usual ReceivedItem:
               *
               *   ====== ConsiderationItem =====   ====== ReceivedItem ======
               *   ItemType itemType; ------------> ItemType itemType;
               *   address token; ----------------> address token;
               *   uint256 identifierOrCriteria;--> uint256 identifier;
               *   uint256 startAmount; ----------> uint256 amount;
               *   uint256 endAmount;        /----> address recipient;
               *   address recipient; ------/
               */
              // Declare a nested scope to minimize stack depth.
              unchecked {
                  // Read consideration array length from memory and place on stack.
                  uint256 totalConsiderationItems = orderParameters
                      .consideration
                      .length;
                  // Iterate over each consideration item on the order.
                  // Skip overflow check as for loop is indexed starting at zero.
                  for (uint256 i = 0; i < totalConsiderationItems; ++i) {
                      // Retrieve the consideration item.
                      ConsiderationItem memory considerationItem = (
                          orderParameters.consideration[i]
                      );
                      // Apply fraction & derive considerationItem amount to transfer.
                      uint256 amount = _applyFraction(
                          considerationItem.startAmount,
                          considerationItem.endAmount,
                          numerator,
                          denominator,
                          startTime,
                          endTime,
                          true
                      );
                      // Use assembly to set overloaded considerationItem arguments.
                      assembly {
                          // Write derived fractional amount to startAmount as amount.
                          mstore(
                              add(considerationItem, ReceivedItem_amount_offset),
                              amount
                          )
                          // Write original recipient to endAmount as recipient.
                          mstore(
                              add(considerationItem, ReceivedItem_recipient_offset),
                              mload(
                                  add(
                                      considerationItem,
                                      ConsiderationItem_recipient_offset
                                  )
                              )
                          )
                      }
                      if (considerationItem.itemType == ItemType.NATIVE) {
                          // Get the current available balance of native tokens.
                          assembly {
                              nativeTokenBalance := selfbalance()
                          }
                          // Ensure that sufficient native tokens are still available.
                          if (amount > nativeTokenBalance) {
                              _revertInsufficientNativeTokensSupplied();
                          }
                      }
                      // Transfer item from caller to recipient specified by the item.
                      _toConsiderationItemInput(_transfer)(
                          considerationItem,
                          msg.sender,
                          fulfillerConduitKey,
                          accumulator
                      );
                  }
              }
              // Trigger any remaining accumulated transfers via call to the conduit.
              _triggerIfArmed(accumulator);
              // Determine whether any native token balance remains.
              assembly {
                  nativeTokenBalance := selfbalance()
              }
              // Return any remaining native token balance to the caller.
              if (nativeTokenBalance != 0) {
                  _transferNativeTokens(payable(msg.sender), nativeTokenBalance);
              }
          }
          /**
           * @dev Internal function to emit an OrderFulfilled event. OfferItems are
           *      translated into SpentItems and ConsiderationItems are translated
           *      into ReceivedItems.
           *
           * @param orderHash     The order hash.
           * @param offerer       The offerer for the order.
           * @param zone          The zone for the order.
           * @param recipient     The recipient of the order, or the null address if
           *                      the order was fulfilled via order matching.
           * @param offer         The offer items for the order.
           * @param consideration The consideration items for the order.
           */
          function _emitOrderFulfilledEvent(
              bytes32 orderHash,
              address offerer,
              address zone,
              address recipient,
              OfferItem[] memory offer,
              ConsiderationItem[] memory consideration
          ) internal {
              // Cast already-modified offer memory region as spent items.
              SpentItem[] memory spentItems;
              assembly {
                  spentItems := offer
              }
              // Cast already-modified consideration memory region as received items.
              ReceivedItem[] memory receivedItems;
              assembly {
                  receivedItems := consideration
              }
              // Emit an event signifying that the order has been fulfilled.
              emit OrderFulfilled(
                  orderHash,
                  offerer,
                  zone,
                  recipient,
                  spentItems,
                  receivedItems
              );
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.13;
      uint256 constant Error_selector_offset = 0x1c;
      /*
       *  error MissingFulfillmentComponentOnAggregation(uint8 side)
       *    - Defined in FulfillmentApplicationErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       *    - 0x20: side
       * Revert buffer is memory[0x1c:0x40]
       */
      uint256 constant MissingFulfillmentComponentOnAggregation_error_selector = (
          0x375c24c1
      );
      uint256 constant MissingFulfillmentComponentOnAggregation_error_side_ptr = 0x20;
      uint256 constant MissingFulfillmentComponentOnAggregation_error_length = 0x24;
      /*
       *  error OfferAndConsiderationRequiredOnFulfillment()
       *    - Defined in FulfillmentApplicationErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       * Revert buffer is memory[0x1c:0x20]
       */
      uint256 constant OfferAndConsiderationRequiredOnFulfillment_error_selector = (
          0x98e9db6e
      );
      uint256 constant OfferAndConsiderationRequiredOnFulfillment_error_length = 0x04;
      /*
       *  error MismatchedFulfillmentOfferAndConsiderationComponents(
       *      uint256 fulfillmentIndex
       *  )
       *    - Defined in FulfillmentApplicationErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       *    - 0x20: fulfillmentIndex
       * Revert buffer is memory[0x1c:0x40]
       */
      uint256 constant MismatchedOfferAndConsiderationComponents_error_selector = (
          0xbced929d
      );
      uint256 constant MismatchedOfferAndConsiderationComponents_error_idx_ptr = 0x20;
      uint256 constant MismatchedOfferAndConsiderationComponents_error_length = 0x24;
      /*
       *  error InvalidFulfillmentComponentData()
       *    - Defined in FulfillmentApplicationErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       * Revert buffer is memory[0x1c:0x20]
       */
      uint256 constant InvalidFulfillmentComponentData_error_selector = 0x7fda7279;
      uint256 constant InvalidFulfillmentComponentData_error_length = 0x04;
      /*
       *  error InexactFraction()
       *    - Defined in AmountDerivationErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       * Revert buffer is memory[0x1c:0x20]
       */
      uint256 constant InexactFraction_error_selector = 0xc63cf089;
      uint256 constant InexactFraction_error_length = 0x04;
      /*
       *  error OrderCriteriaResolverOutOfRange(uint8 side)
       *    - Defined in CriteriaResolutionErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       *    - 0x20: side
       * Revert buffer is memory[0x1c:0x40]
       */
      uint256 constant OrderCriteriaResolverOutOfRange_error_selector = 0x133c37c6;
      uint256 constant OrderCriteriaResolverOutOfRange_error_side_ptr = 0x20;
      uint256 constant OrderCriteriaResolverOutOfRange_error_length = 0x24;
      /*
       *  error UnresolvedOfferCriteria(uint256 orderIndex, uint256 offerIndex)
       *    - Defined in CriteriaResolutionErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       *    - 0x20: orderIndex
       *    - 0x40: offerIndex
       * Revert buffer is memory[0x1c:0x60]
       */
      uint256 constant UnresolvedOfferCriteria_error_selector = 0xd6929332;
      uint256 constant UnresolvedOfferCriteria_error_orderIndex_ptr = 0x20;
      uint256 constant UnresolvedOfferCriteria_error_offerIndex_ptr = 0x40;
      uint256 constant UnresolvedOfferCriteria_error_length = 0x44;
      /*
       *  error UnresolvedConsiderationCriteria(
       *      uint256 orderIndex,
       *      uint256 considerationIndex
       *  )
       *    - Defined in CriteriaResolutionErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       *    - 0x20: orderIndex
       *    - 0x40: considerationIndex
       * Revert buffer is memory[0x1c:0x60]
       */
      uint256 constant UnresolvedConsiderationCriteria_error_selector = 0xa8930e9a;
      uint256 constant UnresolvedConsiderationCriteria_error_orderIndex_ptr = 0x20;
      uint256 constant UnresolvedConsiderationCriteria_error_considerationIdx_ptr = (
          0x40
      );
      uint256 constant UnresolvedConsiderationCriteria_error_length = 0x44;
      /*
       *  error OfferCriteriaResolverOutOfRange()
       *    - Defined in CriteriaResolutionErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       * Revert buffer is memory[0x1c:0x20]
       */
      uint256 constant OfferCriteriaResolverOutOfRange_error_selector = 0xbfb3f8ce;
      // uint256 constant OfferCriteriaResolverOutOfRange_error_length = 0x04;
      /*
       *  error ConsiderationCriteriaResolverOutOfRange()
       *    - Defined in CriteriaResolutionErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       * Revert buffer is memory[0x1c:0x20]
       */
      uint256 constant ConsiderationCriteriaResolverOutOfRange_error_selector = (
          0x6088d7de
      );
      uint256 constant ConsiderationCriteriaResolverOutOfRange_err_selector = (
          0x6088d7de
      );
      // uint256 constant ConsiderationCriteriaResolverOutOfRange_error_length = 0x04;
      /*
       *  error CriteriaNotEnabledForItem()
       *    - Defined in CriteriaResolutionErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       * Revert buffer is memory[0x1c:0x20]
       */
      uint256 constant CriteriaNotEnabledForItem_error_selector = 0x94eb6af6;
      uint256 constant CriteriaNotEnabledForItem_error_length = 0x04;
      /*
       *  error InvalidProof()
       *    - Defined in CriteriaResolutionErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       * Revert buffer is memory[0x1c:0x20]
       */
      uint256 constant InvalidProof_error_selector = 0x09bde339;
      uint256 constant InvalidProof_error_length = 0x04;
      /*
       *  error InvalidRestrictedOrder(bytes32 orderHash)
       *    - Defined in ZoneInteractionErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       *    - 0x20: orderHash
       * Revert buffer is memory[0x1c:0x40]
       */
      uint256 constant InvalidRestrictedOrder_error_selector = 0xfb5014fc;
      uint256 constant InvalidRestrictedOrder_error_orderHash_ptr = 0x20;
      uint256 constant InvalidRestrictedOrder_error_length = 0x24;
      /*
       *  error InvalidContractOrder(bytes32 orderHash)
       *    - Defined in ZoneInteractionErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       *    - 0x20: orderHash
       * Revert buffer is memory[0x1c:0x40]
       */
      uint256 constant InvalidContractOrder_error_selector = 0x93979285;
      uint256 constant InvalidContractOrder_error_orderHash_ptr = 0x20;
      uint256 constant InvalidContractOrder_error_length = 0x24;
      /*
       *  error BadSignatureV(uint8 v)
       *    - Defined in SignatureVerificationErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       *    - 0x20: v
       * Revert buffer is memory[0x1c:0x40]
       */
      uint256 constant BadSignatureV_error_selector = 0x1f003d0a;
      uint256 constant BadSignatureV_error_v_ptr = 0x20;
      uint256 constant BadSignatureV_error_length = 0x24;
      /*
       *  error InvalidSigner()
       *    - Defined in SignatureVerificationErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       * Revert buffer is memory[0x1c:0x20]
       */
      uint256 constant InvalidSigner_error_selector = 0x815e1d64;
      uint256 constant InvalidSigner_error_length = 0x04;
      /*
       *  error InvalidSignature()
       *    - Defined in SignatureVerificationErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       * Revert buffer is memory[0x1c:0x20]
       */
      uint256 constant InvalidSignature_error_selector = 0x8baa579f;
      uint256 constant InvalidSignature_error_length = 0x04;
      /*
       *  error BadContractSignature()
       *    - Defined in SignatureVerificationErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       * Revert buffer is memory[0x1c:0x20]
       */
      uint256 constant BadContractSignature_error_selector = 0x4f7fb80d;
      uint256 constant BadContractSignature_error_length = 0x04;
      /*
       *  error InvalidERC721TransferAmount(uint256 amount)
       *    - Defined in TokenTransferrerErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       *    - 0x20: amount
       * Revert buffer is memory[0x1c:0x40]
       */
      uint256 constant InvalidERC721TransferAmount_error_selector = 0x69f95827;
      uint256 constant InvalidERC721TransferAmount_error_amount_ptr = 0x20;
      uint256 constant InvalidERC721TransferAmount_error_length = 0x24;
      /*
       *  error MissingItemAmount()
       *    - Defined in TokenTransferrerErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       * Revert buffer is memory[0x1c:0x20]
       */
      uint256 constant MissingItemAmount_error_selector = 0x91b3e514;
      uint256 constant MissingItemAmount_error_length = 0x04;
      /*
       *  error UnusedItemParameters()
       *    - Defined in TokenTransferrerErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       * Revert buffer is memory[0x1c:0x20]
       */
      uint256 constant UnusedItemParameters_error_selector = 0x6ab37ce7;
      uint256 constant UnusedItemParameters_error_length = 0x04;
      /*
       *  error NoReentrantCalls()
       *    - Defined in ReentrancyErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       * Revert buffer is memory[0x1c:0x20]
       */
      uint256 constant NoReentrantCalls_error_selector = 0x7fa8a987;
      uint256 constant NoReentrantCalls_error_length = 0x04;
      /*
       *  error OrderAlreadyFilled(bytes32 orderHash)
       *    - Defined in ConsiderationEventsAndErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       *    - 0x20: orderHash
       * Revert buffer is memory[0x1c:0x40]
       */
      uint256 constant OrderAlreadyFilled_error_selector = 0x10fda3e1;
      uint256 constant OrderAlreadyFilled_error_orderHash_ptr = 0x20;
      uint256 constant OrderAlreadyFilled_error_length = 0x24;
      /*
       *  error InvalidTime(uint256 startTime, uint256 endTime)
       *    - Defined in ConsiderationEventsAndErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       *    - 0x20: startTime
       *    - 0x40: endTime
       * Revert buffer is memory[0x1c:0x60]
       */
      uint256 constant InvalidTime_error_selector = 0x21ccfeb7;
      uint256 constant InvalidTime_error_startTime_ptr = 0x20;
      uint256 constant InvalidTime_error_endTime_ptr = 0x40;
      uint256 constant InvalidTime_error_length = 0x44;
      /*
       *  error InvalidConduit(bytes32 conduitKey, address conduit)
       *    - Defined in ConsiderationEventsAndErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       *    - 0x20: conduitKey
       *    - 0x40: conduit
       * Revert buffer is memory[0x1c:0x60]
       */
      uint256 constant InvalidConduit_error_selector = 0x1cf99b26;
      uint256 constant InvalidConduit_error_conduitKey_ptr = 0x20;
      uint256 constant InvalidConduit_error_conduit_ptr = 0x40;
      uint256 constant InvalidConduit_error_length = 0x44;
      /*
       *  error MissingOriginalConsiderationItems()
       *    - Defined in ConsiderationEventsAndErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       * Revert buffer is memory[0x1c:0x20]
       */
      uint256 constant MissingOriginalConsiderationItems_error_selector = 0x466aa616;
      uint256 constant MissingOriginalConsiderationItems_error_length = 0x04;
      /*
       *  error InvalidCallToConduit(address conduit)
       *    - Defined in ConsiderationEventsAndErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       *    - 0x20: conduit
       * Revert buffer is memory[0x1c:0x40]
       */
      uint256 constant InvalidCallToConduit_error_selector = 0xd13d53d4;
      uint256 constant InvalidCallToConduit_error_conduit_ptr = 0x20;
      uint256 constant InvalidCallToConduit_error_length = 0x24;
      /*
       *  error ConsiderationNotMet(
       *      uint256 orderIndex,
       *      uint256 considerationIndex,
       *      uint256 shortfallAmount
       *  )
       *    - Defined in ConsiderationEventsAndErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       *    - 0x20: orderIndex
       *    - 0x40: considerationIndex
       *    - 0x60: shortfallAmount
       * Revert buffer is memory[0x1c:0x80]
       */
      uint256 constant ConsiderationNotMet_error_selector = 0xa5f54208;
      uint256 constant ConsiderationNotMet_error_orderIndex_ptr = 0x20;
      uint256 constant ConsiderationNotMet_error_considerationIndex_ptr = 0x40;
      uint256 constant ConsiderationNotMet_error_shortfallAmount_ptr = 0x60;
      uint256 constant ConsiderationNotMet_error_length = 0x64;
      /*
       *  error InsufficientNativeTokensSupplied()
       *    - Defined in ConsiderationEventsAndErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       * Revert buffer is memory[0x1c:0x20]
       */
      uint256 constant InsufficientNativeTokensSupplied_error_selector = 0x8ffff980;
      uint256 constant InsufficientNativeTokensSupplied_error_length = 0x04;
      /*
       *  error NativeTokenTransferGenericFailure(address account, uint256 amount)
       *    - Defined in ConsiderationEventsAndErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       *    - 0x20: account
       *    - 0x40: amount
       * Revert buffer is memory[0x1c:0x60]
       */
      uint256 constant NativeTokenTransferGenericFailure_error_selector = 0xbc806b96;
      uint256 constant NativeTokenTransferGenericFailure_error_account_ptr = 0x20;
      uint256 constant NativeTokenTransferGenericFailure_error_amount_ptr = 0x40;
      uint256 constant NativeTokenTransferGenericFailure_error_length = 0x44;
      /*
       *  error PartialFillsNotEnabledForOrder()
       *    - Defined in ConsiderationEventsAndErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       * Revert buffer is memory[0x1c:0x20]
       */
      uint256 constant PartialFillsNotEnabledForOrder_error_selector = 0xa11b63ff;
      uint256 constant PartialFillsNotEnabledForOrder_error_length = 0x04;
      /*
       *  error OrderIsCancelled(bytes32 orderHash)
       *    - Defined in ConsiderationEventsAndErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       *    - 0x20: orderHash
       * Revert buffer is memory[0x1c:0x40]
       */
      uint256 constant OrderIsCancelled_error_selector = 0x1a515574;
      uint256 constant OrderIsCancelled_error_orderHash_ptr = 0x20;
      uint256 constant OrderIsCancelled_error_length = 0x24;
      /*
       *  error OrderPartiallyFilled(bytes32 orderHash)
       *    - Defined in ConsiderationEventsAndErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       *    - 0x20: orderHash
       * Revert buffer is memory[0x1c:0x40]
       */
      uint256 constant OrderPartiallyFilled_error_selector = 0xee9e0e63;
      uint256 constant OrderPartiallyFilled_error_orderHash_ptr = 0x20;
      uint256 constant OrderPartiallyFilled_error_length = 0x24;
      /*
       *  error CannotCancelOrder()
       *    - Defined in ConsiderationEventsAndErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       * Revert buffer is memory[0x1c:0x20]
       */
      uint256 constant CannotCancelOrder_error_selector = 0xfed398fc;
      uint256 constant CannotCancelOrder_error_length = 0x04;
      /*
       *  error BadFraction()
       *    - Defined in ConsiderationEventsAndErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       * Revert buffer is memory[0x1c:0x20]
       */
      uint256 constant BadFraction_error_selector = 0x5a052b32;
      uint256 constant BadFraction_error_length = 0x04;
      /*
       *  error InvalidMsgValue(uint256 value)
       *    - Defined in ConsiderationEventsAndErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       *    - 0x20: value
       * Revert buffer is memory[0x1c:0x40]
       */
      uint256 constant InvalidMsgValue_error_selector = 0xa61be9f0;
      uint256 constant InvalidMsgValue_error_value_ptr = 0x20;
      uint256 constant InvalidMsgValue_error_length = 0x24;
      /*
       *  error InvalidBasicOrderParameterEncoding()
       *    - Defined in ConsiderationEventsAndErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       * Revert buffer is memory[0x1c:0x20]
       */
      uint256 constant InvalidBasicOrderParameterEncoding_error_selector = 0x39f3e3fd;
      uint256 constant InvalidBasicOrderParameterEncoding_error_length = 0x04;
      /*
       *  error NoSpecifiedOrdersAvailable()
       *    - Defined in ConsiderationEventsAndErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       * Revert buffer is memory[0x1c:0x20]
       */
      uint256 constant NoSpecifiedOrdersAvailable_error_selector = 0xd5da9a1b;
      uint256 constant NoSpecifiedOrdersAvailable_error_length = 0x04;
      /*
       *  error InvalidNativeOfferItem()
       *    - Defined in ConsiderationEventsAndErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       * Revert buffer is memory[0x1c:0x20]
       */
      uint256 constant InvalidNativeOfferItem_error_selector = 0x12d3f5a3;
      uint256 constant InvalidNativeOfferItem_error_length = 0x04;
      /*
       *  error ConsiderationLengthNotEqualToTotalOriginal()
       *    - Defined in ConsiderationEventsAndErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       * Revert buffer is memory[0x1c:0x20]
       */
      uint256 constant ConsiderationLengthNotEqualToTotalOriginal_error_selector = (
          0x2165628a
      );
      uint256 constant ConsiderationLengthNotEqualToTotalOriginal_error_length = 0x04;
      /*
       *  error Panic(uint256 code)
       *    - Built-in Solidity error
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       *    - 0x20: code
       * Revert buffer is memory[0x1c:0x40]
       */
      uint256 constant Panic_error_selector = 0x4e487b71;
      uint256 constant Panic_error_code_ptr = 0x20;
      uint256 constant Panic_error_length = 0x24;
      uint256 constant Panic_arithmetic = 0x11;
      // uint256 constant Panic_resource = 0x41;
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.13;
      import { Side } from "../lib/ConsiderationEnums.sol";
      /**
       * @title FulfillmentApplicationErrors
       * @author 0age
       * @notice FulfillmentApplicationErrors contains errors related to fulfillment
       *         application and aggregation.
       */
      interface FulfillmentApplicationErrors {
          /**
           * @dev Revert with an error when a fulfillment is provided that does not
           *      declare at least one component as part of a call to fulfill
           *      available orders.
           */
          error MissingFulfillmentComponentOnAggregation(Side side);
          /**
           * @dev Revert with an error when a fulfillment is provided that does not
           *      declare at least one offer component and at least one consideration
           *      component.
           */
          error OfferAndConsiderationRequiredOnFulfillment();
          /**
           * @dev Revert with an error when the initial offer item named by a
           *      fulfillment component does not match the type, token, identifier,
           *      or conduit preference of the initial consideration item.
           *
           * @param fulfillmentIndex The index of the fulfillment component that
           *                         does not match the initial offer item.
           */
          error MismatchedFulfillmentOfferAndConsiderationComponents(
              uint256 fulfillmentIndex
          );
          /**
           * @dev Revert with an error when an order or item index are out of range
           *      or a fulfillment component does not match the type, token,
           *      identifier, or conduit preference of the initial consideration item.
           */
          error InvalidFulfillmentComponentData();
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      import { ItemType, Side } from "./ConsiderationEnums.sol";
      import {
          AdvancedOrder,
          CriteriaResolver,
          MemoryPointer,
          OfferItem,
          OrderParameters
      } from "./ConsiderationStructs.sol";
      import {
          _revertCriteriaNotEnabledForItem,
          _revertInvalidProof,
          _revertOrderCriteriaResolverOutOfRange,
          _revertUnresolvedConsiderationCriteria,
          _revertUnresolvedOfferCriteria
      } from "./ConsiderationErrors.sol";
      import {
          CriteriaResolutionErrors
      } from "../interfaces/CriteriaResolutionErrors.sol";
      import {
          OneWord,
          OneWordShift,
          OrderParameters_consideration_head_offset,
          Selector_length,
          TwoWords
      } from "./ConsiderationConstants.sol";
      import {
          ConsiderationCriteriaResolverOutOfRange_err_selector,
          Error_selector_offset,
          OfferCriteriaResolverOutOfRange_error_selector
      } from "./ConsiderationErrorConstants.sol";
      /**
       * @title CriteriaResolution
       * @author 0age
       * @notice CriteriaResolution contains a collection of pure functions related to
       *         resolving criteria-based items.
       */
      contract CriteriaResolution is CriteriaResolutionErrors {
          /**
           * @dev Internal pure function to apply criteria resolvers containing
           *      specific token identifiers and associated proofs to order items.
           *
           * @param advancedOrders     The orders to apply criteria resolvers to.
           * @param criteriaResolvers  An array where each element contains a
           *                           reference to a specific order as well as that
           *                           order's offer or consideration, a token
           *                           identifier, and a proof that the supplied token
           *                           identifier is contained in the order's merkle
           *                           root. Note that a root of zero indicates that
           *                           any transferable token identifier is valid and
           *                           that no proof needs to be supplied.
           */
          function _applyCriteriaResolvers(
              AdvancedOrder[] memory advancedOrders,
              CriteriaResolver[] memory criteriaResolvers
          ) internal pure {
              // Skip overflow checks as all for loops are indexed starting at zero.
              unchecked {
                  // Retrieve length of criteria resolvers array and place on stack.
                  uint256 totalCriteriaResolvers = criteriaResolvers.length;
                  // Retrieve length of orders array and place on stack.
                  uint256 totalAdvancedOrders = advancedOrders.length;
                  // Iterate over each criteria resolver.
                  for (uint256 i = 0; i < totalCriteriaResolvers; ++i) {
                      // Retrieve the criteria resolver.
                      CriteriaResolver memory criteriaResolver = (
                          criteriaResolvers[i]
                      );
                      // Read the order index from memory and place it on the stack.
                      uint256 orderIndex = criteriaResolver.orderIndex;
                      // Ensure that the order index is in range.
                      if (orderIndex >= totalAdvancedOrders) {
                          _revertOrderCriteriaResolverOutOfRange(
                              criteriaResolver.side
                          );
                      }
                      // Retrieve the referenced advanced order.
                      AdvancedOrder memory advancedOrder = advancedOrders[orderIndex];
                      // Skip criteria resolution for order if not fulfilled.
                      if (advancedOrder.numerator == 0) {
                          continue;
                      }
                      // Retrieve the parameters for the order.
                      OrderParameters memory orderParameters = (
                          advancedOrder.parameters
                      );
                      {
                          // Get a pointer to the list of items to give to
                          // _updateCriteriaItem. If the resolver refers to a
                          // consideration item, this array pointer will be replaced
                          // with the consideration array.
                          OfferItem[] memory items = orderParameters.offer;
                          // Read component index from memory and place it on stack.
                          uint256 componentIndex = criteriaResolver.index;
                          // Get error selector for `OfferCriteriaResolverOutOfRange`.
                          uint256 errorSelector = (
                              OfferCriteriaResolverOutOfRange_error_selector
                          );
                          // If the resolver refers to a consideration item...
                          if (criteriaResolver.side != Side.OFFER) {
                              // Get the pointer to `orderParameters.consideration`
                              // Using the array directly has a significant impact on
                              // the optimized compiler output.
                              MemoryPointer considerationPtr = orderParameters
                                  .toMemoryPointer()
                                  .pptr(OrderParameters_consideration_head_offset);
                              // Replace the items pointer with a pointer to the
                              // consideration array.
                              assembly {
                                  items := considerationPtr
                              }
                              // Replace the error selector with the selector for
                              // `ConsiderationCriteriaResolverOutOfRange`.
                              errorSelector = (
                                  ConsiderationCriteriaResolverOutOfRange_err_selector
                              );
                          }
                          // Ensure that the component index is in range.
                          if (componentIndex >= items.length) {
                              assembly {
                                  // Revert with either
                                  // `OfferCriteriaResolverOutOfRange()` or
                                  // `ConsiderationCriteriaResolverOutOfRange()`,
                                  // depending on whether the resolver refers to a
                                  // consideration item.
                                  mstore(0, errorSelector)
                                  // revert(abi.encodeWithSignature(
                                  //    "OfferCriteriaResolverOutOfRange()"
                                  // ))
                                  // or
                                  // revert(abi.encodeWithSignature(
                                  //    "ConsiderationCriteriaResolverOutOfRange()"
                                  // ))
                                  revert(Error_selector_offset, Selector_length)
                              }
                          }
                          // Apply the criteria resolver to the item in question.
                          _updateCriteriaItem(
                              items,
                              componentIndex,
                              criteriaResolver
                          );
                      }
                  }
                  // Iterate over each advanced order.
                  for (uint256 i = 0; i < totalAdvancedOrders; ++i) {
                      // Retrieve the advanced order.
                      AdvancedOrder memory advancedOrder = advancedOrders[i];
                      // Skip criteria resolution for order if not fulfilled.
                      if (advancedOrder.numerator == 0) {
                          continue;
                      }
                      // Retrieve the parameters for the order.
                      OrderParameters memory orderParameters = (
                          advancedOrder.parameters
                      );
                      // Read consideration length from memory and place on stack.
                      uint256 totalItems = orderParameters.consideration.length;
                      // Iterate over each consideration item on the order.
                      for (uint256 j = 0; j < totalItems; ++j) {
                          // Ensure item type no longer indicates criteria usage.
                          if (
                              _isItemWithCriteria(
                                  orderParameters.consideration[j].itemType
                              )
                          ) {
                              _revertUnresolvedConsiderationCriteria(i, j);
                          }
                      }
                      // Read offer length from memory and place on stack.
                      totalItems = orderParameters.offer.length;
                      // Iterate over each offer item on the order.
                      for (uint256 j = 0; j < totalItems; ++j) {
                          // Ensure item type no longer indicates criteria usage.
                          if (
                              _isItemWithCriteria(orderParameters.offer[j].itemType)
                          ) {
                              _revertUnresolvedOfferCriteria(i, j);
                          }
                      }
                  }
              }
          }
          /**
           * @dev Internal pure function to update a criteria item.
           *
           * @param offer             The offer containing the item to update.
           * @param componentIndex    The index of the item to update.
           * @param criteriaResolver  The criteria resolver to use to update the item.
           */
          function _updateCriteriaItem(
              OfferItem[] memory offer,
              uint256 componentIndex,
              CriteriaResolver memory criteriaResolver
          ) internal pure {
              // Retrieve relevant item using the component index.
              OfferItem memory offerItem = offer[componentIndex];
              // Read item type and criteria from memory & place on stack.
              ItemType itemType = offerItem.itemType;
              // Ensure the specified item type indicates criteria usage.
              if (!_isItemWithCriteria(itemType)) {
                  _revertCriteriaNotEnabledForItem();
              }
              uint256 identifierOrCriteria = offerItem.identifierOrCriteria;
              // If criteria is not 0 (i.e. a collection-wide criteria-based item)...
              if (identifierOrCriteria != uint256(0)) {
                  // Verify identifier inclusion in criteria root using proof.
                  _verifyProof(
                      criteriaResolver.identifier,
                      identifierOrCriteria,
                      criteriaResolver.criteriaProof
                  );
              } else if (criteriaResolver.criteriaProof.length != 0) {
                  // Revert if non-empty proof is supplied for a collection-wide item.
                  _revertInvalidProof();
              }
              // Update item type to remove criteria usage.
              // Use assembly to operate on ItemType enum as a number.
              ItemType newItemType;
              assembly {
                  // Item type 4 becomes 2 and item type 5 becomes 3.
                  newItemType := sub(3, eq(itemType, 4))
              }
              offerItem.itemType = newItemType;
              // Update identifier w/ supplied identifier.
              offerItem.identifierOrCriteria = criteriaResolver.identifier;
          }
          /**
           * @dev Internal pure function to check whether a given item type represents
           *      a criteria-based ERC721 or ERC1155 item (e.g. an item that can be
           *      resolved to one of a number of different identifiers at the time of
           *      order fulfillment).
           *
           * @param itemType The item type in question.
           *
           * @return withCriteria A boolean indicating that the item type in question
           *                      represents a criteria-based item.
           */
          function _isItemWithCriteria(
              ItemType itemType
          ) internal pure returns (bool withCriteria) {
              // ERC721WithCriteria is ItemType 4. ERC1155WithCriteria is ItemType 5.
              assembly {
                  withCriteria := gt(itemType, 3)
              }
          }
          /**
           * @dev Internal pure function to ensure that a given element is contained
           *      in a merkle root via a supplied proof.
           *
           * @param leaf  The element for which to prove inclusion.
           * @param root  The merkle root that inclusion will be proved against.
           * @param proof The merkle proof.
           */
          function _verifyProof(
              uint256 leaf,
              uint256 root,
              bytes32[] memory proof
          ) internal pure {
              // Declare a variable that will be used to determine proof validity.
              bool isValid;
              // Utilize assembly to efficiently verify the proof against the root.
              assembly {
                  // Store the leaf at the beginning of scratch space.
                  mstore(0, leaf)
                  // Derive the hash of the leaf to use as the initial proof element.
                  let computedHash := keccak256(0, OneWord)
                  // Get memory start location of the first element in proof array.
                  let data := add(proof, OneWord)
                  // Iterate over each proof element to compute the root hash.
                  for {
                      // Left shift by 5 is equivalent to multiplying by 0x20.
                      let end := add(data, shl(OneWordShift, mload(proof)))
                  } lt(data, end) {
                      // Increment by one word at a time.
                      data := add(data, OneWord)
                  } {
                      // Get the proof element.
                      let loadedData := mload(data)
                      // Sort proof elements and place them in scratch space.
                      // Slot of `computedHash` in scratch space.
                      // If the condition is true: 0x20, otherwise: 0x00.
                      let scratch := shl(OneWordShift, gt(computedHash, loadedData))
                      // Store elements to hash contiguously in scratch space. Scratch
                      // space is 64 bytes (0x00 - 0x3f) & both elements are 32 bytes.
                      mstore(scratch, computedHash)
                      mstore(xor(scratch, OneWord), loadedData)
                      // Derive the updated hash.
                      computedHash := keccak256(0, TwoWords)
                  }
                  // Compare the final hash to the supplied root.
                  isValid := eq(computedHash, root)
              }
              // Revert if computed hash does not equal supplied root.
              if (!isValid) {
                  _revertInvalidProof();
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      import {
          AmountDerivationErrors
      } from "../interfaces/AmountDerivationErrors.sol";
      import {
          Error_selector_offset,
          InexactFraction_error_length,
          InexactFraction_error_selector
      } from "./ConsiderationErrorConstants.sol";
      /**
       * @title AmountDeriver
       * @author 0age
       * @notice AmountDeriver contains view and pure functions related to deriving
       *         item amounts based on partial fill quantity and on linear
       *         interpolation based on current time when the start amount and end
       *         amount differ.
       */
      contract AmountDeriver is AmountDerivationErrors {
          /**
           * @dev Internal view function to derive the current amount of a given item
           *      based on the current price, the starting price, and the ending
           *      price. If the start and end prices differ, the current price will be
           *      interpolated on a linear basis. Note that this function expects that
           *      the startTime parameter of orderParameters is not greater than the
           *      current block timestamp and that the endTime parameter is greater
           *      than the current block timestamp. If this condition is not upheld,
           *      duration / elapsed / remaining variables will underflow.
           *
           * @param startAmount The starting amount of the item.
           * @param endAmount   The ending amount of the item.
           * @param startTime   The starting time of the order.
           * @param endTime     The end time of the order.
           * @param roundUp     A boolean indicating whether the resultant amount
           *                    should be rounded up or down.
           *
           * @return amount The current amount.
           */
          function _locateCurrentAmount(
              uint256 startAmount,
              uint256 endAmount,
              uint256 startTime,
              uint256 endTime,
              bool roundUp
          ) internal view returns (uint256 amount) {
              // Only modify end amount if it doesn't already equal start amount.
              if (startAmount != endAmount) {
                  // Declare variables to derive in the subsequent unchecked scope.
                  uint256 duration;
                  uint256 elapsed;
                  uint256 remaining;
                  // Skip underflow checks as startTime <= block.timestamp < endTime.
                  unchecked {
                      // Derive the duration for the order and place it on the stack.
                      duration = endTime - startTime;
                      // Derive time elapsed since the order started & place on stack.
                      elapsed = block.timestamp - startTime;
                      // Derive time remaining until order expires and place on stack.
                      remaining = duration - elapsed;
                  }
                  // Aggregate new amounts weighted by time with rounding factor.
                  uint256 totalBeforeDivision = ((startAmount * remaining) +
                      (endAmount * elapsed));
                  // Use assembly to combine operations and skip divide-by-zero check.
                  assembly {
                      // Multiply by iszero(iszero(totalBeforeDivision)) to ensure
                      // amount is set to zero if totalBeforeDivision is zero,
                      // as intermediate overflow can occur if it is zero.
                      amount := mul(
                          iszero(iszero(totalBeforeDivision)),
                          // Subtract 1 from the numerator and add 1 to the result if
                          // roundUp is true to get the proper rounding direction.
                          // Division is performed with no zero check as duration
                          // cannot be zero as long as startTime < endTime.
                          add(
                              div(sub(totalBeforeDivision, roundUp), duration),
                              roundUp
                          )
                      )
                  }
                  // Return the current amount.
                  return amount;
              }
              // Return the original amount as startAmount == endAmount.
              return endAmount;
          }
          /**
           * @dev Internal pure function to return a fraction of a given value and to
           *      ensure the resultant value does not have any fractional component.
           *      Note that this function assumes that zero will never be supplied as
           *      the denominator parameter; invalid / undefined behavior will result
           *      should a denominator of zero be provided.
           *
           * @param numerator   A value indicating the portion of the order that
           *                    should be filled.
           * @param denominator A value indicating the total size of the order. Note
           *                    that this value cannot be equal to zero.
           * @param value       The value for which to compute the fraction.
           *
           * @return newValue The value after applying the fraction.
           */
          function _getFraction(
              uint256 numerator,
              uint256 denominator,
              uint256 value
          ) internal pure returns (uint256 newValue) {
              // Return value early in cases where the fraction resolves to 1.
              if (numerator == denominator) {
                  return value;
              }
              // Ensure fraction can be applied to the value with no remainder. Note
              // that the denominator cannot be zero.
              assembly {
                  // Ensure new value contains no remainder via mulmod operator.
                  // Credit to @hrkrshnn + @axic for proposing this optimal solution.
                  if mulmod(value, numerator, denominator) {
                      // Store left-padded selector with push4, mem[28:32] = selector
                      mstore(0, InexactFraction_error_selector)
                      // revert(abi.encodeWithSignature("InexactFraction()"))
                      revert(Error_selector_offset, InexactFraction_error_length)
                  }
              }
              // Multiply the numerator by the value and ensure no overflow occurs.
              uint256 valueTimesNumerator = value * numerator;
              // Divide and check for remainder. Note that denominator cannot be zero.
              assembly {
                  // Perform division without zero check.
                  newValue := div(valueTimesNumerator, denominator)
              }
          }
          /**
           * @dev Internal view function to apply a fraction to a consideration
           * or offer item.
           *
           * @param startAmount     The starting amount of the item.
           * @param endAmount       The ending amount of the item.
           * @param numerator       A value indicating the portion of the order that
           *                        should be filled.
           * @param denominator     A value indicating the total size of the order.
           * @param startTime       The starting time of the order.
           * @param endTime         The end time of the order.
           * @param roundUp         A boolean indicating whether the resultant
           *                        amount should be rounded up or down.
           *
           * @return amount The received item to transfer with the final amount.
           */
          function _applyFraction(
              uint256 startAmount,
              uint256 endAmount,
              uint256 numerator,
              uint256 denominator,
              uint256 startTime,
              uint256 endTime,
              bool roundUp
          ) internal view returns (uint256 amount) {
              // If start amount equals end amount, apply fraction to end amount.
              if (startAmount == endAmount) {
                  // Apply fraction to end amount.
                  amount = _getFraction(numerator, denominator, endAmount);
              } else {
                  // Otherwise, apply fraction to both and interpolated final amount.
                  amount = _locateCurrentAmount(
                      _getFraction(numerator, denominator, startAmount),
                      _getFraction(numerator, denominator, endAmount),
                      startTime,
                      endTime,
                      roundUp
                  );
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      import {
          BasicOrderRouteType,
          ItemType,
          OrderType
      } from "./ConsiderationEnums.sol";
      import { BasicOrderParameters } from "./ConsiderationStructs.sol";
      import { OrderValidator } from "./OrderValidator.sol";
      import {
          _revertInsufficientNativeTokensSupplied,
          _revertInvalidMsgValue,
          _revertInvalidERC721TransferAmount,
          _revertUnusedItemParameters
      } from "./ConsiderationErrors.sol";
      import {
          AccumulatorDisarmed,
          AdditionalRecipient_size_shift,
          AdditionalRecipient_size,
          BasicOrder_additionalRecipients_data_cdPtr,
          BasicOrder_additionalRecipients_length_cdPtr,
          BasicOrder_basicOrderType_cdPtr,
          BasicOrder_common_params_size,
          BasicOrder_considerationAmount_cdPtr,
          BasicOrder_considerationHashesArray_ptr,
          BasicOrder_considerationIdentifier_cdPtr,
          BasicOrder_considerationItem_endAmount_ptr,
          BasicOrder_considerationItem_identifier_ptr,
          BasicOrder_considerationItem_itemType_ptr,
          BasicOrder_considerationItem_startAmount_ptr,
          BasicOrder_considerationItem_token_ptr,
          BasicOrder_considerationItem_typeHash_ptr,
          BasicOrder_considerationToken_cdPtr,
          BasicOrder_endTime_cdPtr,
          BasicOrder_fulfillerConduit_cdPtr,
          BasicOrder_offerAmount_cdPtr,
          BasicOrder_offeredItemByteMap,
          BasicOrder_offerer_cdPtr,
          BasicOrder_offererConduit_cdPtr,
          BasicOrder_offerIdentifier_cdPtr,
          BasicOrder_offerItem_endAmount_ptr,
          BasicOrder_offerItem_itemType_ptr,
          BasicOrder_offerItem_token_ptr,
          BasicOrder_offerItem_typeHash_ptr,
          BasicOrder_offerToken_cdPtr,
          BasicOrder_order_considerationHashes_ptr,
          BasicOrder_order_counter_ptr,
          BasicOrder_order_offerer_ptr,
          BasicOrder_order_offerHashes_ptr,
          BasicOrder_order_orderType_ptr,
          BasicOrder_order_startTime_ptr,
          BasicOrder_order_typeHash_ptr,
          BasicOrder_receivedItemByteMap,
          BasicOrder_startTime_cdPtr,
          BasicOrder_totalOriginalAdditionalRecipients_cdPtr,
          BasicOrder_zone_cdPtr,
          Common_token_offset,
          Conduit_execute_ConduitTransfer_length_ptr,
          Conduit_execute_ConduitTransfer_length,
          Conduit_execute_ConduitTransfer_offset_ptr,
          Conduit_execute_ConduitTransfer_ptr,
          Conduit_execute_signature,
          Conduit_execute_transferAmount_ptr,
          Conduit_execute_transferIdentifier_ptr,
          Conduit_execute_transferFrom_ptr,
          Conduit_execute_transferItemType_ptr,
          Conduit_execute_transferTo_ptr,
          Conduit_execute_transferToken_ptr,
          EIP712_ConsiderationItem_size,
          EIP712_OfferItem_size,
          EIP712_Order_size,
          FiveWords,
          FourWords,
          FreeMemoryPointerSlot,
          MaskOverLastTwentyBytes,
          OneConduitExecute_size,
          OneWord,
          OneWordShift,
          OrderFulfilled_baseOffset,
          OrderFulfilled_baseSize,
          OrderFulfilled_consideration_body_offset,
          OrderFulfilled_consideration_head_offset,
          OrderFulfilled_consideration_length_baseOffset,
          OrderFulfilled_fulfiller_offset,
          OrderFulfilled_offer_body_offset,
          OrderFulfilled_offer_head_offset,
          OrderFulfilled_offer_length_baseOffset,
          OrderFulfilled_selector,
          ReceivedItem_amount_offset,
          ReceivedItem_size,
          receivedItemsHash_ptr,
          ThreeWords,
          TwoWords,
          ZeroSlot
      } from "./ConsiderationConstants.sol";
      import {
          Error_selector_offset,
          InvalidBasicOrderParameterEncoding_error_length,
          InvalidBasicOrderParameterEncoding_error_selector,
          InvalidTime_error_endTime_ptr,
          InvalidTime_error_length,
          InvalidTime_error_selector,
          InvalidTime_error_startTime_ptr,
          MissingOriginalConsiderationItems_error_length,
          MissingOriginalConsiderationItems_error_selector,
          UnusedItemParameters_error_length,
          UnusedItemParameters_error_selector
      } from "./ConsiderationErrorConstants.sol";
      /**
       * @title BasicOrderFulfiller
       * @author 0age
       * @notice BasicOrderFulfiller contains functionality for fulfilling "basic"
       *         orders with minimal overhead. See documentation for details on what
       *         qualifies as a basic order.
       */
      contract BasicOrderFulfiller is OrderValidator {
          /**
           * @dev Derive and set hashes, reference chainId, and associated domain
           *      separator during deployment.
           *
           * @param conduitController A contract that deploys conduits, or proxies
           *                          that may optionally be used to transfer approved
           *                          ERC20/721/1155 tokens.
           */
          constructor(address conduitController) OrderValidator(conduitController) {}
          /**
           * @dev Internal function to fulfill an order offering an ERC20, ERC721, or
           *      ERC1155 item by supplying Ether (or other native tokens), ERC20
           *      tokens, an ERC721 item, or an ERC1155 item as consideration. Six
           *      permutations are supported: Native token to ERC721, Native token to
           *      ERC1155, ERC20 to ERC721, ERC20 to ERC1155, ERC721 to ERC20, and
           *      ERC1155 to ERC20 (with native tokens supplied as msg.value). For an
           *      order to be eligible for fulfillment via this method, it must
           *      contain a single offer item (though that item may have a greater
           *      amount if the item is not an ERC721). An arbitrary number of
           *      "additional recipients" may also be supplied which will each receive
           *      native tokens or ERC20 items from the fulfiller as consideration.
           *      Refer to the documentation for a more comprehensive summary of how
           *      to utilize this method and what orders are compatible with it.
           *
           * @param parameters Additional information on the fulfilled order. Note
           *                   that the offerer and the fulfiller must first approve
           *                   this contract (or their chosen conduit if indicated)
           *                   before any tokens can be transferred. Also note that
           *                   contract recipients of ERC1155 consideration items must
           *                   implement `onERC1155Received` in order to receive those
           *                   items.
           *
           * @return A boolean indicating whether the order has been fulfilled.
           */
          function _validateAndFulfillBasicOrder(
              BasicOrderParameters calldata parameters
          ) internal returns (bool) {
              // Declare enums for order type & route to extract from basicOrderType.
              BasicOrderRouteType route;
              OrderType orderType;
              // Declare additional recipient item type to derive from the route type.
              ItemType additionalRecipientsItemType;
              bytes32 orderHash;
              // Utilize assembly to extract the order type and the basic order route.
              assembly {
                  // Read basicOrderType from calldata.
                  let basicOrderType := calldataload(BasicOrder_basicOrderType_cdPtr)
                  // Mask all but 2 least-significant bits to derive the order type.
                  orderType := and(basicOrderType, 3)
                  // Divide basicOrderType by four to derive the route.
                  route := shr(2, basicOrderType)
                  // If route > 1 additionalRecipient items are ERC20 (1) else native
                  // token (0).
                  additionalRecipientsItemType := gt(route, 1)
              }
              {
                  // Declare temporary variable for enforcing payable status.
                  bool correctPayableStatus;
                  // Utilize assembly to compare the route to the callvalue.
                  assembly {
                      // route 0 and 1 are payable, otherwise route is not payable.
                      correctPayableStatus := eq(
                          additionalRecipientsItemType,
                          iszero(callvalue())
                      )
                  }
                  // Revert if msg.value has not been supplied as part of payable
                  // routes or has been supplied as part of non-payable routes.
                  if (!correctPayableStatus) {
                      _revertInvalidMsgValue(msg.value);
                  }
              }
              // Declare more arguments that will be derived from route and calldata.
              address additionalRecipientsToken;
              ItemType offeredItemType;
              bool offerTypeIsAdditionalRecipientsType;
              // Declare scope for received item type to manage stack pressure.
              {
                  ItemType receivedItemType;
                  // Utilize assembly to retrieve function arguments and cast types.
                  assembly {
                      // Check if offered item type == additional recipient item type.
                      offerTypeIsAdditionalRecipientsType := gt(route, 3)
                      // If route > 3 additionalRecipientsToken is at 0xc4 else 0x24.
                      additionalRecipientsToken := calldataload(
                          add(
                              BasicOrder_considerationToken_cdPtr,
                              mul(
                                  offerTypeIsAdditionalRecipientsType,
                                  BasicOrder_common_params_size
                              )
                          )
                      )
                      // If route > 2, receivedItemType is route - 2. If route is 2,
                      // the receivedItemType is ERC20 (1). Otherwise, it is native
                      // token (0).
                      receivedItemType := byte(route, BasicOrder_receivedItemByteMap)
                      // If route > 3, offeredItemType is ERC20 (1). Route is 2 or 3,
                      // offeredItemType = route. Route is 0 or 1, it is route + 2.
                      offeredItemType := byte(route, BasicOrder_offeredItemByteMap)
                  }
                  // Derive & validate order using parameters and update order status.
                  orderHash = _prepareBasicFulfillmentFromCalldata(
                      parameters,
                      orderType,
                      receivedItemType,
                      additionalRecipientsItemType,
                      additionalRecipientsToken,
                      offeredItemType
                  );
              }
              // Declare conduitKey argument used by transfer functions.
              bytes32 conduitKey;
              // Utilize assembly to derive conduit (if relevant) based on route.
              assembly {
                  // use offerer conduit for routes 0-3, fulfiller conduit otherwise.
                  conduitKey := calldataload(
                      add(
                          BasicOrder_offererConduit_cdPtr,
                          shl(OneWordShift, offerTypeIsAdditionalRecipientsType)
                      )
                  )
              }
              // Transfer tokens based on the route.
              if (additionalRecipientsItemType == ItemType.NATIVE) {
                  // Ensure neither consideration token nor identifier are set. Note
                  // that dirty upper bits in the consideration token will still cause
                  // this error to be thrown.
                  assembly {
                      if or(
                          calldataload(BasicOrder_considerationToken_cdPtr),
                          calldataload(BasicOrder_considerationIdentifier_cdPtr)
                      ) {
                          // Store left-padded selector with push4 (reduces bytecode),
                          // mem[28:32] = selector
                          mstore(0, UnusedItemParameters_error_selector)
                          // revert(abi.encodeWithSignature("UnusedItemParameters()"))
                          revert(
                              Error_selector_offset,
                              UnusedItemParameters_error_length
                          )
                      }
                  }
                  // Transfer the ERC721 or ERC1155 item, bypassing the accumulator.
                  _transferIndividual721Or1155Item(offeredItemType, conduitKey);
                  // Transfer native to recipients, return excess to caller & wrap up.
                  _transferNativeTokensAndFinalize();
              } else {
                  // Initialize an accumulator array. From this point forward, no new
                  // memory regions can be safely allocated until the accumulator is
                  // no longer being utilized, as the accumulator operates in an
                  // open-ended fashion from this memory pointer; existing memory may
                  // still be accessed and modified, however.
                  bytes memory accumulator = new bytes(AccumulatorDisarmed);
                  // Choose transfer method for ERC721 or ERC1155 item based on route.
                  if (route == BasicOrderRouteType.ERC20_TO_ERC721) {
                      // Transfer ERC721 to caller using offerer's conduit preference.
                      _transferERC721(
                          parameters.offerToken,
                          parameters.offerer,
                          msg.sender,
                          parameters.offerIdentifier,
                          parameters.offerAmount,
                          conduitKey,
                          accumulator
                      );
                  } else if (route == BasicOrderRouteType.ERC20_TO_ERC1155) {
                      // Transfer ERC1155 to caller with offerer's conduit preference.
                      _transferERC1155(
                          parameters.offerToken,
                          parameters.offerer,
                          msg.sender,
                          parameters.offerIdentifier,
                          parameters.offerAmount,
                          conduitKey,
                          accumulator
                      );
                  } else if (route == BasicOrderRouteType.ERC721_TO_ERC20) {
                      // Transfer ERC721 to offerer using caller's conduit preference.
                      _transferERC721(
                          parameters.considerationToken,
                          msg.sender,
                          parameters.offerer,
                          parameters.considerationIdentifier,
                          parameters.considerationAmount,
                          conduitKey,
                          accumulator
                      );
                  } else {
                      // route == BasicOrderRouteType.ERC1155_TO_ERC20
                      // Transfer ERC1155 to offerer with caller's conduit preference.
                      _transferERC1155(
                          parameters.considerationToken,
                          msg.sender,
                          parameters.offerer,
                          parameters.considerationIdentifier,
                          parameters.considerationAmount,
                          conduitKey,
                          accumulator
                      );
                  }
                  // Transfer ERC20 tokens to all recipients and wrap up.
                  _transferERC20AndFinalize(
                      offerTypeIsAdditionalRecipientsType,
                      accumulator
                  );
                  // Trigger any remaining accumulated transfers via call to conduit.
                  _triggerIfArmed(accumulator);
              }
              // Determine whether order is restricted and, if so, that it is valid.
              _assertRestrictedBasicOrderValidity(orderHash, orderType, parameters);
              // Clear the reentrancy guard.
              _clearReentrancyGuard();
              return true;
          }
          /**
           * @dev Internal function to prepare fulfillment of a basic order with
           *      manual calldata and memory access. This calculates the order hash,
           *      emits an OrderFulfilled event, and asserts basic order validity.
           *      Note that calldata offsets must be validated as this function
           *      accesses constant calldata pointers for dynamic types that match
           *      default ABI encoding, but valid ABI encoding can use arbitrary
           *      offsets. Checking that the offsets were produced by default encoding
           *      will ensure that other functions using Solidity's calldata accessors
           *      (which calculate pointers from the stored offsets) are reading the
           *      same data as the order hash is derived from. Also note that this
           *      function accesses memory directly.
           *
           * @param parameters                   The parameters of the basic order.
           * @param orderType                    The order type.
           * @param receivedItemType             The item type of the initial
           *                                     consideration item on the order.
           * @param additionalRecipientsItemType The item type of any additional
           *                                     consideration item on the order.
           * @param additionalRecipientsToken    The ERC20 token contract address (if
           *                                     applicable) for any additional
           *                                     consideration item on the order.
           * @param offeredItemType              The item type of the offered item on
           *                                     the order.
           * @return orderHash The calculated order hash.
           */
          function _prepareBasicFulfillmentFromCalldata(
              BasicOrderParameters calldata parameters,
              OrderType orderType,
              ItemType receivedItemType,
              ItemType additionalRecipientsItemType,
              address additionalRecipientsToken,
              ItemType offeredItemType
          ) internal returns (bytes32 orderHash) {
              // Ensure this function cannot be triggered during a reentrant call.
              _setReentrancyGuard(false); // Native tokens rejected during execution.
              // Verify that calldata offsets for all dynamic types were produced by
              // default encoding. This ensures that the constants used for calldata
              // pointers to dynamic types are the same as those calculated by
              // Solidity using their offsets. Also verify that the basic order type
              // is within range.
              _assertValidBasicOrderParameters();
              // Check for invalid time and missing original consideration items.
              // Utilize assembly so that constant calldata pointers can be applied.
              assembly {
                  // Ensure current timestamp is between order start time & end time.
                  if or(
                      gt(calldataload(BasicOrder_startTime_cdPtr), timestamp()),
                      iszero(gt(calldataload(BasicOrder_endTime_cdPtr), timestamp()))
                  ) {
                      // Store left-padded selector with push4 (reduces bytecode),
                      // mem[28:32] = selector
                      mstore(0, InvalidTime_error_selector)
                      // Store arguments.
                      mstore(
                          InvalidTime_error_startTime_ptr,
                          calldataload(BasicOrder_startTime_cdPtr)
                      )
                      mstore(
                          InvalidTime_error_endTime_ptr,
                          calldataload(BasicOrder_endTime_cdPtr)
                      )
                      // revert(abi.encodeWithSignature(
                      //     "InvalidTime(uint256,uint256)",
                      //     startTime,
                      //     endTime
                      // ))
                      revert(Error_selector_offset, InvalidTime_error_length)
                  }
                  // Ensure consideration array length isn't less than total original.
                  if lt(
                      calldataload(BasicOrder_additionalRecipients_length_cdPtr),
                      calldataload(BasicOrder_totalOriginalAdditionalRecipients_cdPtr)
                  ) {
                      // Store left-padded selector with push4 (reduces bytecode),
                      // mem[28:32] = selector
                      mstore(0, MissingOriginalConsiderationItems_error_selector)
                      // revert(abi.encodeWithSignature(
                      //     "MissingOriginalConsiderationItems()"
                      // ))
                      revert(
                          Error_selector_offset,
                          MissingOriginalConsiderationItems_error_length
                      )
                  }
              }
              {
                  /**
                   * First, handle consideration items. Memory Layout:
                   *  0x60: final hash of the array of consideration item hashes
                   *  0x80-0x160: reused space for EIP712 hashing of each item
                   *   - 0x80: ConsiderationItem EIP-712 typehash (constant)
                   *   - 0xa0: itemType
                   *   - 0xc0: token
                   *   - 0xe0: identifier
                   *   - 0x100: startAmount
                   *   - 0x120: endAmount
                   *   - 0x140: recipient
                   *  0x160-END_ARR: array of consideration item hashes
                   *   - 0x160: primary consideration item EIP712 hash
                   *   - 0x180-END_ARR: additional recipient item EIP712 hashes
                   *  END_ARR: beginning of data for OrderFulfilled event
                   *   - END_ARR + 0x120: length of ReceivedItem array
                   *   - END_ARR + 0x140: beginning of data for first ReceivedItem
                   * (Note: END_ARR = 0x180 + RECIPIENTS_LENGTH * 0x20)
                   */
                  // Load consideration item typehash from runtime and place on stack.
                  bytes32 typeHash = _CONSIDERATION_ITEM_TYPEHASH;
                  // Utilize assembly to enable reuse of memory regions and use
                  // constant pointers when possible.
                  assembly {
                      /*
                       * 1. Calculate the EIP712 ConsiderationItem hash for the
                       * primary consideration item of the basic order.
