ETH Price: $2,410.63 (-1.59%)

Transaction Decoder

Block:
13055817 at Aug-19-2021 12:55:39 PM +UTC
Transaction Fee:
0.002574615929682475 ETH $6.21
Gas Used:
96,373 Gas / 26.715116575 Gwei

Emitted Events:

191 TokenMintERC20Token.Transfer( from=[Receiver] StakingPool, to=[Sender] 0xbe505937a5fc3809cef144fbcd7bcd2aeb39f2e7, value=1218341314616652000000 )
192 TokenMintERC20Token.Transfer( from=[Sender] 0xbe505937a5fc3809cef144fbcd7bcd2aeb39f2e7, to=[Receiver] StakingPool, value=22331000000000000000000 )
193 TokenMintERC20Token.Approval( owner=[Sender] 0xbe505937a5fc3809cef144fbcd7bcd2aeb39f2e7, spender=[Receiver] StakingPool, value=115792089237316195423570985008687907853269984665640564017126000000000000000000 )
194 StakingPool.Deposit( user=[Sender] 0xbe505937a5fc3809cef144fbcd7bcd2aeb39f2e7, amount=22331000000000000000000 )

Account State Difference:

  Address   Before After State Difference Code
0x88716812...7dF0977f6
0x8Ad97ed3...002E2bff9
0xBe505937...aEb39F2e7
1.12457587910858028 Eth
Nonce: 557
1.122001263178897805 Eth
Nonce: 558
0.002574615929682475
(Ethermine)
1,626.411753401563955488 Eth1,626.412138893563955488 Eth0.000385492

Execution Trace

StakingPool.deposit( _amount=22331000000000000000000 )
  • TokenMintERC20Token.transfer( recipient=0xBe505937a5Fc3809cEF144FBCd7BCd2aEb39F2e7, amount=1218341314616652000000 ) => ( True )
  • TokenMintERC20Token.transferFrom( sender=0xBe505937a5Fc3809cEF144FBCd7BCd2aEb39F2e7, recipient=0x8Ad97ed3674cDA319761AfC8785c831002E2bff9, amount=22331000000000000000000 ) => ( True )
    File 1 of 2: StakingPool
    // File: SafeMath.sol
    
    
    pragma solidity >=0.4.0;
    
    /**
     * @dev Wrappers over Solidity's arithmetic operations with added overflow
     * checks.
     *
     * Arithmetic operations in Solidity wrap on overflow. This can easily result
     * in bugs, because programmers usually assume that an overflow raises an
     * error, which is the standard behavior in high level programming languages.
     * `SafeMath` restores this intuition by reverting the transaction when an
     * operation overflows.
     *
     * Using this library instead of the unchecked operations eliminates an entire
     * class of bugs, so it's recommended to use it always.
     */
    library SafeMath {
        /**
         * @dev Returns the addition of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `+` operator.
         *
         * Requirements:
         *
         * - Addition cannot overflow.
         */
        function add(uint256 a, uint256 b) internal pure returns (uint256) {
            uint256 c = a + b;
            require(c >= a, 'SafeMath: addition overflow');
    
            return c;
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         *
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
            return sub(a, b, 'SafeMath: subtraction overflow');
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         *
         * - Subtraction cannot overflow.
         */
        function sub(
            uint256 a,
            uint256 b,
            string memory errorMessage
        ) internal pure returns (uint256) {
            require(b <= a, errorMessage);
            uint256 c = a - b;
    
            return c;
        }
    
        /**
         * @dev Returns the multiplication of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `*` operator.
         *
         * Requirements:
         *
         * - Multiplication cannot overflow.
         */
        function mul(uint256 a, uint256 b) internal pure returns (uint256) {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) {
                return 0;
            }
    
            uint256 c = a * b;
            require(c / a == b, 'SafeMath: multiplication overflow');
    
