ETH Price: $2,424.19 (-3.66%)

Transaction Decoder

Block:
17781720 at Jul-27-2023 03:26:47 AM +UTC
Transaction Fee:
0.000626447085552066 ETH $1.52
Gas Used:
32,961 Gas / 19.005706306 Gwei

Emitted Events:

371 AdminUpgradeabilityProxy.0x8752a472e571a816aea92eec8dae9baf628e840f4929fbcc2d155e6233ff68a7( 0x8752a472e571a816aea92eec8dae9baf628e840f4929fbcc2d155e6233ff68a7, 0x0000000000000000000000000000000000000000000000000000000000000000, 0x000000000000000000000000152713147d99d3cc55547c2b6e9d9cab59809bd3, 0x000000000000000000000000000000000000000000000000000f46d3c488c000 )

Account State Difference:

  Address   Before After State Difference Code
0x15271314...b59809bd3
0.005203792605493917 Eth
Nonce: 361
0.000277345519941851 Eth
Nonce: 362
0.004926447085552066
0.381684512027775001 Eth0.381687567714723697 Eth0.000003055686948696
0x8D591C4B...Bb63F7b94 20.794348625017828154 Eth20.798648625017828154 Eth0.0043

Execution Trace

ETH 0.0043 AdminUpgradeabilityProxy.47e7ef24( )
  • ETH 0.0043 HunnyPlayV2.deposit( token=0x0000000000000000000000000000000000000000, amount=4300000000000000 )
    File 1 of 2: AdminUpgradeabilityProxy
    /**
     *Submitted for verification at BscScan.com on 2021-06-04
    */
    
    // Root file: contracts/library/AdminUpgradeabilityProxy.sol
    
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.6.0;
    
    /**
     * @title Proxy
     * @dev Implements delegation of calls to other contracts, with proper
     * forwarding of return values and bubbling of failures.
     * It defines a fallback function that delegates all calls to the address
     * returned by the abstract _implementation() internal function.
     */
    abstract contract Proxy {
        /**
         * @dev Fallback function.
         * Implemented entirely in `_fallback`.
         */
        fallback () payable external {
            _fallback();
        }
    
        /**
         * @dev Receive function.
         * Implemented entirely in `_fallback`.
         */
        receive () payable external {
            _fallback();
        }
    
        /**
         * @return The Address of the implementation.
         */
        function _implementation() internal virtual view returns (address);
    
        /**
         * @dev Delegates execution to an implementation contract.
         * This is a low level function that doesn't return to its internal call site.
         * It will return to the external caller whatever the implementation returns.
         * @param implementation Address to delegate.
         */
        function _delegate(address implementation) internal {
            assembly {
            // Copy msg.data. We take full control of memory in this inline assembly
            // block because it will not return to Solidity code. We overwrite the
            // Solidity scratch pad at memory position 0.
                calldatacopy(0, 0, calldatasize())
    
            // Call the implementation.
            // out and outsize are 0 because we don't know the size yet.
                let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
    
            // Copy the returned data.
                returndatacopy(0, 0, returndatasize())
    
                switch result
                // delegatecall returns 0 on error.
                case 0 { revert(0, returndatasize()) }
                default { return(0, returndatasize()) }
            }
        }
    
        /**
         * @dev Function that is run as the first thing in the fallback function.
         * Can be redefined in derived contracts to add functionality.
         * Redefinitions must call super._willFallback().
         */
        function _willFallback() internal virtual {
        }
    
        /**
         * @dev fallback implementation.
         * Extracted to enable manual triggering.
         */
        function _fallback() internal {
            _willFallback();
            _delegate(_implementation());
        }
    }
    
    // File: @openzeppelin/contracts/utils/Address.sol
    
    pragma solidity >=0.6.2 <0.8.0;
    
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize, which returns 0 for contracts in
            // construction, since the code is only stored at the end of the
            // constructor execution.
    
            uint256 size;
            // solhint-disable-next-line no-inline-assembly
            assembly { size := extcodesize(account) }
            return size > 0;
        }
    
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
    
            // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
            (bool success, ) = recipient.call{ value: amount }("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
    
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain`call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCall(target, data, "Address: low-level call failed");
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
    