                       */
                      // Write ConsiderationItem type hash and item type to memory.
                      mstore(BasicOrder_considerationItem_typeHash_ptr, typeHash)
                      mstore(
                          BasicOrder_considerationItem_itemType_ptr,
                          receivedItemType
                      )
                      // Copy calldata region with (token, identifier, amount) from
                      // BasicOrderParameters to ConsiderationItem. The
                      // considerationAmount is written to startAmount and endAmount
                      // as basic orders do not have dynamic amounts.
                      calldatacopy(
                          BasicOrder_considerationItem_token_ptr,
                          BasicOrder_considerationToken_cdPtr,
                          ThreeWords
                      )
                      // Copy calldata region with considerationAmount and offerer
                      // from BasicOrderParameters to endAmount and recipient in
                      // ConsiderationItem.
                      calldatacopy(
                          BasicOrder_considerationItem_endAmount_ptr,
                          BasicOrder_considerationAmount_cdPtr,
                          TwoWords
                      )
                      // Calculate EIP712 ConsiderationItem hash and store it in the
                      // array of EIP712 consideration hashes.
                      mstore(
                          BasicOrder_considerationHashesArray_ptr,
                          keccak256(
                              BasicOrder_considerationItem_typeHash_ptr,
                              EIP712_ConsiderationItem_size
                          )
                      )
                      /*
                       * 2. Write a ReceivedItem struct for the primary consideration
                       * item to the consideration array in OrderFulfilled.
                       */
                      // Get the length of the additional recipients array.
                      let totalAdditionalRecipients := calldataload(
                          BasicOrder_additionalRecipients_length_cdPtr
                      )
                      // Calculate pointer to length of OrderFulfilled consideration
                      // array.
                      let eventConsiderationArrPtr := add(
                          OrderFulfilled_consideration_length_baseOffset,
                          shl(OneWordShift, totalAdditionalRecipients)
                      )
                      // Set the length of the consideration array to the number of
                      // additional recipients, plus one for the primary consideration
                      // item.
                      mstore(
                          eventConsiderationArrPtr,
                          add(totalAdditionalRecipients, 1)
                      )
                      // Overwrite the consideration array pointer so it points to the
                      // body of the first element
                      eventConsiderationArrPtr := add(
                          eventConsiderationArrPtr,
                          OneWord
                      )
                      // Set itemType at start of the ReceivedItem memory region.
                      mstore(eventConsiderationArrPtr, receivedItemType)
                      // Copy calldata region (token, identifier, amount & recipient)
                      // from BasicOrderParameters to ReceivedItem memory.
                      calldatacopy(
                          add(eventConsiderationArrPtr, Common_token_offset),
                          BasicOrder_considerationToken_cdPtr,
                          FourWords
                      )
                      /*
                       * 3. Calculate EIP712 ConsiderationItem hashes for original
                       * additional recipients and add a ReceivedItem for each to the
                       * consideration array in the OrderFulfilled event. The original
                       * additional recipients are all the consideration items signed
                       * by the offerer aside from the primary consideration items of
                       * the order. Uses memory region from 0x80-0x160 as a buffer for
                       * calculating EIP712 ConsiderationItem hashes.
                       */
                      // Put pointer to consideration hashes array on the stack.
                      // This will be updated as each additional recipient is hashed
                      let
                          considerationHashesPtr
                      := BasicOrder_considerationHashesArray_ptr
                      // Write item type, token, & identifier for additional recipient
                      // to memory region for hashing EIP712 ConsiderationItem; these
                      // values will be reused for each recipient.
                      mstore(
                          BasicOrder_considerationItem_itemType_ptr,
                          additionalRecipientsItemType
                      )
                      mstore(
                          BasicOrder_considerationItem_token_ptr,
                          additionalRecipientsToken
                      )
                      mstore(BasicOrder_considerationItem_identifier_ptr, 0)
                      // Declare a stack variable where all additional recipients will
                      // be combined to guard against providing dirty upper bits.
                      let combinedAdditionalRecipients
                      // Read length of the additionalRecipients array from calldata
                      // and iterate.
                      totalAdditionalRecipients := calldataload(
                          BasicOrder_totalOriginalAdditionalRecipients_cdPtr
                      )
                      let i := 0
                      for {} lt(i, totalAdditionalRecipients) {
                          i := add(i, 1)
                      } {
                          /*
                           * Calculate EIP712 ConsiderationItem hash for recipient.
                           */
                          // Retrieve calldata pointer for additional recipient.
                          let additionalRecipientCdPtr := add(
                              BasicOrder_additionalRecipients_data_cdPtr,
                              mul(AdditionalRecipient_size, i)
                          )
                          // Copy startAmount from calldata to the ConsiderationItem
                          // struct.
                          calldatacopy(
                              BasicOrder_considerationItem_startAmount_ptr,
                              additionalRecipientCdPtr,
                              OneWord
                          )
                          // Copy endAmount and recipient from calldata to the
                          // ConsiderationItem struct.
                          calldatacopy(
                              BasicOrder_considerationItem_endAmount_ptr,
                              additionalRecipientCdPtr,
                              AdditionalRecipient_size
                          )
                          // Include the recipient as part of combined recipients.
                          combinedAdditionalRecipients := or(
                              combinedAdditionalRecipients,
                              calldataload(add(additionalRecipientCdPtr, OneWord))
                          )
                          // Add 1 word to the pointer as part of each loop to reduce
                          // operations needed to get local offset into the array.
                          considerationHashesPtr := add(
                              considerationHashesPtr,
                              OneWord
                          )
                          // Calculate EIP712 ConsiderationItem hash and store it in
                          // the array of consideration hashes.
                          mstore(
                              considerationHashesPtr,
                              keccak256(
                                  BasicOrder_considerationItem_typeHash_ptr,
                                  EIP712_ConsiderationItem_size
                              )
                          )
                          /*
                           * Write ReceivedItem to OrderFulfilled data.
                           */
                          // At this point, eventConsiderationArrPtr points to the
                          // beginning of the ReceivedItem struct of the previous
                          // element in the array. Increase it by the size of the
                          // struct to arrive at the pointer for the current element.
                          eventConsiderationArrPtr := add(
                              eventConsiderationArrPtr,
                              ReceivedItem_size
                          )
                          // Write itemType to the ReceivedItem struct.
                          mstore(
                              eventConsiderationArrPtr,
                              additionalRecipientsItemType
                          )
                          // Write token to the next word of the ReceivedItem struct.
                          mstore(
                              add(eventConsiderationArrPtr, OneWord),
                              additionalRecipientsToken
                          )
                          // Copy endAmount & recipient words to ReceivedItem struct.
                          calldatacopy(
                              add(
                                  eventConsiderationArrPtr,
                                  ReceivedItem_amount_offset
                              ),
                              additionalRecipientCdPtr,
                              TwoWords
                          )
                      }
                      /*
                       * 4. Hash packed array of ConsiderationItem EIP712 hashes:
                       *   `keccak256(abi.encodePacked(receivedItemHashes))`
                       * Note that it is set at 0x60 — all other memory begins at
                       * 0x80. 0x60 is the "zero slot" and will be restored at the end
                       * of the assembly section and before required by the compiler.
                       */
                      mstore(
                          receivedItemsHash_ptr,
                          keccak256(
                              BasicOrder_considerationHashesArray_ptr,
                              shl(OneWordShift, add(totalAdditionalRecipients, 1))
                          )
                      )
                      /*
                       * 5. Add a ReceivedItem for each tip to the consideration array
                       * in the OrderFulfilled event. The tips are all the
                       * consideration items that were not signed by the offerer and
                       * were provided by the fulfiller.
                       */
                      // Overwrite length to length of the additionalRecipients array.
                      totalAdditionalRecipients := calldataload(
                          BasicOrder_additionalRecipients_length_cdPtr
                      )
                      for {} lt(i, totalAdditionalRecipients) {
                          i := add(i, 1)
                      } {
                          // Retrieve calldata pointer for additional recipient.
                          let additionalRecipientCdPtr := add(
                              BasicOrder_additionalRecipients_data_cdPtr,
                              mul(AdditionalRecipient_size, i)
                          )
                          // At this point, eventConsiderationArrPtr points to the
                          // beginning of the ReceivedItem struct of the previous
                          // element in the array. Increase it by the size of the
                          // struct to arrive at the pointer for the current element.
                          eventConsiderationArrPtr := add(
                              eventConsiderationArrPtr,
                              ReceivedItem_size
                          )
                          // Write itemType to the ReceivedItem struct.
                          mstore(
                              eventConsiderationArrPtr,
                              additionalRecipientsItemType
                          )
                          // Write token to the next word of the ReceivedItem struct.
                          mstore(
                              add(eventConsiderationArrPtr, OneWord),
                              additionalRecipientsToken
                          )
                          // Copy endAmount & recipient words to ReceivedItem struct.
                          calldatacopy(
                              add(
                                  eventConsiderationArrPtr,
                                  ReceivedItem_amount_offset
                              ),
                              additionalRecipientCdPtr,
                              TwoWords
                          )
                          // Include the recipient as part of combined recipients.
                          combinedAdditionalRecipients := or(
                              combinedAdditionalRecipients,
                              calldataload(add(additionalRecipientCdPtr, OneWord))
                          )
                      }
                      // Ensure no dirty upper bits on combined additional recipients.
                      if gt(combinedAdditionalRecipients, MaskOverLastTwentyBytes) {
                          // Store left-padded selector with push4 (reduces bytecode),
                          // mem[28:32] = selector
                          mstore(0, InvalidBasicOrderParameterEncoding_error_selector)
                          // revert(abi.encodeWithSignature(
                          //     "InvalidBasicOrderParameterEncoding()"
                          // ))
                          revert(
                              Error_selector_offset,
                              InvalidBasicOrderParameterEncoding_error_length
                          )
                      }
                  }
              }
              {
                  /**
                   * Next, handle offered items. Memory Layout:
                   *  EIP712 data for OfferItem
                   *   - 0x80:  OfferItem EIP-712 typehash (constant)
                   *   - 0xa0:  itemType
                   *   - 0xc0:  token
                   *   - 0xe0:  identifier (reused for offeredItemsHash)
                   *   - 0x100: startAmount
                   *   - 0x120: endAmount
                   */
                  // Place offer item typehash on the stack.
                  bytes32 typeHash = _OFFER_ITEM_TYPEHASH;
                  // Utilize assembly to enable reuse of memory regions when possible.
                  assembly {
                      /*
                       * 1. Calculate OfferItem EIP712 hash
                       */
                      // Write the OfferItem typeHash to memory.
                      mstore(BasicOrder_offerItem_typeHash_ptr, typeHash)
                      // Write the OfferItem item type to memory.
                      mstore(BasicOrder_offerItem_itemType_ptr, offeredItemType)
                      // Copy calldata region with (offerToken, offerIdentifier,
                      // offerAmount) from OrderParameters to (token, identifier,
                      // startAmount) in OfferItem struct. The offerAmount is written
                      // to startAmount and endAmount as basic orders do not have
                      // dynamic amounts.
                      calldatacopy(
                          BasicOrder_offerItem_token_ptr,
                          BasicOrder_offerToken_cdPtr,
                          ThreeWords
                      )
                      // Copy offerAmount from calldata to endAmount in OfferItem
                      // struct.
                      calldatacopy(
                          BasicOrder_offerItem_endAmount_ptr,
                          BasicOrder_offerAmount_cdPtr,
                          OneWord
                      )
                      // Compute EIP712 OfferItem hash, write result to scratch space:
                      //   `keccak256(abi.encode(offeredItem))`
                      mstore(
                          0,
                          keccak256(
                              BasicOrder_offerItem_typeHash_ptr,
                              EIP712_OfferItem_size
                          )
                      )
                      /*
                       * 2. Calculate hash of array of EIP712 hashes and write the
                       * result to the corresponding OfferItem struct:
                       *   `keccak256(abi.encodePacked(offerItemHashes))`
                       */
                      mstore(BasicOrder_order_offerHashes_ptr, keccak256(0, OneWord))
                      /*
                       * 3. Write SpentItem to offer array in OrderFulfilled event.
                       */
                      let eventConsiderationArrPtr := add(
                          OrderFulfilled_offer_length_baseOffset,
                          shl(
                              OneWordShift,
                              calldataload(
                                  BasicOrder_additionalRecipients_length_cdPtr
                              )
                          )
                      )
                      // Set a length of 1 for the offer array.
                      mstore(eventConsiderationArrPtr, 1)
                      // Write itemType to the SpentItem struct.
                      mstore(add(eventConsiderationArrPtr, OneWord), offeredItemType)
                      // Copy calldata region with (offerToken, offerIdentifier,
                      // offerAmount) from OrderParameters to (token, identifier,
                      // amount) in SpentItem struct.
                      calldatacopy(
                          add(eventConsiderationArrPtr, AdditionalRecipient_size),
                          BasicOrder_offerToken_cdPtr,
                          ThreeWords
                      )
                  }
              }
              {
                  /**
                   * Once consideration items and offer items have been handled,
                   * derive the final order hash. Memory Layout:
                   *  0x80-0x1c0: EIP712 data for order
                   *   - 0x80:   Order EIP-712 typehash (constant)
                   *   - 0xa0:   orderParameters.offerer
                   *   - 0xc0:   orderParameters.zone
                   *   - 0xe0:   keccak256(abi.encodePacked(offerHashes))
                   *   - 0x100:  keccak256(abi.encodePacked(considerationHashes))
                   *   - 0x120:  orderParameters.basicOrderType (% 4 = orderType)
                   *   - 0x140:  orderParameters.startTime
                   *   - 0x160:  orderParameters.endTime
                   *   - 0x180:  orderParameters.zoneHash
                   *   - 0x1a0:  orderParameters.salt
                   *   - 0x1c0:  orderParameters.conduitKey
                   *   - 0x1e0:  _counters[orderParameters.offerer] (from storage)
                   */
                  // Read the offerer from calldata and place on the stack.
                  address offerer;
                  assembly {
                      offerer := calldataload(BasicOrder_offerer_cdPtr)
                  }
                  // Read offerer's current counter from storage and place on stack.
                  uint256 counter = _getCounter(offerer);
                  // Load order typehash from runtime code and place on stack.
                  bytes32 typeHash = _ORDER_TYPEHASH;
                  assembly {
                      // Set the OrderItem typeHash in memory.
                      mstore(BasicOrder_order_typeHash_ptr, typeHash)
                      // Copy offerer and zone from OrderParameters in calldata to the
                      // Order struct.
                      calldatacopy(
                          BasicOrder_order_offerer_ptr,
                          BasicOrder_offerer_cdPtr,
                          TwoWords
                      )
                      // Copy receivedItemsHash from zero slot to the Order struct.
                      mstore(
                          BasicOrder_order_considerationHashes_ptr,
                          mload(receivedItemsHash_ptr)
                      )
                      // Write the supplied orderType to the Order struct.
                      mstore(BasicOrder_order_orderType_ptr, orderType)
                      // Copy startTime, endTime, zoneHash, salt & conduit from
                      // calldata to the Order struct.
                      calldatacopy(
                          BasicOrder_order_startTime_ptr,
                          BasicOrder_startTime_cdPtr,
                          FiveWords
                      )
                      // Write offerer's counter, retrieved from storage, to struct.
                      mstore(BasicOrder_order_counter_ptr, counter)
                      // Compute the EIP712 Order hash.
                      orderHash := keccak256(
                          BasicOrder_order_typeHash_ptr,
                          EIP712_Order_size
                      )
                  }
              }
              assembly {
                  /**
                   * After the order hash has been derived, emit OrderFulfilled event:
                   *   event OrderFulfilled(
                   *     bytes32 orderHash,
                   *     address indexed offerer,
                   *     address indexed zone,
                   *     address fulfiller,
                   *     SpentItem[] offer,
                   *       > (itemType, token, id, amount)
                   *     ReceivedItem[] consideration
                   *       > (itemType, token, id, amount, recipient)
                   *   )
                   * topic0 - OrderFulfilled event signature
                   * topic1 - offerer
                   * topic2 - zone
                   * data:
                   *  - 0x00: orderHash
                   *  - 0x20: fulfiller
                   *  - 0x40: offer arr ptr (0x80)
                   *  - 0x60: consideration arr ptr (0x120)
                   *  - 0x80: offer arr len (1)
                   *  - 0xa0: offer.itemType
                   *  - 0xc0: offer.token
                   *  - 0xe0: offer.identifier
                   *  - 0x100: offer.amount
                   *  - 0x120: 1 + recipients.length
                   *  - 0x140: recipient 0
                   */
                  // Derive pointer to start of OrderFulfilled event data.
                  let eventDataPtr := add(
                      OrderFulfilled_baseOffset,
                      shl(
                          OneWordShift,
                          calldataload(BasicOrder_additionalRecipients_length_cdPtr)
                      )
                  )
                  // Write the order hash to the head of the event's data region.
                  mstore(eventDataPtr, orderHash)
                  // Write the fulfiller (i.e. the caller) next for receiver argument.
                  mstore(add(eventDataPtr, OrderFulfilled_fulfiller_offset), caller())
                  // Write the SpentItem and ReceivedItem array offsets (constants).
                  mstore(
                      // SpentItem array offset
                      add(eventDataPtr, OrderFulfilled_offer_head_offset),
                      OrderFulfilled_offer_body_offset
                  )
                  mstore(
                      // ReceivedItem array offset
                      add(eventDataPtr, OrderFulfilled_consideration_head_offset),
                      OrderFulfilled_consideration_body_offset
                  )
                  // Derive total data size including SpentItem and ReceivedItem data.
                  // SpentItem portion is already included in the baseSize constant,
                  // as there can only be one element in the array.
                  let dataSize := add(
                      OrderFulfilled_baseSize,
                      mul(
                          calldataload(BasicOrder_additionalRecipients_length_cdPtr),
                          ReceivedItem_size
                      )
                  )
                  // Emit OrderFulfilled log with three topics (the event signature
                  // as well as the two indexed arguments, the offerer and the zone).
                  log3(
                      // Supply the pointer for event data in memory.
                      eventDataPtr,
                      // Supply the size of event data in memory.
                      dataSize,
                      // Supply the OrderFulfilled event signature.
                      OrderFulfilled_selector,
                      // Supply the first topic (the offerer).
                      calldataload(BasicOrder_offerer_cdPtr),
                      // Supply the second topic (the zone).
                      calldataload(BasicOrder_zone_cdPtr)
                  )
                  // Restore the zero slot.
                  mstore(ZeroSlot, 0)
                  // Update the free memory pointer so that event data is persisted.
                  mstore(FreeMemoryPointerSlot, add(eventDataPtr, dataSize))
              }
              // Verify and update the status of the derived order.
              _validateBasicOrderAndUpdateStatus(orderHash, parameters.signature);
              // Return the derived order hash.
              return orderHash;
          }
          /**
           * @dev Internal function to transfer an individual ERC721 or ERC1155 item
           *      from a given originator to a given recipient. The accumulator will
           *      be bypassed, meaning that this function should be utilized in cases
           *      where multiple item transfers can be accumulated into a single
           *      conduit call. Sufficient approvals must be set, either on the
           *      respective conduit or on this contract. Note that this function may
           *      only be safely called as part of basic orders, as it assumes a
           *      specific calldata encoding structure that must first be validated.
           *
           * @param itemType   The type of item to transfer, either ERC721 or ERC1155.
           * @param conduitKey A bytes32 value indicating what corresponding conduit,
           *                   if any, to source token approvals from. The zero hash
           *                   signifies that no conduit should be used, with direct
           *                   approvals set on this contract.
           */
          function _transferIndividual721Or1155Item(
              ItemType itemType,
              bytes32 conduitKey
          ) internal {
              // Retrieve token, from, identifier, and amount from calldata using
              // fixed calldata offsets based on strict basic parameter encoding.
              address token;
              address from;
              uint256 identifier;
              uint256 amount;
              assembly {
                  token := calldataload(BasicOrder_offerToken_cdPtr)
                  from := calldataload(BasicOrder_offerer_cdPtr)
                  identifier := calldataload(BasicOrder_offerIdentifier_cdPtr)
                  amount := calldataload(BasicOrder_offerAmount_cdPtr)
              }
              // Determine if the transfer is to be performed via a conduit.
              if (conduitKey != bytes32(0)) {
                  // Use free memory pointer as calldata offset for the conduit call.
                  uint256 callDataOffset;
                  // Utilize assembly to place each argument in free memory.
                  assembly {
                      // Retrieve the free memory pointer and use it as the offset.
                      callDataOffset := mload(FreeMemoryPointerSlot)
                      // Write ConduitInterface.execute.selector to memory.
                      mstore(callDataOffset, Conduit_execute_signature)
                      // Write the offset to the ConduitTransfer array in memory.
                      mstore(
                          add(
                              callDataOffset,
                              Conduit_execute_ConduitTransfer_offset_ptr
                          ),
                          Conduit_execute_ConduitTransfer_ptr
                      )
                      // Write the length of the ConduitTransfer array to memory.
                      mstore(
                          add(
                              callDataOffset,
                              Conduit_execute_ConduitTransfer_length_ptr
                          ),
                          Conduit_execute_ConduitTransfer_length
                      )
                      // Write the item type to memory.
                      mstore(
                          add(callDataOffset, Conduit_execute_transferItemType_ptr),
                          itemType
                      )
                      // Write the token to memory.
                      mstore(
                          add(callDataOffset, Conduit_execute_transferToken_ptr),
                          token
                      )
                      // Write the transfer source to memory.
                      mstore(
                          add(callDataOffset, Conduit_execute_transferFrom_ptr),
                          from
                      )
                      // Write the transfer recipient (the caller) to memory.
                      mstore(
                          add(callDataOffset, Conduit_execute_transferTo_ptr),
                          caller()
                      )
                      // Write the token identifier to memory.
                      mstore(
                          add(callDataOffset, Conduit_execute_transferIdentifier_ptr),
                          identifier
                      )
                      // Write the transfer amount to memory.
                      mstore(
                          add(callDataOffset, Conduit_execute_transferAmount_ptr),
                          amount
                      )
                  }
                  // Perform the call to the conduit.
                  _callConduitUsingOffsets(
                      conduitKey,
                      callDataOffset,
                      OneConduitExecute_size
                  );
              } else {
                  // Otherwise, determine whether it is an ERC721 or ERC1155 item.
                  if (itemType == ItemType.ERC721) {
                      // Ensure that exactly one 721 item is being transferred.
                      if (amount != 1) {
                          _revertInvalidERC721TransferAmount(amount);
                      }
                      // Perform transfer to caller via the token contract directly.
                      _performERC721Transfer(token, from, msg.sender, identifier);
                  } else {
                      // Perform transfer to caller via the token contract directly.
                      _performERC1155Transfer(
                          token,
                          from,
                          msg.sender,
                          identifier,
                          amount
                      );
                  }
              }
          }
          /**
           * @dev Internal function to transfer Ether (or other native tokens) to a
           *      given recipient as part of basic order fulfillment. Note that
           *      conduits are not utilized for native tokens as the transferred
           *      amount must be provided as msg.value. Also note that this function
           *      may only be safely called as part of basic orders, as it assumes a
           *      specific calldata encoding structure that must first be validated.
           */
          function _transferNativeTokensAndFinalize() internal {
              // Put native token value supplied by the caller on the stack.
              uint256 nativeTokensRemaining = msg.value;
              // Retrieve consideration amount, offerer, and total size of additional
              // recipients data from calldata using fixed offsets and place on stack.
              uint256 amount;
              address payable to;
              uint256 totalAdditionalRecipientsDataSize;
              assembly {
                  amount := calldataload(BasicOrder_considerationAmount_cdPtr)
                  to := calldataload(BasicOrder_offerer_cdPtr)
                  totalAdditionalRecipientsDataSize := shl(
                      AdditionalRecipient_size_shift,
                      calldataload(BasicOrder_additionalRecipients_length_cdPtr)
                  )
              }
              uint256 additionalRecipientAmount;
              address payable recipient;
              // Skip overflow check as for loop is indexed starting at zero.
              unchecked {
                  // Iterate over additional recipient data by two-word element.
                  for (
                      uint256 i = 0;
                      i < totalAdditionalRecipientsDataSize;
                      i += AdditionalRecipient_size
                  ) {
                      assembly {
                          // Retrieve calldata pointer for additional recipient.
                          let additionalRecipientCdPtr := add(
                              BasicOrder_additionalRecipients_data_cdPtr,
                              i
                          )
                          additionalRecipientAmount := calldataload(
                              additionalRecipientCdPtr
                          )
                          recipient := calldataload(
                              add(OneWord, additionalRecipientCdPtr)
                          )
                      }
                      // Ensure that sufficient native tokens are available.
                      if (additionalRecipientAmount > nativeTokensRemaining) {
                          _revertInsufficientNativeTokensSupplied();
                      }
                      // Reduce native token value available. Skip underflow check as
                      // subtracted value is confirmed above as less than remaining.
                      nativeTokensRemaining -= additionalRecipientAmount;
                      // Transfer native tokens to the additional recipient.
                      _transferNativeTokens(recipient, additionalRecipientAmount);
                  }
              }
              // Ensure that sufficient native tokens are still available.
              if (amount > nativeTokensRemaining) {
                  _revertInsufficientNativeTokensSupplied();
              }
              // Transfer native tokens to the offerer.
              _transferNativeTokens(to, amount);
              // If any native tokens remain after transfers, return to the caller.
              if (nativeTokensRemaining > amount) {
                  // Skip underflow check as nativeTokensRemaining > amount.
                  unchecked {
                      // Transfer remaining native tokens to the caller.
                      _transferNativeTokens(
                          payable(msg.sender),
                          nativeTokensRemaining - amount
                      );
                  }
              }
          }
          /**
           * @dev Internal function to transfer ERC20 tokens to a given recipient as
           *      part of basic order fulfillment. Note that this function may only be
           *      safely called as part of basic orders, as it assumes a specific
           *      calldata encoding structure that must first be validated. Also note
           *      that basic order parameters are retrieved using fixed offsets, this
           *      requires that strict basic order encoding has already been verified.
           *
           * @param fromOfferer A boolean indicating whether to decrement amount from
           *                    the offered amount.
           * @param accumulator An open-ended array that collects transfers to execute
           *                    against a given conduit in a single call.
           */
          function _transferERC20AndFinalize(
              bool fromOfferer,
              bytes memory accumulator
          ) internal {
              // Declare from and to variables determined by fromOfferer value.
              address from;
              address to;
              // Declare token and amount variables determined by fromOfferer value.
              address token;
              uint256 amount;
              // Declare and check identifier variable within an isolated scope.
              {
                  // Declare identifier variable determined by fromOfferer value.
                  uint256 identifier;
                  // Set ERC20 token transfer variables based on fromOfferer boolean.
                  if (fromOfferer) {
                      // Use offerer as from value, msg.sender as to value, and offer
                      // token, identifier, & amount values if token is from offerer.
                      assembly {
                          from := calldataload(BasicOrder_offerer_cdPtr)
                          to := caller()
                          token := calldataload(BasicOrder_offerToken_cdPtr)
                          identifier := calldataload(BasicOrder_offerIdentifier_cdPtr)
                          amount := calldataload(BasicOrder_offerAmount_cdPtr)
                      }
                  } else {
                      // Otherwise, use msg.sender as from value, offerer as to value,
                      // and consideration token, identifier, and amount values.
                      assembly {
                          from := caller()
                          to := calldataload(BasicOrder_offerer_cdPtr)
                          token := calldataload(BasicOrder_considerationToken_cdPtr)
                          identifier := calldataload(
                              BasicOrder_considerationIdentifier_cdPtr
                          )
                          amount := calldataload(BasicOrder_considerationAmount_cdPtr)
                      }
                  }
                  // Ensure that no identifier is supplied.
                  if (identifier != 0) {
                      _revertUnusedItemParameters();
                  }
              }
              // Determine the appropriate conduit to utilize.
              bytes32 conduitKey;
              // Utilize assembly to derive conduit (if relevant) based on route.
              assembly {
                  // Use offerer conduit if fromOfferer, fulfiller conduit otherwise.
                  conduitKey := calldataload(
                      sub(
                          BasicOrder_fulfillerConduit_cdPtr,
                          shl(OneWordShift, fromOfferer)
                      )
                  )
              }
              // Retrieve total size of additional recipients data and place on stack.
              uint256 totalAdditionalRecipientsDataSize;
              assembly {
                  totalAdditionalRecipientsDataSize := shl(
                      AdditionalRecipient_size_shift,
                      calldataload(BasicOrder_additionalRecipients_length_cdPtr)
                  )
              }
              uint256 additionalRecipientAmount;
              address recipient;
              // Iterate over each additional recipient.
              for (uint256 i = 0; i < totalAdditionalRecipientsDataSize; ) {
                  assembly {
                      // Retrieve calldata pointer for additional recipient.
                      let additionalRecipientCdPtr := add(
                          BasicOrder_additionalRecipients_data_cdPtr,
                          i
                      )
                      additionalRecipientAmount := calldataload(
                          additionalRecipientCdPtr
                      )
                      recipient := calldataload(
                          add(OneWord, additionalRecipientCdPtr)
                      )
                  }
                  // Decrement the amount to transfer to fulfiller if indicated.
                  if (fromOfferer) {
                      amount -= additionalRecipientAmount;
                  }
                  // Transfer ERC20 tokens to additional recipient given approval.
                  _transferERC20(
                      token,
                      from,
                      recipient,
                      additionalRecipientAmount,
                      conduitKey,
                      accumulator
                  );
                  // Skip overflow check as for loop is indexed starting at zero.
                  unchecked {
                      i += AdditionalRecipient_size;
                  }
              }
              // Transfer ERC20 token amount (from account must have proper approval).
              _transferERC20(token, from, to, amount, conduitKey, accumulator);
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.13;
      import { Side } from "../lib/ConsiderationEnums.sol";
      /**
       * @title CriteriaResolutionErrors
       * @author 0age
       * @notice CriteriaResolutionErrors contains all errors related to criteria
       *         resolution.
       */
      interface CriteriaResolutionErrors {
          /**
           * @dev Revert with an error when providing a criteria resolver that refers
           *      to an order that has not been supplied.
           *
           * @param side The side of the order that was not supplied.
           */
          error OrderCriteriaResolverOutOfRange(Side side);
          /**
           * @dev Revert with an error if an offer item still has unresolved criteria
           *      after applying all criteria resolvers.
           *
           * @param orderIndex The index of the order that contains the offer item.
           * @param offerIndex The index of the offer item that still has unresolved
           *                   criteria.
           */
          error UnresolvedOfferCriteria(uint256 orderIndex, uint256 offerIndex);
          /**
           * @dev Revert with an error if a consideration item still has unresolved
           *      criteria after applying all criteria resolvers.
           *
           * @param orderIndex         The index of the order that contains the
           *                           consideration item.
           * @param considerationIndex The index of the consideration item that still
           *                           has unresolved criteria.
           */
          error UnresolvedConsiderationCriteria(
              uint256 orderIndex,
              uint256 considerationIndex
          );
          /**
           * @dev Revert with an error when providing a criteria resolver that refers
           *      to an order with an offer item that has not been supplied.
           */
          error OfferCriteriaResolverOutOfRange();
          /**
           * @dev Revert with an error when providing a criteria resolver that refers
           *      to an order with a consideration item that has not been supplied.
           */
          error ConsiderationCriteriaResolverOutOfRange();
          /**
           * @dev Revert with an error when providing a criteria resolver that refers
           *      to an order with an item that does not expect a criteria to be
           *      resolved.
           */
          error CriteriaNotEnabledForItem();
          /**
           * @dev Revert with an error when providing a criteria resolver that
           *      contains an invalid proof with respect to the given item and
           *      chosen identifier.
           */
          error InvalidProof();
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.13;
      /**
       * @title AmountDerivationErrors
       * @author 0age
       * @notice AmountDerivationErrors contains errors related to amount derivation.
       */
      interface AmountDerivationErrors {
          /**
           * @dev Revert with an error when attempting to apply a fraction as part of
           *      a partial fill that does not divide the target amount cleanly.
           */
          error InexactFraction();
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      import { OrderType } from "./ConsiderationEnums.sol";
      import {
          AdvancedOrder,
          ConsiderationItem,
          OfferItem,
          Order,
          OrderComponents,
          OrderParameters,
          OrderStatus
      } from "./ConsiderationStructs.sol";
      import {
          _revertBadFraction,
          _revertCannotCancelOrder,
          _revertConsiderationLengthNotEqualToTotalOriginal,
          _revertInvalidContractOrder,
          _revertPartialFillsNotEnabledForOrder
      } from "./ConsiderationErrors.sol";
      import { Executor } from "./Executor.sol";
      import { ZoneInteraction } from "./ZoneInteraction.sol";
      import { MemoryPointer } from "../helpers/PointerLibraries.sol";
      import {
          AdvancedOrder_denominator_offset,
          AdvancedOrder_numerator_offset,
          BasicOrder_offerer_cdPtr,
          Common_amount_offset,
          Common_endAmount_offset,
          Common_identifier_offset,
          Common_token_offset,
          ConsiderItem_recipient_offset,
          ContractOrder_orderHash_offerer_shift,
          MaxUint120,
          OrderStatus_filledDenominator_offset,
          OrderStatus_filledNumerator_offset,
          OrderStatus_ValidatedAndNotCancelled
      } from "./ConsiderationConstants.sol";
      import {
          Error_selector_offset,
          Panic_arithmetic,
          Panic_error_code_ptr,
          Panic_error_length,
          Panic_error_selector
      } from "./ConsiderationErrorConstants.sol";
      /**
       * @title OrderValidator
       * @author 0age
       * @notice OrderValidator contains functionality related to validating orders
       *         and updating their status.
       */
      contract OrderValidator is Executor, ZoneInteraction {
          // Track status of each order (validated, cancelled, and fraction filled).
          mapping(bytes32 => OrderStatus) private _orderStatus;
          // Track nonces for contract offerers.
          mapping(address => uint256) internal _contractNonces;
          /**
           * @dev Derive and set hashes, reference chainId, and associated domain
           *      separator during deployment.
           *
           * @param conduitController A contract that deploys conduits, or proxies
           *                          that may optionally be used to transfer approved
           *                          ERC20/721/1155 tokens.
           */
          constructor(address conduitController) Executor(conduitController) {}
          /**
           * @dev Internal function to verify and update the status of a basic order.
           *      Note that this function may only be safely called as part of basic
           *      orders, as it assumes a specific calldata encoding structure that
           *      must first be validated.
           *
           * @param orderHash The hash of the order.
           * @param signature A signature from the offerer indicating that the order
           *                  has been approved.
           */
          function _validateBasicOrderAndUpdateStatus(
              bytes32 orderHash,
              bytes calldata signature
          ) internal {
              // Retrieve offerer directly using fixed calldata offset based on strict
              // basic parameter encoding.
              address offerer;
              assembly {
                  offerer := calldataload(BasicOrder_offerer_cdPtr)
              }
              // Retrieve the order status for the given order hash.
              OrderStatus storage orderStatus = _orderStatus[orderHash];
              // Ensure order is fillable and is not cancelled.
              _verifyOrderStatus(
                  orderHash,
                  orderStatus,
                  true, // Only allow unused orders when fulfilling basic orders.
                  true // Signifies to revert if the order is invalid.
              );
              // If the order is not already validated, verify the supplied signature.
              if (!orderStatus.isValidated) {
                  _verifySignature(offerer, orderHash, signature);
              }
              // Update order status as fully filled, packing struct values.
              orderStatus.isValidated = true;
              orderStatus.isCancelled = false;
              orderStatus.numerator = 1;
              orderStatus.denominator = 1;
          }
          /**
           * @dev Internal function to validate an order, determine what portion to
           *      fill, and update its status. The desired fill amount is supplied as
           *      a fraction, as is the returned amount to fill.
           *
           * @param advancedOrder     The order to fulfill as well as the fraction to
           *                          fill. Note that all offer and consideration
           *                          amounts must divide with no remainder in order
           *                          for a partial fill to be valid.
           * @param revertOnInvalid   A boolean indicating whether to revert if the
           *                          order is invalid due to the time or status.
           *
           * @return orderHash      The order hash.
           * @return numerator      A value indicating the portion of the order that
           *                        will be filled.
           * @return denominator    A value indicating the total size of the order.
           */
          function _validateOrderAndUpdateStatus(
              AdvancedOrder memory advancedOrder,
              bool revertOnInvalid
          )
              internal
              returns (bytes32 orderHash, uint256 numerator, uint256 denominator)
          {
              // Retrieve the parameters for the order.
              OrderParameters memory orderParameters = advancedOrder.parameters;
              // Ensure current timestamp falls between order start time and end time.
              if (
                  !_verifyTime(
                      orderParameters.startTime,
                      orderParameters.endTime,
                      revertOnInvalid
                  )
              ) {
                  // Assuming an invalid time and no revert, return zeroed out values.
                  return (bytes32(0), 0, 0);
              }
              // Read numerator and denominator from memory and place on the stack.
              // Note that overflowed values are masked.
              assembly {
                  numerator := and(
                      mload(add(advancedOrder, AdvancedOrder_numerator_offset)),
                      MaxUint120
                  )
                  denominator := and(
                      mload(add(advancedOrder, AdvancedOrder_denominator_offset)),
                      MaxUint120
                  )
              }
              // Declare variable for tracking the validity of the supplied fraction.
              bool invalidFraction;
              // If the order is a contract order, return the generated order.
              if (orderParameters.orderType == OrderType.CONTRACT) {
                  // Ensure that the numerator and denominator are both equal to 1.
                  assembly {
                      // (1 ^ nd =/= 0) => (nd =/= 1) => (n =/= 1) || (d =/= 1)
                      // It's important that the values are 120-bit masked before
                      // multiplication is applied. Otherwise, the last implication
                      // above is not correct (mod 2^256).
                      invalidFraction := xor(mul(numerator, denominator), 1)
                  }
                  // Revert if the supplied numerator and denominator are not valid.
                  if (invalidFraction) {
                      _revertBadFraction();
                  }
                  // Return the generated order based on the order params and the
                  // provided extra data. If revertOnInvalid is true, the function
                  // will revert if the input is invalid.
                  return
                      _getGeneratedOrder(
                          orderParameters,
                          advancedOrder.extraData,
                          revertOnInvalid
                      );
              }
              // Ensure numerator does not exceed denominator and is not zero.
              assembly {
                  invalidFraction := or(gt(numerator, denominator), iszero(numerator))
              }
              // Revert if the supplied numerator and denominator are not valid.
              if (invalidFraction) {
                  _revertBadFraction();
              }
              // If attempting partial fill (n < d) check order type & ensure support.
              if (
                  _doesNotSupportPartialFills(
                      orderParameters.orderType,
                      numerator,
                      denominator
                  )
              ) {
                  // Revert if partial fill was attempted on an unsupported order.
                  _revertPartialFillsNotEnabledForOrder();
              }
              // Retrieve current counter & use it w/ parameters to derive order hash.
              orderHash = _assertConsiderationLengthAndGetOrderHash(orderParameters);
              // Retrieve the order status using the derived order hash.
              OrderStatus storage orderStatus = _orderStatus[orderHash];
              // Ensure order is fillable and is not cancelled.
              if (
                  !_verifyOrderStatus(
                      orderHash,
                      orderStatus,
                      false, // Allow partially used orders to be filled.
                      revertOnInvalid
                  )
              ) {
                  // Assuming an invalid order status and no revert, return zero fill.
                  return (orderHash, 0, 0);
              }
              // If the order is not already validated, verify the supplied signature.
              if (!orderStatus.isValidated) {
                  _verifySignature(
                      orderParameters.offerer,
                      orderHash,
                      advancedOrder.signature
                  );
              }
              // Utilize assembly to determine the fraction to fill and update status.
              assembly {
                  let orderStatusSlot := orderStatus.slot
                  // Read filled amount as numerator and denominator and put on stack.
                  let filledNumerator := sload(orderStatusSlot)
                  let filledDenominator := shr(
                      OrderStatus_filledDenominator_offset,
                      filledNumerator
                  )
                  // "Loop" until the appropriate fill fraction has been determined.
                  for { } 1 { } {
                      // If no portion of the order has been filled yet...
                      if iszero(filledDenominator) {
                          // fill the full supplied fraction.
                          filledNumerator := numerator
                          // Exit the "loop" early.
                          break
                      }
                      // Shift and mask to calculate the current filled numerator.
                      filledNumerator := and(
                          shr(OrderStatus_filledNumerator_offset, filledNumerator),
                          MaxUint120
                      )
                      // If denominator of 1 supplied, fill entire remaining amount.
                      if eq(denominator, 1) {
                          // Set the amount to fill to the remaining amount.
                          numerator := sub(filledDenominator, filledNumerator)
                          // Set the fill size to the current size.
                          denominator := filledDenominator
                          // Set the filled amount to the current size.
                          filledNumerator := filledDenominator
                          // Exit the "loop" early.
                          break
                      }
                      // If supplied denominator is equal to the current one:
                      if eq(denominator, filledDenominator) {
                          // Increment the filled numerator by the new numerator.
                          filledNumerator := add(numerator, filledNumerator)
                          // Once adjusted, if current + supplied numerator exceeds
                          // the denominator:
                          let carry := mul(
                              sub(filledNumerator, denominator),
                              gt(filledNumerator, denominator)
                          )
                          // reduce the amount to fill by the excess.
                          numerator := sub(numerator, carry)
                          // Reduce the filled amount by the excess as well.
                          filledNumerator := sub(filledNumerator, carry)
                          // Exit the "loop" early.
                          break
                      }
                      // Otherwise, if supplied denominator differs from current one:
                      // Scale the filled amount up by the supplied size.
                      filledNumerator := mul(filledNumerator, denominator)
                      // Scale the supplied amount and size up by the current size.
                      numerator := mul(numerator, filledDenominator)
                      denominator := mul(denominator, filledDenominator)
                      // Increment the filled numerator by the new numerator.
                      filledNumerator := add(numerator, filledNumerator)
                      // Once adjusted, if current + supplied numerator exceeds
                      // denominator:
                      let carry := mul(
                          sub(filledNumerator, denominator),
                          gt(filledNumerator, denominator)
                      )
                      // reduce the amount to fill by the excess.
                      numerator := sub(numerator, carry)
                      // Reduce the filled amount by the excess as well.
                      filledNumerator := sub(filledNumerator, carry)
                      // Check filledNumerator and denominator for uint120 overflow.
                      if or(
                          gt(filledNumerator, MaxUint120),
                          gt(denominator, MaxUint120)
                      ) {
                          // Derive greatest common divisor using euclidean algorithm.
                          function gcd(_a, _b) -> out {
                              // "Loop" until only one non-zero value remains.
                              for { } _b { } {
                                  // Assign the second value to a temporary variable.
                                  let _c := _b
                                  // Derive the modulus of the two values.
                                  _b := mod(_a, _c)
                                  // Set the first value to the temporary value.
                                  _a := _c
                              }
                              // Return the remaining non-zero value.
                              out := _a
                          }
                          // Determine the amount to scale down the fill fractions.
                          let scaleDown := gcd(
                              numerator,
                              gcd(filledNumerator, denominator)
                          )
                          // Ensure that the divisor is at least one.
                          let safeScaleDown := add(scaleDown, iszero(scaleDown))
                          // Scale all fractional values down by gcd.
                          numerator := div(numerator, safeScaleDown)
                          filledNumerator := div(filledNumerator, safeScaleDown)
                          denominator := div(denominator, safeScaleDown)
                          // Perform the overflow check a second time.
                          if or(
                              gt(filledNumerator, MaxUint120),
                              gt(denominator, MaxUint120)
                          ) {
                              // Store the Panic error signature.
                              mstore(0, Panic_error_selector)
                              // Store the arithmetic (0x11) panic code.
                              mstore(Panic_error_code_ptr, Panic_arithmetic)
                              // revert(abi.encodeWithSignature(
                              //     "Panic(uint256)", 0x11
                              // ))
                              revert(Error_selector_offset, Panic_error_length)
                          }
                      }
                      // Exit the "loop" now that all evaluation is complete.
                      break
                  }
                  // Update order status and fill amount, packing struct values.
                  // [denominator: 15 bytes] [numerator: 15 bytes]
                  // [isCancelled: 1 byte] [isValidated: 1 byte]
                  sstore(
                      orderStatusSlot,
                      or(
                          OrderStatus_ValidatedAndNotCancelled,
                          or(
                              shl(
                                  OrderStatus_filledNumerator_offset,
                                  filledNumerator
                              ),
                              shl(OrderStatus_filledDenominator_offset, denominator)
                          )
                      )
                  )
              }
          }
          /**
           * @dev Internal pure function to check the compatibility of two offer
           *      or consideration items for contract orders.  Note that the itemType
           *      and identifier are reset in cases where criteria = 0 (collection-
           *      wide offers), which means that a contract offerer has full latitude
           *      to choose any identifier it wants mid-flight, in contrast to the
           *      normal behavior, where the fulfiller can pick which identifier to
           *      receive by providing a CriteriaResolver.
           *
           * @param originalItem The original offer or consideration item.
           * @param newItem      The new offer or consideration item.
           *
           * @return isInvalid Error buffer indicating if items are incompatible.
           */
          function _compareItems(
              MemoryPointer originalItem,
              MemoryPointer newItem
          ) internal pure returns (uint256 isInvalid) {
              assembly {
                  let itemType := mload(originalItem)
                  let identifier := mload(add(originalItem, Common_identifier_offset))
                  // Set returned identifier for criteria-based items w/ criteria = 0.
                  if and(gt(itemType, 3), iszero(identifier)) {
                      // replace item type
                      itemType := sub(3, eq(itemType, 4))
                      identifier := mload(add(newItem, Common_identifier_offset))
                  }
                  let originalAmount := mload(add(originalItem, Common_amount_offset))
                  let newAmount := mload(add(newItem, Common_amount_offset))
                  isInvalid := iszero(
                      and(
                          // originalItem.token == newItem.token &&
                          // originalItem.itemType == newItem.itemType
                          and(
                              eq(
                                  mload(add(originalItem, Common_token_offset)),
                                  mload(add(newItem, Common_token_offset))
                              ),
                              eq(itemType, mload(newItem))
                          ),
                          // originalItem.identifier == newItem.identifier &&
                          // originalItem.startAmount == originalItem.endAmount
                          and(
                              eq(
                                  identifier,
                                  mload(add(newItem, Common_identifier_offset))
                              ),
                              eq(
                                  originalAmount,
                                  mload(add(originalItem, Common_endAmount_offset))
                              )
                          )
                      )
                  )
              }
          }
          /**
           * @dev Internal pure function to check the compatibility of two recipients
           *      on consideration items for contract orders. This check is skipped if
           *      no recipient is originally supplied.
           *
           * @param originalRecipient The original consideration item recipient.
           * @param newRecipient      The new consideration item recipient.
           *
           * @return isInvalid Error buffer indicating if recipients are incompatible.
           */
          function _checkRecipients(
              address originalRecipient,
              address newRecipient
          ) internal pure returns (uint256 isInvalid) {
              assembly {
                  isInvalid := iszero(
                      or(
                          iszero(originalRecipient),
                          eq(newRecipient, originalRecipient)
                      )
                  )
              }
          }
          /**
           * @dev Internal function to generate a contract order. When a
           *      collection-wide criteria-based item (criteria = 0) is provided as an
           *      input to a contract order, the contract offerer has full latitude to
           *      choose any identifier it wants mid-flight, which differs from the
           *      usual behavior.  For regular criteria-based orders with
           *      identifierOrCriteria = 0, the fulfiller can pick which identifier to
           *      receive by providing a CriteriaResolver. For contract offers with
           *      identifierOrCriteria = 0, Seaport does not expect a corresponding
           *      CriteriaResolver, and will revert if one is provided.
           *
           * @param orderParameters The parameters for the order.
           * @param context         The context for generating the order.
           * @param revertOnInvalid Whether to revert on invalid input.
           *
           * @return orderHash   The order hash.
           * @return numerator   The numerator.
           * @return denominator The denominator.
           */
          function _getGeneratedOrder(
              OrderParameters memory orderParameters,
              bytes memory context,
              bool revertOnInvalid
          )
              internal
              returns (bytes32 orderHash, uint256 numerator, uint256 denominator)
          {
              // Ensure that consideration array length is equal to the total original
              // consideration items value.
              if (
                  orderParameters.consideration.length !=
                  orderParameters.totalOriginalConsiderationItems
              ) {
                  _revertConsiderationLengthNotEqualToTotalOriginal();
              }
              {
                  address offerer = orderParameters.offerer;
                  bool success;
                  (MemoryPointer cdPtr, uint256 size) = _encodeGenerateOrder(
                      orderParameters,
                      context
                  );
                  assembly {
                      success := call(gas(), offerer, 0, cdPtr, size, 0, 0)
                  }
                  {
                      // Note: overflow impossible; nonce can't increment that high.
                      uint256 contractNonce;
                      unchecked {
                          // Note: nonce will be incremented even for skipped orders,
                          // and  even if generateOrder's return data does not satisfy
                          // all the constraints. This is the case when errorBuffer
                          // != 0 and revertOnInvalid == false.
                          contractNonce = _contractNonces[offerer]++;
                      }
                      assembly {
                          // Shift offerer address up 96 bytes and combine with nonce.
                          orderHash := xor(
                              contractNonce,
                              shl(ContractOrder_orderHash_offerer_shift, offerer)
                          )
                      }
                  }
                  // Revert or skip if the call to generate the contract order failed.
                  if (!success) {
                      return _revertOrReturnEmpty(revertOnInvalid, orderHash);
                  }
              }
              // From this point onward, do not allow for skipping orders as the
              // contract offerer may have modified state in expectation of any named
              // consideration items being sent to their designated recipients.
              // Decode the returned contract order and/or update the error buffer.
              (
                  uint256 errorBuffer,
                  OfferItem[] memory offer,
                  ConsiderationItem[] memory consideration
              ) = _convertGetGeneratedOrderResult(_decodeGenerateOrderReturndata)();
              // Revert if the returndata could not be decoded correctly.
              if (errorBuffer != 0) {
                  _revertInvalidContractOrder(orderHash);
              }
              {
                  // Designate lengths.
                  uint256 originalOfferLength = orderParameters.offer.length;
                  uint256 newOfferLength = offer.length;
                  // Explicitly specified offer items cannot be removed.
                  if (originalOfferLength > newOfferLength) {
                      _revertInvalidContractOrder(orderHash);
                  }
                  // Iterate over each specified offer (e.g. minimumReceived) item.
                  for (uint256 i = 0; i < originalOfferLength; ) {
                      // Retrieve the pointer to the originally supplied item.
                      MemoryPointer mPtrOriginal = orderParameters
                          .offer[i]
                          .toMemoryPointer();
                      // Retrieve the pointer to the newly returned item.
                      MemoryPointer mPtrNew = offer[i].toMemoryPointer();
                      // Compare the items and update the error buffer accordingly.
                      errorBuffer |=
                          _cast(
                              mPtrOriginal
                                  .offset(Common_amount_offset)
                                  .readUint256() >
                                  mPtrNew.offset(Common_amount_offset).readUint256()
                          ) |
                          _compareItems(mPtrOriginal, mPtrNew);
                      // Increment the array (cannot overflow as index starts at 0).
                      unchecked {
                          ++i;
                      }
                  }
                  // Assign the returned offer item in place of the original item.
                  orderParameters.offer = offer;
              }
              {
                  // Designate lengths & memory locations.
                  ConsiderationItem[] memory originalConsiderationArray = (
                      orderParameters.consideration
                  );
                  uint256 newConsiderationLength = consideration.length;
                  // New consideration items cannot be created.
                  if (newConsiderationLength > originalConsiderationArray.length) {
                      _revertInvalidContractOrder(orderHash);
                  }
                  // Iterate over returned consideration & do not exceed maximumSpent.
                  for (uint256 i = 0; i < newConsiderationLength; ) {
                      // Retrieve the pointer to the originally supplied item.
                      MemoryPointer mPtrOriginal = originalConsiderationArray[i]
                          .toMemoryPointer();
                      // Retrieve the pointer to the newly returned item.
                      MemoryPointer mPtrNew = consideration[i].toMemoryPointer();
                      // Compare the items and update the error buffer accordingly
                      // and ensure that the recipients are equal when provided.
                      errorBuffer |=
                          _cast(
                              mPtrNew.offset(Common_amount_offset).readUint256() >
                                  mPtrOriginal
                                      .offset(Common_amount_offset)
                                      .readUint256()
                          ) |
                          _compareItems(mPtrOriginal, mPtrNew) |
                          _checkRecipients(
                              mPtrOriginal
                                  .offset(ConsiderItem_recipient_offset)
                                  .readAddress(),
                              mPtrNew
                                  .offset(ConsiderItem_recipient_offset)
                                  .readAddress()
                          );
                      // Increment the array (cannot overflow as index starts at 0).
                      unchecked {
                          ++i;
                      }
                  }
                  // Assign returned consideration item in place of the original item.
                  orderParameters.consideration = consideration;
              }
              // Revert if any item comparison failed.
              if (errorBuffer != 0) {
                  _revertInvalidContractOrder(orderHash);
              }
              // Return order hash and full fill amount (numerator & denominator = 1).
              return (orderHash, 1, 1);
          }
          /**
           * @dev Internal function to cancel an arbitrary number of orders. Note that
           *      only the offerer or the zone of a given order may cancel it. Callers
           *      should ensure that the intended order was cancelled by calling
           *      `getOrderStatus` and confirming that `isCancelled` returns `true`.
           *      Also note that contract orders are not cancellable.
           *
           * @param orders The orders to cancel.
           *
           * @return cancelled A boolean indicating whether the supplied orders were
           *                   successfully cancelled.
           */
          function _cancel(
              OrderComponents[] calldata orders
          ) internal returns (bool cancelled) {
              // Ensure that the reentrancy guard is not currently set.
              _assertNonReentrant();
              // Declare variables outside of the loop.
              OrderStatus storage orderStatus;
              // Declare a variable for tracking invariants in the loop.
              bool anyInvalidCallerOrContractOrder;
              // Skip overflow check as for loop is indexed starting at zero.
              unchecked {
                  // Read length of the orders array from memory and place on stack.
                  uint256 totalOrders = orders.length;
                  // Iterate over each order.
                  for (uint256 i = 0; i < totalOrders; ) {
                      // Retrieve the order.
                      OrderComponents calldata order = orders[i];
                      address offerer = order.offerer;
                      address zone = order.zone;
                      OrderType orderType = order.orderType;
                      assembly {
                          // If caller is neither the offerer nor zone, or a contract
                          // order is present, flag anyInvalidCallerOrContractOrder.
                          anyInvalidCallerOrContractOrder := or(
                              anyInvalidCallerOrContractOrder,
                              // orderType == CONTRACT ||
                              // !(caller == offerer || caller == zone)
                              or(
                                  eq(orderType, 4),
                                  iszero(
                                      or(eq(caller(), offerer), eq(caller(), zone))
                                  )
                              )
                          )
                      }
                      bytes32 orderHash = _deriveOrderHash(
                          _toOrderParametersReturnType(
                              _decodeOrderComponentsAsOrderParameters
                          )(order.toCalldataPointer()),
                          order.counter
                      );
                      // Retrieve the order status using the derived order hash.
                      orderStatus = _orderStatus[orderHash];
                      // Update the order status as not valid and cancelled.
                      orderStatus.isValidated = false;
                      orderStatus.isCancelled = true;
                      // Emit an event signifying that the order has been cancelled.
                      emit OrderCancelled(orderHash, offerer, zone);
                      // Increment counter inside body of loop for gas efficiency.
                      ++i;
                  }
              }
              if (anyInvalidCallerOrContractOrder) {
                  _revertCannotCancelOrder();
              }
              // Return a boolean indicating that orders were successfully cancelled.
              cancelled = true;
          }
          /**
           * @dev Internal function to validate an arbitrary number of orders, thereby
           *      registering their signatures as valid and allowing the fulfiller to
           *      skip signature verification on fulfillment. Note that validated
           *      orders may still be unfulfillable due to invalid item amounts or
           *      other factors; callers should determine whether validated orders are
           *      fulfillable by simulating the fulfillment call prior to execution.