            return c;
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers. Reverts on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b) internal pure returns (uint256) {
            return div(a, b, 'SafeMath: division by zero');
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function div(
            uint256 a,
            uint256 b,
            string memory errorMessage
        ) internal pure returns (uint256) {
            require(b > 0, errorMessage);
            uint256 c = a / b;
            // assert(a == b * c + a % b); // There is no case in which this doesn't hold
    
            return c;
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b) internal pure returns (uint256) {
            return mod(a, b, 'SafeMath: modulo by zero');
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts with custom message when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function mod(
            uint256 a,
            uint256 b,
            string memory errorMessage
        ) internal pure returns (uint256) {
            require(b != 0, errorMessage);
            return a % b;
        }
    
        function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
            z = x < y ? x : y;
        }
    
        // babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method)
        function sqrt(uint256 y) internal pure returns (uint256 z) {
            if (y > 3) {
                z = y;
                uint256 x = y / 2 + 1;
                while (x < z) {
                    z = x;
                    x = (y / x + x) / 2;
                }
            } else if (y != 0) {
                z = 1;
            }
        }
    }
    
    // File: IBEP20.sol
    
    
    pragma solidity >=0.4.0;
    
    interface IBEP20 {
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
    
        /**
         * @dev Returns the token decimals.
         */
        function decimals() external view returns (uint8);
    
        /**
         * @dev Returns the token symbol.
         */
        function symbol() external view returns (string memory);
    
        /**
         * @dev Returns the token name.
         */
        function name() external view returns (string memory);
    
        /**
         * @dev Returns the bep token owner.
         */
        function getOwner() external view returns (address);
    
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
    
        /**
         * @dev Moves `amount` tokens from the caller's account to `recipient`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address _owner, address spender) external view returns (uint256);
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
    
        /**
         * @dev Moves `amount` tokens from `sender` to `recipient` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address sender,
            address recipient,
            uint256 amount
        ) external returns (bool);
    
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
    
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    }
    
    // File: Address.sol
    
    
    pragma solidity ^0.6.2;
    
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // According to EIP-1052, 0x0 is the value returned for not-yet created accounts
            // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
            // for accounts without code, i.e. `keccak256('')`
            bytes32 codehash;
            bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
            // solhint-disable-next-line no-inline-assembly
            assembly {
                codehash := extcodehash(account)
            }
            return (codehash != accountHash && codehash != 0x0);
        }
    
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, 'Address: insufficient balance');
    
            // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
            (bool success, ) = recipient.call{value: amount}('');
            require(success, 'Address: unable to send value, recipient may have reverted');
        }
    
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain`call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCall(target, data, 'Address: low-level call failed');
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            return _functionCallWithValue(target, data, 0, errorMessage);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, 'Address: low-level call with value failed');
        }
    
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(address(this).balance >= value, 'Address: insufficient balance for call');
            return _functionCallWithValue(target, data, value, errorMessage);
        }
    
        function _functionCallWithValue(
            address target,
            bytes memory data,
            uint256 weiValue,
            string memory errorMessage
        ) private returns (bytes memory) {
            require(isContract(target), 'Address: call to non-contract');
    
            // solhint-disable-next-line avoid-low-level-calls
            (bool success, bytes memory returndata) = target.call{value: weiValue}(data);
            if (success) {
                return returndata;
            } else {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
    
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
    }
    
    // File: SafeBEP20.sol
    
    
    pragma solidity ^0.6.0;
    
    
    
    
    /**
     * @title SafeBEP20
     * @dev Wrappers around BEP20 operations that throw on failure (when the token
     * contract returns false). Tokens that return no value (and instead revert or
     * throw on failure) are also supported, non-reverting calls are assumed to be
     * successful.
     * To use this library you can add a `using SafeBEP20 for IBEP20;` statement to your contract,
     * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
     */
    library SafeBEP20 {
        using SafeMath for uint256;
        using Address for address;
    
        function safeTransfer(
            IBEP20 token,
            address to,
            uint256 value
        ) internal {
            _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
        }
    
        function safeTransferFrom(
            IBEP20 token,
            address from,
            address to,
            uint256 value
        ) internal {
            _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
        }
    
