ETH Price: $2,408.66 (-1.26%)

Transaction Decoder

Block:
17054050 at Apr-15-2023 06:04:35 PM +UTC
Transaction Fee:
0.003199400689403585 ETH $7.71
Gas Used:
117,055 Gas / 27.332456447 Gwei

Account State Difference:

  Address   Before After State Difference Code
0x12C1EFEA...Bae35b73C
0.022164596658901374 Eth
Nonce: 19
0.018965195969497789 Eth
Nonce: 20
0.003199400689403585
0x390E1939...5c49b8769
(builder0x69)
2.544426017248690177 Eth2.544543072248690177 Eth0.000117055

Execution Trace

BoredYeti.tokenMint( _account=0x12C1EFEA5CaD5B0599bdD31269f2169Bae35b73C, _quantity=3 )
  • EverestCoin.balanceOf( account=0x12C1EFEA5CaD5B0599bdD31269f2169Bae35b73C ) => ( 4547102712181072520 )
    File 1 of 2: BoredYeti
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.18;
    import "@openzeppelin/contracts/access/Ownable.sol";
    import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
    import "@openzeppelin/contracts/finance/PaymentSplitter.sol";
    import "@openzeppelin/contracts/utils/Strings.sol";
    import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import "./DefaultOperatorFilterer.sol";
    import "./ERC721A_royalty.sol";
    contract BoredYeti is Ownable, ERC721A, PaymentSplitter, DefaultOperatorFilterer {
        using Strings for uint;
        enum Step {
            Before,
            WhitelistSale,
            TokenSale,
            PublicSale,
            SoldOut
        }
        string public baseURI;
        Step public sellingStep;
        IERC20 public token;
        uint public  MAX_SUPPLY = 1500;
        uint public  MAX_TOTAL_PUBLIC = 1500;
        uint public  MAX_TOTAL_TOKEN = 1500;
        uint public  MAX_TOTAL_WL = 1500;    
        uint public MAX_PER_WALLET_PUBLIC = 1;
        uint public MAX_PER_WALLET_TOKEN = 3;
        uint public MAX_PER_WALLET_WL = 2;
        uint public publicSalePrice = 0 ether;
        uint public tokenSalePrice = 0 ether;
        uint public wlSalePrice = 0 ether;
        uint256 public tokensNeeded = 1000000000 * 10 ** 9;
        bytes32 public merkleRootWL;
        mapping(address => uint) public amountNFTsperWalletPUBLIC;
        mapping(address => uint) public amountNFTsperWalletWL;
        mapping(address => uint) public amountNFTsperWalletToken;
        uint private teamLength;
        uint96 royaltyFeesInBips;
        address royaltyReceiver;
        constructor(uint96 _royaltyFeesInBips, address[] memory _team, uint[] memory _teamShares, bytes32 _merkleRootWL, IERC20 _token, string memory _baseURI) ERC721A("BoredYeti", "BoredYeti")
        PaymentSplitter(_team, _teamShares) {
            merkleRootWL = _merkleRootWL;
            baseURI = _baseURI;
            teamLength = _team.length;
            royaltyFeesInBips = _royaltyFeesInBips;
            royaltyReceiver = msg.sender;
            token = _token;
        }
        modifier callerIsUser() {
            require(tx.origin == msg.sender, "The caller is another contract");
            _;
        }
       function whitelistMint(address _account, uint _quantity, bytes32[] calldata _proof) external payable callerIsUser {
            uint price = wlSalePrice;
            require(sellingStep == Step.WhitelistSale, "Whitelist sale is not activated");
            require(msg.sender == _account, "Mint with your own wallet.");
            require(isWhiteListed(msg.sender, _proof), "Not whitelisted");
            require(amountNFTsperWalletWL[msg.sender] + _quantity <= MAX_PER_WALLET_WL, "Max per wallet limit reached");
            require(totalSupply() + _quantity <= MAX_TOTAL_WL, "Max supply exceeded");
            require(totalSupply() + _quantity <= MAX_SUPPLY, "Max supply exceeded");
            require(msg.value >= price * _quantity, "Not enought funds");
            amountNFTsperWalletWL[msg.sender] += _quantity;
            _safeMint(_account, _quantity);
        }
        function tokenMint(address _account, uint _quantity) external payable callerIsUser {
            uint price = tokenSalePrice;
            require(sellingStep == Step.TokenSale, "Whitelist sale is not activated");
            require(msg.sender == _account, "Mint with your own wallet.");
            require(token.balanceOf(msg.sender) >= tokensNeeded, "You need to own 1 billion tokens.");
            require(amountNFTsperWalletToken[msg.sender] + _quantity <= MAX_PER_WALLET_TOKEN, "Max per wallet limit reached");
            require(totalSupply() + _quantity <= MAX_TOTAL_TOKEN, "Max supply exceeded");
            require(totalSupply() + _quantity <= MAX_SUPPLY, "Max supply exceeded");
            require(msg.value >= price * _quantity, "Not enought funds");
            amountNFTsperWalletToken[msg.sender] += _quantity;
            _safeMint(_account, _quantity);
        }
        function publicSaleMint(address _account, uint _quantity) external payable callerIsUser {
            uint price = publicSalePrice;
            require(msg.sender == _account, "Mint with your own wallet.");
            require(sellingStep == Step.PublicSale, "Public sale is not activated");
            require(totalSupply() + _quantity <= MAX_TOTAL_PUBLIC, "Max supply exceeded");
            require(totalSupply() + _quantity <= MAX_SUPPLY, "Max supply exceeded");
            require(amountNFTsperWalletPUBLIC[msg.sender] + _quantity <= MAX_PER_WALLET_PUBLIC, "Max per wallet limit reached");
            require(msg.value >= price * _quantity, "Not enought funds");
            amountNFTsperWalletPUBLIC[msg.sender] += _quantity;
            _safeMint(_account, _quantity);
        }
        function gift(address _to, uint _quantity) external onlyOwner {
            require(totalSupply() + _quantity <= MAX_SUPPLY, "Reached max Supply");
            _safeMint(_to, _quantity);
        }
        //PUBLIC MINT
        function setMaxTotalPUBLIC(uint _MAX_TOTAL_PUBLIC) external onlyOwner {
            MAX_TOTAL_PUBLIC = _MAX_TOTAL_PUBLIC;
        }
        function setMaxPerWalletPUBLIC(uint _MAX_PER_WALLET_PUBLIC) external onlyOwner {
            MAX_PER_WALLET_PUBLIC = _MAX_PER_WALLET_PUBLIC;
        }
        function setPublicSalePrice(uint _publicSalePrice) external onlyOwner {
            publicSalePrice = _publicSalePrice;
        }
        // TOKEN OWNER MINT
        function setTokenAddress(IERC20 _token) external onlyOwner {
            token = _token;
        }
        function setMaxTotalTOKEN(uint _MAX_TOTAL_TOKEN) external onlyOwner {
            MAX_TOTAL_TOKEN = _MAX_TOTAL_TOKEN;
        }
        function setTokensNeeded(uint256 _tokensNeeded) external onlyOwner {
            tokensNeeded = _tokensNeeded;
        }
        function setMaxPerWalletTOKEN(uint _MAX_PER_WALLET_TOKEN) external onlyOwner {
            MAX_PER_WALLET_TOKEN = _MAX_PER_WALLET_TOKEN;
        }
         function setTokenSalePrice(uint _tokenSalePrice) external onlyOwner {
            tokenSalePrice = _tokenSalePrice;
        }
        //WHITELIST MINT
        function setMaxTotalWL(uint _MAX_TOTAL_WL) external onlyOwner {
            MAX_TOTAL_WL = _MAX_TOTAL_WL;
        }
        function setMaxPerWalletWL(uint _MAX_PER_WALLET_WL) external onlyOwner {
            MAX_PER_WALLET_WL = _MAX_PER_WALLET_WL;
        }
        function setWLSalePrice(uint _wlSalePrice) external onlyOwner {
            wlSalePrice = _wlSalePrice;
        }
        //ADMIN
        function setBaseUri(string memory _baseURI) external onlyOwner {
            baseURI = _baseURI;
        }
        function setStep(uint _step) external onlyOwner {
            sellingStep = Step(_step);
        }
        function lowerSupply (uint _MAX_SUPPLY) external onlyOwner{
            require(_MAX_SUPPLY < MAX_SUPPLY, "Cannot increase supply!");
            MAX_SUPPLY = _MAX_SUPPLY;
        }
        function tokenURI(uint _tokenId) public view virtual override returns (string memory) {
            require(_exists(_tokenId), "URI query for nonexistent token");
            return string(abi.encodePacked(baseURI, _tokenId.toString(), ".json"));
        }
        //Whitelist
        function setMerkleRootWL(bytes32 _merkleRootWL) external onlyOwner {
            merkleRootWL = _merkleRootWL;
        }
        function isWhiteListed(address _account, bytes32[] calldata _proof) internal view returns(bool) {
            return _verifyWL(leaf(_account), _proof);
        }
        function leaf(address _account) internal pure returns(bytes32) {
            return keccak256(abi.encodePacked(_account));
        }
        function _verifyWL(bytes32 _leaf, bytes32[] memory _proof) internal view returns(bool) {
            return MerkleProof.verify(_proof, merkleRootWL, _leaf);
        }
        //ROYALTY
        function royaltyInfo (
        uint256 _tokenId,
        uint256 _salePrice
         ) external view returns (
            address receiver,
            uint256 royaltyAmount
         ){
             return (royaltyReceiver, calculateRoyalty(_salePrice));
         }
        function calculateRoyalty(uint256 _salePrice) view public returns (uint256){
            return(_salePrice / 10000) * royaltyFeesInBips;
        }
        function setRoyaltyInfo (address _receiver, uint96 _royaltyFeesInBips) public onlyOwner {
            royaltyReceiver = _receiver;
            royaltyFeesInBips = _royaltyFeesInBips;
        }
        function setApprovalForAll(address operator, bool approved) public override onlyAllowedOperatorApproval(operator) {
            super.setApprovalForAll(operator, approved);
        }
        function approve(address operator, uint256 tokenId) public override onlyAllowedOperatorApproval(operator) {
            super.approve(operator, tokenId);
        }
        function transferFrom(address from, address to, uint256 tokenId) public override onlyAllowedOperator(from) {
            super.transferFrom(from, to, tokenId);
        }
        function safeTransferFrom(address from, address to, uint256 tokenId) public override onlyAllowedOperator(from) {
            super.safeTransferFrom(from, to, tokenId);
        }
        function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data)
            public
            override
            onlyAllowedOperator(from)
        {
            super.safeTransferFrom(from, to, tokenId, data);
        }
        //ReleaseALL
        function releaseAll() external onlyOwner {
            for(uint i = 0 ; i < teamLength ; i++) {
                release(payable(payee(i)));
            }
        }
        receive() override external payable {
            revert('Only if you mint');
        }
    }// SPDX-License-Identifier: MIT
    // ERC721A Contracts v4.1.0
    // Creator: Chiru Labs
    pragma solidity ^0.8.4;
    import './IERC721A.sol';
    /**
     * @dev ERC721 token receiver interface.
     */
    interface ERC721A__IERC721Receiver {
        function onERC721Received(
            address operator,
            address from,
            uint256 tokenId,
            bytes calldata data
        ) external returns (bytes4);
    }
    /**
     * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard,
     * including the Metadata extension. Built to optimize for lower gas during batch mints.
     *
     * Assumes serials are sequentially minted starting at `_startTokenId()`
     * (defaults to 0, e.g. 0, 1, 2, 3..).
     *
     * Assumes that an owner cannot have more than 2**64 - 1 (max value of uint64) of supply.
     *
     * Assumes that the maximum token id cannot exceed 2**256 - 1 (max value of uint256).
     */
    contract ERC721A is IERC721A {
        // Mask of an entry in packed address data.
        uint256 private constant BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1;
        // The bit position of `numberMinted` in packed address data.
        uint256 private constant BITPOS_NUMBER_MINTED = 64;
        // The bit position of `numberBurned` in packed address data.
        uint256 private constant BITPOS_NUMBER_BURNED = 128;
        // The bit position of `aux` in packed address data.
        uint256 private constant BITPOS_AUX = 192;
        // Mask of all 256 bits in packed address data except the 64 bits for `aux`.
        uint256 private constant BITMASK_AUX_COMPLEMENT = (1 << 192) - 1;
        // The bit position of `startTimestamp` in packed ownership.
        uint256 private constant BITPOS_START_TIMESTAMP = 160;
        // The bit mask of the `burned` bit in packed ownership.
        uint256 private constant BITMASK_BURNED = 1 << 224;
        // The bit position of the `nextInitialized` bit in packed ownership.
        uint256 private constant BITPOS_NEXT_INITIALIZED = 225;
        // The bit mask of the `nextInitialized` bit in packed ownership.
        uint256 private constant BITMASK_NEXT_INITIALIZED = 1 << 225;
        // The bit position of `extraData` in packed ownership.
        uint256 private constant BITPOS_EXTRA_DATA = 232;
        // Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`.
        uint256 private constant BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1;
        // The mask of the lower 160 bits for addresses.
        uint256 private constant BITMASK_ADDRESS = (1 << 160) - 1;
        // The maximum `quantity` that can be minted with `_mintERC2309`.
        // This limit is to prevent overflows on the address data entries.
        // For a limit of 5000, a total of 3.689e15 calls to `_mintERC2309`
        // is required to cause an overflow, which is unrealistic.
        uint256 private constant MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000;
        // The tokenId of the next token to be minted.
        uint256 private _currentIndex;
        // The number of tokens burned.
        uint256 private _burnCounter;
        // Token name
        string private _name;
        // Token symbol
        string private _symbol;
        // Mapping from token ID to ownership details
        // An empty struct value does not necessarily mean the token is unowned.
        // See `_packedOwnershipOf` implementation for details.
        //
        // Bits Layout:
        // - [0..159]   `addr`
        // - [160..223] `startTimestamp`
        // - [224]      `burned`
        // - [225]      `nextInitialized`
        // - [232..255] `extraData`
        mapping(uint256 => uint256) private _packedOwnerships;
        // Mapping owner address to address data.
        //
        // Bits Layout:
        // - [0..63]    `balance`
        // - [64..127]  `numberMinted`
        // - [128..191] `numberBurned`
        // - [192..255] `aux`
        mapping(address => uint256) private _packedAddressData;
        // Mapping from token ID to approved address.
        mapping(uint256 => address) private _tokenApprovals;
        // Mapping from owner to operator approvals
        mapping(address => mapping(address => bool)) private _operatorApprovals;
        constructor(string memory name_, string memory symbol_) {
            _name = name_;
            _symbol = symbol_;
            _currentIndex = _startTokenId();
        }
        /**
         * @dev Returns the starting token ID.
         * To change the starting token ID, please override this function.
         */
        function _startTokenId() internal view virtual returns (uint256) {
            return 1;
        }
        /**
         * @dev Returns the next token ID to be minted.
         */
        function _nextTokenId() internal view returns (uint256) {
            return _currentIndex;
        }
        /**
         * @dev Returns the total number of tokens in existence.
         * Burned tokens will reduce the count.
         * To get the total number of tokens minted, please see `_totalMinted`.
         */
        function totalSupply() public view override returns (uint256) {
            // Counter underflow is impossible as _burnCounter cannot be incremented
            // more than `_currentIndex - _startTokenId()` times.
            unchecked {
                return _currentIndex - _burnCounter - _startTokenId();
            }
        }
        /**
         * @dev Returns the total amount of tokens minted in the contract.
         */
        function _totalMinted() internal view returns (uint256) {
            // Counter underflow is impossible as _currentIndex does not decrement,
            // and it is initialized to `_startTokenId()`
            unchecked {
                return _currentIndex - _startTokenId();
            }
        }
        /**
         * @dev Returns the total number of tokens burned.
         */
        function _totalBurned() internal view returns (uint256) {
            return _burnCounter;
        }
        /**
         * @dev See {IERC165-supportsInterface}.
         */
        function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
            // The interface IDs are constants representing the first 4 bytes of the XOR of
            // all function selectors in the interface. See: https://eips.ethereum.org/EIPS/eip-165
            // e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`
            return
                interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165.
                interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721.
                interfaceId == 0x2a55205a || // ERC 2981 rotyalty
                interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata.
        }
        /**
         * @dev See {IERC721-balanceOf}.
         */
        function balanceOf(address owner) public view override returns (uint256) {
            if (owner == address(0)) revert BalanceQueryForZeroAddress();
            return _packedAddressData[owner] & BITMASK_ADDRESS_DATA_ENTRY;
        }
        /**
         * Returns the number of tokens minted by `owner`.
         */
        function _numberMinted(address owner) internal view returns (uint256) {
            return (_packedAddressData[owner] >> BITPOS_NUMBER_MINTED) & BITMASK_ADDRESS_DATA_ENTRY;
        }
        /**
         * Returns the number of tokens burned by or on behalf of `owner`.
         */
        function _numberBurned(address owner) internal view returns (uint256) {
            return (_packedAddressData[owner] >> BITPOS_NUMBER_BURNED) & BITMASK_ADDRESS_DATA_ENTRY;
        }
        /**
         * Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
         */
        function _getAux(address owner) internal view returns (uint64) {
            return uint64(_packedAddressData[owner] >> BITPOS_AUX);
        }
        /**
         * Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
         * If there are multiple variables, please pack them into a uint64.
         */
        function _setAux(address owner, uint64 aux) internal {
            uint256 packed = _packedAddressData[owner];
            uint256 auxCasted;
            // Cast `aux` with assembly to avoid redundant masking.
            assembly {
                auxCasted := aux
            }
            packed = (packed & BITMASK_AUX_COMPLEMENT) | (auxCasted << BITPOS_AUX);
            _packedAddressData[owner] = packed;
        }
        /**
         * Returns the packed ownership data of `tokenId`.
         */
        function _packedOwnershipOf(uint256 tokenId) private view returns (uint256) {
            uint256 curr = tokenId;
            unchecked {
                if (_startTokenId() <= curr)
                    if (curr < _currentIndex) {
                        uint256 packed = _packedOwnerships[curr];
                        // If not burned.
                        if (packed & BITMASK_BURNED == 0) {
                            // Invariant:
                            // There will always be an ownership that has an address and is not burned
                            // before an ownership that does not have an address and is not burned.
                            // Hence, curr will not underflow.
                            //
                            // We can directly compare the packed value.
                            // If the address is zero, packed is zero.
                            while (packed == 0) {
                                packed = _packedOwnerships[--curr];
                            }
                            return packed;
                        }
                    }
            }
            revert OwnerQueryForNonexistentToken();
        }
        /**
         * Returns the unpacked `TokenOwnership` struct from `packed`.
         */
        function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) {
            ownership.addr = address(uint160(packed));
            ownership.startTimestamp = uint64(packed >> BITPOS_START_TIMESTAMP);
            ownership.burned = packed & BITMASK_BURNED != 0;
            ownership.extraData = uint24(packed >> BITPOS_EXTRA_DATA);
        }
        /**
         * Returns the unpacked `TokenOwnership` struct at `index`.
         */
        function _ownershipAt(uint256 index) internal view returns (TokenOwnership memory) {
            return _unpackedOwnership(_packedOwnerships[index]);
        }
        /**
         * @dev Initializes the ownership slot minted at `index` for efficiency purposes.
         */
        function _initializeOwnershipAt(uint256 index) internal {
            if (_packedOwnerships[index] == 0) {
                _packedOwnerships[index] = _packedOwnershipOf(index);
            }
        }
        /**
         * Gas spent here starts off proportional to the maximum mint batch size.
         * It gradually moves to O(1) as tokens get transferred around in the collection over time.
         */
        function _ownershipOf(uint256 tokenId) internal view returns (TokenOwnership memory) {
            return _unpackedOwnership(_packedOwnershipOf(tokenId));
        }
        /**
         * @dev Packs ownership data into a single uint256.
         */
        function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) {
            assembly {
                // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
                owner := and(owner, BITMASK_ADDRESS)
                // `owner | (block.timestamp << BITPOS_START_TIMESTAMP) | flags`.
                result := or(owner, or(shl(BITPOS_START_TIMESTAMP, timestamp()), flags))
            }
        }
        /**
         * @dev See {IERC721-ownerOf}.
         */
        function ownerOf(uint256 tokenId) public view override returns (address) {
            return address(uint160(_packedOwnershipOf(tokenId)));
        }
        /**
         * @dev See {IERC721Metadata-name}.
         */
        function name() public view virtual override returns (string memory) {
            return _name;
        }
        /**
         * @dev See {IERC721Metadata-symbol}.
         */
        function symbol() public view virtual override returns (string memory) {
            return _symbol;
        }
        /**
         * @dev See {IERC721Metadata-tokenURI}.
         */
        function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
            if (!_exists(tokenId)) revert URIQueryForNonexistentToken();
            string memory baseURI = _baseURI();
            return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : '';
        }
        /**
         * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
         * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
         * by default, it can be overridden in child contracts.
         */
        function _baseURI() internal view virtual returns (string memory) {
            return '';
        }
        /**
         * @dev Returns the `nextInitialized` flag set if `quantity` equals 1.
         */
        function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) {
            // For branchless setting of the `nextInitialized` flag.
            assembly {
                // `(quantity == 1) << BITPOS_NEXT_INITIALIZED`.
                result := shl(BITPOS_NEXT_INITIALIZED, eq(quantity, 1))
            }
        }
        /**
         * @dev See {IERC721-approve}.
         */
        function approve(address to, uint256 tokenId) public virtual override {
            address owner = ownerOf(tokenId);
            if (_msgSenderERC721A() != owner)
                if (!isApprovedForAll(owner, _msgSenderERC721A())) {
                    revert ApprovalCallerNotOwnerNorApproved();
                }
            _tokenApprovals[tokenId] = to;
            emit Approval(owner, to, tokenId);
        }
        /**
         * @dev See {IERC721-getApproved}.
         */
        function getApproved(uint256 tokenId) public view override returns (address) {
            if (!_exists(tokenId)) revert ApprovalQueryForNonexistentToken();
            return _tokenApprovals[tokenId];
        }
        /**
         * @dev See {IERC721-setApprovalForAll}.
         */
        function setApprovalForAll(address operator, bool approved) public virtual override {
            if (operator == _msgSenderERC721A()) revert ApproveToCaller();
            _operatorApprovals[_msgSenderERC721A()][operator] = approved;
            emit ApprovalForAll(_msgSenderERC721A(), operator, approved);
        }
        