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            require(isContract(target), "Address: call to non-contract");
    
            // solhint-disable-next-line avoid-low-level-calls
            (bool success, bytes memory returndata) = target.call{ value: value }(data);
            return _verifyCallResult(success, returndata, errorMessage);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
            require(isContract(target), "Address: static call to non-contract");
    
            // solhint-disable-next-line avoid-low-level-calls
            (bool success, bytes memory returndata) = target.staticcall(data);
            return _verifyCallResult(success, returndata, errorMessage);
        }
    
        function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
            if (success) {
                return returndata;
            } else {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
    
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
    }
    
    // File: MasterChef/contracts-proxy/UpgradeabilityProxy.sol
    
    pragma solidity ^0.6.0;
    
    
    
    /**
     * @title UpgradeabilityProxy
     * @dev This contract implements a proxy that allows to change the
     * implementation address to which it will delegate.
     * Such a change is called an implementation upgrade.
     */
    contract UpgradeabilityProxy is Proxy {
        /**
         * @dev Contract constructor.
         * @param _logic Address of the initial implementation.
         * @param _data Data to send as msg.data to the implementation to initialize the proxied contract.
         * It should include the signature and the parameters of the function to be called, as described in
         * https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
         * This parameter is optional, if no data is given the initialization call to proxied contract will be skipped.
         */
        constructor(address _logic, bytes memory _data) public payable {
            assert(IMPLEMENTATION_SLOT == bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1));
            _setImplementation(_logic);
            if(_data.length > 0) {
                (bool success,) = _logic.delegatecall(_data);
                require(success);
            }
        }
    
        /**
         * @dev Emitted when the implementation is upgraded.
         * @param implementation Address of the new implementation.
         */
        event Upgraded(address indexed implementation);
    
        /**
         * @dev Storage slot with the address of the current implementation.
         * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
         * validated in the constructor.
         */
        bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
    
        /**
         * @dev Returns the current implementation.
         * @return impl Address of the current implementation
         */
        function _implementation() internal override view returns (address impl) {
            bytes32 slot = IMPLEMENTATION_SLOT;
            assembly {
                impl := sload(slot)
            }
        }
    
        /**
         * @dev Upgrades the proxy to a new implementation.
         * @param newImplementation Address of the new implementation.
         */
        function _upgradeTo(address newImplementation) internal {
            _setImplementation(newImplementation);
            emit Upgraded(newImplementation);
        }
    
        /**
         * @dev Sets the implementation address of the proxy.
         * @param newImplementation Address of the new implementation.
         */
        function _setImplementation(address newImplementation) internal {
            require(Address.isContract(newImplementation), "Cannot set a proxy implementation to a non-contract address");
    
            bytes32 slot = IMPLEMENTATION_SLOT;
    
            assembly {
                sstore(slot, newImplementation)
            }
        }
    }
    
    // File: MasterChef/contracts-proxy/AdminUpgradeabilityProxy.sol
    
    pragma solidity ^0.6.0;
    
    
    /**
     * @title AdminUpgradeabilityProxy
     * @dev This contract combines an upgradeability proxy with an authorization
     * mechanism for administrative tasks.
     * All external functions in this contract must be guarded by the
     * `ifAdmin` modifier. See ethereum/solidity#3864 for a Solidity
     * feature proposal that would enable this to be done automatically.
     */
    contract AdminUpgradeabilityProxy is UpgradeabilityProxy {
        /**
         * Contract constructor.
         * @param _logic address of the initial implementation.
         * @param _admin Address of the proxy administrator.
         * It should include the signature and the parameters of the function to be called, as described in
         * https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
         * This parameter is optional, if no data is given the initialization call to proxied contract will be skipped.
         */
        constructor(address _logic, address _admin) UpgradeabilityProxy(_logic, abi.encodeWithSignature("initialize()")) public payable {
            assert(ADMIN_SLOT == bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1));
            _setAdmin(_admin);
        }
    
        /**
         * @dev Emitted when the administration has been transferred.
         * @param previousAdmin Address of the previous admin.
         * @param newAdmin Address of the new admin.
         */
        event AdminChanged(address previousAdmin, address newAdmin);
    