        /**
         * @dev Deprecated. This function has issues similar to the ones found in
         * {IBEP20-approve}, and its usage is discouraged.
         *
         * Whenever possible, use {safeIncreaseAllowance} and
         * {safeDecreaseAllowance} instead.
         */
        function safeApprove(
            IBEP20 token,
            address spender,
            uint256 value
        ) internal {
            // safeApprove should only be called when setting an initial allowance,
            // or when resetting it to zero. To increase and decrease it, use
            // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
            // solhint-disable-next-line max-line-length
            require(
                (value == 0) || (token.allowance(address(this), spender) == 0),
                'SafeBEP20: approve from non-zero to non-zero allowance'
            );
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
        }
    
        function safeIncreaseAllowance(
            IBEP20 token,
            address spender,
            uint256 value
        ) internal {
            uint256 newAllowance = token.allowance(address(this), spender).add(value);
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    
        function safeDecreaseAllowance(
            IBEP20 token,
            address spender,
            uint256 value
        ) internal {
            uint256 newAllowance = token.allowance(address(this), spender).sub(
                value,
                'SafeBEP20: decreased allowance below zero'
            );
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         */
        function _callOptionalReturn(IBEP20 token, bytes memory data) private {
            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
            // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
            // the target address contains contract code and also asserts for success in the low-level call.
    
            bytes memory returndata = address(token).functionCall(data, 'SafeBEP20: low-level call failed');
            if (returndata.length > 0) {
                // Return data is optional
                // solhint-disable-next-line max-line-length
                require(abi.decode(returndata, (bool)), 'SafeBEP20: BEP20 operation did not succeed');
            }
        }
    }
    
    // File: Context.sol
    
    
    pragma solidity >=0.4.0;
    
    /*
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with GSN meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    contract Context {
        // Empty internal constructor, to prevent people from mistakenly deploying
        // an instance of this contract, which should be used via inheritance.
        constructor() internal {}
    
        function _msgSender() internal view returns (address payable) {
            return msg.sender;
        }
    
        function _msgData() internal view returns (bytes memory) {
            this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
            return msg.data;
        }
    }
    
    // File: Ownable.sol
    
    
    pragma solidity >=0.4.0;
    
    
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    contract Ownable is Context {
        address private _owner;
    
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor() internal {
            address msgSender = _msgSender();
            _owner = msgSender;
            emit OwnershipTransferred(address(0), msgSender);
        }
    
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view returns (address) {
            return _owner;
        }
    
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            require(_owner == _msgSender(), 'Ownable: caller is not the owner');
            _;
        }
    
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions anymore. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public onlyOwner {
            emit OwnershipTransferred(_owner, address(0));
            _owner = address(0);
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public onlyOwner {
            _transferOwnership(newOwner);
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         */
        function _transferOwnership(address newOwner) internal {
            require(newOwner != address(0), 'Ownable: new owner is the zero address');
            emit OwnershipTransferred(_owner, newOwner);
            _owner = newOwner;
        }
    }
    
    // File: contracts/StakingPool.sol
    
    pragma solidity 0.6.12;
    
    
    
    
    
    // import "@nomiclabs/buidler/console.sol";
    
    
    contract StakingPool is Ownable {
        using SafeMath for uint256;
        using SafeBEP20 for IBEP20;
    
        // Info of each user.
        struct UserInfo {
            uint256 amount;     // How many LP tokens the user has provided.
            uint256 rewardDebt; // Reward debt. See explanation below.
        }
    
        // Info of each pool.
        struct PoolInfo {
            IBEP20 lpToken;           // Address of LP token contract.
            uint256 allocPoint;       // How many allocation points assigned to this pool. CAKEs to distribute per block.
            uint256 lastRewardBlock;  // Last block number that CAKEs distribution occurs.
            uint256 accCakePerShare; // Accumulated CAKEs per share, times 1e12. See below.
        }
    
        // The CAKE TOKEN!
        IBEP20 public syrup;
        IBEP20 public rewardToken;
    