           *      Also note that anyone can validate a signed order, but only the
           *      offerer can validate an order without supplying a signature.
           *
           * @param orders The orders to validate.
           *
           * @return validated A boolean indicating whether the supplied orders were
           *                   successfully validated.
           */
          function _validate(
              Order[] memory orders
          ) internal returns (bool validated) {
              // Ensure that the reentrancy guard is not currently set.
              _assertNonReentrant();
              // Declare variables outside of the loop.
              OrderStatus storage orderStatus;
              bytes32 orderHash;
              address offerer;
              // Skip overflow check as for loop is indexed starting at zero.
              unchecked {
                  // Read length of the orders array from memory and place on stack.
                  uint256 totalOrders = orders.length;
                  // Iterate over each order.
                  for (uint256 i = 0; i < totalOrders; ++i) {
                      // Retrieve the order.
                      Order memory order = orders[i];
                      // Retrieve the order parameters.
                      OrderParameters memory orderParameters = order.parameters;
                      // Skip contract orders.
                      if (orderParameters.orderType == OrderType.CONTRACT) {
                          continue;
                      }
                      // Move offerer from memory to the stack.
                      offerer = orderParameters.offerer;
                      // Get current counter & use it w/ params to derive order hash.
                      orderHash = _assertConsiderationLengthAndGetOrderHash(
                          orderParameters
                      );
                      // Retrieve the order status using the derived order hash.
                      orderStatus = _orderStatus[orderHash];
                      // Ensure order is fillable and retrieve the filled amount.
                      _verifyOrderStatus(
                          orderHash,
                          orderStatus,
                          false, // Signifies that partially filled orders are valid.
                          true // Signifies to revert if the order is invalid.
                      );
                      // If the order has not already been validated...
                      if (!orderStatus.isValidated) {
                          // Ensure that consideration array length is equal to the
                          // total original consideration items value.
                          if (
                              orderParameters.consideration.length !=
                              orderParameters.totalOriginalConsiderationItems
                          ) {
                              _revertConsiderationLengthNotEqualToTotalOriginal();
                          }
                          // Verify the supplied signature.
                          _verifySignature(offerer, orderHash, order.signature);
                          // Update order status to mark the order as valid.
                          orderStatus.isValidated = true;
                          // Emit an event signifying the order has been validated.
                          emit OrderValidated(orderHash, orderParameters);
                      }
                  }
              }
              // Return a boolean indicating that orders were successfully validated.
              validated = true;
          }
          /**
           * @dev Internal view function to retrieve the status of a given order by
           *      hash, including whether the order has been cancelled or validated
           *      and the fraction of the order that has been filled.
           *
           * @param orderHash The order hash in question.
           *
           * @return isValidated A boolean indicating whether the order in question
           *                     has been validated (i.e. previously approved or
           *                     partially filled).
           * @return isCancelled A boolean indicating whether the order in question
           *                     has been cancelled.
           * @return totalFilled The total portion of the order that has been filled
           *                     (i.e. the "numerator").
           * @return totalSize   The total size of the order that is either filled or
           *                     unfilled (i.e. the "denominator").
           */
          function _getOrderStatus(
              bytes32 orderHash
          )
              internal
              view
              returns (
                  bool isValidated,
                  bool isCancelled,
                  uint256 totalFilled,
                  uint256 totalSize
              )
          {
              // Retrieve the order status using the order hash.
              OrderStatus storage orderStatus = _orderStatus[orderHash];
              // Return the fields on the order status.
              return (
                  orderStatus.isValidated,
                  orderStatus.isCancelled,
                  orderStatus.numerator,
                  orderStatus.denominator
              );
          }
          /**
           * @dev Internal pure function to either revert or return an empty tuple
           *      depending on the value of `revertOnInvalid`.
           *
           * @param revertOnInvalid   Whether to revert on invalid input.
           * @param contractOrderHash The contract order hash.
           *
           * @return orderHash   The order hash.
           * @return numerator   The numerator.
           * @return denominator The denominator.
           */
          function _revertOrReturnEmpty(
              bool revertOnInvalid,
              bytes32 contractOrderHash
          )
              internal
              pure
              returns (bytes32 orderHash, uint256 numerator, uint256 denominator)
          {
              if (revertOnInvalid) {
                  _revertInvalidContractOrder(contractOrderHash);
              }
              return (contractOrderHash, 0, 0);
          }
          /**
           * @dev Internal pure function to check whether a given order type indicates
           *      that partial fills are not supported (e.g. only "full fills" are
           *      allowed for the order in question).
           *
           * @param orderType   The order type in question.
           * @param numerator   The numerator in question.
           * @param denominator The denominator in question.
           *
           * @return isFullOrder A boolean indicating whether the order type only
           *                     supports full fills.
           */
          function _doesNotSupportPartialFills(
              OrderType orderType,
              uint256 numerator,
              uint256 denominator
          ) internal pure returns (bool isFullOrder) {
              // The "full" order types are even, while "partial" order types are odd.
              // Bitwise and by 1 is equivalent to modulo by 2, but 2 gas cheaper. The
              // check is only necessary if numerator is less than denominator.
              assembly {
                  // Equivalent to `uint256(orderType) & 1 == 0`.
                  isFullOrder := and(
                      lt(numerator, denominator),
                      iszero(and(orderType, 1))
                  )
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      import { ConduitInterface } from "../interfaces/ConduitInterface.sol";
      import { ConduitItemType } from "../conduit/lib/ConduitEnums.sol";
      import { ItemType } from "./ConsiderationEnums.sol";
      import { ReceivedItem } from "./ConsiderationStructs.sol";
      import { Verifiers } from "./Verifiers.sol";
      import { TokenTransferrer } from "./TokenTransferrer.sol";
      import {
          Accumulator_array_length_ptr,
          Accumulator_array_offset_ptr,
          Accumulator_array_offset,
          Accumulator_conduitKey_ptr,
          Accumulator_itemSizeOffsetDifference,
          Accumulator_selector_ptr,
          AccumulatorArmed,
          AccumulatorDisarmed,
          Conduit_transferItem_amount_ptr,
          Conduit_transferItem_from_ptr,
          Conduit_transferItem_identifier_ptr,
          Conduit_transferItem_size,
          Conduit_transferItem_to_ptr,
          Conduit_transferItem_token_ptr,
          FreeMemoryPointerSlot,
          OneWord,
          TwoWords
      } from "./ConsiderationConstants.sol";
      import {
          Error_selector_offset,
          NativeTokenTransferGenericFailure_error_account_ptr,
          NativeTokenTransferGenericFailure_error_amount_ptr,
          NativeTokenTransferGenericFailure_error_length,
          NativeTokenTransferGenericFailure_error_selector
      } from "./ConsiderationErrorConstants.sol";
      import {
          _revertInvalidCallToConduit,
          _revertInvalidConduit,
          _revertInvalidERC721TransferAmount,
          _revertUnusedItemParameters
      } from "./ConsiderationErrors.sol";
      /**
       * @title Executor
       * @author 0age
       * @notice Executor contains functions related to processing executions (i.e.
       *         transferring items, either directly or via conduits).
       */
      contract Executor is Verifiers, TokenTransferrer {
          /**
           * @dev Derive and set hashes, reference chainId, and associated domain
           *      separator during deployment.
           *
           * @param conduitController A contract that deploys conduits, or proxies
           *                          that may optionally be used to transfer approved
           *                          ERC20/721/1155 tokens.
           */
          constructor(address conduitController) Verifiers(conduitController) {}
          /**
           * @dev Internal function to transfer a given item, either directly or via
           *      a corresponding conduit.
           *
           * @param item        The item to transfer, including an amount and a
           *                    recipient.
           * @param from        The account supplying the item.
           * @param conduitKey  A bytes32 value indicating what corresponding conduit,
           *                    if any, to source token approvals from. The zero hash
           *                    signifies that no conduit should be used, with direct
           *                    approvals set on this contract.
           * @param accumulator An open-ended array that collects transfers to execute
           *                    against a given conduit in a single call.
           */
          function _transfer(
              ReceivedItem memory item,
              address from,
              bytes32 conduitKey,
              bytes memory accumulator
          ) internal {
              // If the item type indicates Ether or a native token...
              if (item.itemType == ItemType.NATIVE) {
                  // Ensure neither the token nor the identifier parameters are set.
                  if ((uint160(item.token) | item.identifier) != 0) {
                      _revertUnusedItemParameters();
                  }
                  // transfer the native tokens to the recipient.
                  _transferNativeTokens(item.recipient, item.amount);
              } else if (item.itemType == ItemType.ERC20) {
                  // Ensure that no identifier is supplied.
                  if (item.identifier != 0) {
                      _revertUnusedItemParameters();
                  }
                  // Transfer ERC20 tokens from the source to the recipient.
                  _transferERC20(
                      item.token,
                      from,
                      item.recipient,
                      item.amount,
                      conduitKey,
                      accumulator
                  );
              } else if (item.itemType == ItemType.ERC721) {
                  // Transfer ERC721 token from the source to the recipient.
                  _transferERC721(
                      item.token,
                      from,
                      item.recipient,
                      item.identifier,
                      item.amount,
                      conduitKey,
                      accumulator
                  );
              } else {
                  // Transfer ERC1155 token from the source to the recipient.
                  _transferERC1155(
                      item.token,
                      from,
                      item.recipient,
                      item.identifier,
                      item.amount,
                      conduitKey,
                      accumulator
                  );
              }
          }
          /**
           * @dev Internal function to transfer Ether or other native tokens to a
           *      given recipient.
           *
           * @param to     The recipient of the transfer.
           * @param amount The amount to transfer.
           */
          function _transferNativeTokens(
              address payable to,
              uint256 amount
          ) internal {
              // Ensure that the supplied amount is non-zero.
              _assertNonZeroAmount(amount);
              // Declare a variable indicating whether the call was successful or not.
              bool success;
              assembly {
                  // Transfer the native token and store if it succeeded or not.
                  success := call(gas(), to, amount, 0, 0, 0, 0)
              }
              // If the call fails...
              if (!success) {
                  // Revert and pass the revert reason along if one was returned.
                  _revertWithReasonIfOneIsReturned();
                  // Otherwise, revert with a generic error message.
                  assembly {
                      // Store left-padded selector with push4, mem[28:32] = selector
                      mstore(0, NativeTokenTransferGenericFailure_error_selector)
                      // Write `to` and `amount` arguments.
                      mstore(NativeTokenTransferGenericFailure_error_account_ptr, to)
                      mstore(
                          NativeTokenTransferGenericFailure_error_amount_ptr,
                          amount
                      )
                      // revert(abi.encodeWithSignature(
                      //     "NativeTokenTransferGenericFailure(address,uint256)",
                      //     to,
                      //     amount
                      // ))
                      revert(
                          Error_selector_offset,
                          NativeTokenTransferGenericFailure_error_length
                      )
                  }
              }
          }
          /**
           * @dev Internal function to transfer ERC20 tokens from a given originator
           *      to a given recipient using a given conduit if applicable. Sufficient
           *      approvals must be set on this contract or on a respective conduit.
           *
           * @param token       The ERC20 token to transfer.
           * @param from        The originator of the transfer.
           * @param to          The recipient of the transfer.
           * @param amount      The amount to transfer.
           * @param conduitKey  A bytes32 value indicating what corresponding conduit,
           *                    if any, to source token approvals from. The zero hash
           *                    signifies that no conduit should be used, with direct
           *                    approvals set on this contract.
           * @param accumulator An open-ended array that collects transfers to execute
           *                    against a given conduit in a single call.
           */
          function _transferERC20(
              address token,
              address from,
              address to,
              uint256 amount,
              bytes32 conduitKey,
              bytes memory accumulator
          ) internal {
              // Ensure that the supplied amount is non-zero.
              _assertNonZeroAmount(amount);
              // Trigger accumulated transfers if the conduits differ.
              _triggerIfArmedAndNotAccumulatable(accumulator, conduitKey);
              // If no conduit has been specified...
              if (conduitKey == bytes32(0)) {
                  // Perform the token transfer directly.
                  _performERC20Transfer(token, from, to, amount);
              } else {
                  // Insert the call to the conduit into the accumulator.
                  _insert(
                      conduitKey,
                      accumulator,
                      ConduitItemType.ERC20,
                      token,
                      from,
                      to,
                      uint256(0),
                      amount
                  );
              }
          }
          /**
           * @dev Internal function to transfer a single ERC721 token from a given
           *      originator to a given recipient. Sufficient approvals must be set,
           *      either on the respective conduit or on this contract itself.
           *
           * @param token       The ERC721 token to transfer.
           * @param from        The originator of the transfer.
           * @param to          The recipient of the transfer.
           * @param identifier  The tokenId to transfer.
           * @param amount      The amount to transfer (must be 1 for ERC721).
           * @param conduitKey  A bytes32 value indicating what corresponding conduit,
           *                    if any, to source token approvals from. The zero hash
           *                    signifies that no conduit should be used, with direct
           *                    approvals set on this contract.
           * @param accumulator An open-ended array that collects transfers to execute
           *                    against a given conduit in a single call.
           */
          function _transferERC721(
              address token,
              address from,
              address to,
              uint256 identifier,
              uint256 amount,
              bytes32 conduitKey,
              bytes memory accumulator
          ) internal {
              // Trigger accumulated transfers if the conduits differ.
              _triggerIfArmedAndNotAccumulatable(accumulator, conduitKey);
              // If no conduit has been specified...
              if (conduitKey == bytes32(0)) {
                  // Ensure that exactly one 721 item is being transferred.
                  if (amount != 1) {
                      _revertInvalidERC721TransferAmount(amount);
                  }
                  // Perform transfer via the token contract directly.
                  _performERC721Transfer(token, from, to, identifier);
              } else {
                  // Insert the call to the conduit into the accumulator.
                  _insert(
                      conduitKey,
                      accumulator,
                      ConduitItemType.ERC721,
                      token,
                      from,
                      to,
                      identifier,
                      amount
                  );
              }
          }
          /**
           * @dev Internal function to transfer ERC1155 tokens from a given originator
           *      to a given recipient. Sufficient approvals must be set, either on
           *      the respective conduit or on this contract itself.
           *
           * @param token       The ERC1155 token to transfer.
           * @param from        The originator of the transfer.
           * @param to          The recipient of the transfer.
           * @param identifier  The id to transfer.
           * @param amount      The amount to transfer.
           * @param conduitKey  A bytes32 value indicating what corresponding conduit,
           *                    if any, to source token approvals from. The zero hash
           *                    signifies that no conduit should be used, with direct
           *                    approvals set on this contract.
           * @param accumulator An open-ended array that collects transfers to execute
           *                    against a given conduit in a single call.
           */
          function _transferERC1155(
              address token,
              address from,
              address to,
              uint256 identifier,
              uint256 amount,
              bytes32 conduitKey,
              bytes memory accumulator
          ) internal {
              // Ensure that the supplied amount is non-zero.
              _assertNonZeroAmount(amount);
              // Trigger accumulated transfers if the conduits differ.
              _triggerIfArmedAndNotAccumulatable(accumulator, conduitKey);
              // If no conduit has been specified...
              if (conduitKey == bytes32(0)) {
                  // Perform transfer via the token contract directly.
                  _performERC1155Transfer(token, from, to, identifier, amount);
              } else {
                  // Insert the call to the conduit into the accumulator.
                  _insert(
                      conduitKey,
                      accumulator,
                      ConduitItemType.ERC1155,
                      token,
                      from,
                      to,
                      identifier,
                      amount
                  );
              }
          }
          /**
           * @dev Internal function to trigger a call to the conduit currently held by
           *      the accumulator if the accumulator contains item transfers (i.e. it
           *      is "armed") and the supplied conduit key does not match the key held
           *      by the accumulator.
           *
           * @param accumulator An open-ended array that collects transfers to execute
           *                    against a given conduit in a single call.
           * @param conduitKey  A bytes32 value indicating what corresponding conduit,
           *                    if any, to source token approvals from. The zero hash
           *                    signifies that no conduit should be used, with direct
           *                    approvals set on this contract.
           */
          function _triggerIfArmedAndNotAccumulatable(
              bytes memory accumulator,
              bytes32 conduitKey
          ) internal {
              // Retrieve the current conduit key from the accumulator.
              bytes32 accumulatorConduitKey = _getAccumulatorConduitKey(accumulator);
              // Perform conduit call if the set key does not match the supplied key.
              if (accumulatorConduitKey != conduitKey) {
                  _triggerIfArmed(accumulator);
              }
          }
          /**
           * @dev Internal function to trigger a call to the conduit currently held by
           *      the accumulator if the accumulator contains item transfers (i.e. it
           *      is "armed").
           *
           * @param accumulator An open-ended array that collects transfers to execute
           *                    against a given conduit in a single call.
           */
          function _triggerIfArmed(bytes memory accumulator) internal {
              // Exit if the accumulator is not "armed".
              if (accumulator.length != AccumulatorArmed) {
                  return;
              }
              // Retrieve the current conduit key from the accumulator.
              bytes32 accumulatorConduitKey = _getAccumulatorConduitKey(accumulator);
              // Perform conduit call.
              _trigger(accumulatorConduitKey, accumulator);
          }
          /**
           * @dev Internal function to trigger a call to the conduit corresponding to
           *      a given conduit key, supplying all accumulated item transfers. The
           *      accumulator will be "disarmed" and reset in the process.
           *
           * @param conduitKey  A bytes32 value indicating what corresponding conduit,
           *                    if any, to source token approvals from. The zero hash
           *                    signifies that no conduit should be used, with direct
           *                    approvals set on this contract.
           * @param accumulator An open-ended array that collects transfers to execute
           *                    against a given conduit in a single call.
           */
          function _trigger(bytes32 conduitKey, bytes memory accumulator) internal {
              // Declare variables for offset in memory & size of calldata to conduit.
              uint256 callDataOffset;
              uint256 callDataSize;
              // Call the conduit with all the accumulated transfers.
              assembly {
                  // Call begins at third word; the first is length or "armed" status,
                  // and the second is the current conduit key.
                  callDataOffset := add(accumulator, TwoWords)
                  // 68 + items * 192
                  callDataSize := add(
                      Accumulator_array_offset_ptr,
                      mul(
                          mload(add(accumulator, Accumulator_array_length_ptr)),
                          Conduit_transferItem_size
                      )
                  )
              }
              // Call conduit derived from conduit key & supply accumulated transfers.
              _callConduitUsingOffsets(conduitKey, callDataOffset, callDataSize);
              // Reset accumulator length to signal that it is now "disarmed".
              assembly {
                  mstore(accumulator, AccumulatorDisarmed)
              }
          }
          /**
           * @dev Internal function to perform a call to the conduit corresponding to
           *      a given conduit key based on the offset and size of the calldata in
           *      question in memory.
           *
           * @param conduitKey     A bytes32 value indicating what corresponding
           *                       conduit, if any, to source token approvals from.
           *                       The zero hash signifies that no conduit should be
           *                       used, with direct approvals set on this contract.
           * @param callDataOffset The memory pointer where calldata is contained.
           * @param callDataSize   The size of calldata in memory.
           */
          function _callConduitUsingOffsets(
              bytes32 conduitKey,
              uint256 callDataOffset,
              uint256 callDataSize
          ) internal {
              // Derive the address of the conduit using the conduit key.
              address conduit = _deriveConduit(conduitKey);
              bool success;
              bytes4 result;
              // call the conduit.
              assembly {
                  // Ensure first word of scratch space is empty.
                  mstore(0, 0)
                  // Perform call, placing first word of return data in scratch space.
                  success := call(
                      gas(),
                      conduit,
                      0,
                      callDataOffset,
                      callDataSize,
                      0,
                      OneWord
                  )
                  // Take value from scratch space and place it on the stack.
                  result := mload(0)
              }
              // If the call failed...
              if (!success) {
                  // Pass along whatever revert reason was given by the conduit.
                  _revertWithReasonIfOneIsReturned();
                  // Otherwise, revert with a generic error.
                  _revertInvalidCallToConduit(conduit);
              }
              // Ensure result was extracted and matches EIP-1271 magic value.
              if (result != ConduitInterface.execute.selector) {
                  _revertInvalidConduit(conduitKey, conduit);
              }
          }
          /**
           * @dev Internal pure function to retrieve the current conduit key set for
           *      the accumulator.
           *
           * @param accumulator An open-ended array that collects transfers to execute
           *                    against a given conduit in a single call.
           *
           * @return accumulatorConduitKey The conduit key currently set for the
           *                               accumulator.
           */
          function _getAccumulatorConduitKey(
              bytes memory accumulator
          ) internal pure returns (bytes32 accumulatorConduitKey) {
              // Retrieve the current conduit key from the accumulator.
              assembly {
                  accumulatorConduitKey := mload(
                      add(accumulator, Accumulator_conduitKey_ptr)
                  )
              }
          }
          /**
           * @dev Internal pure function to place an item transfer into an accumulator
           *      that collects a series of transfers to execute against a given
           *      conduit in a single call.
           *
           * @param conduitKey  A bytes32 value indicating what corresponding conduit,
           *                    if any, to source token approvals from. The zero hash
           *                    signifies that no conduit should be used, with direct
           *                    approvals set on this contract.
           * @param accumulator An open-ended array that collects transfers to execute
           *                    against a given conduit in a single call.
           * @param itemType    The type of the item to transfer.
           * @param token       The token to transfer.
           * @param from        The originator of the transfer.
           * @param to          The recipient of the transfer.
           * @param identifier  The tokenId to transfer.
           * @param amount      The amount to transfer.
           */
          function _insert(
              bytes32 conduitKey,
              bytes memory accumulator,
              ConduitItemType itemType,
              address token,
              address from,
              address to,
              uint256 identifier,
              uint256 amount
          ) internal pure {
              uint256 elements;
              // "Arm" and prime accumulator if it's not already armed. The sentinel
              // value is held in the length of the accumulator array.
              if (accumulator.length == AccumulatorDisarmed) {
                  elements = 1;
                  bytes4 selector = ConduitInterface.execute.selector;
                  assembly {
                      mstore(accumulator, AccumulatorArmed) // "arm" the accumulator.
                      mstore(add(accumulator, Accumulator_conduitKey_ptr), conduitKey)
                      mstore(add(accumulator, Accumulator_selector_ptr), selector)
                      mstore(
                          add(accumulator, Accumulator_array_offset_ptr),
                          Accumulator_array_offset
                      )
                      mstore(add(accumulator, Accumulator_array_length_ptr), elements)
                  }
              } else {
                  // Otherwise, increase the number of elements by one.
                  assembly {
                      elements := add(
                          mload(add(accumulator, Accumulator_array_length_ptr)),
                          1
                      )
                      mstore(add(accumulator, Accumulator_array_length_ptr), elements)
                  }
              }
              // Insert the item.
              assembly {
                  let itemPointer := sub(
                      add(accumulator, mul(elements, Conduit_transferItem_size)),
                      Accumulator_itemSizeOffsetDifference
                  )
                  mstore(itemPointer, itemType)
                  mstore(add(itemPointer, Conduit_transferItem_token_ptr), token)
                  mstore(add(itemPointer, Conduit_transferItem_from_ptr), from)
                  mstore(add(itemPointer, Conduit_transferItem_to_ptr), to)
                  mstore(
                      add(itemPointer, Conduit_transferItem_identifier_ptr),
                      identifier
                  )
                  mstore(add(itemPointer, Conduit_transferItem_amount_ptr), amount)
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      import { OrderType } from "./ConsiderationEnums.sol";
      import {
          AdvancedOrder,
          BasicOrderParameters,
          OrderParameters
      } from "./ConsiderationStructs.sol";
      import { ZoneInteractionErrors } from "../interfaces/ZoneInteractionErrors.sol";
      import { LowLevelHelpers } from "./LowLevelHelpers.sol";
      import { ConsiderationEncoder } from "./ConsiderationEncoder.sol";
      import { MemoryPointer } from "../helpers/PointerLibraries.sol";
      import {
          ContractOrder_orderHash_offerer_shift,
          MaskOverFirstFourBytes,
          OneWord,
          OrderParameters_zone_offset
      } from "./ConsiderationConstants.sol";
      import {
          Error_selector_offset,
          InvalidContractOrder_error_selector,
          InvalidRestrictedOrder_error_length,
          InvalidRestrictedOrder_error_orderHash_ptr,
          InvalidRestrictedOrder_error_selector
      } from "./ConsiderationErrorConstants.sol";
      /**
       * @title ZoneInteraction
       * @author 0age
       * @notice ZoneInteraction contains logic related to interacting with zones.
       */
      contract ZoneInteraction is
          ConsiderationEncoder,
          ZoneInteractionErrors,
          LowLevelHelpers
      {
          /**
           * @dev Internal function to determine if an order has a restricted order
           *      type and, if so, to ensure that either the zone is the caller or
           *      that a call to `validateOrder` on the zone returns a magic value
           *      indicating that the order is currently valid. Note that contract
           *      orders are not accessible via the basic fulfillment method.
           *
           * @param orderHash  The hash of the order.
           * @param orderType  The order type.
           * @param parameters The parameters of the basic order.
           */
          function _assertRestrictedBasicOrderValidity(
              bytes32 orderHash,
              OrderType orderType,
              BasicOrderParameters calldata parameters
          ) internal {
              // Order type 2-3 require zone be caller or zone to approve.
              // Note that in cases where fulfiller == zone, the restricted order
              // validation will be skipped.
              if (_isRestrictedAndCallerNotZone(orderType, parameters.zone)) {
                  // Encode the `validateOrder` call in memory.
                  (MemoryPointer callData, uint256 size) = _encodeValidateBasicOrder(
                      orderHash,
                      parameters
                  );
                  // Perform `validateOrder` call and ensure magic value was returned.
                  _callAndCheckStatus(
                      parameters.zone,
                      orderHash,
                      callData,
                      size,
                      InvalidRestrictedOrder_error_selector
                  );
              }
          }
          /**
           * @dev Internal function to determine the post-execution validity of
           *      restricted and contract orders. Restricted orders where the caller
           *      is not the zone must successfully call `validateOrder` with the
           *      correct magic value returned. Contract orders must successfully call
           *      `ratifyOrder` with the correct magic value returned.
           *
           * @param advancedOrder The advanced order in question.
           * @param orderHashes   The order hashes of each order included as part of
           *                      the current fulfillment.
           * @param orderHash     The hash of the order.
           */
          function _assertRestrictedAdvancedOrderValidity(
              AdvancedOrder memory advancedOrder,
              bytes32[] memory orderHashes,
              bytes32 orderHash
          ) internal {
              // Declare variables that will be assigned based on the order type.
              address target;
              uint256 errorSelector;
              MemoryPointer callData;
              uint256 size;
              // Retrieve the parameters of the order in question.
              OrderParameters memory parameters = advancedOrder.parameters;
              // OrderType 2-3 require zone to be caller or approve via validateOrder.
              if (
                  _isRestrictedAndCallerNotZone(parameters.orderType, parameters.zone)
              ) {
                  // Encode the `validateOrder` call in memory.
                  (callData, size) = _encodeValidateOrder(
                      orderHash,
                      parameters,
                      advancedOrder.extraData,
                      orderHashes
                  );
                  // Set the target to the zone.
                  target = (
                      parameters
                          .toMemoryPointer()
                          .offset(OrderParameters_zone_offset)
                          .readAddress()
                  );
                  // Set the restricted-order-specific error selector.
                  errorSelector = InvalidRestrictedOrder_error_selector;
              } else if (parameters.orderType == OrderType.CONTRACT) {
                  // Set the target to the offerer (note the offerer has no offset).
                  target = parameters.toMemoryPointer().readAddress();
                  // Shift the target 96 bits to the left.
                  uint256 shiftedOfferer;
                  assembly {
                      shiftedOfferer := shl(
                          ContractOrder_orderHash_offerer_shift,
                          target
                      )
                  }
                  // Encode the `ratifyOrder` call in memory.
                  (callData, size) = _encodeRatifyOrder(
                      orderHash,
                      parameters,
                      advancedOrder.extraData,
                      orderHashes,
                      shiftedOfferer
                  );
                  // Set the contract-order-specific error selector.
                  errorSelector = InvalidContractOrder_error_selector;
              } else {
                  return;
              }
              // Perform call and ensure a corresponding magic value was returned.
              _callAndCheckStatus(target, orderHash, callData, size, errorSelector);
          }
          /**
           * @dev Determines whether the specified order type is restricted and the
           *      caller is not the specified zone.
           *
           * @param orderType     The type of the order to check.
           * @param zone          The address of the zone to check against.
           *
           * @return mustValidate True if the order type is restricted and the caller
           *                      is not the specified zone, false otherwise.
           */
          function _isRestrictedAndCallerNotZone(
              OrderType orderType,
              address zone
          ) internal view returns (bool mustValidate) {
              assembly {
                  mustValidate := and(
                      // Note that this check requires that there are no order types
                      // beyond the current set (0-4).  It will need to be modified if
                      // more order types are added.
                      and(lt(orderType, 4), gt(orderType, 1)),
                      iszero(eq(caller(), zone))
                  )
              }
          }
          /**
           * @dev Calls the specified target with the given data and checks the status
           *      of the call. Revert reasons will be "bubbled up" if one is returned,
           *      otherwise reverting calls will throw a generic error based on the
           *      supplied error handler.
           *
           * @param target        The address of the contract to call.
           * @param orderHash     The hash of the order associated with the call.
           * @param callData      The data to pass to the contract call.
           * @param size          The size of calldata.
           * @param errorSelector The error handling function to call if the call
           *                      fails or the magic value does not match.
           */
          function _callAndCheckStatus(
              address target,
              bytes32 orderHash,
              MemoryPointer callData,
              uint256 size,
              uint256 errorSelector
          ) internal {
              bool success;
              bool magicMatch;
              assembly {
                  // Get magic value from the selector at start of provided calldata.
                  let magic := and(mload(callData), MaskOverFirstFourBytes)
                  // Clear the start of scratch space.
                  mstore(0, 0)
                  // Perform call, placing result in the first word of scratch space.
                  success := call(gas(), target, 0, callData, size, 0, OneWord)
                  // Determine if returned magic value matches the calldata selector.
                  magicMatch := eq(magic, mload(0))
              }
              // Revert if the call was not successful.
              if (!success) {
                  // Revert and pass reason along if one was returned.
                  _revertWithReasonIfOneIsReturned();
                  // If no reason was returned, revert with supplied error selector.
                  assembly {
                      mstore(0, errorSelector)
                      mstore(InvalidRestrictedOrder_error_orderHash_ptr, orderHash)
                      // revert(abi.encodeWithSelector(
                      //     "InvalidRestrictedOrder(bytes32)",
                      //     orderHash
                      // ))
                      revert(
                          Error_selector_offset,
                          InvalidRestrictedOrder_error_length
                      )
                  }
              }
              // Revert if the correct magic value was not returned.
              if (!magicMatch) {
                  // Revert with a generic error message.
                  assembly {
                      mstore(0, errorSelector)
                      mstore(InvalidRestrictedOrder_error_orderHash_ptr, orderHash)
                      // revert(abi.encodeWithSelector(
                      //     "InvalidRestrictedOrder(bytes32)",
                      //     orderHash
                      // ))
                      revert(
                          Error_selector_offset,
                          InvalidRestrictedOrder_error_length
                      )
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.13;
      import {
          ConduitBatch1155Transfer,
          ConduitTransfer
      } from "../conduit/lib/ConduitStructs.sol";
      /**
       * @title ConduitInterface
       * @author 0age
       * @notice ConduitInterface contains all external function interfaces, events,
       *         and errors for conduit contracts.
       */
      interface ConduitInterface {
          /**
           * @dev Revert with an error when attempting to execute transfers using a
           *      caller that does not have an open channel.
           */
          error ChannelClosed(address channel);
          /**
           * @dev Revert with an error when attempting to update a channel to the
           *      current status of that channel.
           */
          error ChannelStatusAlreadySet(address channel, bool isOpen);
          /**
           * @dev Revert with an error when attempting to execute a transfer for an
           *      item that does not have an ERC20/721/1155 item type.
           */
          error InvalidItemType();
          /**
           * @dev Revert with an error when attempting to update the status of a
           *      channel from a caller that is not the conduit controller.
           */
          error InvalidController();
          /**
           * @dev Emit an event whenever a channel is opened or closed.
           *
           * @param channel The channel that has been updated.
           * @param open    A boolean indicating whether the conduit is open or not.
           */
          event ChannelUpdated(address indexed channel, bool open);
          /**
           * @notice Execute a sequence of ERC20/721/1155 transfers. Only a caller
           *         with an open channel can call this function.
           *
           * @param transfers The ERC20/721/1155 transfers to perform.
           *
           * @return magicValue A magic value indicating that the transfers were
           *                    performed successfully.
           */
          function execute(
              ConduitTransfer[] calldata transfers
          ) external returns (bytes4 magicValue);
          /**
           * @notice Execute a sequence of batch 1155 transfers. Only a caller with an
           *         open channel can call this function.
           *
           * @param batch1155Transfers The 1155 batch transfers to perform.
           *
           * @return magicValue A magic value indicating that the transfers were
           *                    performed successfully.
           */
          function executeBatch1155(
              ConduitBatch1155Transfer[] calldata batch1155Transfers
          ) external returns (bytes4 magicValue);
          /**
           * @notice Execute a sequence of transfers, both single and batch 1155. Only
           *         a caller with an open channel can call this function.
           *
           * @param standardTransfers  The ERC20/721/1155 transfers to perform.
           * @param batch1155Transfers The 1155 batch transfers to perform.
           *
           * @return magicValue A magic value indicating that the transfers were
           *                    performed successfully.
           */
          function executeWithBatch1155(
              ConduitTransfer[] calldata standardTransfers,
              ConduitBatch1155Transfer[] calldata batch1155Transfers
          ) external returns (bytes4 magicValue);
          /**
           * @notice Open or close a given channel. Only callable by the controller.
           *
           * @param channel The channel to open or close.
           * @param isOpen  The status of the channel (either open or closed).
           */
          function updateChannel(address channel, bool isOpen) external;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      import { OrderStatus } from "./ConsiderationStructs.sol";
      import { Assertions } from "./Assertions.sol";
      import { SignatureVerification } from "./SignatureVerification.sol";
      import {
          _revertInvalidTime,
          _revertOrderAlreadyFilled,
          _revertOrderIsCancelled,
          _revertOrderPartiallyFilled
      } from "./ConsiderationErrors.sol";
      import {
          BulkOrderProof_keyShift,
          BulkOrderProof_keySize,
          BulkOrderProof_lengthAdjustmentBeforeMask,
          BulkOrderProof_lengthRangeAfterMask,
          BulkOrderProof_minSize,
          BulkOrderProof_rangeSize,
          ECDSA_MaxLength,
          OneWord,
          OneWordShift,
          ThirtyOneBytes,
          TwoWords
      } from "./ConsiderationConstants.sol";
      /**
       * @title Verifiers
       * @author 0age
       * @notice Verifiers contains functions for performing verifications.
       */
      contract Verifiers is Assertions, SignatureVerification {
          /**
           * @dev Derive and set hashes, reference chainId, and associated domain
           *      separator during deployment.
           *
           * @param conduitController A contract that deploys conduits, or proxies
           *                          that may optionally be used to transfer approved
           *                          ERC20/721/1155 tokens.
           */
          constructor(address conduitController) Assertions(conduitController) {}
          /**
           * @dev Internal view function to ensure that the current time falls within
           *      an order's valid timespan.
           *
           * @param startTime       The time at which the order becomes active.
           * @param endTime         The time at which the order becomes inactive.
           * @param revertOnInvalid A boolean indicating whether to revert if the
           *                        order is not active.
           *
           * @return valid A boolean indicating whether the order is active.
           */
          function _verifyTime(
              uint256 startTime,
              uint256 endTime,
              bool revertOnInvalid
          ) internal view returns (bool valid) {
              // Mark as valid if order has started and has not already ended.
              assembly {
                  valid := and(
                      iszero(gt(startTime, timestamp())),
                      gt(endTime, timestamp())
                  )
              }
              // Only revert on invalid if revertOnInvalid has been supplied as true.
              if (revertOnInvalid && !valid) {
                  _revertInvalidTime(startTime, endTime);
              }
          }
          /**
           * @dev Internal view function to verify the signature of an order. An
           *      ERC-1271 fallback will be attempted if either the signature length
           *      is not 64 or 65 bytes or if the recovered signer does not match the
           *      supplied offerer. Note that in cases where a 64 or 65 byte signature
           *      is supplied, only standard ECDSA signatures that recover to a
           *      non-zero address are supported.
           *
           * @param offerer   The offerer for the order.
           * @param orderHash The order hash.
           * @param signature A signature from the offerer indicating that the order
           *                  has been approved.
           */
          function _verifySignature(
              address offerer,
              bytes32 orderHash,
              bytes memory signature
          ) internal view {
              // Determine whether the offerer is the caller.
              bool offererIsCaller;
              assembly {
                  offererIsCaller := eq(offerer, caller())
              }
              // Skip signature verification if the offerer is the caller.
              if (offererIsCaller) {
                  return;
              }
              // Derive the EIP-712 domain separator.
              bytes32 domainSeparator = _domainSeparator();
              // Derive original EIP-712 digest using domain separator and order hash.
              bytes32 originalDigest = _deriveEIP712Digest(
                  domainSeparator,
                  orderHash
              );
              // Read the length of the signature from memory and place on the stack.
              uint256 originalSignatureLength = signature.length;
              // Determine effective digest if signature has a valid bulk order size.
              bytes32 digest;
              if (_isValidBulkOrderSize(originalSignatureLength)) {
                  // Rederive order hash and digest using bulk order proof.
                  (orderHash) = _computeBulkOrderProof(signature, orderHash);
                  digest = _deriveEIP712Digest(domainSeparator, orderHash);
              } else {
                  // Supply the original digest as the effective digest.
                  digest = originalDigest;
              }
              // Ensure that the signature for the digest is valid for the offerer.
              _assertValidSignature(
                  offerer,
                  digest,
                  originalDigest,
                  originalSignatureLength,
                  signature
              );
          }
          /**
           * @dev Determines whether the specified bulk order size is valid.
           *
           * @param signatureLength The signature length of the bulk order to check.
           *
           * @return validLength True if bulk order size is valid, false otherwise.
           */
          function _isValidBulkOrderSize(
              uint256 signatureLength
          ) internal pure returns (bool validLength) {
              // Utilize assembly to validate the length; the equivalent logic is
              // (64 + x) + 3 + 32y where (0 <= x <= 1) and (1 <= y <= 24).
              assembly {
                  validLength := and(
                      lt(
                          sub(signatureLength, BulkOrderProof_minSize),
                          BulkOrderProof_rangeSize
                      ),
                      lt(
                          and(
                              add(
                                  signatureLength,
                                  BulkOrderProof_lengthAdjustmentBeforeMask
                              ),
                              ThirtyOneBytes
                          ),
                          BulkOrderProof_lengthRangeAfterMask
                      )
                  )
              }
          }
          /**
           * @dev Computes the bulk order hash for the specified proof and leaf. Note
           *      that if an index that exceeds the number of orders in the bulk order
           *      payload will instead "wrap around" and refer to an earlier index.
           *
           * @param proofAndSignature The proof and signature of the bulk order.
           * @param leaf              The leaf of the bulk order tree.
           *
           * @return bulkOrderHash The bulk order hash.
           */
          function _computeBulkOrderProof(
              bytes memory proofAndSignature,
              bytes32 leaf
          ) internal pure returns (bytes32 bulkOrderHash) {
              // Declare arguments for the root hash and the height of the proof.
              bytes32 root;
              uint256 height;
              // Utilize assembly to efficiently derive the root hash using the proof.
              assembly {
                  // Retrieve the length of the proof, key, and signature combined.
                  let fullLength := mload(proofAndSignature)
                  // If proofAndSignature has odd length, it is a compact signature
                  // with 64 bytes.
                  let signatureLength := sub(ECDSA_MaxLength, and(fullLength, 1))
                  // Derive height (or depth of tree) with signature and proof length.
                  height := shr(OneWordShift, sub(fullLength, signatureLength))
                  // Update the length in memory to only include the signature.
                  mstore(proofAndSignature, signatureLength)
                  // Derive the pointer for the key using the signature length.
                  let keyPtr := add(proofAndSignature, add(OneWord, signatureLength))
                  // Retrieve the three-byte key using the derived pointer.
                  let key := shr(BulkOrderProof_keyShift, mload(keyPtr))
                  /// Retrieve pointer to first proof element by applying a constant
                  // for the key size to the derived key pointer.
                  let proof := add(keyPtr, BulkOrderProof_keySize)
                  // Compute level 1.
                  let scratchPtr1 := shl(OneWordShift, and(key, 1))
                  mstore(scratchPtr1, leaf)
                  mstore(xor(scratchPtr1, OneWord), mload(proof))
                  // Compute remaining proofs.
                  for {
                      let i := 1
                  } lt(i, height) {
                      i := add(i, 1)
                  } {
                      proof := add(proof, OneWord)
                      let scratchPtr := shl(OneWordShift, and(shr(i, key), 1))
                      mstore(scratchPtr, keccak256(0, TwoWords))
                      mstore(xor(scratchPtr, OneWord), mload(proof))
                  }
                  // Compute root hash.
                  root := keccak256(0, TwoWords)
              }
              // Retrieve appropriate typehash constant based on height.
              bytes32 rootTypeHash = _lookupBulkOrderTypehash(height);
              // Use the typehash and the root hash to derive final bulk order hash.
              assembly {
                  mstore(0, rootTypeHash)
                  mstore(OneWord, root)
                  bulkOrderHash := keccak256(0, TwoWords)
              }
          }
          /**
           * @dev Internal view function to validate that a given order is fillable
           *      and not cancelled based on the order status.
           *
           * @param orderHash       The order hash.
           * @param orderStatus     The status of the order, including whether it has
           *                        been cancelled and the fraction filled.
           * @param onlyAllowUnused A boolean flag indicating whether partial fills
           *                        are supported by the calling function.
           * @param revertOnInvalid A boolean indicating whether to revert if the
           *                        order has been cancelled or filled beyond the
           *                        allowable amount.
           *
           * @return valid A boolean indicating whether the order is valid.
           */
          function _verifyOrderStatus(
              bytes32 orderHash,
              OrderStatus storage orderStatus,
              bool onlyAllowUnused,
              bool revertOnInvalid
          ) internal view returns (bool valid) {
              // Ensure that the order has not been cancelled.
              if (orderStatus.isCancelled) {
                  // Only revert if revertOnInvalid has been supplied as true.
                  if (revertOnInvalid) {
                      _revertOrderIsCancelled(orderHash);
                  }
                  // Return false as the order status is invalid.
                  return false;
              }
              // Read order status numerator from storage and place on stack.
              uint256 orderStatusNumerator = orderStatus.numerator;
              // If the order is not entirely unused...
              if (orderStatusNumerator != 0) {
                  // ensure the order has not been partially filled when not allowed.
                  if (onlyAllowUnused) {
                      // Always revert on partial fills when onlyAllowUnused is true.
                      _revertOrderPartiallyFilled(orderHash);
                  }
                  // Otherwise, ensure that order has not been entirely filled.
                  else if (orderStatusNumerator >= orderStatus.denominator) {
                      // Only revert if revertOnInvalid has been supplied as true.
                      if (revertOnInvalid) {
                          _revertOrderAlreadyFilled(orderHash);
                      }
                      // Return false as the order status is invalid.
                      return false;
                  }
              }
              // Return true as the order status is valid.
              valid = true;
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.13;
      import {
          BadReturnValueFromERC20OnTransfer_error_amount_ptr,
          BadReturnValueFromERC20OnTransfer_error_from_ptr,
          BadReturnValueFromERC20OnTransfer_error_length,
          BadReturnValueFromERC20OnTransfer_error_selector,
          BadReturnValueFromERC20OnTransfer_error_to_ptr,
          BadReturnValueFromERC20OnTransfer_error_token_ptr,
          BatchTransfer1155Params_amounts_head_ptr,
          BatchTransfer1155Params_calldata_baseSize,
          BatchTransfer1155Params_data_head_ptr,
          BatchTransfer1155Params_data_length_basePtr,
          BatchTransfer1155Params_ids_head_ptr,
          BatchTransfer1155Params_ids_length_offset,
          BatchTransfer1155Params_ids_length_ptr,
          BatchTransfer1155Params_ptr,
          ConduitBatch1155Transfer_amounts_length_baseOffset,
          ConduitBatch1155Transfer_from_offset,
          ConduitBatch1155Transfer_ids_head_offset,
          ConduitBatch1155Transfer_ids_length_offset,
          ConduitBatch1155Transfer_usable_head_size,
          ConduitBatchTransfer_amounts_head_offset,
          CostPerWord,
          DefaultFreeMemoryPointer,
          ERC1155_safeBatchTransferFrom_signature,
          ERC1155_safeTransferFrom_amount_ptr,
          ERC1155_safeTransferFrom_data_length_offset,
          ERC1155_safeTransferFrom_data_length_ptr,
          ERC1155_safeTransferFrom_data_offset_ptr,
          ERC1155_safeTransferFrom_from_ptr,
          ERC1155_safeTransferFrom_id_ptr,
          ERC1155_safeTransferFrom_length,
          ERC1155_safeTransferFrom_sig_ptr,
          ERC1155_safeTransferFrom_signature,
          ERC1155_safeTransferFrom_to_ptr,
          ERC1155BatchTransferGenericFailure_error_signature,
          ERC1155BatchTransferGenericFailure_ids_offset,
          ERC1155BatchTransferGenericFailure_token_ptr,
          ERC20_transferFrom_amount_ptr,
          ERC20_transferFrom_from_ptr,
          ERC20_transferFrom_length,
          ERC20_transferFrom_sig_ptr,
          ERC20_transferFrom_signature,
          ERC20_transferFrom_to_ptr,
          ERC721_transferFrom_from_ptr,
          ERC721_transferFrom_id_ptr,
          ERC721_transferFrom_length,
          ERC721_transferFrom_sig_ptr,
          ERC721_transferFrom_signature,
          ERC721_transferFrom_to_ptr,
          ExtraGasBuffer,
          FreeMemoryPointerSlot,
          Generic_error_selector_offset,
          Invalid1155BatchTransferEncoding_length,
          Invalid1155BatchTransferEncoding_ptr,
          Invalid1155BatchTransferEncoding_selector,
          MemoryExpansionCoefficientShift,
          NoContract_error_account_ptr,
          NoContract_error_length,
          NoContract_error_selector,
          OneWord,
          OneWordShift,
          Slot0x80,
          Slot0xA0,
          Slot0xC0,
          ThirtyOneBytes,
          TokenTransferGenericFailure_err_identifier_ptr,
          TokenTransferGenericFailure_error_amount_ptr,
          TokenTransferGenericFailure_error_from_ptr,
          TokenTransferGenericFailure_error_identifier_ptr,
          TokenTransferGenericFailure_error_length,
          TokenTransferGenericFailure_error_selector,
          TokenTransferGenericFailure_error_to_ptr,
          TokenTransferGenericFailure_error_token_ptr,
          TwoWords,
          TwoWordsShift,
          ZeroSlot
      } from "./TokenTransferrerConstants.sol";
      import {
          TokenTransferrerErrors
      } from "../interfaces/TokenTransferrerErrors.sol";
      import { ConduitBatch1155Transfer } from "../conduit/lib/ConduitStructs.sol";
      /**
       * @title TokenTransferrer
       * @author 0age
       * @custom:coauthor d1ll0n
       * @custom:coauthor transmissions11
       * @notice TokenTransferrer is a library for performing optimized ERC20, ERC721,
       *         ERC1155, and batch ERC1155 transfers, used by both Seaport as well as
       *         by conduits deployed by the ConduitController. Use great caution when
       *         considering these functions for use in other codebases, as there are
       *         significant side effects and edge cases that need to be thoroughly
       *         understood and carefully addressed.
       */
      contract TokenTransferrer is TokenTransferrerErrors {
          /**
           * @dev Internal function to transfer ERC20 tokens from a given originator
           *      to a given recipient. Sufficient approvals must be set on the
           *      contract performing the transfer.
           *
           * @param token      The ERC20 token to transfer.
           * @param from       The originator of the transfer.
           * @param to         The recipient of the transfer.
           * @param amount     The amount to transfer.
           */
          function _performERC20Transfer(
              address token,
              address from,
              address to,
              uint256 amount
          ) internal {
              // Utilize assembly to perform an optimized ERC20 token transfer.
              assembly {
                  // The free memory pointer memory slot will be used when populating
                  // call data for the transfer; read the value and restore it later.
                  let memPointer := mload(FreeMemoryPointerSlot)
                  // Write call data into memory, starting with function selector.
                  mstore(ERC20_transferFrom_sig_ptr, ERC20_transferFrom_signature)
                  mstore(ERC20_transferFrom_from_ptr, from)
                  mstore(ERC20_transferFrom_to_ptr, to)
                  mstore(ERC20_transferFrom_amount_ptr, amount)
                  // Make call & copy up to 32 bytes of return data to scratch space.
                  // Scratch space does not need to be cleared ahead of time, as the
                  // subsequent check will ensure that either at least a full word of
                  // return data is received (in which case it will be overwritten) or
                  // that no data is received (in which case scratch space will be
                  // ignored) on a successful call to the given token.
                  let callStatus := call(
                      gas(),
                      token,
                      0,
                      ERC20_transferFrom_sig_ptr,
                      ERC20_transferFrom_length,
                      0,
                      OneWord
                  )
                  // Determine whether transfer was successful using status & result.
                  let success := and(
                      // Set success to whether the call reverted, if not check it
                      // either returned exactly 1 (can't just be non-zero data), or
                      // had no return data.
                      or(
                          and(eq(mload(0), 1), gt(returndatasize(), 31)),
                          iszero(returndatasize())
                      ),
                      callStatus
                  )
                  // Handle cases where either the transfer failed or no data was
                  // returned. Group these, as most transfers will succeed with data.
                  // Equivalent to `or(iszero(success), iszero(returndatasize()))`
                  // but after it's inverted for JUMPI this expression is cheaper.
                  if iszero(and(success, iszero(iszero(returndatasize())))) {
                      // If the token has no code or the transfer failed: Equivalent
                      // to `or(iszero(success), iszero(extcodesize(token)))` but
                      // after it's inverted for JUMPI this expression is cheaper.
                      if iszero(and(iszero(iszero(extcodesize(token))), success)) {
                          // If the transfer failed:
                          if iszero(success) {
                              // If it was due to a revert:
                              if iszero(callStatus) {
                                  // If it returned a message, bubble it up as long as
                                  // sufficient gas remains to do so:
                                  if returndatasize() {
                                      // Ensure that sufficient gas is available to
                                      // copy returndata while expanding memory where
                                      // necessary. Start by computing the word size
                                      // of returndata and allocated memory. Round up
                                      // to the nearest full word.
                                      let returnDataWords := shr(
                                          OneWordShift,
                                          add(returndatasize(), ThirtyOneBytes)
                                      )
                                      // Note: use the free memory pointer in place of
                                      // msize() to work around a Yul warning that
                                      // prevents accessing msize directly when the IR
                                      // pipeline is activated.
                                      let msizeWords := shr(OneWordShift, memPointer)
                                      // Next, compute the cost of the returndatacopy.
                                      let cost := mul(CostPerWord, returnDataWords)
                                      // Then, compute cost of new memory allocation.
                                      if gt(returnDataWords, msizeWords) {
                                          cost := add(
                                              cost,
                                              add(
                                                  mul(
                                                      sub(
                                                          returnDataWords,
                                                          msizeWords
                                                      ),
                                                      CostPerWord
                                                  ),
                                                  shr(
                                                      MemoryExpansionCoefficientShift,
                                                      sub(
                                                          mul(
                                                              returnDataWords,
                                                              returnDataWords
                                                          ),
                                                          mul(msizeWords, msizeWords)
                                                      )
                                                  )
                                              )
                                          )
                                      }
                                      // Finally, add a small constant and compare to
                                      // gas remaining; bubble up the revert data if
                                      // enough gas is still available.
                                      if lt(add(cost, ExtraGasBuffer), gas()) {
                                          // Copy returndata to memory; overwrite
                                          // existing memory.
                                          returndatacopy(0, 0, returndatasize())
                                          // Revert, specifying memory region with
                                          // copied returndata.
                                          revert(0, returndatasize())
                                      }
                                  }
                                  // Store left-padded selector with push4, mem[28:32]
                                  mstore(
                                      0,
                                      TokenTransferGenericFailure_error_selector
                                  )
                                  mstore(
                                      TokenTransferGenericFailure_error_token_ptr,
                                      token
                                  )
                                  mstore(
                                      TokenTransferGenericFailure_error_from_ptr,
                                      from
                                  )
                                  mstore(TokenTransferGenericFailure_error_to_ptr, to)
                                  mstore(
                                      TokenTransferGenericFailure_err_identifier_ptr,
                                      0
                                  )
                                  mstore(
                                      TokenTransferGenericFailure_error_amount_ptr,
                                      amount
                                  )
                                  // revert(abi.encodeWithSignature(
                                  //     "TokenTransferGenericFailure(
                                  //         address,address,address,uint256,uint256
                                  //     )", token, from, to, identifier, amount
                                  // ))
                                  revert(
                                      Generic_error_selector_offset,
                                      TokenTransferGenericFailure_error_length
                                  )
                              }
                              // Otherwise revert with a message about the token
                              // returning false or non-compliant return values.
                              // Store left-padded selector with push4, mem[28:32]
                              mstore(
                                  0,
                                  BadReturnValueFromERC20OnTransfer_error_selector
                              )
                              mstore(
                                  BadReturnValueFromERC20OnTransfer_error_token_ptr,
                                  token
                              )
                              mstore(
                                  BadReturnValueFromERC20OnTransfer_error_from_ptr,
                                  from
                              )
                              mstore(
                                  BadReturnValueFromERC20OnTransfer_error_to_ptr,
                                  to
                              )
                              mstore(
                                  BadReturnValueFromERC20OnTransfer_error_amount_ptr,
                                  amount
                              )
                              // revert(abi.encodeWithSignature(
                              //     "BadReturnValueFromERC20OnTransfer(
                              //         address,address,address,uint256
                              //     )", token, from, to, amount
                              // ))
                              revert(
                                  Generic_error_selector_offset,
                                  BadReturnValueFromERC20OnTransfer_error_length
                              )
                          }
                          // Otherwise, revert with error about token not having code:
                          // Store left-padded selector with push4, mem[28:32]
                          mstore(0, NoContract_error_selector)
                          mstore(NoContract_error_account_ptr, token)
                          // revert(abi.encodeWithSignature(
                          //      "NoContract(address)", account
                          // ))
                          revert(
                              Generic_error_selector_offset,
                              NoContract_error_length
                          )
                      }
                      // Otherwise, the token just returned no data despite the call
                      // having succeeded; no need to optimize for this as it's not
                      // technically ERC20 compliant.
                  }
                  // Restore the original free memory pointer.
                  mstore(FreeMemoryPointerSlot, memPointer)
                  // Restore the zero slot to zero.
                  mstore(ZeroSlot, 0)
              }
          }
          /**
           * @dev Internal function to transfer an ERC721 token from a given
           *      originator to a given recipient. Sufficient approvals must be set on
           *      the contract performing the transfer. Note that this function does
           *      not check whether the receiver can accept the ERC721 token (i.e. it
           *      does not use `safeTransferFrom`).
           *
           * @param token      The ERC721 token to transfer.
           * @param from       The originator of the transfer.
           * @param to         The recipient of the transfer.
           * @param identifier The tokenId to transfer.
           */
          function _performERC721Transfer(
              address token,
              address from,
              address to,
              uint256 identifier
          ) internal {
              // Utilize assembly to perform an optimized ERC721 token transfer.
              assembly {
                  // If the token has no code, revert.
                  if iszero(extcodesize(token)) {
                      // Store left-padded selector with push4, mem[28:32] = selector
                      mstore(0, NoContract_error_selector)
                      mstore(NoContract_error_account_ptr, token)
                      // revert(abi.encodeWithSignature(
                      //     "NoContract(address)", account
                      // ))
                      revert(Generic_error_selector_offset, NoContract_error_length)
                  }
                  // The free memory pointer memory slot will be used when populating
                  // call data for the transfer; read the value and restore it later.
                  let memPointer := mload(FreeMemoryPointerSlot)
                  // Write call data to memory starting with function selector.
                  mstore(ERC721_transferFrom_sig_ptr, ERC721_transferFrom_signature)
                  mstore(ERC721_transferFrom_from_ptr, from)
                  mstore(ERC721_transferFrom_to_ptr, to)
                  mstore(ERC721_transferFrom_id_ptr, identifier)
                  // Perform the call, ignoring return data.
                  let success := call(
                      gas(),
                      token,
                      0,
                      ERC721_transferFrom_sig_ptr,
                      ERC721_transferFrom_length,
                      0,
                      0
                  )
                  // If the transfer reverted:
                  if iszero(success) {
                      // If it returned a message, bubble it up as long as sufficient
                      // gas remains to do so:
                      if returndatasize() {
                          // Ensure that sufficient gas is available to copy
                          // returndata while expanding memory where necessary. Start
                          // by computing word size of returndata & allocated memory.