        /**
         * @dev Storage slot with the admin of the contract.
         * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
         * validated in the constructor.
         */
    
        bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
    
        /**
         * @dev Modifier to check whether the `msg.sender` is the admin.
         * If it is, it will run the function. Otherwise, it will delegate the call
         * to the implementation.
         */
        modifier ifAdmin() {
            if (msg.sender == _admin()) {
                _;
            } else {
                _fallback();
            }
        }
    
        /**
         * @return The address of the proxy admin.
         */
        function admin() external ifAdmin returns (address) {
            return _admin();
        }
    
        /**
         * @return The address of the implementation.
         */
        function implementation() external ifAdmin returns (address) {
            return _implementation();
        }
    
        /**
         * @dev Changes the admin of the proxy.
         * Only the current admin can call this function.
         * @param newAdmin Address to transfer proxy administration to.
         */
        function changeAdmin(address newAdmin) external ifAdmin {
            require(newAdmin != address(0), "Cannot change the admin of a proxy to the zero address");
            emit AdminChanged(_admin(), newAdmin);
            _setAdmin(newAdmin);
        }
    
        /**
         * @dev Upgrade the backing implementation of the proxy.
         * Only the admin can call this function.
         * @param newImplementation Address of the new implementation.
         */
        function upgradeTo(address newImplementation) external ifAdmin {
            _upgradeTo(newImplementation);
        }
    
        /**
         * @dev Upgrade the backing implementation of the proxy and call a function
         * on the new implementation.
         * This is useful to initialize the proxied contract.
         * @param newImplementation Address of the new implementation.
         * @param data Data to send as msg.data in the low level call.
         * It should include the signature and the parameters of the function to be called, as described in
         * https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
         */
        function upgradeToAndCall(address newImplementation, bytes calldata data) payable external ifAdmin {
            _upgradeTo(newImplementation);
            (bool success,) = newImplementation.delegatecall(data);
            require(success);
        }
    
        /**
         * @return adm The admin slot.
         */
        function _admin() internal view returns (address adm) {
            bytes32 slot = ADMIN_SLOT;
            assembly {
                adm := sload(slot)
            }
        }
    
        /**
         * @dev Sets the address of the proxy admin.
         * @param newAdmin Address of the new proxy admin.
         */
        function _setAdmin(address newAdmin) internal {
            bytes32 slot = ADMIN_SLOT;
    
            assembly {
                sstore(slot, newAdmin)
            }
        }
    
        /**
         * @dev Only fall back when the sender is not the admin.
         */
        function _willFallback() internal override virtual {
            require(msg.sender != _admin(), "Cannot call fallback function from the proxy admin");
            super._willFallback();
        }
    }

    File 2 of 2: HunnyPlayV2
    /**
     *Submitted for verification at BscScan.com on 2021-12-20
    */
    
    // Dependency file: @pancakeswap/pancake-swap-lib/contracts/math/SafeMath.sol
    
    // SPDX-License-Identifier: MIT
    
    // pragma solidity >=0.4.0;
    
    /**
     * @dev Wrappers over Solidity's arithmetic operations with added overflow
     * checks.
     *
     * Arithmetic operations in Solidity wrap on overflow. This can easily result
     * in bugs, because programmers usually assume that an overflow raises an
     * error, which is the standard behavior in high level programming languages.
     * `SafeMath` restores this intuition by reverting the transaction when an
     * operation overflows.
     *
     * Using this library instead of the unchecked operations eliminates an entire
     * class of bugs, so it's recommended to use it always.
     */
    library SafeMath {
        /**
         * @dev Returns the addition of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `+` operator.
         *
         * Requirements:
         *
         * - Addition cannot overflow.
         */
        function add(uint256 a, uint256 b) internal pure returns (uint256) {
            uint256 c = a + b;
            require(c >= a, 'SafeMath: addition overflow');
    
            return c;
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         *
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
            return sub(a, b, 'SafeMath: subtraction overflow');
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         *
         * - Subtraction cannot overflow.
         */
        function sub(
            uint256 a,
            uint256 b,
            string memory errorMessage
        ) internal pure returns (uint256) {
            require(b <= a, errorMessage);
            uint256 c = a - b;
    