        // uint256 public maxStaking;
    
        // CAKE tokens created per block.
        uint256 public rewardPerBlock;
    
        // Info of each pool.
        PoolInfo[] public poolInfo;
        // Info of each user that stakes LP tokens.
        mapping (address => UserInfo) public userInfo;
        // Total allocation poitns. Must be the sum of all allocation points in all pools.
        uint256 private totalAllocPoint = 0;
        // The block number when CAKE mining starts.
        uint256 public startBlock;
        // The block number when CAKE mining ends.
        uint256 public bonusEndBlock;
    
        //Total lpTokens staked
        uint256 public totalStaked = 0;
    
        event Deposit(address indexed user, uint256 amount);
        event Withdraw(address indexed user, uint256 amount);
        event EmergencyWithdraw(address indexed user, uint256 amount);
    
        constructor(
            IBEP20 _syrup,
            IBEP20 _rewardToken,
            uint256 _rewardPerBlock,
            uint256 _startBlock,
            uint256 _bonusEndBlock
        ) public {
            syrup = _syrup;
            rewardToken = _rewardToken;
            rewardPerBlock = _rewardPerBlock;
            startBlock = _startBlock;
            bonusEndBlock = _bonusEndBlock;
    
            // staking pool
            poolInfo.push(PoolInfo({
                lpToken: _syrup,
                allocPoint: 1000,
                lastRewardBlock: startBlock,
                accCakePerShare: 0
            }));
    
            totalAllocPoint = 1000;
            // maxStaking = 50000000000000000000;
    
        }
    
        function stopReward() public onlyOwner {
            bonusEndBlock = block.number;
        }
    
    
        // Return reward multiplier over the given _from to _to block.
        function getMultiplier(uint256 _from, uint256 _to) public view returns (uint256) {
            if (_to <= bonusEndBlock) {
                return _to.sub(_from);
            } else if (_from >= bonusEndBlock) {
                return 0;
            } else {
                return bonusEndBlock.sub(_from);
            }
        }
    
        // View function to see pending Reward on frontend.
        function pendingReward(address _user) external view returns (uint256) {
            PoolInfo storage pool = poolInfo[0];
            UserInfo storage user = userInfo[_user];
            uint256 accCakePerShare = pool.accCakePerShare;
            uint256 lpSupply = totalStaked;
            if (block.number > pool.lastRewardBlock && lpSupply != 0) {
                uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number);
                uint256 cakeReward = multiplier.mul(rewardPerBlock).mul(pool.allocPoint).div(totalAllocPoint);
                accCakePerShare = accCakePerShare.add(cakeReward.mul(1e12).div(lpSupply));
            }
            return user.amount.mul(accCakePerShare).div(1e12).sub(user.rewardDebt);
        }
    
        // Update reward variables of the given pool to be up-to-date.
        function updatePool(uint256 _pid) public {
            PoolInfo storage pool = poolInfo[_pid];
            if (block.number <= pool.lastRewardBlock) {
                return;
            }
            uint256 lpSupply = totalStaked;
            if (lpSupply == 0) {
                pool.lastRewardBlock = block.number;
                return;
            }
            uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number);
            uint256 cakeReward = multiplier.mul(rewardPerBlock).mul(pool.allocPoint).div(totalAllocPoint);
            pool.accCakePerShare = pool.accCakePerShare.add(cakeReward.mul(1e12).div(lpSupply));
            pool.lastRewardBlock = block.number;
        }
    
        // Update reward variables for all pools. Be careful of gas spending!
        function massUpdatePools() public {
            uint256 length = poolInfo.length;
            for (uint256 pid = 0; pid < length; ++pid) {
                updatePool(pid);
            }
        }
    
    
        // Stake SYRUP tokens to StakingPool
        function deposit(uint256 _amount) public {
            PoolInfo storage pool = poolInfo[0];
            UserInfo storage user = userInfo[msg.sender];
    
