Transaction Hash:
Block:
13055817 at Aug-19-2021 12:55:39 PM +UTC
Transaction Fee:
0.002574615929682475 ETH
$6.21
Gas Used:
96,373 Gas / 26.715116575 Gwei
Emitted Events:
191 |
TokenMintERC20Token.Transfer( from=[Receiver] StakingPool, to=[Sender] 0xbe505937a5fc3809cef144fbcd7bcd2aeb39f2e7, value=1218341314616652000000 )
|
192 |
TokenMintERC20Token.Transfer( from=[Sender] 0xbe505937a5fc3809cef144fbcd7bcd2aeb39f2e7, to=[Receiver] StakingPool, value=22331000000000000000000 )
|
193 |
TokenMintERC20Token.Approval( owner=[Sender] 0xbe505937a5fc3809cef144fbcd7bcd2aeb39f2e7, spender=[Receiver] StakingPool, value=115792089237316195423570985008687907853269984665640564017126000000000000000000 )
|
194 |
StakingPool.Deposit( user=[Sender] 0xbe505937a5fc3809cef144fbcd7bcd2aeb39f2e7, amount=22331000000000000000000 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x88716812...7dF0977f6 | |||||
0x8Ad97ed3...002E2bff9 | |||||
0xBe505937...aEb39F2e7 |
1.12457587910858028 Eth
Nonce: 557
|
1.122001263178897805 Eth
Nonce: 558
| 0.002574615929682475 | ||
0xEA674fdD...16B898ec8
Miner
| (Ethermine) | 1,626.411753401563955488 Eth | 1,626.412138893563955488 Eth | 0.000385492 |
Execution Trace
StakingPool.deposit( _amount=22331000000000000000000 )
-
TokenMintERC20Token.transfer( recipient=0xBe505937a5Fc3809cEF144FBCd7BCd2aEb39F2e7, amount=1218341314616652000000 ) => ( True )
-
TokenMintERC20Token.transferFrom( sender=0xBe505937a5Fc3809cEF144FBCd7BCd2aEb39F2e7, recipient=0x8Ad97ed3674cDA319761AfC8785c831002E2bff9, amount=22331000000000000000000 ) => ( True )
deposit[StakingPool (ln:803)]
sub[StakingPool (ln:811)]
div[StakingPool (ln:811)]
mul[StakingPool (ln:811)]
safeTransfer[StakingPool (ln:813)]
safeTransferFrom[StakingPool (ln:817)]
add[StakingPool (ln:818)]
add[StakingPool (ln:819)]
div[StakingPool (ln:821)]
mul[StakingPool (ln:821)]
Deposit[StakingPool (ln:823)]
File 1 of 2: StakingPool
File 2 of 2: TokenMintERC20Token
// File: SafeMath.sol pragma solidity >=0.4.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, 'SafeMath: addition overflow'); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, 'SafeMath: subtraction overflow'); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, 'SafeMath: multiplication overflow'); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, 'SafeMath: division by zero'); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, 'SafeMath: modulo by zero'); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } function min(uint256 x, uint256 y) internal pure returns (uint256 z) { z = x < y ? x : y; } // babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method) function sqrt(uint256 y) internal pure returns (uint256 z) { if (y > 3) { z = y; uint256 x = y / 2 + 1; while (x < z) { z = x; x = (y / x + x) / 2; } } else if (y != 0) { z = 1; } } } // File: IBEP20.sol pragma solidity >=0.4.0; interface IBEP20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the token decimals. */ function decimals() external view returns (uint8); /** * @dev Returns the token symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the token name. */ function name() external view returns (string memory); /** * @dev Returns the bep token owner. */ function getOwner() external view returns (address); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address _owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // File: Address.sol pragma solidity ^0.6.2; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, 'Address: insufficient balance'); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{value: amount}(''); require(success, 'Address: unable to send value, recipient may have reverted'); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, 'Address: low-level call failed'); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, 'Address: low-level call with value failed'); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, 'Address: insufficient balance for call'); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue( address target, bytes memory data, uint256 weiValue, string memory errorMessage ) private returns (bytes memory) { require(isContract(target), 'Address: call to non-contract'); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{value: weiValue}(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // File: SafeBEP20.sol pragma solidity ^0.6.0; /** * @title SafeBEP20 * @dev Wrappers around BEP20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeBEP20 for IBEP20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeBEP20 { using SafeMath for uint256; using Address for address; function safeTransfer( IBEP20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IBEP20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IBEP20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IBEP20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' // solhint-disable-next-line