            return c;
        }
    
        /**
         * @dev Returns the multiplication of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `*` operator.
         *
         * Requirements:
         *
         * - Multiplication cannot overflow.
         */
        function mul(uint256 a, uint256 b) internal pure returns (uint256) {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) {
                return 0;
            }
    
            uint256 c = a * b;
            require(c / a == b, 'SafeMath: multiplication overflow');
    
            return c;
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers. Reverts on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b) internal pure returns (uint256) {
            return div(a, b, 'SafeMath: division by zero');
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function div(
            uint256 a,
            uint256 b,
            string memory errorMessage
        ) internal pure returns (uint256) {
            require(b > 0, errorMessage);
            uint256 c = a / b;
            // assert(a == b * c + a % b); // There is no case in which this doesn't hold
    
            return c;
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b) internal pure returns (uint256) {
            return mod(a, b, 'SafeMath: modulo by zero');
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts with custom message when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function mod(
            uint256 a,
            uint256 b,
            string memory errorMessage
        ) internal pure returns (uint256) {
            require(b != 0, errorMessage);
            return a % b;
        }
    
        function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
            z = x < y ? x : y;
        }
    
        // babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method)
        function sqrt(uint256 y) internal pure returns (uint256 z) {
            if (y > 3) {
                z = y;
                uint256 x = y / 2 + 1;
                while (x < z) {
                    z = x;
                    x = (y / x + x) / 2;
                }
            } else if (y != 0) {
                z = 1;
            }
        }
    }
    
    
    // Dependency file: @pancakeswap/pancake-swap-lib/contracts/token/BEP20/IBEP20.sol
    
    
    // pragma solidity >=0.4.0;
    
    interface IBEP20 {
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
    
        /**
         * @dev Returns the token decimals.
         */
        function decimals() external view returns (uint8);
    
        /**
         * @dev Returns the token symbol.
         */
        function symbol() external view returns (string memory);
    
        /**
         * @dev Returns the token name.
         */
        function name() external view returns (string memory);
    
        /**
         * @dev Returns the bep token owner.
         */
        function getOwner() external view returns (address);
    
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
    
        /**
         * @dev Moves `amount` tokens from the caller's account to `recipient`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address _owner, address spender) external view returns (uint256);
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
    
        /**
         * @dev Moves `amount` tokens from `sender` to `recipient` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address sender,
            address recipient,
            uint256 amount
        ) external returns (bool);
    
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
    
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    }
    
    
    // Dependency file: @pancakeswap/pancake-swap-lib/contracts/utils/Address.sol
    
    
    // pragma solidity ^0.6.2;
    
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // According to EIP-1052, 0x0 is the value returned for not-yet created accounts
            // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
            // for accounts without code, i.e. `keccak256('')`
            bytes32 codehash;
            bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
            // solhint-disable-next-line no-inline-assembly
            assembly {
                codehash := extcodehash(account)
            }
            return (codehash != accountHash && codehash != 0x0);
        }
    
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, 'Address: insufficient balance');
    
            // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
            (bool success, ) = recipient.call{value: amount}('');
            require(success, 'Address: unable to send value, recipient may have reverted');
        }
    
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain`call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCall(target, data, 'Address: low-level call failed');
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            return _functionCallWithValue(target, data, 0, errorMessage);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, 'Address: low-level call with value failed');
        }
    
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(address(this).balance >= value, 'Address: insufficient balance for call');
            return _functionCallWithValue(target, data, value, errorMessage);
        }
    
        function _functionCallWithValue(
            address target,
            bytes memory data,
            uint256 weiValue,
            string memory errorMessage
        ) private returns (bytes memory) {
            require(isContract(target), 'Address: call to non-contract');
    
            // solhint-disable-next-line avoid-low-level-calls
            (bool success, bytes memory returndata) = target.call{value: weiValue}(data);
            if (success) {
                return returndata;
            } else {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
    
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
    }
    
    
    // Dependency file: @pancakeswap/pancake-swap-lib/contracts/token/BEP20/SafeBEP20.sol
    
    
    // pragma solidity ^0.6.0;
    