        /**
         * @dev See {IERC721-isApprovedForAll}.
         */
        function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
            return _operatorApprovals[owner][operator];
        }
        /**
         * @dev See {IERC721-safeTransferFrom}.
         */
        function safeTransferFrom(
            address from,
            address to,
            uint256 tokenId
        ) public virtual override {
            safeTransferFrom(from, to, tokenId, '');
        }
        /**
         * @dev See {IERC721-safeTransferFrom}.
         */
        function safeTransferFrom(
            address from,
            address to,
            uint256 tokenId,
            bytes memory _data
        ) public virtual override {
            transferFrom(from, to, tokenId);
            if (to.code.length != 0)
                if (!_checkContractOnERC721Received(from, to, tokenId, _data)) {
                    revert TransferToNonERC721ReceiverImplementer();
                }
        }
        /**
         * @dev Returns whether `tokenId` exists.
         *
         * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
         *
         * Tokens start existing when they are minted (`_mint`),
         */
        function _exists(uint256 tokenId) internal view returns (bool) {
            return
                _startTokenId() <= tokenId &&
                tokenId < _currentIndex && // If within bounds,
                _packedOwnerships[tokenId] & BITMASK_BURNED == 0; // and not burned.
        }
        /**
         * @dev Equivalent to `_safeMint(to, quantity, '')`.
         */
        function _safeMint(address to, uint256 quantity) internal {
            _safeMint(to, quantity, '');
        }
        /**
         * @dev Safely mints `quantity` tokens and transfers them to `to`.
         *
         * Requirements:
         *
         * - If `to` refers to a smart contract, it must implement
         *   {IERC721Receiver-onERC721Received}, which is called for each safe transfer.
         * - `quantity` must be greater than 0.
         *
         * See {_mint}.
         *
         * Emits a {Transfer} event for each mint.
         */
        function _safeMint(
            address to,
            uint256 quantity,
            bytes memory _data
        ) internal {
            _mint(to, quantity);
            unchecked {
                if (to.code.length != 0) {
                    uint256 end = _currentIndex;
                    uint256 index = end - quantity;
                    do {
                        if (!_checkContractOnERC721Received(address(0), to, index++, _data)) {
                            revert TransferToNonERC721ReceiverImplementer();
                        }
                    } while (index < end);
                    // Reentrancy protection.
                    if (_currentIndex != end) revert();
                }
            }
        }
        /**
         * @dev Mints `quantity` tokens and transfers them to `to`.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - `quantity` must be greater than 0.
         *
         * Emits a {Transfer} event for each mint.
         */
        function _mint(address to, uint256 quantity) internal {
            uint256 startTokenId = _currentIndex;
            if (to == address(0)) revert MintToZeroAddress();
            if (quantity == 0) revert MintZeroQuantity();
            _beforeTokenTransfers(address(0), to, startTokenId, quantity);
            // Overflows are incredibly unrealistic.
            // `balance` and `numberMinted` have a maximum limit of 2**64.
            // `tokenId` has a maximum limit of 2**256.
            unchecked {
                // Updates:
                // - `balance += quantity`.
                // - `numberMinted += quantity`.
                //
                // We can directly add to the `balance` and `numberMinted`.
                _packedAddressData[to] += quantity * ((1 << BITPOS_NUMBER_MINTED) | 1);
                // Updates:
                // - `address` to the owner.
                // - `startTimestamp` to the timestamp of minting.
                // - `burned` to `false`.
                // - `nextInitialized` to `quantity == 1`.
                _packedOwnerships[startTokenId] = _packOwnershipData(
                    to,
                    _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
                );
                uint256 tokenId = startTokenId;
                uint256 end = startTokenId + quantity;
                do {
                    emit Transfer(address(0), to, tokenId++);
                } while (tokenId < end);
                _currentIndex = end;
            }
            _afterTokenTransfers(address(0), to, startTokenId, quantity);
        }
        /**
         * @dev Mints `quantity` tokens and transfers them to `to`.
         *
         * This function is intended for efficient minting only during contract creation.
         *
         * It emits only one {ConsecutiveTransfer} as defined in
         * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309),
         * instead of a sequence of {Transfer} event(s).
         *
         * Calling this function outside of contract creation WILL make your contract
         * non-compliant with the ERC721 standard.
         * For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309
         * {ConsecutiveTransfer} event is only permissible during contract creation.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - `quantity` must be greater than 0.
         *
         * Emits a {ConsecutiveTransfer} event.
         */
        function _mintERC2309(address to, uint256 quantity) internal {
            uint256 startTokenId = _currentIndex;
            if (to == address(0)) revert MintToZeroAddress();
            if (quantity == 0) revert MintZeroQuantity();
            if (quantity > MAX_MINT_ERC2309_QUANTITY_LIMIT) revert MintERC2309QuantityExceedsLimit();
            _beforeTokenTransfers(address(0), to, startTokenId, quantity);
            // Overflows are unrealistic due to the above check for `quantity` to be below the limit.
            unchecked {
                // Updates:
                // - `balance += quantity`.
                // - `numberMinted += quantity`.
                //
                // We can directly add to the `balance` and `numberMinted`.
                _packedAddressData[to] += quantity * ((1 << BITPOS_NUMBER_MINTED) | 1);
                // Updates:
                // - `address` to the owner.
                // - `startTimestamp` to the timestamp of minting.
                // - `burned` to `false`.
                // - `nextInitialized` to `quantity == 1`.
                _packedOwnerships[startTokenId] = _packOwnershipData(
                    to,
                    _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
                );
                emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to);
                _currentIndex = startTokenId + quantity;
            }
            _afterTokenTransfers(address(0), to, startTokenId, quantity);
        }
        /**
         * @dev Returns the storage slot and value for the approved address of `tokenId`.
         */
        function _getApprovedAddress(uint256 tokenId)
            private
            view
            returns (uint256 approvedAddressSlot, address approvedAddress)
        {
            mapping(uint256 => address) storage tokenApprovalsPtr = _tokenApprovals;
            // The following is equivalent to `approvedAddress = _tokenApprovals[tokenId]`.
            assembly {
                // Compute the slot.
                mstore(0x00, tokenId)
                mstore(0x20, tokenApprovalsPtr.slot)
                approvedAddressSlot := keccak256(0x00, 0x40)
                // Load the slot's value from storage.
                approvedAddress := sload(approvedAddressSlot)
            }
        }
        /**
         * @dev Returns whether the `approvedAddress` is equals to `from` or `msgSender`.
         */
        function _isOwnerOrApproved(
            address approvedAddress,
            address from,
            address msgSender
        ) private pure returns (bool result) {
            assembly {
                // Mask `from` to the lower 160 bits, in case the upper bits somehow aren't clean.
                from := and(from, BITMASK_ADDRESS)
                // Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean.
                msgSender := and(msgSender, BITMASK_ADDRESS)
                // `msgSender == from || msgSender == approvedAddress`.
                result := or(eq(msgSender, from), eq(msgSender, approvedAddress))
            }
        }
        /**
         * @dev Transfers `tokenId` from `from` to `to`.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - `tokenId` token must be owned by `from`.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address from,
            address to,
            uint256 tokenId
        ) public virtual override {
            uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
            if (address(uint160(prevOwnershipPacked)) != from) revert TransferFromIncorrectOwner();
            (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedAddress(tokenId);
            // The nested ifs save around 20+ gas over a compound boolean condition.
            if (!_isOwnerOrApproved(approvedAddress, from, _msgSenderERC721A()))
                if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved();
            if (to == address(0)) revert TransferToZeroAddress();
            _beforeTokenTransfers(from, to, tokenId, 1);
            // Clear approvals from the previous owner.
            assembly {
                if approvedAddress {
                    // This is equivalent to `delete _tokenApprovals[tokenId]`.
                    sstore(approvedAddressSlot, 0)
                }
            }
            // Underflow of the sender's balance is impossible because we check for
            // ownership above and the recipient's balance can't realistically overflow.
            // Counter overflow is incredibly unrealistic as tokenId would have to be 2**256.
            unchecked {
                // We can directly increment and decrement the balances.
                --_packedAddressData[from]; // Updates: `balance -= 1`.
                ++_packedAddressData[to]; // Updates: `balance += 1`.
                // Updates:
                // - `address` to the next owner.
                // - `startTimestamp` to the timestamp of transfering.
                // - `burned` to `false`.
                // - `nextInitialized` to `true`.
                _packedOwnerships[tokenId] = _packOwnershipData(
                    to,
                    BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked)
                );
                // If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
                if (prevOwnershipPacked & BITMASK_NEXT_INITIALIZED == 0) {
                    uint256 nextTokenId = tokenId + 1;
                    // If the next slot's address is zero and not burned (i.e. packed value is zero).
                    if (_packedOwnerships[nextTokenId] == 0) {
                        // If the next slot is within bounds.
                        if (nextTokenId != _currentIndex) {
                            // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
                            _packedOwnerships[nextTokenId] = prevOwnershipPacked;
                        }
                    }
                }
            }
            emit Transfer(from, to, tokenId);
            _afterTokenTransfers(from, to, tokenId, 1);
        }
        /**
         * @dev Equivalent to `_burn(tokenId, false)`.
         */
        function _burn(uint256 tokenId) internal virtual {
            _burn(tokenId, false);
        }
        /**
         * @dev Destroys `tokenId`.
         * The approval is cleared when the token is burned.
         *
         * Requirements:
         *
         * - `tokenId` must exist.
         *
         * Emits a {Transfer} event.
         */
        function _burn(uint256 tokenId, bool approvalCheck) internal virtual {
            uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
            address from = address(uint160(prevOwnershipPacked));
            (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedAddress(tokenId);
            if (approvalCheck) {
                // The nested ifs save around 20+ gas over a compound boolean condition.
                if (!_isOwnerOrApproved(approvedAddress, from, _msgSenderERC721A()))
                    if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved();
            }
            _beforeTokenTransfers(from, address(0), tokenId, 1);
            // Clear approvals from the previous owner.
            assembly {
                if approvedAddress {
                    // This is equivalent to `delete _tokenApprovals[tokenId]`.
                    sstore(approvedAddressSlot, 0)
                }
            }
            // Underflow of the sender's balance is impossible because we check for
            // ownership above and the recipient's balance can't realistically overflow.
            // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
            unchecked {
                // Updates:
                // - `balance -= 1`.
                // - `numberBurned += 1`.
                //
                // We can directly decrement the balance, and increment the number burned.
                // This is equivalent to `packed -= 1; packed += 1 << BITPOS_NUMBER_BURNED;`.
                _packedAddressData[from] += (1 << BITPOS_NUMBER_BURNED) - 1;
                // Updates:
                // - `address` to the last owner.
                // - `startTimestamp` to the timestamp of burning.
                // - `burned` to `true`.
                // - `nextInitialized` to `true`.
                _packedOwnerships[tokenId] = _packOwnershipData(
                    from,
                    (BITMASK_BURNED | BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked)
                );
                // If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
                if (prevOwnershipPacked & BITMASK_NEXT_INITIALIZED == 0) {
                    uint256 nextTokenId = tokenId + 1;
                    // If the next slot's address is zero and not burned (i.e. packed value is zero).
                    if (_packedOwnerships[nextTokenId] == 0) {
                        // If the next slot is within bounds.
                        if (nextTokenId != _currentIndex) {
                            // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
                            _packedOwnerships[nextTokenId] = prevOwnershipPacked;
                        }
                    }
                }
            }
            emit Transfer(from, address(0), tokenId);
            _afterTokenTransfers(from, address(0), tokenId, 1);
            // Overflow not possible, as _burnCounter cannot be exceed _currentIndex times.
            unchecked {
                _burnCounter++;
            }
        }
        /**
         * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target contract.
         *
         * @param from address representing the previous owner of the given token ID
         * @param to target address that will receive the tokens
         * @param tokenId uint256 ID of the token to be transferred
         * @param _data bytes optional data to send along with the call
         * @return bool whether the call correctly returned the expected magic value
         */
        function _checkContractOnERC721Received(
            address from,
            address to,
            uint256 tokenId,
            bytes memory _data
        ) private returns (bool) {
            try ERC721A__IERC721Receiver(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns (
                bytes4 retval
            ) {
                return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector;
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    revert TransferToNonERC721ReceiverImplementer();
                } else {
                    assembly {
                        revert(add(32, reason), mload(reason))
                    }
                }
            }
        }
        /**
         * @dev Directly sets the extra data for the ownership data `index`.
         */
        function _setExtraDataAt(uint256 index, uint24 extraData) internal {
            uint256 packed = _packedOwnerships[index];
            if (packed == 0) revert OwnershipNotInitializedForExtraData();
            uint256 extraDataCasted;
            // Cast `extraData` with assembly to avoid redundant masking.
            assembly {
                extraDataCasted := extraData
            }
            packed = (packed & BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << BITPOS_EXTRA_DATA);
            _packedOwnerships[index] = packed;
        }
        /**
         * @dev Returns the next extra data for the packed ownership data.
         * The returned result is shifted into position.
         */
        function _nextExtraData(
            address from,
            address to,
            uint256 prevOwnershipPacked
        ) private view returns (uint256) {
            uint24 extraData = uint24(prevOwnershipPacked >> BITPOS_EXTRA_DATA);
            return uint256(_extraData(from, to, extraData)) << BITPOS_EXTRA_DATA;
        }
        /**
         * @dev Called during each token transfer to set the 24bit `extraData` field.
         * Intended to be overridden by the cosumer contract.
         *
         * `previousExtraData` - the value of `extraData` before transfer.
         *
         * Calling conditions:
         *
         * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
         * transferred to `to`.
         * - When `from` is zero, `tokenId` will be minted for `to`.
         * - When `to` is zero, `tokenId` will be burned by `from`.
         * - `from` and `to` are never both zero.
         */
        function _extraData(
            address from,
            address to,
            uint24 previousExtraData
        ) internal view virtual returns (uint24) {}
        /**
         * @dev Hook that is called before a set of serially-ordered token ids are about to be transferred.