                          // Round up to the nearest full word.
                          let returnDataWords := shr(
                              OneWordShift,
                              add(returndatasize(), ThirtyOneBytes)
                          )
                          // Note: use the free memory pointer in place of msize() to
                          // work around a Yul warning that prevents accessing msize
                          // directly when the IR pipeline is activated.
                          let msizeWords := shr(OneWordShift, memPointer)
                          // Next, compute the cost of the returndatacopy.
                          let cost := mul(CostPerWord, returnDataWords)
                          // Then, compute cost of new memory allocation.
                          if gt(returnDataWords, msizeWords) {
                              cost := add(
                                  cost,
                                  add(
                                      mul(
                                          sub(returnDataWords, msizeWords),
                                          CostPerWord
                                      ),
                                      shr(
                                          MemoryExpansionCoefficientShift,
                                          sub(
                                              mul(returnDataWords, returnDataWords),
                                              mul(msizeWords, msizeWords)
                                          )
                                      )
                                  )
                              )
                          }
                          // Finally, add a small constant and compare to gas
                          // remaining; bubble up the revert data if enough gas is
                          // still available.
                          if lt(add(cost, ExtraGasBuffer), gas()) {
                              // Copy returndata to memory; overwrite existing memory.
                              returndatacopy(0, 0, returndatasize())
                              // Revert, giving memory region with copied returndata.
                              revert(0, returndatasize())
                          }
                      }
                      // Otherwise revert with a generic error message.
                      // Store left-padded selector with push4, mem[28:32] = selector
                      mstore(0, TokenTransferGenericFailure_error_selector)
                      mstore(TokenTransferGenericFailure_error_token_ptr, token)
                      mstore(TokenTransferGenericFailure_error_from_ptr, from)
                      mstore(TokenTransferGenericFailure_error_to_ptr, to)
                      mstore(
                          TokenTransferGenericFailure_error_identifier_ptr,
                          identifier
                      )
                      mstore(TokenTransferGenericFailure_error_amount_ptr, 1)
                      // revert(abi.encodeWithSignature(
                      //     "TokenTransferGenericFailure(
                      //         address,address,address,uint256,uint256
                      //     )", token, from, to, identifier, amount
                      // ))
                      revert(
                          Generic_error_selector_offset,
                          TokenTransferGenericFailure_error_length
                      )
                  }
                  // Restore the original free memory pointer.
                  mstore(FreeMemoryPointerSlot, memPointer)
                  // Restore the zero slot to zero.
                  mstore(ZeroSlot, 0)
              }
          }
          /**
           * @dev Internal function to transfer ERC1155 tokens from a given
           *      originator to a given recipient. Sufficient approvals must be set on
           *      the contract performing the transfer and contract recipients must
           *      implement the ERC1155TokenReceiver interface to indicate that they
           *      are willing to accept the transfer.
           *
           * @param token      The ERC1155 token to transfer.
           * @param from       The originator of the transfer.
           * @param to         The recipient of the transfer.
           * @param identifier The id to transfer.
           * @param amount     The amount to transfer.
           */
          function _performERC1155Transfer(
              address token,
              address from,
              address to,
              uint256 identifier,
              uint256 amount
          ) internal {
              // Utilize assembly to perform an optimized ERC1155 token transfer.
              assembly {
                  // If the token has no code, revert.
                  if iszero(extcodesize(token)) {
                      // Store left-padded selector with push4, mem[28:32] = selector
                      mstore(0, NoContract_error_selector)
                      mstore(NoContract_error_account_ptr, token)
                      // revert(abi.encodeWithSignature(
                      //     "NoContract(address)", account
                      // ))
                      revert(Generic_error_selector_offset, NoContract_error_length)
                  }
                  // The following memory slots will be used when populating call data
                  // for the transfer; read the values and restore them later.
                  let memPointer := mload(FreeMemoryPointerSlot)
                  let slot0x80 := mload(Slot0x80)
                  let slot0xA0 := mload(Slot0xA0)
                  let slot0xC0 := mload(Slot0xC0)
                  // Write call data into memory, beginning with function selector.
                  mstore(
                      ERC1155_safeTransferFrom_sig_ptr,
                      ERC1155_safeTransferFrom_signature
                  )
                  mstore(ERC1155_safeTransferFrom_from_ptr, from)
                  mstore(ERC1155_safeTransferFrom_to_ptr, to)
                  mstore(ERC1155_safeTransferFrom_id_ptr, identifier)
                  mstore(ERC1155_safeTransferFrom_amount_ptr, amount)
                  mstore(
                      ERC1155_safeTransferFrom_data_offset_ptr,
                      ERC1155_safeTransferFrom_data_length_offset
                  )
                  mstore(ERC1155_safeTransferFrom_data_length_ptr, 0)
                  // Perform the call, ignoring return data.
                  let success := call(
                      gas(),
                      token,
                      0,
                      ERC1155_safeTransferFrom_sig_ptr,
                      ERC1155_safeTransferFrom_length,
                      0,
                      0
                  )
                  // If the transfer reverted:
                  if iszero(success) {
                      // If it returned a message, bubble it up as long as sufficient
                      // gas remains to do so:
                      if returndatasize() {
                          // Ensure that sufficient gas is available to copy
                          // returndata while expanding memory where necessary. Start
                          // by computing word size of returndata & allocated memory.
                          // Round up to the nearest full word.
                          let returnDataWords := shr(
                              OneWordShift,
                              add(returndatasize(), ThirtyOneBytes)
                          )
                          // Note: use the free memory pointer in place of msize() to
                          // work around a Yul warning that prevents accessing msize
                          // directly when the IR pipeline is activated.
                          let msizeWords := shr(OneWordShift, memPointer)
                          // Next, compute the cost of the returndatacopy.
                          let cost := mul(CostPerWord, returnDataWords)
                          // Then, compute cost of new memory allocation.
                          if gt(returnDataWords, msizeWords) {
                              cost := add(
                                  cost,
                                  add(
                                      mul(
                                          sub(returnDataWords, msizeWords),
                                          CostPerWord
                                      ),
                                      shr(
                                          MemoryExpansionCoefficientShift,
                                          sub(
                                              mul(returnDataWords, returnDataWords),
                                              mul(msizeWords, msizeWords)
                                          )
                                      )
                                  )
                              )
                          }
                          // Finally, add a small constant and compare to gas
                          // remaining; bubble up the revert data if enough gas is
                          // still available.
                          if lt(add(cost, ExtraGasBuffer), gas()) {
                              // Copy returndata to memory; overwrite existing memory.
                              returndatacopy(0, 0, returndatasize())
                              // Revert, giving memory region with copied returndata.
                              revert(0, returndatasize())
                          }
                      }
                      // Otherwise revert with a generic error message.
                      // Store left-padded selector with push4, mem[28:32] = selector
                      mstore(0, TokenTransferGenericFailure_error_selector)
                      mstore(TokenTransferGenericFailure_error_token_ptr, token)
                      mstore(TokenTransferGenericFailure_error_from_ptr, from)
                      mstore(TokenTransferGenericFailure_error_to_ptr, to)
                      mstore(
                          TokenTransferGenericFailure_error_identifier_ptr,
                          identifier
                      )
                      mstore(TokenTransferGenericFailure_error_amount_ptr, amount)
                      // revert(abi.encodeWithSignature(
                      //     "TokenTransferGenericFailure(
                      //         address,address,address,uint256,uint256
                      //     )", token, from, to, identifier, amount
                      // ))
                      revert(
                          Generic_error_selector_offset,
                          TokenTransferGenericFailure_error_length
                      )
                  }
                  mstore(Slot0x80, slot0x80) // Restore slot 0x80.
                  mstore(Slot0xA0, slot0xA0) // Restore slot 0xA0.
                  mstore(Slot0xC0, slot0xC0) // Restore slot 0xC0.
                  // Restore the original free memory pointer.
                  mstore(FreeMemoryPointerSlot, memPointer)
                  // Restore the zero slot to zero.
                  mstore(ZeroSlot, 0)
              }
          }
          /**
           * @dev Internal function to transfer ERC1155 tokens from a given
           *      originator to a given recipient. Sufficient approvals must be set on
           *      the contract performing the transfer and contract recipients must
           *      implement the ERC1155TokenReceiver interface to indicate that they
           *      are willing to accept the transfer. NOTE: this function is not
           *      memory-safe; it will overwrite existing memory, restore the free
           *      memory pointer to the default value, and overwrite the zero slot.
           *      This function should only be called once memory is no longer
           *      required and when uninitialized arrays are not utilized, and memory
           *      should be considered fully corrupted (aside from the existence of a
           *      default-value free memory pointer) after calling this function.
           *
           * @param batchTransfers The group of 1155 batch transfers to perform.
           */
          function _performERC1155BatchTransfers(
              ConduitBatch1155Transfer[] calldata batchTransfers
          ) internal {
              // Utilize assembly to perform optimized batch 1155 transfers.
              assembly {
                  let len := batchTransfers.length
                  // Pointer to first head in the array, which is offset to the struct
                  // at each index. This gets incremented after each loop to avoid
                  // multiplying by 32 to get the offset for each element.
                  let nextElementHeadPtr := batchTransfers.offset
                  // Pointer to beginning of the head of the array. This is the
                  // reference position each offset references. It's held static to
                  // let each loop calculate the data position for an element.
                  let arrayHeadPtr := nextElementHeadPtr
                  // Write the function selector, which will be reused for each call:
                  // safeBatchTransferFrom(address,address,uint256[],uint256[],bytes)
                  mstore(
                      ConduitBatch1155Transfer_from_offset,
                      ERC1155_safeBatchTransferFrom_signature
                  )
                  // Iterate over each batch transfer.
                  for {
                      let i := 0
                  } lt(i, len) {
                      i := add(i, 1)
                  } {
                      // Read the offset to the beginning of the element and add
                      // it to pointer to the beginning of the array head to get
                      // the absolute position of the element in calldata.
                      let elementPtr := add(
                          arrayHeadPtr,
                          calldataload(nextElementHeadPtr)
                      )
                      // Retrieve the token from calldata.
                      let token := calldataload(elementPtr)
                      // If the token has no code, revert.
                      if iszero(extcodesize(token)) {
                          // Store left-padded selector with push4, mem[28:32]
                          mstore(0, NoContract_error_selector)
                          mstore(NoContract_error_account_ptr, token)
                          // revert(abi.encodeWithSignature(
                          //     "NoContract(address)", account
                          // ))
                          revert(
                              Generic_error_selector_offset,
                              NoContract_error_length
                          )
                      }
                      // Get the total number of supplied ids.
                      let idsLength := calldataload(
                          add(elementPtr, ConduitBatch1155Transfer_ids_length_offset)
                      )
                      // Determine the expected offset for the amounts array.
                      let expectedAmountsOffset := add(
                          ConduitBatch1155Transfer_amounts_length_baseOffset,
                          shl(OneWordShift, idsLength)
                      )
                      // Validate struct encoding.
                      let invalidEncoding := iszero(
                          and(
                              // ids.length == amounts.length
                              eq(
                                  idsLength,
                                  calldataload(add(elementPtr, expectedAmountsOffset))
                              ),
                              and(
                                  // ids_offset == 0xa0
                                  eq(
                                      calldataload(
                                          add(
                                              elementPtr,
                                              ConduitBatch1155Transfer_ids_head_offset
                                          )
                                      ),
                                      ConduitBatch1155Transfer_ids_length_offset
                                  ),
                                  // amounts_offset == 0xc0 + ids.length*32
                                  eq(
                                      calldataload(
                                          add(
                                              elementPtr,
                                              ConduitBatchTransfer_amounts_head_offset
                                          )
                                      ),
                                      expectedAmountsOffset
                                  )
                              )
                          )
                      )
                      // Revert with an error if the encoding is not valid.
                      if invalidEncoding {
                          // Store left-padded selector with push4, mem[28:32]
                          mstore(
                              Invalid1155BatchTransferEncoding_ptr,
                              Invalid1155BatchTransferEncoding_selector
                          )
                          // revert(abi.encodeWithSignature(
                          //     "Invalid1155BatchTransferEncoding()"
                          // ))
                          revert(
                              Invalid1155BatchTransferEncoding_ptr,
                              Invalid1155BatchTransferEncoding_length
                          )
                      }
                      // Update the offset position for the next loop
                      nextElementHeadPtr := add(nextElementHeadPtr, OneWord)
                      // Copy the first section of calldata (before dynamic values).
                      calldatacopy(
                          BatchTransfer1155Params_ptr,
                          add(elementPtr, ConduitBatch1155Transfer_from_offset),
                          ConduitBatch1155Transfer_usable_head_size
                      )
                      // Determine size of calldata required for ids and amounts. Note
                      // that the size includes both lengths as well as the data.
                      let idsAndAmountsSize := add(
                          TwoWords,
                          shl(TwoWordsShift, idsLength)
                      )
                      // Update the offset for the data array in memory.
                      mstore(
                          BatchTransfer1155Params_data_head_ptr,
                          add(
                              BatchTransfer1155Params_ids_length_offset,
                              idsAndAmountsSize
                          )
                      )
                      // Set the length of the data array in memory to zero.
                      mstore(
                          add(
                              BatchTransfer1155Params_data_length_basePtr,
                              idsAndAmountsSize
                          ),
                          0
                      )
                      // Determine the total calldata size for the call to transfer.
                      let transferDataSize := add(
                          BatchTransfer1155Params_calldata_baseSize,
                          idsAndAmountsSize
                      )
                      // Copy second section of calldata (including dynamic values).
                      calldatacopy(
                          BatchTransfer1155Params_ids_length_ptr,
                          add(elementPtr, ConduitBatch1155Transfer_ids_length_offset),
                          idsAndAmountsSize
                      )
                      // Perform the call to transfer 1155 tokens.
                      let success := call(
                          gas(),
                          token,
                          0,
                          ConduitBatch1155Transfer_from_offset, // Data portion start.
                          transferDataSize, // Location of the length of callData.
                          0,
                          0
                      )
                      // If the transfer reverted:
                      if iszero(success) {
                          // If it returned a message, bubble it up as long as
                          // sufficient gas remains to do so:
                          if returndatasize() {
                              // Ensure that sufficient gas is available to copy
                              // returndata while expanding memory where necessary.
                              // Start by computing word size of returndata and
                              // allocated memory. Round up to the nearest full word.
                              let returnDataWords := shr(
                                  OneWordShift,
                                  add(returndatasize(), ThirtyOneBytes)
                              )
                              // Note: use transferDataSize in place of msize() to
                              // work around a Yul warning that prevents accessing
                              // msize directly when the IR pipeline is activated.
                              // The free memory pointer is not used here because
                              // this function does almost all memory management
                              // manually and does not update it, and transferDataSize
                              // should be the largest memory value used (unless a
                              // previous batch was larger).
                              let msizeWords := shr(OneWordShift, transferDataSize)
                              // Next, compute the cost of the returndatacopy.
                              let cost := mul(CostPerWord, returnDataWords)
                              // Then, compute cost of new memory allocation.
                              if gt(returnDataWords, msizeWords) {
                                  cost := add(
                                      cost,
                                      add(
                                          mul(
                                              sub(returnDataWords, msizeWords),
                                              CostPerWord
                                          ),
                                          shr(
                                              MemoryExpansionCoefficientShift,
                                              sub(
                                                  mul(
                                                      returnDataWords,
                                                      returnDataWords
                                                  ),
                                                  mul(msizeWords, msizeWords)
                                              )
                                          )
                                      )
                                  )
                              }
                              // Finally, add a small constant and compare to gas
                              // remaining; bubble up the revert data if enough gas is
                              // still available.
                              if lt(add(cost, ExtraGasBuffer), gas()) {
                                  // Copy returndata to memory; overwrite existing.
                                  returndatacopy(0, 0, returndatasize())
                                  // Revert with memory region containing returndata.
                                  revert(0, returndatasize())
                              }
                          }
                          // Set the error signature.
                          mstore(
                              0,
                              ERC1155BatchTransferGenericFailure_error_signature
                          )
                          // Write the token.
                          mstore(ERC1155BatchTransferGenericFailure_token_ptr, token)
                          // Increase the offset to ids by 32.
                          mstore(
                              BatchTransfer1155Params_ids_head_ptr,
                              ERC1155BatchTransferGenericFailure_ids_offset
                          )
                          // Increase the offset to amounts by 32.
                          mstore(
                              BatchTransfer1155Params_amounts_head_ptr,
                              add(
                                  OneWord,
                                  mload(BatchTransfer1155Params_amounts_head_ptr)
                              )
                          )
                          // Return modified region. The total size stays the same as
                          // `token` uses the same number of bytes as `data.length`.
                          revert(0, transferDataSize)
                      }
                  }
                  // Reset the free memory pointer to the default value; memory must
                  // be assumed to be dirtied and not reused from this point forward.
                  // Also note that the zero slot is not reset to zero, meaning empty
                  // arrays cannot be safely created or utilized until it is restored.
                  mstore(FreeMemoryPointerSlot, DefaultFreeMemoryPointer)
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.13;
      enum ConduitItemType {
          NATIVE, // unused
          ERC20,
          ERC721,
          ERC1155
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.13;
      import { ConduitItemType } from "./ConduitEnums.sol";
      /**
       * @dev A ConduitTransfer is a struct that contains the information needed for a
       *      conduit to transfer an item from one address to another.
       */
      struct ConduitTransfer {
          ConduitItemType itemType;
          address token;
          address from;
          address to;
          uint256 identifier;
          uint256 amount;
      }
      /**
       * @dev A ConduitBatch1155Transfer is a struct that contains the information
       *      needed for a conduit to transfer a batch of ERC-1155 tokens from one
       *      address to another.
       */
      struct ConduitBatch1155Transfer {
          address token;
          address from;
          address to;
          uint256[] ids;
          uint256[] amounts;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      import { OrderParameters } from "./ConsiderationStructs.sol";
      import { GettersAndDerivers } from "./GettersAndDerivers.sol";
      import {
          TokenTransferrerErrors
      } from "../interfaces/TokenTransferrerErrors.sol";
      import { CounterManager } from "./CounterManager.sol";
      import {
          AdditionalRecipient_size_shift,
          AddressDirtyUpperBitThreshold,
          BasicOrder_additionalRecipients_head_cdPtr,
          BasicOrder_additionalRecipients_head_ptr,
          BasicOrder_additionalRecipients_length_cdPtr,
          BasicOrder_basicOrderType_cdPtr,
          BasicOrder_basicOrderType_range,
          BasicOrder_considerationToken_cdPtr,
          BasicOrder_offerer_cdPtr,
          BasicOrder_offerToken_cdPtr,
          BasicOrder_parameters_cdPtr,
          BasicOrder_parameters_ptr,
          BasicOrder_signature_cdPtr,
          BasicOrder_signature_ptr,
          BasicOrder_zone_cdPtr
      } from "./ConsiderationConstants.sol";
      import {
          Error_selector_offset,
          MissingItemAmount_error_length,
          MissingItemAmount_error_selector
      } from "./ConsiderationErrorConstants.sol";
      import {
          _revertInvalidBasicOrderParameterEncoding,
          _revertMissingOriginalConsiderationItems
      } from "./ConsiderationErrors.sol";
      /**
       * @title Assertions
       * @author 0age
       * @notice Assertions contains logic for making various assertions that do not
       *         fit neatly within a dedicated semantic scope.
       */
      contract Assertions is
          GettersAndDerivers,
          CounterManager,
          TokenTransferrerErrors
      {
          /**
           * @dev Derive and set hashes, reference chainId, and associated domain
           *      separator during deployment.
           *
           * @param conduitController A contract that deploys conduits, or proxies
           *                          that may optionally be used to transfer approved
           *                          ERC20/721/1155 tokens.
           */
          constructor(
              address conduitController
          ) GettersAndDerivers(conduitController) {}
          /**
           * @dev Internal view function to ensure that the supplied consideration
           *      array length on a given set of order parameters is not less than the
           *      original consideration array length for that order and to retrieve
           *      the current counter for a given order's offerer and zone and use it
           *      to derive the order hash.
           *
           * @param orderParameters The parameters of the order to hash.
           *
           * @return The hash.
           */
          function _assertConsiderationLengthAndGetOrderHash(
              OrderParameters memory orderParameters
          ) internal view returns (bytes32) {
              // Ensure supplied consideration array length is not less than original.
              _assertConsiderationLengthIsNotLessThanOriginalConsiderationLength(
                  orderParameters.consideration.length,
                  orderParameters.totalOriginalConsiderationItems
              );
              // Derive and return order hash using current counter for the offerer.
              return
                  _deriveOrderHash(
                      orderParameters,
                      _getCounter(orderParameters.offerer)
                  );
          }
          /**
           * @dev Internal pure function to ensure that the supplied consideration
           *      array length for an order to be fulfilled is not less than the
           *      original consideration array length for that order.
           *
           * @param suppliedConsiderationItemTotal The number of consideration items
           *                                       supplied when fulfilling the order.
           * @param originalConsiderationItemTotal The number of consideration items
           *                                       supplied on initial order creation.
           */
          function _assertConsiderationLengthIsNotLessThanOriginalConsiderationLength(
              uint256 suppliedConsiderationItemTotal,
              uint256 originalConsiderationItemTotal
          ) internal pure {
              // Ensure supplied consideration array length is not less than original.
              if (suppliedConsiderationItemTotal < originalConsiderationItemTotal) {
                  _revertMissingOriginalConsiderationItems();
              }
          }
          /**
           * @dev Internal pure function to ensure that a given item amount is not
           *      zero.
           *
           * @param amount The amount to check.
           */
          function _assertNonZeroAmount(uint256 amount) internal pure {
              assembly {
                  if iszero(amount) {
                      // Store left-padded selector with push4, mem[28:32] = selector
                      mstore(0, MissingItemAmount_error_selector)
                      // revert(abi.encodeWithSignature("MissingItemAmount()"))
                      revert(Error_selector_offset, MissingItemAmount_error_length)
                  }
              }
          }
          /**
           * @dev Internal pure function to validate calldata offsets for dynamic
           *      types in BasicOrderParameters and other parameters. This ensures
           *      that functions using the calldata object normally will be using the
           *      same data as the assembly functions and that values that are bound
           *      to a given range are within that range. Note that no parameters are
           *      supplied as all basic order functions use the same calldata
           *      encoding.
           */
          function _assertValidBasicOrderParameters() internal pure {
              // Declare a boolean designating basic order parameter offset validity.
              bool validOffsets;
              // Utilize assembly in order to read offset data directly from calldata.
              assembly {
                  /*
                   * Checks:
                   * 1. Order parameters struct offset == 0x20
                   * 2. Additional recipients arr offset == 0x240
                   * 3. Signature offset == 0x260 + (recipients.length * 0x40)
                   * 4. BasicOrderType between 0 and 23 (i.e. < 24)
                   * 5. Offerer, zone, offer token, and consideration token have no
                   *    upper dirty bits — each argument is type(uint160).max or less
                   */
                  validOffsets := and(
                      and(
                          and(
                              // Order parameters at cd 0x04 must have offset of 0x20.
                              eq(
                                  calldataload(BasicOrder_parameters_cdPtr),
                                  BasicOrder_parameters_ptr
                              ),
                              // Additional recipients (cd 0x224) arr offset == 0x240.
                              eq(
                                  calldataload(
                                      BasicOrder_additionalRecipients_head_cdPtr
                                  ),
                                  BasicOrder_additionalRecipients_head_ptr
                              )
                          ),
                          // Signature offset == 0x260 + (recipients.length * 0x40).
                          eq(
                              // Load signature offset from calldata 0x244.
                              calldataload(BasicOrder_signature_cdPtr),
                              // Expected offset is start of recipients + len * 64.
                              add(
                                  BasicOrder_signature_ptr,
                                  shl(
                                      // Each additional recipient has length of 0x40.
                                      AdditionalRecipient_size_shift,
                                      // Additional recipients length at cd 0x264.
                                      calldataload(
                                          BasicOrder_additionalRecipients_length_cdPtr
                                      )
                                  )
                              )
                          )
                      ),
                      and(
                          // Ensure BasicOrderType parameter is less than 0x18.
                          lt(
                              // BasicOrderType parameter at calldata offset 0x124.
                              calldataload(BasicOrder_basicOrderType_cdPtr),
                              // Value should be less than 24.
                              BasicOrder_basicOrderType_range
                          ),
                          // Ensure no dirty upper bits are present on offerer, zone,
                          // offer token, or consideration token.
                          lt(
                              or(
                                  or(
                                      // Offerer parameter at calldata offset 0x84.
                                      calldataload(BasicOrder_offerer_cdPtr),
                                      // Zone parameter at calldata offset 0xa4.
                                      calldataload(BasicOrder_zone_cdPtr)
                                  ),
                                  or(
                                      // Offer token parameter at cd offset 0xc4.
                                      calldataload(BasicOrder_offerToken_cdPtr),
                                      // Consideration token parameter at offset 0x24.
                                      calldataload(
                                          BasicOrder_considerationToken_cdPtr
                                      )
                                  )
                              ),
                              AddressDirtyUpperBitThreshold
                          )
                      )
                  )
              }
              // Revert with an error if basic order parameter offsets are invalid.
              if (!validOffsets) {
                  _revertInvalidBasicOrderParameterEncoding();
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      import {
          SignatureVerificationErrors
      } from "../interfaces/SignatureVerificationErrors.sol";
      import { LowLevelHelpers } from "./LowLevelHelpers.sol";
      import {
          ECDSA_MaxLength,
          ECDSA_signature_s_offset,
          ECDSA_signature_v_offset,
          ECDSA_twentySeventhAndTwentyEighthBytesSet,
          Ecrecover_args_size,
          Ecrecover_precompile,
          EIP1271_isValidSignature_calldata_baseLength,
          EIP1271_isValidSignature_digest_negativeOffset,
          EIP1271_isValidSignature_selector_negativeOffset,
          EIP1271_isValidSignature_selector,
          EIP1271_isValidSignature_signature_head_offset,
          EIP2098_allButHighestBitMask,
          MaxUint8,
          OneWord,
          Signature_lower_v
      } from "./ConsiderationConstants.sol";
      import {
          BadContractSignature_error_length,
          BadContractSignature_error_selector,
          BadSignatureV_error_length,
          BadSignatureV_error_selector,
          BadSignatureV_error_v_ptr,
          Error_selector_offset,
          InvalidSignature_error_length,
          InvalidSignature_error_selector,
          InvalidSigner_error_length,
          InvalidSigner_error_selector
      } from "./ConsiderationErrorConstants.sol";
      /**
       * @title SignatureVerification
       * @author 0age
       * @notice SignatureVerification contains logic for verifying signatures.
       */
      contract SignatureVerification is SignatureVerificationErrors, LowLevelHelpers {
          /**
           * @dev Internal view function to verify the signature of an order. An
           *      ERC-1271 fallback will be attempted if either the signature length
           *      is not 64 or 65 bytes or if the recovered signer does not match the
           *      supplied signer.
           *
           * @param signer                  The signer for the order.
           * @param digest                  The digest to verify signature against.
           * @param originalDigest          The original digest to verify signature
           *                                against.
           * @param originalSignatureLength The original signature length.
           * @param signature               A signature from the signer indicating
           *                                that the order has been approved.
           */
          function _assertValidSignature(
              address signer,
              bytes32 digest,
              bytes32 originalDigest,
              uint256 originalSignatureLength,
              bytes memory signature
          ) internal view {
              // Declare value for ecrecover equality or 1271 call success status.
              bool success;
              // Utilize assembly to perform optimized signature verification check.
              assembly {
                  // Ensure that first word of scratch space is empty.
                  mstore(0, 0)
                  // Get the length of the signature.
                  let signatureLength := mload(signature)
                  // Get the pointer to the value preceding the signature length.
                  // This will be used for temporary memory overrides - either the
                  // signature head for isValidSignature or the digest for ecrecover.
                  let wordBeforeSignaturePtr := sub(signature, OneWord)
                  // Cache the current value behind the signature to restore it later.
                  let cachedWordBeforeSignature := mload(wordBeforeSignaturePtr)
                  // Declare lenDiff + recoveredSigner scope to manage stack pressure.
                  {
                      // Take the difference between the max ECDSA signature length
                      // and the actual signature length. Overflow desired for any
                      // values > 65. If the diff is not 0 or 1, it is not a valid
                      // ECDSA signature - move on to EIP1271 check.
                      let lenDiff := sub(ECDSA_MaxLength, signatureLength)
                      // Declare variable for recovered signer.
                      let recoveredSigner
                      // If diff is 0 or 1, it may be an ECDSA signature.
                      // Try to recover signer.
                      if iszero(gt(lenDiff, 1)) {
                          // Read the signature `s` value.
                          let originalSignatureS := mload(
                              add(signature, ECDSA_signature_s_offset)
                          )
                          // Read the first byte of the word after `s`. If the
                          // signature is 65 bytes, this will be the real `v` value.
                          // If not, it will need to be modified - doing it this way
                          // saves an extra condition.
                          let v := byte(
                              0,
                              mload(add(signature, ECDSA_signature_v_offset))
                          )
                          // If lenDiff is 1, parse 64-byte signature as ECDSA.
                          if lenDiff {
                              // Extract yParity from highest bit of vs and add 27 to
                              // get v.
                              v := add(
                                  shr(MaxUint8, originalSignatureS),
                                  Signature_lower_v
                              )
                              // Extract canonical s from vs, all but the highest bit.
                              // Temporarily overwrite the original `s` value in the
                              // signature.
                              mstore(
                                  add(signature, ECDSA_signature_s_offset),
                                  and(
                                      originalSignatureS,
                                      EIP2098_allButHighestBitMask
                                  )
                              )
                          }
                          // Temporarily overwrite the signature length with `v` to
                          // conform to the expected input for ecrecover.
                          mstore(signature, v)
                          // Temporarily overwrite the word before the length with
                          // `digest` to conform to the expected input for ecrecover.
                          mstore(wordBeforeSignaturePtr, digest)
                          // Attempt to recover the signer for the given signature. Do
                          // not check the call status as ecrecover will return a null
                          // address if the signature is invalid.
                          pop(
                              staticcall(
                                  gas(),
                                  Ecrecover_precompile, // Call ecrecover precompile.
                                  wordBeforeSignaturePtr, // Use data memory location.
                                  Ecrecover_args_size, // Size of digest, v, r, and s.
                                  0, // Write result to scratch space.
                                  OneWord // Provide size of returned result.
                              )
                          )
                          // Restore cached word before signature.
                          mstore(wordBeforeSignaturePtr, cachedWordBeforeSignature)
                          // Restore cached signature length.
                          mstore(signature, signatureLength)
                          // Restore cached signature `s` value.
                          mstore(
                              add(signature, ECDSA_signature_s_offset),
                              originalSignatureS
                          )
                          // Read the recovered signer from the buffer given as return
                          // space for ecrecover.
                          recoveredSigner := mload(0)
                      }
                      // Set success to true if the signature provided was a valid
                      // ECDSA signature and the signer is not the null address. Use
                      // gt instead of direct as success is used outside of assembly.
                      success := and(eq(signer, recoveredSigner), gt(signer, 0))
                  }
                  // If the signature was not verified with ecrecover, try EIP1271.
                  if iszero(success) {
                      // Reset the original signature length.
                      mstore(signature, originalSignatureLength)
                      // Temporarily overwrite the word before the signature length
                      // and use it as the head of the signature input to
                      // `isValidSignature`, which has a value of 64.
                      mstore(
                          wordBeforeSignaturePtr,
                          EIP1271_isValidSignature_signature_head_offset
                      )
                      // Get pointer to use for the selector of `isValidSignature`.
                      let selectorPtr := sub(
                          signature,
                          EIP1271_isValidSignature_selector_negativeOffset
                      )
                      // Cache the value currently stored at the selector pointer.
                      let cachedWordOverwrittenBySelector := mload(selectorPtr)
                      // Cache the value currently stored at the digest pointer.
                      let cachedWordOverwrittenByDigest := mload(
                          sub(
                              signature,
                              EIP1271_isValidSignature_digest_negativeOffset
                          )
                      )
                      // Write the selector first, since it overlaps the digest.
                      mstore(selectorPtr, EIP1271_isValidSignature_selector)
                      // Next, write the original digest.
                      mstore(
                          sub(
                              signature,
                              EIP1271_isValidSignature_digest_negativeOffset
                          ),
                          originalDigest
                      )
                      // Call signer with `isValidSignature` to validate signature.
                      success := staticcall(
                          gas(),
                          signer,
                          selectorPtr,
                          add(
                              originalSignatureLength,
                              EIP1271_isValidSignature_calldata_baseLength
                          ),
                          0,
                          OneWord
                      )
                      // Determine if the signature is valid on successful calls.
                      if success {
                          // If first word of scratch space does not contain EIP-1271
                          // signature selector, revert.
                          if iszero(eq(mload(0), EIP1271_isValidSignature_selector)) {
                              // Revert with bad 1271 signature if signer has code.
                              if extcodesize(signer) {
                                  // Bad contract signature.
                                  // Store left-padded selector with push4, mem[28:32]
                                  mstore(0, BadContractSignature_error_selector)
                                  // revert(abi.encodeWithSignature(
                                  //     "BadContractSignature()"
                                  // ))
                                  revert(
                                      Error_selector_offset,
                                      BadContractSignature_error_length
                                  )
                              }
                              // Check if signature length was invalid.
                              if gt(sub(ECDSA_MaxLength, signatureLength), 1) {
                                  // Revert with generic invalid signature error.
                                  // Store left-padded selector with push4, mem[28:32]
                                  mstore(0, InvalidSignature_error_selector)
                                  // revert(abi.encodeWithSignature(
                                  //     "InvalidSignature()"
                                  // ))
                                  revert(
                                      Error_selector_offset,
                                      InvalidSignature_error_length
                                  )
                              }
                              // Check if v was invalid.
                              if and(
                                  eq(signatureLength, ECDSA_MaxLength),
                                  iszero(
                                      byte(
                                          byte(
                                              0,
                                              mload(
                                                  add(
                                                      signature,
                                                      ECDSA_signature_v_offset
                                                  )
                                              )
                                          ),
                                          ECDSA_twentySeventhAndTwentyEighthBytesSet
                                      )
                                  )
                              ) {
                                  // Revert with invalid v value.
                                  // Store left-padded selector with push4, mem[28:32]
                                  mstore(0, BadSignatureV_error_selector)
                                  mstore(
                                      BadSignatureV_error_v_ptr,
                                      byte(
                                          0,
                                          mload(
                                              add(signature, ECDSA_signature_v_offset)
                                          )
                                      )
                                  )
                                  // revert(abi.encodeWithSignature(
                                  //     "BadSignatureV(uint8)", v
                                  // ))
                                  revert(
                                      Error_selector_offset,
                                      BadSignatureV_error_length
                                  )
                              }
                              // Revert with generic invalid signer error message.
                              // Store left-padded selector with push4, mem[28:32]
                              mstore(0, InvalidSigner_error_selector)
                              // revert(abi.encodeWithSignature("InvalidSigner()"))
                              revert(
                                  Error_selector_offset,
                                  InvalidSigner_error_length
                              )
                          }
                      }
                      // Restore the cached values overwritten by selector, digest and
                      // signature head.
                      mstore(wordBeforeSignaturePtr, cachedWordBeforeSignature)
                      mstore(selectorPtr, cachedWordOverwrittenBySelector)
                      mstore(
                          sub(
                              signature,
                              EIP1271_isValidSignature_digest_negativeOffset
                          ),
                          cachedWordOverwrittenByDigest
                      )
                  }
              }
              // If the call failed...
              if (!success) {
                  // Revert and pass reason along if one was returned.
                  _revertWithReasonIfOneIsReturned();
                  // Otherwise, revert with error indicating bad contract signature.
                  assembly {
                      // Store left-padded selector with push4, mem[28:32] = selector
                      mstore(0, BadContractSignature_error_selector)
                      // revert(abi.encodeWithSignature("BadContractSignature()"))
                      revert(Error_selector_offset, BadContractSignature_error_length)
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      import {
          ConsiderationEventsAndErrors
      } from "../interfaces/ConsiderationEventsAndErrors.sol";
      import { ReentrancyGuard } from "./ReentrancyGuard.sol";
      import {
          Counter_blockhash_shift,
          OneWord,
          TwoWords
      } from "./ConsiderationConstants.sol";
      /**
       * @title CounterManager
       * @author 0age
       * @notice CounterManager contains a storage mapping and related functionality
       *         for retrieving and incrementing a per-offerer counter.
       */
      contract CounterManager is ConsiderationEventsAndErrors, ReentrancyGuard {
          // Only orders signed using an offerer's current counter are fulfillable.
          mapping(address => uint256) private _counters;
          /**
           * @dev Internal function to cancel all orders from a given offerer in bulk
           *      by incrementing a counter by a large, quasi-random interval. Note
           *      that only the offerer may increment the counter. Note that the
           *      counter is incremented by a large, quasi-random interval, which
           *      makes it infeasible to "activate" signed orders by incrementing the
           *      counter.  This activation functionality can be achieved instead with
           *      restricted orders or contract orders.
           *
           * @return newCounter The new counter.
           */
          function _incrementCounter() internal returns (uint256 newCounter) {
              // Ensure that the reentrancy guard is not currently set.
              _assertNonReentrant();
              // Utilize assembly to access counters storage mapping directly. Skip
              // overflow check as counter cannot be incremented that far.
              assembly {
                  // Use second half of previous block hash as a quasi-random number.
                  let quasiRandomNumber := shr(
                      Counter_blockhash_shift,
                      blockhash(sub(number(), 1))
                  )
                  // Write the caller to scratch space.
                  mstore(0, caller())
                  // Write the storage slot for _counters to scratch space.
                  mstore(OneWord, _counters.slot)
                  // Derive the storage pointer for the counter value.
                  let storagePointer := keccak256(0, TwoWords)
                  // Derive new counter value using random number and original value.
                  newCounter := add(quasiRandomNumber, sload(storagePointer))
                  // Store the updated counter value.
                  sstore(storagePointer, newCounter)
              }
              // Emit an event containing the new counter.
              emit CounterIncremented(newCounter, msg.sender);
          }
          /**
           * @dev Internal view function to retrieve the current counter for a given
           *      offerer.
           *
           * @param offerer The offerer in question.
           *
           * @return currentCounter The current counter.
           */
          function _getCounter(
              address offerer
          ) internal view returns (uint256 currentCounter) {
              // Return the counter for the supplied offerer.
              currentCounter = _counters[offerer];
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.13;
      /**
       * @title TokenTransferrerErrors
       */
      interface TokenTransferrerErrors {
          /**
           * @dev Revert with an error when an ERC721 transfer with amount other than
           *      one is attempted.
           *
           * @param amount The amount of the ERC721 tokens to transfer.
           */
          error InvalidERC721TransferAmount(uint256 amount);
          /**
           * @dev Revert with an error when attempting to fulfill an order where an
           *      item has an amount of zero.
           */
          error MissingItemAmount();
          /**
           * @dev Revert with an error when attempting to fulfill an order where an
           *      item has unused parameters. This includes both the token and the
           *      identifier parameters for native transfers as well as the identifier
           *      parameter for ERC20 transfers. Note that the conduit does not
           *      perform this check, leaving it up to the calling channel to enforce
           *      when desired.
           */
          error UnusedItemParameters();
          /**
           * @dev Revert with an error when an ERC20, ERC721, or ERC1155 token
           *      transfer reverts.
           *
           * @param token      The token for which the transfer was attempted.
           * @param from       The source of the attempted transfer.
           * @param to         The recipient of the attempted transfer.
           * @param identifier The identifier for the attempted transfer.
           * @param amount     The amount for the attempted transfer.
           */
          error TokenTransferGenericFailure(
              address token,
              address from,
              address to,
              uint256 identifier,
              uint256 amount
          );
          /**
           * @dev Revert with an error when a batch ERC1155 token transfer reverts.
           *
           * @param token       The token for which the transfer was attempted.
           * @param from        The source of the attempted transfer.
           * @param to          The recipient of the attempted transfer.
           * @param identifiers The identifiers for the attempted transfer.
           * @param amounts     The amounts for the attempted transfer.
           */
          error ERC1155BatchTransferGenericFailure(
              address token,
              address from,
              address to,
              uint256[] identifiers,
              uint256[] amounts
          );
          /**
           * @dev Revert with an error when an ERC20 token transfer returns a falsey
           *      value.
           *
           * @param token      The token for which the ERC20 transfer was attempted.
           * @param from       The source of the attempted ERC20 transfer.
           * @param to         The recipient of the attempted ERC20 transfer.
           * @param amount     The amount for the attempted ERC20 transfer.
           */
          error BadReturnValueFromERC20OnTransfer(
              address token,
              address from,
              address to,
              uint256 amount
          );
          /**
           * @dev Revert with an error when an account being called as an assumed
           *      contract does not have code and returns no data.
           *
           * @param account The account that should contain code.
           */
          error NoContract(address account);
          /**
           * @dev Revert with an error when attempting to execute an 1155 batch
           *      transfer using calldata not produced by default ABI encoding or with
           *      different lengths for ids and amounts arrays.
           */
          error Invalid1155BatchTransferEncoding();
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      import { OrderParameters } from "./ConsiderationStructs.sol";
      import { ConsiderationBase } from "./ConsiderationBase.sol";
      import {
          Create2AddressDerivation_length,
          Create2AddressDerivation_ptr,
          EIP_712_PREFIX,
          EIP712_ConsiderationItem_size,
          EIP712_DigestPayload_size,
          EIP712_DomainSeparator_offset,
          EIP712_OfferItem_size,
          EIP712_Order_size,
          EIP712_OrderHash_offset,
          FreeMemoryPointerSlot,
          information_conduitController_offset,
          information_domainSeparator_offset,
          information_length,
          information_version_cd_offset,
          information_version_offset,
          information_versionLengthPtr,
          information_versionWithLength,
          MaskOverByteTwelve,
          MaskOverLastTwentyBytes,
          OneWord,
          OneWordShift,
          OrderParameters_consideration_head_offset,
          OrderParameters_counter_offset,
          OrderParameters_offer_head_offset,
          TwoWords
      } from "./ConsiderationConstants.sol";
      /**
       * @title GettersAndDerivers
       * @author 0age
       * @notice ConsiderationInternal contains pure and internal view functions
       *         related to getting or deriving various values.
       */
      contract GettersAndDerivers is ConsiderationBase {
          /**
           * @dev Derive and set hashes, reference chainId, and associated domain
           *      separator during deployment.
           *
           * @param conduitController A contract that deploys conduits, or proxies
           *                          that may optionally be used to transfer approved
           *                          ERC20/721/1155 tokens.
           */
          constructor(
              address conduitController
          ) ConsiderationBase(conduitController) {}
          /**
           * @dev Internal view function to derive the order hash for a given order.
           *      Note that only the original consideration items are included in the
           *      order hash, as additional consideration items may be supplied by the
           *      caller.
           *
           * @param orderParameters The parameters of the order to hash.
           * @param counter         The counter of the order to hash.
           *
           * @return orderHash The hash.
           */
          function _deriveOrderHash(
              OrderParameters memory orderParameters,
              uint256 counter
          ) internal view returns (bytes32 orderHash) {
              // Get length of original consideration array and place it on the stack.
              uint256 originalConsiderationLength = (
                  orderParameters.totalOriginalConsiderationItems
              );
              /*
               * Memory layout for an array of structs (dynamic or not) is similar
               * to ABI encoding of dynamic types, with a head segment followed by
               * a data segment. The main difference is that the head of an element
               * is a memory pointer rather than an offset.
               */
              // Declare a variable for the derived hash of the offer array.
              bytes32 offerHash;
              // Read offer item EIP-712 typehash from runtime code & place on stack.
              bytes32 typeHash = _OFFER_ITEM_TYPEHASH;
              // Utilize assembly so that memory regions can be reused across hashes.
              assembly {
                  // Retrieve the free memory pointer and place on the stack.
                  let hashArrPtr := mload(FreeMemoryPointerSlot)
                  // Get the pointer to the offers array.
                  let offerArrPtr := mload(
                      add(orderParameters, OrderParameters_offer_head_offset)
                  )
                  // Load the length.
                  let offerLength := mload(offerArrPtr)
                  // Set the pointer to the first offer's head.
                  offerArrPtr := add(offerArrPtr, OneWord)
                  // Iterate over the offer items.
                  for { let i := 0 } lt(i, offerLength) {
                      i := add(i, 1)
                  } {
                      // Read the pointer to the offer data and subtract one word
                      // to get typeHash pointer.
                      let ptr := sub(mload(offerArrPtr), OneWord)
                      // Read the current value before the offer data.
                      let value := mload(ptr)
                      // Write the type hash to the previous word.
                      mstore(ptr, typeHash)
                      // Take the EIP712 hash and store it in the hash array.
                      mstore(hashArrPtr, keccak256(ptr, EIP712_OfferItem_size))
                      // Restore the previous word.
                      mstore(ptr, value)
                      // Increment the array pointers by one word.
                      offerArrPtr := add(offerArrPtr, OneWord)
                      hashArrPtr := add(hashArrPtr, OneWord)
                  }
                  // Derive the offer hash using the hashes of each item.
                  offerHash := keccak256(
                      mload(FreeMemoryPointerSlot),
                      shl(OneWordShift, offerLength)
                  )
              }
              // Declare a variable for the derived hash of the consideration array.
              bytes32 considerationHash;
              // Read consideration item typehash from runtime code & place on stack.
              typeHash = _CONSIDERATION_ITEM_TYPEHASH;
              // Utilize assembly so that memory regions can be reused across hashes.
              assembly {
                  // Retrieve the free memory pointer and place on the stack.
                  let hashArrPtr := mload(FreeMemoryPointerSlot)
                  // Get the pointer to the consideration array.
                  let considerationArrPtr := add(
                      mload(
                          add(
                              orderParameters,
                              OrderParameters_consideration_head_offset
                          )
                      ),
                      OneWord
                  )
                  // Iterate over the consideration items (not including tips).
                  for { let i := 0 } lt(i, originalConsiderationLength) {
                      i := add(i, 1)
                  } {
                      // Read the pointer to the consideration data and subtract one
                      // word to get typeHash pointer.
                      let ptr := sub(mload(considerationArrPtr), OneWord)
                      // Read the current value before the consideration data.
                      let value := mload(ptr)
                      // Write the type hash to the previous word.
                      mstore(ptr, typeHash)
                      // Take the EIP712 hash and store it in the hash array.
                      mstore(
                          hashArrPtr,
                          keccak256(ptr, EIP712_ConsiderationItem_size)
                      )
                      // Restore the previous word.
                      mstore(ptr, value)
                      // Increment the array pointers by one word.
                      considerationArrPtr := add(considerationArrPtr, OneWord)
                      hashArrPtr := add(hashArrPtr, OneWord)
                  }
                  // Derive the consideration hash using the hashes of each item.
                  considerationHash := keccak256(
                      mload(FreeMemoryPointerSlot),
                      shl(OneWordShift, originalConsiderationLength)
                  )
              }
              // Read order item EIP-712 typehash from runtime code & place on stack.
              typeHash = _ORDER_TYPEHASH;
              // Utilize assembly to access derived hashes & other arguments directly.
              assembly {
                  // Retrieve pointer to the region located just behind parameters.
                  let typeHashPtr := sub(orderParameters, OneWord)
                  // Store the value at that pointer location to restore later.
                  let previousValue := mload(typeHashPtr)
                  // Store the order item EIP-712 typehash at the typehash location.
                  mstore(typeHashPtr, typeHash)
                  // Retrieve the pointer for the offer array head.
                  let offerHeadPtr := add(
                      orderParameters,
                      OrderParameters_offer_head_offset
                  )
                  // Retrieve the data pointer referenced by the offer head.
                  let offerDataPtr := mload(offerHeadPtr)
                  // Store the offer hash at the retrieved memory location.
                  mstore(offerHeadPtr, offerHash)
                  // Retrieve the pointer for the consideration array head.
                  let considerationHeadPtr := add(
                      orderParameters,
                      OrderParameters_consideration_head_offset
                  )
                  // Retrieve the data pointer referenced by the consideration head.
                  let considerationDataPtr := mload(considerationHeadPtr)
                  // Store the consideration hash at the retrieved memory location.
                  mstore(considerationHeadPtr, considerationHash)
                  // Retrieve the pointer for the counter.
                  let counterPtr := add(
                      orderParameters,
                      OrderParameters_counter_offset
                  )
                  // Store the counter at the retrieved memory location.
                  mstore(counterPtr, counter)
                  // Derive the order hash using the full range of order parameters.
                  orderHash := keccak256(typeHashPtr, EIP712_Order_size)
                  // Restore the value previously held at typehash pointer location.
                  mstore(typeHashPtr, previousValue)
                  // Restore offer data pointer at the offer head pointer location.
                  mstore(offerHeadPtr, offerDataPtr)
                  // Restore consideration data pointer at the consideration head ptr.
                  mstore(considerationHeadPtr, considerationDataPtr)
                  // Restore consideration item length at the counter pointer.
                  mstore(counterPtr, originalConsiderationLength)
              }
          }
          /**
           * @dev Internal view function to derive the address of a given conduit
           *      using a corresponding conduit key.
           *
           * @param conduitKey A bytes32 value indicating what corresponding conduit,
           *                   if any, to source token approvals from. This value is
           *                   the "salt" parameter supplied by the deployer (i.e. the
           *                   conduit controller) when deploying the given conduit.
           *
           * @return conduit The address of the conduit associated with the given
           *                 conduit key.
           */
          function _deriveConduit(
              bytes32 conduitKey
          ) internal view returns (address conduit) {
              // Read conduit controller address from runtime and place on the stack.
              address conduitController = address(_CONDUIT_CONTROLLER);
              // Read conduit creation code hash from runtime and place on the stack.
              bytes32 conduitCreationCodeHash = _CONDUIT_CREATION_CODE_HASH;
              // Leverage scratch space to perform an efficient hash.
              assembly {
                  // Retrieve the free memory pointer; it will be replaced afterwards.
                  let freeMemoryPointer := mload(FreeMemoryPointerSlot)
                  // Place the control character and the conduit controller in scratch
                  // space; note that eleven bytes at the beginning are left unused.
                  mstore(0, or(MaskOverByteTwelve, conduitController))
                  // Place the conduit key in the next region of scratch space.
                  mstore(OneWord, conduitKey)
                  // Place conduit creation code hash in free memory pointer location.
                  mstore(TwoWords, conduitCreationCodeHash)
                  // Derive conduit by hashing and applying a mask over last 20 bytes.
                  conduit := and(
                      // Hash the relevant region.
                      keccak256(
                          // The region starts at memory pointer 11.
                          Create2AddressDerivation_ptr,
                          // The region is 85 bytes long (1 + 20 + 32 + 32).
                          Create2AddressDerivation_length
                      ),
                      // The address equals the last twenty bytes of the hash.
                      MaskOverLastTwentyBytes
                  )
                  // Restore the free memory pointer.
                  mstore(FreeMemoryPointerSlot, freeMemoryPointer)
              }
          }
          /**
           * @dev Internal view function to get the EIP-712 domain separator. If the
           *      chainId matches the chainId set on deployment, the cached domain
           *      separator will be returned; otherwise, it will be derived from
           *      scratch.
           *
           * @return The domain separator.
           */
          function _domainSeparator() internal view returns (bytes32) {
              return block.chainid == _CHAIN_ID
                  ? _DOMAIN_SEPARATOR
                  : _deriveDomainSeparator();
          }
          /**
           * @dev Internal view function to retrieve configuration information for
           *      this contract.
           *
           * @return The contract version.
           * @return The domain separator for this contract.
           * @return The conduit Controller set for this contract.
           */
          function _information()
              internal
              view
              returns (
                  string memory /* version */,
                  bytes32 /* domainSeparator */,
                  address /* conduitController */
              )
          {
              // Derive the domain separator.
              bytes32 domainSeparator = _domainSeparator();
              // Declare variable as immutables cannot be accessed within assembly.
              address conduitController = address(_CONDUIT_CONTROLLER);
              // Return the version, domain separator, and conduit controller.
              assembly {
                  mstore(information_version_offset, information_version_cd_offset)
                  mstore(information_domainSeparator_offset, domainSeparator)
                  mstore(information_conduitController_offset, conduitController)
                  mstore(information_versionLengthPtr, information_versionWithLength)
                  return(information_version_offset, information_length)
              }
          }
          /**
           * @dev Internal pure function to efficiently derive an digest to sign for
           *      an order in accordance with EIP-712.
           *
           * @param domainSeparator The domain separator.
           * @param orderHash       The order hash.
           *
           * @return value The hash.
           */
          function _deriveEIP712Digest(
              bytes32 domainSeparator,
              bytes32 orderHash
          ) internal pure returns (bytes32 value) {
              // Leverage scratch space to perform an efficient hash.
              assembly {
                  // Place the EIP-712 prefix at the start of scratch space.
                  mstore(0, EIP_712_PREFIX)
                  // Place the domain separator in the next region of scratch space.
                  mstore(EIP712_DomainSeparator_offset, domainSeparator)
                  // Place the order hash in scratch space, spilling into the first
                  // two bytes of the free memory pointer — this should never be set
                  // as memory cannot be expanded to that size, and will be zeroed out
                  // after the hash is performed.
                  mstore(EIP712_OrderHash_offset, orderHash)
                  // Hash the relevant region (65 bytes).
                  value := keccak256(0, EIP712_DigestPayload_size)
                  // Clear out the dirtied bits in the memory pointer.
                  mstore(EIP712_OrderHash_offset, 0)
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.13;
      import {
          OrderParameters,
          ReceivedItem,
          SpentItem
      } from "../lib/ConsiderationStructs.sol";
      /**
       * @title ConsiderationEventsAndErrors
       * @author 0age
       * @notice ConsiderationEventsAndErrors contains all events and errors.
       */
      interface ConsiderationEventsAndErrors {
          /**
           * @dev Emit an event whenever an order is successfully fulfilled.
           *
           * @param orderHash     The hash of the fulfilled order.
           * @param offerer       The offerer of the fulfilled order.
           * @param zone          The zone of the fulfilled order.
           * @param recipient     The recipient of each spent item on the fulfilled
           *                      order, or the null address if there is no specific
           *                      fulfiller (i.e. the order is part of a group of
           *                      orders). Defaults to the caller unless explicitly
           *                      specified otherwise by the fulfiller.
           * @param offer         The offer items spent as part of the order.
           * @param consideration The consideration items received as part of the
           *                      order along with the recipients of each item.
           */
          event OrderFulfilled(
              bytes32 orderHash,
              address indexed offerer,
              address indexed zone,
              address recipient,
              SpentItem[] offer,
              ReceivedItem[] consideration
          );
          /**
           * @dev Emit an event whenever an order is successfully cancelled.
           *
           * @param orderHash The hash of the cancelled order.
           * @param offerer   The offerer of the cancelled order.
           * @param zone      The zone of the cancelled order.
           */
          event OrderCancelled(
              bytes32 orderHash,
              address indexed offerer,
              address indexed zone
          );
          /**
           * @dev Emit an event whenever an order is explicitly validated. Note that
           *      this event will not be emitted on partial fills even though they do
           *      validate the order as part of partial fulfillment.
           *
           * @param orderHash        The hash of the validated order.
           * @param orderParameters  The parameters of the validated order.
           */
          event OrderValidated(bytes32 orderHash, OrderParameters orderParameters);
          /**
           * @dev Emit an event whenever one or more orders are matched using either
           *      matchOrders or matchAdvancedOrders.
           *
           * @param orderHashes The order hashes of the matched orders.
           */
          event OrdersMatched(bytes32[] orderHashes);
          /**
           * @dev Emit an event whenever a counter for a given offerer is incremented.
           *
           * @param newCounter The new counter for the offerer.
           * @param offerer    The offerer in question.
           */
          event CounterIncremented(uint256 newCounter, address indexed offerer);
          /**
           * @dev Revert with an error when attempting to fill an order that has
           *      already been fully filled.
           *
           * @param orderHash The order hash on which a fill was attempted.
           */
          error OrderAlreadyFilled(bytes32 orderHash);
          /**
           * @dev Revert with an error when attempting to fill an order outside the
           *      specified start time and end time.
           *
           * @param startTime The time at which the order becomes active.
           * @param endTime   The time at which the order becomes inactive.
           */
          error InvalidTime(uint256 startTime, uint256 endTime);
          /**
           * @dev Revert with an error when attempting to fill an order referencing an
           *      invalid conduit (i.e. one that has not been deployed).
           */
          error InvalidConduit(bytes32 conduitKey, address conduit);
          /**
           * @dev Revert with an error when an order is supplied for fulfillment with
           *      a consideration array that is shorter than the original array.