    /**
     * @title SafeBEP20
     * @dev Wrappers around BEP20 operations that throw on failure (when the token
     * contract returns false). Tokens that return no value (and instead revert or
     * throw on failure) are also supported, non-reverting calls are assumed to be
     * successful.
     * To use this library you can add a `using SafeBEP20 for IBEP20;` statement to your contract,
     * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
     */
    library SafeBEP20 {
        using SafeMath for uint256;
        using Address for address;
    
        function safeTransfer(
            IBEP20 token,
            address to,
            uint256 value
        ) internal {
            _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
        }
    
        function safeTransferFrom(
            IBEP20 token,
            address from,
            address to,
            uint256 value
        ) internal {
            _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
        }
    
        /**
         * @dev Deprecated. This function has issues similar to the ones found in
         * {IBEP20-approve}, and its usage is discouraged.
         *
         * Whenever possible, use {safeIncreaseAllowance} and
         * {safeDecreaseAllowance} instead.
         */
        function safeApprove(
            IBEP20 token,
            address spender,
            uint256 value
        ) internal {
            // safeApprove should only be called when setting an initial allowance,
            // or when resetting it to zero. To increase and decrease it, use
            // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
            // solhint-disable-next-line max-line-length
            require(
                (value == 0) || (token.allowance(address(this), spender) == 0),
                'SafeBEP20: approve from non-zero to non-zero allowance'
            );
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
        }
    
        function safeIncreaseAllowance(
            IBEP20 token,
            address spender,
            uint256 value
        ) internal {
            uint256 newAllowance = token.allowance(address(this), spender).add(value);
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    
        function safeDecreaseAllowance(
            IBEP20 token,
            address spender,
            uint256 value
        ) internal {
            uint256 newAllowance = token.allowance(address(this), spender).sub(
                value,
                'SafeBEP20: decreased allowance below zero'
            );
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         */
        function _callOptionalReturn(IBEP20 token, bytes memory data) private {
            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
            // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
            // the target address contains contract code and also asserts for success in the low-level call.
    
            bytes memory returndata = address(token).functionCall(data, 'SafeBEP20: low-level call failed');
            if (returndata.length > 0) {
                // Return data is optional
                // solhint-disable-next-line max-line-length
                require(abi.decode(returndata, (bool)), 'SafeBEP20: BEP20 operation did not succeed');
            }
        }
    }
    
    
    // Dependency file: @openzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol
    
    
    // pragma solidity >=0.6.2 <0.8.0;
    
    /**
     * @dev Collection of functions related to the address type
     */
    library AddressUpgradeable {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize, which returns 0 for contracts in
            // construction, since the code is only stored at the end of the
            // constructor execution.
    
            uint256 size;
            // solhint-disable-next-line no-inline-assembly
            assembly { size := extcodesize(account) }
            return size > 0;
        }
    
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
    
            // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
            (bool success, ) = recipient.call{ value: amount }("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
    
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain`call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
          return functionCall(target, data, "Address: low-level call failed");
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
    
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            require(isContract(target), "Address: call to non-contract");
    
            // solhint-disable-next-line avoid-low-level-calls
            (bool success, bytes memory returndata) = target.call{ value: value }(data);
            return _verifyCallResult(success, returndata, errorMessage);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
            require(isContract(target), "Address: static call to non-contract");
    
            // solhint-disable-next-line avoid-low-level-calls
            (bool success, bytes memory returndata) = target.staticcall(data);
            return _verifyCallResult(success, returndata, errorMessage);
        }
    
        function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
            if (success) {
                return returndata;
            } else {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
    
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
    }
    
    
    // Dependency file: @openzeppelin/contracts-upgradeable/proxy/Initializable.sol
    
    
    // solhint-disable-next-line compiler-version
    // pragma solidity >=0.4.24 <0.8.0;
    
    // import "@openzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol";
    
    /**
     * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
     * behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an
     * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
     * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
     *
     * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
     * possible by providing the encoded function call as the `_data` argument to {UpgradeableProxy-constructor}.
     *
     * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
     * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
     */
    abstract contract Initializable {
    
        /**
         * @dev Indicates that the contract has been initialized.
         */
        bool private _initialized;
    