         * This includes minting.
         * And also called before burning one token.
         *
         * startTokenId - the first token id to be transferred
         * quantity - the amount to be transferred
         *
         * Calling conditions:
         *
         * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
         * transferred to `to`.
         * - When `from` is zero, `tokenId` will be minted for `to`.
         * - When `to` is zero, `tokenId` will be burned by `from`.
         * - `from` and `to` are never both zero.
         */
        function _beforeTokenTransfers(
            address from,
            address to,
            uint256 startTokenId,
            uint256 quantity
        ) internal virtual {}
        /**
         * @dev Hook that is called after a set of serially-ordered token ids have been transferred.
         * This includes minting.
         * And also called after one token has been burned.
         *
         * startTokenId - the first token id to be transferred
         * quantity - the amount to be transferred
         *
         * Calling conditions:
         *
         * - When `from` and `to` are both non-zero, `from`'s `tokenId` has been
         * transferred to `to`.
         * - When `from` is zero, `tokenId` has been minted for `to`.
         * - When `to` is zero, `tokenId` has been burned by `from`.
         * - `from` and `to` are never both zero.
         */
        function _afterTokenTransfers(
            address from,
            address to,
            uint256 startTokenId,
            uint256 quantity
        ) internal virtual {}
        /**
         * @dev Returns the message sender (defaults to `msg.sender`).
         *
         * If you are writing GSN compatible contracts, you need to override this function.
         */
        function _msgSenderERC721A() internal view virtual returns (address) {
            return msg.sender;
        }
        /**
         * @dev Converts a `uint256` to its ASCII `string` decimal representation.
         */
        function _toString(uint256 value) internal pure returns (string memory ptr) {
            assembly {
                // The maximum value of a uint256 contains 78 digits (1 byte per digit),
                // but we allocate 128 bytes to keep the free memory pointer 32-byte word aliged.
                // We will need 1 32-byte word to store the length,
                // and 3 32-byte words to store a maximum of 78 digits. Total: 32 + 3 * 32 = 128.
                ptr := add(mload(0x40), 128)
                // Update the free memory pointer to allocate.
                mstore(0x40, ptr)
                // Cache the end of the memory to calculate the length later.
                let end := ptr
                // We write the string from the rightmost digit to the leftmost digit.
                // The following is essentially a do-while loop that also handles the zero case.
                // Costs a bit more than early returning for the zero case,
                // but cheaper in terms of deployment and overall runtime costs.
                for {
                    // Initialize and perform the first pass without check.
                    let temp := value
                    // Move the pointer 1 byte leftwards to point to an empty character slot.
                    ptr := sub(ptr, 1)
                    // Write the character to the pointer. 48 is the ASCII index of '0'.
                    mstore8(ptr, add(48, mod(temp, 10)))
                    temp := div(temp, 10)
                } temp {
                    // Keep dividing `temp` until zero.
                    temp := div(temp, 10)
                } {
                    // Body of the for loop.
                    ptr := sub(ptr, 1)
                    mstore8(ptr, add(48, mod(temp, 10)))
                }
                let length := sub(end, ptr)
                // Move the pointer 32 bytes leftwards to make room for the length.
                ptr := sub(ptr, 32)
                // Store the length.
                mstore(ptr, length)
            }
        }
    }// SPDX-License-Identifier: MIT
    pragma solidity ^0.8.13;
    import {OperatorFilterer} from "./OperatorFilterer.sol";
    /**
     * @title  DefaultOperatorFilterer
     * @notice Inherits from OperatorFilterer and automatically subscribes to the default OpenSea subscription.
     */
    abstract contract DefaultOperatorFilterer is OperatorFilterer {
        address constant DEFAULT_SUBSCRIPTION = address(0x3cc6CddA760b79bAfa08dF41ECFA224f810dCeB6);
        constructor() OperatorFilterer(DEFAULT_SUBSCRIPTION, true) {}
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Moves `amount` tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 amount) external returns (bool);
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
        /**
         * @dev Moves `amount` tokens from `from` to `to` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) external returns (bool);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
    pragma solidity ^0.8.0;
    import "./math/Math.sol";
    /**
     * @dev String operations.
     */
    library Strings {
        bytes16 private constant _SYMBOLS = "0123456789abcdef";
        uint8 private constant _ADDRESS_LENGTH = 20;
        /**
         * @dev Converts a `uint256` to its ASCII `string` decimal representation.
         */
        function toString(uint256 value) internal pure returns (string memory) {
            unchecked {
                uint256 length = Math.log10(value) + 1;
                string memory buffer = new string(length);
                uint256 ptr;
                /// @solidity memory-safe-assembly
                assembly {
                    ptr := add(buffer, add(32, length))
                }
                while (true) {
                    ptr--;
                    /// @solidity memory-safe-assembly
                    assembly {
                        mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                    }
                    value /= 10;
                    if (value == 0) break;
                }
                return buffer;
            }
        }
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
         */
        function toHexString(uint256 value) internal pure returns (string memory) {
            unchecked {
                return toHexString(value, Math.log256(value) + 1);
            }
        }
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
         */
        function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
            bytes memory buffer = new bytes(2 * length + 2);
            buffer[0] = "0";
            buffer[1] = "x";
            for (uint256 i = 2 * length + 1; i > 1; --i) {
                buffer[i] = _SYMBOLS[value & 0xf];
                value >>= 4;
            }
            require(value == 0, "Strings: hex length insufficient");
            return string(buffer);
        }
        /**
         * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
         */
        function toHexString(address addr) internal pure returns (string memory) {
            return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (finance/PaymentSplitter.sol)
    pragma solidity ^0.8.0;
    import "../token/ERC20/utils/SafeERC20.sol";
    import "../utils/Address.sol";
    import "../utils/Context.sol";
    /**
     * @title PaymentSplitter
     * @dev This contract allows to split Ether payments among a group of accounts. The sender does not need to be aware
     * that the Ether will be split in this way, since it is handled transparently by the contract.
     *
     * The split can be in equal parts or in any other arbitrary proportion. The way this is specified is by assigning each
     * account to a number of shares. Of all the Ether that this contract receives, each account will then be able to claim
     * an amount proportional to the percentage of total shares they were assigned. The distribution of shares is set at the
     * time of contract deployment and can't be updated thereafter.
     *
     * `PaymentSplitter` follows a _pull payment_ model. This means that payments are not automatically forwarded to the
     * accounts but kept in this contract, and the actual transfer is triggered as a separate step by calling the {release}
     * function.
     *
     * NOTE: This contract assumes that ERC20 tokens will behave similarly to native tokens (Ether). Rebasing tokens, and
     * tokens that apply fees during transfers, are likely to not be supported as expected. If in doubt, we encourage you
     * to run tests before sending real value to this contract.
     */
    contract PaymentSplitter is Context {
        event PayeeAdded(address account, uint256 shares);
        event PaymentReleased(address to, uint256 amount);
        event ERC20PaymentReleased(IERC20 indexed token, address to, uint256 amount);
        event PaymentReceived(address from, uint256 amount);
        uint256 private _totalShares;
        uint256 private _totalReleased;
        mapping(address => uint256) private _shares;
        mapping(address => uint256) private _released;
        address[] private _payees;
        mapping(IERC20 => uint256) private _erc20TotalReleased;
        mapping(IERC20 => mapping(address => uint256)) private _erc20Released;
        /**
         * @dev Creates an instance of `PaymentSplitter` where each account in `payees` is assigned the number of shares at
         * the matching position in the `shares` array.
         *
         * All addresses in `payees` must be non-zero. Both arrays must have the same non-zero length, and there must be no
         * duplicates in `payees`.
         */
        constructor(address[] memory payees, uint256[] memory shares_) payable {
            require(payees.length == shares_.length, "PaymentSplitter: payees and shares length mismatch");
            require(payees.length > 0, "PaymentSplitter: no payees");
            for (uint256 i = 0; i < payees.length; i++) {
                _addPayee(payees[i], shares_[i]);
            }
        }
        /**
         * @dev The Ether received will be logged with {PaymentReceived} events. Note that these events are not fully
         * reliable: it's possible for a contract to receive Ether without triggering this function. This only affects the
         * reliability of the events, and not the actual splitting of Ether.
         *
         * To learn more about this see the Solidity documentation for
         * https://solidity.readthedocs.io/en/latest/contracts.html#fallback-function[fallback
         * functions].
         */
        receive() external payable virtual {
            emit PaymentReceived(_msgSender(), msg.value);
        }
        /**
         * @dev Getter for the total shares held by payees.
         */
        function totalShares() public view returns (uint256) {
            return _totalShares;
        }
        /**
         * @dev Getter for the total amount of Ether already released.
         */
        function totalReleased() public view returns (uint256) {
            return _totalReleased;
        }
        /**
         * @dev Getter for the total amount of `token` already released. `token` should be the address of an IERC20
         * contract.
         */
        function totalReleased(IERC20 token) public view returns (uint256) {
            return _erc20TotalReleased[token];
        }
        /**
         * @dev Getter for the amount of shares held by an account.
         */
        function shares(address account) public view returns (uint256) {
            return _shares[account];
        }
        /**
         * @dev Getter for the amount of Ether already released to a payee.
         */
        function released(address account) public view returns (uint256) {
            return _released[account];
        }
        /**
         * @dev Getter for the amount of `token` tokens already released to a payee. `token` should be the address of an
         * IERC20 contract.
         */
        function released(IERC20 token, address account) public view returns (uint256) {
            return _erc20Released[token][account];
        }
        /**
         * @dev Getter for the address of the payee number `index`.
         */
        function payee(uint256 index) public view returns (address) {
            return _payees[index];
        }
        /**
         * @dev Getter for the amount of payee's releasable Ether.
         */
        function releasable(address account) public view returns (uint256) {
            uint256 totalReceived = address(this).balance + totalReleased();
            return _pendingPayment(account, totalReceived, released(account));
        }
        /**
         * @dev Getter for the amount of payee's releasable `token` tokens. `token` should be the address of an
         * IERC20 contract.
         */
        function releasable(IERC20 token, address account) public view returns (uint256) {
            uint256 totalReceived = token.balanceOf(address(this)) + totalReleased(token);
            return _pendingPayment(account, totalReceived, released(token, account));
        }
        /**
         * @dev Triggers a transfer to `account` of the amount of Ether they are owed, according to their percentage of the
         * total shares and their previous withdrawals.
         */
        function release(address payable account) public virtual {
            require(_shares[account] > 0, "PaymentSplitter: account has no shares");
            uint256 payment = releasable(account);
            require(payment != 0, "PaymentSplitter: account is not due payment");
            // _totalReleased is the sum of all values in _released.
            // If "_totalReleased += payment" does not overflow, then "_released[account] += payment" cannot overflow.
            _totalReleased += payment;
            unchecked {
                _released[account] += payment;
            }
            Address.sendValue(account, payment);
            emit PaymentReleased(account, payment);
        }
        /**
         * @dev Triggers a transfer to `account` of the amount of `token` tokens they are owed, according to their
         * percentage of the total shares and their previous withdrawals. `token` must be the address of an IERC20
         * contract.
         */
        function release(IERC20 token, address account) public virtual {
            require(_shares[account] > 0, "PaymentSplitter: account has no shares");
            uint256 payment = releasable(token, account);
            require(payment != 0, "PaymentSplitter: account is not due payment");
            // _erc20TotalReleased[token] is the sum of all values in _erc20Released[token].
            // If "_erc20TotalReleased[token] += payment" does not overflow, then "_erc20Released[token][account] += payment"
            // cannot overflow.
            _erc20TotalReleased[token] += payment;
            unchecked {
                _erc20Released[token][account] += payment;
            }
            SafeERC20.safeTransfer(token, account, payment);
            emit ERC20PaymentReleased(token, account, payment);
        }
        /**
         * @dev internal logic for computing the pending payment of an `account` given the token historical balances and
         * already released amounts.
         */
        function _pendingPayment(
            address account,
            uint256 totalReceived,
            uint256 alreadyReleased
        ) private view returns (uint256) {
            return (totalReceived * _shares[account]) / _totalShares - alreadyReleased;
        }
        /**
         * @dev Add a new payee to the contract.
         * @param account The address of the payee to add.
         * @param shares_ The number of shares owned by the payee.
         */
        function _addPayee(address account, uint256 shares_) private {
            require(account != address(0), "PaymentSplitter: account is the zero address");
            require(shares_ > 0, "PaymentSplitter: shares are 0");
            require(_shares[account] == 0, "PaymentSplitter: account already has shares");
            _payees.push(account);
            _shares[account] = shares_;
            _totalShares = _totalShares + shares_;
            emit PayeeAdded(account, shares_);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev These functions deal with verification of Merkle Tree proofs.
     *
     * The tree and the proofs can be generated using our
     * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
     * You will find a quickstart guide in the readme.
     *
     * WARNING: You should avoid using leaf values that are 64 bytes long prior to
     * hashing, or use a hash function other than keccak256 for hashing leaves.
     * This is because the concatenation of a sorted pair of internal nodes in
     * the merkle tree could be reinterpreted as a leaf value.
     * OpenZeppelin's JavaScript library generates merkle trees that are safe
     * against this attack out of the box.
     */
    library MerkleProof {
        /**
         * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
         * defined by `root`. For this, a `proof` must be provided, containing
         * sibling hashes on the branch from the leaf to the root of the tree. Each
         * pair of leaves and each pair of pre-images are assumed to be sorted.
         */
        function verify(
            bytes32[] memory proof,
            bytes32 root,
            bytes32 leaf
        ) internal pure returns (bool) {
            return processProof(proof, leaf) == root;
        }
        /**
         * @dev Calldata version of {verify}
         *
         * _Available since v4.7._
         */
        function verifyCalldata(
            bytes32[] calldata proof,
            bytes32 root,
            bytes32 leaf
        ) internal pure returns (bool) {
            return processProofCalldata(proof, leaf) == root;
        }
        /**
         * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
         * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
         * hash matches the root of the tree. When processing the proof, the pairs
         * of leafs & pre-images are assumed to be sorted.
         *
         * _Available since v4.4._
         */
        function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
            bytes32 computedHash = leaf;