           */
          error MissingOriginalConsiderationItems();
          /**
           * @dev Revert with an error when an order is validated and the length of
           *      the consideration array is not equal to the supplied total original
           *      consideration items value. This error is also thrown when contract
           *      orders supply a total original consideration items value that does
           *      not match the supplied consideration array length.
           */
          error ConsiderationLengthNotEqualToTotalOriginal();
          /**
           * @dev Revert with an error when a call to a conduit fails with revert data
           *      that is too expensive to return.
           */
          error InvalidCallToConduit(address conduit);
          /**
           * @dev Revert with an error if a consideration amount has not been fully
           *      zeroed out after applying all fulfillments.
           *
           * @param orderIndex         The index of the order with the consideration
           *                           item with a shortfall.
           * @param considerationIndex The index of the consideration item on the
           *                           order.
           * @param shortfallAmount    The unfulfilled consideration amount.
           */
          error ConsiderationNotMet(
              uint256 orderIndex,
              uint256 considerationIndex,
              uint256 shortfallAmount
          );
          /**
           * @dev Revert with an error when insufficient native tokens are supplied as
           *      part of msg.value when fulfilling orders.
           */
          error InsufficientNativeTokensSupplied();
          /**
           * @dev Revert with an error when a native token transfer reverts.
           */
          error NativeTokenTransferGenericFailure(address account, uint256 amount);
          /**
           * @dev Revert with an error when a partial fill is attempted on an order
           *      that does not specify partial fill support in its order type.
           */
          error PartialFillsNotEnabledForOrder();
          /**
           * @dev Revert with an error when attempting to fill an order that has been
           *      cancelled.
           *
           * @param orderHash The hash of the cancelled order.
           */
          error OrderIsCancelled(bytes32 orderHash);
          /**
           * @dev Revert with an error when attempting to fill a basic order that has
           *      been partially filled.
           *
           * @param orderHash The hash of the partially used order.
           */
          error OrderPartiallyFilled(bytes32 orderHash);
          /**
           * @dev Revert with an error when attempting to cancel an order as a caller
           *      other than the indicated offerer or zone or when attempting to
           *      cancel a contract order.
           */
          error CannotCancelOrder();
          /**
           * @dev Revert with an error when supplying a fraction with a value of zero
           *      for the numerator or denominator, or one where the numerator exceeds
           *      the denominator.
           */
          error BadFraction();
          /**
           * @dev Revert with an error when a caller attempts to supply callvalue to a
           *      non-payable basic order route or does not supply any callvalue to a
           *      payable basic order route.
           */
          error InvalidMsgValue(uint256 value);
          /**
           * @dev Revert with an error when attempting to fill a basic order using
           *      calldata not produced by default ABI encoding.
           */
          error InvalidBasicOrderParameterEncoding();
          /**
           * @dev Revert with an error when attempting to fulfill any number of
           *      available orders when none are fulfillable.
           */
          error NoSpecifiedOrdersAvailable();
          /**
           * @dev Revert with an error when attempting to fulfill an order with an
           *      offer for a native token outside of matching orders.
           */
          error InvalidNativeOfferItem();
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      import { ReentrancyErrors } from "../interfaces/ReentrancyErrors.sol";
      import { LowLevelHelpers } from "./LowLevelHelpers.sol";
      import {
          _revertInvalidMsgValue,
          _revertNoReentrantCalls
      } from "./ConsiderationErrors.sol";
      import {
          _ENTERED_AND_ACCEPTING_NATIVE_TOKENS,
          _ENTERED,
          _NOT_ENTERED
      } from "./ConsiderationConstants.sol";
      /**
       * @title ReentrancyGuard
       * @author 0age
       * @notice ReentrancyGuard contains a storage variable and related functionality
       *         for protecting against reentrancy.
       */
      contract ReentrancyGuard is ReentrancyErrors, LowLevelHelpers {
          // Prevent reentrant calls on protected functions.
          uint256 private _reentrancyGuard;
          /**
           * @dev Initialize the reentrancy guard during deployment.
           */
          constructor() {
              // Initialize the reentrancy guard in a cleared state.
              _reentrancyGuard = _NOT_ENTERED;
          }
          /**
           * @dev Internal function to ensure that a sentinel value for the reentrancy
           *      guard is not currently set and, if not, to set a sentinel value for
           *      the reentrancy guard based on whether or not native tokens may be
           *      received during execution or not.
           *
           * @param acceptNativeTokens A boolean indicating whether native tokens may
           *                           be received during execution or not.
           */
          function _setReentrancyGuard(bool acceptNativeTokens) internal {
              // Ensure that the reentrancy guard is not already set.
              _assertNonReentrant();
              // Set the reentrancy guard. A value of 2 indicates that native tokens
              // may not be accepted during execution, whereas a value of 3 indicates
              // that they will be accepted (with any remaining native tokens returned
              // to the caller).
              unchecked {
                  _reentrancyGuard = _ENTERED + _cast(acceptNativeTokens);
              }
          }
          /**
           * @dev Internal function to unset the reentrancy guard sentinel value.
           */
          function _clearReentrancyGuard() internal {
              // Clear the reentrancy guard.
              _reentrancyGuard = _NOT_ENTERED;
          }
          /**
           * @dev Internal view function to ensure that a sentinel value for the
                  reentrancy guard is not currently set.
           */
          function _assertNonReentrant() internal view {
              // Ensure that the reentrancy guard is not currently set.
              if (_reentrancyGuard != _NOT_ENTERED) {
                  _revertNoReentrantCalls();
              }
          }
          /**
           * @dev Internal view function to ensure that the sentinel value indicating
           *      native tokens may be received during execution is currently set.
           */
          function _assertAcceptingNativeTokens() internal view {
              // Ensure that the reentrancy guard is not currently set.
              if (_reentrancyGuard != _ENTERED_AND_ACCEPTING_NATIVE_TOKENS) {
                  _revertInvalidMsgValue(msg.value);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      import {
          CostPerWord,
          ExtraGasBuffer,
          FreeMemoryPointerSlot,
          MemoryExpansionCoefficientShift,
          OneWord,
          OneWordShift,
          ThirtyOneBytes
      } from "./ConsiderationConstants.sol";
      /**
       * @title LowLevelHelpers
       * @author 0age
       * @notice LowLevelHelpers contains logic for performing various low-level
       *         operations.
       */
      contract LowLevelHelpers {
          /**
           * @dev Internal view function to revert and pass along the revert reason if
           *      data was returned by the last call and that the size of that data
           *      does not exceed the currently allocated memory size.
           */
          function _revertWithReasonIfOneIsReturned() internal view {
              assembly {
                  // If it returned a message, bubble it up as long as sufficient gas
                  // remains to do so:
                  if returndatasize() {
                      // Ensure that sufficient gas is available to copy returndata
                      // while expanding memory where necessary. Start by computing
                      // the word size of returndata and allocated memory.
                      let returnDataWords := shr(
                          OneWordShift,
                          add(returndatasize(), ThirtyOneBytes)
                      )
                      // Note: use the free memory pointer in place of msize() to work
                      // around a Yul warning that prevents accessing msize directly
                      // when the IR pipeline is activated.
                      let msizeWords := shr(
                          OneWordShift,
                          mload(FreeMemoryPointerSlot)
                      )
                      // Next, compute the cost of the returndatacopy.
                      let cost := mul(CostPerWord, returnDataWords)
                      // Then, compute cost of new memory allocation.
                      if gt(returnDataWords, msizeWords) {
                          cost := add(
                              cost,
                              add(
                                  mul(sub(returnDataWords, msizeWords), CostPerWord),
                                  shr(
                                      MemoryExpansionCoefficientShift,
                                      sub(
                                          mul(returnDataWords, returnDataWords),
                                          mul(msizeWords, msizeWords)
                                      )
                                  )
                              )
                          )
                      }
                      // Finally, add a small constant and compare to gas remaining;
                      // bubble up the revert data if enough gas is still available.
                      if lt(add(cost, ExtraGasBuffer), gas()) {
                          // Copy returndata to memory; overwrite existing memory.
                          returndatacopy(0, 0, returndatasize())
                          // Revert, specifying memory region with copied returndata.
                          revert(0, returndatasize())
                      }
                  }
              }
          }
          /**
           * @dev Internal view function to branchlessly select either the caller (if
           *      a supplied recipient is equal to zero) or the supplied recipient (if
           *      that recipient is a nonzero value).
           *
           * @param recipient The supplied recipient.
           *
           * @return updatedRecipient The updated recipient.
           */
          function _substituteCallerForEmptyRecipient(
              address recipient
          ) internal view returns (address updatedRecipient) {
              // Utilize assembly to perform a branchless operation on the recipient.
              assembly {
                  // Add caller to recipient if recipient equals 0; otherwise add 0.
                  updatedRecipient := add(recipient, mul(iszero(recipient), caller()))
              }
          }
          /**
           * @dev Internal pure function to cast a `bool` value to a `uint256` value.
           *
           * @param b The `bool` value to cast.
           *
           * @return u The `uint256` value.
           */
          function _cast(bool b) internal pure returns (uint256 u) {
              assembly {
                  u := b
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.13;
      /**
       * @title ReentrancyErrors
       * @author 0age
       * @notice ReentrancyErrors contains errors related to reentrancy.
       */
      interface ReentrancyErrors {
          /**
           * @dev Revert with an error when a caller attempts to reenter a protected
           *      function.
           */
          error NoReentrantCalls();
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      import {
          ConduitControllerInterface
      } from "../interfaces/ConduitControllerInterface.sol";
      import {
          ConsiderationEventsAndErrors
      } from "../interfaces/ConsiderationEventsAndErrors.sol";
      import {
          BulkOrder_Typehash_Height_One,
          BulkOrder_Typehash_Height_Two,
          BulkOrder_Typehash_Height_Three,
          BulkOrder_Typehash_Height_Four,
          BulkOrder_Typehash_Height_Five,
          BulkOrder_Typehash_Height_Six,
          BulkOrder_Typehash_Height_Seven,
          BulkOrder_Typehash_Height_Eight,
          BulkOrder_Typehash_Height_Nine,
          BulkOrder_Typehash_Height_Ten,
          BulkOrder_Typehash_Height_Eleven,
          BulkOrder_Typehash_Height_Twelve,
          BulkOrder_Typehash_Height_Thirteen,
          BulkOrder_Typehash_Height_Fourteen,
          BulkOrder_Typehash_Height_Fifteen,
          BulkOrder_Typehash_Height_Sixteen,
          BulkOrder_Typehash_Height_Seventeen,
          BulkOrder_Typehash_Height_Eighteen,
          BulkOrder_Typehash_Height_Nineteen,
          BulkOrder_Typehash_Height_Twenty,
          BulkOrder_Typehash_Height_TwentyOne,
          BulkOrder_Typehash_Height_TwentyTwo,
          BulkOrder_Typehash_Height_TwentyThree,
          BulkOrder_Typehash_Height_TwentyFour,
          EIP712_domainData_chainId_offset,
          EIP712_domainData_nameHash_offset,
          EIP712_domainData_size,
          EIP712_domainData_verifyingContract_offset,
          EIP712_domainData_versionHash_offset,
          FreeMemoryPointerSlot,
          NameLengthPtr,
          NameWithLength,
          OneWord,
          Slot0x80,
          ThreeWords,
          ZeroSlot
      } from "./ConsiderationConstants.sol";
      import { ConsiderationDecoder } from "./ConsiderationDecoder.sol";
      import { ConsiderationEncoder } from "./ConsiderationEncoder.sol";
      /**
       * @title ConsiderationBase
       * @author 0age
       * @notice ConsiderationBase contains immutable constants and constructor logic.
       */
      contract ConsiderationBase is
          ConsiderationDecoder,
          ConsiderationEncoder,
          ConsiderationEventsAndErrors
      {
          // Precompute hashes, original chainId, and domain separator on deployment.
          bytes32 internal immutable _NAME_HASH;
          bytes32 internal immutable _VERSION_HASH;
          bytes32 internal immutable _EIP_712_DOMAIN_TYPEHASH;
          bytes32 internal immutable _OFFER_ITEM_TYPEHASH;
          bytes32 internal immutable _CONSIDERATION_ITEM_TYPEHASH;
          bytes32 internal immutable _ORDER_TYPEHASH;
          uint256 internal immutable _CHAIN_ID;
          bytes32 internal immutable _DOMAIN_SEPARATOR;
          // Allow for interaction with the conduit controller.
          ConduitControllerInterface internal immutable _CONDUIT_CONTROLLER;
          // Cache the conduit creation code hash used by the conduit controller.
          bytes32 internal immutable _CONDUIT_CREATION_CODE_HASH;
          /**
           * @dev Derive and set hashes, reference chainId, and associated domain
           *      separator during deployment.
           *
           * @param conduitController A contract that deploys conduits, or proxies
           *                          that may optionally be used to transfer approved
           *                          ERC20/721/1155 tokens.
           */
          constructor(address conduitController) {
              // Derive name and version hashes alongside required EIP-712 typehashes.
              (
                  _NAME_HASH,
                  _VERSION_HASH,
                  _EIP_712_DOMAIN_TYPEHASH,
                  _OFFER_ITEM_TYPEHASH,
                  _CONSIDERATION_ITEM_TYPEHASH,
                  _ORDER_TYPEHASH
              ) = _deriveTypehashes();
              // Store the current chainId and derive the current domain separator.
              _CHAIN_ID = block.chainid;
              _DOMAIN_SEPARATOR = _deriveDomainSeparator();
              // Set the supplied conduit controller.
              _CONDUIT_CONTROLLER = ConduitControllerInterface(conduitController);
              // Retrieve the conduit creation code hash from the supplied controller.
              (_CONDUIT_CREATION_CODE_HASH, ) = (
                  _CONDUIT_CONTROLLER.getConduitCodeHashes()
              );
          }
          /**
           * @dev Internal view function to derive the EIP-712 domain separator.
           *
           * @return domainSeparator The derived domain separator.
           */
          function _deriveDomainSeparator()
              internal
              view
              returns (bytes32 domainSeparator)
          {
              bytes32 typehash = _EIP_712_DOMAIN_TYPEHASH;
              bytes32 nameHash = _NAME_HASH;
              bytes32 versionHash = _VERSION_HASH;
              // Leverage scratch space and other memory to perform an efficient hash.
              assembly {
                  // Retrieve the free memory pointer; it will be replaced afterwards.
                  let freeMemoryPointer := mload(FreeMemoryPointerSlot)
                  // Retrieve value at 0x80; it will also be replaced afterwards.
                  let slot0x80 := mload(Slot0x80)
                  // Place typehash, name hash, and version hash at start of memory.
                  mstore(0, typehash)
                  mstore(EIP712_domainData_nameHash_offset, nameHash)
                  mstore(EIP712_domainData_versionHash_offset, versionHash)
                  // Place chainId in the next memory location.
                  mstore(EIP712_domainData_chainId_offset, chainid())
                  // Place the address of this contract in the next memory location.
                  mstore(EIP712_domainData_verifyingContract_offset, address())
                  // Hash relevant region of memory to derive the domain separator.
                  domainSeparator := keccak256(0, EIP712_domainData_size)
                  // Restore the free memory pointer.
                  mstore(FreeMemoryPointerSlot, freeMemoryPointer)
                  // Restore the zero slot to zero.
                  mstore(ZeroSlot, 0)
                  // Restore the value at 0x80.
                  mstore(Slot0x80, slot0x80)
              }
          }
          /**
           * @dev Internal pure function to retrieve the default name of this
           *      contract and return.
           *
           * @return The name of this contract.
           */
          function _name() internal pure virtual returns (string memory) {
              // Return the name of the contract.
              assembly {
                  // First element is the offset for the returned string. Offset the
                  // value in memory by one word so that the free memory pointer will
                  // be overwritten by the next write.
                  mstore(OneWord, OneWord)
                  // Name is right padded, so it touches the length which is left
                  // padded. This enables writing both values at once. The free memory
                  // pointer will be overwritten in the process.
                  mstore(NameLengthPtr, NameWithLength)
                  // Standard ABI encoding pads returned data to the nearest word. Use
                  // the already empty zero slot memory region for this purpose and
                  // return the final name string, offset by the original single word.
                  return(OneWord, ThreeWords)
              }
          }
          /**
           * @dev Internal pure function to retrieve the default name of this contract
           *      as a string that can be used internally.
           *
           * @return The name of this contract.
           */
          function _nameString() internal pure virtual returns (string memory) {
              // Return the name of the contract.
              return "Consideration";
          }
          /**
           * @dev Internal pure function to derive required EIP-712 typehashes and
           *      other hashes during contract creation.
           *
           * @return nameHash                  The hash of the name of the contract.
           * @return versionHash               The hash of the version string of the
           *                                   contract.
           * @return eip712DomainTypehash      The primary EIP-712 domain typehash.
           * @return offerItemTypehash         The EIP-712 typehash for OfferItem
           *                                   types.
           * @return considerationItemTypehash The EIP-712 typehash for
           *                                   ConsiderationItem types.
           * @return orderTypehash             The EIP-712 typehash for Order types.
           */
          function _deriveTypehashes()
              internal
              pure
              returns (
                  bytes32 nameHash,
                  bytes32 versionHash,
                  bytes32 eip712DomainTypehash,
                  bytes32 offerItemTypehash,
                  bytes32 considerationItemTypehash,
                  bytes32 orderTypehash
              )
          {
              // Derive hash of the name of the contract.
              nameHash = keccak256(bytes(_nameString()));
              // Derive hash of the version string of the contract.
              versionHash = keccak256(bytes("1.5"));
              // Construct the OfferItem type string.
              bytes memory offerItemTypeString = bytes(
                  "OfferItem("
                  "uint8 itemType,"
                  "address token,"
                  "uint256 identifierOrCriteria,"
                  "uint256 startAmount,"
                  "uint256 endAmount"
                  ")"
              );
              // Construct the ConsiderationItem type string.
              bytes memory considerationItemTypeString = bytes(
                  "ConsiderationItem("
                  "uint8 itemType,"
                  "address token,"
                  "uint256 identifierOrCriteria,"
                  "uint256 startAmount,"
                  "uint256 endAmount,"
                  "address recipient"
                  ")"
              );
              // Construct the OrderComponents type string, not including the above.
              bytes memory orderComponentsPartialTypeString = bytes(
                  "OrderComponents("
                  "address offerer,"
                  "address zone,"
                  "OfferItem[] offer,"
                  "ConsiderationItem[] consideration,"
                  "uint8 orderType,"
                  "uint256 startTime,"
                  "uint256 endTime,"
                  "bytes32 zoneHash,"
                  "uint256 salt,"
                  "bytes32 conduitKey,"
                  "uint256 counter"
                  ")"
              );
              // Construct the primary EIP-712 domain type string.
              eip712DomainTypehash = keccak256(
                  bytes(
                      "EIP712Domain("
                      "string name,"
                      "string version,"
                      "uint256 chainId,"
                      "address verifyingContract"
                      ")"
                  )
              );
              // Derive the OfferItem type hash using the corresponding type string.
              offerItemTypehash = keccak256(offerItemTypeString);
              // Derive ConsiderationItem type hash using corresponding type string.
              considerationItemTypehash = keccak256(considerationItemTypeString);
              bytes memory orderTypeString = bytes.concat(
                  orderComponentsPartialTypeString,
                  considerationItemTypeString,
                  offerItemTypeString
              );
              // Derive OrderItem type hash via combination of relevant type strings.
              orderTypehash = keccak256(orderTypeString);
          }
          /**
           * @dev Internal pure function to look up one of twenty-four potential bulk
           *      order typehash constants based on the height of the bulk order tree.
           *      Note that values between one and twenty-four are supported, which is
           *      enforced by _isValidBulkOrderSize.
           *
           * @param _treeHeight The height of the bulk order tree. The value must be
           *                    between one and twenty-four.
           *
           * @return _typeHash The EIP-712 typehash for the bulk order type with the
           *                   given height.
           */
          function _lookupBulkOrderTypehash(
              uint256 _treeHeight
          ) internal pure returns (bytes32 _typeHash) {
              // Utilize assembly to efficiently retrieve correct bulk order typehash.
              assembly {
                  // Use a Yul function to enable use of the `leave` keyword
                  // to stop searching once the appropriate type hash is found.
                  function lookupTypeHash(treeHeight) -> typeHash {
                      // Handle tree heights one through eight.
                      if lt(treeHeight, 9) {
                          // Handle tree heights one through four.
                          if lt(treeHeight, 5) {
                              // Handle tree heights one and two.
                              if lt(treeHeight, 3) {
                                  // Utilize branchless logic to determine typehash.
                                  typeHash := ternary(
                                      eq(treeHeight, 1),
                                      BulkOrder_Typehash_Height_One,
                                      BulkOrder_Typehash_Height_Two
                                  )
                                  // Exit the function once typehash has been located.
                                  leave
                              }
                              // Handle height three and four via branchless logic.
                              typeHash := ternary(
                                  eq(treeHeight, 3),
                                  BulkOrder_Typehash_Height_Three,
                                  BulkOrder_Typehash_Height_Four
                              )
                              // Exit the function once typehash has been located.
                              leave
                          }
                          // Handle tree height five and six.
                          if lt(treeHeight, 7) {
                              // Utilize branchless logic to determine typehash.
                              typeHash := ternary(
                                  eq(treeHeight, 5),
                                  BulkOrder_Typehash_Height_Five,
                                  BulkOrder_Typehash_Height_Six
                              )
                              // Exit the function once typehash has been located.
                              leave
                          }
                          // Handle height seven and eight via branchless logic.
                          typeHash := ternary(
                              eq(treeHeight, 7),
                              BulkOrder_Typehash_Height_Seven,
                              BulkOrder_Typehash_Height_Eight
                          )
                          // Exit the function once typehash has been located.
                          leave
                      }
                      // Handle tree height nine through sixteen.
                      if lt(treeHeight, 17) {
                          // Handle tree height nine through twelve.
                          if lt(treeHeight, 13) {
                              // Handle tree height nine and ten.
                              if lt(treeHeight, 11) {
                                  // Utilize branchless logic to determine typehash.
                                  typeHash := ternary(
                                      eq(treeHeight, 9),
                                      BulkOrder_Typehash_Height_Nine,
                                      BulkOrder_Typehash_Height_Ten
                                  )
                                  // Exit the function once typehash has been located.
                                  leave
                              }
                              // Handle height eleven and twelve via branchless logic.
                              typeHash := ternary(
                                  eq(treeHeight, 11),
                                  BulkOrder_Typehash_Height_Eleven,
                                  BulkOrder_Typehash_Height_Twelve
                              )
                              // Exit the function once typehash has been located.
                              leave
                          }
                          // Handle tree height thirteen and fourteen.
                          if lt(treeHeight, 15) {
                              // Utilize branchless logic to determine typehash.
                              typeHash := ternary(
                                  eq(treeHeight, 13),
                                  BulkOrder_Typehash_Height_Thirteen,
                                  BulkOrder_Typehash_Height_Fourteen
                              )
                              // Exit the function once typehash has been located.
                              leave
                          }
                          // Handle height fifteen and sixteen via branchless logic.
                          typeHash := ternary(
                              eq(treeHeight, 15),
                              BulkOrder_Typehash_Height_Fifteen,
                              BulkOrder_Typehash_Height_Sixteen
                          )
                          // Exit the function once typehash has been located.
                          leave
                      }
                      // Handle tree height seventeen through twenty.
                      if lt(treeHeight, 21) {
                          // Handle tree height seventeen and eighteen.
                          if lt(treeHeight, 19) {
                              // Utilize branchless logic to determine typehash.
                              typeHash := ternary(
                                  eq(treeHeight, 17),
                                  BulkOrder_Typehash_Height_Seventeen,
                                  BulkOrder_Typehash_Height_Eighteen
                              )
                              // Exit the function once typehash has been located.
                              leave
                          }
                          // Handle height nineteen and twenty via branchless logic.
                          typeHash := ternary(
                              eq(treeHeight, 19),
                              BulkOrder_Typehash_Height_Nineteen,
                              BulkOrder_Typehash_Height_Twenty
                          )
                          // Exit the function once typehash has been located.
                          leave
                      }
                      // Handle tree height twenty-one and twenty-two.
                      if lt(treeHeight, 23) {
                          // Utilize branchless logic to determine typehash.
                          typeHash := ternary(
                              eq(treeHeight, 21),
                              BulkOrder_Typehash_Height_TwentyOne,
                              BulkOrder_Typehash_Height_TwentyTwo
                          )
                          // Exit the function once typehash has been located.
                          leave
                      }
                      // Handle height twenty-three & twenty-four w/ branchless logic.
                      typeHash := ternary(
                          eq(treeHeight, 23),
                          BulkOrder_Typehash_Height_TwentyThree,
                          BulkOrder_Typehash_Height_TwentyFour
                      )
                      // Exit the function once typehash has been located.
                      leave
                  }
                  // Implement ternary conditional using branchless logic.
                  function ternary(cond, ifTrue, ifFalse) -> c {
                      c := xor(ifFalse, mul(cond, xor(ifFalse, ifTrue)))
                  }
                  // Look up the typehash using the supplied tree height.
                  _typeHash := lookupTypeHash(_treeHeight)
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      import {
          BasicOrder_additionalRecipients_length_cdPtr,
          BasicOrder_common_params_size,
          BasicOrder_startTime_cdPtr,
          BasicOrder_startTimeThroughZoneHash_size,
          Common_amount_offset,
          Common_identifier_offset,
          Common_token_offset,
          generateOrder_base_tail_offset,
          generateOrder_context_head_offset,
          generateOrder_head_offset,
          generateOrder_maximumSpent_head_offset,
          generateOrder_minimumReceived_head_offset,
          generateOrder_selector_offset,
          generateOrder_selector,
          OneWord,
          OneWordShift,
          OnlyFullWordMask,
          OrderFulfilled_baseDataSize,
          OrderFulfilled_offer_length_baseOffset,
          OrderParameters_consideration_head_offset,
          OrderParameters_endTime_offset,
          OrderParameters_offer_head_offset,
          OrderParameters_startTime_offset,
          OrderParameters_zoneHash_offset,
          ratifyOrder_base_tail_offset,
          ratifyOrder_consideration_head_offset,
          ratifyOrder_context_head_offset,
          ratifyOrder_contractNonce_offset,
          ratifyOrder_head_offset,
          ratifyOrder_orderHashes_head_offset,
          ratifyOrder_selector_offset,
          ratifyOrder_selector,
          ReceivedItem_size,
          Selector_length,
          SixtyThreeBytes,
          SpentItem_size_shift,
          SpentItem_size,
          validateOrder_head_offset,
          validateOrder_selector_offset,
          validateOrder_selector,
          validateOrder_zoneParameters_offset,
          ZoneParameters_base_tail_offset,
          ZoneParameters_basicOrderFixedElements_length,
          ZoneParameters_consideration_head_offset,
          ZoneParameters_endTime_offset,
          ZoneParameters_extraData_head_offset,
          ZoneParameters_fulfiller_offset,
          ZoneParameters_offer_head_offset,
          ZoneParameters_offerer_offset,
          ZoneParameters_orderHashes_head_offset,
          ZoneParameters_selectorAndPointer_length,
          ZoneParameters_startTime_offset,
          ZoneParameters_zoneHash_offset
      } from "./ConsiderationConstants.sol";
      import {
          BasicOrderParameters,
          OrderParameters
      } from "./ConsiderationStructs.sol";
      import {
          CalldataPointer,
          getFreeMemoryPointer,
          MemoryPointer
      } from "../helpers/PointerLibraries.sol";
      contract ConsiderationEncoder {
          /**
           * @dev Takes a bytes array and casts it to a memory pointer.
           *
           * @param obj A bytes array in memory.
           *
           * @return ptr A memory pointer to the start of the bytes array in memory.
           */
          function toMemoryPointer(
              bytes memory obj
          ) internal pure returns (MemoryPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Takes an array of bytes32 types and casts it to a memory pointer.
           *
           * @param obj An array of bytes32 types in memory.
           *
           * @return ptr A memory pointer to the start of the array of bytes32 types
           *             in memory.
           */
          function toMemoryPointer(
              bytes32[] memory obj
          ) internal pure returns (MemoryPointer ptr) {
              assembly {
                  ptr := obj
              }
          }
          /**
           * @dev Takes a bytes array in memory and copies it to a new location in
           *      memory.
           *
           * @param src A memory pointer referencing the bytes array to be copied (and
           *            pointing to the length of the bytes array).
           * @param src A memory pointer referencing the location in memory to copy
           *            the bytes array to (and pointing to the length of the copied
           *            bytes array).
           *
           * @return size The size of the bytes array.
           */
          function _encodeBytes(
              MemoryPointer src,
              MemoryPointer dst
          ) internal view returns (uint256 size) {
              unchecked {
                  // Mask the length of the bytes array to protect against overflow
                  // and round up to the nearest word.
                  // Note: `size` also includes the 1 word that stores the length.
                  size = (src.readUint256() + SixtyThreeBytes) & OnlyFullWordMask;
                  // Copy the bytes array to the new memory location.
                  src.copy(dst, size);
              }
          }
          /**
           * @dev Takes an OrderParameters struct and a context bytes array in memory
           *      and encodes it as `generateOrder` calldata.
           *
           * @param orderParameters The OrderParameters struct used to construct the
           *                        encoded `generateOrder` calldata.
           * @param context         The context bytes array used to construct the
           *                        encoded `generateOrder` calldata.
           *
           * @return dst  A memory pointer referencing the encoded `generateOrder`
           *              calldata.
           * @return size The size of the bytes array.
           */
          function _encodeGenerateOrder(
              OrderParameters memory orderParameters,
              bytes memory context
          ) internal view returns (MemoryPointer dst, uint256 size) {
              // Get the memory pointer for the OrderParameters struct.
              MemoryPointer src = orderParameters.toMemoryPointer();
              // Get free memory pointer to write calldata to.
              dst = getFreeMemoryPointer();
              // Write generateOrder selector and get pointer to start of calldata.
              dst.write(generateOrder_selector);
              dst = dst.offset(generateOrder_selector_offset);
              // Get pointer to the beginning of the encoded data.
              MemoryPointer dstHead = dst.offset(generateOrder_head_offset);
              // Write `fulfiller` to calldata.
              dstHead.write(msg.sender);
              // Initialize tail offset, used to populate the minimumReceived array.
              uint256 tailOffset = generateOrder_base_tail_offset;
              // Write offset to minimumReceived.
              dstHead.offset(generateOrder_minimumReceived_head_offset).write(
                  tailOffset
              );
              // Get memory pointer to `orderParameters.offer.length`.
              MemoryPointer srcOfferPointer = src
                  .offset(OrderParameters_offer_head_offset)
                  .readMemoryPointer();
              // Encode the offer array as a `SpentItem[]`.
              uint256 minimumReceivedSize = _encodeSpentItems(
                  srcOfferPointer,
                  dstHead.offset(tailOffset)
              );
              unchecked {
                  // Increment tail offset, now used to populate maximumSpent array.
                  tailOffset += minimumReceivedSize;
              }
              // Write offset to maximumSpent.
              dstHead.offset(generateOrder_maximumSpent_head_offset).write(
                  tailOffset
              );
              // Get memory pointer to `orderParameters.consideration.length`.
              MemoryPointer srcConsiderationPointer = src
                  .offset(OrderParameters_consideration_head_offset)
                  .readMemoryPointer();
              // Encode the consideration array as a `SpentItem[]`.
              uint256 maximumSpentSize = _encodeSpentItems(
                  srcConsiderationPointer,
                  dstHead.offset(tailOffset)
              );
              unchecked {
                  // Increment tail offset, now used to populate context array.
                  tailOffset += maximumSpentSize;
              }
              // Write offset to context.
              dstHead.offset(generateOrder_context_head_offset).write(tailOffset);
              // Get memory pointer to context.
              MemoryPointer srcContext = toMemoryPointer(context);
              // Encode context as a bytes array.
              uint256 contextSize = _encodeBytes(
                  srcContext,
                  dstHead.offset(tailOffset)
              );
              unchecked {
                  // Increment the tail offset, now used to determine final size.
                  tailOffset += contextSize;
                  // Derive the final size by including the selector.
                  size = Selector_length + tailOffset;
              }
          }
          /**
           * @dev Takes an order hash (e.g. offerer shifted 96 bits to the left XOR'd
           *      with the contract nonce in the case of contract orders), an
           *      OrderParameters struct, context bytes array, and an array of order
           *      hashes for each order included as part of the current fulfillment
           *      and encodes it as `ratifyOrder` calldata.
           *
           * @param orderHash       The order hash (e.g. shl(0x60, offerer) ^ nonce).
           * @param orderParameters The OrderParameters struct used to construct the
           *                        encoded `ratifyOrder` calldata.
           * @param context         The context bytes array used to construct the
           *                        encoded `ratifyOrder` calldata.
           * @param orderHashes     An array of bytes32 values representing the order
           *                        hashes of all orders included as part of the
           *                        current fulfillment.
           * @param shiftedOfferer  The offerer for the order, shifted 96 bits to the
           *                        left.
           *
           * @return dst  A memory pointer referencing the encoded `ratifyOrder`
           *              calldata.
           * @return size The size of the bytes array.
           */
          function _encodeRatifyOrder(
              bytes32 orderHash, // e.g. shl(0x60, offerer) ^ contract nonce
              OrderParameters memory orderParameters,
              bytes memory context, // encoded based on the schemaID
              bytes32[] memory orderHashes,
              uint256 shiftedOfferer
          ) internal view returns (MemoryPointer dst, uint256 size) {
              // Get free memory pointer to write calldata to. This isn't allocated as
              // it is only used for a single function call.
              dst = getFreeMemoryPointer();
              // Write ratifyOrder selector and get pointer to start of calldata.
              dst.write(ratifyOrder_selector);
              dst = dst.offset(ratifyOrder_selector_offset);
              // Get pointer to the beginning of the encoded data.
              MemoryPointer dstHead = dst.offset(ratifyOrder_head_offset);
              // Write contractNonce to calldata via xor(orderHash, shiftedOfferer).
              dstHead.offset(ratifyOrder_contractNonce_offset).write(
                  uint256(orderHash) ^ shiftedOfferer
              );
              // Initialize tail offset, used to populate the offer array.
              uint256 tailOffset = ratifyOrder_base_tail_offset;
              MemoryPointer src = orderParameters.toMemoryPointer();
              // Write offset to `offer`.
              dstHead.write(tailOffset);
              // Get memory pointer to `orderParameters.offer.length`.
              MemoryPointer srcOfferPointer = src
                  .offset(OrderParameters_offer_head_offset)
                  .readMemoryPointer();
              // Encode the offer array as a `SpentItem[]`.
              uint256 offerSize = _encodeSpentItems(
                  srcOfferPointer,
                  dstHead.offset(tailOffset)
              );
              unchecked {
                  // Increment tail offset, now used to populate consideration array.
                  tailOffset += offerSize;
              }
              // Write offset to consideration.
              dstHead.offset(ratifyOrder_consideration_head_offset).write(tailOffset);
              // Get pointer to `orderParameters.consideration.length`.
              MemoryPointer srcConsiderationPointer = src
                  .offset(OrderParameters_consideration_head_offset)
                  .readMemoryPointer();
              // Encode the consideration array as a `ReceivedItem[]`.
              uint256 considerationSize = _encodeConsiderationAsReceivedItems(
                  srcConsiderationPointer,
                  dstHead.offset(tailOffset)
              );
              unchecked {
                  // Increment tail offset, now used to populate context array.
                  tailOffset += considerationSize;
              }
              // Write offset to context.
              dstHead.offset(ratifyOrder_context_head_offset).write(tailOffset);
              // Encode context.
              uint256 contextSize = _encodeBytes(
                  toMemoryPointer(context),
                  dstHead.offset(tailOffset)
              );
              unchecked {
                  // Increment tail offset, now used to populate orderHashes array.
                  tailOffset += contextSize;
              }
              // Write offset to orderHashes.
              dstHead.offset(ratifyOrder_orderHashes_head_offset).write(tailOffset);
              // Encode orderHashes.
              uint256 orderHashesSize = _encodeOrderHashes(
                  toMemoryPointer(orderHashes),
                  dstHead.offset(tailOffset)
              );
              unchecked {
                  // Increment the tail offset, now used to determine final size.
                  tailOffset += orderHashesSize;
                  // Derive the final size by including the selector.
                  size = Selector_length + tailOffset;
              }
          }
          /**
           * @dev Takes an order hash, OrderParameters struct, extraData bytes array,
           *      and array of order hashes for each order included as part of the
           *      current fulfillment and encodes it as `validateOrder` calldata.
           *      Note that future, new versions of this contract may end up writing
           *      to a memory region that might have been potentially dirtied by the
           *      accumulator. Since the book-keeping for the accumulator does not
           *      update the free memory pointer, it will be necessary to ensure that
           *      all bytes in the memory in the range [dst, dst+size) are fully
           *      updated/written to in this function.
           *
           * @param orderHash       The order hash.
           * @param orderParameters The OrderParameters struct used to construct the
           *                        encoded `validateOrder` calldata.
           * @param extraData       The extraData bytes array used to construct the
           *                        encoded `validateOrder` calldata.
           * @param orderHashes     An array of bytes32 values representing the order
           *                        hashes of all orders included as part of the
           *                        current fulfillment.
           *
           * @return dst  A memory pointer referencing the encoded `validateOrder`
           *              calldata.
           * @return size The size of the bytes array.
           */
          function _encodeValidateOrder(
              bytes32 orderHash,
              OrderParameters memory orderParameters,
              bytes memory extraData,
              bytes32[] memory orderHashes
          ) internal view returns (MemoryPointer dst, uint256 size) {
              // Get free memory pointer to write calldata to. This isn't allocated as
              // it is only used for a single function call.
              dst = getFreeMemoryPointer();
              // Write validateOrder selector and get pointer to start of calldata.
              dst.write(validateOrder_selector);
              dst = dst.offset(validateOrder_selector_offset);
              // Get pointer to the beginning of the encoded data.
              MemoryPointer dstHead = dst.offset(validateOrder_head_offset);
              // Write offset to zoneParameters to start of calldata.
              dstHead.write(validateOrder_zoneParameters_offset);
              // Reuse `dstHead` as pointer to zoneParameters.
              dstHead = dstHead.offset(validateOrder_zoneParameters_offset);
              // Write orderHash and fulfiller to zoneParameters.
              dstHead.writeBytes32(orderHash);
              dstHead.offset(ZoneParameters_fulfiller_offset).write(msg.sender);
              // Get the memory pointer to the order parameters struct.
              MemoryPointer src = orderParameters.toMemoryPointer();
              // Copy offerer, startTime, endTime and zoneHash to zoneParameters.
              dstHead.offset(ZoneParameters_offerer_offset).write(src.readUint256());
              dstHead.offset(ZoneParameters_startTime_offset).write(
                  src.offset(OrderParameters_startTime_offset).readUint256()
              );
              dstHead.offset(ZoneParameters_endTime_offset).write(
                  src.offset(OrderParameters_endTime_offset).readUint256()
              );
              dstHead.offset(ZoneParameters_zoneHash_offset).write(
                  src.offset(OrderParameters_zoneHash_offset).readUint256()
              );
              // Initialize tail offset, used to populate the offer array.
              uint256 tailOffset = ZoneParameters_base_tail_offset;
              // Write offset to `offer`.
              dstHead.offset(ZoneParameters_offer_head_offset).write(tailOffset);
              // Get pointer to `orderParameters.offer.length`.
              MemoryPointer srcOfferPointer = src
                  .offset(OrderParameters_offer_head_offset)
                  .readMemoryPointer();
              // Encode the offer array as a `SpentItem[]`.
              uint256 offerSize = _encodeSpentItems(
                  srcOfferPointer,
                  dstHead.offset(tailOffset)
              );
              unchecked {
                  // Increment tail offset, now used to populate consideration array.
                  tailOffset += offerSize;
              }
              // Write offset to consideration.
              dstHead.offset(ZoneParameters_consideration_head_offset).write(
                  tailOffset
              );
              // Get pointer to `orderParameters.consideration.length`.
              MemoryPointer srcConsiderationPointer = src
                  .offset(OrderParameters_consideration_head_offset)
                  .readMemoryPointer();
              // Encode the consideration array as a `ReceivedItem[]`.
              uint256 considerationSize = _encodeConsiderationAsReceivedItems(
                  srcConsiderationPointer,
                  dstHead.offset(tailOffset)
              );
              unchecked {
                  // Increment tail offset, now used to populate extraData array.
                  tailOffset += considerationSize;
              }
              // Write offset to extraData.
              dstHead.offset(ZoneParameters_extraData_head_offset).write(tailOffset);
              // Copy extraData.
              uint256 extraDataSize = _encodeBytes(
                  toMemoryPointer(extraData),
                  dstHead.offset(tailOffset)
              );
              unchecked {
                  // Increment tail offset, now used to populate orderHashes array.
                  tailOffset += extraDataSize;
              }
              // Write offset to orderHashes.
              dstHead.offset(ZoneParameters_orderHashes_head_offset).write(
                  tailOffset
              );
              // Encode the order hashes array.
              uint256 orderHashesSize = _encodeOrderHashes(
                  toMemoryPointer(orderHashes),
                  dstHead.offset(tailOffset)
              );
              unchecked {
                  // Increment the tail offset, now used to determine final size.
                  tailOffset += orderHashesSize;
                  // Derive final size including selector and ZoneParameters pointer.
                  size = ZoneParameters_selectorAndPointer_length + tailOffset;
              }
          }
          /**
           * @dev Takes an order hash and BasicOrderParameters struct (from calldata)
           *      and encodes it as `validateOrder` calldata.
           *
           * @param orderHash  The order hash.
           * @param parameters The BasicOrderParameters struct used to construct the
           *                   encoded `validateOrder` calldata.
           *
           * @return dst  A memory pointer referencing the encoded `validateOrder`
           *              calldata.
           * @return size The size of the bytes array.
           */
          function _encodeValidateBasicOrder(
              bytes32 orderHash,
              BasicOrderParameters calldata parameters
          ) internal view returns (MemoryPointer dst, uint256 size) {
              // Get free memory pointer to write calldata to. This isn't allocated as
              // it is only used for a single function call.
              dst = getFreeMemoryPointer();
              // Write validateOrder selector and get pointer to start of calldata.
              dst.write(validateOrder_selector);
              dst = dst.offset(validateOrder_selector_offset);
              // Get pointer to the beginning of the encoded data.
              MemoryPointer dstHead = dst.offset(validateOrder_head_offset);
              // Write offset to zoneParameters to start of calldata.
              dstHead.write(validateOrder_zoneParameters_offset);
              // Reuse `dstHead` as pointer to zoneParameters.
              dstHead = dstHead.offset(validateOrder_zoneParameters_offset);
              // Write offerer, orderHash and fulfiller to zoneParameters.
              dstHead.writeBytes32(orderHash);
              dstHead.offset(ZoneParameters_fulfiller_offset).write(msg.sender);
              dstHead.offset(ZoneParameters_offerer_offset).write(parameters.offerer);
              // Copy startTime, endTime and zoneHash to zoneParameters.
              CalldataPointer.wrap(BasicOrder_startTime_cdPtr).copy(
                  dstHead.offset(ZoneParameters_startTime_offset),
                  BasicOrder_startTimeThroughZoneHash_size
              );
              // Initialize tail offset, used for the offer + consideration arrays.
              uint256 tailOffset = ZoneParameters_base_tail_offset;
              // Write offset to offer from event data into target calldata.
              dstHead.offset(ZoneParameters_offer_head_offset).write(tailOffset);
              unchecked {
                  // Write consideration offset next (located 5 words after offer).
                  dstHead.offset(ZoneParameters_consideration_head_offset).write(
                      tailOffset + BasicOrder_common_params_size
                  );
                  // Retrieve the offset to the length of additional recipients.
                  uint256 additionalRecipientsLength = CalldataPointer
                      .wrap(BasicOrder_additionalRecipients_length_cdPtr)
                      .readUint256();
                  // Derive offset to event data using base offset & total recipients.
                  uint256 offerDataOffset = OrderFulfilled_offer_length_baseOffset +
                      additionalRecipientsLength *
                      OneWord;
                  // Derive size of offer and consideration data.
                  // 2 words (lengths) + 4 (offer data) + 5 (consideration 1) + 5 * ar
                  uint256 offerAndConsiderationSize = OrderFulfilled_baseDataSize +
                      (additionalRecipientsLength * ReceivedItem_size);
                  // Copy offer and consideration data from event data to calldata.
                  MemoryPointer.wrap(offerDataOffset).copy(
                      dstHead.offset(tailOffset),
                      offerAndConsiderationSize
                  );
                  // Increment tail offset, now used to populate extraData array.
                  tailOffset += offerAndConsiderationSize;
              }
              // Write empty bytes for extraData.
              dstHead.offset(ZoneParameters_extraData_head_offset).write(tailOffset);
              dstHead.offset(tailOffset).write(0);
              unchecked {
                  // Increment tail offset, now used to populate orderHashes array.
                  tailOffset += OneWord;
              }
              // Write offset to orderHashes.
              dstHead.offset(ZoneParameters_orderHashes_head_offset).write(
                  tailOffset
              );
              // Write length = 1 to the orderHashes array.
              dstHead.offset(tailOffset).write(1);
              unchecked {
                  // Write the single order hash to the orderHashes array.
                  dstHead.offset(tailOffset + OneWord).writeBytes32(orderHash);
                  // Final size: selector, ZoneParameters pointer, orderHashes & tail.
                  size = ZoneParameters_basicOrderFixedElements_length + tailOffset;
              }
          }
          /**
           * @dev Takes a memory pointer to an array of bytes32 values representing
           *      the order hashes included as part of the fulfillment and a memory
           *      pointer to a location to copy it to, and copies the source data to
           *      the destination in memory.
           *
           * @param srcLength A memory pointer referencing the order hashes array to
           *                  be copied (and pointing to the length of the array).
           * @param dstLength A memory pointer referencing the location in memory to
           *                  copy the orderHashes array to (and pointing to the
           *                  length of the copied array).
           *
           * @return size The size of the order hashes array (including the length).
           */
          function _encodeOrderHashes(
              MemoryPointer srcLength,
              MemoryPointer dstLength
          ) internal view returns (uint256 size) {
              // Read length of the array from source and write to destination.
              uint256 length = srcLength.readUint256();
              dstLength.write(length);
              unchecked {
                  // Determine head & tail size as one word per element in the array.
                  uint256 headAndTailSize = length << OneWordShift;
                  // Copy the tail starting from the next element of the source to the
                  // next element of the destination.
                  srcLength.next().copy(dstLength.next(), headAndTailSize);
                  // Set size to the length of the tail plus one word for length.
                  size = headAndTailSize + OneWord;
              }
          }
          /**
           * @dev Takes a memory pointer to an offer or consideration array and a
           *      memory pointer to a location to copy it to, and copies the source
           *      data to the destination in memory as a SpentItem array.
           *
           * @param srcLength A memory pointer referencing the offer or consideration
           *                  array to be copied as a SpentItem array (and pointing to
           *                  the length of the original array).
           * @param dstLength A memory pointer referencing the location in memory to
           *                  copy the offer array to (and pointing to the length of
           *                  the copied array).
           *
           * @return size The size of the SpentItem array (including the length).
           */
          function _encodeSpentItems(
              MemoryPointer srcLength,
              MemoryPointer dstLength
          ) internal pure returns (uint256 size) {
              assembly {
                  // Read length of the array from source and write to destination.
                  let length := mload(srcLength)
                  mstore(dstLength, length)
                  // Get pointer to first item's head position in the array,
                  // containing the item's pointer in memory. The head pointer will be
                  // incremented until it reaches the tail position (start of the
                  // array data).
                  let mPtrHead := add(srcLength, OneWord)
                  // Position in memory to write next item for calldata. Since
                  // SpentItem has a fixed length, the array elements do not contain
                  // head elements in calldata, they are concatenated together after
                  // the array length.
                  let cdPtrData := add(dstLength, OneWord)
                  // Pointer to end of array head in memory.
                  let mPtrHeadEnd := add(mPtrHead, shl(OneWordShift, length))
                  for {
                  } lt(mPtrHead, mPtrHeadEnd) {
                  } {
                      // Read pointer to data for array element from head position.
                      let mPtrTail := mload(mPtrHead)
                      // Copy itemType, token, identifier, amount to calldata.
                      mstore(cdPtrData, mload(mPtrTail))
                      mstore(
                          add(cdPtrData, Common_token_offset),
                          mload(add(mPtrTail, Common_token_offset))
                      )
                      mstore(
                          add(cdPtrData, Common_identifier_offset),
                          mload(add(mPtrTail, Common_identifier_offset))
                      )
                      mstore(
                          add(cdPtrData, Common_amount_offset),
                          mload(add(mPtrTail, Common_amount_offset))
                      )
                      mPtrHead := add(mPtrHead, OneWord)
                      cdPtrData := add(cdPtrData, SpentItem_size)
                  }
                  size := add(OneWord, shl(SpentItem_size_shift, length))
              }
          }
          /**
           * @dev Takes a memory pointer to an consideration array and a memory
           *      pointer to a location to copy it to, and copies the source data to
           *      the destination in memory as a ReceivedItem array.
           *
           * @param srcLength A memory pointer referencing the consideration array to
           *                  be copied as a ReceivedItem array (and pointing to the
           *                  length of the original array).
           * @param dstLength A memory pointer referencing the location in memory to
           *                  copy the consideration array to as a ReceivedItem array
           *                  (and pointing to the length of the new array).
           *
           * @return size The size of the ReceivedItem array (including the length).
           */
          function _encodeConsiderationAsReceivedItems(
              MemoryPointer srcLength,
              MemoryPointer dstLength
          ) internal view returns (uint256 size) {
              unchecked {
                  // Read length of the array from source and write to destination.
                  uint256 length = srcLength.readUint256();
                  dstLength.write(length);
                  // Get pointer to first item's head position in the array,
                  // containing the item's pointer in memory. The head pointer will be
                  // incremented until it reaches the tail position (start of the
                  // array data).
                  MemoryPointer srcHead = srcLength.next();
                  MemoryPointer srcHeadEnd = srcHead.offset(length << OneWordShift);
                  // Position in memory to write next item for calldata. Since
                  // ReceivedItem has a fixed length, the array elements do not
                  // contain offsets in calldata, they are concatenated together after
                  // the array length.
                  MemoryPointer dstHead = dstLength.next();
                  while (srcHead.lt(srcHeadEnd)) {
                      MemoryPointer srcTail = srcHead.pptr();
                      srcTail.copy(dstHead, ReceivedItem_size);
                      srcHead = srcHead.next();
                      dstHead = dstHead.offset(ReceivedItem_size);
                  }
                  size = OneWord + (length * ReceivedItem_size);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      import {
          AdvancedOrder,
          ConsiderationItem,
          CriteriaResolver,
          Fulfillment,
          FulfillmentComponent,
          OfferItem,
          Order,
          OrderParameters,
          ReceivedItem
      } from "./ConsiderationStructs.sol";
      import {
          AdvancedOrder_denominator_offset,
          AdvancedOrder_extraData_offset,
          AdvancedOrder_fixed_segment_0,
          AdvancedOrder_head_size,
          AdvancedOrder_numerator_offset,
          AdvancedOrder_signature_offset,
          AdvancedOrderPlusOrderParameters_head_size,
          Common_amount_offset,
          Common_endAmount_offset,
          ConsiderationItem_size_with_length,
          ConsiderationItem_size,
          CriteriaResolver_criteriaProof_offset,
          CriteriaResolver_fixed_segment_0,
          CriteriaResolver_head_size,
          FourWords,
          FreeMemoryPointerSlot,
          Fulfillment_considerationComponents_offset,
          Fulfillment_head_size,
          FulfillmentComponent_mem_tail_size_shift,
          FulfillmentComponent_mem_tail_size,
          generateOrder_maximum_returndatasize,
          OfferItem_size_with_length,
          OfferItem_size,
          OneWord,
          OneWordShift,
          OnlyFullWordMask,
          Order_head_size,
          Order_signature_offset,
          OrderComponents_OrderParameters_common_head_size,
          OrderParameters_consideration_head_offset,
          OrderParameters_head_size,
          OrderParameters_offer_head_offset,
          OrderParameters_totalOriginalConsiderationItems_offset,
          ReceivedItem_recipient_offset,
          ReceivedItem_size,
          ReceivedItem_size_excluding_recipient,
          SpentItem_size_shift,
          SpentItem_size,
          ThirtyOneBytes,
          TwoWords
      } from "./ConsiderationConstants.sol";
      import {
          CalldataPointer,
          malloc,
          MemoryPointer,
          OffsetOrLengthMask
      } from "../helpers/PointerLibraries.sol";
      contract ConsiderationDecoder {
          /**
           * @dev Takes a bytes array from calldata and copies it into memory.
           *
           * @param cdPtrLength A calldata pointer to the start of the bytes array in
           *                    calldata which contains the length of the array.
           *
           * @return mPtrLength A memory pointer to the start of the bytes array in
           *                    memory which contains the length of the array.
           */
          function _decodeBytes(
              CalldataPointer cdPtrLength
          ) internal pure returns (MemoryPointer mPtrLength) {
              assembly {
                  // Get the current free memory pointer.
                  mPtrLength := mload(FreeMemoryPointerSlot)
                  // Derive the size of the bytes array, rounding up to nearest word
                  // and adding a word for the length field. Note: masking
                  // `calldataload(cdPtrLength)` is redundant here.
                  let size := add(
                      and(
                          add(calldataload(cdPtrLength), ThirtyOneBytes),
                          OnlyFullWordMask
                      ),
                      OneWord
                  )
                  // Copy bytes from calldata into memory based on pointers and size.
                  calldatacopy(mPtrLength, cdPtrLength, size)
                  // Store the masked value in memory. Note: the value of `size` is at
                  // least 32, meaning the calldatacopy above will at least write to
                  // `[mPtrLength, mPtrLength + 32)`.
                  mstore(
                      mPtrLength,
                      and(calldataload(cdPtrLength), OffsetOrLengthMask)
                  )
                  // Update free memory pointer based on the size of the bytes array.
                  mstore(FreeMemoryPointerSlot, add(mPtrLength, size))
              }
          }
          /**
           * @dev Takes an offer array from calldata and copies it into memory.
           *
           * @param cdPtrLength A calldata pointer to the start of the offer array
           *                    in calldata which contains the length of the array.
           *
           * @return mPtrLength A memory pointer to the start of the offer array in
           *                    memory which contains the length of the array.
           */
          function _decodeOffer(
              CalldataPointer cdPtrLength
          ) internal pure returns (MemoryPointer mPtrLength) {
              assembly {
                  // Retrieve length of array, masking to prevent potential overflow.
                  let arrLength := and(calldataload(cdPtrLength), OffsetOrLengthMask)
                  // Get the current free memory pointer.
                  mPtrLength := mload(FreeMemoryPointerSlot)
                  // Write the array length to memory.
                  mstore(mPtrLength, arrLength)
                  // Derive the head by adding one word to the length pointer.
                  let mPtrHead := add(mPtrLength, OneWord)
                  // Derive the tail by adding one word per element (note that structs
                  // are written to memory with an offset per struct element).
                  let mPtrTail := add(mPtrHead, shl(OneWordShift, arrLength))
                  // Track the next tail, beginning with the initial tail value.
                  let mPtrTailNext := mPtrTail
                  // Copy all offer array data into memory at the tail pointer.
                  calldatacopy(
                      mPtrTail,
                      add(cdPtrLength, OneWord),
                      mul(arrLength, OfferItem_size)
                  )
                  // Track the next head pointer, starting with initial head value.
                  let mPtrHeadNext := mPtrHead
                  // Iterate over each head pointer until it reaches the tail.
                  for {
                  } lt(mPtrHeadNext, mPtrTail) {
                  } {
                      // Write the next tail pointer to next head pointer in memory.
                      mstore(mPtrHeadNext, mPtrTailNext)
                      // Increment the next head pointer by one word.
                      mPtrHeadNext := add(mPtrHeadNext, OneWord)
                      // Increment the next tail pointer by the size of an offer item.
                      mPtrTailNext := add(mPtrTailNext, OfferItem_size)
                  }
                  // Update free memory pointer to allocate memory up to end of tail.
                  mstore(FreeMemoryPointerSlot, mPtrTailNext)
              }
          }
          /**
           * @dev Takes a consideration array from calldata and copies it into memory.
           *
           * @param cdPtrLength A calldata pointer to the start of the consideration
           *                    array in calldata which contains the length of the
           *                    array.
           *
           * @return mPtrLength A memory pointer to the start of the consideration
           *                    array in memory which contains the length of the
           *                    array.