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool private _initializing;
    
        /**
         * @dev Modifier to protect an initializer function from being invoked twice.
         */
        modifier initializer() {
            require(_initializing || _isConstructor() || !_initialized, "Initializable: contract is already initialized");
    
            bool isTopLevelCall = !_initializing;
            if (isTopLevelCall) {
                _initializing = true;
                _initialized = true;
            }
    
            _;
    
            if (isTopLevelCall) {
                _initializing = false;
            }
        }
    
        /// @dev Returns true if and only if the function is running in the constructor
        function _isConstructor() private view returns (bool) {
            return !AddressUpgradeable.isContract(address(this));
        }
    }
    
    
    // Dependency file: @openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol
    
    
    // pragma solidity >=0.6.0 <0.8.0;
    // import "@openzeppelin/contracts-upgradeable/proxy/Initializable.sol";
    
    /*
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with GSN meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract ContextUpgradeable is Initializable {
        function __Context_init() internal initializer {
            __Context_init_unchained();
        }
    
        function __Context_init_unchained() internal initializer {
        }
        function _msgSender() internal view virtual returns (address payable) {
            return msg.sender;
        }
    
        function _msgData() internal view virtual returns (bytes memory) {
            this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
            return msg.data;
        }
        uint256[50] private __gap;
    }
    
    
    // Dependency file: @openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol
    
    
    // pragma solidity >=0.6.0 <0.8.0;
    
    // import "@openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol";
    // import "@openzeppelin/contracts-upgradeable/proxy/Initializable.sol";
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
        address private _owner;
    
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        function __Ownable_init() internal initializer {
            __Context_init_unchained();
            __Ownable_init_unchained();
        }
    
        function __Ownable_init_unchained() internal initializer {
            address msgSender = _msgSender();
            _owner = msgSender;
            emit OwnershipTransferred(address(0), msgSender);
        }
    
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
    
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            require(owner() == _msgSender(), "Ownable: caller is not the owner");
            _;
        }
    
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions anymore. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            emit OwnershipTransferred(_owner, address(0));
            _owner = address(0);
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            emit OwnershipTransferred(_owner, newOwner);
            _owner = newOwner;
        }
        uint256[49] private __gap;
    }
    
    
    // Dependency file: contracts/library/PausableUpgradeable.sol
    
    /*
       ____            __   __        __   _
      / __/__ __ ___  / /_ / /  ___  / /_ (_)__ __
     _\ \ / // // _ \/ __// _ \/ -_)/ __// / \ \ /
    /___/ \_, //_//_/\__//_//_/\__/ \__//_/ /_\_\
         /___/
    
    * Docs: https://docs.synthetix.io/
    *
    *
    * MIT License
    * ===========
    *
    * Copyright (c) 2020 Synthetix
    *
    * Permission is hereby granted, free of charge, to any person obtaining a copy
    * of this software and associated documentation files (the "Software"), to deal
    * in the Software without restriction, including without limitation the rights
    * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    * copies of the Software, and to permit persons to whom the Software is
    * furnished to do so, subject to the following conditions:
    *
    * The above copyright notice and this permission notice shall be included in all
    * copies or substantial portions of the Software.
    *
    * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
    */
    
    // pragma solidity ^0.6.2;
    
    // import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
    
    abstract contract PausableUpgradeable is OwnableUpgradeable {
        uint256 public lastPauseTime;
        bool public paused;
    
        event PauseChanged(bool isPaused);
    
        modifier notPaused() {
            require(!paused, "PausableUpgradeable: cannot be performed while the contract is paused");
            _;
        }
    
        function __PausableUpgradeable_init() internal initializer {
            __Ownable_init();
            require(owner() != address(0), "PausableUpgradeable: owner must be set");
        }
    
        function setPaused(bool _paused) external onlyOwner {
            if (_paused == paused) {
                return;
            }
    
            paused = _paused;
            if (paused) {
                lastPauseTime = now;
            }
    
            emit PauseChanged(paused);
        }
    
        uint256[50] private __gap;
    }
    
    
    // Dependency file: contracts/library/WhitelistUpgradeable.sol
    
    // pragma solidity 0.6.12;
    