            for (uint256 i = 0; i < proof.length; i++) {
                computedHash = _hashPair(computedHash, proof[i]);
            }
            return computedHash;
        }
        /**
         * @dev Calldata version of {processProof}
         *
         * _Available since v4.7._
         */
        function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
            bytes32 computedHash = leaf;
            for (uint256 i = 0; i < proof.length; i++) {
                computedHash = _hashPair(computedHash, proof[i]);
            }
            return computedHash;
        }
        /**
         * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
         * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
         *
         * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
         *
         * _Available since v4.7._
         */
        function multiProofVerify(
            bytes32[] memory proof,
            bool[] memory proofFlags,
            bytes32 root,
            bytes32[] memory leaves
        ) internal pure returns (bool) {
            return processMultiProof(proof, proofFlags, leaves) == root;
        }
        /**
         * @dev Calldata version of {multiProofVerify}
         *
         * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
         *
         * _Available since v4.7._
         */
        function multiProofVerifyCalldata(
            bytes32[] calldata proof,
            bool[] calldata proofFlags,
            bytes32 root,
            bytes32[] memory leaves
        ) internal pure returns (bool) {
            return processMultiProofCalldata(proof, proofFlags, leaves) == root;
        }
        /**
         * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
         * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
         * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
         * respectively.
         *
         * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
         * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
         * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
         *
         * _Available since v4.7._
         */
        function processMultiProof(
            bytes32[] memory proof,
            bool[] memory proofFlags,
            bytes32[] memory leaves
        ) internal pure returns (bytes32 merkleRoot) {
            // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
            // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
            // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
            // the merkle tree.
            uint256 leavesLen = leaves.length;
            uint256 totalHashes = proofFlags.length;
            // Check proof validity.
            require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");
            // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
            // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
            bytes32[] memory hashes = new bytes32[](totalHashes);
            uint256 leafPos = 0;
            uint256 hashPos = 0;
            uint256 proofPos = 0;
            // At each step, we compute the next hash using two values:
            // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
            //   get the next hash.
            // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
            //   `proof` array.
            for (uint256 i = 0; i < totalHashes; i++) {
                bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
                hashes[i] = _hashPair(a, b);
            }
            if (totalHashes > 0) {
                return hashes[totalHashes - 1];
            } else if (leavesLen > 0) {
                return leaves[0];
            } else {
                return proof[0];
            }
        }
        /**
         * @dev Calldata version of {processMultiProof}.
         *
         * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
         *
         * _Available since v4.7._
         */
        function processMultiProofCalldata(
            bytes32[] calldata proof,
            bool[] calldata proofFlags,
            bytes32[] memory leaves
        ) internal pure returns (bytes32 merkleRoot) {
            // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
            // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
            // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
            // the merkle tree.
            uint256 leavesLen = leaves.length;
            uint256 totalHashes = proofFlags.length;
            // Check proof validity.
            require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");
            // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
            // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
            bytes32[] memory hashes = new bytes32[](totalHashes);
            uint256 leafPos = 0;
            uint256 hashPos = 0;
            uint256 proofPos = 0;
            // At each step, we compute the next hash using two values:
            // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
            //   get the next hash.
            // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
            //   `proof` array.
            for (uint256 i = 0; i < totalHashes; i++) {
                bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
                hashes[i] = _hashPair(a, b);
            }
            if (totalHashes > 0) {
                return hashes[totalHashes - 1];
            } else if (leavesLen > 0) {
                return leaves[0];
            } else {
                return proof[0];
            }
        }
        function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
            return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
        }
        function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
            /// @solidity memory-safe-assembly
            assembly {
                mstore(0x00, a)
                mstore(0x20, b)
                value := keccak256(0x00, 0x40)
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
    pragma solidity ^0.8.0;
    import "../utils/Context.sol";
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor() {
            _transferOwnership(_msgSender());
        }
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            require(owner() == _msgSender(), "Ownable: caller is not the owner");
        }
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions anymore. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            _transferOwnership(newOwner);
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }
    // SPDX-License-Identifier: MIT
    // ERC721A Contracts v4.1.0
    // Creator: Chiru Labs
    pragma solidity ^0.8.4;
    /**
     * @dev Interface of an ERC721A compliant contract.
     */
    interface IERC721A {
        /**
         * The caller must own the token or be an approved operator.
         */
        error ApprovalCallerNotOwnerNorApproved();
        /**
         * The token does not exist.
         */
        error ApprovalQueryForNonexistentToken();
        /**
         * The caller cannot approve to their own address.
         */
        error ApproveToCaller();
        /**
         * Cannot query the balance for the zero address.
         */
        error BalanceQueryForZeroAddress();
        /**
         * Cannot mint to the zero address.
         */
        error MintToZeroAddress();
        /**
         * The quantity of tokens minted must be more than zero.
         */
        error MintZeroQuantity();
        /**
         * The token does not exist.
         */
        error OwnerQueryForNonexistentToken();
        /**
         * The caller must own the token or be an approved operator.
         */
        error TransferCallerNotOwnerNorApproved();
        /**
         * The token must be owned by `from`.
         */
        error TransferFromIncorrectOwner();
        /**
         * Cannot safely transfer to a contract that does not implement the ERC721Receiver interface.
         */
        error TransferToNonERC721ReceiverImplementer();
        /**
         * Cannot transfer to the zero address.
         */
        error TransferToZeroAddress();
        /**
         * The token does not exist.
         */
        error URIQueryForNonexistentToken();
        /**
         * The `quantity` minted with ERC2309 exceeds the safety limit.
         */
        error MintERC2309QuantityExceedsLimit();
        /**
         * The `extraData` cannot be set on an unintialized ownership slot.
         */
        error OwnershipNotInitializedForExtraData();
        struct TokenOwnership {
            // The address of the owner.
            address addr;
            // Keeps track of the start time of ownership with minimal overhead for tokenomics.
            uint64 startTimestamp;
            // Whether the token has been burned.
            bool burned;
            // Arbitrary data similar to `startTimestamp` that can be set through `_extraData`.
            uint24 extraData;
        }
        /**
         * @dev Returns the total amount of tokens stored by the contract.
         *
         * Burned tokens are calculated here, use `_totalMinted()` if you want to count just minted tokens.
         */
        function totalSupply() external view returns (uint256);
        // ==============================
        //            IERC165
        // ==============================
        /**
         * @dev Returns true if this contract implements the interface defined by
         * `interfaceId`. See the corresponding
         * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
         * to learn more about how these ids are created.
         *
         * This function call must use less than 30 000 gas.
         */
        function supportsInterface(bytes4 interfaceId) external view returns (bool);
        // ==============================
        //            IERC721
        // ==============================
        /**
         * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
         */
        event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
        /**
         * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
         */
        event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
        /**
         * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
         */
        event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
        /**
         * @dev Returns the number of tokens in ``owner``'s account.
         */
        function balanceOf(address owner) external view returns (uint256 balance);
        /**
         * @dev Returns the owner of the `tokenId` token.
         *
         * Requirements:
         *
         * - `tokenId` must exist.
         */
        function ownerOf(uint256 tokenId) external view returns (address owner);
        /**
         * @dev Safely transfers `tokenId` token from `from` to `to`.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `tokenId` token must exist and be owned by `from`.
         * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
         * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
         *
         * Emits a {Transfer} event.
         */
        function safeTransferFrom(
            address from,
            address to,
            uint256 tokenId,
            bytes calldata data
        ) external;
        /**
         * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
         * are aware of the ERC721 protocol to prevent tokens from being forever locked.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `tokenId` token must exist and be owned by `from`.
         * - If the caller is not `from`, it must be have been allowed to move this token by either {approve} or {setApprovalForAll}.
         * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
         *
         * Emits a {Transfer} event.
         */
        function safeTransferFrom(
            address from,
            address to,
            uint256 tokenId
        ) external;
        /**
         * @dev Transfers `tokenId` token from `from` to `to`.
         *
         * WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `tokenId` token must be owned by `from`.
         * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address from,
            address to,
            uint256 tokenId
        ) external;
        /**
         * @dev Gives permission to `to` to transfer `tokenId` token to another account.
         * The approval is cleared when the token is transferred.
         *
         * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
         *
         * Requirements:
         *
         * - The caller must own the token or be an approved operator.
         * - `tokenId` must exist.
         *
         * Emits an {Approval} event.
         */
        function approve(address to, uint256 tokenId) external;
        /**
         * @dev Approve or remove `operator` as an operator for the caller.
         * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
         *
         * Requirements:
         *
         * - The `operator` cannot be the caller.
         *
         * Emits an {ApprovalForAll} event.
         */
        function setApprovalForAll(address operator, bool _approved) external;
        /**
         * @dev Returns the account approved for `tokenId` token.
         *
         * Requirements:
         *
         * - `tokenId` must exist.
         */
        function getApproved(uint256 tokenId) external view returns (address operator);
        /**
         * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
         *
         * See {setApprovalForAll}
         */
        function isApprovedForAll(address owner, address operator) external view returns (bool);
        // ==============================
        //        IERC721Metadata
        // ==============================
        /**
         * @dev Returns the token collection name.
         */
        function name() external view returns (string memory);
        /**
         * @dev Returns the token collection symbol.
         */
        function symbol() external view returns (string memory);
        /**
         * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
         */
        function tokenURI(uint256 tokenId) external view returns (string memory);
        // ==============================
        //            IERC2309
        // ==============================
        /**
         * @dev Emitted when tokens in `fromTokenId` to `toTokenId` (inclusive) is transferred from `from` to `to`,
         * as defined in the ERC2309 standard. See `_mintERC2309` for more details.
         */
        event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to);
    }// SPDX-License-Identifier: MIT
    pragma solidity ^0.8.13;
    import {IOperatorFilterRegistry} from "./IOperatorFilterRegistry.sol";
    /**
     * @title  OperatorFilterer
     * @notice Abstract contract whose constructor automatically registers and optionally subscribes to or copies another
     *         registrant's entries in the OperatorFilterRegistry.
     * @dev    This smart contract is meant to be inherited by token contracts so they can use the following:
     *         - `onlyAllowedOperator` modifier for `transferFrom` and `safeTransferFrom` methods.
     *         - `onlyAllowedOperatorApproval` modifier for `approve` and `setApprovalForAll` methods.
     */
    abstract contract OperatorFilterer {
        error OperatorNotAllowed(address operator);
        IOperatorFilterRegistry public constant OPERATOR_FILTER_REGISTRY =
            IOperatorFilterRegistry(0x000000000000AAeB6D7670E522A718067333cd4E);
        constructor(address subscriptionOrRegistrantToCopy, bool subscribe) {
            // If an inheriting token contract is deployed to a network without the registry deployed, the modifier
            // will not revert, but the contract will need to be registered with the registry once it is deployed in
            // order for the modifier to filter addresses.
            if (address(OPERATOR_FILTER_REGISTRY).code.length > 0) {
                if (subscribe) {
                    OPERATOR_FILTER_REGISTRY.registerAndSubscribe(address(this), subscriptionOrRegistrantToCopy);
                } else {
                    if (subscriptionOrRegistrantToCopy != address(0)) {
                        OPERATOR_FILTER_REGISTRY.registerAndCopyEntries(address(this), subscriptionOrRegistrantToCopy);
                    } else {
                        OPERATOR_FILTER_REGISTRY.register(address(this));
                    }
                }
            }
        }
        modifier onlyAllowedOperator(address from) virtual {
            // Allow spending tokens from addresses with balance
            // Note that this still allows listings and marketplaces with escrow to transfer tokens if transferred
            // from an EOA.
            if (from != msg.sender) {
                _checkFilterOperator(msg.sender);
            }
            _;
        }
        modifier onlyAllowedOperatorApproval(address operator) virtual {
            _checkFilterOperator(operator);
            _;
        }
        function _checkFilterOperator(address operator) internal view virtual {
            // Check registry code length to facilitate testing in environments without a deployed registry.
            if (address(OPERATOR_FILTER_REGISTRY).code.length > 0) {
                if (!OPERATOR_FILTER_REGISTRY.isOperatorAllowed(address(this), operator)) {
                    revert OperatorNotAllowed(operator);
                }
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Standard math utilities missing in the Solidity language.
     */
    library Math {
        enum Rounding {
            Down, // Toward negative infinity
            Up, // Toward infinity
            Zero // Toward zero
        }
        /**
         * @dev Returns the largest of two numbers.
         */
        function max(uint256 a, uint256 b) internal pure returns (uint256) {
            return a > b ? a : b;
        }
        /**
         * @dev Returns the smallest of two numbers.
         */
        function min(uint256 a, uint256 b) internal pure returns (uint256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two numbers. The result is rounded towards