           */
          function _decodeConsideration(
              CalldataPointer cdPtrLength
          ) internal pure returns (MemoryPointer mPtrLength) {
              assembly {
                  // Retrieve length of array, masking to prevent potential overflow.
                  let arrLength := and(calldataload(cdPtrLength), OffsetOrLengthMask)
                  // Get the current free memory pointer.
                  mPtrLength := mload(FreeMemoryPointerSlot)
                  // Write the array length to memory.
                  mstore(mPtrLength, arrLength)
                  // Derive the head by adding one word to the length pointer.
                  let mPtrHead := add(mPtrLength, OneWord)
                  // Derive the tail by adding one word per element (note that structs
                  // are written to memory with an offset per struct element).
                  let mPtrTail := add(mPtrHead, shl(OneWordShift, arrLength))
                  // Track the next tail, beginning with the initial tail value.
                  let mPtrTailNext := mPtrTail
                  // Copy all consideration array data into memory at tail pointer.
                  calldatacopy(
                      mPtrTail,
                      add(cdPtrLength, OneWord),
                      mul(arrLength, ConsiderationItem_size)
                  )
                  // Track the next head pointer, starting with initial head value.
                  let mPtrHeadNext := mPtrHead
                  // Iterate over each head pointer until it reaches the tail.
                  for {
                  } lt(mPtrHeadNext, mPtrTail) {
                  } {
                      // Write the next tail pointer to next head pointer in memory.
                      mstore(mPtrHeadNext, mPtrTailNext)
                      // Increment the next head pointer by one word.
                      mPtrHeadNext := add(mPtrHeadNext, OneWord)
                      // Increment next tail pointer by size of a consideration item.
                      mPtrTailNext := add(mPtrTailNext, ConsiderationItem_size)
                  }
                  // Update free memory pointer to allocate memory up to end of tail.
                  mstore(FreeMemoryPointerSlot, mPtrTailNext)
              }
          }
          /**
           * @dev Takes a calldata pointer and memory pointer and copies a referenced
           *      OrderParameters struct and associated offer and consideration data
           *      to memory.
           *
           * @param cdPtr A calldata pointer for the OrderParameters struct.
           * @param mPtr A memory pointer to the OrderParameters struct head.
           */
          function _decodeOrderParametersTo(
              CalldataPointer cdPtr,
              MemoryPointer mPtr
          ) internal pure {
              // Copy the full OrderParameters head from calldata to memory.
              cdPtr.copy(mPtr, OrderParameters_head_size);
              // Resolve the offer calldata offset, use that to decode and copy offer
              // from calldata, and write resultant memory offset to head in memory.
              mPtr.offset(OrderParameters_offer_head_offset).write(
                  _decodeOffer(cdPtr.pptr(OrderParameters_offer_head_offset))
              );
              // Resolve consideration calldata offset, use that to copy consideration
              // from calldata, and write resultant memory offset to head in memory.
              mPtr.offset(OrderParameters_consideration_head_offset).write(
                  _decodeConsideration(
                      cdPtr.pptr(OrderParameters_consideration_head_offset)
                  )
              );
          }
          /**
           * @dev Takes a calldata pointer to an OrderParameters struct and copies the
           *      decoded struct to memory.
           *
           * @param cdPtr A calldata pointer for the OrderParameters struct.
           *
           * @return mPtr A memory pointer to the OrderParameters struct head.
           */
          function _decodeOrderParameters(
              CalldataPointer cdPtr
          ) internal pure returns (MemoryPointer mPtr) {
              // Allocate required memory for the OrderParameters head (offer and
              // consideration are allocated independently).
              mPtr = malloc(OrderParameters_head_size);
              // Decode and copy the order parameters to the newly allocated memory.
              _decodeOrderParametersTo(cdPtr, mPtr);
          }
          /**
           * @dev Takes a calldata pointer to an Order struct and copies the decoded
           *      struct to memory.
           *
           * @param cdPtr A calldata pointer for the Order struct.
           *
           * @return mPtr A memory pointer to the Order struct head.
           */
          function _decodeOrder(
              CalldataPointer cdPtr
          ) internal pure returns (MemoryPointer mPtr) {
              // Allocate required memory for the Order head (OrderParameters and
              // signature are allocated independently).
              mPtr = malloc(Order_head_size);
              // Resolve OrderParameters calldata offset, use it to decode and copy
              // from calldata, and write resultant memory offset to head in memory.
              mPtr.write(_decodeOrderParameters(cdPtr.pptr()));
              // Resolve signature calldata offset, use that to decode and copy from
              // calldata, and write resultant memory offset to head in memory.
              mPtr.offset(Order_signature_offset).write(
                  _decodeBytes(cdPtr.pptr(Order_signature_offset))
              );
          }
          /**
           * @dev Takes a calldata pointer to an AdvancedOrder struct and copies the
           *      decoded struct to memory.
           *
           * @param cdPtr A calldata pointer for the AdvancedOrder struct.
           *
           * @return mPtr A memory pointer to the AdvancedOrder struct head.
           */
          function _decodeAdvancedOrder(
              CalldataPointer cdPtr
          ) internal pure returns (MemoryPointer mPtr) {
              // Allocate memory for AdvancedOrder head and OrderParameters head.
              mPtr = malloc(AdvancedOrderPlusOrderParameters_head_size);
              // Use numerator + denominator calldata offset to decode and copy
              // from calldata and write resultant memory offset to head in memory.
              cdPtr.offset(AdvancedOrder_numerator_offset).copy(
                  mPtr.offset(AdvancedOrder_numerator_offset),
                  AdvancedOrder_fixed_segment_0
              );
              // Get pointer to memory immediately after advanced order.
              MemoryPointer mPtrParameters = mPtr.offset(AdvancedOrder_head_size);
              // Write pptr for advanced order parameters to memory.
              mPtr.write(mPtrParameters);
              // Resolve OrderParameters calldata pointer & write to allocated region.
              _decodeOrderParametersTo(cdPtr.pptr(), mPtrParameters);
              // Resolve signature calldata offset, use that to decode and copy from
              // calldata, and write resultant memory offset to head in memory.
              mPtr.offset(AdvancedOrder_signature_offset).write(
                  _decodeBytes(cdPtr.pptr(AdvancedOrder_signature_offset))
              );
              // Resolve extraData calldata offset, use that to decode and copy from
              // calldata, and write resultant memory offset to head in memory.
              mPtr.offset(AdvancedOrder_extraData_offset).write(
                  _decodeBytes(cdPtr.pptr(AdvancedOrder_extraData_offset))
              );
          }
          /**
           * @dev Allocates a single word of empty bytes in memory and returns the
           *      pointer to that memory region.
           *
           * @return mPtr The memory pointer to the new empty word in memory.
           */
          function _getEmptyBytesOrArray()
              internal
              pure
              returns (MemoryPointer mPtr)
          {
              mPtr = malloc(OneWord);
              mPtr.write(0);
          }
          /**
           * @dev Takes a calldata pointer to an Order struct and copies the decoded
           *      struct to memory as an AdvancedOrder.
           *
           * @param cdPtr A calldata pointer for the Order struct.
           *
           * @return mPtr A memory pointer to the AdvancedOrder struct head.
           */
          function _decodeOrderAsAdvancedOrder(
              CalldataPointer cdPtr
          ) internal pure returns (MemoryPointer mPtr) {
              // Allocate memory for AdvancedOrder head and OrderParameters head.
              mPtr = malloc(AdvancedOrderPlusOrderParameters_head_size);
              // Get pointer to memory immediately after advanced order.
              MemoryPointer mPtrParameters = mPtr.offset(AdvancedOrder_head_size);
              // Write pptr for advanced order parameters.
              mPtr.write(mPtrParameters);
              // Resolve OrderParameters calldata pointer & write to allocated region.
              _decodeOrderParametersTo(cdPtr.pptr(), mPtrParameters);
              // Write default Order numerator and denominator values (i.e. 1/1).
              mPtr.offset(AdvancedOrder_numerator_offset).write(1);
              mPtr.offset(AdvancedOrder_denominator_offset).write(1);
              // Resolve signature calldata offset, use that to decode and copy from
              // calldata, and write resultant memory offset to head in memory.
              mPtr.offset(AdvancedOrder_signature_offset).write(
                  _decodeBytes(cdPtr.pptr(Order_signature_offset))
              );
              // Resolve extraData calldata offset, use that to decode and copy from
              // calldata, and write resultant memory offset to head in memory.
              mPtr.offset(AdvancedOrder_extraData_offset).write(
                  _getEmptyBytesOrArray()
              );
          }
          /**
           * @dev Takes a calldata pointer to an array of Order structs and copies the
           *      decoded array to memory as an array of AdvancedOrder structs.
           *
           * @param cdPtrLength A calldata pointer to the start of the orders array in
           *                    calldata which contains the length of the array.
           *
           * @return mPtrLength A memory pointer to the start of the array of advanced
           *                    orders in memory which contains length of the array.
           */
          function _decodeOrdersAsAdvancedOrders(
              CalldataPointer cdPtrLength
          ) internal pure returns (MemoryPointer mPtrLength) {
              // Retrieve length of array, masking to prevent potential overflow.
              uint256 arrLength = cdPtrLength.readMaskedUint256();
              unchecked {
                  // Derive offset to the tail based on one word per array element.
                  uint256 tailOffset = arrLength << OneWordShift;
                  // Add one additional word for the length and allocate memory.
                  mPtrLength = malloc(tailOffset + OneWord);
                  // Write the length of the array to memory.
                  mPtrLength.write(arrLength);
                  // Advance to first memory & calldata pointers (e.g. after length).
                  MemoryPointer mPtrHead = mPtrLength.next();
                  CalldataPointer cdPtrHead = cdPtrLength.next();
                  // Iterate over each pointer, word by word, until tail is reached.
                  for (uint256 offset = 0; offset < tailOffset; offset += OneWord) {
                      // Resolve Order calldata offset, use it to decode and copy from
                      // calldata, and write resultant AdvancedOrder offset to memory.
                      mPtrHead.offset(offset).write(
                          _decodeOrderAsAdvancedOrder(cdPtrHead.pptr(offset))
                      );
                  }
              }
          }
          /**
           * @dev Takes a calldata pointer to a criteria proof, or an array bytes32
           *      types, and copies the decoded proof to memory.
           *
           * @param cdPtrLength A calldata pointer to the start of the criteria proof
           *                    in calldata which contains the length of the array.
           *
           * @return mPtrLength A memory pointer to the start of the criteria proof
           *                    in memory which contains length of the array.
           */
          function _decodeCriteriaProof(
              CalldataPointer cdPtrLength
          ) internal pure returns (MemoryPointer mPtrLength) {
              // Retrieve length of array, masking to prevent potential overflow.
              uint256 arrLength = cdPtrLength.readMaskedUint256();
              unchecked {
                  // Derive array size based on one word per array element and length.
                  uint256 arrSize = (arrLength + 1) << OneWordShift;
                  // Allocate memory equal to the array size.
                  mPtrLength = malloc(arrSize);
                  // Copy the array from calldata into memory.
                  cdPtrLength.copy(mPtrLength, arrSize);
              }
          }
          /**
           * @dev Takes a calldata pointer to a CriteriaResolver struct and copies the
           *      decoded struct to memory.
           *
           * @param cdPtr A calldata pointer for the CriteriaResolver struct.
           *
           * @return mPtr A memory pointer to the CriteriaResolver struct head.
           */
          function _decodeCriteriaResolver(
              CalldataPointer cdPtr
          ) internal pure returns (MemoryPointer mPtr) {
              // Allocate required memory for the CriteriaResolver head (the criteria
              // proof bytes32 array is allocated independently).
              mPtr = malloc(CriteriaResolver_head_size);
              // Decode and copy order index, side, index, and identifier from
              // calldata and write resultant memory offset to head in memory.
              cdPtr.copy(mPtr, CriteriaResolver_fixed_segment_0);
              // Resolve criteria proof calldata offset, use it to decode and copy
              // from calldata, and write resultant memory offset to head in memory.
              mPtr.offset(CriteriaResolver_criteriaProof_offset).write(
                  _decodeCriteriaProof(
                      cdPtr.pptr(CriteriaResolver_criteriaProof_offset)
                  )
              );
          }
          /**
           * @dev Takes an array of criteria resolvers from calldata and copies it
           *      into memory.
           *
           * @param cdPtrLength A calldata pointer to the start of the criteria
           *                    resolver array in calldata which contains the length
           *                    of the array.
           *
           * @return mPtrLength A memory pointer to the start of the criteria resolver
           *                    array in memory which contains the length of the
           *                    array.
           */
          function _decodeCriteriaResolvers(
              CalldataPointer cdPtrLength
          ) internal pure returns (MemoryPointer mPtrLength) {
              // Retrieve length of array, masking to prevent potential overflow.
              uint256 arrLength = cdPtrLength.readMaskedUint256();
              unchecked {
                  // Derive offset to the tail based on one word per array element.
                  uint256 tailOffset = arrLength << OneWordShift;
                  // Add one additional word for the length and allocate memory.
                  mPtrLength = malloc(tailOffset + OneWord);
                  // Write the length of the array to memory.
                  mPtrLength.write(arrLength);
                  // Advance to first memory & calldata pointers (e.g. after length).
                  MemoryPointer mPtrHead = mPtrLength.next();
                  CalldataPointer cdPtrHead = cdPtrLength.next();
                  // Iterate over each pointer, word by word, until tail is reached.
                  for (uint256 offset = 0; offset < tailOffset; offset += OneWord) {
                      // Resolve CriteriaResolver calldata offset, use it to decode
                      // and copy from calldata, and write resultant memory offset.
                      mPtrHead.offset(offset).write(
                          _decodeCriteriaResolver(cdPtrHead.pptr(offset))
                      );
                  }
              }
          }
          /**
           * @dev Takes an array of orders from calldata and copies it into memory.
           *
           * @param cdPtrLength A calldata pointer to the start of the orders array in
           *                    calldata which contains the length of the array.
           *
           * @return mPtrLength A memory pointer to the start of the orders array
           *                    in memory which contains the length of the array.
           */
          function _decodeOrders(
              CalldataPointer cdPtrLength
          ) internal pure returns (MemoryPointer mPtrLength) {
              // Retrieve length of array, masking to prevent potential overflow.
              uint256 arrLength = cdPtrLength.readMaskedUint256();
              unchecked {
                  // Derive offset to the tail based on one word per array element.
                  uint256 tailOffset = arrLength << OneWordShift;
                  // Add one additional word for the length and allocate memory.
                  mPtrLength = malloc(tailOffset + OneWord);
                  // Write the length of the array to memory.
                  mPtrLength.write(arrLength);
                  // Advance to first memory & calldata pointers (e.g. after length).
                  MemoryPointer mPtrHead = mPtrLength.next();
                  CalldataPointer cdPtrHead = cdPtrLength.next();
                  // Iterate over each pointer, word by word, until tail is reached.
                  for (uint256 offset = 0; offset < tailOffset; offset += OneWord) {
                      // Resolve Order calldata offset, use it to decode and copy
                      // from calldata, and write resultant memory offset.
                      mPtrHead.offset(offset).write(
                          _decodeOrder(cdPtrHead.pptr(offset))
                      );
                  }
              }
          }
          /**
           * @dev Takes an array of fulfillment components from calldata and copies it
           *      into memory.
           *
           * @param cdPtrLength A calldata pointer to the start of the fulfillment
           *                    components array in calldata which contains the length
           *                    of the array.
           *
           * @return mPtrLength A memory pointer to the start of the fulfillment
           *                    components array in memory which contains the length
           *                    of the array.
           */
          function _decodeFulfillmentComponents(
              CalldataPointer cdPtrLength
          ) internal pure returns (MemoryPointer mPtrLength) {
              assembly {
                  let arrLength := and(calldataload(cdPtrLength), OffsetOrLengthMask)
                  // Get the current free memory pointer.
                  mPtrLength := mload(FreeMemoryPointerSlot)
                  mstore(mPtrLength, arrLength)
                  let mPtrHead := add(mPtrLength, OneWord)
                  let mPtrTail := add(mPtrHead, shl(OneWordShift, arrLength))
                  let mPtrTailNext := mPtrTail
                  calldatacopy(
                      mPtrTail,
                      add(cdPtrLength, OneWord),
                      shl(FulfillmentComponent_mem_tail_size_shift, arrLength)
                  )
                  let mPtrHeadNext := mPtrHead
                  for {
                  } lt(mPtrHeadNext, mPtrTail) {
                  } {
                      mstore(mPtrHeadNext, mPtrTailNext)
                      mPtrHeadNext := add(mPtrHeadNext, OneWord)
                      mPtrTailNext := add(
                          mPtrTailNext,
                          FulfillmentComponent_mem_tail_size
                      )
                  }
                  // Update the free memory pointer.
                  mstore(FreeMemoryPointerSlot, mPtrTailNext)
              }
          }
          /**
           * @dev Takes a nested array of fulfillment components from calldata and
           *      copies it into memory.
           *
           * @param cdPtrLength A calldata pointer to the start of the nested
           *                    fulfillment components array in calldata which
           *                    contains the length of the array.
           *
           * @return mPtrLength A memory pointer to the start of the nested
           *                    fulfillment components array in memory which
           *                    contains the length of the array.
           */
          function _decodeNestedFulfillmentComponents(
              CalldataPointer cdPtrLength
          ) internal pure returns (MemoryPointer mPtrLength) {
              // Retrieve length of array, masking to prevent potential overflow.
              uint256 arrLength = cdPtrLength.readMaskedUint256();
              unchecked {
                  // Derive offset to the tail based on one word per array element.
                  uint256 tailOffset = arrLength << OneWordShift;
                  // Add one additional word for the length and allocate memory.
                  mPtrLength = malloc(tailOffset + OneWord);
                  // Write the length of the array to memory.
                  mPtrLength.write(arrLength);
                  // Advance to first memory & calldata pointers (e.g. after length).
                  MemoryPointer mPtrHead = mPtrLength.next();
                  CalldataPointer cdPtrHead = cdPtrLength.next();
                  // Iterate over each pointer, word by word, until tail is reached.
                  for (uint256 offset = 0; offset < tailOffset; offset += OneWord) {
                      // Resolve FulfillmentComponents array calldata offset, use it
                      // to decode and copy from calldata, and write memory offset.
                      mPtrHead.offset(offset).write(
                          _decodeFulfillmentComponents(cdPtrHead.pptr(offset))
                      );
                  }
              }
          }
          /**
           * @dev Takes an array of advanced orders from calldata and copies it into
           *      memory.
           *
           * @param cdPtrLength A calldata pointer to the start of the advanced orders
           *                    array in calldata which contains the length of the
           *                    array.
           *
           * @return mPtrLength A memory pointer to the start of the advanced orders
           *                    array in memory which contains the length of the
           *                    array.
           */
          function _decodeAdvancedOrders(
              CalldataPointer cdPtrLength
          ) internal pure returns (MemoryPointer mPtrLength) {
              // Retrieve length of array, masking to prevent potential overflow.
              uint256 arrLength = cdPtrLength.readMaskedUint256();
              unchecked {
                  // Derive offset to the tail based on one word per array element.
                  uint256 tailOffset = arrLength << OneWordShift;
                  // Add one additional word for the length and allocate memory.
                  mPtrLength = malloc(tailOffset + OneWord);
                  // Write the length of the array to memory.
                  mPtrLength.write(arrLength);
                  // Advance to first memory & calldata pointers (e.g. after length).
                  MemoryPointer mPtrHead = mPtrLength.next();
                  CalldataPointer cdPtrHead = cdPtrLength.next();
                  // Iterate over each pointer, word by word, until tail is reached.
                  for (uint256 offset = 0; offset < tailOffset; offset += OneWord) {
                      // Resolve AdvancedOrder calldata offset, use it to decode and
                      // copy from calldata, and write resultant memory offset.
                      mPtrHead.offset(offset).write(
                          _decodeAdvancedOrder(cdPtrHead.pptr(offset))
                      );
                  }
              }
          }
          /**
           * @dev Takes a calldata pointer to a Fulfillment struct and copies the
           *      decoded struct to memory.
           *
           * @param cdPtr A calldata pointer for the Fulfillment struct.
           *
           * @return mPtr A memory pointer to the Fulfillment struct head.
           */
          function _decodeFulfillment(
              CalldataPointer cdPtr
          ) internal pure returns (MemoryPointer mPtr) {
              // Allocate required memory for the Fulfillment head (the fulfillment
              // components arrays are allocated independently).
              mPtr = malloc(Fulfillment_head_size);
              // Resolve offerComponents calldata offset, use it to decode and copy
              // from calldata, and write resultant memory offset to head in memory.
              mPtr.write(_decodeFulfillmentComponents(cdPtr.pptr()));
              // Resolve considerationComponents calldata offset, use it to decode and
              // copy from calldata, and write resultant memory offset to memory head.
              mPtr.offset(Fulfillment_considerationComponents_offset).write(
                  _decodeFulfillmentComponents(
                      cdPtr.pptr(Fulfillment_considerationComponents_offset)
                  )
              );
          }
          /**
           * @dev Takes an array of fulfillments from calldata and copies it into
           *      memory.
           *
           * @param cdPtrLength A calldata pointer to the start of the fulfillments
           *                    array in calldata which contains the length of the
           *                    array.
           *
           * @return mPtrLength A memory pointer to the start of the fulfillments
           *                    array in memory which contains the length of the
           *                    array.
           */
          function _decodeFulfillments(
              CalldataPointer cdPtrLength
          ) internal pure returns (MemoryPointer mPtrLength) {
              // Retrieve length of array, masking to prevent potential overflow.
              uint256 arrLength = cdPtrLength.readMaskedUint256();
              unchecked {
                  // Derive offset to the tail based on one word per array element.
                  uint256 tailOffset = arrLength << OneWordShift;
                  // Add one additional word for the length and allocate memory.
                  mPtrLength = malloc(tailOffset + OneWord);
                  // Write the length of the array to memory.
                  mPtrLength.write(arrLength);
                  // Advance to first memory & calldata pointers (e.g. after length).
                  MemoryPointer mPtrHead = mPtrLength.next();
                  CalldataPointer cdPtrHead = cdPtrLength.next();
                  // Iterate over each pointer, word by word, until tail is reached.
                  for (uint256 offset = 0; offset < tailOffset; offset += OneWord) {
                      // Resolve Fulfillment calldata offset, use it to decode and
                      // copy from calldata, and write resultant memory offset.
                      mPtrHead.offset(offset).write(
                          _decodeFulfillment(cdPtrHead.pptr(offset))
                      );
                  }
              }
          }
          /**
           * @dev Takes a calldata pointer to an OrderComponents struct and copies the
           *      decoded struct to memory as an OrderParameters struct (with the
           *      totalOriginalConsiderationItems value set equal to the length of the
           *      supplied consideration array).
           *
           * @param cdPtr A calldata pointer for the OrderComponents struct.
           *
           * @return mPtr A memory pointer to the OrderParameters struct head.
           */
          function _decodeOrderComponentsAsOrderParameters(
              CalldataPointer cdPtr
          ) internal pure returns (MemoryPointer mPtr) {
              // Allocate memory for the OrderParameters head.
              mPtr = malloc(OrderParameters_head_size);
              // Copy the full OrderComponents head from calldata to memory.
              cdPtr.copy(mPtr, OrderComponents_OrderParameters_common_head_size);
              // Resolve the offer calldata offset, use that to decode and copy offer
              // from calldata, and write resultant memory offset to head in memory.
              mPtr.offset(OrderParameters_offer_head_offset).write(
                  _decodeOffer(cdPtr.pptr(OrderParameters_offer_head_offset))
              );
              // Resolve consideration calldata offset, use that to copy consideration
              // from calldata, and write resultant memory offset to head in memory.
              MemoryPointer consideration = _decodeConsideration(
                  cdPtr.pptr(OrderParameters_consideration_head_offset)
              );
              mPtr.offset(OrderParameters_consideration_head_offset).write(
                  consideration
              );
              // Write masked consideration length to totalOriginalConsiderationItems.
              mPtr
                  .offset(OrderParameters_totalOriginalConsiderationItems_offset)
                  .write(consideration.readUint256());
          }
          /**
           * @dev Decodes the returndata from a call to generateOrder, or returns
           *      empty arrays and a boolean signifying that the returndata does not
           *      adhere to a valid encoding scheme if it cannot be decoded.
           *
           * @return invalidEncoding A boolean signifying whether the returndata has
           *                         an invalid encoding.
           * @return offer           The decoded offer array.
           * @return consideration   The decoded consideration array.
           */
          function _decodeGenerateOrderReturndata()
              internal
              pure
              returns (
                  uint256 invalidEncoding,
                  MemoryPointer offer,
                  MemoryPointer consideration
              )
          {
              assembly {
                  // Check that returndatasize is at least four words: offerOffset,
                  // considerationOffset, offerLength, & considerationLength
                  invalidEncoding := lt(returndatasize(), FourWords)
                  let offsetOffer
                  let offsetConsideration
                  let offerLength
                  let considerationLength
                  // Proceed if enough returndata is present to continue evaluation.
                  if iszero(invalidEncoding) {
                      // Copy first two words of returndata (the offsets to offer and
                      // consideration array lengths) to scratch space.
                      returndatacopy(0, 0, TwoWords)
                      offsetOffer := mload(0)
                      offsetConsideration := mload(OneWord)
                      // If valid length, check that offsets are within returndata.
                      let invalidOfferOffset := gt(offsetOffer, returndatasize())
                      let invalidConsiderationOffset := gt(
                          offsetConsideration,
                          returndatasize()
                      )
                      // Only proceed if length (and thus encoding) is valid so far.
                      invalidEncoding := or(
                          invalidOfferOffset,
                          invalidConsiderationOffset
                      )
                      if iszero(invalidEncoding) {
                          // Copy length of offer array to scratch space.
                          returndatacopy(0, offsetOffer, OneWord)
                          offerLength := mload(0)
                          // Copy length of consideration array to scratch space.
                          returndatacopy(OneWord, offsetConsideration, OneWord)
                          considerationLength := mload(OneWord)
                          {
                              // Calculate total size of offer & consideration arrays.
                              let totalOfferSize := shl(
                                  SpentItem_size_shift,
                                  offerLength
                              )
                              let totalConsiderationSize := mul(
                                  ReceivedItem_size,
                                  considerationLength
                              )
                              // Add 4 words to total size to cover the offset and
                              // length fields of the two arrays.
                              let totalSize := add(
                                  FourWords,
                                  add(totalOfferSize, totalConsiderationSize)
                              )
                              // Don't continue if returndatasize exceeds 65535 bytes
                              // or is greater than the calculated size.
                              invalidEncoding := or(
                                  gt(
                                      or(offerLength, considerationLength),
                                      generateOrder_maximum_returndatasize
                                  ),
                                  gt(totalSize, returndatasize())
                              )
                              // Set first word of scratch space to 0 so length of
                              // offer/consideration are set to 0 on invalid encoding.
                              mstore(0, 0)
                          }
                      }
                  }
                  if iszero(invalidEncoding) {
                      offer := copySpentItemsAsOfferItems(
                          add(offsetOffer, OneWord),
                          offerLength
                      )
                      consideration := copyReceivedItemsAsConsiderationItems(
                          add(offsetConsideration, OneWord),
                          considerationLength
                      )
                  }
                  function copySpentItemsAsOfferItems(rdPtrHead, length)
                      -> mPtrLength
                  {
                      // Retrieve the current free memory pointer.
                      mPtrLength := mload(FreeMemoryPointerSlot)
                      // Allocate memory for the array.
                      mstore(
                          FreeMemoryPointerSlot,
                          add(
                              mPtrLength,
                              add(OneWord, mul(length, OfferItem_size_with_length))
                          )
                      )
                      // Write the length of the array to the start of free memory.
                      mstore(mPtrLength, length)
                      // Use offset from length to minimize stack depth.
                      let headOffsetFromLength := OneWord
                      let headSizeWithLength := shl(OneWordShift, add(1, length))
                      let mPtrTailNext := add(mPtrLength, headSizeWithLength)
                      // Iterate over each element.
                      for {
                      } lt(headOffsetFromLength, headSizeWithLength) {
                      } {
                          // Write the memory pointer to the accompanying head offset.
                          mstore(add(mPtrLength, headOffsetFromLength), mPtrTailNext)
                          // Copy itemType, token, identifier and amount.
                          returndatacopy(mPtrTailNext, rdPtrHead, SpentItem_size)
                          // Copy amount to endAmount.
                          mstore(
                              add(mPtrTailNext, Common_endAmount_offset),
                              mload(add(mPtrTailNext, Common_amount_offset))
                          )
                          // Update read pointer, next tail pointer, and head offset.
                          rdPtrHead := add(rdPtrHead, SpentItem_size)
                          mPtrTailNext := add(mPtrTailNext, OfferItem_size)
                          headOffsetFromLength := add(headOffsetFromLength, OneWord)
                      }
                  }
                  function copyReceivedItemsAsConsiderationItems(rdPtrHead, length)
                      -> mPtrLength
                  {
                      // Retrieve the current free memory pointer.
                      mPtrLength := mload(FreeMemoryPointerSlot)
                      // Allocate memory for the array.
                      mstore(
                          FreeMemoryPointerSlot,
                          add(
                              mPtrLength,
                              add(
                                  OneWord,
                                  mul(length, ConsiderationItem_size_with_length)
                              )
                          )
                      )
                      // Write the length of the array to the start of free memory.
                      mstore(mPtrLength, length)
                      // Use offset from length to minimize stack depth.
                      let headOffsetFromLength := OneWord
                      let headSizeWithLength := shl(OneWordShift, add(1, length))
                      let mPtrTailNext := add(mPtrLength, headSizeWithLength)
                      // Iterate over each element.
                      for {
                      } lt(headOffsetFromLength, headSizeWithLength) {
                      } {
                          // Write the memory pointer to the accompanying head offset.
                          mstore(add(mPtrLength, headOffsetFromLength), mPtrTailNext)
                          // Copy itemType, token, identifier and amount.
                          returndatacopy(
                              mPtrTailNext,
                              rdPtrHead,
                              ReceivedItem_size_excluding_recipient
                          )
                          // Copy amount and recipient.
                          returndatacopy(
                              add(mPtrTailNext, Common_endAmount_offset),
                              add(rdPtrHead, Common_amount_offset),
                              TwoWords
                          )
                          // Update read pointer, next tail pointer, and head offset.
                          rdPtrHead := add(rdPtrHead, ReceivedItem_size)
                          mPtrTailNext := add(mPtrTailNext, ConsiderationItem_size)
                          headOffsetFromLength := add(headOffsetFromLength, OneWord)
                      }
                  }
              }
          }
          /**
           * @dev Converts a function returning _decodeGenerateOrderReturndata types
           *      into a function returning offer and consideration types.
           *
           * @param inFn The input function, taking no arguments and returning an
           *             error buffer, spent item array, and received item array.
           *
           * @return outFn The output function, taking no arguments and returning an
           *               error buffer, offer array, and consideration array.
           */
          function _convertGetGeneratedOrderResult(
              function()
                  internal
                  pure
                  returns (uint256, MemoryPointer, MemoryPointer) inFn
          )
              internal
              pure
              returns (
                  function()
                      internal
                      pure
                      returns (
                          uint256,
                          OfferItem[] memory,
                          ConsiderationItem[] memory
                      ) outFn
              )
          {
              assembly {
                  outFn := inFn
              }
          }
          /**
           * @dev Converts a function taking ReceivedItem, address, bytes32, and bytes
           *      types (e.g. the _transfer function) into a function taking
           *      OfferItem, address, bytes32, and bytes types.
           *
           * @param inFn The input function, taking ReceivedItem, address, bytes32,
           *             and bytes types (e.g. the _transfer function).
           *
           * @return outFn The output function, taking OfferItem, address, bytes32,
           *               and bytes types.
           */
          function _toOfferItemInput(
              function(ReceivedItem memory, address, bytes32, bytes memory)
                  internal inFn
          )
              internal
              pure
              returns (
                  function(OfferItem memory, address, bytes32, bytes memory)
                      internal outFn
              )
          {
              assembly {
                  outFn := inFn
              }
          }
          /**
           * @dev Converts a function taking ReceivedItem, address, bytes32, and bytes
           *      types (e.g. the _transfer function) into a function taking
           *      ConsiderationItem, address, bytes32, and bytes types.
           *
           * @param inFn The input function, taking ReceivedItem, address, bytes32,
           *             and bytes types (e.g. the _transfer function).
           *
           * @return outFn The output function, taking ConsiderationItem, address,
           *               bytes32, and bytes types.
           */
          function _toConsiderationItemInput(
              function(ReceivedItem memory, address, bytes32, bytes memory)
                  internal inFn
          )
              internal
              pure
              returns (
                  function(ConsiderationItem memory, address, bytes32, bytes memory)
                      internal outFn
              )
          {
              assembly {
                  outFn := inFn
              }
          }
          /**
           * @dev Converts a function taking a calldata pointer and returning a memory
           *      pointer into a function taking that calldata pointer and returning
           *      an OrderParameters type.
           *
           * @param inFn The input function, taking an arbitrary calldata pointer and
           *             returning an arbitrary memory pointer.
           *
           * @return outFn The output function, taking an arbitrary calldata pointer
           *               and returning an OrderParameters type.
           */
          function _toOrderParametersReturnType(
              function(CalldataPointer) internal pure returns (MemoryPointer) inFn
          )
              internal
              pure
              returns (
                  function(CalldataPointer)
                      internal
                      pure
                      returns (OrderParameters memory) outFn
              )
          {
              assembly {
                  outFn := inFn
              }
          }
          /**
           * @dev Converts a function taking a calldata pointer and returning a memory
           *      pointer into a function taking that calldata pointer and returning
           *      an AdvancedOrder type.
           *
           * @param inFn The input function, taking an arbitrary calldata pointer and
           *             returning an arbitrary memory pointer.
           *
           * @return outFn The output function, taking an arbitrary calldata pointer
           *               and returning an AdvancedOrder type.
           */
          function _toAdvancedOrderReturnType(
              function(CalldataPointer) internal pure returns (MemoryPointer) inFn
          )
              internal
              pure
              returns (
                  function(CalldataPointer)
                      internal
                      pure
                      returns (AdvancedOrder memory) outFn
              )
          {
              assembly {
                  outFn := inFn
              }
          }
          /**
           * @dev Converts a function taking a calldata pointer and returning a memory
           *      pointer into a function taking that calldata pointer and returning
           *      a dynamic array of CriteriaResolver types.
           *
           * @param inFn The input function, taking an arbitrary calldata pointer and
           *             returning an arbitrary memory pointer.
           *
           * @return outFn The output function, taking an arbitrary calldata pointer
           *               and returning a dynamic array of CriteriaResolver types.
           */
          function _toCriteriaResolversReturnType(
              function(CalldataPointer) internal pure returns (MemoryPointer) inFn
          )
              internal
              pure
              returns (
                  function(CalldataPointer)
                      internal
                      pure
                      returns (CriteriaResolver[] memory) outFn
              )
          {
              assembly {
                  outFn := inFn
              }
          }
          /**
           * @dev Converts a function taking a calldata pointer and returning a memory
           *      pointer into a function taking that calldata pointer and returning
           *      a dynamic array of Order types.
           *
           * @param inFn The input function, taking an arbitrary calldata pointer and
           *             returning an arbitrary memory pointer.
           *
           * @return outFn The output function, taking an arbitrary calldata pointer
           *               and returning a dynamic array of Order types.
           */
          function _toOrdersReturnType(
              function(CalldataPointer) internal pure returns (MemoryPointer) inFn
          )
              internal
              pure
              returns (
                  function(CalldataPointer)
                      internal
                      pure
                      returns (Order[] memory) outFn
              )
          {
              assembly {
                  outFn := inFn
              }
          }
          /**
           * @dev Converts a function taking a calldata pointer and returning a memory
           *      pointer into a function taking that calldata pointer and returning
           *      a nested dynamic array of dynamic arrays of FulfillmentComponent
           *      types.
           *
           * @param inFn The input function, taking an arbitrary calldata pointer and
           *             returning an arbitrary memory pointer.
           *
           * @return outFn The output function, taking an arbitrary calldata pointer
           *               and returning a nested dynamic array of dynamic arrays of
           *               FulfillmentComponent types.
           */
          function _toNestedFulfillmentComponentsReturnType(
              function(CalldataPointer) internal pure returns (MemoryPointer) inFn
          )
              internal
              pure
              returns (
                  function(CalldataPointer)
                      internal
                      pure
                      returns (FulfillmentComponent[][] memory) outFn
              )
          {
              assembly {
                  outFn := inFn
              }
          }
          /**
           * @dev Converts a function taking a calldata pointer and returning a memory
           *      pointer into a function taking that calldata pointer and returning
           *      a dynamic array of AdvancedOrder types.
           *
           * @param inFn The input function, taking an arbitrary calldata pointer and
           *             returning an arbitrary memory pointer.
           *
           * @return outFn The output function, taking an arbitrary calldata pointer
           *               and returning a dynamic array of AdvancedOrder types.
           */
          function _toAdvancedOrdersReturnType(
              function(CalldataPointer) internal pure returns (MemoryPointer) inFn
          )
              internal
              pure
              returns (
                  function(CalldataPointer)
                      internal
                      pure
                      returns (AdvancedOrder[] memory) outFn
              )
          {
              assembly {
                  outFn := inFn
              }
          }
          /**
           * @dev Converts a function taking a calldata pointer and returning a memory
           *      pointer into a function taking that calldata pointer and returning
           *      a dynamic array of Fulfillment types.
           *
           * @param inFn The input function, taking an arbitrary calldata pointer and
           *             returning an arbitrary memory pointer.
           *
           * @return outFn The output function, taking an arbitrary calldata pointer
           *               and returning a dynamic array of Fulfillment types.
           */
          function _toFulfillmentsReturnType(
              function(CalldataPointer) internal pure returns (MemoryPointer) inFn
          )
              internal
              pure
              returns (
                  function(CalldataPointer)
                      internal
                      pure
                      returns (Fulfillment[] memory) outFn
              )
          {
              assembly {
                  outFn := inFn
              }
          }
          /**
           * @dev Caches the endAmount in an offer item and replaces it with
           * a given recipient so that its memory may be reused as a temporary
           * ReceivedItem.
           *
           * @param offerItem The offer item.
           * @param recipient The recipient.
           *
           * @return originalEndAmount The original end amount.
           */
          function _replaceEndAmountWithRecipient(
              OfferItem memory offerItem,
              address recipient
          ) internal pure returns (uint256 originalEndAmount) {
              assembly {
                  // Derive the pointer to the end amount on the offer item.
                  let endAmountPtr := add(offerItem, ReceivedItem_recipient_offset)
                  // Retrieve the value of the end amount on the offer item.
                  originalEndAmount := mload(endAmountPtr)
                  // Write recipient to received item at the offer end amount pointer.
                  mstore(endAmountPtr, recipient)
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.13;
      /**
       * @title ConduitControllerInterface
       * @author 0age
       * @notice ConduitControllerInterface contains all external function interfaces,
       *         structs, events, and errors for the conduit controller.
       */
      interface ConduitControllerInterface {
          /**
           * @dev Track the conduit key, current owner, new potential owner, and open
           *      channels for each deployed conduit.
           */
          struct ConduitProperties {
              bytes32 key;
              address owner;
              address potentialOwner;
              address[] channels;
              mapping(address => uint256) channelIndexesPlusOne;
          }
          /**
           * @dev Emit an event whenever a new conduit is created.
           *
           * @param conduit    The newly created conduit.
           * @param conduitKey The conduit key used to create the new conduit.
           */
          event NewConduit(address conduit, bytes32 conduitKey);
          /**
           * @dev Emit an event whenever conduit ownership is transferred.
           *
           * @param conduit       The conduit for which ownership has been
           *                      transferred.
           * @param previousOwner The previous owner of the conduit.
           * @param newOwner      The new owner of the conduit.
           */
          event OwnershipTransferred(
              address indexed conduit,
              address indexed previousOwner,
              address indexed newOwner
          );
          /**
           * @dev Emit an event whenever a conduit owner registers a new potential
           *      owner for that conduit.
           *
           * @param newPotentialOwner The new potential owner of the conduit.
           */
          event PotentialOwnerUpdated(address indexed newPotentialOwner);
          /**
           * @dev Revert with an error when attempting to create a new conduit using a
           *      conduit key where the first twenty bytes of the key do not match the
           *      address of the caller.
           */
          error InvalidCreator();
          /**
           * @dev Revert with an error when attempting to create a new conduit when no
           *      initial owner address is supplied.
           */
          error InvalidInitialOwner();
          /**
           * @dev Revert with an error when attempting to set a new potential owner
           *      that is already set.
           */
          error NewPotentialOwnerAlreadySet(
              address conduit,
              address newPotentialOwner
          );
          /**
           * @dev Revert with an error when attempting to cancel ownership transfer
           *      when no new potential owner is currently set.
           */
          error NoPotentialOwnerCurrentlySet(address conduit);
          /**
           * @dev Revert with an error when attempting to interact with a conduit that
           *      does not yet exist.
           */
          error NoConduit();
          /**
           * @dev Revert with an error when attempting to create a conduit that
           *      already exists.
           */
          error ConduitAlreadyExists(address conduit);
          /**
           * @dev Revert with an error when attempting to update channels or transfer
           *      ownership of a conduit when the caller is not the owner of the
           *      conduit in question.
           */
          error CallerIsNotOwner(address conduit);
          /**
           * @dev Revert with an error when attempting to register a new potential
           *      owner and supplying the null address.
           */
          error NewPotentialOwnerIsZeroAddress(address conduit);
          /**
           * @dev Revert with an error when attempting to claim ownership of a conduit
           *      with a caller that is not the current potential owner for the
           *      conduit in question.
           */
          error CallerIsNotNewPotentialOwner(address conduit);
          /**
           * @dev Revert with an error when attempting to retrieve a channel using an
           *      index that is out of range.
           */
          error ChannelOutOfRange(address conduit);
          /**
           * @notice Deploy a new conduit using a supplied conduit key and assigning
           *         an initial owner for the deployed conduit. Note that the first
           *         twenty bytes of the supplied conduit key must match the caller
           *         and that a new conduit cannot be created if one has already been
           *         deployed using the same conduit key.
           *
           * @param conduitKey   The conduit key used to deploy the conduit. Note that
           *                     the first twenty bytes of the conduit key must match
           *                     the caller of this contract.
           * @param initialOwner The initial owner to set for the new conduit.
           *
           * @return conduit The address of the newly deployed conduit.
           */
          function createConduit(
              bytes32 conduitKey,
              address initialOwner
          ) external returns (address conduit);
          /**
           * @notice Open or close a channel on a given conduit, thereby allowing the
           *         specified account to execute transfers against that conduit.
           *         Extreme care must be taken when updating channels, as malicious
           *         or vulnerable channels can transfer any ERC20, ERC721 and ERC1155
           *         tokens where the token holder has granted the conduit approval.
           *         Only the owner of the conduit in question may call this function.
           *
           * @param conduit The conduit for which to open or close the channel.
           * @param channel The channel to open or close on the conduit.
           * @param isOpen  A boolean indicating whether to open or close the channel.
           */
          function updateChannel(
              address conduit,
              address channel,
              bool isOpen
          ) external;
          /**
           * @notice Initiate conduit ownership transfer by assigning a new potential
           *         owner for the given conduit. Once set, the new potential owner
           *         may call `acceptOwnership` to claim ownership of the conduit.
           *         Only the owner of the conduit in question may call this function.
           *
           * @param conduit The conduit for which to initiate ownership transfer.
           * @param newPotentialOwner The new potential owner of the conduit.
           */
          function transferOwnership(
              address conduit,
              address newPotentialOwner
          ) external;
          /**
           * @notice Clear the currently set potential owner, if any, from a conduit.
           *         Only the owner of the conduit in question may call this function.
           *
           * @param conduit The conduit for which to cancel ownership transfer.
           */
          function cancelOwnershipTransfer(address conduit) external;
          /**
           * @notice Accept ownership of a supplied conduit. Only accounts that the
           *         current owner has set as the new potential owner may call this
           *         function.
           *
           * @param conduit The conduit for which to accept ownership.
           */
          function acceptOwnership(address conduit) external;
          /**
           * @notice Retrieve the current owner of a deployed conduit.
           *
           * @param conduit The conduit for which to retrieve the associated owner.
           *
           * @return owner The owner of the supplied conduit.
           */
          function ownerOf(address conduit) external view returns (address owner);
          /**
           * @notice Retrieve the conduit key for a deployed conduit via reverse
           *         lookup.
           *
           * @param conduit The conduit for which to retrieve the associated conduit
           *                key.
           *
           * @return conduitKey The conduit key used to deploy the supplied conduit.
           */
          function getKey(address conduit) external view returns (bytes32 conduitKey);
          /**
           * @notice Derive the conduit associated with a given conduit key and
           *         determine whether that conduit exists (i.e. whether it has been
           *         deployed).
           *
           * @param conduitKey The conduit key used to derive the conduit.
           *
           * @return conduit The derived address of the conduit.
           * @return exists  A boolean indicating whether the derived conduit has been
           *                 deployed or not.
           */
          function getConduit(
              bytes32 conduitKey
          ) external view returns (address conduit, bool exists);
          /**
           * @notice Retrieve the potential owner, if any, for a given conduit. The
           *         current owner may set a new potential owner via
           *         `transferOwnership` and that owner may then accept ownership of
           *         the conduit in question via `acceptOwnership`.
           *
           * @param conduit The conduit for which to retrieve the potential owner.
           *
           * @return potentialOwner The potential owner, if any, for the conduit.
           */
          function getPotentialOwner(
              address conduit
          ) external view returns (address potentialOwner);
          /**
           * @notice Retrieve the status (either open or closed) of a given channel on
           *         a conduit.
           *
           * @param conduit The conduit for which to retrieve the channel status.
           * @param channel The channel for which to retrieve the status.
           *
           * @return isOpen The status of the channel on the given conduit.
           */
          function getChannelStatus(
              address conduit,
              address channel
          ) external view returns (bool isOpen);
          /**
           * @notice Retrieve the total number of open channels for a given conduit.
           *
           * @param conduit The conduit for which to retrieve the total channel count.
           *
           * @return totalChannels The total number of open channels for the conduit.
           */
          function getTotalChannels(
              address conduit
          ) external view returns (uint256 totalChannels);
          /**
           * @notice Retrieve an open channel at a specific index for a given conduit.
           *         Note that the index of a channel can change as a result of other
           *         channels being closed on the conduit.
           *
           * @param conduit      The conduit for which to retrieve the open channel.
           * @param channelIndex The index of the channel in question.
           *
           * @return channel The open channel, if any, at the specified channel index.
           */
          function getChannel(
              address conduit,
              uint256 channelIndex
          ) external view returns (address channel);
          /**
           * @notice Retrieve all open channels for a given conduit. Note that calling
           *         this function for a conduit with many channels will revert with
           *         an out-of-gas error.
           *
           * @param conduit The conduit for which to retrieve open channels.
           *
           * @return channels An array of open channels on the given conduit.
           */
          function getChannels(
              address conduit
          ) external view returns (address[] memory channels);
          /**
           * @dev Retrieve the conduit creation code and runtime code hashes.
           */
          function getConduitCodeHashes()
              external
              view
              returns (bytes32 creationCodeHash, bytes32 runtimeCodeHash);
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.13;
      /**
       * @title SignatureVerificationErrors
       * @author 0age
       * @notice SignatureVerificationErrors contains all errors related to signature
       *         verification.
       */
      interface SignatureVerificationErrors {
          /**
           * @dev Revert with an error when a signature that does not contain a v
           *      value of 27 or 28 has been supplied.
           *
           * @param v The invalid v value.
           */
          error BadSignatureV(uint8 v);
          /**
           * @dev Revert with an error when the signer recovered by the supplied
           *      signature does not match the offerer or an allowed EIP-1271 signer
           *      as specified by the offerer in the event they are a contract.
           */
          error InvalidSigner();
          /**
           * @dev Revert with an error when a signer cannot be recovered from the
           *      supplied signature.
           */
          error InvalidSignature();
          /**
           * @dev Revert with an error when an EIP-1271 call to an account fails.
           */
          error BadContractSignature();
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.13;
      /*
       * -------------------------- Disambiguation & Other Notes ---------------------
       *    - The term "head" is used as it is in the documentation for ABI encoding,
       *      but only in reference to dynamic types, i.e. it always refers to the
       *      offset or pointer to the body of a dynamic type. In calldata, the head
       *      is always an offset (relative to the parent object), while in memory,
       *      the head is always the pointer to the body. More information found here:
       *      https://docs.soliditylang.org/en/v0.8.17/abi-spec.html#argument-encoding
       *        - Note that the length of an array is separate from and precedes the
       *          head of the array.
       *
       *    - The term "body" is used in place of the term "head" used in the ABI
       *      documentation. It refers to the start of the data for a dynamic type,
       *      e.g. the first word of a struct or the first word of the first element
       *      in an array.
       *
       *    - The term "pointer" is used to describe the absolute position of a value
       *      and never an offset relative to another value.
       *        - The suffix "_ptr" refers to a memory pointer.
       *        - The suffix "_cdPtr" refers to a calldata pointer.
       *
       *    - The term "offset" is used to describe the position of a value relative
       *      to some parent value. For example, OrderParameters_conduit_offset is the
       *      offset to the "conduit" value in the OrderParameters struct relative to
       *      the start of the body.
       *        - Note: Offsets are used to derive pointers.
       *
       *    - Some structs have pointers defined for all of their fields in this file.
       *      Lines which are commented out are fields that are not used in the
       *      codebase but have been left in for readability.
       */
      uint256 constant ThirtyOneBytes = 0x1f;
      uint256 constant OneWord = 0x20;
      uint256 constant TwoWords = 0x40;
      uint256 constant ThreeWords = 0x60;
      uint256 constant OneWordShift = 0x5;
      uint256 constant TwoWordsShift = 0x6;
      uint256 constant FreeMemoryPointerSlot = 0x40;
      uint256 constant ZeroSlot = 0x60;
      uint256 constant DefaultFreeMemoryPointer = 0x80;
      uint256 constant Slot0x80 = 0x80;
      uint256 constant Slot0xA0 = 0xa0;
      uint256 constant Slot0xC0 = 0xc0;
      uint256 constant Generic_error_selector_offset = 0x1c;
      // abi.encodeWithSignature("transferFrom(address,address,uint256)")
      uint256 constant ERC20_transferFrom_signature = (
          0x23b872dd00000000000000000000000000000000000000000000000000000000
      );
      uint256 constant ERC20_transferFrom_sig_ptr = 0x0;
      uint256 constant ERC20_transferFrom_from_ptr = 0x04;
      uint256 constant ERC20_transferFrom_to_ptr = 0x24;
      uint256 constant ERC20_transferFrom_amount_ptr = 0x44;
      uint256 constant ERC20_transferFrom_length = 0x64; // 4 + 32 * 3 == 100
      // abi.encodeWithSignature(
      //     "safeTransferFrom(address,address,uint256,uint256,bytes)"
      // )
      uint256 constant ERC1155_safeTransferFrom_signature = (
          0xf242432a00000000000000000000000000000000000000000000000000000000
      );
      uint256 constant ERC1155_safeTransferFrom_sig_ptr = 0x0;
      uint256 constant ERC1155_safeTransferFrom_from_ptr = 0x04;
      uint256 constant ERC1155_safeTransferFrom_to_ptr = 0x24;
      uint256 constant ERC1155_safeTransferFrom_id_ptr = 0x44;
      uint256 constant ERC1155_safeTransferFrom_amount_ptr = 0x64;
      uint256 constant ERC1155_safeTransferFrom_data_offset_ptr = 0x84;
      uint256 constant ERC1155_safeTransferFrom_data_length_ptr = 0xa4;
      uint256 constant ERC1155_safeTransferFrom_length = 0xc4; // 4 + 32 * 6 == 196
      uint256 constant ERC1155_safeTransferFrom_data_length_offset = 0xa0;
      // abi.encodeWithSignature(
      //     "safeBatchTransferFrom(address,address,uint256[],uint256[],bytes)"
      // )
      uint256 constant ERC1155_safeBatchTransferFrom_signature = (
          0x2eb2c2d600000000000000000000000000000000000000000000000000000000
      );
      // bytes4 constant ERC1155_safeBatchTransferFrom_selector = bytes4(
      //     bytes32(ERC1155_safeBatchTransferFrom_signature)
      // );
      uint256 constant ERC721_transferFrom_signature = (
          0x23b872dd00000000000000000000000000000000000000000000000000000000
      );
      uint256 constant ERC721_transferFrom_sig_ptr = 0x0;
      uint256 constant ERC721_transferFrom_from_ptr = 0x04;
      uint256 constant ERC721_transferFrom_to_ptr = 0x24;
      uint256 constant ERC721_transferFrom_id_ptr = 0x44;
      uint256 constant ERC721_transferFrom_length = 0x64; // 4 + 32 * 3 == 100
      /*
       *  error NoContract(address account)
       *    - Defined in TokenTransferrerErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       *    - 0x00: account
       * Revert buffer is memory[0x1c:0x40]
       */
      uint256 constant NoContract_error_selector = 0x5f15d672;
      uint256 constant NoContract_error_account_ptr = 0x20;
      uint256 constant NoContract_error_length = 0x24;
      /*
       *  error TokenTransferGenericFailure(
       *      address token,
       *      address from,
       *      address to,
       *      uint256 identifier,
       *      uint256 amount
       *  )
       *    - Defined in TokenTransferrerErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       *    - 0x20: token
       *    - 0x40: from
       *    - 0x60: to
       *    - 0x80: identifier
       *    - 0xa0: amount
       * Revert buffer is memory[0x1c:0xc0]
       */
      uint256 constant TokenTransferGenericFailure_error_selector = 0xf486bc87;
      uint256 constant TokenTransferGenericFailure_error_token_ptr = 0x20;
      uint256 constant TokenTransferGenericFailure_error_from_ptr = 0x40;
      uint256 constant TokenTransferGenericFailure_error_to_ptr = 0x60;
      uint256 constant TokenTransferGenericFailure_error_identifier_ptr = 0x80;
      uint256 constant TokenTransferGenericFailure_err_identifier_ptr = 0x80;
      uint256 constant TokenTransferGenericFailure_error_amount_ptr = 0xa0;
      uint256 constant TokenTransferGenericFailure_error_length = 0xa4;
      uint256 constant ExtraGasBuffer = 0x20;
      uint256 constant CostPerWord = 0x3;
      uint256 constant MemoryExpansionCoefficientShift = 0x9;
      // Values are offset by 32 bytes in order to write the token to the beginning
      // in the event of a revert
      uint256 constant BatchTransfer1155Params_ptr = 0x24;
      uint256 constant BatchTransfer1155Params_ids_head_ptr = 0x64;
      uint256 constant BatchTransfer1155Params_amounts_head_ptr = 0x84;
      uint256 constant BatchTransfer1155Params_data_head_ptr = 0xa4;
      uint256 constant BatchTransfer1155Params_data_length_basePtr = 0xc4;
      uint256 constant BatchTransfer1155Params_calldata_baseSize = 0xc4;
      uint256 constant BatchTransfer1155Params_ids_length_ptr = 0xc4;
      uint256 constant BatchTransfer1155Params_ids_length_offset = 0xa0;
      // uint256 constant BatchTransfer1155Params_amounts_length_baseOffset = 0xc0;
      // uint256 constant BatchTransfer1155Params_data_length_baseOffset = 0xe0;
      uint256 constant ConduitBatch1155Transfer_usable_head_size = 0x80;
      uint256 constant ConduitBatch1155Transfer_from_offset = 0x20;
      uint256 constant ConduitBatch1155Transfer_ids_head_offset = 0x60;
      // uint256 constant ConduitBatch1155Transfer_amounts_head_offset = 0x80;
      uint256 constant ConduitBatch1155Transfer_ids_length_offset = 0xa0;
      uint256 constant ConduitBatch1155Transfer_amounts_length_baseOffset = 0xc0;
      // uint256 constant ConduitBatch1155Transfer_calldata_baseSize = 0xc0;
      // Note: abbreviated version of above constant to adhere to line length limit.
      uint256 constant ConduitBatchTransfer_amounts_head_offset = 0x80;
      uint256 constant Invalid1155BatchTransferEncoding_ptr = 0x00;
      uint256 constant Invalid1155BatchTransferEncoding_length = 0x04;
      uint256 constant Invalid1155BatchTransferEncoding_selector = (
          0xeba2084c00000000000000000000000000000000000000000000000000000000
      );
      uint256 constant ERC1155BatchTransferGenericFailure_error_signature = (
          0xafc445e200000000000000000000000000000000000000000000000000000000
      );
      uint256 constant ERC1155BatchTransferGenericFailure_token_ptr = 0x04;
      uint256 constant ERC1155BatchTransferGenericFailure_ids_offset = 0xc0;
      /*
       *  error BadReturnValueFromERC20OnTransfer(
       *      address token, address from, address to, uint256 amount
       *  )
       *    - Defined in TokenTransferrerErrors.sol
       *  Memory layout:
       *    - 0x00: Left-padded selector (data begins at 0x1c)
       *    - 0x00: token
       *    - 0x20: from
       *    - 0x40: to
       *    - 0x60: amount
       * Revert buffer is memory[0x1c:0xa0]
       */
      uint256 constant BadReturnValueFromERC20OnTransfer_error_selector = 0x98891923;
      uint256 constant BadReturnValueFromERC20OnTransfer_error_token_ptr = 0x20;
      uint256 constant BadReturnValueFromERC20OnTransfer_error_from_ptr = 0x40;
      uint256 constant BadReturnValueFromERC20OnTransfer_error_to_ptr = 0x60;
      uint256 constant BadReturnValueFromERC20OnTransfer_error_amount_ptr = 0x80;
      uint256 constant BadReturnValueFromERC20OnTransfer_error_length = 0x84;
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.13;
      /**
       * @title ZoneInteractionErrors
       * @author 0age
       * @notice ZoneInteractionErrors contains errors related to zone interaction.