    /*
     *
     * MIT License
     * ===========
     *
     * Copyright (c) 2020 HunnyFinance
     *
     * Permission is hereby granted, free of charge, to any person obtaining a copy
     * of this software and associated documentation files (the "Software"), to deal
     * in the Software without restriction, including without limitation the rights
     * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     * copies of the Software, and to permit persons to whom the Software is
     * furnished to do so, subject to the following conditions:
     *
     * The above copyright notice and this permission notice shall be included in all
     * copies or substantial portions of the Software.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
     * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     */
    
    // import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
    
    contract WhitelistUpgradeable is OwnableUpgradeable {
        mapping(address => bool) private _whitelist;
        bool private _disable; // default - false means whitelist feature is working on. if true no more use of whitelist
    
        event Whitelisted(address indexed _address, bool whitelist);
        event EnableWhitelist();
        event DisableWhitelist();
    
        modifier onlyWhitelisted() {
            require(_disable || _whitelist[msg.sender], "Whitelist: caller is not on the whitelist");
            _;
        }
    
        function __WhitelistUpgradeable_init() internal initializer {
            __Ownable_init();
        }
    
        function isWhitelist(address _address) public view returns (bool) {
            return _whitelist[_address];
        }
    
        function setWhitelist(address _address, bool _on) external onlyOwner {
            _whitelist[_address] = _on;
    
            emit Whitelisted(_address, _on);
        }
    
        function disableWhitelist(bool disable) external onlyOwner {
            _disable = disable;
            if (disable) {
                emit DisableWhitelist();
            } else {
                emit EnableWhitelist();
            }
        }
    
        uint256[49] private __gap;
    }
    
    
    // Root file: contracts/hunny/poker/HunnyPlayV2.sol
    
    pragma solidity 0.6.12;
    
    // import "@pancakeswap/pancake-swap-lib/contracts/math/SafeMath.sol";
    // import "@pancakeswap/pancake-swap-lib/contracts/token/BEP20/IBEP20.sol";
    // import "@pancakeswap/pancake-swap-lib/contracts/token/BEP20/SafeBEP20.sol";
    
    // import "contracts/library/PausableUpgradeable.sol";
    // import "contracts/library/WhitelistUpgradeable.sol";
    
    // support BNB and multi tokens on a single contract
    contract HunnyPlayV2 is PausableUpgradeable, WhitelistUpgradeable {
        using SafeMath for uint256;
        using SafeBEP20 for IBEP20;
    
        event Deposited(address indexed token, address indexed account, uint256 indexed amount);
        event Withdrawn(address indexed token, address indexed account, uint256 indexed amount);
    
        function initialize() external initializer {
            __PausableUpgradeable_init();
            __WhitelistUpgradeable_init();
        }
    
        // receive BNB from anywhere
        receive() external payable {}
    
        function deposit(address token, uint256 amount) external payable notPaused {
            if (token == address(0)) {
                // BNB case
                emit Deposited(address(0), msg.sender, msg.value);
            } else {
                // token case
                IBEP20(token).safeTransferFrom(msg.sender, address(this), amount);
                emit Deposited(token, msg.sender, amount);
            }
        }
    
        function withdraw(
            address token,
            address reception,
            uint256 amount
        ) public onlyWhitelisted {
            if (token == address(0)) {
                // BNB case
                payable(reception).transfer(amount);
                emit Withdrawn(address(0), reception, amount);
            } else {
                IBEP20(token).safeTransfer(reception, amount);
                emit Withdrawn(token, reception, amount);
            }
        }
    
        function withdrawMany(
            address[] memory tokens,
            address[] memory receptions,
            uint256[] memory amounts
        ) public {
            // careful with gas paid
            for (uint256 i = 0; i < receptions.length; i++) {
                withdraw(tokens[i], receptions[i], amounts[i]);
            }
        }
    
        function recoverBNB(address reception, uint256 amount) public onlyOwner {
            payable(reception).transfer(amount);
        }
    
        function recoverBEP20(
            address token,
            address reception,
            uint256 amount
        ) public onlyOwner {
            IBEP20(token).safeTransfer(reception, amount);
        }
    }