         * zero.
         */
        function average(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b) / 2 can overflow.
            return (a & b) + (a ^ b) / 2;
        }
        /**
         * @dev Returns the ceiling of the division of two numbers.
         *
         * This differs from standard division with `/` in that it rounds up instead
         * of rounding down.
         */
        function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b - 1) / b can overflow on addition, so we distribute.
            return a == 0 ? 0 : (a - 1) / b + 1;
        }
        /**
         * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
         * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
         * with further edits by Uniswap Labs also under MIT license.
         */
        function mulDiv(
            uint256 x,
            uint256 y,
            uint256 denominator
        ) internal pure returns (uint256 result) {
            unchecked {
                // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                // variables such that product = prod1 * 2^256 + prod0.
                uint256 prod0; // Least significant 256 bits of the product
                uint256 prod1; // Most significant 256 bits of the product
                assembly {
                    let mm := mulmod(x, y, not(0))
                    prod0 := mul(x, y)
                    prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                }
                // Handle non-overflow cases, 256 by 256 division.
                if (prod1 == 0) {
                    return prod0 / denominator;
                }
                // Make sure the result is less than 2^256. Also prevents denominator == 0.
                require(denominator > prod1);
                ///////////////////////////////////////////////
                // 512 by 256 division.
                ///////////////////////////////////////////////
                // Make division exact by subtracting the remainder from [prod1 prod0].
                uint256 remainder;
                assembly {
                    // Compute remainder using mulmod.
                    remainder := mulmod(x, y, denominator)
                    // Subtract 256 bit number from 512 bit number.
                    prod1 := sub(prod1, gt(remainder, prod0))
                    prod0 := sub(prod0, remainder)
                }
                // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                // See https://cs.stackexchange.com/q/138556/92363.
                // Does not overflow because the denominator cannot be zero at this stage in the function.
                uint256 twos = denominator & (~denominator + 1);
                assembly {
                    // Divide denominator by twos.
                    denominator := div(denominator, twos)
                    // Divide [prod1 prod0] by twos.
                    prod0 := div(prod0, twos)
                    // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                    twos := add(div(sub(0, twos), twos), 1)
                }
                // Shift in bits from prod1 into prod0.
                prod0 |= prod1 * twos;
                // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                // four bits. That is, denominator * inv = 1 mod 2^4.
                uint256 inverse = (3 * denominator) ^ 2;
                // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                // in modular arithmetic, doubling the correct bits in each step.
                inverse *= 2 - denominator * inverse; // inverse mod 2^8
                inverse *= 2 - denominator * inverse; // inverse mod 2^16
                inverse *= 2 - denominator * inverse; // inverse mod 2^32
                inverse *= 2 - denominator * inverse; // inverse mod 2^64
                inverse *= 2 - denominator * inverse; // inverse mod 2^128
                inverse *= 2 - denominator * inverse; // inverse mod 2^256
                // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                // is no longer required.
                result = prod0 * inverse;
                return result;
            }
        }
        /**
         * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
         */
        function mulDiv(
            uint256 x,
            uint256 y,
            uint256 denominator,
            Rounding rounding
        ) internal pure returns (uint256) {
            uint256 result = mulDiv(x, y, denominator);
            if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                result += 1;
            }
            return result;
        }
        /**
         * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
         *
         * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
         */
        function sqrt(uint256 a) internal pure returns (uint256) {
            if (a == 0) {
                return 0;
            }
            // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
            //
            // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
            // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
            //
            // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
            // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
            // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
            //
            // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
            uint256 result = 1 << (log2(a) >> 1);
            // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
            // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
            // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
            // into the expected uint128 result.
            unchecked {
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                return min(result, a / result);
            }
        }
        /**
         * @notice Calculates sqrt(a), following the selected rounding direction.
         */
        function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = sqrt(a);
                return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 2, rounded down, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 128;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 64;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 32;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 16;
                }
                if (value >> 8 > 0) {
                    value >>= 8;
                    result += 8;
                }
                if (value >> 4 > 0) {
                    value >>= 4;
                    result += 4;
                }
                if (value >> 2 > 0) {
                    value >>= 2;
                    result += 2;
                }
                if (value >> 1 > 0) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log2(value);
                return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 10, rounded down, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >= 10**64) {
                    value /= 10**64;
                    result += 64;
                }
                if (value >= 10**32) {
                    value /= 10**32;
                    result += 32;
                }
                if (value >= 10**16) {
                    value /= 10**16;
                    result += 16;
                }
                if (value >= 10**8) {
                    value /= 10**8;
                    result += 8;
                }
                if (value >= 10**4) {
                    value /= 10**4;
                    result += 4;
                }
                if (value >= 10**2) {
                    value /= 10**2;
                    result += 2;
                }
                if (value >= 10**1) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log10(value);
                return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 256, rounded down, of a positive value.
         * Returns 0 if given 0.
         *
         * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
         */
        function log256(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 16;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 8;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 4;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 2;
                }
                if (value >> 8 > 0) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log256(value);
                return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
    pragma solidity ^0.8.1;
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         *
         * [IMPORTANT]
         * ====
         * You shouldn't rely on `isContract` to protect against flash loan attacks!
         *
         * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
         * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
         * constructor.
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize/address.code.length, which returns 0
            // for contracts in construction, since the code is only stored at the end
            // of the constructor execution.
            return account.code.length > 0;
        }
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
            (bool success, ) = recipient.call{value: amount}("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, "Address: low-level call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
         * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
         *
         * _Available since v4.8._
         */
        function verifyCallResultFromTarget(
            address target,
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            if (success) {
                if (returndata.length == 0) {
                    // only check isContract if the call was successful and the return data is empty
                    // otherwise we already know that it was a contract
                    require(isContract(target), "Address: call to non-contract");
                }
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        /**
         * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
         * revert reason or using the provided one.
         *
         * _Available since v4.3._
         */
        function verifyCallResult(
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal pure returns (bytes memory) {
            if (success) {
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        function _revert(bytes memory returndata, string memory errorMessage) private pure {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)
    pragma solidity ^0.8.0;
    import "../IERC20.sol";
    import "../extensions/draft-IERC20Permit.sol";
    import "../../../utils/Address.sol";
    /**
     * @title SafeERC20
     * @dev Wrappers around ERC20 operations that throw on failure (when the token
     * contract returns false). Tokens that return no value (and instead revert or
     * throw on failure) are also supported, non-reverting calls are assumed to be
     * successful.
     * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
     * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
     */
    library SafeERC20 {
        using Address for address;
        function safeTransfer(
            IERC20 token,
            address to,
            uint256 value
        ) internal {
            _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
        }
        function safeTransferFrom(
            IERC20 token,
            address from,
            address to,
            uint256 value
        ) internal {
            _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
        }
        /**
         * @dev Deprecated. This function has issues similar to the ones found in
         * {IERC20-approve}, and its usage is discouraged.
         *
         * Whenever possible, use {safeIncreaseAllowance} and
         * {safeDecreaseAllowance} instead.
         */
        function safeApprove(
            IERC20 token,
            address spender,
            uint256 value
        ) internal {
            // safeApprove should only be called when setting an initial allowance,
            // or when resetting it to zero. To increase and decrease it, use
            // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
            require(
                (value == 0) || (token.allowance(address(this), spender) == 0),
                "SafeERC20: approve from non-zero to non-zero allowance"
            );
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
        }
        function safeIncreaseAllowance(
            IERC20 token,
            address spender,
            uint256 value
        ) internal {
            uint256 newAllowance = token.allowance(address(this), spender) + value;
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
        function safeDecreaseAllowance(
            IERC20 token,
            address spender,
            uint256 value
        ) internal {
            unchecked {
                uint256 oldAllowance = token.allowance(address(this), spender);
                require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                uint256 newAllowance = oldAllowance - value;
                _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
            }
        }
        function safePermit(
            IERC20Permit token,
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) internal {
            uint256 nonceBefore = token.nonces(owner);
            token.permit(owner, spender, value, deadline, v, r, s);
            uint256 nonceAfter = token.nonces(owner);
            require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
        }
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         */
        function _callOptionalReturn(IERC20 token, bytes memory data) private {
            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
            // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
            // the target address contains contract code and also asserts for success in the low-level call.
            bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
            if (returndata.length > 0) {
                // Return data is optional
                require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
            }
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.13;
    interface IOperatorFilterRegistry {
        function isOperatorAllowed(address registrant, address operator) external view returns (bool);
        function register(address registrant) external;
        function registerAndSubscribe(address registrant, address subscription) external;
        function registerAndCopyEntries(address registrant, address registrantToCopy) external;
        function unregister(address addr) external;
        function updateOperator(address registrant, address operator, bool filtered) external;
        function updateOperators(address registrant, address[] calldata operators, bool filtered) external;
        function updateCodeHash(address registrant, bytes32 codehash, bool filtered) external;
        function updateCodeHashes(address registrant, bytes32[] calldata codeHashes, bool filtered) external;
        function subscribe(address registrant, address registrantToSubscribe) external;
        function unsubscribe(address registrant, bool copyExistingEntries) external;
        function subscriptionOf(address addr) external returns (address registrant);
        function subscribers(address registrant) external returns (address[] memory);
        function subscriberAt(address registrant, uint256 index) external returns (address);
        function copyEntriesOf(address registrant, address registrantToCopy) external;
        function isOperatorFiltered(address registrant, address operator) external returns (bool);
        function isCodeHashOfFiltered(address registrant, address operatorWithCode) external returns (bool);
        function isCodeHashFiltered(address registrant, bytes32 codeHash) external returns (bool);
        function filteredOperators(address addr) external returns (address[] memory);
        function filteredCodeHashes(address addr) external returns (bytes32[] memory);
        function filteredOperatorAt(address registrant, uint256 index) external returns (address);
        function filteredCodeHashAt(address registrant, uint256 index) external returns (bytes32);
        function isRegistered(address addr) external returns (bool);
        function codeHashOf(address addr) external returns (bytes32);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
     * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
     *
     * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
     * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
     * need to send a transaction, and thus is not required to hold Ether at all.
     */
    interface IERC20Permit {
        /**
         * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
         * given ``owner``'s signed approval.
         *
         * IMPORTANT: The same issues {IERC20-approve} has related to transaction
         * ordering also apply here.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `deadline` must be a timestamp in the future.
         * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
         * over the EIP712-formatted function arguments.
         * - the signature must use ``owner``'s current nonce (see {nonces}).
         *
         * For more information on the signature format, see the
         * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
         * section].
         */
        function permit(
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) external;
        /**
         * @dev Returns the current nonce for `owner`. This value must be
         * included whenever a signature is generated for {permit}.
         *
         * Every successful call to {permit} increases ``owner``'s nonce by one. This
         * prevents a signature from being used multiple times.
         */
        function nonces(address owner) external view returns (uint256);
        /**
         * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
         */
        // solhint-disable-next-line func-name-mixedcase
        function DOMAIN_SEPARATOR() external view returns (bytes32);
    }
    