       */
      interface ZoneInteractionErrors {
          /**
           * @dev Revert with an error when attempting to fill an order that specifies
           *      a restricted submitter as its order type when not submitted by
           *      either the offerer or the order's zone or approved as valid by the
           *      zone in question via a call to `isValidOrder`.
           *
           * @param orderHash The order hash for the invalid restricted order.
           */
          error InvalidRestrictedOrder(bytes32 orderHash);
          /**
           * @dev Revert with an error when attempting to fill a contract order that
           *      fails to generate an order successfully, that does not adhere to the
           *      requirements for minimum spent or maximum received supplied by the
           *      fulfiller, or that fails the post-execution `ratifyOrder` check..
           *
           * @param orderHash The order hash for the invalid contract order.
           */
          error InvalidContractOrder(bytes32 orderHash);
      }
      

      File 2 of 4: Degenheim
      // SPDX-License-Identifier: Unlicense
      pragma solidity ^0.8.0;
      /*
      Degenheim.sol
      Written by: mousedev.eth
      */
      import "erc721a/contracts/ERC721A.sol";
      import "@openzeppelin/contracts/access/Ownable.sol";
      import "@openzeppelin/contracts/utils/Strings.sol";
      import "./MerkleWhitelist.sol";
      interface IDegenesis {
          function ownerOf(uint256 tokenId) external view returns (address owner);
      }
      interface IDegenheimRenderer {
          function tokenURI(uint256 _tokenId) external view returns (string memory);
      }
      contract Degenheim is ERC721A, Ownable, MerkleWhitelist {
          string public contractURI = "ipfs://QmQi2F99Dkg4comZzFvcXMrXrVqDeMoBLXp5vgZmo9VWbJ";
          uint256 public maxSupply = 7777;
          uint256 public maxSupplyInPublicSale = 6450;
          uint256 public numMintedInPublicSale = 0;
          uint256 public price = 0.08 ether;
          address public degenesisAddress;
          address public degenheimRendererAddress;
          struct SaleTierDetails {
              //Timing
              uint64 startTimestamp;
              uint64 endTimestamp;
              //Paused override.
              bool paused;
              //How many can be minted for a user.
              uint16 mintLimit;
          }
          mapping(uint8 => SaleTierDetails) public saleTierDetails;
          constructor() ERC721A("Degenheim", "DGNH") {
              //OG sale
              saleTierDetails[0] = SaleTierDetails({
                  startTimestamp: 1666282500,
                  endTimestamp: 10000000000000,
                  paused: false,
                  mintLimit: 2
              });
              //WL sale
              saleTierDetails[1] = SaleTierDetails({
                  startTimestamp: 1666282500,
                  endTimestamp: 10000000000000,
                  paused: false,
                  mintLimit: 1
              });
              //Collablist
              saleTierDetails[2] = SaleTierDetails({
                  startTimestamp: 1666284300,
                  endTimestamp: 10000000000000,
                  paused: false,
                  mintLimit: 1
              });
              //Public Sale
              saleTierDetails[3] = SaleTierDetails({
                  startTimestamp: 1666289700,
                  endTimestamp: 10000000000000,
                  paused: false,
                  mintLimit: 3
              });
          }
          /*
        _____ _   _ _______ ______ _____  _   _          _        ______ _    _ _   _  _____ _______ _____ ____  _   _  _____ 
       |_   _| \\ | |__   __|  ____|  __ \\| \\ | |   /\\   | |      |  ____| |  | | \\ | |/ ____|__   __|_   _/ __ \\| \\ | |/ ____|
         | | |  \\| |  | |  | |__  | |__) |  \\| |  /  \\  | |      | |__  | |  | |  \\| | |       | |    | || |  | |  \\| | (___  
         | | | . ` |  | |  |  __| |  _  /| . ` | / /\\ \\ | |      |  __| | |  | | . ` | |       | |    | || |  | | . ` |\\___ \\ 
        _| |_| |\\  |  | |  | |____| | \\ \\| |\\  |/ ____ \\| |____  | |    | |__| | |\\  | |____   | |   _| || |__| | |\\  |____) |
       |_____|_| \\_|  |_|  |______|_|  \\_\\_| \\_/_/    \\_\\______| |_|     \\____/|_| \\_|\\_____|  |_|  |_____\\____/|_| \\_|_____/ 
       */
          function _getAuxIndex(uint8 _index) internal view returns (uint8) {
              return uint8(_getAux(msg.sender) >> (_index * 8));
          }
          function _setAuxIndex(uint8 _index, uint8 _num) internal {
              //Thx to @nftdoyler for helping me with bit shifting.
              uint256 bitMask = (2**(8 * (_index + 1)) - (2**(8 * _index)));
              _setAux(
                  msg.sender,
                  uint64(
                      (_getAux(msg.sender) & ~bitMask) |
                          ((_num * (2**(8 * _index))) & bitMask)
                  )
              );
          }
          /*
       _  _  __  __ _  ____    ____  _  _  __ _   ___  ____  __  __   __ _  ____ 
      ( \\/ )(  )(  ( \\(_  _)  (  __)/ )( \\(  ( \\ / __)(_  _)(  )/  \\ (  ( \\/ ___)
      / \\/ \\ )( /    /  )(     ) _) ) \\/ (/    /( (__   )(   )((  O )/    /\\___ \\
      \\_)(_/(__)\\_)__) (__)   (__)  \\____/\\_)__) \\___) (__) (__)\\__/ \\_)__)(____/
      */
          function mintPublic(uint8 _quantity) public payable {
              require(
                  numMintedInPublicSale + _quantity <= maxSupplyInPublicSale,
                  "Max supply for public sale reached!"
              );
              require(
                  (block.timestamp >= saleTierDetails[3].startTimestamp &&
                      block.timestamp < saleTierDetails[3].endTimestamp) &&
                      !saleTierDetails[3].paused,
                  "This sale tier is not active!"
              );
              uint8 mintedAmount = _getAuxIndex(3);
              //Require they haven't minted their allocation.
              require(
                  mintedAmount + _quantity <= saleTierDetails[3].mintLimit,
                  "You've minted your allocation!"
              );
              require(msg.value >= _quantity * price, "Must send enough ether!");
              //Store they minted this many.
              _setAuxIndex(3, mintedAmount + _quantity);
              //Add this many minted to storage of minting.
              numMintedInPublicSale += _quantity;
              //Mint them their tokens.
              _mint(msg.sender, _quantity);
              return;
          }
          function mint(
              bytes32[] calldata proof,
              uint8 _saleTier,
              uint8 _quantity
          ) public payable onlyWhitelisted(proof, _saleTier) {
              //Ensure total supply doesnt exceed max supply
              require(
                  numMintedInPublicSale + _quantity <= maxSupplyInPublicSale,
                  "Max supply for public sale reached!"
              );
              require(
                  (block.timestamp >= saleTierDetails[_saleTier].startTimestamp &&
                      block.timestamp < saleTierDetails[_saleTier].endTimestamp) &&
                      !saleTierDetails[_saleTier].paused,
                  "This sale tier is not active!"
              );
              uint8 mintedAmount = _getAuxIndex(_saleTier);
              //Require they haven't minted their allocation.
              require(
                  mintedAmount + _quantity <= saleTierDetails[_saleTier].mintLimit,
                  "You've minted your allocation!"
              );
              require(_quantity > 0, "Quantity must be greater than 0.");
              require(msg.value >= _quantity * price, "Must send enough ether!");
              //Store they minted this many.
              _setAuxIndex(_saleTier, mintedAmount + _quantity);
              //Add this many minted to storage of minting.
              numMintedInPublicSale += _quantity;
              //Mint them their tokens.
              _mint(msg.sender, _quantity);
              return;
          }
          /*
         U  ___ u              _   _   U _____ u   ____          _____    _   _   _   _      ____   _____             U  ___ u  _   _    ____     
          \\/"_ \\/__        __ | \\ |"|  \\| ___"|/U |  _"\\ u      |" ___|U |"|u| | | \\ |"|  U /"___| |_ " _|     ___     \\/"_ \\/ | \\ |"|  / __"| u  
          | | | |\\"\\      /"/<|  \\| |>  |  _|"   \\| |_) |/     U| |_  u \\| |\\| |<|  \\| |> \\| | u     | |      |_"_|    | | | |<|  \\| |><\\___ \\/   
      .-,_| |_| |/\\ \\ /\\ / /\\U| |\\  |u  | |___    |  _ <       \\|  _|/   | |_| |U| |\\  |u  | |/__   /| |\\      | | .-,_| |_| |U| |\\  |u u___) |   
       \\_)-\\___/U  \\ V  V /  U|_| \\_|   |_____|   |_| \\_\\       |_|     <<\\___/  |_| \\_|    \\____| u |_|U    U/| |\\u\\_)-\\___/  |_| \\_|  |____/>>  
            \\\\  .-,_\\ /\\ /_,-.||   \\\\,-.<<   >>   //   \\\\_      )(\\\\,- (__) )(   ||   \\\\,-._// \\\\  _// \\\\_.-,_|___|_,-.  \\\\    ||   \\\\,-.)(  (__) 
           (__)  \\_)-'  '-(_/ (_")  (_/(__) (__) (__)  (__)    (__)(_/     (__)  (_")  (_/(__)(__)(__) (__)\\_)-' '-(_/  (__)   (_")  (_/(__)      
      */
          function airdropToDegenesisOwners(
              uint256 _startingPassId,
              uint256 _endingPassId,
              uint256 _quantityToAirdrop
          ) public onlyOwner {
              uint256 quantityMinting = (_endingPassId - _startingPassId) *
                  _quantityToAirdrop;
              require(
                  totalSupply() + quantityMinting <= maxSupply,
                  "Exceeds max supply!"
              );
              require(_startingPassId >= 0 && _endingPassId <= 299, "Invalid IDs");
              for (uint256 i = _startingPassId; i <= _endingPassId; i++) {
                  address thisOwner = IDegenesis(degenesisAddress).ownerOf(i);
                  _mint(thisOwner, _quantityToAirdrop);
              }
          }
          function airdrop(address[] memory _addresses) public onlyOwner {
              require(
                  totalSupply() + _addresses.length <= maxSupply,
                  "Exceeds max supply!"
              );
              for (uint256 i = 0; i < _addresses.length; i++) {
                  _mint(_addresses[i], 1);
              }
          }
          function mintTeam(uint256 _quantity, address _receiver) public onlyOwner {
              require(totalSupply() + _quantity <= maxSupply, "Max supply reached!");
              _mint(_receiver, _quantity);
          }
          function adjustSaleTierDetails(
              uint8 _index,
              SaleTierDetails calldata _saleTierDetails
          ) public onlyOwner {
              saleTierDetails[_index] = SaleTierDetails(
                  _saleTierDetails.startTimestamp,
                  _saleTierDetails.endTimestamp,
                  _saleTierDetails.paused,
                  _saleTierDetails.mintLimit
              );
          }
          function adjustSaleTierPaused(uint8 _index, bool _paused) public onlyOwner {
              saleTierDetails[_index].paused = _paused;
          }
          function adjustMaxSupply(uint256 _maxSupply) public onlyOwner {
              require(
                  _maxSupply <= 7777,
                  "Max supply can only be adjusted to lower than 7777."
              );
              maxSupply = _maxSupply;
          }
          function adjustMaxSupplyInPublicSale(uint256 _maxSupplyInPublicSale) public onlyOwner {
              require(
                  _maxSupplyInPublicSale <= maxSupply,
                  "Max supply in public sale can only be adjusted to lower than max supply."
              );
              maxSupplyInPublicSale = _maxSupplyInPublicSale;
          }
          function withdrawFunds() public onlyOwner {
              uint256 funds = address(this).balance;
              (bool succ, ) = payable(msg.sender).call{value: funds}("");
              require(succ, "transfer failed");
          }
          function setDegenesisAddress(address _degenesisAddress) public onlyOwner {
              degenesisAddress = _degenesisAddress;
          }
          function setDegenheimRendererAddress(address _degenheimRendererAddress) public onlyOwner {
              degenheimRendererAddress = _degenheimRendererAddress;
          }
          function setContractURI(string memory _contractURI) public onlyOwner {
              contractURI = _contractURI;
          }
          /*
        _____  ______          _____    ______ _    _ _   _  _____ _______ _____ ____  _   _  _____ 
       |  __ \\|  ____|   /\\   |  __ \\  |  ____| |  | | \\ | |/ ____|__   __|_   _/ __ \\| \\ | |/ ____|
       | |__) | |__     /  \\  | |  | | | |__  | |  | |  \\| | |       | |    | || |  | |  \\| | (___  
       |  _  /|  __|   / /\\ \\ | |  | | |  __| | |  | | . ` | |       | |    | || |  | | . ` |\\___ \\ 
       | | \\ \\| |____ / ____ \\| |__| | | |    | |__| | |\\  | |____   | |   _| || |__| | |\\  |____) |
       |_|  \\_\\______/_/    \\_\\_____/  |_|     \\____/|_| \\_|\\_____|  |_|  |_____\\____/|_| \\_|_____/ 
      */
          function tokenURI(uint256 _tokenId)
              public
              view
              override
              returns (string memory)
          {
              return IDegenheimRenderer(degenheimRendererAddress).tokenURI(_tokenId);
          }
      }
      //SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
      import "@openzeppelin/contracts/access/Ownable.sol";
      contract MerkleWhitelist is Ownable {
          mapping(uint256 => bytes32) public merkleRoots;
          function verifySenderExternal(
              bytes32[] calldata proof,
              uint256 _index,
              address _address
          ) external view returns (bool) {
              return
                  MerkleProof.verifyCalldata(
                      proof,
                      merkleRoots[_index],
                      keccak256(abi.encodePacked((_address)))
                  );
          }
          function setWhitelistMerkleRoot(bytes32 merkleRoot, uint256 _index)
              external
              onlyOwner
          {
              merkleRoots[_index] = merkleRoot;
          }
          modifier onlyWhitelisted(bytes32[] calldata proof, uint256 _index) {
              require(merkleRoots[_index] != bytes32(0x0), "Merkle root is unset.");
              bool whitelisted = MerkleProof.verifyCalldata(
                  proof,
                  merkleRoots[_index],
                  keccak256(abi.encodePacked((msg.sender)))
              );
              require(whitelisted, "MerkleWhitelist: Caller is not whitelisted");
              _;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
      pragma solidity ^0.8.0;
      import "../utils/Context.sol";
      /**
       * @dev Contract module which provides a basic access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * By default, the owner account will be the one that deploys the contract. This
       * can later be changed with {transferOwnership}.
       *
       * This module is used through inheritance. It will make available the modifier
       * `onlyOwner`, which can be applied to your functions to restrict their use to
       * the owner.
       */
      abstract contract Ownable is Context {
          address private _owner;
          event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
          /**
           * @dev Initializes the contract setting the deployer as the initial owner.
           */
          constructor() {
              _transferOwnership(_msgSender());
          }
          /**
           * @dev Throws if called by any account other than the owner.
           */
          modifier onlyOwner() {
              _checkOwner();
              _;
          }
          /**
           * @dev Returns the address of the current owner.
           */
          function owner() public view virtual returns (address) {
              return _owner;
          }
          /**
           * @dev Throws if the sender is not the owner.
           */
          function _checkOwner() internal view virtual {
              require(owner() == _msgSender(), "Ownable: caller is not the owner");
          }
          /**
           * @dev Leaves the contract without owner. It will not be possible to call
           * `onlyOwner` functions anymore. Can only be called by the current owner.
           *
           * NOTE: Renouncing ownership will leave the contract without an owner,
           * thereby removing any functionality that is only available to the owner.
           */
          function renounceOwnership() public virtual onlyOwner {
              _transferOwnership(address(0));
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual onlyOwner {
              require(newOwner != address(0), "Ownable: new owner is the zero address");
              _transferOwnership(newOwner);
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Internal function without access restriction.
           */
          function _transferOwnership(address newOwner) internal virtual {
              address oldOwner = _owner;
              _owner = newOwner;
              emit OwnershipTransferred(oldOwner, newOwner);
          }
      }
      // SPDX-License-Identifier: MIT
      // ERC721A Contracts v4.2.3
      // Creator: Chiru Labs
      pragma solidity ^0.8.4;
      import './IERC721A.sol';
      /**
       * @dev Interface of ERC721 token receiver.
       */
      interface ERC721A__IERC721Receiver {
          function onERC721Received(
              address operator,
              address from,
              uint256 tokenId,
              bytes calldata data
          ) external returns (bytes4);
      }
      /**
       * @title ERC721A
       *
       * @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721)
       * Non-Fungible Token Standard, including the Metadata extension.
       * Optimized for lower gas during batch mints.
       *
       * Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...)
       * starting from `_startTokenId()`.
       *
       * Assumptions:
       *
       * - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply.
       * - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256).
       */
      contract ERC721A is IERC721A {
          // Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364).
          struct TokenApprovalRef {
              address value;
          }
          // =============================================================
          //                           CONSTANTS
          // =============================================================
          // Mask of an entry in packed address data.
          uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1;
          // The bit position of `numberMinted` in packed address data.
          uint256 private constant _BITPOS_NUMBER_MINTED = 64;
          // The bit position of `numberBurned` in packed address data.
          uint256 private constant _BITPOS_NUMBER_BURNED = 128;
          // The bit position of `aux` in packed address data.
          uint256 private constant _BITPOS_AUX = 192;
          // Mask of all 256 bits in packed address data except the 64 bits for `aux`.
          uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1;
          // The bit position of `startTimestamp` in packed ownership.
          uint256 private constant _BITPOS_START_TIMESTAMP = 160;
          // The bit mask of the `burned` bit in packed ownership.
          uint256 private constant _BITMASK_BURNED = 1 << 224;
          // The bit position of the `nextInitialized` bit in packed ownership.
          uint256 private constant _BITPOS_NEXT_INITIALIZED = 225;
          // The bit mask of the `nextInitialized` bit in packed ownership.
          uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225;
          // The bit position of `extraData` in packed ownership.
          uint256 private constant _BITPOS_EXTRA_DATA = 232;
          // Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`.
          uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1;
          // The mask of the lower 160 bits for addresses.
          uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;
          // The maximum `quantity` that can be minted with {_mintERC2309}.
          // This limit is to prevent overflows on the address data entries.
          // For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309}
          // is required to cause an overflow, which is unrealistic.
          uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000;
          // The `Transfer` event signature is given by:
          // `keccak256(bytes("Transfer(address,address,uint256)"))`.
          bytes32 private constant _TRANSFER_EVENT_SIGNATURE =
              0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;
          // =============================================================
          //                            STORAGE
          // =============================================================
          // The next token ID to be minted.
          uint256 private _currentIndex;
          // The number of tokens burned.
          uint256 private _burnCounter;
          // Token name
          string private _name;
          // Token symbol
          string private _symbol;
          // Mapping from token ID to ownership details
          // An empty struct value does not necessarily mean the token is unowned.
          // See {_packedOwnershipOf} implementation for details.
          //
          // Bits Layout:
          // - [0..159]   `addr`
          // - [160..223] `startTimestamp`
          // - [224]      `burned`
          // - [225]      `nextInitialized`
          // - [232..255] `extraData`
          mapping(uint256 => uint256) private _packedOwnerships;
          // Mapping owner address to address data.
          //
          // Bits Layout:
          // - [0..63]    `balance`
          // - [64..127]  `numberMinted`
          // - [128..191] `numberBurned`
          // - [192..255] `aux`
          mapping(address => uint256) private _packedAddressData;
          // Mapping from token ID to approved address.
          mapping(uint256 => TokenApprovalRef) private _tokenApprovals;
          // Mapping from owner to operator approvals
          mapping(address => mapping(address => bool)) private _operatorApprovals;
          // =============================================================
          //                          CONSTRUCTOR
          // =============================================================
          constructor(string memory name_, string memory symbol_) {
              _name = name_;
              _symbol = symbol_;
              _currentIndex = _startTokenId();
          }
          // =============================================================
          //                   TOKEN COUNTING OPERATIONS
          // =============================================================
          /**
           * @dev Returns the starting token ID.
           * To change the starting token ID, please override this function.
           */
          function _startTokenId() internal view virtual returns (uint256) {
              return 0;
          }
          /**
           * @dev Returns the next token ID to be minted.
           */
          function _nextTokenId() internal view virtual returns (uint256) {
              return _currentIndex;
          }
          /**
           * @dev Returns the total number of tokens in existence.
           * Burned tokens will reduce the count.
           * To get the total number of tokens minted, please see {_totalMinted}.
           */
          function totalSupply() public view virtual override returns (uint256) {
              // Counter underflow is impossible as _burnCounter cannot be incremented
              // more than `_currentIndex - _startTokenId()` times.
              unchecked {
                  return _currentIndex - _burnCounter - _startTokenId();
              }
          }
          /**
           * @dev Returns the total amount of tokens minted in the contract.
           */
          function _totalMinted() internal view virtual returns (uint256) {
              // Counter underflow is impossible as `_currentIndex` does not decrement,
              // and it is initialized to `_startTokenId()`.
              unchecked {
                  return _currentIndex - _startTokenId();
              }
          }
          /**
           * @dev Returns the total number of tokens burned.
           */
          function _totalBurned() internal view virtual returns (uint256) {
              return _burnCounter;
          }
          // =============================================================
          //                    ADDRESS DATA OPERATIONS
          // =============================================================
          /**
           * @dev Returns the number of tokens in `owner`'s account.
           */
          function balanceOf(address owner) public view virtual override returns (uint256) {
              if (owner == address(0)) revert BalanceQueryForZeroAddress();
              return _packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY;
          }
          /**
           * Returns the number of tokens minted by `owner`.
           */
          function _numberMinted(address owner) internal view returns (uint256) {
              return (_packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY;
          }
          /**
           * Returns the number of tokens burned by or on behalf of `owner`.
           */
          function _numberBurned(address owner) internal view returns (uint256) {
              return (_packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY;
          }
          /**
           * Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
           */
          function _getAux(address owner) internal view returns (uint64) {
              return uint64(_packedAddressData[owner] >> _BITPOS_AUX);
          }
          /**
           * Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
           * If there are multiple variables, please pack them into a uint64.
           */
          function _setAux(address owner, uint64 aux) internal virtual {
              uint256 packed = _packedAddressData[owner];
              uint256 auxCasted;
              // Cast `aux` with assembly to avoid redundant masking.
              assembly {
                  auxCasted := aux
              }
              packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX);
              _packedAddressData[owner] = packed;
          }
          // =============================================================
          //                            IERC165
          // =============================================================
          /**
           * @dev Returns true if this contract implements the interface defined by
           * `interfaceId`. See the corresponding
           * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
           * to learn more about how these ids are created.
           *
           * This function call must use less than 30000 gas.
           */
          function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
              // The interface IDs are constants representing the first 4 bytes
              // of the XOR of all function selectors in the interface.
              // See: [ERC165](https://eips.ethereum.org/EIPS/eip-165)
              // (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`)
              return
                  interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165.
                  interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721.
                  interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata.
          }
          // =============================================================
          //                        IERC721Metadata
          // =============================================================
          /**
           * @dev Returns the token collection name.
           */
          function name() public view virtual override returns (string memory) {
              return _name;
          }
          /**
           * @dev Returns the token collection symbol.
           */
          function symbol() public view virtual override returns (string memory) {
              return _symbol;
          }
          /**
           * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
           */
          function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
              if (!_exists(tokenId)) revert URIQueryForNonexistentToken();
              string memory baseURI = _baseURI();
              return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : '';
          }
          /**
           * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
           * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
           * by default, it can be overridden in child contracts.
           */
          function _baseURI() internal view virtual returns (string memory) {
              return '';
          }
          // =============================================================
          //                     OWNERSHIPS OPERATIONS
          // =============================================================
          /**
           * @dev Returns the owner of the `tokenId` token.
           *
           * Requirements:
           *
           * - `tokenId` must exist.
           */
          function ownerOf(uint256 tokenId) public view virtual override returns (address) {
              return address(uint160(_packedOwnershipOf(tokenId)));
          }
          /**
           * @dev Gas spent here starts off proportional to the maximum mint batch size.
           * It gradually moves to O(1) as tokens get transferred around over time.
           */
          function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) {
              return _unpackedOwnership(_packedOwnershipOf(tokenId));
          }
          /**
           * @dev Returns the unpacked `TokenOwnership` struct at `index`.
           */
          function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) {
              return _unpackedOwnership(_packedOwnerships[index]);
          }
          /**
           * @dev Initializes the ownership slot minted at `index` for efficiency purposes.
           */
          function _initializeOwnershipAt(uint256 index) internal virtual {
              if (_packedOwnerships[index] == 0) {
                  _packedOwnerships[index] = _packedOwnershipOf(index);
              }
          }
          /**
           * Returns the packed ownership data of `tokenId`.
           */
          function _packedOwnershipOf(uint256 tokenId) private view returns (uint256) {
              uint256 curr = tokenId;
              unchecked {
                  if (_startTokenId() <= curr)
                      if (curr < _currentIndex) {
                          uint256 packed = _packedOwnerships[curr];
                          // If not burned.
                          if (packed & _BITMASK_BURNED == 0) {
                              // Invariant:
                              // There will always be an initialized ownership slot
                              // (i.e. `ownership.addr != address(0) && ownership.burned == false`)
                              // before an unintialized ownership slot
                              // (i.e. `ownership.addr == address(0) && ownership.burned == false`)
                              // Hence, `curr` will not underflow.
                              //
                              // We can directly compare the packed value.
                              // If the address is zero, packed will be zero.
                              while (packed == 0) {
                                  packed = _packedOwnerships[--curr];
                              }
                              return packed;
                          }
                      }
              }
              revert OwnerQueryForNonexistentToken();
          }
          /**
           * @dev Returns the unpacked `TokenOwnership` struct from `packed`.
           */
          function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) {
              ownership.addr = address(uint160(packed));
              ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP);
              ownership.burned = packed & _BITMASK_BURNED != 0;
              ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA);
          }
          /**
           * @dev Packs ownership data into a single uint256.
           */
          function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) {
              assembly {
                  // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
                  owner := and(owner, _BITMASK_ADDRESS)
                  // `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`.
                  result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags))
              }
          }
          /**
           * @dev Returns the `nextInitialized` flag set if `quantity` equals 1.
           */
          function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) {
              // For branchless setting of the `nextInitialized` flag.
              assembly {
                  // `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`.
                  result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1))
              }
          }
          // =============================================================
          //                      APPROVAL OPERATIONS
          // =============================================================
          /**
           * @dev Gives permission to `to` to transfer `tokenId` token to another account.
           * The approval is cleared when the token is transferred.
           *
           * Only a single account can be approved at a time, so approving the
           * zero address clears previous approvals.
           *
           * Requirements:
           *
           * - The caller must own the token or be an approved operator.
           * - `tokenId` must exist.
           *
           * Emits an {Approval} event.
           */
          function approve(address to, uint256 tokenId) public payable virtual override {
              address owner = ownerOf(tokenId);
              if (_msgSenderERC721A() != owner)
                  if (!isApprovedForAll(owner, _msgSenderERC721A())) {
                      revert ApprovalCallerNotOwnerNorApproved();
                  }
              _tokenApprovals[tokenId].value = to;
              emit Approval(owner, to, tokenId);
          }
          /**
           * @dev Returns the account approved for `tokenId` token.
           *
           * Requirements:
           *
           * - `tokenId` must exist.
           */
          function getApproved(uint256 tokenId) public view virtual override returns (address) {
              if (!_exists(tokenId)) revert ApprovalQueryForNonexistentToken();
              return _tokenApprovals[tokenId].value;
          }
          /**
           * @dev Approve or remove `operator` as an operator for the caller.
           * Operators can call {transferFrom} or {safeTransferFrom}
           * for any token owned by the caller.
           *
           * Requirements:
           *
           * - The `operator` cannot be the caller.
           *
           * Emits an {ApprovalForAll} event.
           */
          function setApprovalForAll(address operator, bool approved) public virtual override {
              _operatorApprovals[_msgSenderERC721A()][operator] = approved;
              emit ApprovalForAll(_msgSenderERC721A(), operator, approved);
          }
          /**
           * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
           *
           * See {setApprovalForAll}.
           */
          function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
              return _operatorApprovals[owner][operator];
          }
          /**
           * @dev Returns whether `tokenId` exists.
           *
           * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
           *
           * Tokens start existing when they are minted. See {_mint}.
           */
          function _exists(uint256 tokenId) internal view virtual returns (bool) {
              return
                  _startTokenId() <= tokenId &&
                  tokenId < _currentIndex && // If within bounds,
                  _packedOwnerships[tokenId] & _BITMASK_BURNED == 0; // and not burned.
          }
          /**
           * @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`.
           */
          function _isSenderApprovedOrOwner(
              address approvedAddress,
              address owner,
              address msgSender
          ) private pure returns (bool result) {
              assembly {
                  // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
                  owner := and(owner, _BITMASK_ADDRESS)
                  // Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean.
                  msgSender := and(msgSender, _BITMASK_ADDRESS)
                  // `msgSender == owner || msgSender == approvedAddress`.
                  result := or(eq(msgSender, owner), eq(msgSender, approvedAddress))
              }
          }
          /**
           * @dev Returns the storage slot and value for the approved address of `tokenId`.
           */
          function _getApprovedSlotAndAddress(uint256 tokenId)
              private
              view
              returns (uint256 approvedAddressSlot, address approvedAddress)
          {
              TokenApprovalRef storage tokenApproval = _tokenApprovals[tokenId];
              // The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`.
              assembly {
                  approvedAddressSlot := tokenApproval.slot
                  approvedAddress := sload(approvedAddressSlot)
              }
          }
          // =============================================================
          //                      TRANSFER OPERATIONS
          // =============================================================
          /**
           * @dev Transfers `tokenId` from `from` to `to`.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `tokenId` token must be owned by `from`.
           * - If the caller is not `from`, it must be approved to move this token
           * by either {approve} or {setApprovalForAll}.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(
              address from,
              address to,
              uint256 tokenId
          ) public payable virtual override {
              uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
              if (address(uint160(prevOwnershipPacked)) != from) revert TransferFromIncorrectOwner();
              (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
              // The nested ifs save around 20+ gas over a compound boolean condition.
              if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
                  if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved();
              if (to == address(0)) revert TransferToZeroAddress();
              _beforeTokenTransfers(from, to, tokenId, 1);
              // Clear approvals from the previous owner.
              assembly {
                  if approvedAddress {
                      // This is equivalent to `delete _tokenApprovals[tokenId]`.
                      sstore(approvedAddressSlot, 0)
                  }
              }
              // Underflow of the sender's balance is impossible because we check for
              // ownership above and the recipient's balance can't realistically overflow.
              // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
              unchecked {
                  // We can directly increment and decrement the balances.
                  --_packedAddressData[from]; // Updates: `balance -= 1`.
                  ++_packedAddressData[to]; // Updates: `balance += 1`.
                  // Updates:
                  // - `address` to the next owner.
                  // - `startTimestamp` to the timestamp of transfering.
                  // - `burned` to `false`.
                  // - `nextInitialized` to `true`.
                  _packedOwnerships[tokenId] = _packOwnershipData(
                      to,
                      _BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked)
                  );
                  // If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
                  if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
                      uint256 nextTokenId = tokenId + 1;
                      // If the next slot's address is zero and not burned (i.e. packed value is zero).
                      if (_packedOwnerships[nextTokenId] == 0) {
                          // If the next slot is within bounds.
                          if (nextTokenId != _currentIndex) {
                              // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
                              _packedOwnerships[nextTokenId] = prevOwnershipPacked;
                          }
                      }
                  }
              }
              emit Transfer(from, to, tokenId);
              _afterTokenTransfers(from, to, tokenId, 1);
          }
          /**
           * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
           */
          function safeTransferFrom(
              address from,
              address to,
              uint256 tokenId
          ) public payable virtual override {
              safeTransferFrom(from, to, tokenId, '');
          }
          /**
           * @dev Safely transfers `tokenId` token from `from` to `to`.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `tokenId` token must exist and be owned by `from`.
           * - If the caller is not `from`, it must be approved to move this token
           * by either {approve} or {setApprovalForAll}.
           * - If `to` refers to a smart contract, it must implement
           * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
           *
           * Emits a {Transfer} event.
           */
          function safeTransferFrom(
              address from,
              address to,
              uint256 tokenId,
              bytes memory _data
          ) public payable virtual override {
              transferFrom(from, to, tokenId);
              if (to.code.length != 0)
                  if (!_checkContractOnERC721Received(from, to, tokenId, _data)) {
                      revert TransferToNonERC721ReceiverImplementer();
                  }
          }
          /**
           * @dev Hook that is called before a set of serially-ordered token IDs
           * are about to be transferred. This includes minting.
           * And also called before burning one token.
           *
           * `startTokenId` - the first token ID to be transferred.
           * `quantity` - the amount to be transferred.
           *
           * Calling conditions:
           *
           * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
           * transferred to `to`.
           * - When `from` is zero, `tokenId` will be minted for `to`.
           * - When `to` is zero, `tokenId` will be burned by `from`.
           * - `from` and `to` are never both zero.
           */
          function _beforeTokenTransfers(
              address from,
              address to,
              uint256 startTokenId,
              uint256 quantity
          ) internal virtual {}
          /**
           * @dev Hook that is called after a set of serially-ordered token IDs
           * have been transferred. This includes minting.
           * And also called after one token has been burned.
           *
           * `startTokenId` - the first token ID to be transferred.
           * `quantity` - the amount to be transferred.
           *
           * Calling conditions:
           *
           * - When `from` and `to` are both non-zero, `from`'s `tokenId` has been
           * transferred to `to`.
           * - When `from` is zero, `tokenId` has been minted for `to`.
           * - When `to` is zero, `tokenId` has been burned by `from`.
           * - `from` and `to` are never both zero.
           */
          function _afterTokenTransfers(
              address from,
              address to,
              uint256 startTokenId,
              uint256 quantity
          ) internal virtual {}
          /**
           * @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract.
           *
           * `from` - Previous owner of the given token ID.
           * `to` - Target address that will receive the token.
           * `tokenId` - Token ID to be transferred.
           * `_data` - Optional data to send along with the call.
           *
           * Returns whether the call correctly returned the expected magic value.
           */
          function _checkContractOnERC721Received(
              address from,
              address to,
              uint256 tokenId,
              bytes memory _data
          ) private returns (bool) {
              try ERC721A__IERC721Receiver(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns (
                  bytes4 retval
              ) {
                  return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector;
              } catch (bytes memory reason) {
                  if (reason.length == 0) {
                      revert TransferToNonERC721ReceiverImplementer();
                  } else {
                      assembly {
                          revert(add(32, reason), mload(reason))
                      }
                  }
              }
          }
          // =============================================================
          //                        MINT OPERATIONS
          // =============================================================
          /**
           * @dev Mints `quantity` tokens and transfers them to `to`.
           *
           * Requirements:
           *
           * - `to` cannot be the zero address.
           * - `quantity` must be greater than 0.
           *
           * Emits a {Transfer} event for each mint.
           */
          function _mint(address to, uint256 quantity) internal virtual {
              uint256 startTokenId = _currentIndex;
              if (quantity == 0) revert MintZeroQuantity();
              _beforeTokenTransfers(address(0), to, startTokenId, quantity);
              // Overflows are incredibly unrealistic.
              // `balance` and `numberMinted` have a maximum limit of 2**64.
              // `tokenId` has a maximum limit of 2**256.
              unchecked {
                  // Updates:
                  // - `balance += quantity`.
                  // - `numberMinted += quantity`.
                  //
                  // We can directly add to the `balance` and `numberMinted`.
                  _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
                  // Updates:
                  // - `address` to the owner.
                  // - `startTimestamp` to the timestamp of minting.
                  // - `burned` to `false`.
                  // - `nextInitialized` to `quantity == 1`.
                  _packedOwnerships[startTokenId] = _packOwnershipData(
                      to,
                      _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
                  );
                  uint256 toMasked;
                  uint256 end = startTokenId + quantity;
                  // Use assembly to loop and emit the `Transfer` event for gas savings.
                  // The duplicated `log4` removes an extra check and reduces stack juggling.
                  // The assembly, together with the surrounding Solidity code, have been
                  // delicately arranged to nudge the compiler into producing optimized opcodes.
                  assembly {
                      // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
                      toMasked := and(to, _BITMASK_ADDRESS)
                      // Emit the `Transfer` event.
                      log4(
                          0, // Start of data (0, since no data).
                          0, // End of data (0, since no data).
                          _TRANSFER_EVENT_SIGNATURE, // Signature.
                          0, // `address(0)`.
                          toMasked, // `to`.
                          startTokenId // `tokenId`.
                      )
                      // The `iszero(eq(,))` check ensures that large values of `quantity`
                      // that overflows uint256 will make the loop run out of gas.
                      // The compiler will optimize the `iszero` away for performance.
                      for {
                          let tokenId := add(startTokenId, 1)
                      } iszero(eq(tokenId, end)) {
                          tokenId := add(tokenId, 1)
                      } {
                          // Emit the `Transfer` event. Similar to above.
                          log4(0, 0, _TRANSFER_EVENT_SIGNATURE, 0, toMasked, tokenId)
                      }
                  }
                  if (toMasked == 0) revert MintToZeroAddress();
                  _currentIndex = end;
              }
              _afterTokenTransfers(address(0), to, startTokenId, quantity);
          }
          /**
           * @dev Mints `quantity` tokens and transfers them to `to`.
           *
           * This function is intended for efficient minting only during contract creation.
           *
           * It emits only one {ConsecutiveTransfer} as defined in
           * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309),
           * instead of a sequence of {Transfer} event(s).
           *
           * Calling this function outside of contract creation WILL make your contract
           * non-compliant with the ERC721 standard.
           * For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309
           * {ConsecutiveTransfer} event is only permissible during contract creation.
           *
           * Requirements:
           *
           * - `to` cannot be the zero address.
           * - `quantity` must be greater than 0.
           *
           * Emits a {ConsecutiveTransfer} event.
           */
          function _mintERC2309(address to, uint256 quantity) internal virtual {
              uint256 startTokenId = _currentIndex;
              if (to == address(0)) revert MintToZeroAddress();
              if (quantity == 0) revert MintZeroQuantity();
              if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) revert MintERC2309QuantityExceedsLimit();
              _beforeTokenTransfers(address(0), to, startTokenId, quantity);
              // Overflows are unrealistic due to the above check for `quantity` to be below the limit.
              unchecked {
                  // Updates:
                  // - `balance += quantity`.
                  // - `numberMinted += quantity`.
                  //
                  // We can directly add to the `balance` and `numberMinted`.
                  _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
                  // Updates:
                  // - `address` to the owner.
                  // - `startTimestamp` to the timestamp of minting.
                  // - `burned` to `false`.
                  // - `nextInitialized` to `quantity == 1`.
                  _packedOwnerships[startTokenId] = _packOwnershipData(
                      to,
                      _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
                  );
                  emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to);
                  _currentIndex = startTokenId + quantity;
              }
              _afterTokenTransfers(address(0), to, startTokenId, quantity);
          }
          /**
           * @dev Safely mints `quantity` tokens and transfers them to `to`.
           *
           * Requirements:
           *
           * - If `to` refers to a smart contract, it must implement
           * {IERC721Receiver-onERC721Received}, which is called for each safe transfer.
           * - `quantity` must be greater than 0.
           *
           * See {_mint}.
           *
           * Emits a {Transfer} event for each mint.
           */
          function _safeMint(
              address to,
              uint256 quantity,
              bytes memory _data
          ) internal virtual {
              _mint(to, quantity);
              unchecked {
                  if (to.code.length != 0) {
                      uint256 end = _currentIndex;
                      uint256 index = end - quantity;
                      do {
                          if (!_checkContractOnERC721Received(address(0), to, index++, _data)) {
                              revert TransferToNonERC721ReceiverImplementer();
                          }
                      } while (index < end);
                      // Reentrancy protection.
                      if (_currentIndex != end) revert();
                  }
              }
          }
          /**
           * @dev Equivalent to `_safeMint(to, quantity, '')`.
           */
          function _safeMint(address to, uint256 quantity) internal virtual {
              _safeMint(to, quantity, '');
          }
          // =============================================================
          //                        BURN OPERATIONS
          // =============================================================
          /**
           * @dev Equivalent to `_burn(tokenId, false)`.
           */
          function _burn(uint256 tokenId) internal virtual {
              _burn(tokenId, false);
          }
          /**
           * @dev Destroys `tokenId`.
           * The approval is cleared when the token is burned.
           *
           * Requirements:
           *
           * - `tokenId` must exist.
           *
           * Emits a {Transfer} event.
           */
          function _burn(uint256 tokenId, bool approvalCheck) internal virtual {
              uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
              address from = address(uint160(prevOwnershipPacked));
              (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
              if (approvalCheck) {
                  // The nested ifs save around 20+ gas over a compound boolean condition.
                  if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
                      if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved();
              }
              _beforeTokenTransfers(from, address(0), tokenId, 1);
              // Clear approvals from the previous owner.
              assembly {
                  if approvedAddress {
                      // This is equivalent to `delete _tokenApprovals[tokenId]`.
                      sstore(approvedAddressSlot, 0)
                  }
              }
              // Underflow of the sender's balance is impossible because we check for
              // ownership above and the recipient's balance can't realistically overflow.
              // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
              unchecked {
                  // Updates:
                  // - `balance -= 1`.
                  // - `numberBurned += 1`.
                  //
                  // We can directly decrement the balance, and increment the number burned.
                  // This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`.
                  _packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1;
                  // Updates:
                  // - `address` to the last owner.
                  // - `startTimestamp` to the timestamp of burning.
                  // - `burned` to `true`.
                  // - `nextInitialized` to `true`.
                  _packedOwnerships[tokenId] = _packOwnershipData(
                      from,
                      (_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked)
                  );
                  // If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
                  if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
                      uint256 nextTokenId = tokenId + 1;
                      // If the next slot's address is zero and not burned (i.e. packed value is zero).
                      if (_packedOwnerships[nextTokenId] == 0) {
                          // If the next slot is within bounds.
                          if (nextTokenId != _currentIndex) {
                              // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
                              _packedOwnerships[nextTokenId] = prevOwnershipPacked;
                          }
                      }
                  }
              }
              emit Transfer(from, address(0), tokenId);
              _afterTokenTransfers(from, address(0), tokenId, 1);
              // Overflow not possible, as _burnCounter cannot be exceed _currentIndex times.
              unchecked {
                  _burnCounter++;
              }
          }
          // =============================================================
          //                     EXTRA DATA OPERATIONS
          // =============================================================
          /**
           * @dev Directly sets the extra data for the ownership data `index`.
           */
          function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual {
              uint256 packed = _packedOwnerships[index];
              if (packed == 0) revert OwnershipNotInitializedForExtraData();
              uint256 extraDataCasted;
              // Cast `extraData` with assembly to avoid redundant masking.
              assembly {
                  extraDataCasted := extraData
              }
              packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA);
              _packedOwnerships[index] = packed;
          }
          /**
           * @dev Called during each token transfer to set the 24bit `extraData` field.
           * Intended to be overridden by the cosumer contract.
           *
           * `previousExtraData` - the value of `extraData` before transfer.
           *
           * Calling conditions:
           *
           * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
           * transferred to `to`.
           * - When `from` is zero, `tokenId` will be minted for `to`.
           * - When `to` is zero, `tokenId` will be burned by `from`.
           * - `from` and `to` are never both zero.
           */
          function _extraData(
              address from,
              address to,
              uint24 previousExtraData
          ) internal view virtual returns (uint24) {}
          /**
           * @dev Returns the next extra data for the packed ownership data.
           * The returned result is shifted into position.
           */
          function _nextExtraData(
              address from,
              address to,
              uint256 prevOwnershipPacked
          ) private view returns (uint256) {
              uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA);
              return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA;
          }
          // =============================================================
          //                       OTHER OPERATIONS
          // =============================================================
          /**
           * @dev Returns the message sender (defaults to `msg.sender`).
           *
           * If you are writing GSN compatible contracts, you need to override this function.
           */
          function _msgSenderERC721A() internal view virtual returns (address) {
              return msg.sender;
          }
          /**
           * @dev Converts a uint256 to its ASCII string decimal representation.
           */
          function _toString(uint256 value) internal pure virtual returns (string memory str) {
              assembly {
                  // The maximum value of a uint256 contains 78 digits (1 byte per digit), but
                  // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
                  // We will need 1 word for the trailing zeros padding, 1 word for the length,
                  // and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0.
                  let m := add(mload(0x40), 0xa0)
                  // Update the free memory pointer to allocate.
                  mstore(0x40, m)
                  // Assign the `str` to the end.
                  str := sub(m, 0x20)
                  // Zeroize the slot after the string.
                  mstore(str, 0)
                  // Cache the end of the memory to calculate the length later.
                  let end := str
                  // We write the string from rightmost digit to leftmost digit.
                  // The following is essentially a do-while loop that also handles the zero case.
                  // prettier-ignore
                  for { let temp := value } 1 {} {
                      str := sub(str, 1)
                      // Write the character to the pointer.
                      // The ASCII index of the '0' character is 48.
                      mstore8(str, add(48, mod(temp, 10)))
                      // Keep dividing `temp` until zero.
                      temp := div(temp, 10)
                      // prettier-ignore
                      if iszero(temp) { break }
                  }
                  let length := sub(end, str)
                  // Move the pointer 32 bytes leftwards to make room for the length.
                  str := sub(str, 0x20)
                  // Store the length.
                  mstore(str, length)
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/Strings.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev String operations.
       */
      library Strings {
          bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";
          uint8 private constant _ADDRESS_LENGTH = 20;
          /**
           * @dev Converts a `uint256` to its ASCII `string` decimal representation.
           */
          function toString(uint256 value) internal pure returns (string memory) {
              // Inspired by OraclizeAPI's implementation - MIT licence
              // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol
              if (value == 0) {
                  return "0";
              }
              uint256 temp = value;
              uint256 digits;
              while (temp != 0) {
                  digits++;
                  temp /= 10;
              }
              bytes memory buffer = new bytes(digits);
              while (value != 0) {
                  digits -= 1;
                  buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
                  value /= 10;
              }
              return string(buffer);
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
           */
          function toHexString(uint256 value) internal pure returns (string memory) {
              if (value == 0) {
                  return "0x00";
              }
              uint256 temp = value;
              uint256 length = 0;
              while (temp != 0) {
                  length++;
                  temp >>= 8;
              }
              return toHexString(value, length);
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
           */
          function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
              bytes memory buffer = new bytes(2 * length + 2);
              buffer[0] = "0";
              buffer[1] = "x";
              for (uint256 i = 2 * length + 1; i > 1; --i) {
                  buffer[i] = _HEX_SYMBOLS[value & 0xf];
                  value >>= 4;
              }
              require(value == 0, "Strings: hex length insufficient");
              return string(buffer);
          }
          /**
           * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
           */
          function toHexString(address addr) internal pure returns (string memory) {
              return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/cryptography/MerkleProof.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev These functions deal with verification of Merkle Tree proofs.
       *
       * The proofs can be generated using the JavaScript library
       * https://github.com/miguelmota/merkletreejs[merkletreejs].
       * Note: the hashing algorithm should be keccak256 and pair sorting should be enabled.
       *
       * See `test/utils/cryptography/MerkleProof.test.js` for some examples.
       *
       * WARNING: You should avoid using leaf values that are 64 bytes long prior to
       * hashing, or use a hash function other than keccak256 for hashing leaves.
       * This is because the concatenation of a sorted pair of internal nodes in
       * the merkle tree could be reinterpreted as a leaf value.
       */
      library MerkleProof {
          /**
           * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
           * defined by `root`. For this, a `proof` must be provided, containing
           * sibling hashes on the branch from the leaf to the root of the tree. Each
           * pair of leaves and each pair of pre-images are assumed to be sorted.
           */
          function verify(
              bytes32[] memory proof,
              bytes32 root,
              bytes32 leaf
          ) internal pure returns (bool) {
              return processProof(proof, leaf) == root;
          }
          /**
           * @dev Calldata version of {verify}
           *
           * _Available since v4.7._
           */
          function verifyCalldata(
              bytes32[] calldata proof,
              bytes32 root,
              bytes32 leaf
          ) internal pure returns (bool) {
              return processProofCalldata(proof, leaf) == root;
          }
          /**
           * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
           * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
           * hash matches the root of the tree. When processing the proof, the pairs
           * of leafs & pre-images are assumed to be sorted.
           *
           * _Available since v4.4._
           */
          function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
              bytes32 computedHash = leaf;
              for (uint256 i = 0; i < proof.length; i++) {
                  computedHash = _hashPair(computedHash, proof[i]);
              }
              return computedHash;
          }
          /**
           * @dev Calldata version of {processProof}
           *
           * _Available since v4.7._
           */
          function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
              bytes32 computedHash = leaf;
              for (uint256 i = 0; i < proof.length; i++) {
                  computedHash = _hashPair(computedHash, proof[i]);
              }
              return computedHash;
          }
          /**
           * @dev Returns true if the `leaves` can be proved to be a part of a Merkle tree defined by
           * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
           *
           * _Available since v4.7._
           */
          function multiProofVerify(
              bytes32[] memory proof,
              bool[] memory proofFlags,
              bytes32 root,
              bytes32[] memory leaves
          ) internal pure returns (bool) {
              return processMultiProof(proof, proofFlags, leaves) == root;
          }
          /**
           * @dev Calldata version of {multiProofVerify}
           *
           * _Available since v4.7._
           */
          function multiProofVerifyCalldata(
              bytes32[] calldata proof,
              bool[] calldata proofFlags,
              bytes32 root,
              bytes32[] memory leaves
          ) internal pure returns (bool) {
              return processMultiProofCalldata(proof, proofFlags, leaves) == root;
          }
          /**
           * @dev Returns the root of a tree reconstructed from `leaves` and the sibling nodes in `proof`,
           * consuming from one or the other at each step according to the instructions given by
           * `proofFlags`.
           *
           * _Available since v4.7._
           */
          function processMultiProof(
              bytes32[] memory proof,
              bool[] memory proofFlags,
              bytes32[] memory leaves
          ) internal pure returns (bytes32 merkleRoot) {
              // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
              // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
              // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
              // the merkle tree.
              uint256 leavesLen = leaves.length;
              uint256 totalHashes = proofFlags.length;
              // Check proof validity.
              require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");
              // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
              // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
              bytes32[] memory hashes = new bytes32[](totalHashes);
              uint256 leafPos = 0;
              uint256 hashPos = 0;
              uint256 proofPos = 0;
              // At each step, we compute the next hash using two values:
              // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
              //   get the next hash.
              // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
              //   `proof` array.
              for (uint256 i = 0; i < totalHashes; i++) {
                  bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                  bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
                  hashes[i] = _hashPair(a, b);
              }
              if (totalHashes > 0) {
                  return hashes[totalHashes - 1];
              } else if (leavesLen > 0) {
                  return leaves[0];
              } else {
                  return proof[0];
              }
          }
          /**
           * @dev Calldata version of {processMultiProof}
           *
           * _Available since v4.7._
           */
          function processMultiProofCalldata(
              bytes32[] calldata proof,
              bool[] calldata proofFlags,
              bytes32[] memory leaves
          ) internal pure returns (bytes32 merkleRoot) {
              // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
              // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
              // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
              // the merkle tree.
              uint256 leavesLen = leaves.length;
              uint256 totalHashes = proofFlags.length;
              // Check proof validity.
              require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");
              // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
              // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
              bytes32[] memory hashes = new bytes32[](totalHashes);
              uint256 leafPos = 0;
              uint256 hashPos = 0;
              uint256 proofPos = 0;
              // At each step, we compute the next hash using two values:
              // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
              //   get the next hash.
              // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
              //   `proof` array.
              for (uint256 i = 0; i < totalHashes; i++) {
                  bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                  bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
                  hashes[i] = _hashPair(a, b);
              }
              if (totalHashes > 0) {
                  return hashes[totalHashes - 1];
              } else if (leavesLen > 0) {
                  return leaves[0];
              } else {
                  return proof[0];
              }
          }
          function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
              return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
          }
          function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
              /// @solidity memory-safe-assembly
              assembly {
                  mstore(0x00, a)
                  mstore(0x20, b)
                  value := keccak256(0x00, 0x40)
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
      }
      // SPDX-License-Identifier: MIT
      // ERC721A Contracts v4.2.3
      // Creator: Chiru Labs
      pragma solidity ^0.8.4;
      /**
       * @dev Interface of ERC721A.
       */
      interface IERC721A {
          /**
           * The caller must own the token or be an approved operator.
           */
          error ApprovalCallerNotOwnerNorApproved();
          /**
           * The token does not exist.
           */
          error ApprovalQueryForNonexistentToken();
          /**
           * Cannot query the balance for the zero address.
           */
          error BalanceQueryForZeroAddress();
          /**
           * Cannot mint to the zero address.
           */
          error MintToZeroAddress();
          /**
           * The quantity of tokens minted must be more than zero.
           */
          error MintZeroQuantity();
          /**
           * The token does not exist.
           */
          error OwnerQueryForNonexistentToken();
          /**
           * The caller must own the token or be an approved operator.
           */
          error TransferCallerNotOwnerNorApproved();
          /**
           * The token must be owned by `from`.
           */
          error TransferFromIncorrectOwner();
          /**
           * Cannot safely transfer to a contract that does not implement the
           * ERC721Receiver interface.
           */
          error TransferToNonERC721ReceiverImplementer();
          /**
           * Cannot transfer to the zero address.
           */
          error TransferToZeroAddress();
          /**
           * The token does not exist.
           */
          error URIQueryForNonexistentToken();
          /**
           * The `quantity` minted with ERC2309 exceeds the safety limit.
           */
          error MintERC2309QuantityExceedsLimit();
          /**
           * The `extraData` cannot be set on an unintialized ownership slot.
           */
          error OwnershipNotInitializedForExtraData();
          // =============================================================
          //                            STRUCTS
          // =============================================================
          struct TokenOwnership {
              // The address of the owner.
              address addr;
              // Stores the start time of ownership with minimal overhead for tokenomics.
              uint64 startTimestamp;
              // Whether the token has been burned.
              bool burned;
              // Arbitrary data similar to `startTimestamp` that can be set via {_extraData}.
              uint24 extraData;
          }
          // =============================================================
          //                         TOKEN COUNTERS
          // =============================================================
          /**
           * @dev Returns the total number of tokens in existence.
           * Burned tokens will reduce the count.
           * To get the total number of tokens minted, please see {_totalMinted}.
           */
          function totalSupply() external view returns (uint256);
          // =============================================================
          //                            IERC165
          // =============================================================
          /**
           * @dev Returns true if this contract implements the interface defined by
           * `interfaceId`. See the corresponding
           * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
           * to learn more about how these ids are created.
           *
           * This function call must use less than 30000 gas.
           */
          function supportsInterface(bytes4 interfaceId) external view returns (bool);
          // =============================================================
          //                            IERC721
          // =============================================================
          /**
           * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
           */
          event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
          /**
           * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
           */
          event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
          /**
           * @dev Emitted when `owner` enables or disables
           * (`approved`) `operator` to manage all of its assets.
           */
          event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
          /**
           * @dev Returns the number of tokens in `owner`'s account.
           */
          function balanceOf(address owner) external view returns (uint256 balance);
          /**
           * @dev Returns the owner of the `tokenId` token.
           *
           * Requirements:
           *
           * - `tokenId` must exist.
           */
          function ownerOf(uint256 tokenId) external view returns (address owner);
          /**
           * @dev Safely transfers `tokenId` token from `from` to `to`,
           * checking first that contract recipients are aware of the ERC721 protocol
           * to prevent tokens from being forever locked.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `tokenId` token must exist and be owned by `from`.
           * - If the caller is not `from`, it must be have been allowed to move
           * this token by either {approve} or {setApprovalForAll}.
