Transaction Hash:
Block:
18675342 at Nov-29-2023 06:00:23 AM +UTC
Transaction Fee:
0.001659469882547055 ETH
$3.15
Gas Used:
57,345 Gas / 28.938353519 Gwei
Emitted Events:
358 |
MapleToken.Transfer( from=[Sender] 0x25833ea57ed7583240d82dad6f4a090ebe288e47, to=0xE3504b5835c15Df2C1aC90AE05Af438d901fb476, value=100829391120494300326 )
|
359 |
MapleToken.PointsCorrectionUpdated( account=[Sender] 0x25833ea57ed7583240d82dad6f4a090ebe288e47, pointsCorrection=0 )
|
360 |
MapleToken.PointsCorrectionUpdated( account=0xE3504b5835c15Df2C1aC90AE05Af438d901fb476, pointsCorrection=0 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x25833Ea5...ebe288e47 |
0.039158296033647411 Eth
Nonce: 24
|
0.037498826151100356 Eth
Nonce: 25
| 0.001659469882547055 | ||
0x33349B28...158F935e6 | |||||
0x95222290...5CC4BAfe5
Miner
| (beaverbuild) | 11.930740229928338678 Eth | 11.930745964428338678 Eth | 0.0000057345 |
Execution Trace
MapleToken.transfer( recipient=0xE3504b5835c15Df2C1aC90AE05Af438d901fb476, amount=100829391120494300326 ) => ( True )
transfer[ERC20 (ln:414)]
_transfer[ERC20 (ln:415)]
_beforeTokenTransfer[ERC20 (ln:504)]
sub[ERC20 (ln:505)]
add[ERC20 (ln:506)]
Transfer[ERC20 (ln:507)]
_msgSender[ERC20 (ln:415)]
// SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity 0.6.11; import "./ERC2222.sol"; contract MapleToken is ERC2222 { bytes32 public immutable DOMAIN_SEPARATOR; bytes32 public constant PERMIT_TYPEHASH = 0xfc77c2b9d30fe91687fd39abb7d16fcdfe1472d065740051ab8b13e4bf4a617f; // bytes32 public constant PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 amount,uint256 nonce,uint256 deadline)"); mapping (address => uint256) public nonces; /** @dev Instantiates the MapleToken. @param name Name of the token. @param symbol Symbol of the token. @param fundsToken The asset claimable / distributed via ERC-2222, deposited to MapleToken contract. */ constructor ( string memory name, string memory symbol, address fundsToken ) ERC2222(name, symbol, fundsToken) public { uint256 chainId; assembly { chainId := chainid() } DOMAIN_SEPARATOR = keccak256( abi.encode( keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)'), keccak256(bytes(name)), keccak256(bytes('1')), chainId, address(this) ) ); require(address(fundsToken) != address(0), "MapleToken:INVALID_FUNDS_TOKEN"); _mint(msg.sender, 10_000_000 * 10 ** 18); } /** @dev Approve by signature. @param owner Owner address that signed the permit @param spender Spender of the permit @param amount Permit approval spend limit @param deadline Deadline after which the permit is invalid @param v ECDSA signature v component @param r ECDSA signature r component @param s ECDSA signature s component */ function permit(address owner, address spender, uint256 amount, uint256 deadline, uint8 v, bytes32 r, bytes32 s) external { require(deadline >= block.timestamp, 'MapleToken:EXPIRED'); bytes32 digest = keccak256( abi.encodePacked( '\\x19\\x01', DOMAIN_SEPARATOR, keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, amount, nonces[owner]++, deadline)) ) ); address recoveredAddress = ecrecover(digest, v, r, s); require(recoveredAddress == owner, 'MapleToken:INVALID_SIGNATURE'); _approve(owner, spender, amount); } } // SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity 0.6.11; import "lib/openzeppelin-contracts/contracts/token/ERC20/SafeERC20.sol"; import "lib/openzeppelin-contracts/contracts/token/ERC20/ERC20.sol"; import "lib/openzeppelin-contracts/contracts/math/SafeMath.sol"; import "lib/openzeppelin-contracts/contracts/math/SignedSafeMath.sol"; import "./IERC2222.sol"; import "./math/UintSafeMath.sol"; import "./math/IntSafeMath.sol"; abstract contract ERC2222 is IERC2222, ERC20 { using SafeMath for uint256; using UintSafeMath for uint256; using SignedSafeMath for int256; using IntSafeMath for int256; using SafeERC20 for IERC20; IERC20 public fundsToken; // The fundsToken (dividends) uint256 public fundsTokenBalance; // The amount of fundsToken (loanAsset) currently present and accounted for in this contract. uint256 internal constant pointsMultiplier = 2 ** 128; uint256 internal pointsPerShare; mapping(address => int256) internal pointsCorrection; mapping(address => uint256) internal withdrawnFunds; // 3 event PointsPerShareUpdated(uint256 pointsPerShare); event PointsCorrectionUpdated(address account, int256 pointsCorrection); constructor(string memory name, string memory symbol, address _fundsToken) ERC20(name, symbol) public { fundsToken = IERC20(_fundsToken); } /** * prev. distributeDividends * @dev Distributes funds to token holders. * @dev It reverts if the total supply of tokens is 0. * It emits the `FundsDistributed` event if the amount of received ether is greater than 0. * About undistributed funds: * In each distribution, there is a small amount of funds which does not get distributed, * which is `(msg.value * pointsMultiplier) % totalSupply()`. * With a well-chosen `pointsMultiplier`, the amount funds that are not getting distributed * in a distribution can be less than 1 (base unit). * We can actually keep track of the undistributed