    File 2 of 2: EverestCoin
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.6.0 <0.9.0;
    
    /*
    
    
    EverestCoin is a Play to Earn Game. Join us and let’s climb Mount Everest together!
    
    First 200 buyers get Bored Yeti NFT + 20M EVCoin ETH tokens 
    
    First 1000 buyers get 2M EVCoin ETH tokens:
    
        Telegram: t.me/TheEverestCoin
        Twitter: Twitter.com/CoinEverest
        Website: everestcoin.io
        Bridge: bridge.everestcoin.io
    
    
    */
    
    
    interface IERC20 {
      function totalSupply() external view returns (uint256);
      function decimals() external view returns (uint8);
      function symbol() external view returns (string memory);
      function name() external view returns (string memory);
      function getOwner() external view returns (address);
      function balanceOf(address account) external view returns (uint256);
      function transfer(address recipient, uint256 amount) external returns (bool);
      function allowance(address _owner, address spender) external view returns (uint256);
      function approve(address spender, uint256 amount) external returns (bool);
      function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
      event Transfer(address indexed from, address indexed to, uint256 value);
      event Approval(address indexed owner, address indexed spender, uint256 value);
    }
    
    interface IFactoryV2 {
        event PairCreated(address indexed token0, address indexed token1, address lpPair, uint);
        function getPair(address tokenA, address tokenB) external view returns (address lpPair);
        function createPair(address tokenA, address tokenB) external returns (address lpPair);
    }
    
    interface IV2Pair {
        function factory() external view returns (address);
        function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
        function sync() external;
    }
    
    interface IRouter01 {
        function factory() external pure returns (address);
        function WETH() external pure returns (address);
        function addLiquidityETH(
            address token,
            uint amountTokenDesired,
            uint amountTokenMin,
            uint amountETHMin,
            address to,
            uint deadline
        ) external payable returns (uint amountToken, uint amountETH, uint liquidity);
        function addLiquidity(
            address tokenA,
            address tokenB,
            uint amountADesired,
            uint amountBDesired,
            uint amountAMin,
            uint amountBMin,
            address to,
            uint deadline
        ) external returns (uint amountA, uint amountB, uint liquidity);
        function swapExactETHForTokens(
            uint amountOutMin, 
            address[] calldata path, 
            address to, uint deadline
        ) external payable returns (uint[] memory amounts);
        function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
        function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
    }
    
    interface IRouter02 is IRouter01 {
        function swapExactTokensForETHSupportingFeeOnTransferTokens(
            uint amountIn,
            uint amountOutMin,
            address[] calldata path,
            address to,
            uint deadline
        ) external;
        function swapExactETHForTokensSupportingFeeOnTransferTokens(
            uint amountOutMin,
            address[] calldata path,
            address to,
            uint deadline
        ) external payable;
        function swapExactTokensForTokensSupportingFeeOnTransferTokens(
            uint amountIn,
            uint amountOutMin,
            address[] calldata path,
            address to,
            uint deadline
        ) external;
        function swapExactTokensForTokens(
            uint amountIn,
            uint amountOutMin,
            address[] calldata path,
            address to,
            uint deadline
        ) external returns (uint[] memory amounts);
    }
    
    interface Protections {
        function checkUser(address from, address to, uint256 amt) external returns (bool);
        function setLaunch(address _initialLpPair, uint32 _liqAddBlock, uint64 _liqAddStamp, uint8 dec) external;
        function setLpPair(address pair, bool enabled) external;
        function setProtections(bool _as, bool _ab) external;
        function removeSniper(address account) external;
        function removeBlacklisted(address account) external;
        function isBlacklisted(address account) external view returns (bool);
        function setBlacklistEnabled(address account, bool enabled) external;
        function setBlacklistEnabledMultiple(address[] memory accounts, bool enabled) external;
    
        function fullReset() external;
    }
    
    contract LotteryArray {
        address[] private lotteryList;
        mapping (address => bool) private inLottery;
        address private token;
        uint256 lotteryEndStamp;
    
        modifier onlyToken() {
            require (msg.sender == token, "Caller must be token.");
            _;
        }
    
        constructor(uint256 _lotteryEndStamp, address _token) {
            lotteryEndStamp = _lotteryEndStamp;
            token = _token;
        }
    
        function checkUser(address account, bool balance) external view onlyToken returns (string memory) {
            return (inLottery[account] && balance) ? "User is in the lottery!" : "User is not in the lottery.";
        }
    
        function checkUserAtIndex(uint256 index) external view onlyToken returns (address) {
           return lotteryList[index - 1];
        }
    
        function addUserToLottery(address account) external onlyToken {
            if (block.timestamp < lotteryEndStamp) {
                lotteryList.push(account);
                inLottery[account] = true;
            }
        }
    
        function finishAndCloseLottery(address payable owner) external onlyToken {
            require (block.timestamp >= lotteryEndStamp, "Lottery must be over.");
            selfdestruct(owner);
        }
    
        function getLotteryUserLength() public view returns (uint256) {
            return uint256(lotteryList.length);
        }
    
        function getRemainingLotteryTime() public view returns (uint256) {
            return (lotteryEndStamp > block.timestamp) ? (lotteryEndStamp - block.timestamp) : 0;
        }
    
    }
    
    contract EverestCoin is IERC20 {
        mapping (address => uint256) private _rOwned;
        mapping (address => uint256) private _tOwned;
        mapping (address => bool) lpPairs;
        uint256 private timeSinceLastPair = 0;
        mapping (address => mapping (address => uint256)) private _allowances;
    
        mapping (address => bool) private _liquidityHolders;
        mapping (address => bool) private _isExcludedFromProtection;
        mapping (address => bool) private _isExcludedFromFees;
        mapping (address => bool) private _isExcludedFromLimits;
        mapping (address => bool) private _isExcluded;
        address[] private _excluded;
    
        mapping (address => bool) private presaleAddresses;
        bool private allowedPresaleExclusion = true;
       
        uint256 constant private startingSupply = 1_000_000_000_000;
        string constant private _name = "EverestCoin";
        string constant private _symbol = "$EVCoin";
        uint8 constant private _decimals = 9;
    
        uint256 constant private _tTotal = startingSupply * 10**_decimals;
        uint256 constant private MAX = ~uint256(0);
        uint256 private _rTotal = (MAX - (MAX % _tTotal));
    
        struct Fees {
            uint16 buyFee;
            uint16 sellFee;
            uint16 transferFee;
        }
    
        struct Ratios {
            uint16 reflection;
            uint16 burn;
    
            uint16 marketing;
            uint16 liquidity;
            uint16 development;
            uint16 mod;
            uint16 gameAdvancement;
            uint16 technicalSupport;
            uint16 totalSwap;
        }
    
        Fees public _taxRates = Fees({
            buyFee: 300,
            sellFee: 300,
            transferFee: 300
            });
    
        Ratios public _ratios = Ratios({
            reflection: 400,
            burn: 200,
    
            marketing: 600,
            liquidity: 100,
            development: 200,
            mod: 200,
            gameAdvancement: 200,
            technicalSupport: 100,
            totalSwap: 1400
            });
    
        uint256 constant public maxBuyTaxes = 2000;
        uint256 constant public maxSellTaxes = 2000;
        uint256 constant public maxTransferTaxes = 2000;
        uint256 constant masterTaxDivisor = 10000;
    