           * - If `to` refers to a smart contract, it must implement
           * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
           *
           * Emits a {Transfer} event.
           */
          function safeTransferFrom(
              address from,
              address to,
              uint256 tokenId,
              bytes calldata data
          ) external payable;
          /**
           * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
           */
          function safeTransferFrom(
              address from,
              address to,
              uint256 tokenId
          ) external payable;
          /**
           * @dev Transfers `tokenId` from `from` to `to`.
           *
           * WARNING: Usage of this method is discouraged, use {safeTransferFrom}
           * whenever possible.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `tokenId` token must be owned by `from`.
           * - If the caller is not `from`, it must be approved to move this token
           * by either {approve} or {setApprovalForAll}.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(
              address from,
              address to,
              uint256 tokenId
          ) external payable;
          /**
           * @dev Gives permission to `to` to transfer `tokenId` token to another account.
           * The approval is cleared when the token is transferred.
           *
           * Only a single account can be approved at a time, so approving the
           * zero address clears previous approvals.
           *
           * Requirements:
           *
           * - The caller must own the token or be an approved operator.
           * - `tokenId` must exist.
           *
           * Emits an {Approval} event.
           */
          function approve(address to, uint256 tokenId) external payable;
          /**
           * @dev Approve or remove `operator` as an operator for the caller.
           * Operators can call {transferFrom} or {safeTransferFrom}
           * for any token owned by the caller.
           *
           * Requirements:
           *
           * - The `operator` cannot be the caller.
           *
           * Emits an {ApprovalForAll} event.
           */
          function setApprovalForAll(address operator, bool _approved) external;
          /**
           * @dev Returns the account approved for `tokenId` token.
           *
           * Requirements:
           *
           * - `tokenId` must exist.
           */
          function getApproved(uint256 tokenId) external view returns (address operator);
          /**
           * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
           *
           * See {setApprovalForAll}.
           */
          function isApprovedForAll(address owner, address operator) external view returns (bool);
          // =============================================================
          //                        IERC721Metadata
          // =============================================================
          /**
           * @dev Returns the token collection name.
           */
          function name() external view returns (string memory);
          /**
           * @dev Returns the token collection symbol.
           */
          function symbol() external view returns (string memory);
          /**
           * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
           */
          function tokenURI(uint256 tokenId) external view returns (string memory);
          // =============================================================
          //                           IERC2309
          // =============================================================
          /**
           * @dev Emitted when tokens in `fromTokenId` to `toTokenId`
           * (inclusive) is transferred from `from` to `to`, as defined in the
           * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard.
           *
           * See {_mintERC2309} for more details.
           */
          event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to);
      }
      

      File 3 of 4: Conduit
      // SPDX-License-Identifier: MIT
      pragma solidity >=0.8.7;
      import { ConduitInterface } from "../interfaces/ConduitInterface.sol";
      import { ConduitItemType } from "./lib/ConduitEnums.sol";
      import { TokenTransferrer } from "../lib/TokenTransferrer.sol";
      // prettier-ignore
      import {
          ConduitTransfer,
          ConduitBatch1155Transfer
      } from "./lib/ConduitStructs.sol";
      import "./lib/ConduitConstants.sol";
      /**
       * @title Conduit
       * @author 0age
       * @notice This contract serves as an originator for "proxied" transfers. Each
       *         conduit is deployed and controlled by a "conduit controller" that can
       *         add and remove "channels" or contracts that can instruct the conduit
       *         to transfer approved ERC20/721/1155 tokens. *IMPORTANT NOTE: each
       *         conduit has an owner that can arbitrarily add or remove channels, and
       *         a malicious or negligent owner can add a channel that allows for any
       *         approved ERC20/721/1155 tokens to be taken immediately — be extremely
       *         cautious with what conduits you give token approvals to!*
       */
      contract Conduit is ConduitInterface, TokenTransferrer {
          // Set deployer as an immutable controller that can update channel statuses.
          address private immutable _controller;
          // Track the status of each channel.
          mapping(address => bool) private _channels;
          /**
           * @notice Ensure that the caller is currently registered as an open channel
           *         on the conduit.
           */
          modifier onlyOpenChannel() {
              // Utilize assembly to access channel storage mapping directly.
              assembly {
                  // Write the caller to scratch space.
                  mstore(ChannelKey_channel_ptr, caller())
                  // Write the storage slot for _channels to scratch space.
                  mstore(ChannelKey_slot_ptr, _channels.slot)
                  // Derive the position in storage of _channels[msg.sender]
                  // and check if the stored value is zero.
                  if iszero(
                      sload(keccak256(ChannelKey_channel_ptr, ChannelKey_length))
                  ) {
                      // The caller is not an open channel; revert with
                      // ChannelClosed(caller). First, set error signature in memory.
                      mstore(ChannelClosed_error_ptr, ChannelClosed_error_signature)
                      // Next, set the caller as the argument.
                      mstore(ChannelClosed_channel_ptr, caller())
                      // Finally, revert, returning full custom error with argument.
                      revert(ChannelClosed_error_ptr, ChannelClosed_error_length)
                  }
              }
              // Continue with function execution.
              _;
          }
          /**
           * @notice In the constructor, set the deployer as the controller.
           */
          constructor() {
              // Set the deployer as the controller.
              _controller = msg.sender;
          }
          /**
           * @notice Execute a sequence of ERC20/721/1155 transfers. Only a caller
           *         with an open channel can call this function. Note that channels
           *         are expected to implement reentrancy protection if desired, and
           *         that cross-channel reentrancy may be possible if the conduit has
           *         multiple open channels at once. Also note that channels are
           *         expected to implement checks against transferring any zero-amount
           *         items if that constraint is desired.
           *
           * @param transfers The ERC20/721/1155 transfers to perform.
           *
           * @return magicValue A magic value indicating that the transfers were
           *                    performed successfully.
           */
          function execute(ConduitTransfer[] calldata transfers)
              external
              override
              onlyOpenChannel
              returns (bytes4 magicValue)
          {
              // Retrieve the total number of transfers and place on the stack.
              uint256 totalStandardTransfers = transfers.length;
              // Iterate over each transfer.
              for (uint256 i = 0; i < totalStandardTransfers; ) {
                  // Retrieve the transfer in question and perform the transfer.
                  _transfer(transfers[i]);
                  // Skip overflow check as for loop is indexed starting at zero.
                  unchecked {
                      ++i;
                  }
              }
              // Return a magic value indicating that the transfers were performed.
              magicValue = this.execute.selector;
          }
          /**
           * @notice Execute a sequence of batch 1155 item transfers. Only a caller
           *         with an open channel can call this function. Note that channels
           *         are expected to implement reentrancy protection if desired, and
           *         that cross-channel reentrancy may be possible if the conduit has
           *         multiple open channels at once. Also note that channels are
           *         expected to implement checks against transferring any zero-amount
           *         items if that constraint is desired.
           *
           * @param batchTransfers The 1155 batch item transfers to perform.
           *
           * @return magicValue A magic value indicating that the item transfers were
           *                    performed successfully.
           */
          function executeBatch1155(
              ConduitBatch1155Transfer[] calldata batchTransfers
          ) external override onlyOpenChannel returns (bytes4 magicValue) {
              // Perform 1155 batch transfers. Note that memory should be considered
              // entirely corrupted from this point forward.
              _performERC1155BatchTransfers(batchTransfers);
              // Return a magic value indicating that the transfers were performed.
              magicValue = this.executeBatch1155.selector;
          }
          /**
           * @notice Execute a sequence of transfers, both single ERC20/721/1155 item
           *         transfers as well as batch 1155 item transfers. Only a caller
           *         with an open channel can call this function. Note that channels
           *         are expected to implement reentrancy protection if desired, and
           *         that cross-channel reentrancy may be possible if the conduit has
           *         multiple open channels at once. Also note that channels are
           *         expected to implement checks against transferring any zero-amount
           *         items if that constraint is desired.
           *
           * @param standardTransfers The ERC20/721/1155 item transfers to perform.
           * @param batchTransfers    The 1155 batch item transfers to perform.
           *
           * @return magicValue A magic value indicating that the item transfers were
           *                    performed successfully.
           */
          function executeWithBatch1155(
              ConduitTransfer[] calldata standardTransfers,
              ConduitBatch1155Transfer[] calldata batchTransfers
          ) external override onlyOpenChannel returns (bytes4 magicValue) {
              // Retrieve the total number of transfers and place on the stack.
              uint256 totalStandardTransfers = standardTransfers.length;
              // Iterate over each standard transfer.
              for (uint256 i = 0; i < totalStandardTransfers; ) {
                  // Retrieve the transfer in question and perform the transfer.
                  _transfer(standardTransfers[i]);
                  // Skip overflow check as for loop is indexed starting at zero.
                  unchecked {
                      ++i;
                  }
              }
              // Perform 1155 batch transfers. Note that memory should be considered
              // entirely corrupted from this point forward aside from the free memory
              // pointer having the default value.
              _performERC1155BatchTransfers(batchTransfers);
              // Return a magic value indicating that the transfers were performed.
              magicValue = this.executeWithBatch1155.selector;
          }
          /**
           * @notice Open or close a given channel. Only callable by the controller.
           *
           * @param channel The channel to open or close.
           * @param isOpen  The status of the channel (either open or closed).
           */
          function updateChannel(address channel, bool isOpen) external override {
              // Ensure that the caller is the controller of this contract.
              if (msg.sender != _controller) {
                  revert InvalidController();
              }
              // Ensure that the channel does not already have the indicated status.
              if (_channels[channel] == isOpen) {
                  revert ChannelStatusAlreadySet(channel, isOpen);
              }
              // Update the status of the channel.
              _channels[channel] = isOpen;
              // Emit a corresponding event.
              emit ChannelUpdated(channel, isOpen);
          }
          /**
           * @dev Internal function to transfer a given ERC20/721/1155 item. Note that
           *      channels are expected to implement checks against transferring any
           *      zero-amount items if that constraint is desired.
           *
           * @param item The ERC20/721/1155 item to transfer.
           */
          function _transfer(ConduitTransfer calldata item) internal {
              // Determine the transfer method based on the respective item type.
              if (item.itemType == ConduitItemType.ERC20) {
                  // Transfer ERC20 token. Note that item.identifier is ignored and
                  // therefore ERC20 transfer items are potentially malleable — this
                  // check should be performed by the calling channel if a constraint
                  // on item malleability is desired.
                  _performERC20Transfer(item.token, item.from, item.to, item.amount);
              } else if (item.itemType == ConduitItemType.ERC721) {
                  // Ensure that exactly one 721 item is being transferred.
                  if (item.amount != 1) {
                      revert InvalidERC721TransferAmount();
                  }
                  // Transfer ERC721 token.
                  _performERC721Transfer(
                      item.token,
                      item.from,
                      item.to,
                      item.identifier
                  );
              } else if (item.itemType == ConduitItemType.ERC1155) {
                  // Transfer ERC1155 token.
                  _performERC1155Transfer(
                      item.token,
                      item.from,
                      item.to,
                      item.identifier,
                      item.amount
                  );
              } else {
                  // Throw with an error.
                  revert InvalidItemType();
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity >=0.8.7;
      // prettier-ignore
      import {
          ConduitTransfer,
          ConduitBatch1155Transfer
      } from "../conduit/lib/ConduitStructs.sol";
      /**
       * @title ConduitInterface
       * @author 0age
       * @notice ConduitInterface contains all external function interfaces, events,
       *         and errors for conduit contracts.
       */
      interface ConduitInterface {
          /**
           * @dev Revert with an error when attempting to execute transfers using a
           *      caller that does not have an open channel.
           */
          error ChannelClosed(address channel);
          /**
           * @dev Revert with an error when attempting to update a channel to the
           *      current status of that channel.
           */
          error ChannelStatusAlreadySet(address channel, bool isOpen);
          /**
           * @dev Revert with an error when attempting to execute a transfer for an
           *      item that does not have an ERC20/721/1155 item type.
           */
          error InvalidItemType();
          /**
           * @dev Revert with an error when attempting to update the status of a
           *      channel from a caller that is not the conduit controller.
           */
          error InvalidController();
          /**
           * @dev Emit an event whenever a channel is opened or closed.
           *
           * @param channel The channel that has been updated.
           * @param open    A boolean indicating whether the conduit is open or not.
           */
          event ChannelUpdated(address indexed channel, bool open);
          /**
           * @notice Execute a sequence of ERC20/721/1155 transfers. Only a caller
           *         with an open channel can call this function.
           *
           * @param transfers The ERC20/721/1155 transfers to perform.
           *
           * @return magicValue A magic value indicating that the transfers were
           *                    performed successfully.
           */
          function execute(ConduitTransfer[] calldata transfers)
              external
              returns (bytes4 magicValue);
          /**
           * @notice Execute a sequence of batch 1155 transfers. Only a caller with an
           *         open channel can call this function.
           *
           * @param batch1155Transfers The 1155 batch transfers to perform.
           *
           * @return magicValue A magic value indicating that the transfers were
           *                    performed successfully.
           */
          function executeBatch1155(
              ConduitBatch1155Transfer[] calldata batch1155Transfers
          ) external returns (bytes4 magicValue);
          /**
           * @notice Execute a sequence of transfers, both single and batch 1155. Only
           *         a caller with an open channel can call this function.
           *
           * @param standardTransfers  The ERC20/721/1155 transfers to perform.
           * @param batch1155Transfers The 1155 batch transfers to perform.
           *
           * @return magicValue A magic value indicating that the transfers were
           *                    performed successfully.
           */
          function executeWithBatch1155(
              ConduitTransfer[] calldata standardTransfers,
              ConduitBatch1155Transfer[] calldata batch1155Transfers
          ) external returns (bytes4 magicValue);
          /**
           * @notice Open or close a given channel. Only callable by the controller.
           *
           * @param channel The channel to open or close.
           * @param isOpen  The status of the channel (either open or closed).
           */
          function updateChannel(address channel, bool isOpen) external;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity >=0.8.7;
      enum ConduitItemType {
          NATIVE, // unused
          ERC20,
          ERC721,
          ERC1155
      }
      // SPDX-License-Identifier: MIT
      pragma solidity >=0.8.7;
      import "./TokenTransferrerConstants.sol";
      // prettier-ignore
      import {
          TokenTransferrerErrors
      } from "../interfaces/TokenTransferrerErrors.sol";
      import { ConduitBatch1155Transfer } from "../conduit/lib/ConduitStructs.sol";
      /**
       * @title TokenTransferrer
       * @author 0age
       * @custom:coauthor d1ll0n
       * @custom:coauthor transmissions11
       * @notice TokenTransferrer is a library for performing optimized ERC20, ERC721,
       *         ERC1155, and batch ERC1155 transfers, used by both Seaport as well as
       *         by conduits deployed by the ConduitController. Use great caution when
       *         considering these functions for use in other codebases, as there are
       *         significant side effects and edge cases that need to be thoroughly
       *         understood and carefully addressed.
       */
      contract TokenTransferrer is TokenTransferrerErrors {
          /**
           * @dev Internal function to transfer ERC20 tokens from a given originator
           *      to a given recipient. Sufficient approvals must be set on the
           *      contract performing the transfer.
           *
           * @param token      The ERC20 token to transfer.
           * @param from       The originator of the transfer.
           * @param to         The recipient of the transfer.
           * @param amount     The amount to transfer.
           */
          function _performERC20Transfer(
              address token,
              address from,
              address to,
              uint256 amount
          ) internal {
              // Utilize assembly to perform an optimized ERC20 token transfer.
              assembly {
                  // The free memory pointer memory slot will be used when populating
                  // call data for the transfer; read the value and restore it later.
                  let memPointer := mload(FreeMemoryPointerSlot)
                  // Write call data into memory, starting with function selector.
                  mstore(ERC20_transferFrom_sig_ptr, ERC20_transferFrom_signature)
                  mstore(ERC20_transferFrom_from_ptr, from)
                  mstore(ERC20_transferFrom_to_ptr, to)
                  mstore(ERC20_transferFrom_amount_ptr, amount)
                  // Make call & copy up to 32 bytes of return data to scratch space.
                  // Scratch space does not need to be cleared ahead of time, as the
                  // subsequent check will ensure that either at least a full word of
                  // return data is received (in which case it will be overwritten) or
                  // that no data is received (in which case scratch space will be
                  // ignored) on a successful call to the given token.
                  let callStatus := call(
                      gas(),
                      token,
                      0,
                      ERC20_transferFrom_sig_ptr,
                      ERC20_transferFrom_length,
                      0,
                      OneWord
                  )
                  // Determine whether transfer was successful using status & result.
                  let success := and(
                      // Set success to whether the call reverted, if not check it
                      // either returned exactly 1 (can't just be non-zero data), or
                      // had no return data.
                      or(
                          and(eq(mload(0), 1), gt(returndatasize(), 31)),
                          iszero(returndatasize())
                      ),
                      callStatus
                  )
                  // Handle cases where either the transfer failed or no data was
                  // returned. Group these, as most transfers will succeed with data.
                  // Equivalent to `or(iszero(success), iszero(returndatasize()))`
                  // but after it's inverted for JUMPI this expression is cheaper.
                  if iszero(and(success, iszero(iszero(returndatasize())))) {
                      // If the token has no code or the transfer failed: Equivalent
                      // to `or(iszero(success), iszero(extcodesize(token)))` but
                      // after it's inverted for JUMPI this expression is cheaper.
                      if iszero(and(iszero(iszero(extcodesize(token))), success)) {
                          // If the transfer failed:
                          if iszero(success) {
                              // If it was due to a revert:
                              if iszero(callStatus) {
                                  // If it returned a message, bubble it up as long as
                                  // sufficient gas remains to do so:
                                  if returndatasize() {
                                      // Ensure that sufficient gas is available to
                                      // copy returndata while expanding memory where
                                      // necessary. Start by computing the word size
                                      // of returndata and allocated memory. Round up
                                      // to the nearest full word.
                                      let returnDataWords := div(
                                          add(returndatasize(), AlmostOneWord),
                                          OneWord
                                      )
                                      // Note: use the free memory pointer in place of
                                      // msize() to work around a Yul warning that
                                      // prevents accessing msize directly when the IR
                                      // pipeline is activated.
                                      let msizeWords := div(memPointer, OneWord)
                                      // Next, compute the cost of the returndatacopy.
                                      let cost := mul(CostPerWord, returnDataWords)
                                      // Then, compute cost of new memory allocation.
                                      if gt(returnDataWords, msizeWords) {
                                          cost := add(
                                              cost,
                                              add(
                                                  mul(
                                                      sub(
                                                          returnDataWords,
                                                          msizeWords
                                                      ),
                                                      CostPerWord
                                                  ),
                                                  div(
                                                      sub(
                                                          mul(
                                                              returnDataWords,
                                                              returnDataWords
                                                          ),
                                                          mul(msizeWords, msizeWords)
                                                      ),
                                                      MemoryExpansionCoefficient
                                                  )
                                              )
                                          )
                                      }
                                      // Finally, add a small constant and compare to
                                      // gas remaining; bubble up the revert data if
                                      // enough gas is still available.
                                      if lt(add(cost, ExtraGasBuffer), gas()) {
                                          // Copy returndata to memory; overwrite
                                          // existing memory.
                                          returndatacopy(0, 0, returndatasize())
                                          // Revert, specifying memory region with
                                          // copied returndata.
                                          revert(0, returndatasize())
                                      }
                                  }
                                  // Otherwise revert with a generic error message.
                                  mstore(
                                      TokenTransferGenericFailure_error_sig_ptr,
                                      TokenTransferGenericFailure_error_signature
                                  )
                                  mstore(
                                      TokenTransferGenericFailure_error_token_ptr,
                                      token
                                  )
                                  mstore(
                                      TokenTransferGenericFailure_error_from_ptr,
                                      from
                                  )
                                  mstore(TokenTransferGenericFailure_error_to_ptr, to)
                                  mstore(TokenTransferGenericFailure_error_id_ptr, 0)
                                  mstore(
                                      TokenTransferGenericFailure_error_amount_ptr,
                                      amount
                                  )
                                  revert(
                                      TokenTransferGenericFailure_error_sig_ptr,
                                      TokenTransferGenericFailure_error_length
                                  )
                              }
                              // Otherwise revert with a message about the token
                              // returning false or non-compliant return values.
                              mstore(
                                  BadReturnValueFromERC20OnTransfer_error_sig_ptr,
                                  BadReturnValueFromERC20OnTransfer_error_signature
                              )
                              mstore(
                                  BadReturnValueFromERC20OnTransfer_error_token_ptr,
                                  token
                              )
                              mstore(
                                  BadReturnValueFromERC20OnTransfer_error_from_ptr,
                                  from
                              )
                              mstore(
                                  BadReturnValueFromERC20OnTransfer_error_to_ptr,
                                  to
                              )
                              mstore(
                                  BadReturnValueFromERC20OnTransfer_error_amount_ptr,
                                  amount
                              )
                              revert(
                                  BadReturnValueFromERC20OnTransfer_error_sig_ptr,
                                  BadReturnValueFromERC20OnTransfer_error_length
                              )
                          }
                          // Otherwise, revert with error about token not having code:
                          mstore(NoContract_error_sig_ptr, NoContract_error_signature)
                          mstore(NoContract_error_token_ptr, token)
                          revert(NoContract_error_sig_ptr, NoContract_error_length)
                      }
                      // Otherwise, the token just returned no data despite the call
                      // having succeeded; no need to optimize for this as it's not
                      // technically ERC20 compliant.
                  }
                  // Restore the original free memory pointer.
                  mstore(FreeMemoryPointerSlot, memPointer)
                  // Restore the zero slot to zero.
                  mstore(ZeroSlot, 0)
              }
          }
          /**
           * @dev Internal function to transfer an ERC721 token from a given
           *      originator to a given recipient. Sufficient approvals must be set on
           *      the contract performing the transfer. Note that this function does
           *      not check whether the receiver can accept the ERC721 token (i.e. it
           *      does not use `safeTransferFrom`).
           *
           * @param token      The ERC721 token to transfer.
           * @param from       The originator of the transfer.
           * @param to         The recipient of the transfer.
           * @param identifier The tokenId to transfer.
           */
          function _performERC721Transfer(
              address token,
              address from,
              address to,
              uint256 identifier
          ) internal {
              // Utilize assembly to perform an optimized ERC721 token transfer.
              assembly {
                  // If the token has no code, revert.
                  if iszero(extcodesize(token)) {
                      mstore(NoContract_error_sig_ptr, NoContract_error_signature)
                      mstore(NoContract_error_token_ptr, token)
                      revert(NoContract_error_sig_ptr, NoContract_error_length)
                  }
                  // The free memory pointer memory slot will be used when populating
                  // call data for the transfer; read the value and restore it later.
                  let memPointer := mload(FreeMemoryPointerSlot)
                  // Write call data to memory starting with function selector.
                  mstore(ERC721_transferFrom_sig_ptr, ERC721_transferFrom_signature)
                  mstore(ERC721_transferFrom_from_ptr, from)
                  mstore(ERC721_transferFrom_to_ptr, to)
                  mstore(ERC721_transferFrom_id_ptr, identifier)
                  // Perform the call, ignoring return data.
                  let success := call(
                      gas(),
                      token,
                      0,
                      ERC721_transferFrom_sig_ptr,
                      ERC721_transferFrom_length,
                      0,
                      0
                  )
                  // If the transfer reverted:
                  if iszero(success) {
                      // If it returned a message, bubble it up as long as sufficient
                      // gas remains to do so:
                      if returndatasize() {
                          // Ensure that sufficient gas is available to copy
                          // returndata while expanding memory where necessary. Start
                          // by computing word size of returndata & allocated memory.
                          // Round up to the nearest full word.
                          let returnDataWords := div(
                              add(returndatasize(), AlmostOneWord),
                              OneWord
                          )
                          // Note: use the free memory pointer in place of msize() to
                          // work around a Yul warning that prevents accessing msize
                          // directly when the IR pipeline is activated.
                          let msizeWords := div(memPointer, OneWord)
                          // Next, compute the cost of the returndatacopy.
                          let cost := mul(CostPerWord, returnDataWords)
                          // Then, compute cost of new memory allocation.
                          if gt(returnDataWords, msizeWords) {
                              cost := add(
                                  cost,
                                  add(
                                      mul(
                                          sub(returnDataWords, msizeWords),
                                          CostPerWord
                                      ),
                                      div(
                                          sub(
                                              mul(returnDataWords, returnDataWords),
                                              mul(msizeWords, msizeWords)
                                          ),
                                          MemoryExpansionCoefficient
                                      )
                                  )
                              )
                          }
                          // Finally, add a small constant and compare to gas
                          // remaining; bubble up the revert data if enough gas is
                          // still available.
                          if lt(add(cost, ExtraGasBuffer), gas()) {
                              // Copy returndata to memory; overwrite existing memory.
                              returndatacopy(0, 0, returndatasize())
                              // Revert, giving memory region with copied returndata.
                              revert(0, returndatasize())
                          }
                      }
                      // Otherwise revert with a generic error message.
                      mstore(
                          TokenTransferGenericFailure_error_sig_ptr,
                          TokenTransferGenericFailure_error_signature
                      )
                      mstore(TokenTransferGenericFailure_error_token_ptr, token)
                      mstore(TokenTransferGenericFailure_error_from_ptr, from)
                      mstore(TokenTransferGenericFailure_error_to_ptr, to)
                      mstore(TokenTransferGenericFailure_error_id_ptr, identifier)
                      mstore(TokenTransferGenericFailure_error_amount_ptr, 1)
                      revert(
                          TokenTransferGenericFailure_error_sig_ptr,
                          TokenTransferGenericFailure_error_length
                      )
                  }
                  // Restore the original free memory pointer.
                  mstore(FreeMemoryPointerSlot, memPointer)
                  // Restore the zero slot to zero.
                  mstore(ZeroSlot, 0)
              }
          }
          /**
           * @dev Internal function to transfer ERC1155 tokens from a given
           *      originator to a given recipient. Sufficient approvals must be set on
           *      the contract performing the transfer and contract recipients must
           *      implement the ERC1155TokenReceiver interface to indicate that they
           *      are willing to accept the transfer.
           *
           * @param token      The ERC1155 token to transfer.
           * @param from       The originator of the transfer.
           * @param to         The recipient of the transfer.
           * @param identifier The id to transfer.
           * @param amount     The amount to transfer.
           */
          function _performERC1155Transfer(
              address token,
              address from,
              address to,
              uint256 identifier,
              uint256 amount
          ) internal {
              // Utilize assembly to perform an optimized ERC1155 token transfer.
              assembly {
                  // If the token has no code, revert.
                  if iszero(extcodesize(token)) {
                      mstore(NoContract_error_sig_ptr, NoContract_error_signature)
                      mstore(NoContract_error_token_ptr, token)
                      revert(NoContract_error_sig_ptr, NoContract_error_length)
                  }
                  // The following memory slots will be used when populating call data
                  // for the transfer; read the values and restore them later.
                  let memPointer := mload(FreeMemoryPointerSlot)
                  let slot0x80 := mload(Slot0x80)
                  let slot0xA0 := mload(Slot0xA0)
                  let slot0xC0 := mload(Slot0xC0)
                  // Write call data into memory, beginning with function selector.
                  mstore(
                      ERC1155_safeTransferFrom_sig_ptr,
                      ERC1155_safeTransferFrom_signature
                  )
                  mstore(ERC1155_safeTransferFrom_from_ptr, from)
                  mstore(ERC1155_safeTransferFrom_to_ptr, to)
                  mstore(ERC1155_safeTransferFrom_id_ptr, identifier)
                  mstore(ERC1155_safeTransferFrom_amount_ptr, amount)
                  mstore(
                      ERC1155_safeTransferFrom_data_offset_ptr,
                      ERC1155_safeTransferFrom_data_length_offset
                  )
                  mstore(ERC1155_safeTransferFrom_data_length_ptr, 0)
                  // Perform the call, ignoring return data.
                  let success := call(
                      gas(),
                      token,
                      0,
                      ERC1155_safeTransferFrom_sig_ptr,
                      ERC1155_safeTransferFrom_length,
                      0,
                      0
                  )
                  // If the transfer reverted:
                  if iszero(success) {
                      // If it returned a message, bubble it up as long as sufficient
                      // gas remains to do so:
                      if returndatasize() {
                          // Ensure that sufficient gas is available to copy
                          // returndata while expanding memory where necessary. Start
                          // by computing word size of returndata & allocated memory.
                          // Round up to the nearest full word.
                          let returnDataWords := div(
                              add(returndatasize(), AlmostOneWord),
                              OneWord
                          )
                          // Note: use the free memory pointer in place of msize() to
                          // work around a Yul warning that prevents accessing msize
                          // directly when the IR pipeline is activated.
                          let msizeWords := div(memPointer, OneWord)
                          // Next, compute the cost of the returndatacopy.
                          let cost := mul(CostPerWord, returnDataWords)
                          // Then, compute cost of new memory allocation.
                          if gt(returnDataWords, msizeWords) {
                              cost := add(
                                  cost,
                                  add(
                                      mul(
                                          sub(returnDataWords, msizeWords),
                                          CostPerWord
                                      ),
                                      div(
                                          sub(
                                              mul(returnDataWords, returnDataWords),
                                              mul(msizeWords, msizeWords)
                                          ),
                                          MemoryExpansionCoefficient
                                      )
                                  )
                              )
                          }
                          // Finally, add a small constant and compare to gas
                          // remaining; bubble up the revert data if enough gas is
                          // still available.
                          if lt(add(cost, ExtraGasBuffer), gas()) {
                              // Copy returndata to memory; overwrite existing memory.
                              returndatacopy(0, 0, returndatasize())
                              // Revert, giving memory region with copied returndata.
                              revert(0, returndatasize())
                          }
                      }
                      // Otherwise revert with a generic error message.
                      mstore(
                          TokenTransferGenericFailure_error_sig_ptr,
                          TokenTransferGenericFailure_error_signature
                      )
                      mstore(TokenTransferGenericFailure_error_token_ptr, token)
                      mstore(TokenTransferGenericFailure_error_from_ptr, from)
                      mstore(TokenTransferGenericFailure_error_to_ptr, to)
                      mstore(TokenTransferGenericFailure_error_id_ptr, identifier)
                      mstore(TokenTransferGenericFailure_error_amount_ptr, amount)
                      revert(
                          TokenTransferGenericFailure_error_sig_ptr,
                          TokenTransferGenericFailure_error_length
                      )
                  }
                  mstore(Slot0x80, slot0x80) // Restore slot 0x80.
                  mstore(Slot0xA0, slot0xA0) // Restore slot 0xA0.
                  mstore(Slot0xC0, slot0xC0) // Restore slot 0xC0.
                  // Restore the original free memory pointer.
                  mstore(FreeMemoryPointerSlot, memPointer)
                  // Restore the zero slot to zero.
                  mstore(ZeroSlot, 0)
              }
          }
          /**
           * @dev Internal function to transfer ERC1155 tokens from a given
           *      originator to a given recipient. Sufficient approvals must be set on
           *      the contract performing the transfer and contract recipients must
           *      implement the ERC1155TokenReceiver interface to indicate that they
           *      are willing to accept the transfer. NOTE: this function is not
           *      memory-safe; it will overwrite existing memory, restore the free
           *      memory pointer to the default value, and overwrite the zero slot.
           *      This function should only be called once memory is no longer
           *      required and when uninitialized arrays are not utilized, and memory
           *      should be considered fully corrupted (aside from the existence of a
           *      default-value free memory pointer) after calling this function.
           *
           * @param batchTransfers The group of 1155 batch transfers to perform.
           */
          function _performERC1155BatchTransfers(
              ConduitBatch1155Transfer[] calldata batchTransfers
          ) internal {
              // Utilize assembly to perform optimized batch 1155 transfers.
              assembly {
                  let len := batchTransfers.length
                  // Pointer to first head in the array, which is offset to the struct
                  // at each index. This gets incremented after each loop to avoid
                  // multiplying by 32 to get the offset for each element.
                  let nextElementHeadPtr := batchTransfers.offset
                  // Pointer to beginning of the head of the array. This is the
                  // reference position each offset references. It's held static to
                  // let each loop calculate the data position for an element.
                  let arrayHeadPtr := nextElementHeadPtr
                  // Write the function selector, which will be reused for each call:
                  // safeBatchTransferFrom(address,address,uint256[],uint256[],bytes)
                  mstore(
                      ConduitBatch1155Transfer_from_offset,
                      ERC1155_safeBatchTransferFrom_signature
                  )
                  // Iterate over each batch transfer.
                  for {
                      let i := 0
                  } lt(i, len) {
                      i := add(i, 1)
                  } {
                      // Read the offset to the beginning of the element and add
                      // it to pointer to the beginning of the array head to get
                      // the absolute position of the element in calldata.
                      let elementPtr := add(
                          arrayHeadPtr,
                          calldataload(nextElementHeadPtr)
                      )
                      // Retrieve the token from calldata.
                      let token := calldataload(elementPtr)
                      // If the token has no code, revert.
                      if iszero(extcodesize(token)) {
                          mstore(NoContract_error_sig_ptr, NoContract_error_signature)
                          mstore(NoContract_error_token_ptr, token)
                          revert(NoContract_error_sig_ptr, NoContract_error_length)
                      }
                      // Get the total number of supplied ids.
                      let idsLength := calldataload(
                          add(elementPtr, ConduitBatch1155Transfer_ids_length_offset)
                      )
                      // Determine the expected offset for the amounts array.
                      let expectedAmountsOffset := add(
                          ConduitBatch1155Transfer_amounts_length_baseOffset,
                          mul(idsLength, OneWord)
                      )
                      // Validate struct encoding.
                      let invalidEncoding := iszero(
                          and(
                              // ids.length == amounts.length
                              eq(
                                  idsLength,
                                  calldataload(add(elementPtr, expectedAmountsOffset))
                              ),
                              and(
                                  // ids_offset == 0xa0
                                  eq(
                                      calldataload(
                                          add(
                                              elementPtr,
                                              ConduitBatch1155Transfer_ids_head_offset
                                          )
                                      ),
                                      ConduitBatch1155Transfer_ids_length_offset
                                  ),
                                  // amounts_offset == 0xc0 + ids.length*32
                                  eq(
                                      calldataload(
                                          add(
                                              elementPtr,
                                              ConduitBatchTransfer_amounts_head_offset
                                          )
                                      ),
                                      expectedAmountsOffset
                                  )
                              )
                          )
                      )
                      // Revert with an error if the encoding is not valid.
                      if invalidEncoding {
                          mstore(
                              Invalid1155BatchTransferEncoding_ptr,
                              Invalid1155BatchTransferEncoding_selector
                          )
                          revert(
                              Invalid1155BatchTransferEncoding_ptr,
                              Invalid1155BatchTransferEncoding_length
                          )
                      }
                      // Update the offset position for the next loop
                      nextElementHeadPtr := add(nextElementHeadPtr, OneWord)
                      // Copy the first section of calldata (before dynamic values).
                      calldatacopy(
                          BatchTransfer1155Params_ptr,
                          add(elementPtr, ConduitBatch1155Transfer_from_offset),
                          ConduitBatch1155Transfer_usable_head_size
                      )
                      // Determine size of calldata required for ids and amounts. Note
                      // that the size includes both lengths as well as the data.
                      let idsAndAmountsSize := add(TwoWords, mul(idsLength, TwoWords))
                      // Update the offset for the data array in memory.
                      mstore(
                          BatchTransfer1155Params_data_head_ptr,
                          add(
                              BatchTransfer1155Params_ids_length_offset,
                              idsAndAmountsSize
                          )
                      )
                      // Set the length of the data array in memory to zero.
                      mstore(
                          add(
                              BatchTransfer1155Params_data_length_basePtr,
                              idsAndAmountsSize
                          ),
                          0
                      )
                      // Determine the total calldata size for the call to transfer.
                      let transferDataSize := add(
                          BatchTransfer1155Params_calldata_baseSize,
                          idsAndAmountsSize
                      )
                      // Copy second section of calldata (including dynamic values).
                      calldatacopy(
                          BatchTransfer1155Params_ids_length_ptr,
                          add(elementPtr, ConduitBatch1155Transfer_ids_length_offset),
                          idsAndAmountsSize
                      )
                      // Perform the call to transfer 1155 tokens.
                      let success := call(
                          gas(),
                          token,
                          0,
                          ConduitBatch1155Transfer_from_offset, // Data portion start.
                          transferDataSize, // Location of the length of callData.
                          0,
                          0
                      )
                      // If the transfer reverted:
                      if iszero(success) {
                          // If it returned a message, bubble it up as long as
                          // sufficient gas remains to do so:
                          if returndatasize() {
                              // Ensure that sufficient gas is available to copy
                              // returndata while expanding memory where necessary.
                              // Start by computing word size of returndata and
                              // allocated memory. Round up to the nearest full word.
                              let returnDataWords := div(
                                  add(returndatasize(), AlmostOneWord),
                                  OneWord
                              )
                              // Note: use transferDataSize in place of msize() to
                              // work around a Yul warning that prevents accessing
                              // msize directly when the IR pipeline is activated.
                              // The free memory pointer is not used here because
                              // this function does almost all memory management
                              // manually and does not update it, and transferDataSize
                              // should be the largest memory value used (unless a
                              // previous batch was larger).
                              let msizeWords := div(transferDataSize, OneWord)
                              // Next, compute the cost of the returndatacopy.
                              let cost := mul(CostPerWord, returnDataWords)
                              // Then, compute cost of new memory allocation.
                              if gt(returnDataWords, msizeWords) {
                                  cost := add(
                                      cost,
                                      add(
                                          mul(
                                              sub(returnDataWords, msizeWords),
                                              CostPerWord
                                          ),
                                          div(
                                              sub(
                                                  mul(
                                                      returnDataWords,
                                                      returnDataWords
                                                  ),
                                                  mul(msizeWords, msizeWords)
                                              ),
                                              MemoryExpansionCoefficient
                                          )
                                      )
                                  )
                              }
                              // Finally, add a small constant and compare to gas
                              // remaining; bubble up the revert data if enough gas is
                              // still available.
                              if lt(add(cost, ExtraGasBuffer), gas()) {
                                  // Copy returndata to memory; overwrite existing.
                                  returndatacopy(0, 0, returndatasize())
                                  // Revert with memory region containing returndata.
                                  revert(0, returndatasize())
                              }
                          }
                          // Set the error signature.
                          mstore(
                              0,
                              ERC1155BatchTransferGenericFailure_error_signature
                          )
                          // Write the token.
                          mstore(ERC1155BatchTransferGenericFailure_token_ptr, token)
                          // Increase the offset to ids by 32.
                          mstore(
                              BatchTransfer1155Params_ids_head_ptr,
                              ERC1155BatchTransferGenericFailure_ids_offset
                          )
                          // Increase the offset to amounts by 32.
                          mstore(
                              BatchTransfer1155Params_amounts_head_ptr,
                              add(
                                  OneWord,
                                  mload(BatchTransfer1155Params_amounts_head_ptr)
                              )
                          )
                          // Return modified region. The total size stays the same as
                          // `token` uses the same number of bytes as `data.length`.
                          revert(0, transferDataSize)
                      }
                  }
                  // Reset the free memory pointer to the default value; memory must
                  // be assumed to be dirtied and not reused from this point forward.
                  // Also note that the zero slot is not reset to zero, meaning empty
                  // arrays cannot be safely created or utilized until it is restored.
                  mstore(FreeMemoryPointerSlot, DefaultFreeMemoryPointer)
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity >=0.8.7;
      import { ConduitItemType } from "./ConduitEnums.sol";
      struct ConduitTransfer {
          ConduitItemType itemType;
          address token;
          address from;
          address to;
          uint256 identifier;
          uint256 amount;
      }
      struct ConduitBatch1155Transfer {
          address token;
          address from;
          address to;
          uint256[] ids;
          uint256[] amounts;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity >=0.8.7;
      // error ChannelClosed(address channel)
      uint256 constant ChannelClosed_error_signature = (
          0x93daadf200000000000000000000000000000000000000000000000000000000
      );
      uint256 constant ChannelClosed_error_ptr = 0x00;
      uint256 constant ChannelClosed_channel_ptr = 0x4;
      uint256 constant ChannelClosed_error_length = 0x24;
      // For the mapping:
      // mapping(address => bool) channels
      // The position in storage for a particular account is:
      // keccak256(abi.encode(account, channels.slot))
      uint256 constant ChannelKey_channel_ptr = 0x00;
      uint256 constant ChannelKey_slot_ptr = 0x20;
      uint256 constant ChannelKey_length = 0x40;
      // SPDX-License-Identifier: MIT
      pragma solidity >=0.8.7;
      /*
       * -------------------------- Disambiguation & Other Notes ---------------------
       *    - The term "head" is used as it is in the documentation for ABI encoding,
       *      but only in reference to dynamic types, i.e. it always refers to the
       *      offset or pointer to the body of a dynamic type. In calldata, the head
       *      is always an offset (relative to the parent object), while in memory,
       *      the head is always the pointer to the body. More information found here:
       *      https://docs.soliditylang.org/en/v0.8.14/abi-spec.html#argument-encoding
       *        - Note that the length of an array is separate from and precedes the
       *          head of the array.
       *
       *    - The term "body" is used in place of the term "head" used in the ABI
       *      documentation. It refers to the start of the data for a dynamic type,
       *      e.g. the first word of a struct or the first word of the first element
       *      in an array.
       *
       *    - The term "pointer" is used to describe the absolute position of a value
       *      and never an offset relative to another value.
       *        - The suffix "_ptr" refers to a memory pointer.
       *        - The suffix "_cdPtr" refers to a calldata pointer.
       *
       *    - The term "offset" is used to describe the position of a value relative
       *      to some parent value. For example, OrderParameters_conduit_offset is the
       *      offset to the "conduit" value in the OrderParameters struct relative to
       *      the start of the body.
       *        - Note: Offsets are used to derive pointers.
       *
       *    - Some structs have pointers defined for all of their fields in this file.
       *      Lines which are commented out are fields that are not used in the
       *      codebase but have been left in for readability.
       */
      uint256 constant AlmostOneWord = 0x1f;
      uint256 constant OneWord = 0x20;
      uint256 constant TwoWords = 0x40;
      uint256 constant ThreeWords = 0x60;
      uint256 constant FreeMemoryPointerSlot = 0x40;
      uint256 constant ZeroSlot = 0x60;
      uint256 constant DefaultFreeMemoryPointer = 0x80;
      uint256 constant Slot0x80 = 0x80;
      uint256 constant Slot0xA0 = 0xa0;
      uint256 constant Slot0xC0 = 0xc0;
      // abi.encodeWithSignature("transferFrom(address,address,uint256)")
      uint256 constant ERC20_transferFrom_signature = (
          0x23b872dd00000000000000000000000000000000000000000000000000000000
      );
      uint256 constant ERC20_transferFrom_sig_ptr = 0x0;
      uint256 constant ERC20_transferFrom_from_ptr = 0x04;
      uint256 constant ERC20_transferFrom_to_ptr = 0x24;
      uint256 constant ERC20_transferFrom_amount_ptr = 0x44;
      uint256 constant ERC20_transferFrom_length = 0x64; // 4 + 32 * 3 == 100
      // abi.encodeWithSignature(
      //     "safeTransferFrom(address,address,uint256,uint256,bytes)"
      // )
      uint256 constant ERC1155_safeTransferFrom_signature = (
          0xf242432a00000000000000000000000000000000000000000000000000000000
      );
      uint256 constant ERC1155_safeTransferFrom_sig_ptr = 0x0;
      uint256 constant ERC1155_safeTransferFrom_from_ptr = 0x04;
      uint256 constant ERC1155_safeTransferFrom_to_ptr = 0x24;
      uint256 constant ERC1155_safeTransferFrom_id_ptr = 0x44;
      uint256 constant ERC1155_safeTransferFrom_amount_ptr = 0x64;
      uint256 constant ERC1155_safeTransferFrom_data_offset_ptr = 0x84;
      uint256 constant ERC1155_safeTransferFrom_data_length_ptr = 0xa4;
      uint256 constant ERC1155_safeTransferFrom_length = 0xc4; // 4 + 32 * 6 == 196
      uint256 constant ERC1155_safeTransferFrom_data_length_offset = 0xa0;
      // abi.encodeWithSignature(
      //     "safeBatchTransferFrom(address,address,uint256[],uint256[],bytes)"
      // )
      uint256 constant ERC1155_safeBatchTransferFrom_signature = (
          0x2eb2c2d600000000000000000000000000000000000000000000000000000000
      );
      bytes4 constant ERC1155_safeBatchTransferFrom_selector = bytes4(
          bytes32(ERC1155_safeBatchTransferFrom_signature)
      );
      uint256 constant ERC721_transferFrom_signature = ERC20_transferFrom_signature;
      uint256 constant ERC721_transferFrom_sig_ptr = 0x0;
      uint256 constant ERC721_transferFrom_from_ptr = 0x04;
      uint256 constant ERC721_transferFrom_to_ptr = 0x24;
      uint256 constant ERC721_transferFrom_id_ptr = 0x44;
      uint256 constant ERC721_transferFrom_length = 0x64; // 4 + 32 * 3 == 100
      // abi.encodeWithSignature("NoContract(address)")
      uint256 constant NoContract_error_signature = (
          0x5f15d67200000000000000000000000000000000000000000000000000000000
      );
      uint256 constant NoContract_error_sig_ptr = 0x0;
      uint256 constant NoContract_error_token_ptr = 0x4;
      uint256 constant NoContract_error_length = 0x24; // 4 + 32 == 36
      // abi.encodeWithSignature(
      //     "TokenTransferGenericFailure(address,address,address,uint256,uint256)"
      // )
      uint256 constant TokenTransferGenericFailure_error_signature = (
          0xf486bc8700000000000000000000000000000000000000000000000000000000
      );
      uint256 constant TokenTransferGenericFailure_error_sig_ptr = 0x0;
      uint256 constant TokenTransferGenericFailure_error_token_ptr = 0x4;
      uint256 constant TokenTransferGenericFailure_error_from_ptr = 0x24;
      uint256 constant TokenTransferGenericFailure_error_to_ptr = 0x44;
      uint256 constant TokenTransferGenericFailure_error_id_ptr = 0x64;
      uint256 constant TokenTransferGenericFailure_error_amount_ptr = 0x84;
      // 4 + 32 * 5 == 164
      uint256 constant TokenTransferGenericFailure_error_length = 0xa4;
      // abi.encodeWithSignature(
      //     "BadReturnValueFromERC20OnTransfer(address,address,address,uint256)"
      // )
      uint256 constant BadReturnValueFromERC20OnTransfer_error_signature = (
          0x9889192300000000000000000000000000000000000000000000000000000000
      );
      uint256 constant BadReturnValueFromERC20OnTransfer_error_sig_ptr = 0x0;
      uint256 constant BadReturnValueFromERC20OnTransfer_error_token_ptr = 0x4;
      uint256 constant BadReturnValueFromERC20OnTransfer_error_from_ptr = 0x24;
      uint256 constant BadReturnValueFromERC20OnTransfer_error_to_ptr = 0x44;
      uint256 constant BadReturnValueFromERC20OnTransfer_error_amount_ptr = 0x64;
      // 4 + 32 * 4 == 132
      uint256 constant BadReturnValueFromERC20OnTransfer_error_length = 0x84;
      uint256 constant ExtraGasBuffer = 0x20;
      uint256 constant CostPerWord = 3;
      uint256 constant MemoryExpansionCoefficient = 0x200;
      // Values are offset by 32 bytes in order to write the token to the beginning
      // in the event of a revert
      uint256 constant BatchTransfer1155Params_ptr = 0x24;
      uint256 constant BatchTransfer1155Params_ids_head_ptr = 0x64;
      uint256 constant BatchTransfer1155Params_amounts_head_ptr = 0x84;
      uint256 constant BatchTransfer1155Params_data_head_ptr = 0xa4;
      uint256 constant BatchTransfer1155Params_data_length_basePtr = 0xc4;
      uint256 constant BatchTransfer1155Params_calldata_baseSize = 0xc4;
      uint256 constant BatchTransfer1155Params_ids_length_ptr = 0xc4;
      uint256 constant BatchTransfer1155Params_ids_length_offset = 0xa0;
      uint256 constant BatchTransfer1155Params_amounts_length_baseOffset = 0xc0;
      uint256 constant BatchTransfer1155Params_data_length_baseOffset = 0xe0;
      uint256 constant ConduitBatch1155Transfer_usable_head_size = 0x80;
      uint256 constant ConduitBatch1155Transfer_from_offset = 0x20;
      uint256 constant ConduitBatch1155Transfer_ids_head_offset = 0x60;
      uint256 constant ConduitBatch1155Transfer_amounts_head_offset = 0x80;
      uint256 constant ConduitBatch1155Transfer_ids_length_offset = 0xa0;
      uint256 constant ConduitBatch1155Transfer_amounts_length_baseOffset = 0xc0;
      uint256 constant ConduitBatch1155Transfer_calldata_baseSize = 0xc0;
      // Note: abbreviated version of above constant to adhere to line length limit.
      uint256 constant ConduitBatchTransfer_amounts_head_offset = 0x80;
      uint256 constant Invalid1155BatchTransferEncoding_ptr = 0x00;
      uint256 constant Invalid1155BatchTransferEncoding_length = 0x04;
      uint256 constant Invalid1155BatchTransferEncoding_selector = (
          0xeba2084c00000000000000000000000000000000000000000000000000000000
      );
      uint256 constant ERC1155BatchTransferGenericFailure_error_signature = (
          0xafc445e200000000000000000000000000000000000000000000000000000000
      );
      uint256 constant ERC1155BatchTransferGenericFailure_token_ptr = 0x04;
      uint256 constant ERC1155BatchTransferGenericFailure_ids_offset = 0xc0;
      // SPDX-License-Identifier: MIT
      pragma solidity >=0.8.7;
      /**
       * @title TokenTransferrerErrors
       */
      interface TokenTransferrerErrors {
          /**
           * @dev Revert with an error when an ERC721 transfer with amount other than
           *      one is attempted.
           */
          error InvalidERC721TransferAmount();
          /**
           * @dev Revert with an error when attempting to fulfill an order where an
           *      item has an amount of zero.
           */
          error MissingItemAmount();
          /**
           * @dev Revert with an error when attempting to fulfill an order where an
           *      item has unused parameters. This includes both the token and the
           *      identifier parameters for native transfers as well as the identifier
           *      parameter for ERC20 transfers. Note that the conduit does not
           *      perform this check, leaving it up to the calling channel to enforce
           *      when desired.
           */
          error UnusedItemParameters();
          /**
           * @dev Revert with an error when an ERC20, ERC721, or ERC1155 token
           *      transfer reverts.
           *
           * @param token      The token for which the transfer was attempted.
           * @param from       The source of the attempted transfer.
           * @param to         The recipient of the attempted transfer.
           * @param identifier The identifier for the attempted transfer.
           * @param amount     The amount for the attempted transfer.
           */
          error TokenTransferGenericFailure(
              address token,
              address from,
              address to,
              uint256 identifier,
              uint256 amount
          );
          /**
           * @dev Revert with an error when a batch ERC1155 token transfer reverts.
           *
           * @param token       The token for which the transfer was attempted.
           * @param from        The source of the attempted transfer.
           * @param to          The recipient of the attempted transfer.
           * @param identifiers The identifiers for the attempted transfer.
           * @param amounts     The amounts for the attempted transfer.
           */
          error ERC1155BatchTransferGenericFailure(
              address token,
              address from,
              address to,
              uint256[] identifiers,
              uint256[] amounts
          );
          /**
           * @dev Revert with an error when an ERC20 token transfer returns a falsey
           *      value.
           *
           * @param token      The token for which the ERC20 transfer was attempted.
           * @param from       The source of the attempted ERC20 transfer.
           * @param to         The recipient of the attempted ERC20 transfer.
           * @param amount     The amount for the attempted ERC20 transfer.
           */
          error BadReturnValueFromERC20OnTransfer(
              address token,
              address from,
              address to,
              uint256 amount
          );
          /**
           * @dev Revert with an error when an account being called as an assumed
           *      contract does not have code and returns no data.
           *
           * @param account The account that should contain code.
           */
          error NoContract(address account);
          /**
           * @dev Revert with an error when attempting to execute an 1155 batch
           *      transfer using calldata not produced by default ABI encoding or with
           *      different lengths for ids and amounts arrays.
           */
          error Invalid1155BatchTransferEncoding();
      }
      

      File 4 of 4: PayableProxy
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.7;
      import { PayableProxyInterface } from "../interfaces/PayableProxyInterface.sol";
      interface IUpgradeBeacon {
          /**
           * @notice An external view function that returns the implementation.
           *
           * @return The address of the implementation.
           */
          function implementation() external view returns (address);
      }
      /**
       * @title   PayableProxy
       * @author  OpenSea Protocol Team
       * @notice  PayableProxy is a beacon proxy which will immediately return if
       *          called with callvalue. Otherwise, it will delegatecall the beacon
       *          implementation.
       */
      contract PayableProxy is PayableProxyInterface {
          // Address of the beacon.
          address private immutable _beacon;
          constructor(address beacon) payable {
              // Ensure the origin is an approved deployer.
              require(
                  (tx.origin == address(0x939C8d89EBC11fA45e576215E2353673AD0bA18A) ||
                      tx.origin ==
                      address(0xe80a65eB7a3018DedA407e621Ef5fb5B416678CA) ||
                      tx.origin ==
                      address(0x86D26897267711ea4b173C8C124a0A73612001da) ||
                      tx.origin ==
                      address(0x3B52ad533687Ce908bA0485ac177C5fb42972962)),
                  "Deployment must originate from an approved deployer."
              );
              // Set the initial beacon.
              _beacon = beacon;
          }
          function initialize(address ownerToSet) external {
              // Ensure the origin is an approved deployer.
              require(
                  (tx.origin == address(0x939C8d89EBC11fA45e576215E2353673AD0bA18A) ||
                      tx.origin ==
                      address(0xe80a65eB7a3018DedA407e621Ef5fb5B416678CA) ||
                      tx.origin ==
                      address(0x86D26897267711ea4b173C8C124a0A73612001da) ||
                      tx.origin ==
                      address(0x3B52ad533687Ce908bA0485ac177C5fb42972962)),
                  "Initialize must originate from an approved deployer."
              );
              // Get the implementation address from the provided beacon.
              address implementation = IUpgradeBeacon(_beacon).implementation();
              // Create the initializationCalldata from the provided parameters.
              bytes memory initializationCalldata = abi.encodeWithSignature(
                  "initialize(address)",
                  ownerToSet
              );
              // Delegatecall into the implementation, supplying initialization
              // calldata.
              (bool ok, ) = implementation.delegatecall(initializationCalldata);
              // Revert and include revert data if delegatecall to implementation
              // reverts.
              if (!ok) {
                  assembly {
                      returndatacopy(0, 0, returndatasize())
                      revert(0, returndatasize())
                  }
              }
          }
          /**
           * @dev Fallback function that delegates calls to the address returned by
           *      `_implementation()`. Will run if no other function in the contract
           *      matches the call data.
           */
          fallback() external payable override {
              _fallback();
          }
          /**
           * @dev Internal fallback function that delegates calls to the address
           *      returned by `_implementation()`. Will run if no other function
           *      in the contract matches the call data.
           */
          function _fallback() internal {
              // Delegate if call value is zero.
              if (msg.value == 0) {
                  _delegate(_implementation());
              }
          }
          /**
           * @dev Delegates the current call to `implementation`.
           *
           * This function does not return to its internal call site, it will
           * return directly to the external caller.
           */
          function _delegate(address implementation) internal virtual {
              assembly {
                  // Copy msg.data. We take full control of memory in this
                  // inline assembly block because it will not return to
                  // Solidity code. We overwrite the Solidity scratch pad
                  // at memory position 0.
                  calldatacopy(0, 0, calldatasize())
                  // Call the implementation.
                  // out and outsize are 0 because we don't know the size yet.
                  let result := delegatecall(
                      gas(),
                      implementation,
                      0,
                      calldatasize(),
                      0,
                      0
                  )
                  // Copy the returned data.
                  returndatacopy(0, 0, returndatasize())
                  switch result
                  // delegatecall returns 0 on error.
                  case 0 {
                      revert(0, returndatasize())
                  }
                  default {
                      return(0, returndatasize())
                  }
              }
          }
          /**
           * @dev This function returns the address to which the fallback function
           *      should delegate.
           */
          function _implementation() internal view returns (address) {
              return IUpgradeBeacon(_beacon).implementation();
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.7;
      /**
       * @title   PayableProxyInterface
       * @author  OpenSea Protocol Team
       * @notice  PayableProxyInterface contains all external function interfaces
       *          for the payable proxy.
       */
      interface PayableProxyInterface {
          /**
           * @dev Fallback function that delegates calls to the address returned by
           *      `_implementation()`. Will run if no other function in the contract
           *      matches the call data.
           */
          fallback() external payable;
      }