max-line-length require( (value == 0) || (token.allowance(address(this), spender) == 0), 'SafeBEP20: approve from non-zero to non-zero allowance' ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IBEP20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender).add(value); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IBEP20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender).sub( value, 'SafeBEP20: decreased allowance below zero' ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IBEP20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, 'SafeBEP20: low-level call failed'); if (returndata.length > 0) { // Return data is optional // solhint-disable-next-line max-line-length require(abi.decode(returndata, (bool)), 'SafeBEP20: BEP20 operation did not succeed'); } } } // File: Context.sol pragma solidity >=0.4.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ contract Context { // Empty internal constructor, to prevent people from mistakenly deploying // an instance of this contract, which should be used via inheritance. constructor() internal {} function _msgSender() internal view returns (address payable) { return msg.sender; } function _msgData() internal view returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } // File: Ownable.sol pragma solidity >=0.4.0; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() internal { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(_owner == _msgSender(), 'Ownable: caller is not the owner'); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public onlyOwner { _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). */ function _transferOwnership(address newOwner) internal { require(newOwner != address(0), 'Ownable: new owner is the zero address'); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } // File: contracts/StakingPool.sol pragma solidity 0.6.12; // import "@nomiclabs/buidler/console.sol"; contract StakingPool is Ownable { using SafeMath for uint256; using SafeBEP20 for IBEP20; // Info of each user. struct UserInfo { uint256 amount; // How many LP tokens the user has provided. uint256 rewardDebt; // Reward debt. See explanation below. } // Info of each pool. struct PoolInfo { IBEP20 lpToken; // Address of LP token contract. uint256 allocPoint; // How many allocation points assigned to this pool. CAKEs to distribute per block. uint256 lastRewardBlock; // Last block number that CAKEs distribution occurs. uint256 accCakePerShare; // Accumulated CAKEs per share, times 1e12. See below. } // The CAKE TOKEN! IBEP20 public syrup; IBEP20 public rewardToken; // uint256 public maxStaking; // CAKE tokens created per block. uint256 public rewardPerBlock; // Info of each pool. PoolInfo[] public poolInfo; // Info of each user that stakes LP tokens. mapping (address => UserInfo) public userInfo; // Total allocation poitns. Must be the sum of all allocation points in all pools. uint256 private totalAllocPoint = 0; // The block number when CAKE mining starts. uint256 public startBlock; // The block number when CAKE mining ends. uint256 public bonusEndBlock; //Total lpTokens staked uint256 public totalStaked = 0; event Deposit(address indexed user, uint256 amount); event Withdraw(address indexed user, uint256 amount); event EmergencyWithdraw(address indexed user, uint256 amount); constructor( IBEP20 _syrup, IBEP20 _rewardToken, uint256 _rewardPerBlock, uint256 _startBlock, uint256 _bonusEndBlock ) public { syrup = _syrup; rewardToken = _rewardToken; rewardPerBlock = _rewardPerBlock; startBlock = _startBlock; bonusEndBlock = _bonusEndBlock; // staking pool poolInfo.push(PoolInfo({ lpToken: _syrup, allocPoint: 1000, lastRewardBlock: startBlock, accCakePerShare: 0 })); totalAllocPoint = 1000; // maxStaking = 50000000000000000000; } function stopReward() public onlyOwner { bonusEndBlock = block.number; } // Return reward multiplier over the given _from to _to block. function getMultiplier(uint256 _from, uint256 _to) public view returns (uint256) { if (_to <= bonusEndBlock) { return _to.sub(_from); } else if (_from >= bonusEndBlock) { return 0; } else { return bonusEndBlock.sub(_from); } } // View function to see pending Reward on frontend. function pendingReward(address _user) external view returns (uint256) { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[_user]; uint256 accCakePerShare = pool.accCakePerShare; uint256 lpSupply = totalStaked; if (block.number > pool.lastRewardBlock && lpSupply != 0) { uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number); uint256 cakeReward = multiplier.mul(rewardPerBlock).mul(pool.allocPoint).div(totalAllocPoint); accCakePerShare = accCakePerShare.add(cakeReward.mul(1e12).div(lpSupply)); } return user.amount.mul(accCakePerShare).div(1e12).sub(user.rewardDebt); } // Update