        IRouter02 public dexRouter;
        address public lpPair;
        address constant public DEAD = 0x000000000000000000000000000000000000dEaD;
    
        struct TaxWallets {
            address payable marketing;
            address payable development;
            address payable mod;
            address payable gameAdvancement;
            address payable technicalSupport;
        }
    
        TaxWallets public _taxWallets = TaxWallets({
            marketing: payable(0xD60b49CeA6e10D9e54DC1F90C7bc55bA55904097),
            development: payable(0xE4712e1d5d2B2594cB9887B5f07b17527F19D533),
            mod: payable(0x734336CC4c0a16Ac7c2Ea206e3DB65AF6B5803C1),
            gameAdvancement: payable(0x5b31FaF42470D84B20659354A4bE7cC603C6e640),
            technicalSupport: payable(0xBaAFeeb00d5B02F24243540bdB12DaE2C097fFEB)
            });
        
        bool inSwap;
        bool public contractSwapEnabled = false;
        uint256 public swapThreshold;
        uint256 public swapAmount;
        
        uint256 private _maxTxAmount = (_tTotal * 2) / 100;
        uint256 private _maxWalletSize = (_tTotal * 4) / 100;
    
        bool public tradingEnabled = false;
        bool public _hasLiqBeenAdded = false;
        Protections protections;
    
        LotteryArray lottery;
        bool public lotteryRunning;
        uint256 public minHoldForLotteryUI = 5 * 10**6;
        uint256 private minimumHoldForLottery = minHoldForLotteryUI * 10**_decimals; // 5 Million tokens needed to enter lottery.
        uint256 public minETHBuy = 19*10**16;
    
        bool public piEnabled = true;
    
        event ContractSwapEnabledUpdated(bool enabled);
        event AutoLiquify(uint256 amountCurrency, uint256 amountTokens);
        
        modifier lockTheSwap {
            inSwap = true;
            _;
            inSwap = false;
        }
        
        constructor () payable {
            _rOwned[msg.sender] = _rTotal;
            emit Transfer(address(0), msg.sender, _tTotal);
    
            // Set the owner.
            _owner = msg.sender;
    
            if (block.chainid == 56) {
                dexRouter = IRouter02(0x10ED43C718714eb63d5aA57B78B54704E256024E);
            } else if (block.chainid == 97) {
                dexRouter = IRouter02(0xD99D1c33F9fC3444f8101754aBC46c52416550D1);
            } else if (block.chainid == 1) {
                dexRouter = IRouter02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D);
            } else {
                revert();
            }
    
            lpPair = IFactoryV2(dexRouter.factory()).createPair(dexRouter.WETH(), address(this));
            lpPairs[lpPair] = true;
    
            _approve(_owner, address(dexRouter), type(uint256).max);
            _approve(address(this), address(dexRouter), type(uint256).max);
    
            _isExcludedFromFees[_owner] = true;
            _isExcludedFromFees[address(this)] = true;
            _isExcludedFromFees[DEAD] = true;
            _liquidityHolders[_owner] = true;
            _isExcludedFromLimits[_taxWallets.development] = true;
            _isExcludedFromLimits[_taxWallets.gameAdvancement] = true;
        }
    
        receive() external payable {}
    
    //===============================================================================================================
    //===============================================================================================================
    //===============================================================================================================
        // Ownable removed as a lib and added here to allow for custom transfers and renouncements.
        // This allows for removal of ownership privileges from the owner once renounced or transferred.
    
        address private _owner;
    
        modifier onlyOwner() { require(_owner == msg.sender, "Caller =/= owner."); _; }
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    
        function transferOwner(address newOwner) external onlyOwner {
            require(newOwner != address(0), "Call renounceOwnership to transfer owner to the zero address.");
            require(newOwner != DEAD, "Call renounceOwnership to transfer owner to the zero address.");
            setExcludedFromFees(_owner, false);
            setExcludedFromFees(newOwner, true);
            
            if (balanceOf(_owner) > 0) {
                finalizeTransfer(_owner, newOwner, balanceOf(_owner), false, false, true);
            }
            
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
            
        }
    
        function renounceOwnership() external onlyOwner {
            setExcludedFromFees(_owner, false);
            address oldOwner = _owner;
            _owner = address(0);
            emit OwnershipTransferred(oldOwner, address(0));
        }
    
    //===============================================================================================================
    //===============================================================================================================
    //===============================================================================================================
    
        function totalSupply() external pure override returns (uint256) { return _tTotal; }
        function decimals() external pure override returns (uint8) { return _decimals; }
        function symbol() external pure override returns (string memory) { return _symbol; }
        function name() external pure override returns (string memory) { return _name; }
        function getOwner() external view override returns (address) { return _owner; }
        function allowance(address holder, address spender) external view override returns (uint256) { return _allowances[holder][spender]; }
    
        function balanceOf(address account) public view override returns (uint256) {
            if (_isExcluded[account]) return _tOwned[account];
            return tokenFromReflection(_rOwned[account]);
        }
    
        function transfer(address recipient, uint256 amount) public override returns (bool) {
            _transfer(msg.sender, recipient, amount);
            return true;
        }
    
        function approve(address spender, uint256 amount) public override returns (bool) {
            _approve(msg.sender, spender, amount);
            return true;
        }
    
        function _approve(address sender, address spender, uint256 amount) internal {
            require(sender != address(0), "ERC20: Zero Address");
            require(spender != address(0), "ERC20: Zero Address");
    
            _allowances[sender][spender] = amount;
            emit Approval(sender, spender, amount);
        }
    
        function transferFrom(address sender, address recipient, uint256 amount) external override returns (bool) {
            if (_allowances[sender][msg.sender] != type(uint256).max) {
                _allowances[sender][msg.sender] -= amount;
            }
    
            return _transfer(sender, recipient, amount);
        }
    
        function setLpPair(address pair, bool enabled) external onlyOwner {
            if (enabled == false) {
                lpPairs[pair] = false;
                protections.setLpPair(pair, false);
            } else {
                if (timeSinceLastPair != 0) {
                    require(block.timestamp - timeSinceLastPair > 3 days, "3 Day cooldown.!");
                }
                lpPairs[pair] = true;
                timeSinceLastPair = block.timestamp;
                protections.setLpPair(pair, true);
            }
        }
    
        function setInitializer(address initializer) external onlyOwner {
            require(!_hasLiqBeenAdded);
            require(initializer != address(this), "Can't be self.");
            protections = Protections(initializer);
        }
    
        function isExcludedFromLimits(address account) external view returns (bool) {
            return _isExcludedFromLimits[account];
        }
    
        function isExcludedFromFees(address account) external view returns(bool) {
            return _isExcludedFromFees[account];
        }
    
        function isExcludedFromProtection(address account) external view returns (bool) {
            return _isExcludedFromProtection[account];
        }
    
        function setExcludedFromLimits(address account, bool enabled) external onlyOwner {
            _isExcludedFromLimits[account] = enabled;
        }
    
        function setExcludedFromFees(address account, bool enabled) public onlyOwner {
            _isExcludedFromFees[account] = enabled;
        }
    
        function setExcludedFromProtection(address account, bool enabled) external onlyOwner {
            _isExcludedFromProtection[account] = enabled;
        }
    //================================================ BLACKLIST
    
        function setBlacklistEnabled(address account, bool enabled) external onlyOwner {
            protections.setBlacklistEnabled(account, enabled);
        }
    
        function setBlacklistEnabledMultiple(address[] memory accounts, bool enabled) external onlyOwner {
            protections.setBlacklistEnabledMultiple(accounts, enabled);
        }
    
        function isBlacklisted(address account) public view returns (bool) {
            return protections.isBlacklisted(account);
        }
    
        function removeSniper(address account) external onlyOwner {
            protections.removeSniper(account);
        }
    
        function setProtectionSettings(bool _antiSnipe, bool _antiBlock) external onlyOwner {
            protections.setProtections(_antiSnipe, _antiBlock);
        }
    
        function setTaxes(uint16 buyFee, uint16 sellFee, uint16 transferFee) external onlyOwner {
            require(buyFee <= maxBuyTaxes
                    && sellFee <= maxSellTaxes
                    && transferFee <= maxTransferTaxes,
                    "Cannot exceed maximums.");
            _taxRates.buyFee = buyFee;
            _taxRates.sellFee = sellFee;
            _taxRates.transferFee = transferFee;
        }
    
        function setRatios(
                uint16 reflection, 
                uint16 marketing,
                uint16 liquidity,
                uint16 development, 
                uint16 mod, 
                uint16 gameAdvancement, 
                uint16 technicalSupport, 
                uint16 burn
                          ) external onlyOwner {
            _ratios.technicalSupport = technicalSupport;
            _ratios.reflection = reflection;
            _ratios.marketing = marketing;
            _ratios.liquidity = liquidity;
            _ratios.mod = mod;
            _ratios.gameAdvancement = gameAdvancement;
            _ratios.development = development;
            _ratios.burn = burn;
            _ratios.totalSwap = marketing + development + mod + gameAdvancement + technicalSupport + liquidity;
            uint256 total = _taxRates.buyFee + _taxRates.sellFee;
            require(_ratios.totalSwap + _ratios.reflection + _ratios.burn <= total, "Cannot exceed sum of buy and sell fees.");
        }
    
        function setWallets(address payable marketing, address payable development, address payable mod, address payable gameAdvancement, address payable technicalSupport) external onlyOwner {
            _taxWallets.technicalSupport = technicalSupport;
            _taxWallets.marketing = payable(marketing);
            _taxWallets.mod = payable(mod);
            _taxWallets.gameAdvancement = payable(gameAdvancement);
            _taxWallets.development = payable(development);
        }
    
        function setMaxTxPercent(uint256 percent, uint256 divisor) external onlyOwner {
            require((_tTotal * percent) / divisor >= (_tTotal / 1000), "Max Transaction amt must be above 0.1% of total supply.");
            _maxTxAmount = (_tTotal * percent) / divisor;
        }
    
        function setMaxWalletSize(uint256 percent, uint256 divisor) external onlyOwner {
            require((_tTotal * percent) / divisor >= (_tTotal / 100), "Max Wallet amt must be above 1% of total supply.");
            _maxWalletSize = (_tTotal * percent) / divisor;
        }
    
        function getMaxTX() public view returns (uint256) {
            return _maxTxAmount / (10**_decimals);
        }
    
        function getMaxWallet() public view returns (uint256) {
            return _maxWalletSize / (10**_decimals);
        }
    
        function setSwapSettings(uint256 thresholdPercent, uint256 thresholdDivisor, uint256 amountPercent, uint256 amountDivisor) external onlyOwner {
            swapThreshold = (_tTotal * thresholdPercent) / thresholdDivisor;
            swapAmount = (_tTotal * amountPercent) / amountDivisor;
            require(swapThreshold <= swapAmount, "Threshold cannot be above amount.");
            require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be above 1.5% of current PI.");
            require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total supply.");
            require(swapThreshold >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total supply.");
        }
    
        function setContractSwapEnabled(bool swapEnabled) external onlyOwner {
            contractSwapEnabled = swapEnabled;
            emit ContractSwapEnabledUpdated(swapEnabled);
        }
    
        function excludePresaleAddresses(address router, address presale) external onlyOwner {
            require(allowedPresaleExclusion);
            require(router != address(this) && presale != address(this), "Just don't.");
            if (router == presale) {
                _liquidityHolders[presale] = true;
                presaleAddresses[presale] = true;
                setExcludedFromFees(presale, true);
                setExcludedFromReward(presale, true);
            } else {
                _liquidityHolders[router] = true;
                _liquidityHolders[presale] = true;
                presaleAddresses[router] = true;
                presaleAddresses[presale] = true;
                setExcludedFromFees(router, true);
                setExcludedFromFees(presale, true);
                setExcludedFromReward(router, true);
                setExcludedFromReward(presale, true);
            }
        }
    
        function _hasLimits(address from, address to) internal view returns (bool) {
            return from != _owner
                && to != _owner
                && tx.origin != _owner
                && !_liquidityHolders[to]
                && !_liquidityHolders[from]
                && to != DEAD
                && to != address(0)
                && from != address(this);
        }
    
    function _transfer(address from, address to, uint256 amount) internal returns (bool) {
            require(from != address(0), "ERC20: transfer from the zero address");
            require(to != address(0), "ERC20: transfer to the zero address");
            require(amount > 0, "Transfer amount must be greater than zero");
            bool buy = false;
            bool sell = false;
            bool other = false;
            if (lpPairs[from]) {
                buy = true;
            } else if (lpPairs[to]) {
                sell = true;
            } else {
                other = true;
            }
            if (_hasLimits(from, to)) {
                if(!tradingEnabled) {
                    if (!other) {
                        revert("Trading not yet enabled!");
                    } else if (!_isExcludedFromProtection[from] && !_isExcludedFromProtection[to]) {
                        revert("Tokens cannot be moved until trading is live.");
                    }
                }
                if (buy || sell){
                    if (!_isExcludedFromLimits[from] && !_isExcludedFromLimits[to]) {
                        require(amount <= _maxTxAmount, "Transfer amount exceeds the maxTxAmount.");
                    }
                }
                if (to != address(dexRouter) && !sell) {
                    if (!_isExcludedFromLimits[to]) {
                        require(balanceOf(to) + amount <= _maxWalletSize, "Transfer amount exceeds the maxWalletSize.");
                    }
                }
            }
    