ether in a distribution * and try to distribute it in the next distribution ....... todo implement */ function _distributeFunds(uint256 value) internal { require(totalSupply() > 0, "FDT:SUPPLY_EQ_ZERO"); if (value > 0) { pointsPerShare = pointsPerShare.add(value.mul(pointsMultiplier) / totalSupply()); emit FundsDistributed(msg.sender, value); emit PointsPerShareUpdated(pointsPerShare); } } /** * @dev Prepares funds withdrawal * @dev It emits a `FundsWithdrawn` event if the amount of withdrawn ether is greater than 0. */ function _prepareWithdraw() internal returns (uint256) { uint256 _withdrawableDividend = withdrawableFundsOf(msg.sender); withdrawnFunds[msg.sender] = withdrawnFunds[msg.sender].add(_withdrawableDividend); emit FundsWithdrawn(msg.sender, _withdrawableDividend, withdrawnFunds[msg.sender]); return _withdrawableDividend; } /** * @dev Prepares funds withdrawal on behalf of a user * @dev It emits a `FundsWithdrawn` event if the amount of withdrawn ether is greater than 0. */ function _prepareWithdrawOnBehalf(address user) internal returns (uint256) { uint256 _withdrawableDividend = withdrawableFundsOf(user); withdrawnFunds[user] = withdrawnFunds[user].add(_withdrawableDividend); emit FundsWithdrawn(user, _withdrawableDividend, withdrawnFunds[user]); return _withdrawableDividend; } /** * @dev View the amount of funds that an address can withdraw. * @param _owner The address of a token holder. * @return The amount funds that `_owner` can withdraw. */ function withdrawableFundsOf(address _owner) public view override returns (uint256) { return accumulativeFundsOf(_owner).sub(withdrawnFunds[_owner]); } /** * @dev View the amount of funds that an address has withdrawn. * @param _owner The address of a token holder. * @return The amount of funds that `_owner` has withdrawn. */ function withdrawnFundsOf(address _owner) public view returns (uint256) { return withdrawnFunds[_owner]; } /** * @dev View the amount of funds that an address has earned in total. * @dev accumulativeFundsOf(_owner) = withdrawableFundsOf(_owner) + withdrawnFundsOf(_owner) * = (pointsPerShare * balanceOf(_owner) + pointsCorrection[_owner]) / pointsMultiplier * @param _owner The address of a token holder. * @return The amount of funds that `_owner` has earned in total. */ function accumulativeFundsOf(address _owner) public view returns (uint256) { return pointsPerShare .mul(balanceOf(_owner)) .toInt256Safe() .add(pointsCorrection[_owner]) .toUint256Safe() / pointsMultiplier; } /** * @dev Internal function that transfer tokens from one address to another. * Update pointsCorrection to keep funds unchanged. * @param from The address to transfer from. * @param to The address to transfer to. * @param value The amount to be transferred. */ function _transfer( address from, address to, uint256 value ) internal virtual override { require(to != address(this), "ERC20: transferring to token contract"); super._transfer(from, to, value); int256 _magCorrection = pointsPerShare.mul(value).toInt256Safe(); pointsCorrection[from] = pointsCorrection[from].add(_magCorrection); pointsCorrection[to] = pointsCorrection[to].sub(_magCorrection); emit PointsCorrectionUpdated(from, pointsCorrection[from]); emit PointsCorrectionUpdated(to, pointsCorrection[to]); } /** * @dev Internal function that mints tokens to an account. * Update pointsCorrection to keep funds unchanged. * @param account The account that will receive the created tokens. * @param value The amount that will be created. */ function _mint(address account, uint256 value) internal virtual override { super._mint(account, value); pointsCorrection[account] = pointsCorrection[account].sub( (pointsPerShare.mul(value)).toInt256Safe() ); emit PointsCorrectionUpdated(account, pointsCorrection[account]); } /** * @dev Internal function that burns an amount of the token of a given account. * Update pointsCorrection to keep funds unchanged. * @param account The account whose tokens will be burnt. * @param value The amount that will be burnt. */ function _burn(address account, uint256 value) internal virtual override { super._burn(account, value); pointsCorrection[account] = pointsCorrection[account].add( (pointsPerShare.mul(value)).toInt256Safe() ); emit PointsCorrectionUpdated(account, pointsCorrection[account]); } /** * @dev Withdraws all available funds for a token holder */ function withdrawFunds() public virtual override { uint256 withdrawableFunds = _prepareWithdraw(); if (withdrawableFunds > uint256(0)) { fundsToken.safeTransfer(msg.sender, withdrawableFunds); _updateFundsTokenBalance(); } } /** * @dev Withdraws all available funds for a token holder, on behalf of token holder */ function withdrawFundsOnBehalf(address user) public virtual { uint256 withdrawableFunds = _prepareWithdrawOnBehalf(user); if (withdrawableFunds > uint256(0)) { fundsToken.safeTransfer(user, withdrawableFunds); _updateFundsTokenBalance(); } } /** * @dev Updates the current funds token balance * and returns the difference of new and previous funds token balances * @return A int256 