reward variables of the given pool to be up-to-date. function updatePool(uint256 _pid) public { PoolInfo storage pool = poolInfo[_pid]; if (block.number <= pool.lastRewardBlock) { return; } uint256 lpSupply = totalStaked; if (lpSupply == 0) { pool.lastRewardBlock = block.number; return; } uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number); uint256 cakeReward = multiplier.mul(rewardPerBlock).mul(pool.allocPoint).div(totalAllocPoint); pool.accCakePerShare = pool.accCakePerShare.add(cakeReward.mul(1e12).div(lpSupply)); pool.lastRewardBlock = block.number; } // Update reward variables for all pools. Be careful of gas spending! function massUpdatePools() public { uint256 length = poolInfo.length; for (uint256 pid = 0; pid < length; ++pid) { updatePool(pid); } } // Stake SYRUP tokens to StakingPool function deposit(uint256 _amount) public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; // require (_amount.add(user.amount) <= maxStaking, 'exceed max stake'); updatePool(0); if (user.amount > 0) { uint256 pending = user.amount.mul(pool.accCakePerShare).div(1e12).sub(user.rewardDebt); if(pending > 0) { rewardToken.safeTransfer(address(msg.sender), pending); } } if(_amount > 0) { pool.lpToken.safeTransferFrom(address(msg.sender), address(this), _amount); user.amount = user.amount.add(_amount); totalStaked = totalStaked.add(_amount); } user.rewardDebt = user.amount.mul(pool.accCakePerShare).div(1e12); emit Deposit(msg.sender, _amount); } // Withdraw SYRUP tokens from STAKING. function withdraw(uint256 _amount) public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; require(user.amount >= _amount, "withdraw: not good"); updatePool(0); uint256 pending = user.amount.mul(pool.accCakePerShare).div(1e12).sub(user.rewardDebt); if(pending > 0) { rewardToken.safeTransfer(address(msg.sender), pending); } if(_amount > 0) { user.amount = user.amount.sub(_amount); pool.lpToken.safeTransfer(address(msg.sender), _amount); totalStaked = totalStaked.sub(_amount); } user.rewardDebt = user.amount.mul(pool.accCakePerShare).div(1e12); emit Withdraw(msg.sender, _amount); } // Withdraw without caring about rewards. EMERGENCY ONLY. function emergencyWithdraw() public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; pool.lpToken.safeTransfer(address(msg.sender), user.amount); totalStaked = totalStaked.sub(user.amount); user.amount = 0; user.rewardDebt = 0; emit EmergencyWithdraw(msg.sender, user.amount); } // Withdraw reward. EMERGENCY ONLY. function emergencyRewardWithdraw(uint256 _amount) public onlyOwner { uint256 totalBalance = rewardToken.balanceOf(address(this)); uint256 availableRewards = totalBalance.sub(totalStaked); require(_amount < availableRewards, 'not enough rewards'); rewardToken.safeTransfer(address(msg.sender), _amount); } }
File 2 of 2: TokenMintERC20Token
/** *Submitted for verification at Etherscan.io on 2021-01-12 */ // File: contracts\open-zeppelin-contracts\token\ERC20\IERC20.sol pragma solidity ^0.5.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. Does not include * the optional functions; to access them see `ERC20Detailed`. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a `Transfer` event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through `transferFrom`. This is * zero by default. * * This value changes when `approve` or `transferFrom` are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * > Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an `Approval` event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a `Transfer` event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to `approve`. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // File: contracts\open-zeppelin-contracts\math\SafeMath.sol pragma solidity ^0.5.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SafeMath: subtraction overflow"); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, "SafeMath: division by zero"); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0, "SafeMath: modulo by zero"); return a % b; } } // File: contracts\open-zeppelin-contracts\token\ERC20\ERC20.sol pragma solidity ^0.5.0; /** * @dev Implementation of the `IERC20` interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using `_mint`. * For a generic mechanism see `ERC20Mintable`. * * *For a detailed writeup see our guide [How to implement supply * mechanisms](https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226).* * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an `Approval` event is emitted on calls to `transferFrom`. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard `decreaseAllowance` and `increaseAllowance` * functions have been added to mitigate the well-known issues around setting * allowances. See `IERC20.approve`. */ contract ERC20 is IERC20 { using SafeMath for uint256; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; /** * @dev See `IERC20.totalSupply`. */ function totalSupply() public view returns (uint256) { return _totalSupply; } /** * @dev See `IERC20.balanceOf`. */ function balanceOf(address account) public view returns (uint256) { return _balances[account]; } /** * @dev See `IERC20.transfer`. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public returns (bool) { _transfer(msg.sender, recipient, amount); return true; } /** * @dev See `IERC20.allowance`. */ function allowance(address owner, address spender) public view returns (uint256) { return _allowances[owner][spender]; } /** * @dev See `IERC20.approve`. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 value) public returns (bool) { _approve(msg.sender, spender, value); return true; } /** * @dev See `IERC20.transferFrom`. * * Emits an `Approval` event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of `ERC20`; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `value`. * - the caller must have allowance for `sender`'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public returns (bool) { _transfer(sender, recipient, amount); _approve(sender, msg.sender, _allowances[sender][msg.sender].sub(amount)); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to `approve` that can be used as a mitigation for * problems described in `IERC20.approve`. * * Emits an `Approval` event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public returns (bool) { _approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to `approve` that can be used as a mitigation for * problems described in `IERC20.approve`. * * Emits an `Approval` event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) { _approve(msg.sender, spender, _allowances[msg.sender][spender].sub(subtractedValue)); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to `transfer`, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a `Transfer` event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _balances[sender] = _balances[sender].sub(amount); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a `Transfer` event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal { require(account != address(0), "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a `Transfer` event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 value) internal { require(account != address(0), "ERC20: burn from the zero address"); _totalSupply = _totalSupply.sub(value); _balances[account] = _balances[account].sub(value); emit Transfer(account, address(0), value); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an `Approval` event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 value) internal { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = value; emit Approval(owner, spender, value); } /** * @dev Destoys `amount` tokens from `account`.`amount` is then deducted * from the caller's allowance. * * See `_burn` and `_approve`. */ function _burnFrom(address account, uint256 amount) internal { _burn(account, amount); _approve(account, msg.sender, _allowances[account][msg.sender].sub(amount)); } } // File: contracts\ERC20\TokenMintERC20Token.sol pragma solidity ^0.5.0; /** * @title TokenMintERC20Token * @author TokenMint (visit https://tokenmint.io) * * @dev Standard ERC20 token with burning and optional functions implemented. * For full specification of ERC-20 standard see: * https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md */ contract TokenMintERC20Token is ERC20 { string private _name; string private _symbol; uint8 private _decimals; /** * @dev Constructor. * @param name name of the token * @param symbol symbol of the token, 3-4 chars is recommended * @param decimals number of decimal places of one token unit, 18 is widely used * @param totalSupply total supply of tokens in lowest units (depending on decimals) * @param tokenOwnerAddress address that gets 100% of token supply */ constructor(string memory name, string memory symbol, uint8 decimals, uint256 totalSupply, address payable feeReceiver, address tokenOwnerAddress) public payable { _name = name; _symbol = symbol; _decimals = decimals; // set tokenOwnerAddress as owner of all tokens _mint(tokenOwnerAddress, totalSupply); // pay the service fee for contract deployment feeReceiver.transfer(msg.value); } /** * @dev Burns a specific amount of tokens. * @param value The amount of lowest token units to be burned. */ function burn(uint256 value) public { _burn(msg.sender, value); } // optional functions from ERC20 stardard /** * @return the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @return the symbol of the token. */ function symbol() public view returns (string memory) { return _symbol; } /** * @return the number of decimals of the token. */ function decimals() public view returns (uint8) { return _decimals; } }