            if (sell) {
                if (!inSwap) {
                    if (contractSwapEnabled
                       && !presaleAddresses[to]
                       && !presaleAddresses[from]
                    ) {
                        uint256 contractTokenBalance = balanceOf(address(this));
                        if (contractTokenBalance >= swapThreshold) {
                            uint256 swapAmt = swapAmount;
                            if (contractTokenBalance >= swapAmt) { contractTokenBalance = swapAmt; }
                            contractSwap(contractTokenBalance);
                        }
                    }
                }
            }
            return finalizeTransfer(from, to, amount, buy, sell, other);
        }
    
        function contractSwap(uint256 contractTokenBalance) internal lockTheSwap {
            Ratios memory ratios = _ratios;
            if (ratios.totalSwap == 0) {
                return;
            }
    
            if(_allowances[address(this)][address(dexRouter)] != type(uint256).max) {
                _allowances[address(this)][address(dexRouter)] = type(uint256).max;
            }
            
            uint256 toLiquify = ((contractTokenBalance * ratios.liquidity) / ratios.totalSwap) / 2;
            uint256 swapAmt = contractTokenBalance - toLiquify;
            
            address[] memory path = new address[](2);
            path[0] = address(this);
            path[1] = dexRouter.WETH();
    
            try dexRouter.swapExactTokensForETHSupportingFeeOnTransferTokens(
                swapAmt,
                0,
                path,
                address(this),
                block.timestamp
            ) {} catch {
                return;
            }
    
            uint256 amtBalance = address(this).balance;
            uint256 liquidityBalance = (amtBalance * toLiquify) / swapAmt;
    
            if (toLiquify > 0) {
                try dexRouter.addLiquidityETH{value: liquidityBalance}(
                    address(this),
                    toLiquify,
                    0,
                    0,
                    DEAD,
                    block.timestamp
                ) {
                    emit AutoLiquify(liquidityBalance, toLiquify);
                } catch {
                    return;
                }
            }
    
            amtBalance -= liquidityBalance;
            ratios.totalSwap -= ratios.liquidity;
            uint256 modBalance = (amtBalance * ratios.mod) / ratios.totalSwap;
            uint256 developmentBalance = (amtBalance * ratios.development) / ratios.totalSwap;
            uint256 gameAdvancementBalance = (amtBalance * ratios.gameAdvancement) / ratios.totalSwap;
            uint256 technicalSupportBalance = (amtBalance * ratios.technicalSupport) / ratios.totalSwap;
            uint256 marketingBalance = amtBalance - (modBalance + developmentBalance + technicalSupportBalance + gameAdvancementBalance);
            bool success;
            if (ratios.marketing > 0) {
                sendValue(_taxWallets.marketing, marketingBalance);
            }
            if (ratios.mod > 0) {
                sendValue(_taxWallets.mod, modBalance);
            }
            if (ratios.development > 0) {
                sendValue(_taxWallets.development, developmentBalance);
            }
            if (ratios.gameAdvancement > 0) {
                sendValue(_taxWallets.gameAdvancement, gameAdvancementBalance);
            }
            if (ratios.technicalSupport > 0) {
                sendValue(_taxWallets.technicalSupport, technicalSupportBalance);
            }
        }
    
        function sendValue(address payable account, uint256 amount) internal {
            bool success;
            (success,) = account.call{value: amount, gas: 35000}("");
        }
    
        function _checkLiquidityAdd(address from, address to) internal {
            require(!_hasLiqBeenAdded, "Liquidity already added and marked.");
            if (!_hasLimits(from, to) && to == lpPair) {
                _liquidityHolders[from] = true;
                _hasLiqBeenAdded = true;
                if(address(protections) == address(0)){
                    protections = Protections(address(this));
                }
                contractSwapEnabled = true;
                emit ContractSwapEnabledUpdated(true);
            }
        }
    
        function enableTrading() public onlyOwner {
            require(!tradingEnabled, "Trading already enabled!");
            require(_hasLiqBeenAdded, "Liquidity must be added.");
            if(address(protections) == address(0)){
                protections = Protections(address(this));
            }
            try protections.setLaunch(lpPair, uint32(block.number), uint64(block.timestamp), _decimals) {} catch {}
            tradingEnabled = true;
            allowedPresaleExclusion = false;
            swapThreshold = (balanceOf(lpPair) * 10) / 10000;
            swapAmount = (balanceOf(lpPair) * 25) / 10000;
        }
    
        function multiSendTokens(address[] memory accounts, uint256[] memory amounts) external onlyOwner {
            require(accounts.length == amounts.length, "Lengths do not match.");
            for (uint8 i = 0; i < accounts.length; i++) {
                require(balanceOf(msg.sender) >= amounts[i]);
                finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false, true);
            }
        }
    
        function isExcludedFromReward(address account) public view returns (bool) {
            return _isExcluded[account];
        }
    
        function setExcludedFromReward(address account, bool enabled) public onlyOwner {
            if (enabled) {
                require(!_isExcluded[account], "Account is already excluded.");
                if(_rOwned[account] > 0) {
                    _tOwned[account] = tokenFromReflection(_rOwned[account]);
                }
                _isExcluded[account] = true;
                if(account != lpPair){
                    _excluded.push(account);
                }
            } else if (!enabled) {
                require(_isExcluded[account], "Account is already included.");
                if (account == lpPair) {
                    _rOwned[account] = _tOwned[account] * _getRate();
                    _tOwned[account] = 0;
                    _isExcluded[account] = false;
                } else if(_excluded.length == 1) {
                    _rOwned[account] = _tOwned[account] * _getRate();
                    _tOwned[account] = 0;
                    _isExcluded[account] = false;
                    _excluded.pop();
                } else {
                    for (uint256 i = 0; i < _excluded.length; i++) {
                        if (_excluded[i] == account) {
                            _excluded[i] = _excluded[_excluded.length - 1];
                            _tOwned[account] = 0;
                            _rOwned[account] = _tOwned[account] * _getRate();
                            _isExcluded[account] = false;
                            _excluded.pop();
                            break;
                        }
                    }
                }
            }
        }
    
        function tokenFromReflection(uint256 rAmount) public view returns(uint256) {
            require(rAmount <= _rTotal, "Amount must be less than total reflections");
            uint256 currentRate =  _getRate();
            return rAmount / currentRate;
        }
    
        struct ExtraValues {
            uint256 tTransferAmount;
            uint256 tFee;
            uint256 tSwap;
            uint256 tBurn;
    
            uint256 rTransferAmount;
            uint256 rAmount;
            uint256 rFee;
    
            uint256 currentRate;
        }
    
        function finalizeTransfer(address from, address to, uint256 tAmount, bool buy, bool sell, bool other) internal returns (bool) {
            bool takeFee = true;
            if (_isExcludedFromFees[from] || _isExcludedFromFees[to]){
                takeFee = false;
            }
    
            ExtraValues memory values = takeTaxes(from, to, tAmount, takeFee, buy, sell, other);
    
            _rOwned[from] = _rOwned[from] - values.rAmount;
            _rOwned[to] = _rOwned[to] + values.rTransferAmount;
    
            if (_isExcluded[from]) {
                _tOwned[from] = _tOwned[from] - tAmount;
            }
            if (_isExcluded[to]) {
                _tOwned[to] = _tOwned[to] + values.tTransferAmount;  
            }
    
            if (values.rFee > 0 || values.tFee > 0) {
                _rTotal -= values.rFee;
            }
    
            if (lotteryRunning) {
                if (buy) {
                    if (balanceOf(to) > minimumHoldForLottery && !_isExcludedFromFees[to]) {
                        address[] memory path = new address[](2);
                        path[0] = address(this);
                        path[1] = dexRouter.WETH();
                        uint256 ethBalance = dexRouter.getAmountsOut(tAmount, path)[1];
                        if (ethBalance >= minETHBuy) {
                            lottery.addUserToLottery(to);
                        }
                    }
                }
            }
            emit Transfer(from, to, values.tTransferAmount);
            if (!_hasLiqBeenAdded) {
                _checkLiquidityAdd(from, to);
                if (!_hasLiqBeenAdded && _hasLimits(from, to) && !_isExcludedFromProtection[from] && !_isExcludedFromProtection[to] && !other) {
                    revert("Pre-liquidity transfer protection.");
                }
            }
    
            return true;
        }
    
        uint256 public _currentFee;
        uint256 public _bonus;
    
        function takeTaxes(address from, address to, uint256 tAmount, bool takeFee, bool buy, bool sell, bool other) internal returns (ExtraValues memory) {
            ExtraValues memory values;
            Ratios memory ratios = _ratios;
            values.currentRate = _getRate();
    
            values.rAmount = tAmount * values.currentRate;
    
            if (_hasLimits(from, to)) {
                bool checked;
                try protections.checkUser(from, to, tAmount) returns (bool check) {
                    checked = check;
                } catch {
                    revert();
                }
    
                if(!checked) {
                    revert();
                }
            }
    
            if(takeFee) {
                uint256 currentFee;
    
                if (buy) {
                    currentFee = _taxRates.buyFee;
                } else if (sell) {
                    currentFee = _taxRates.sellFee;
                    if (piEnabled) {
                        uint256 balance = balanceOf(lpPair);
                        if (tAmount > balance / 100) {
                            _bonus = (tAmount * (10**4)) / balance;
                            currentFee += (tAmount * (10**4)) / balance;
                            if (currentFee > 3000) {
                                currentFee = 3000;
                            }
                            _currentFee = currentFee;
                        }
                    }
                } else {
                    currentFee = _taxRates.transferFee;
                }
    
                uint256 feeAmount = (tAmount * currentFee) / masterTaxDivisor;
                uint256 total = ratios.totalSwap + ratios.reflection + ratios.burn;
                values.tFee = (feeAmount * ratios.reflection) / total;
                values.tBurn = (feeAmount * ratios.burn) / total;
                values.tSwap = feeAmount - (values.tFee + values.tBurn);
                values.tTransferAmount = tAmount - (values.tFee + values.tSwap + values.tBurn);
    
                values.rFee = values.tFee * values.currentRate;
            } else {
                values.tFee = 0;
                values.tSwap = 0;
                values.tBurn = 0;
                values.tTransferAmount = tAmount;
    
                values.rFee = 0;
            }
    
            if (values.tSwap > 0) {
                _rOwned[address(this)] += values.tSwap * values.currentRate;
                if(_isExcluded[address(this)]) {
                    _tOwned[address(this)] += values.tSwap;
                }
                emit Transfer(from, address(this), values.tSwap);
            }
    
            if (values.tBurn > 0) {
                _rOwned[DEAD] += values.tBurn * values.currentRate;
                if(_isExcluded[DEAD]) {
                    _tOwned[DEAD] += values.tBurn;
                }
                emit Transfer(from, DEAD, values.tBurn);
            }
    
            values.rTransferAmount = values.rAmount - (values.rFee + (values.tSwap * values.currentRate) + (values.tBurn * values.currentRate));
            return values;
        }
    
        function _getRate() internal view returns(uint256) {
            uint256 rSupply = _rTotal;
            uint256 tSupply = _tTotal;
            if(_isExcluded[lpPair]) {
                if (_rOwned[lpPair] > rSupply || _tOwned[lpPair] > tSupply) return _rTotal / _tTotal;
                rSupply -= _rOwned[lpPair];
                tSupply -= _tOwned[lpPair];
            }
            if(_excluded.length > 0) {
                for (uint8 i = 0; i < _excluded.length; i++) {
                    if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return _rTotal / _tTotal;
                    rSupply = rSupply - _rOwned[_excluded[i]];
                    tSupply = tSupply - _tOwned[_excluded[i]];
                }
            }
            if (rSupply < _rTotal / _tTotal) return _rTotal / _tTotal;
            return rSupply / tSupply;
        }
    
    //============================Lottery====================================
        function startNewLottery(uint256 endTime) external onlyOwner {
            require(!lotteryRunning, "Lottery must be offline.");
            require(endTime > block.timestamp, "Cannot end in the past.");
            lottery = new LotteryArray(endTime, address(this));
            lotteryRunning = true;
        }
    
        function isUserInLottery(address account) public view returns (string memory) {
            require(lotteryRunning, "Lottery offline!");
            bool userBalance = (balanceOf(account) >= minimumHoldForLottery);
            return lottery.checkUser(account, userBalance);
        }
    
        function getLotteryUserLength() external view returns (uint256) {
            require(lotteryRunning, "Lottery offline!");
            return lottery.getLotteryUserLength();
        }
    
        function finishAndCloseLottery() external onlyOwner {
            require(lotteryRunning, "Lottery offline!");
            lottery.finishAndCloseLottery(payable(_owner));
            lotteryRunning = false;
        }
    
        function setMinimumHoldForLottery(uint256 minHoldPercent, uint256 divisor) external onlyOwner {
            require(!lotteryRunning, "Lottery must be offline.");
            minimumHoldForLottery = (_tTotal * minHoldPercent) / divisor;
            minHoldForLotteryUI = (startingSupply * minHoldPercent) / divisor;
        }
    
        function getRemainingLotteryTime() public view returns (uint256) {
            require(lotteryRunning, "Lottery offline!");
            return lottery.getRemainingLotteryTime();
        }
    
        function getUserAtIndex(uint256 index) public view returns (address, bool) {
            address account = lottery.checkUserAtIndex(index);
            bool returned;
            if (balanceOf(account) >= minimumHoldForLottery){
                returned = true;
            } else {
                returned = false;
            }
            return (account, returned);
        }
    
        function setMinETHBuyNeeded(uint256 amount, uint256 divisor) external onlyOwner {
            require(!lotteryRunning, "Lottery must be offline.");
            minETHBuy = amount * 10**divisor;
        }
    
        function setPriceImpactEnabled(bool enabled) external onlyOwner {
            piEnabled = enabled;
        }
    }