            // require (_amount.add(user.amount) <= maxStaking, 'exceed max stake');
    
            updatePool(0);
            if (user.amount > 0) {
                uint256 pending = user.amount.mul(pool.accCakePerShare).div(1e12).sub(user.rewardDebt);
                if(pending > 0) {
                    rewardToken.safeTransfer(address(msg.sender), pending);
                }
            }
            if(_amount > 0) {
                pool.lpToken.safeTransferFrom(address(msg.sender), address(this), _amount);
                user.amount = user.amount.add(_amount);
                totalStaked = totalStaked.add(_amount);
            }
            user.rewardDebt = user.amount.mul(pool.accCakePerShare).div(1e12);
    
            emit Deposit(msg.sender, _amount);
        }
    
        // Withdraw SYRUP tokens from STAKING.
        function withdraw(uint256 _amount) public {
            PoolInfo storage pool = poolInfo[0];
            UserInfo storage user = userInfo[msg.sender];
            require(user.amount >= _amount, "withdraw: not good");
            updatePool(0);
            uint256 pending = user.amount.mul(pool.accCakePerShare).div(1e12).sub(user.rewardDebt);
            if(pending > 0) {
                rewardToken.safeTransfer(address(msg.sender), pending);
            }
            if(_amount > 0) {
                user.amount = user.amount.sub(_amount);
                pool.lpToken.safeTransfer(address(msg.sender), _amount);
                totalStaked = totalStaked.sub(_amount);
            }
            user.rewardDebt = user.amount.mul(pool.accCakePerShare).div(1e12);
    
            emit Withdraw(msg.sender, _amount);
        }
    
        // Withdraw without caring about rewards. EMERGENCY ONLY.
        function emergencyWithdraw() public {
            PoolInfo storage pool = poolInfo[0];
            UserInfo storage user = userInfo[msg.sender];
            pool.lpToken.safeTransfer(address(msg.sender), user.amount);
            totalStaked = totalStaked.sub(user.amount);
            user.amount = 0;
            user.rewardDebt = 0;
            emit EmergencyWithdraw(msg.sender, user.amount);
        }
    
        // Withdraw reward. EMERGENCY ONLY.
        function emergencyRewardWithdraw(uint256 _amount) public onlyOwner {
            uint256 totalBalance = rewardToken.balanceOf(address(this));
            uint256 availableRewards = totalBalance.sub(totalStaked);
             
            require(_amount < availableRewards, 'not enough rewards');
            rewardToken.safeTransfer(address(msg.sender), _amount);
        }
    
    }

    File 2 of 2: TokenMintERC20Token
    /**
     *Submitted for verification at Etherscan.io on 2021-01-12
    */
    
    // File: contracts\open-zeppelin-contracts\token\ERC20\IERC20.sol
    
    pragma solidity ^0.5.0;
    
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP. Does not include
     * the optional functions; to access them see `ERC20Detailed`.
     */
    interface IERC20 {
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
    
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
    
        /**
         * @dev Moves `amount` tokens from the caller's account to `recipient`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a `Transfer` event.
         */
        function transfer(address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through `transferFrom`. This is
         * zero by default.
         *
         * This value changes when `approve` or `transferFrom` are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * > Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an `Approval` event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
    
        /**
         * @dev Moves `amount` tokens from `sender` to `recipient` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a `Transfer` event.
         */
        function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
    
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to `approve`. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    }
    
    // File: contracts\open-zeppelin-contracts\math\SafeMath.sol
    
    pragma solidity ^0.5.0;
    
    /**
     * @dev Wrappers over Solidity's arithmetic operations with added overflow
     * checks.
     *
     * Arithmetic operations in Solidity wrap on overflow. This can easily result
     * in bugs, because programmers usually assume that an overflow raises an
     * error, which is the standard behavior in high level programming languages.
     * `SafeMath` restores this intuition by reverting the transaction when an
     * operation overflows.
     *
     * Using this library instead of the unchecked operations eliminates an entire
     * class of bugs, so it's recommended to use it always.
     */
    library SafeMath {
        /**
         * @dev Returns the addition of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `+` operator.
         *
         * Requirements:
         * - Addition cannot overflow.
         */
        function add(uint256 a, uint256 b) internal pure returns (uint256) {
            uint256 c = a + b;
            require(c >= a, "SafeMath: addition overflow");
    
            return c;
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
            require(b <= a, "SafeMath: subtraction overflow");
            uint256 c = a - b;
    
            return c;
        }
    
        /**
         * @dev Returns the multiplication of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `*` operator.
         *
         * Requirements:
         * - Multiplication cannot overflow.
         */
        function mul(uint256 a, uint256 b) internal pure returns (uint256) {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
            if (a == 0) {
                return 0;
            }
    
            uint256 c = a * b;
            require(c / a == b, "SafeMath: multiplication overflow");
    
            return c;
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers. Reverts on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b) internal pure returns (uint256) {
            // Solidity only automatically asserts when dividing by 0
            require(b > 0, "SafeMath: division by zero");
            uint256 c = a / b;
            // assert(a == b * c + a % b); // There is no case in which this doesn't hold
    
            return c;
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b) internal pure returns (uint256) {
            require(b != 0, "SafeMath: modulo by zero");
            return a % b;
        }
    }
    
    // File: contracts\open-zeppelin-contracts\token\ERC20\ERC20.sol
    
    pragma solidity ^0.5.0;
    
    
    
    /**
     * @dev Implementation of the `IERC20` interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using `_mint`.
     * For a generic mechanism see `ERC20Mintable`.
     *
     * *For a detailed writeup see our guide [How to implement supply
     * mechanisms](https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226).*
     *
     * We have followed general OpenZeppelin guidelines: functions revert instead
     * of returning `false` on failure. This behavior is nonetheless conventional
     * and does not conflict with the expectations of ERC20 applications.
     *
     * Additionally, an `Approval` event is emitted on calls to `transferFrom`.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard `decreaseAllowance` and `increaseAllowance`
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See `IERC20.approve`.
     */
    contract ERC20 is IERC20 {
        using SafeMath for uint256;
    
        mapping (address => uint256) private _balances;
    
        mapping (address => mapping (address => uint256)) private _allowances;
    
        uint256 private _totalSupply;
    
        /**
         * @dev See `IERC20.totalSupply`.
         */
        function totalSupply() public view returns (uint256) {
            return _totalSupply;
        }
    
        /**
         * @dev See `IERC20.balanceOf`.
         */
        function balanceOf(address account) public view returns (uint256) {
            return _balances[account];
        }
    
        /**
         * @dev See `IERC20.transfer`.
         *
         * Requirements:
         *
         * - `recipient` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address recipient, uint256 amount) public returns (bool) {
            _transfer(msg.sender, recipient, amount);
            return true;
        }
    
        /**
         * @dev See `IERC20.allowance`.
         */
        function allowance(address owner, address spender) public view returns (uint256) {
            return _allowances[owner][spender];
        }
    
        /**
         * @dev See `IERC20.approve`.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 value) public returns (bool) {
            _approve(msg.sender, spender, value);
            return true;
        }
    
        /**
         * @dev See `IERC20.transferFrom`.
         *
         * Emits an `Approval` event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of `ERC20`;
         *
         * Requirements:
         * - `sender` and `recipient` cannot be the zero address.
         * - `sender` must have a balance of at least `value`.
         * - the caller must have allowance for `sender`'s tokens of at least
         * `amount`.
         */
        function transferFrom(address sender, address recipient, uint256 amount) public returns (bool) {
            _transfer(sender, recipient, amount);
            _approve(sender, msg.sender, _allowances[sender][msg.sender].sub(amount));
            return true;
        }
    
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to `approve` that can be used as a mitigation for
         * problems described in `IERC20.approve`.
         *
         * Emits an `Approval` event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {
            _approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue));
            return true;
        }
    
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to `approve` that can be used as a mitigation for
         * problems described in `IERC20.approve`.
         *
         * Emits an `Approval` event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {
            _approve(msg.sender, spender, _allowances[msg.sender][spender].sub(subtractedValue));
            return true;
        }
    
        /**
         * @dev Moves tokens `amount` from `sender` to `recipient`.
         *
         * This is internal function is equivalent to `transfer`, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a `Transfer` event.
         *
         * Requirements:
         *
         * - `sender` cannot be the zero address.
         * - `recipient` cannot be the zero address.
         * - `sender` must have a balance of at least `amount`.
         */
        function _transfer(address sender, address recipient, uint256 amount) internal {
            require(sender != address(0), "ERC20: transfer from the zero address");
            require(recipient != address(0), "ERC20: transfer to the zero address");
    
            _balances[sender] = _balances[sender].sub(amount);
            _balances[recipient] = _balances[recipient].add(amount);
            emit Transfer(sender, recipient, amount);
        }
    
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a `Transfer` event with `from` set to the zero address.
         *
         * Requirements
         *
         * - `to` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal {
            require(account != address(0), "ERC20: mint to the zero address");
    
            _totalSupply = _totalSupply.add(amount);
            _balances[account] = _balances[account].add(amount);
            emit Transfer(address(0), account, amount);
        }
    
         /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a `Transfer` event with `to` set to the zero address.
         *
         * Requirements
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 value) internal {
            require(account != address(0), "ERC20: burn from the zero address");
    
            _totalSupply = _totalSupply.sub(value);
            _balances[account] = _balances[account].sub(value);
            emit Transfer(account, address(0), value);
        }
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
         *
         * This is internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an `Approval` event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(address owner, address spender, uint256 value) internal {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
    
            _allowances[owner][spender] = value;
            emit Approval(owner, spender, value);
        }
    
        /**
         * @dev Destoys `amount` tokens from `account`.`amount` is then deducted
         * from the caller's allowance.
         *
         * See `_burn` and `_approve`.
         */
        function _burnFrom(address account, uint256 amount) internal {
            _burn(account, amount);
            _approve(account, msg.sender, _allowances[account][msg.sender].sub(amount));
        }
    }
    
    // File: contracts\ERC20\TokenMintERC20Token.sol
    
    pragma solidity ^0.5.0;
    
    
    /**
     * @title TokenMintERC20Token
     * @author TokenMint (visit https://tokenmint.io)
     *
     * @dev Standard ERC20 token with burning and optional functions implemented.
     * For full specification of ERC-20 standard see:
     * https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
     */
    contract TokenMintERC20Token is ERC20 {
    
        string private _name;
        string private _symbol;
        uint8 private _decimals;
    
        /**
         * @dev Constructor.
         * @param name name of the token
         * @param symbol symbol of the token, 3-4 chars is recommended
         * @param decimals number of decimal places of one token unit, 18 is widely used
         * @param totalSupply total supply of tokens in lowest units (depending on decimals)
         * @param tokenOwnerAddress address that gets 100% of token supply
         */
        constructor(string memory name, string memory symbol, uint8 decimals, uint256 totalSupply, address payable feeReceiver, address tokenOwnerAddress) public payable {
          _name = name;
          _symbol = symbol;
          _decimals = decimals;
    
          // set tokenOwnerAddress as owner of all tokens
          _mint(tokenOwnerAddress, totalSupply);
    
          // pay the service fee for contract deployment
          feeReceiver.transfer(msg.value);
        }
    
        /**
         * @dev Burns a specific amount of tokens.
         * @param value The amount of lowest token units to be burned.
         */
        function burn(uint256 value) public {
          _burn(msg.sender, value);
        }
    
        // optional functions from ERC20 stardard
    
        /**
         * @return the name of the token.
         */
        function name() public view returns (string memory) {
          return _name;
        }
    
        /**
         * @return the symbol of the token.
         */
        function symbol() public view returns (string memory) {
          return _symbol;
        }
    
        /**
         * @return the number of decimals of the token.
         */
        function decimals() public view returns (uint8) {
          return _decimals;
        }
    }