representing the difference of the new and previous funds token balance */ function _updateFundsTokenBalance() internal virtual returns (int256) { uint256 _prevFundsTokenBalance = fundsTokenBalance; fundsTokenBalance = fundsToken.balanceOf(address(this)); return int256(fundsTokenBalance).sub(int256(_prevFundsTokenBalance)); } /** * @dev Register a payment of funds in tokens. May be called directly after a deposit is made. * @dev Calls _updateFundsTokenBalance(), whereby the contract computes the delta of the new and the previous * funds token balance and increments the total received funds (cumulative) by delta by calling _registerFunds() */ function updateFundsReceived() public virtual { int256 newFunds = _updateFundsTokenBalance(); if (newFunds > 0) { _distributeFunds(newFunds.toUint256Safe()); } } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "./IERC20.sol"; import "../../math/SafeMath.sol"; import "../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using SafeMath for uint256; using Address for address; function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' // solhint-disable-next-line max-line-length require((value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).add(value); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional // solhint-disable-next-line max-line-length require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "../../GSN/Context.sol"; import "./IERC20.sol"; import "../../math/SafeMath.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20 { using SafeMath for uint256; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name_, string memory symbol_) public { _name = name_; _symbol = symbol_; _decimals = 18; } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * Requirements: * * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @title SignedSafeMath * @dev Signed math operations with safety checks that revert on error. */ library SignedSafeMath { int256 constant private _INT256_MIN = -2**255; /** * @dev Returns the multiplication of two signed integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(int256 a, int256 b) internal pure returns (int256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } require(!(a == -1 && b == _INT256_MIN), "SignedSafeMath: multiplication overflow"); int256 c = a * b; require(c / a == b, "SignedSafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two signed integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(int256 a, int256 b) internal pure returns (int256) { require(b != 0, "SignedSafeMath: division by zero"); require(!(b == -1 && a == _INT256_MIN), "SignedSafeMath: division overflow"); int256 c = a / b; return c; } /** * @dev Returns the subtraction of two signed integers, reverting on * overflow. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(int256 a, int256 b) internal pure returns (int256) { int256 c = a - b; require((b >= 0 && c <= a) || (b < 0 && c > a), "SignedSafeMath: subtraction overflow"); return c; } /** * @dev Returns the addition of two signed integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(int256 a, int256 b) internal pure returns (int256) { int256 c = a + b; require((b >= 0 && c >= a) || (b < 0 && c < a), "SignedSafeMath: addition overflow"); return c; } } // SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity 0.6.11; interface IERC2222 { /** * @dev Returns the total amount of funds a given address is able to withdraw currently. * @param owner Address of FDT holder * @return A uint256 representing the available funds for a given account */ function withdrawableFundsOf(address owner) external view returns (uint256); /** * @dev Withdraws all available funds for a FDT holder. */ function withdrawFunds() external; /** * @dev This event emits when new funds are distributed * @param by the address of the sender who distributed funds * @param fundsDistributed the amount of funds received for distribution */ event FundsDistributed(address indexed by, uint256 fundsDistributed); /** * @dev This event emits when distributed funds are withdrawn by a token holder. * @param by the address of the receiver of funds * @param fundsWithdrawn the amount of funds that were withdrawn * @param totalWithdrawn the total amount of funds that were withdrawn */ event FundsWithdrawn(address indexed by, uint256 fundsWithdrawn, uint256 totalWithdrawn); } // SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity 0.6.11; library UintSafeMath { function toInt256Safe(uint256 a) internal pure returns (int256) { int256 b = int256(a); require(b >= 0); return b; } } // SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity 0.6.11; library IntSafeMath { function toUint256Safe(int256 a) internal pure returns (uint256) { require(a >= 0); return uint256(a); } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.8.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: value }(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.staticcall(data); return _verifyCallResult(success, returndata, errorMessage); } function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } }