ETH Price: $1,882.51 (-0.58%)

Transaction Decoder

Block:
22031316 at Mar-12-2025 02:14:35 PM +UTC
Transaction Fee:
0.000177589485501998 ETH $0.33
Gas Used:
122,506 Gas / 1.449639083 Gwei

Emitted Events:

236 TetherToken.Transfer( from=UniswapV3Pool, to=[Receiver] 0xd1cd5251da82721941ad2a8f009fb62e72e05e76, value=324236609 )
237 TransparentUpgradeableProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x000000000000000000000000d1cd5251da82721941ad2a8f009fb62e72e05e76, 0x0000000000000000000000007d4e22a6abbfe86f730b179d2b934c0981712f45, 0000000000000000000000000000000000000000000000bb2d39ca4814c00000 )
238 UniswapV3Pool.Swap( sender=[Receiver] 0xd1cd5251da82721941ad2a8f009fb62e72e05e76, recipient=[Receiver] 0xd1cd5251da82721941ad2a8f009fb62e72e05e76, amount0=3452800000000000000000, amount1=-324236609, sqrtPriceX96=24274098868994520994788, liquidity=1206529544392514964, tick=-299984 )

Account State Difference:

  Address   Before After State Difference Code
3.689565443673211999 Eth3.689621346607350791 Eth0.000055902934138792
0x25931894...94e1c39Aa
0x4f3C86E0...837e4eC23
2.943882375388941381 Eth
Nonce: 23160
2.943704785579267622 Eth
Nonce: 23161
0.000177589809673759
0x7D4e22a6...981712F45
(Uniswap V3: CGPT-USDT 3)
0xd1cd5251...e72E05e76 0.000022834552623229 Eth0.00002283487679499 Eth0.000000000324171761
0xdAC17F95...13D831ec7

Execution Trace

ETH 0.000000000324171761 0xd1cd5251da82721941ad2a8f009fb62e72e05e76.355b0025( )
  • UniswapV3Pool.swap( recipient=0xd1cd5251DA82721941AD2A8f009fb62e72E05e76, zeroForOne=True, amountSpecified=3452800000000000000000, sqrtPriceLimitX96=4295128740, data=0x25931894A86D47441213199621F1F2994E1C39AADAC17F958D2EE523A2206206994597C13D831EC701F40189 ) => ( amount0=3452800000000000000000, amount1=-324236609 )
    • TetherToken.transfer( _to=0xd1cd5251DA82721941AD2A8f009fb62e72E05e76, _value=324236609 )
    • TransparentUpgradeableProxy.70a08231( )
      • BridgeMintableTokenV2.balanceOf( account=0x7D4e22a6Abbfe86f730b179d2B934c0981712F45 ) => ( 3648663303162217368810734 )
      • 0xd1cd5251da82721941ad2a8f009fb62e72e05e76.fa461e33( )
        • TransparentUpgradeableProxy.a9059cbb( )
          • BridgeMintableTokenV2.transfer( recipient=0x7D4e22a6Abbfe86f730b179d2B934c0981712F45, amount=3452800000000000000000 ) => ( True )
          • TransparentUpgradeableProxy.70a08231( )
            • BridgeMintableTokenV2.balanceOf( account=0x7D4e22a6Abbfe86f730b179d2B934c0981712F45 ) => ( 3652116103162217368810734 )
              File 1 of 4: UniswapV3Pool
              // SPDX-License-Identifier: BUSL-1.1
              pragma solidity =0.7.6;
              import './interfaces/IUniswapV3Pool.sol';
              import './NoDelegateCall.sol';
              import './libraries/LowGasSafeMath.sol';
              import './libraries/SafeCast.sol';
              import './libraries/Tick.sol';
              import './libraries/TickBitmap.sol';
              import './libraries/Position.sol';
              import './libraries/Oracle.sol';
              import './libraries/FullMath.sol';
              import './libraries/FixedPoint128.sol';
              import './libraries/TransferHelper.sol';
              import './libraries/TickMath.sol';
              import './libraries/LiquidityMath.sol';
              import './libraries/SqrtPriceMath.sol';
              import './libraries/SwapMath.sol';
              import './interfaces/IUniswapV3PoolDeployer.sol';
              import './interfaces/IUniswapV3Factory.sol';
              import './interfaces/IERC20Minimal.sol';
              import './interfaces/callback/IUniswapV3MintCallback.sol';
              import './interfaces/callback/IUniswapV3SwapCallback.sol';
              import './interfaces/callback/IUniswapV3FlashCallback.sol';
              contract UniswapV3Pool is IUniswapV3Pool, NoDelegateCall {
                  using LowGasSafeMath for uint256;
                  using LowGasSafeMath for int256;
                  using SafeCast for uint256;
                  using SafeCast for int256;
                  using Tick for mapping(int24 => Tick.Info);
                  using TickBitmap for mapping(int16 => uint256);
                  using Position for mapping(bytes32 => Position.Info);
                  using Position for Position.Info;
                  using Oracle for Oracle.Observation[65535];
                  /// @inheritdoc IUniswapV3PoolImmutables
                  address public immutable override factory;
                  /// @inheritdoc IUniswapV3PoolImmutables
                  address public immutable override token0;
                  /// @inheritdoc IUniswapV3PoolImmutables
                  address public immutable override token1;
                  /// @inheritdoc IUniswapV3PoolImmutables
                  uint24 public immutable override fee;
                  /// @inheritdoc IUniswapV3PoolImmutables
                  int24 public immutable override tickSpacing;
                  /// @inheritdoc IUniswapV3PoolImmutables
                  uint128 public immutable override maxLiquidityPerTick;
                  struct Slot0 {
                      // the current price
                      uint160 sqrtPriceX96;
                      // the current tick
                      int24 tick;
                      // the most-recently updated index of the observations array
                      uint16 observationIndex;
                      // the current maximum number of observations that are being stored
                      uint16 observationCardinality;
                      // the next maximum number of observations to store, triggered in observations.write
                      uint16 observationCardinalityNext;
                      // the current protocol fee as a percentage of the swap fee taken on withdrawal
                      // represented as an integer denominator (1/x)%
                      uint8 feeProtocol;
                      // whether the pool is locked
                      bool unlocked;
                  }
                  /// @inheritdoc IUniswapV3PoolState
                  Slot0 public override slot0;
                  /// @inheritdoc IUniswapV3PoolState
                  uint256 public override feeGrowthGlobal0X128;
                  /// @inheritdoc IUniswapV3PoolState
                  uint256 public override feeGrowthGlobal1X128;
                  // accumulated protocol fees in token0/token1 units
                  struct ProtocolFees {
                      uint128 token0;
                      uint128 token1;
                  }
                  /// @inheritdoc IUniswapV3PoolState
                  ProtocolFees public override protocolFees;
                  /// @inheritdoc IUniswapV3PoolState
                  uint128 public override liquidity;
                  /// @inheritdoc IUniswapV3PoolState
                  mapping(int24 => Tick.Info) public override ticks;
                  /// @inheritdoc IUniswapV3PoolState
                  mapping(int16 => uint256) public override tickBitmap;
                  /// @inheritdoc IUniswapV3PoolState
                  mapping(bytes32 => Position.Info) public override positions;
                  /// @inheritdoc IUniswapV3PoolState
                  Oracle.Observation[65535] public override observations;
                  /// @dev Mutually exclusive reentrancy protection into the pool to/from a method. This method also prevents entrance
                  /// to a function before the pool is initialized. The reentrancy guard is required throughout the contract because
                  /// we use balance checks to determine the payment status of interactions such as mint, swap and flash.
                  modifier lock() {
                      require(slot0.unlocked, 'LOK');
                      slot0.unlocked = false;
                      _;
                      slot0.unlocked = true;
                  }
                  /// @dev Prevents calling a function from anyone except the address returned by IUniswapV3Factory#owner()
                  modifier onlyFactoryOwner() {
                      require(msg.sender == IUniswapV3Factory(factory).owner());
                      _;
                  }
                  constructor() {
                      int24 _tickSpacing;
                      (factory, token0, token1, fee, _tickSpacing) = IUniswapV3PoolDeployer(msg.sender).parameters();
                      tickSpacing = _tickSpacing;
                      maxLiquidityPerTick = Tick.tickSpacingToMaxLiquidityPerTick(_tickSpacing);
                  }
                  /// @dev Common checks for valid tick inputs.
                  function checkTicks(int24 tickLower, int24 tickUpper) private pure {
                      require(tickLower < tickUpper, 'TLU');
                      require(tickLower >= TickMath.MIN_TICK, 'TLM');
                      require(tickUpper <= TickMath.MAX_TICK, 'TUM');
                  }
                  /// @dev Returns the block timestamp truncated to 32 bits, i.e. mod 2**32. This method is overridden in tests.
                  function _blockTimestamp() internal view virtual returns (uint32) {
                      return uint32(block.timestamp); // truncation is desired
                  }
                  /// @dev Get the pool's balance of token0
                  /// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize
                  /// check
                  function balance0() private view returns (uint256) {
                      (bool success, bytes memory data) =
                          token0.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this)));
                      require(success && data.length >= 32);
                      return abi.decode(data, (uint256));
                  }
                  /// @dev Get the pool's balance of token1
                  /// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize
                  /// check
                  function balance1() private view returns (uint256) {
                      (bool success, bytes memory data) =
                          token1.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this)));
                      require(success && data.length >= 32);
                      return abi.decode(data, (uint256));
                  }
                  /// @inheritdoc IUniswapV3PoolDerivedState
                  function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
                      external
                      view
                      override
                      noDelegateCall
                      returns (
                          int56 tickCumulativeInside,
                          uint160 secondsPerLiquidityInsideX128,
                          uint32 secondsInside
                      )
                  {
                      checkTicks(tickLower, tickUpper);
                      int56 tickCumulativeLower;
                      int56 tickCumulativeUpper;
                      uint160 secondsPerLiquidityOutsideLowerX128;
                      uint160 secondsPerLiquidityOutsideUpperX128;
                      uint32 secondsOutsideLower;
                      uint32 secondsOutsideUpper;
                      {
                          Tick.Info storage lower = ticks[tickLower];
                          Tick.Info storage upper = ticks[tickUpper];
                          bool initializedLower;
                          (tickCumulativeLower, secondsPerLiquidityOutsideLowerX128, secondsOutsideLower, initializedLower) = (
                              lower.tickCumulativeOutside,
                              lower.secondsPerLiquidityOutsideX128,
                              lower.secondsOutside,
                              lower.initialized
                          );
                          require(initializedLower);
                          bool initializedUpper;
                          (tickCumulativeUpper, secondsPerLiquidityOutsideUpperX128, secondsOutsideUpper, initializedUpper) = (
                              upper.tickCumulativeOutside,
                              upper.secondsPerLiquidityOutsideX128,
                              upper.secondsOutside,
                              upper.initialized
                          );
                          require(initializedUpper);
                      }
                      Slot0 memory _slot0 = slot0;
                      if (_slot0.tick < tickLower) {
                          return (
                              tickCumulativeLower - tickCumulativeUpper,
                              secondsPerLiquidityOutsideLowerX128 - secondsPerLiquidityOutsideUpperX128,
                              secondsOutsideLower - secondsOutsideUpper
                          );
                      } else if (_slot0.tick < tickUpper) {
                          uint32 time = _blockTimestamp();
                          (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) =
                              observations.observeSingle(
                                  time,
                                  0,
                                  _slot0.tick,
                                  _slot0.observationIndex,
                                  liquidity,
                                  _slot0.observationCardinality
                              );
                          return (
                              tickCumulative - tickCumulativeLower - tickCumulativeUpper,
                              secondsPerLiquidityCumulativeX128 -
                                  secondsPerLiquidityOutsideLowerX128 -
                                  secondsPerLiquidityOutsideUpperX128,
                              time - secondsOutsideLower - secondsOutsideUpper
                          );
                      } else {
                          return (
                              tickCumulativeUpper - tickCumulativeLower,
                              secondsPerLiquidityOutsideUpperX128 - secondsPerLiquidityOutsideLowerX128,
                              secondsOutsideUpper - secondsOutsideLower
                          );
                      }
                  }
                  /// @inheritdoc IUniswapV3PoolDerivedState
                  function observe(uint32[] calldata secondsAgos)
                      external
                      view
                      override
                      noDelegateCall
                      returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s)
                  {
                      return
                          observations.observe(
                              _blockTimestamp(),
                              secondsAgos,
                              slot0.tick,
                              slot0.observationIndex,
                              liquidity,
                              slot0.observationCardinality
                          );
                  }
                  /// @inheritdoc IUniswapV3PoolActions
                  function increaseObservationCardinalityNext(uint16 observationCardinalityNext)
                      external
                      override
                      lock
                      noDelegateCall
                  {
                      uint16 observationCardinalityNextOld = slot0.observationCardinalityNext; // for the event
                      uint16 observationCardinalityNextNew =
                          observations.grow(observationCardinalityNextOld, observationCardinalityNext);
                      slot0.observationCardinalityNext = observationCardinalityNextNew;
                      if (observationCardinalityNextOld != observationCardinalityNextNew)
                          emit IncreaseObservationCardinalityNext(observationCardinalityNextOld, observationCardinalityNextNew);
                  }
                  /// @inheritdoc IUniswapV3PoolActions
                  /// @dev not locked because it initializes unlocked
                  function initialize(uint160 sqrtPriceX96) external override {
                      require(slot0.sqrtPriceX96 == 0, 'AI');
                      int24 tick = TickMath.getTickAtSqrtRatio(sqrtPriceX96);
                      (uint16 cardinality, uint16 cardinalityNext) = observations.initialize(_blockTimestamp());
                      slot0 = Slot0({
                          sqrtPriceX96: sqrtPriceX96,
                          tick: tick,
                          observationIndex: 0,
                          observationCardinality: cardinality,
                          observationCardinalityNext: cardinalityNext,
                          feeProtocol: 0,
                          unlocked: true
                      });
                      emit Initialize(sqrtPriceX96, tick);
                  }
                  struct ModifyPositionParams {
                      // the address that owns the position
                      address owner;
                      // the lower and upper tick of the position
                      int24 tickLower;
                      int24 tickUpper;
                      // any change in liquidity
                      int128 liquidityDelta;
                  }
                  /// @dev Effect some changes to a position
                  /// @param params the position details and the change to the position's liquidity to effect
                  /// @return position a storage pointer referencing the position with the given owner and tick range
                  /// @return amount0 the amount of token0 owed to the pool, negative if the pool should pay the recipient
                  /// @return amount1 the amount of token1 owed to the pool, negative if the pool should pay the recipient
                  function _modifyPosition(ModifyPositionParams memory params)
                      private
                      noDelegateCall
                      returns (
                          Position.Info storage position,
                          int256 amount0,
                          int256 amount1
                      )
                  {
                      checkTicks(params.tickLower, params.tickUpper);
                      Slot0 memory _slot0 = slot0; // SLOAD for gas optimization
                      position = _updatePosition(
                          params.owner,
                          params.tickLower,
                          params.tickUpper,
                          params.liquidityDelta,
                          _slot0.tick
                      );
                      if (params.liquidityDelta != 0) {
                          if (_slot0.tick < params.tickLower) {
                              // current tick is below the passed range; liquidity can only become in range by crossing from left to
                              // right, when we'll need _more_ token0 (it's becoming more valuable) so user must provide it
                              amount0 = SqrtPriceMath.getAmount0Delta(
                                  TickMath.getSqrtRatioAtTick(params.tickLower),
                                  TickMath.getSqrtRatioAtTick(params.tickUpper),
                                  params.liquidityDelta
                              );
                          } else if (_slot0.tick < params.tickUpper) {
                              // current tick is inside the passed range
                              uint128 liquidityBefore = liquidity; // SLOAD for gas optimization
                              // write an oracle entry
                              (slot0.observationIndex, slot0.observationCardinality) = observations.write(
                                  _slot0.observationIndex,
                                  _blockTimestamp(),
                                  _slot0.tick,
                                  liquidityBefore,
                                  _slot0.observationCardinality,
                                  _slot0.observationCardinalityNext
                              );
                              amount0 = SqrtPriceMath.getAmount0Delta(
                                  _slot0.sqrtPriceX96,
                                  TickMath.getSqrtRatioAtTick(params.tickUpper),
                                  params.liquidityDelta
                              );
                              amount1 = SqrtPriceMath.getAmount1Delta(
                                  TickMath.getSqrtRatioAtTick(params.tickLower),
                                  _slot0.sqrtPriceX96,
                                  params.liquidityDelta
                              );
                              liquidity = LiquidityMath.addDelta(liquidityBefore, params.liquidityDelta);
                          } else {
                              // current tick is above the passed range; liquidity can only become in range by crossing from right to
                              // left, when we'll need _more_ token1 (it's becoming more valuable) so user must provide it
                              amount1 = SqrtPriceMath.getAmount1Delta(
                                  TickMath.getSqrtRatioAtTick(params.tickLower),
                                  TickMath.getSqrtRatioAtTick(params.tickUpper),
                                  params.liquidityDelta
                              );
                          }
                      }
                  }
                  /// @dev Gets and updates a position with the given liquidity delta
                  /// @param owner the owner of the position
                  /// @param tickLower the lower tick of the position's tick range
                  /// @param tickUpper the upper tick of the position's tick range
                  /// @param tick the current tick, passed to avoid sloads
                  function _updatePosition(
                      address owner,
                      int24 tickLower,
                      int24 tickUpper,
                      int128 liquidityDelta,
                      int24 tick
                  ) private returns (Position.Info storage position) {
                      position = positions.get(owner, tickLower, tickUpper);
                      uint256 _feeGrowthGlobal0X128 = feeGrowthGlobal0X128; // SLOAD for gas optimization
                      uint256 _feeGrowthGlobal1X128 = feeGrowthGlobal1X128; // SLOAD for gas optimization
                      // if we need to update the ticks, do it
                      bool flippedLower;
                      bool flippedUpper;
                      if (liquidityDelta != 0) {
                          uint32 time = _blockTimestamp();
                          (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) =
                              observations.observeSingle(
                                  time,
                                  0,
                                  slot0.tick,
                                  slot0.observationIndex,
                                  liquidity,
                                  slot0.observationCardinality
                              );
                          flippedLower = ticks.update(
                              tickLower,
                              tick,
                              liquidityDelta,
                              _feeGrowthGlobal0X128,
                              _feeGrowthGlobal1X128,
                              secondsPerLiquidityCumulativeX128,
                              tickCumulative,
                              time,
                              false,
                              maxLiquidityPerTick
                          );
                          flippedUpper = ticks.update(
                              tickUpper,
                              tick,
                              liquidityDelta,
                              _feeGrowthGlobal0X128,
                              _feeGrowthGlobal1X128,
                              secondsPerLiquidityCumulativeX128,
                              tickCumulative,
                              time,
                              true,
                              maxLiquidityPerTick
                          );
                          if (flippedLower) {
                              tickBitmap.flipTick(tickLower, tickSpacing);
                          }
                          if (flippedUpper) {
                              tickBitmap.flipTick(tickUpper, tickSpacing);
                          }
                      }
                      (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) =
                          ticks.getFeeGrowthInside(tickLower, tickUpper, tick, _feeGrowthGlobal0X128, _feeGrowthGlobal1X128);
                      position.update(liquidityDelta, feeGrowthInside0X128, feeGrowthInside1X128);
                      // clear any tick data that is no longer needed
                      if (liquidityDelta < 0) {
                          if (flippedLower) {
                              ticks.clear(tickLower);
                          }
                          if (flippedUpper) {
                              ticks.clear(tickUpper);
                          }
                      }
                  }
                  /// @inheritdoc IUniswapV3PoolActions
                  /// @dev noDelegateCall is applied indirectly via _modifyPosition
                  function mint(
                      address recipient,
                      int24 tickLower,
                      int24 tickUpper,
                      uint128 amount,
                      bytes calldata data
                  ) external override lock returns (uint256 amount0, uint256 amount1) {
                      require(amount > 0);
                      (, int256 amount0Int, int256 amount1Int) =
                          _modifyPosition(
                              ModifyPositionParams({
                                  owner: recipient,
                                  tickLower: tickLower,
                                  tickUpper: tickUpper,
                                  liquidityDelta: int256(amount).toInt128()
                              })
                          );
                      amount0 = uint256(amount0Int);
                      amount1 = uint256(amount1Int);
                      uint256 balance0Before;
                      uint256 balance1Before;
                      if (amount0 > 0) balance0Before = balance0();
                      if (amount1 > 0) balance1Before = balance1();
                      IUniswapV3MintCallback(msg.sender).uniswapV3MintCallback(amount0, amount1, data);
                      if (amount0 > 0) require(balance0Before.add(amount0) <= balance0(), 'M0');
                      if (amount1 > 0) require(balance1Before.add(amount1) <= balance1(), 'M1');
                      emit Mint(msg.sender, recipient, tickLower, tickUpper, amount, amount0, amount1);
                  }
                  /// @inheritdoc IUniswapV3PoolActions
                  function collect(
                      address recipient,
                      int24 tickLower,
                      int24 tickUpper,
                      uint128 amount0Requested,
                      uint128 amount1Requested
                  ) external override lock returns (uint128 amount0, uint128 amount1) {
                      // we don't need to checkTicks here, because invalid positions will never have non-zero tokensOwed{0,1}
                      Position.Info storage position = positions.get(msg.sender, tickLower, tickUpper);
                      amount0 = amount0Requested > position.tokensOwed0 ? position.tokensOwed0 : amount0Requested;
                      amount1 = amount1Requested > position.tokensOwed1 ? position.tokensOwed1 : amount1Requested;
                      if (amount0 > 0) {
                          position.tokensOwed0 -= amount0;
                          TransferHelper.safeTransfer(token0, recipient, amount0);
                      }
                      if (amount1 > 0) {
                          position.tokensOwed1 -= amount1;
                          TransferHelper.safeTransfer(token1, recipient, amount1);
                      }
                      emit Collect(msg.sender, recipient, tickLower, tickUpper, amount0, amount1);
                  }
                  /// @inheritdoc IUniswapV3PoolActions
                  /// @dev noDelegateCall is applied indirectly via _modifyPosition
                  function burn(
                      int24 tickLower,
                      int24 tickUpper,
                      uint128 amount
                  ) external override lock returns (uint256 amount0, uint256 amount1) {
                      (Position.Info storage position, int256 amount0Int, int256 amount1Int) =
                          _modifyPosition(
                              ModifyPositionParams({
                                  owner: msg.sender,
                                  tickLower: tickLower,
                                  tickUpper: tickUpper,
                                  liquidityDelta: -int256(amount).toInt128()
                              })
                          );
                      amount0 = uint256(-amount0Int);
                      amount1 = uint256(-amount1Int);
                      if (amount0 > 0 || amount1 > 0) {
                          (position.tokensOwed0, position.tokensOwed1) = (
                              position.tokensOwed0 + uint128(amount0),
                              position.tokensOwed1 + uint128(amount1)
                          );
                      }
                      emit Burn(msg.sender, tickLower, tickUpper, amount, amount0, amount1);
                  }
                  struct SwapCache {
                      // the protocol fee for the input token
                      uint8 feeProtocol;
                      // liquidity at the beginning of the swap
                      uint128 liquidityStart;
                      // the timestamp of the current block
                      uint32 blockTimestamp;
                      // the current value of the tick accumulator, computed only if we cross an initialized tick
                      int56 tickCumulative;
                      // the current value of seconds per liquidity accumulator, computed only if we cross an initialized tick
                      uint160 secondsPerLiquidityCumulativeX128;
                      // whether we've computed and cached the above two accumulators
                      bool computedLatestObservation;
                  }
                  // the top level state of the swap, the results of which are recorded in storage at the end
                  struct SwapState {
                      // the amount remaining to be swapped in/out of the input/output asset
                      int256 amountSpecifiedRemaining;
                      // the amount already swapped out/in of the output/input asset
                      int256 amountCalculated;
                      // current sqrt(price)
                      uint160 sqrtPriceX96;
                      // the tick associated with the current price
                      int24 tick;
                      // the global fee growth of the input token
                      uint256 feeGrowthGlobalX128;
                      // amount of input token paid as protocol fee
                      uint128 protocolFee;
                      // the current liquidity in range
                      uint128 liquidity;
                  }
                  struct StepComputations {
                      // the price at the beginning of the step
                      uint160 sqrtPriceStartX96;
                      // the next tick to swap to from the current tick in the swap direction
                      int24 tickNext;
                      // whether tickNext is initialized or not
                      bool initialized;
                      // sqrt(price) for the next tick (1/0)
                      uint160 sqrtPriceNextX96;
                      // how much is being swapped in in this step
                      uint256 amountIn;
                      // how much is being swapped out
                      uint256 amountOut;
                      // how much fee is being paid in
                      uint256 feeAmount;
                  }
                  /// @inheritdoc IUniswapV3PoolActions
                  function swap(
                      address recipient,
                      bool zeroForOne,
                      int256 amountSpecified,
                      uint160 sqrtPriceLimitX96,
                      bytes calldata data
                  ) external override noDelegateCall returns (int256 amount0, int256 amount1) {
                      require(amountSpecified != 0, 'AS');
                      Slot0 memory slot0Start = slot0;
                      require(slot0Start.unlocked, 'LOK');
                      require(
                          zeroForOne
                              ? sqrtPriceLimitX96 < slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 > TickMath.MIN_SQRT_RATIO
                              : sqrtPriceLimitX96 > slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 < TickMath.MAX_SQRT_RATIO,
                          'SPL'
                      );
                      slot0.unlocked = false;
                      SwapCache memory cache =
                          SwapCache({
                              liquidityStart: liquidity,
                              blockTimestamp: _blockTimestamp(),
                              feeProtocol: zeroForOne ? (slot0Start.feeProtocol % 16) : (slot0Start.feeProtocol >> 4),
                              secondsPerLiquidityCumulativeX128: 0,
                              tickCumulative: 0,
                              computedLatestObservation: false
                          });
                      bool exactInput = amountSpecified > 0;
                      SwapState memory state =
                          SwapState({
                              amountSpecifiedRemaining: amountSpecified,
                              amountCalculated: 0,
                              sqrtPriceX96: slot0Start.sqrtPriceX96,
                              tick: slot0Start.tick,
                              feeGrowthGlobalX128: zeroForOne ? feeGrowthGlobal0X128 : feeGrowthGlobal1X128,
                              protocolFee: 0,
                              liquidity: cache.liquidityStart
                          });
                      // continue swapping as long as we haven't used the entire input/output and haven't reached the price limit
                      while (state.amountSpecifiedRemaining != 0 && state.sqrtPriceX96 != sqrtPriceLimitX96) {
                          StepComputations memory step;
                          step.sqrtPriceStartX96 = state.sqrtPriceX96;
                          (step.tickNext, step.initialized) = tickBitmap.nextInitializedTickWithinOneWord(
                              state.tick,
                              tickSpacing,
                              zeroForOne
                          );
                          // ensure that we do not overshoot the min/max tick, as the tick bitmap is not aware of these bounds
                          if (step.tickNext < TickMath.MIN_TICK) {
                              step.tickNext = TickMath.MIN_TICK;
                          } else if (step.tickNext > TickMath.MAX_TICK) {
                              step.tickNext = TickMath.MAX_TICK;
                          }
                          // get the price for the next tick
                          step.sqrtPriceNextX96 = TickMath.getSqrtRatioAtTick(step.tickNext);
                          // compute values to swap to the target tick, price limit, or point where input/output amount is exhausted
                          (state.sqrtPriceX96, step.amountIn, step.amountOut, step.feeAmount) = SwapMath.computeSwapStep(
                              state.sqrtPriceX96,
                              (zeroForOne ? step.sqrtPriceNextX96 < sqrtPriceLimitX96 : step.sqrtPriceNextX96 > sqrtPriceLimitX96)
                                  ? sqrtPriceLimitX96
                                  : step.sqrtPriceNextX96,
                              state.liquidity,
                              state.amountSpecifiedRemaining,
                              fee
                          );
                          if (exactInput) {
                              state.amountSpecifiedRemaining -= (step.amountIn + step.feeAmount).toInt256();
                              state.amountCalculated = state.amountCalculated.sub(step.amountOut.toInt256());
                          } else {
                              state.amountSpecifiedRemaining += step.amountOut.toInt256();
                              state.amountCalculated = state.amountCalculated.add((step.amountIn + step.feeAmount).toInt256());
                          }
                          // if the protocol fee is on, calculate how much is owed, decrement feeAmount, and increment protocolFee
                          if (cache.feeProtocol > 0) {
                              uint256 delta = step.feeAmount / cache.feeProtocol;
                              step.feeAmount -= delta;
                              state.protocolFee += uint128(delta);
                          }
                          // update global fee tracker
                          if (state.liquidity > 0)
                              state.feeGrowthGlobalX128 += FullMath.mulDiv(step.feeAmount, FixedPoint128.Q128, state.liquidity);
                          // shift tick if we reached the next price
                          if (state.sqrtPriceX96 == step.sqrtPriceNextX96) {
                              // if the tick is initialized, run the tick transition
                              if (step.initialized) {
                                  // check for the placeholder value, which we replace with the actual value the first time the swap
                                  // crosses an initialized tick
                                  if (!cache.computedLatestObservation) {
                                      (cache.tickCumulative, cache.secondsPerLiquidityCumulativeX128) = observations.observeSingle(
                                          cache.blockTimestamp,
                                          0,
                                          slot0Start.tick,
                                          slot0Start.observationIndex,
                                          cache.liquidityStart,
                                          slot0Start.observationCardinality
                                      );
                                      cache.computedLatestObservation = true;
                                  }
                                  int128 liquidityNet =
                                      ticks.cross(
                                          step.tickNext,
                                          (zeroForOne ? state.feeGrowthGlobalX128 : feeGrowthGlobal0X128),
                                          (zeroForOne ? feeGrowthGlobal1X128 : state.feeGrowthGlobalX128),
                                          cache.secondsPerLiquidityCumulativeX128,
                                          cache.tickCumulative,
                                          cache.blockTimestamp
                                      );
                                  // if we're moving leftward, we interpret liquidityNet as the opposite sign
                                  // safe because liquidityNet cannot be type(int128).min
                                  if (zeroForOne) liquidityNet = -liquidityNet;
                                  state.liquidity = LiquidityMath.addDelta(state.liquidity, liquidityNet);
                              }
                              state.tick = zeroForOne ? step.tickNext - 1 : step.tickNext;
                          } else if (state.sqrtPriceX96 != step.sqrtPriceStartX96) {
                              // recompute unless we're on a lower tick boundary (i.e. already transitioned ticks), and haven't moved
                              state.tick = TickMath.getTickAtSqrtRatio(state.sqrtPriceX96);
                          }
                      }
                      // update tick and write an oracle entry if the tick change
                      if (state.tick != slot0Start.tick) {
                          (uint16 observationIndex, uint16 observationCardinality) =
                              observations.write(
                                  slot0Start.observationIndex,
                                  cache.blockTimestamp,
                                  slot0Start.tick,
                                  cache.liquidityStart,
                                  slot0Start.observationCardinality,
                                  slot0Start.observationCardinalityNext
                              );
                          (slot0.sqrtPriceX96, slot0.tick, slot0.observationIndex, slot0.observationCardinality) = (
                              state.sqrtPriceX96,
                              state.tick,
                              observationIndex,
                              observationCardinality
                          );
                      } else {
                          // otherwise just update the price
                          slot0.sqrtPriceX96 = state.sqrtPriceX96;
                      }
                      // update liquidity if it changed
                      if (cache.liquidityStart != state.liquidity) liquidity = state.liquidity;
                      // update fee growth global and, if necessary, protocol fees
                      // overflow is acceptable, protocol has to withdraw before it hits type(uint128).max fees
                      if (zeroForOne) {
                          feeGrowthGlobal0X128 = state.feeGrowthGlobalX128;
                          if (state.protocolFee > 0) protocolFees.token0 += state.protocolFee;
                      } else {
                          feeGrowthGlobal1X128 = state.feeGrowthGlobalX128;
                          if (state.protocolFee > 0) protocolFees.token1 += state.protocolFee;
                      }
                      (amount0, amount1) = zeroForOne == exactInput
                          ? (amountSpecified - state.amountSpecifiedRemaining, state.amountCalculated)
                          : (state.amountCalculated, amountSpecified - state.amountSpecifiedRemaining);
                      // do the transfers and collect payment
                      if (zeroForOne) {
                          if (amount1 < 0) TransferHelper.safeTransfer(token1, recipient, uint256(-amount1));
                          uint256 balance0Before = balance0();
                          IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data);
                          require(balance0Before.add(uint256(amount0)) <= balance0(), 'IIA');
                      } else {
                          if (amount0 < 0) TransferHelper.safeTransfer(token0, recipient, uint256(-amount0));
                          uint256 balance1Before = balance1();
                          IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data);
                          require(balance1Before.add(uint256(amount1)) <= balance1(), 'IIA');
                      }
                      emit Swap(msg.sender, recipient, amount0, amount1, state.sqrtPriceX96, state.liquidity, state.tick);
                      slot0.unlocked = true;
                  }
                  /// @inheritdoc IUniswapV3PoolActions
                  function flash(
                      address recipient,
                      uint256 amount0,
                      uint256 amount1,
                      bytes calldata data
                  ) external override lock noDelegateCall {
                      uint128 _liquidity = liquidity;
                      require(_liquidity > 0, 'L');
                      uint256 fee0 = FullMath.mulDivRoundingUp(amount0, fee, 1e6);
                      uint256 fee1 = FullMath.mulDivRoundingUp(amount1, fee, 1e6);
                      uint256 balance0Before = balance0();
                      uint256 balance1Before = balance1();
                      if (amount0 > 0) TransferHelper.safeTransfer(token0, recipient, amount0);
                      if (amount1 > 0) TransferHelper.safeTransfer(token1, recipient, amount1);
                      IUniswapV3FlashCallback(msg.sender).uniswapV3FlashCallback(fee0, fee1, data);
                      uint256 balance0After = balance0();
                      uint256 balance1After = balance1();
                      require(balance0Before.add(fee0) <= balance0After, 'F0');
                      require(balance1Before.add(fee1) <= balance1After, 'F1');
                      // sub is safe because we know balanceAfter is gt balanceBefore by at least fee
                      uint256 paid0 = balance0After - balance0Before;
                      uint256 paid1 = balance1After - balance1Before;
                      if (paid0 > 0) {
                          uint8 feeProtocol0 = slot0.feeProtocol % 16;
                          uint256 fees0 = feeProtocol0 == 0 ? 0 : paid0 / feeProtocol0;
                          if (uint128(fees0) > 0) protocolFees.token0 += uint128(fees0);
                          feeGrowthGlobal0X128 += FullMath.mulDiv(paid0 - fees0, FixedPoint128.Q128, _liquidity);
                      }
                      if (paid1 > 0) {
                          uint8 feeProtocol1 = slot0.feeProtocol >> 4;
                          uint256 fees1 = feeProtocol1 == 0 ? 0 : paid1 / feeProtocol1;
                          if (uint128(fees1) > 0) protocolFees.token1 += uint128(fees1);
                          feeGrowthGlobal1X128 += FullMath.mulDiv(paid1 - fees1, FixedPoint128.Q128, _liquidity);
                      }
                      emit Flash(msg.sender, recipient, amount0, amount1, paid0, paid1);
                  }
                  /// @inheritdoc IUniswapV3PoolOwnerActions
                  function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external override lock onlyFactoryOwner {
                      require(
                          (feeProtocol0 == 0 || (feeProtocol0 >= 4 && feeProtocol0 <= 10)) &&
                              (feeProtocol1 == 0 || (feeProtocol1 >= 4 && feeProtocol1 <= 10))
                      );
                      uint8 feeProtocolOld = slot0.feeProtocol;
                      slot0.feeProtocol = feeProtocol0 + (feeProtocol1 << 4);
                      emit SetFeeProtocol(feeProtocolOld % 16, feeProtocolOld >> 4, feeProtocol0, feeProtocol1);
                  }
                  /// @inheritdoc IUniswapV3PoolOwnerActions
                  function collectProtocol(
                      address recipient,
                      uint128 amount0Requested,
                      uint128 amount1Requested
                  ) external override lock onlyFactoryOwner returns (uint128 amount0, uint128 amount1) {
                      amount0 = amount0Requested > protocolFees.token0 ? protocolFees.token0 : amount0Requested;
                      amount1 = amount1Requested > protocolFees.token1 ? protocolFees.token1 : amount1Requested;
                      if (amount0 > 0) {
                          if (amount0 == protocolFees.token0) amount0--; // ensure that the slot is not cleared, for gas savings
                          protocolFees.token0 -= amount0;
                          TransferHelper.safeTransfer(token0, recipient, amount0);
                      }
                      if (amount1 > 0) {
                          if (amount1 == protocolFees.token1) amount1--; // ensure that the slot is not cleared, for gas savings
                          protocolFees.token1 -= amount1;
                          TransferHelper.safeTransfer(token1, recipient, amount1);
                      }
                      emit CollectProtocol(msg.sender, recipient, amount0, amount1);
                  }
              }
              // SPDX-License-Identifier: GPL-2.0-or-later
              pragma solidity >=0.5.0;
              import './pool/IUniswapV3PoolImmutables.sol';
              import './pool/IUniswapV3PoolState.sol';
              import './pool/IUniswapV3PoolDerivedState.sol';
              import './pool/IUniswapV3PoolActions.sol';
              import './pool/IUniswapV3PoolOwnerActions.sol';
              import './pool/IUniswapV3PoolEvents.sol';
              /// @title The interface for a Uniswap V3 Pool
              /// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform
              /// to the ERC20 specification
              /// @dev The pool interface is broken up into many smaller pieces
              interface IUniswapV3Pool is
                  IUniswapV3PoolImmutables,
                  IUniswapV3PoolState,
                  IUniswapV3PoolDerivedState,
                  IUniswapV3PoolActions,
                  IUniswapV3PoolOwnerActions,
                  IUniswapV3PoolEvents
              {
              }
              // SPDX-License-Identifier: BUSL-1.1
              pragma solidity =0.7.6;
              /// @title Prevents delegatecall to a contract
              /// @notice Base contract that provides a modifier for preventing delegatecall to methods in a child contract
              abstract contract NoDelegateCall {
                  /// @dev The original address of this contract
                  address private immutable original;
                  constructor() {
                      // Immutables are computed in the init code of the contract, and then inlined into the deployed bytecode.
                      // In other words, this variable won't change when it's checked at runtime.
                      original = address(this);
                  }
                  /// @dev Private method is used instead of inlining into modifier because modifiers are copied into each method,
                  ///     and the use of immutable means the address bytes are copied in every place the modifier is used.
                  function checkNotDelegateCall() private view {
                      require(address(this) == original);
                  }
                  /// @notice Prevents delegatecall into the modified method
                  modifier noDelegateCall() {
                      checkNotDelegateCall();
                      _;
                  }
              }
              // SPDX-License-Identifier: GPL-2.0-or-later
              pragma solidity >=0.7.0;
              /// @title Optimized overflow and underflow safe math operations
              /// @notice Contains methods for doing math operations that revert on overflow or underflow for minimal gas cost
              library LowGasSafeMath {
                  /// @notice Returns x + y, reverts if sum overflows uint256
                  /// @param x The augend
                  /// @param y The addend
                  /// @return z The sum of x and y
                  function add(uint256 x, uint256 y) internal pure returns (uint256 z) {
                      require((z = x + y) >= x);
                  }
                  /// @notice Returns x - y, reverts if underflows
                  /// @param x The minuend
                  /// @param y The subtrahend
                  /// @return z The difference of x and y
                  function sub(uint256 x, uint256 y) internal pure returns (uint256 z) {
                      require((z = x - y) <= x);
                  }
                  /// @notice Returns x * y, reverts if overflows
                  /// @param x The multiplicand
                  /// @param y The multiplier
                  /// @return z The product of x and y
                  function mul(uint256 x, uint256 y) internal pure returns (uint256 z) {
                      require(x == 0 || (z = x * y) / x == y);
                  }
                  /// @notice Returns x + y, reverts if overflows or underflows
                  /// @param x The augend
                  /// @param y The addend
                  /// @return z The sum of x and y
                  function add(int256 x, int256 y) internal pure returns (int256 z) {
                      require((z = x + y) >= x == (y >= 0));
                  }
                  /// @notice Returns x - y, reverts if overflows or underflows
                  /// @param x The minuend
                  /// @param y The subtrahend
                  /// @return z The difference of x and y
                  function sub(int256 x, int256 y) internal pure returns (int256 z) {
                      require((z = x - y) <= x == (y >= 0));
                  }
              }
              // SPDX-License-Identifier: GPL-2.0-or-later
              pragma solidity >=0.5.0;
              /// @title Safe casting methods
              /// @notice Contains methods for safely casting between types
              library SafeCast {
                  /// @notice Cast a uint256 to a uint160, revert on overflow
                  /// @param y The uint256 to be downcasted
                  /// @return z The downcasted integer, now type uint160
                  function toUint160(uint256 y) internal pure returns (uint160 z) {
                      require((z = uint160(y)) == y);
                  }
                  /// @notice Cast a int256 to a int128, revert on overflow or underflow
                  /// @param y The int256 to be downcasted
                  /// @return z The downcasted integer, now type int128
                  function toInt128(int256 y) internal pure returns (int128 z) {
                      require((z = int128(y)) == y);
                  }
                  /// @notice Cast a uint256 to a int256, revert on overflow
                  /// @param y The uint256 to be casted
                  /// @return z The casted integer, now type int256
                  function toInt256(uint256 y) internal pure returns (int256 z) {
                      require(y < 2**255);
                      z = int256(y);
                  }
              }
              // SPDX-License-Identifier: BUSL-1.1
              pragma solidity >=0.5.0;
              import './LowGasSafeMath.sol';
              import './SafeCast.sol';
              import './TickMath.sol';
              import './LiquidityMath.sol';
              /// @title Tick
              /// @notice Contains functions for managing tick processes and relevant calculations
              library Tick {
                  using LowGasSafeMath for int256;
                  using SafeCast for int256;
                  // info stored for each initialized individual tick
                  struct Info {
                      // the total position liquidity that references this tick
                      uint128 liquidityGross;
                      // amount of net liquidity added (subtracted) when tick is crossed from left to right (right to left),
                      int128 liquidityNet;
                      // fee growth per unit of liquidity on the _other_ side of this tick (relative to the current tick)
                      // only has relative meaning, not absolute — the value depends on when the tick is initialized
                      uint256 feeGrowthOutside0X128;
                      uint256 feeGrowthOutside1X128;
                      // the cumulative tick value on the other side of the tick
                      int56 tickCumulativeOutside;
                      // the seconds per unit of liquidity on the _other_ side of this tick (relative to the current tick)
                      // only has relative meaning, not absolute — the value depends on when the tick is initialized
                      uint160 secondsPerLiquidityOutsideX128;
                      // the seconds spent on the other side of the tick (relative to the current tick)
                      // only has relative meaning, not absolute — the value depends on when the tick is initialized
                      uint32 secondsOutside;
                      // true iff the tick is initialized, i.e. the value is exactly equivalent to the expression liquidityGross != 0
                      // these 8 bits are set to prevent fresh sstores when crossing newly initialized ticks
                      bool initialized;
                  }
                  /// @notice Derives max liquidity per tick from given tick spacing
                  /// @dev Executed within the pool constructor
                  /// @param tickSpacing The amount of required tick separation, realized in multiples of `tickSpacing`
                  ///     e.g., a tickSpacing of 3 requires ticks to be initialized every 3rd tick i.e., ..., -6, -3, 0, 3, 6, ...
                  /// @return The max liquidity per tick
                  function tickSpacingToMaxLiquidityPerTick(int24 tickSpacing) internal pure returns (uint128) {
                      int24 minTick = (TickMath.MIN_TICK / tickSpacing) * tickSpacing;
                      int24 maxTick = (TickMath.MAX_TICK / tickSpacing) * tickSpacing;
                      uint24 numTicks = uint24((maxTick - minTick) / tickSpacing) + 1;
                      return type(uint128).max / numTicks;
                  }
                  /// @notice Retrieves fee growth data
                  /// @param self The mapping containing all tick information for initialized ticks
                  /// @param tickLower The lower tick boundary of the position
                  /// @param tickUpper The upper tick boundary of the position
                  /// @param tickCurrent The current tick
                  /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
                  /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
                  /// @return feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
                  /// @return feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
                  function getFeeGrowthInside(
                      mapping(int24 => Tick.Info) storage self,
                      int24 tickLower,
                      int24 tickUpper,
                      int24 tickCurrent,
                      uint256 feeGrowthGlobal0X128,
                      uint256 feeGrowthGlobal1X128
                  ) internal view returns (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) {
                      Info storage lower = self[tickLower];
                      Info storage upper = self[tickUpper];
                      // calculate fee growth below
                      uint256 feeGrowthBelow0X128;
                      uint256 feeGrowthBelow1X128;
                      if (tickCurrent >= tickLower) {
                          feeGrowthBelow0X128 = lower.feeGrowthOutside0X128;
                          feeGrowthBelow1X128 = lower.feeGrowthOutside1X128;
                      } else {
                          feeGrowthBelow0X128 = feeGrowthGlobal0X128 - lower.feeGrowthOutside0X128;
                          feeGrowthBelow1X128 = feeGrowthGlobal1X128 - lower.feeGrowthOutside1X128;
                      }
                      // calculate fee growth above
                      uint256 feeGrowthAbove0X128;
                      uint256 feeGrowthAbove1X128;
                      if (tickCurrent < tickUpper) {
                          feeGrowthAbove0X128 = upper.feeGrowthOutside0X128;
                          feeGrowthAbove1X128 = upper.feeGrowthOutside1X128;
                      } else {
                          feeGrowthAbove0X128 = feeGrowthGlobal0X128 - upper.feeGrowthOutside0X128;
                          feeGrowthAbove1X128 = feeGrowthGlobal1X128 - upper.feeGrowthOutside1X128;
                      }
                      feeGrowthInside0X128 = feeGrowthGlobal0X128 - feeGrowthBelow0X128 - feeGrowthAbove0X128;
                      feeGrowthInside1X128 = feeGrowthGlobal1X128 - feeGrowthBelow1X128 - feeGrowthAbove1X128;
                  }
                  /// @notice Updates a tick and returns true if the tick was flipped from initialized to uninitialized, or vice versa
                  /// @param self The mapping containing all tick information for initialized ticks
                  /// @param tick The tick that will be updated
                  /// @param tickCurrent The current tick
                  /// @param liquidityDelta A new amount of liquidity to be added (subtracted) when tick is crossed from left to right (right to left)
                  /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
                  /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
                  /// @param secondsPerLiquidityCumulativeX128 The all-time seconds per max(1, liquidity) of the pool
                  /// @param time The current block timestamp cast to a uint32
                  /// @param upper true for updating a position's upper tick, or false for updating a position's lower tick
                  /// @param maxLiquidity The maximum liquidity allocation for a single tick
                  /// @return flipped Whether the tick was flipped from initialized to uninitialized, or vice versa
                  function update(
                      mapping(int24 => Tick.Info) storage self,
                      int24 tick,
                      int24 tickCurrent,
                      int128 liquidityDelta,
                      uint256 feeGrowthGlobal0X128,
                      uint256 feeGrowthGlobal1X128,
                      uint160 secondsPerLiquidityCumulativeX128,
                      int56 tickCumulative,
                      uint32 time,
                      bool upper,
                      uint128 maxLiquidity
                  ) internal returns (bool flipped) {
                      Tick.Info storage info = self[tick];
                      uint128 liquidityGrossBefore = info.liquidityGross;
                      uint128 liquidityGrossAfter = LiquidityMath.addDelta(liquidityGrossBefore, liquidityDelta);
                      require(liquidityGrossAfter <= maxLiquidity, 'LO');
                      flipped = (liquidityGrossAfter == 0) != (liquidityGrossBefore == 0);
                      if (liquidityGrossBefore == 0) {
                          // by convention, we assume that all growth before a tick was initialized happened _below_ the tick
                          if (tick <= tickCurrent) {
                              info.feeGrowthOutside0X128 = feeGrowthGlobal0X128;
                              info.feeGrowthOutside1X128 = feeGrowthGlobal1X128;
                              info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128;
                              info.tickCumulativeOutside = tickCumulative;
                              info.secondsOutside = time;
                          }
                          info.initialized = true;
                      }
                      info.liquidityGross = liquidityGrossAfter;
                      // when the lower (upper) tick is crossed left to right (right to left), liquidity must be added (removed)
                      info.liquidityNet = upper
                          ? int256(info.liquidityNet).sub(liquidityDelta).toInt128()
                          : int256(info.liquidityNet).add(liquidityDelta).toInt128();
                  }
                  /// @notice Clears tick data
                  /// @param self The mapping containing all initialized tick information for initialized ticks
                  /// @param tick The tick that will be cleared
                  function clear(mapping(int24 => Tick.Info) storage self, int24 tick) internal {
                      delete self[tick];
                  }
                  /// @notice Transitions to next tick as needed by price movement
                  /// @param self The mapping containing all tick information for initialized ticks
                  /// @param tick The destination tick of the transition
                  /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
                  /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
                  /// @param secondsPerLiquidityCumulativeX128 The current seconds per liquidity
                  /// @param time The current block.timestamp
                  /// @return liquidityNet The amount of liquidity added (subtracted) when tick is crossed from left to right (right to left)
                  function cross(
                      mapping(int24 => Tick.Info) storage self,
                      int24 tick,
                      uint256 feeGrowthGlobal0X128,
                      uint256 feeGrowthGlobal1X128,
                      uint160 secondsPerLiquidityCumulativeX128,
                      int56 tickCumulative,
                      uint32 time
                  ) internal returns (int128 liquidityNet) {
                      Tick.Info storage info = self[tick];
                      info.feeGrowthOutside0X128 = feeGrowthGlobal0X128 - info.feeGrowthOutside0X128;
                      info.feeGrowthOutside1X128 = feeGrowthGlobal1X128 - info.feeGrowthOutside1X128;
                      info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128 - info.secondsPerLiquidityOutsideX128;
                      info.tickCumulativeOutside = tickCumulative - info.tickCumulativeOutside;
                      info.secondsOutside = time - info.secondsOutside;
                      liquidityNet = info.liquidityNet;
                  }
              }
              // SPDX-License-Identifier: BUSL-1.1
              pragma solidity >=0.5.0;
              import './BitMath.sol';
              /// @title Packed tick initialized state library
              /// @notice Stores a packed mapping of tick index to its initialized state
              /// @dev The mapping uses int16 for keys since ticks are represented as int24 and there are 256 (2^8) values per word.
              library TickBitmap {
                  /// @notice Computes the position in the mapping where the initialized bit for a tick lives
                  /// @param tick The tick for which to compute the position
                  /// @return wordPos The key in the mapping containing the word in which the bit is stored
                  /// @return bitPos The bit position in the word where the flag is stored
                  function position(int24 tick) private pure returns (int16 wordPos, uint8 bitPos) {
                      wordPos = int16(tick >> 8);
                      bitPos = uint8(tick % 256);
                  }
                  /// @notice Flips the initialized state for a given tick from false to true, or vice versa
                  /// @param self The mapping in which to flip the tick
                  /// @param tick The tick to flip
                  /// @param tickSpacing The spacing between usable ticks
                  function flipTick(
                      mapping(int16 => uint256) storage self,
                      int24 tick,
                      int24 tickSpacing
                  ) internal {
                      require(tick % tickSpacing == 0); // ensure that the tick is spaced
                      (int16 wordPos, uint8 bitPos) = position(tick / tickSpacing);
                      uint256 mask = 1 << bitPos;
                      self[wordPos] ^= mask;
                  }
                  /// @notice Returns the next initialized tick contained in the same word (or adjacent word) as the tick that is either
                  /// to the left (less than or equal to) or right (greater than) of the given tick
                  /// @param self The mapping in which to compute the next initialized tick
                  /// @param tick The starting tick
                  /// @param tickSpacing The spacing between usable ticks
                  /// @param lte Whether to search for the next initialized tick to the left (less than or equal to the starting tick)
                  /// @return next The next initialized or uninitialized tick up to 256 ticks away from the current tick
                  /// @return initialized Whether the next tick is initialized, as the function only searches within up to 256 ticks
                  function nextInitializedTickWithinOneWord(
                      mapping(int16 => uint256) storage self,
                      int24 tick,
                      int24 tickSpacing,
                      bool lte
                  ) internal view returns (int24 next, bool initialized) {
                      int24 compressed = tick / tickSpacing;
                      if (tick < 0 && tick % tickSpacing != 0) compressed--; // round towards negative infinity
                      if (lte) {
                          (int16 wordPos, uint8 bitPos) = position(compressed);
                          // all the 1s at or to the right of the current bitPos
                          uint256 mask = (1 << bitPos) - 1 + (1 << bitPos);
                          uint256 masked = self[wordPos] & mask;
                          // if there are no initialized ticks to the right of or at the current tick, return rightmost in the word
                          initialized = masked != 0;
                          // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
                          next = initialized
                              ? (compressed - int24(bitPos - BitMath.mostSignificantBit(masked))) * tickSpacing
                              : (compressed - int24(bitPos)) * tickSpacing;
                      } else {
                          // start from the word of the next tick, since the current tick state doesn't matter
                          (int16 wordPos, uint8 bitPos) = position(compressed + 1);
                          // all the 1s at or to the left of the bitPos
                          uint256 mask = ~((1 << bitPos) - 1);
                          uint256 masked = self[wordPos] & mask;
                          // if there are no initialized ticks to the left of the current tick, return leftmost in the word
                          initialized = masked != 0;
                          // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
                          next = initialized
                              ? (compressed + 1 + int24(BitMath.leastSignificantBit(masked) - bitPos)) * tickSpacing
                              : (compressed + 1 + int24(type(uint8).max - bitPos)) * tickSpacing;
                      }
                  }
              }
              // SPDX-License-Identifier: BUSL-1.1
              pragma solidity >=0.5.0;
              import './FullMath.sol';
              import './FixedPoint128.sol';
              import './LiquidityMath.sol';
              /// @title Position
              /// @notice Positions represent an owner address' liquidity between a lower and upper tick boundary
              /// @dev Positions store additional state for tracking fees owed to the position
              library Position {
                  // info stored for each user's position
                  struct Info {
                      // the amount of liquidity owned by this position
                      uint128 liquidity;
                      // fee growth per unit of liquidity as of the last update to liquidity or fees owed
                      uint256 feeGrowthInside0LastX128;
                      uint256 feeGrowthInside1LastX128;
                      // the fees owed to the position owner in token0/token1
                      uint128 tokensOwed0;
                      uint128 tokensOwed1;
                  }
                  /// @notice Returns the Info struct of a position, given an owner and position boundaries
                  /// @param self The mapping containing all user positions
                  /// @param owner The address of the position owner
                  /// @param tickLower The lower tick boundary of the position
                  /// @param tickUpper The upper tick boundary of the position
                  /// @return position The position info struct of the given owners' position
                  function get(
                      mapping(bytes32 => Info) storage self,
                      address owner,
                      int24 tickLower,
                      int24 tickUpper
                  ) internal view returns (Position.Info storage position) {
                      position = self[keccak256(abi.encodePacked(owner, tickLower, tickUpper))];
                  }
                  /// @notice Credits accumulated fees to a user's position
                  /// @param self The individual position to update
                  /// @param liquidityDelta The change in pool liquidity as a result of the position update
                  /// @param feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
                  /// @param feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
                  function update(
                      Info storage self,
                      int128 liquidityDelta,
                      uint256 feeGrowthInside0X128,
                      uint256 feeGrowthInside1X128
                  ) internal {
                      Info memory _self = self;
                      uint128 liquidityNext;
                      if (liquidityDelta == 0) {
                          require(_self.liquidity > 0, 'NP'); // disallow pokes for 0 liquidity positions
                          liquidityNext = _self.liquidity;
                      } else {
                          liquidityNext = LiquidityMath.addDelta(_self.liquidity, liquidityDelta);
                      }
                      // calculate accumulated fees
                      uint128 tokensOwed0 =
                          uint128(
                              FullMath.mulDiv(
                                  feeGrowthInside0X128 - _self.feeGrowthInside0LastX128,
                                  _self.liquidity,
                                  FixedPoint128.Q128
                              )
                          );
                      uint128 tokensOwed1 =
                          uint128(
                              FullMath.mulDiv(
                                  feeGrowthInside1X128 - _self.feeGrowthInside1LastX128,
                                  _self.liquidity,
                                  FixedPoint128.Q128
                              )
                          );
                      // update the position
                      if (liquidityDelta != 0) self.liquidity = liquidityNext;
                      self.feeGrowthInside0LastX128 = feeGrowthInside0X128;
                      self.feeGrowthInside1LastX128 = feeGrowthInside1X128;
                      if (tokensOwed0 > 0 || tokensOwed1 > 0) {
                          // overflow is acceptable, have to withdraw before you hit type(uint128).max fees
                          self.tokensOwed0 += tokensOwed0;
                          self.tokensOwed1 += tokensOwed1;
                      }
                  }
              }
              // SPDX-License-Identifier: BUSL-1.1
              pragma solidity >=0.5.0;
              /// @title Oracle
              /// @notice Provides price and liquidity data useful for a wide variety of system designs
              /// @dev Instances of stored oracle data, "observations", are collected in the oracle array
              /// Every pool is initialized with an oracle array length of 1. Anyone can pay the SSTOREs to increase the
              /// maximum length of the oracle array. New slots will be added when the array is fully populated.
              /// Observations are overwritten when the full length of the oracle array is populated.
              /// The most recent observation is available, independent of the length of the oracle array, by passing 0 to observe()
              library Oracle {
                  struct Observation {
                      // the block timestamp of the observation
                      uint32 blockTimestamp;
                      // the tick accumulator, i.e. tick * time elapsed since the pool was first initialized
                      int56 tickCumulative;
                      // the seconds per liquidity, i.e. seconds elapsed / max(1, liquidity) since the pool was first initialized
                      uint160 secondsPerLiquidityCumulativeX128;
                      // whether or not the observation is initialized
                      bool initialized;
                  }
                  /// @notice Transforms a previous observation into a new observation, given the passage of time and the current tick and liquidity values
                  /// @dev blockTimestamp _must_ be chronologically equal to or greater than last.blockTimestamp, safe for 0 or 1 overflows
                  /// @param last The specified observation to be transformed
                  /// @param blockTimestamp The timestamp of the new observation
                  /// @param tick The active tick at the time of the new observation
                  /// @param liquidity The total in-range liquidity at the time of the new observation
                  /// @return Observation The newly populated observation
                  function transform(
                      Observation memory last,
                      uint32 blockTimestamp,
                      int24 tick,
                      uint128 liquidity
                  ) private pure returns (Observation memory) {
                      uint32 delta = blockTimestamp - last.blockTimestamp;
                      return
                          Observation({
                              blockTimestamp: blockTimestamp,
                              tickCumulative: last.tickCumulative + int56(tick) * delta,
                              secondsPerLiquidityCumulativeX128: last.secondsPerLiquidityCumulativeX128 +
                                  ((uint160(delta) << 128) / (liquidity > 0 ? liquidity : 1)),
                              initialized: true
                          });
                  }
                  /// @notice Initialize the oracle array by writing the first slot. Called once for the lifecycle of the observations array
                  /// @param self The stored oracle array
                  /// @param time The time of the oracle initialization, via block.timestamp truncated to uint32
                  /// @return cardinality The number of populated elements in the oracle array
                  /// @return cardinalityNext The new length of the oracle array, independent of population
                  function initialize(Observation[65535] storage self, uint32 time)
                      internal
                      returns (uint16 cardinality, uint16 cardinalityNext)
                  {
                      self[0] = Observation({
                          blockTimestamp: time,
                          tickCumulative: 0,
                          secondsPerLiquidityCumulativeX128: 0,
                          initialized: true
                      });
                      return (1, 1);
                  }
                  /// @notice Writes an oracle observation to the array
                  /// @dev Writable at most once per block. Index represents the most recently written element. cardinality and index must be tracked externally.
                  /// If the index is at the end of the allowable array length (according to cardinality), and the next cardinality
                  /// is greater than the current one, cardinality may be increased. This restriction is created to preserve ordering.
                  /// @param self The stored oracle array
                  /// @param index The index of the observation that was most recently written to the observations array
                  /// @param blockTimestamp The timestamp of the new observation
                  /// @param tick The active tick at the time of the new observation
                  /// @param liquidity The total in-range liquidity at the time of the new observation
                  /// @param cardinality The number of populated elements in the oracle array
                  /// @param cardinalityNext The new length of the oracle array, independent of population
                  /// @return indexUpdated The new index of the most recently written element in the oracle array
                  /// @return cardinalityUpdated The new cardinality of the oracle array
                  function write(
                      Observation[65535] storage self,
                      uint16 index,
                      uint32 blockTimestamp,
                      int24 tick,
                      uint128 liquidity,
                      uint16 cardinality,
                      uint16 cardinalityNext
                  ) internal returns (uint16 indexUpdated, uint16 cardinalityUpdated) {
                      Observation memory last = self[index];
                      // early return if we've already written an observation this block
                      if (last.blockTimestamp == blockTimestamp) return (index, cardinality);
                      // if the conditions are right, we can bump the cardinality
                      if (cardinalityNext > cardinality && index == (cardinality - 1)) {
                          cardinalityUpdated = cardinalityNext;
                      } else {
                          cardinalityUpdated = cardinality;
                      }
                      indexUpdated = (index + 1) % cardinalityUpdated;
                      self[indexUpdated] = transform(last, blockTimestamp, tick, liquidity);
                  }
                  /// @notice Prepares the oracle array to store up to `next` observations
                  /// @param self The stored oracle array
                  /// @param current The current next cardinality of the oracle array
                  /// @param next The proposed next cardinality which will be populated in the oracle array
                  /// @return next The next cardinality which will be populated in the oracle array
                  function grow(
                      Observation[65535] storage self,
                      uint16 current,
                      uint16 next
                  ) internal returns (uint16) {
                      require(current > 0, 'I');
                      // no-op if the passed next value isn't greater than the current next value
                      if (next <= current) return current;
                      // store in each slot to prevent fresh SSTOREs in swaps
                      // this data will not be used because the initialized boolean is still false
                      for (uint16 i = current; i < next; i++) self[i].blockTimestamp = 1;
                      return next;
                  }
                  /// @notice comparator for 32-bit timestamps
                  /// @dev safe for 0 or 1 overflows, a and b _must_ be chronologically before or equal to time
                  /// @param time A timestamp truncated to 32 bits
                  /// @param a A comparison timestamp from which to determine the relative position of `time`
                  /// @param b From which to determine the relative position of `time`
                  /// @return bool Whether `a` is chronologically <= `b`
                  function lte(
                      uint32 time,
                      uint32 a,
                      uint32 b
                  ) private pure returns (bool) {
                      // if there hasn't been overflow, no need to adjust
                      if (a <= time && b <= time) return a <= b;
                      uint256 aAdjusted = a > time ? a : a + 2**32;
                      uint256 bAdjusted = b > time ? b : b + 2**32;
                      return aAdjusted <= bAdjusted;
                  }
                  /// @notice Fetches the observations beforeOrAt and atOrAfter a target, i.e. where [beforeOrAt, atOrAfter] is satisfied.
                  /// The result may be the same observation, or adjacent observations.
                  /// @dev The answer must be contained in the array, used when the target is located within the stored observation
                  /// boundaries: older than the most recent observation and younger, or the same age as, the oldest observation
                  /// @param self The stored oracle array
                  /// @param time The current block.timestamp
                  /// @param target The timestamp at which the reserved observation should be for
                  /// @param index The index of the observation that was most recently written to the observations array
                  /// @param cardinality The number of populated elements in the oracle array
                  /// @return beforeOrAt The observation recorded before, or at, the target
                  /// @return atOrAfter The observation recorded at, or after, the target
                  function binarySearch(
                      Observation[65535] storage self,
                      uint32 time,
                      uint32 target,
                      uint16 index,
                      uint16 cardinality
                  ) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) {
                      uint256 l = (index + 1) % cardinality; // oldest observation
                      uint256 r = l + cardinality - 1; // newest observation
                      uint256 i;
                      while (true) {
                          i = (l + r) / 2;
                          beforeOrAt = self[i % cardinality];
                          // we've landed on an uninitialized tick, keep searching higher (more recently)
                          if (!beforeOrAt.initialized) {
                              l = i + 1;
                              continue;
                          }
                          atOrAfter = self[(i + 1) % cardinality];
                          bool targetAtOrAfter = lte(time, beforeOrAt.blockTimestamp, target);
                          // check if we've found the answer!
                          if (targetAtOrAfter && lte(time, target, atOrAfter.blockTimestamp)) break;
                          if (!targetAtOrAfter) r = i - 1;
                          else l = i + 1;
                      }
                  }
                  /// @notice Fetches the observations beforeOrAt and atOrAfter a given target, i.e. where [beforeOrAt, atOrAfter] is satisfied
                  /// @dev Assumes there is at least 1 initialized observation.
                  /// Used by observeSingle() to compute the counterfactual accumulator values as of a given block timestamp.
                  /// @param self The stored oracle array
                  /// @param time The current block.timestamp
                  /// @param target The timestamp at which the reserved observation should be for
                  /// @param tick The active tick at the time of the returned or simulated observation
                  /// @param index The index of the observation that was most recently written to the observations array
                  /// @param liquidity The total pool liquidity at the time of the call
                  /// @param cardinality The number of populated elements in the oracle array
                  /// @return beforeOrAt The observation which occurred at, or before, the given timestamp
                  /// @return atOrAfter The observation which occurred at, or after, the given timestamp
                  function getSurroundingObservations(
                      Observation[65535] storage self,
                      uint32 time,
                      uint32 target,
                      int24 tick,
                      uint16 index,
                      uint128 liquidity,
                      uint16 cardinality
                  ) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) {
                      // optimistically set before to the newest observation
                      beforeOrAt = self[index];
                      // if the target is chronologically at or after the newest observation, we can early return
                      if (lte(time, beforeOrAt.blockTimestamp, target)) {
                          if (beforeOrAt.blockTimestamp == target) {
                              // if newest observation equals target, we're in the same block, so we can ignore atOrAfter
                              return (beforeOrAt, atOrAfter);
                          } else {
                              // otherwise, we need to transform
                              return (beforeOrAt, transform(beforeOrAt, target, tick, liquidity));
                          }
                      }
                      // now, set before to the oldest observation
                      beforeOrAt = self[(index + 1) % cardinality];
                      if (!beforeOrAt.initialized) beforeOrAt = self[0];
                      // ensure that the target is chronologically at or after the oldest observation
                      require(lte(time, beforeOrAt.blockTimestamp, target), 'OLD');
                      // if we've reached this point, we have to binary search
                      return binarySearch(self, time, target, index, cardinality);
                  }
                  /// @dev Reverts if an observation at or before the desired observation timestamp does not exist.
                  /// 0 may be passed as `secondsAgo' to return the current cumulative values.
                  /// If called with a timestamp falling between two observations, returns the counterfactual accumulator values
                  /// at exactly the timestamp between the two observations.
                  /// @param self The stored oracle array
                  /// @param time The current block timestamp
                  /// @param secondsAgo The amount of time to look back, in seconds, at which point to return an observation
                  /// @param tick The current tick
                  /// @param index The index of the observation that was most recently written to the observations array
                  /// @param liquidity The current in-range pool liquidity
                  /// @param cardinality The number of populated elements in the oracle array
                  /// @return tickCumulative The tick * time elapsed since the pool was first initialized, as of `secondsAgo`
                  /// @return secondsPerLiquidityCumulativeX128 The time elapsed / max(1, liquidity) since the pool was first initialized, as of `secondsAgo`
                  function observeSingle(
                      Observation[65535] storage self,
                      uint32 time,
                      uint32 secondsAgo,
                      int24 tick,
                      uint16 index,
                      uint128 liquidity,
                      uint16 cardinality
                  ) internal view returns (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) {
                      if (secondsAgo == 0) {
                          Observation memory last = self[index];
                          if (last.blockTimestamp != time) last = transform(last, time, tick, liquidity);
                          return (last.tickCumulative, last.secondsPerLiquidityCumulativeX128);
                      }
                      uint32 target = time - secondsAgo;
                      (Observation memory beforeOrAt, Observation memory atOrAfter) =
                          getSurroundingObservations(self, time, target, tick, index, liquidity, cardinality);
                      if (target == beforeOrAt.blockTimestamp) {
                          // we're at the left boundary
                          return (beforeOrAt.tickCumulative, beforeOrAt.secondsPerLiquidityCumulativeX128);
                      } else if (target == atOrAfter.blockTimestamp) {
                          // we're at the right boundary
                          return (atOrAfter.tickCumulative, atOrAfter.secondsPerLiquidityCumulativeX128);
                      } else {
                          // we're in the middle
                          uint32 observationTimeDelta = atOrAfter.blockTimestamp - beforeOrAt.blockTimestamp;
                          uint32 targetDelta = target - beforeOrAt.blockTimestamp;
                          return (
                              beforeOrAt.tickCumulative +
                                  ((atOrAfter.tickCumulative - beforeOrAt.tickCumulative) / observationTimeDelta) *
                                  targetDelta,
                              beforeOrAt.secondsPerLiquidityCumulativeX128 +
                                  uint160(
                                      (uint256(
                                          atOrAfter.secondsPerLiquidityCumulativeX128 - beforeOrAt.secondsPerLiquidityCumulativeX128
                                      ) * targetDelta) / observationTimeDelta
                                  )
                          );
                      }
                  }
                  /// @notice Returns the accumulator values as of each time seconds ago from the given time in the array of `secondsAgos`
                  /// @dev Reverts if `secondsAgos` > oldest observation
                  /// @param self The stored oracle array
                  /// @param time The current block.timestamp
                  /// @param secondsAgos Each amount of time to look back, in seconds, at which point to return an observation
                  /// @param tick The current tick
                  /// @param index The index of the observation that was most recently written to the observations array
                  /// @param liquidity The current in-range pool liquidity
                  /// @param cardinality The number of populated elements in the oracle array
                  /// @return tickCumulatives The tick * time elapsed since the pool was first initialized, as of each `secondsAgo`
                  /// @return secondsPerLiquidityCumulativeX128s The cumulative seconds / max(1, liquidity) since the pool was first initialized, as of each `secondsAgo`
                  function observe(
                      Observation[65535] storage self,
                      uint32 time,
                      uint32[] memory secondsAgos,
                      int24 tick,
                      uint16 index,
                      uint128 liquidity,
                      uint16 cardinality
                  ) internal view returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) {
                      require(cardinality > 0, 'I');
                      tickCumulatives = new int56[](secondsAgos.length);
                      secondsPerLiquidityCumulativeX128s = new uint160[](secondsAgos.length);
                      for (uint256 i = 0; i < secondsAgos.length; i++) {
                          (tickCumulatives[i], secondsPerLiquidityCumulativeX128s[i]) = observeSingle(
                              self,
                              time,
                              secondsAgos[i],
                              tick,
                              index,
                              liquidity,
                              cardinality
                          );
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >=0.4.0;
              /// @title Contains 512-bit math functions
              /// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
              /// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
              library FullMath {
                  /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                  /// @param a The multiplicand
                  /// @param b The multiplier
                  /// @param denominator The divisor
                  /// @return result The 256-bit result
                  /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
                  function mulDiv(
                      uint256 a,
                      uint256 b,
                      uint256 denominator
                  ) internal pure returns (uint256 result) {
                      // 512-bit multiply [prod1 prod0] = a * b
                      // Compute the product mod 2**256 and mod 2**256 - 1
                      // then use the Chinese Remainder Theorem to reconstruct
                      // the 512 bit result. The result is stored in two 256
                      // variables such that product = prod1 * 2**256 + prod0
                      uint256 prod0; // Least significant 256 bits of the product
                      uint256 prod1; // Most significant 256 bits of the product
                      assembly {
                          let mm := mulmod(a, b, not(0))
                          prod0 := mul(a, b)
                          prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                      }
                      // Handle non-overflow cases, 256 by 256 division
                      if (prod1 == 0) {
                          require(denominator > 0);
                          assembly {
                              result := div(prod0, denominator)
                          }
                          return result;
                      }
                      // Make sure the result is less than 2**256.
                      // Also prevents denominator == 0
                      require(denominator > prod1);
                      ///////////////////////////////////////////////
                      // 512 by 256 division.
                      ///////////////////////////////////////////////
                      // Make division exact by subtracting the remainder from [prod1 prod0]
                      // Compute remainder using mulmod
                      uint256 remainder;
                      assembly {
                          remainder := mulmod(a, b, denominator)
                      }
                      // Subtract 256 bit number from 512 bit number
                      assembly {
                          prod1 := sub(prod1, gt(remainder, prod0))
                          prod0 := sub(prod0, remainder)
                      }
                      // Factor powers of two out of denominator
                      // Compute largest power of two divisor of denominator.
                      // Always >= 1.
                      uint256 twos = -denominator & denominator;
                      // Divide denominator by power of two
                      assembly {
                          denominator := div(denominator, twos)
                      }
                      // Divide [prod1 prod0] by the factors of two
                      assembly {
                          prod0 := div(prod0, twos)
                      }
                      // Shift in bits from prod1 into prod0. For this we need
                      // to flip `twos` such that it is 2**256 / twos.
                      // If twos is zero, then it becomes one
                      assembly {
                          twos := add(div(sub(0, twos), twos), 1)
                      }
                      prod0 |= prod1 * twos;
                      // Invert denominator mod 2**256
                      // Now that denominator is an odd number, it has an inverse
                      // modulo 2**256 such that denominator * inv = 1 mod 2**256.
                      // Compute the inverse by starting with a seed that is correct
                      // correct for four bits. That is, denominator * inv = 1 mod 2**4
                      uint256 inv = (3 * denominator) ^ 2;
                      // Now use Newton-Raphson iteration to improve the precision.
                      // Thanks to Hensel's lifting lemma, this also works in modular
                      // arithmetic, doubling the correct bits in each step.
                      inv *= 2 - denominator * inv; // inverse mod 2**8
                      inv *= 2 - denominator * inv; // inverse mod 2**16
                      inv *= 2 - denominator * inv; // inverse mod 2**32
                      inv *= 2 - denominator * inv; // inverse mod 2**64
                      inv *= 2 - denominator * inv; // inverse mod 2**128
                      inv *= 2 - denominator * inv; // inverse mod 2**256
                      // Because the division is now exact we can divide by multiplying
                      // with the modular inverse of denominator. This will give us the
                      // correct result modulo 2**256. Since the precoditions guarantee
                      // that the outcome is less than 2**256, this is the final result.
                      // We don't need to compute the high bits of the result and prod1
                      // is no longer required.
                      result = prod0 * inv;
                      return result;
                  }
                  /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                  /// @param a The multiplicand
                  /// @param b The multiplier
                  /// @param denominator The divisor
                  /// @return result The 256-bit result
                  function mulDivRoundingUp(
                      uint256 a,
                      uint256 b,
                      uint256 denominator
                  ) internal pure returns (uint256 result) {
                      result = mulDiv(a, b, denominator);
                      if (mulmod(a, b, denominator) > 0) {
                          require(result < type(uint256).max);
                          result++;
                      }
                  }
              }
              // SPDX-License-Identifier: GPL-2.0-or-later
              pragma solidity >=0.4.0;
              /// @title FixedPoint128
              /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
              library FixedPoint128 {
                  uint256 internal constant Q128 = 0x100000000000000000000000000000000;
              }
              // SPDX-License-Identifier: GPL-2.0-or-later
              pragma solidity >=0.6.0;
              import '../interfaces/IERC20Minimal.sol';
              /// @title TransferHelper
              /// @notice Contains helper methods for interacting with ERC20 tokens that do not consistently return true/false
              library TransferHelper {
                  /// @notice Transfers tokens from msg.sender to a recipient
                  /// @dev Calls transfer on token contract, errors with TF if transfer fails
                  /// @param token The contract address of the token which will be transferred
                  /// @param to The recipient of the transfer
                  /// @param value The value of the transfer
                  function safeTransfer(
                      address token,
                      address to,
                      uint256 value
                  ) internal {
                      (bool success, bytes memory data) =
                          token.call(abi.encodeWithSelector(IERC20Minimal.transfer.selector, to, value));
                      require(success && (data.length == 0 || abi.decode(data, (bool))), 'TF');
                  }
              }
              // SPDX-License-Identifier: GPL-2.0-or-later
              pragma solidity >=0.5.0;
              /// @title Math library for computing sqrt prices from ticks and vice versa
              /// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
              /// prices between 2**-128 and 2**128
              library TickMath {
                  /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
                  int24 internal constant MIN_TICK = -887272;
                  /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
                  int24 internal constant MAX_TICK = -MIN_TICK;
                  /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
                  uint160 internal constant MIN_SQRT_RATIO = 4295128739;
                  /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
                  uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;
                  /// @notice Calculates sqrt(1.0001^tick) * 2^96
                  /// @dev Throws if |tick| > max tick
                  /// @param tick The input tick for the above formula
                  /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
                  /// at the given tick
                  function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
                      uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));
                      require(absTick <= uint256(MAX_TICK), 'T');
                      uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000;
                      if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
                      if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
                      if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
                      if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
                      if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
                      if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
                      if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
                      if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
                      if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
                      if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
                      if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
                      if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
                      if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
                      if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
                      if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
                      if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
                      if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
                      if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
                      if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;
                      if (tick > 0) ratio = type(uint256).max / ratio;
                      // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
                      // we then downcast because we know the result always fits within 160 bits due to our tick input constraint
                      // we round up in the division so getTickAtSqrtRatio of the output price is always consistent
                      sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
                  }
                  /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
                  /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
                  /// ever return.
                  /// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
                  /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
                  function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
                      // second inequality must be < because the price can never reach the price at the max tick
                      require(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO, 'R');
                      uint256 ratio = uint256(sqrtPriceX96) << 32;
                      uint256 r = ratio;
                      uint256 msb = 0;
                      assembly {
                          let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
                          msb := or(msb, f)
                          r := shr(f, r)
                      }
                      assembly {
                          let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
                          msb := or(msb, f)
                          r := shr(f, r)
                      }
                      assembly {
                          let f := shl(5, gt(r, 0xFFFFFFFF))
                          msb := or(msb, f)
                          r := shr(f, r)
                      }
                      assembly {
                          let f := shl(4, gt(r, 0xFFFF))
                          msb := or(msb, f)
                          r := shr(f, r)
                      }
                      assembly {
                          let f := shl(3, gt(r, 0xFF))
                          msb := or(msb, f)
                          r := shr(f, r)
                      }
                      assembly {
                          let f := shl(2, gt(r, 0xF))
                          msb := or(msb, f)
                          r := shr(f, r)
                      }
                      assembly {
                          let f := shl(1, gt(r, 0x3))
                          msb := or(msb, f)
                          r := shr(f, r)
                      }
                      assembly {
                          let f := gt(r, 0x1)
                          msb := or(msb, f)
                      }
                      if (msb >= 128) r = ratio >> (msb - 127);
                      else r = ratio << (127 - msb);
                      int256 log_2 = (int256(msb) - 128) << 64;
                      assembly {
                          r := shr(127, mul(r, r))
                          let f := shr(128, r)
                          log_2 := or(log_2, shl(63, f))
                          r := shr(f, r)
                      }
                      assembly {
                          r := shr(127, mul(r, r))
                          let f := shr(128, r)
                          log_2 := or(log_2, shl(62, f))
                          r := shr(f, r)
                      }
                      assembly {
                          r := shr(127, mul(r, r))
                          let f := shr(128, r)
                          log_2 := or(log_2, shl(61, f))
                          r := shr(f, r)
                      }
                      assembly {
                          r := shr(127, mul(r, r))
                          let f := shr(128, r)
                          log_2 := or(log_2, shl(60, f))
                          r := shr(f, r)
                      }
                      assembly {
                          r := shr(127, mul(r, r))
                          let f := shr(128, r)
                          log_2 := or(log_2, shl(59, f))
                          r := shr(f, r)
                      }
                      assembly {
                          r := shr(127, mul(r, r))
                          let f := shr(128, r)
                          log_2 := or(log_2, shl(58, f))
                          r := shr(f, r)
                      }
                      assembly {
                          r := shr(127, mul(r, r))
                          let f := shr(128, r)
                          log_2 := or(log_2, shl(57, f))
                          r := shr(f, r)
                      }
                      assembly {
                          r := shr(127, mul(r, r))
                          let f := shr(128, r)
                          log_2 := or(log_2, shl(56, f))
                          r := shr(f, r)
                      }
                      assembly {
                          r := shr(127, mul(r, r))
                          let f := shr(128, r)
                          log_2 := or(log_2, shl(55, f))
                          r := shr(f, r)
                      }
                      assembly {
                          r := shr(127, mul(r, r))
                          let f := shr(128, r)
                          log_2 := or(log_2, shl(54, f))
                          r := shr(f, r)
                      }
                      assembly {
                          r := shr(127, mul(r, r))
                          let f := shr(128, r)
                          log_2 := or(log_2, shl(53, f))
                          r := shr(f, r)
                      }
                      assembly {
                          r := shr(127, mul(r, r))
                          let f := shr(128, r)
                          log_2 := or(log_2, shl(52, f))
                          r := shr(f, r)
                      }
                      assembly {
                          r := shr(127, mul(r, r))
                          let f := shr(128, r)
                          log_2 := or(log_2, shl(51, f))
                          r := shr(f, r)
                      }
                      assembly {
                          r := shr(127, mul(r, r))
                          let f := shr(128, r)
                          log_2 := or(log_2, shl(50, f))
                      }
                      int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number
                      int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
                      int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);
                      tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
                  }
              }
              // SPDX-License-Identifier: GPL-2.0-or-later
              pragma solidity >=0.5.0;
              /// @title Math library for liquidity
              library LiquidityMath {
                  /// @notice Add a signed liquidity delta to liquidity and revert if it overflows or underflows
                  /// @param x The liquidity before change
                  /// @param y The delta by which liquidity should be changed
                  /// @return z The liquidity delta
                  function addDelta(uint128 x, int128 y) internal pure returns (uint128 z) {
                      if (y < 0) {
                          require((z = x - uint128(-y)) < x, 'LS');
                      } else {
                          require((z = x + uint128(y)) >= x, 'LA');
                      }
                  }
              }
              // SPDX-License-Identifier: BUSL-1.1
              pragma solidity >=0.5.0;
              import './LowGasSafeMath.sol';
              import './SafeCast.sol';
              import './FullMath.sol';
              import './UnsafeMath.sol';
              import './FixedPoint96.sol';
              /// @title Functions based on Q64.96 sqrt price and liquidity
              /// @notice Contains the math that uses square root of price as a Q64.96 and liquidity to compute deltas
              library SqrtPriceMath {
                  using LowGasSafeMath for uint256;
                  using SafeCast for uint256;
                  /// @notice Gets the next sqrt price given a delta of token0
                  /// @dev Always rounds up, because in the exact output case (increasing price) we need to move the price at least
                  /// far enough to get the desired output amount, and in the exact input case (decreasing price) we need to move the
                  /// price less in order to not send too much output.
                  /// The most precise formula for this is liquidity * sqrtPX96 / (liquidity +- amount * sqrtPX96),
                  /// if this is impossible because of overflow, we calculate liquidity / (liquidity / sqrtPX96 +- amount).
                  /// @param sqrtPX96 The starting price, i.e. before accounting for the token0 delta
                  /// @param liquidity The amount of usable liquidity
                  /// @param amount How much of token0 to add or remove from virtual reserves
                  /// @param add Whether to add or remove the amount of token0
                  /// @return The price after adding or removing amount, depending on add
                  function getNextSqrtPriceFromAmount0RoundingUp(
                      uint160 sqrtPX96,
                      uint128 liquidity,
                      uint256 amount,
                      bool add
                  ) internal pure returns (uint160) {
                      // we short circuit amount == 0 because the result is otherwise not guaranteed to equal the input price
                      if (amount == 0) return sqrtPX96;
                      uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;
                      if (add) {
                          uint256 product;
                          if ((product = amount * sqrtPX96) / amount == sqrtPX96) {
                              uint256 denominator = numerator1 + product;
                              if (denominator >= numerator1)
                                  // always fits in 160 bits
                                  return uint160(FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator));
                          }
                          return uint160(UnsafeMath.divRoundingUp(numerator1, (numerator1 / sqrtPX96).add(amount)));
                      } else {
                          uint256 product;
                          // if the product overflows, we know the denominator underflows
                          // in addition, we must check that the denominator does not underflow
                          require((product = amount * sqrtPX96) / amount == sqrtPX96 && numerator1 > product);
                          uint256 denominator = numerator1 - product;
                          return FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator).toUint160();
                      }
                  }
                  /// @notice Gets the next sqrt price given a delta of token1
                  /// @dev Always rounds down, because in the exact output case (decreasing price) we need to move the price at least
                  /// far enough to get the desired output amount, and in the exact input case (increasing price) we need to move the
                  /// price less in order to not send too much output.
                  /// The formula we compute is within <1 wei of the lossless version: sqrtPX96 +- amount / liquidity
                  /// @param sqrtPX96 The starting price, i.e., before accounting for the token1 delta
                  /// @param liquidity The amount of usable liquidity
                  /// @param amount How much of token1 to add, or remove, from virtual reserves
                  /// @param add Whether to add, or remove, the amount of token1
                  /// @return The price after adding or removing `amount`
                  function getNextSqrtPriceFromAmount1RoundingDown(
                      uint160 sqrtPX96,
                      uint128 liquidity,
                      uint256 amount,
                      bool add
                  ) internal pure returns (uint160) {
                      // if we're adding (subtracting), rounding down requires rounding the quotient down (up)
                      // in both cases, avoid a mulDiv for most inputs
                      if (add) {
                          uint256 quotient =
                              (
                                  amount <= type(uint160).max
                                      ? (amount << FixedPoint96.RESOLUTION) / liquidity
                                      : FullMath.mulDiv(amount, FixedPoint96.Q96, liquidity)
                              );
                          return uint256(sqrtPX96).add(quotient).toUint160();
                      } else {
                          uint256 quotient =
                              (
                                  amount <= type(uint160).max
                                      ? UnsafeMath.divRoundingUp(amount << FixedPoint96.RESOLUTION, liquidity)
                                      : FullMath.mulDivRoundingUp(amount, FixedPoint96.Q96, liquidity)
                              );
                          require(sqrtPX96 > quotient);
                          // always fits 160 bits
                          return uint160(sqrtPX96 - quotient);
                      }
                  }
                  /// @notice Gets the next sqrt price given an input amount of token0 or token1
                  /// @dev Throws if price or liquidity are 0, or if the next price is out of bounds
                  /// @param sqrtPX96 The starting price, i.e., before accounting for the input amount
                  /// @param liquidity The amount of usable liquidity
                  /// @param amountIn How much of token0, or token1, is being swapped in
                  /// @param zeroForOne Whether the amount in is token0 or token1
                  /// @return sqrtQX96 The price after adding the input amount to token0 or token1
                  function getNextSqrtPriceFromInput(
                      uint160 sqrtPX96,
                      uint128 liquidity,
                      uint256 amountIn,
                      bool zeroForOne
                  ) internal pure returns (uint160 sqrtQX96) {
                      require(sqrtPX96 > 0);
                      require(liquidity > 0);
                      // round to make sure that we don't pass the target price
                      return
                          zeroForOne
                              ? getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountIn, true)
                              : getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountIn, true);
                  }
                  /// @notice Gets the next sqrt price given an output amount of token0 or token1
                  /// @dev Throws if price or liquidity are 0 or the next price is out of bounds
                  /// @param sqrtPX96 The starting price before accounting for the output amount
                  /// @param liquidity The amount of usable liquidity
                  /// @param amountOut How much of token0, or token1, is being swapped out
                  /// @param zeroForOne Whether the amount out is token0 or token1
                  /// @return sqrtQX96 The price after removing the output amount of token0 or token1
                  function getNextSqrtPriceFromOutput(
                      uint160 sqrtPX96,
                      uint128 liquidity,
                      uint256 amountOut,
                      bool zeroForOne
                  ) internal pure returns (uint160 sqrtQX96) {
                      require(sqrtPX96 > 0);
                      require(liquidity > 0);
                      // round to make sure that we pass the target price
                      return
                          zeroForOne
                              ? getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountOut, false)
                              : getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountOut, false);
                  }
                  /// @notice Gets the amount0 delta between two prices
                  /// @dev Calculates liquidity / sqrt(lower) - liquidity / sqrt(upper),
                  /// i.e. liquidity * (sqrt(upper) - sqrt(lower)) / (sqrt(upper) * sqrt(lower))
                  /// @param sqrtRatioAX96 A sqrt price
                  /// @param sqrtRatioBX96 Another sqrt price
                  /// @param liquidity The amount of usable liquidity
                  /// @param roundUp Whether to round the amount up or down
                  /// @return amount0 Amount of token0 required to cover a position of size liquidity between the two passed prices
                  function getAmount0Delta(
                      uint160 sqrtRatioAX96,
                      uint160 sqrtRatioBX96,
                      uint128 liquidity,
                      bool roundUp
                  ) internal pure returns (uint256 amount0) {
                      if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
                      uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;
                      uint256 numerator2 = sqrtRatioBX96 - sqrtRatioAX96;
                      require(sqrtRatioAX96 > 0);
                      return
                          roundUp
                              ? UnsafeMath.divRoundingUp(
                                  FullMath.mulDivRoundingUp(numerator1, numerator2, sqrtRatioBX96),
                                  sqrtRatioAX96
                              )
                              : FullMath.mulDiv(numerator1, numerator2, sqrtRatioBX96) / sqrtRatioAX96;
                  }
                  /// @notice Gets the amount1 delta between two prices
                  /// @dev Calculates liquidity * (sqrt(upper) - sqrt(lower))
                  /// @param sqrtRatioAX96 A sqrt price
                  /// @param sqrtRatioBX96 Another sqrt price
                  /// @param liquidity The amount of usable liquidity
                  /// @param roundUp Whether to round the amount up, or down
                  /// @return amount1 Amount of token1 required to cover a position of size liquidity between the two passed prices
                  function getAmount1Delta(
                      uint160 sqrtRatioAX96,
                      uint160 sqrtRatioBX96,
                      uint128 liquidity,
                      bool roundUp
                  ) internal pure returns (uint256 amount1) {
                      if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
                      return
                          roundUp
                              ? FullMath.mulDivRoundingUp(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96)
                              : FullMath.mulDiv(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96);
                  }
                  /// @notice Helper that gets signed token0 delta
                  /// @param sqrtRatioAX96 A sqrt price
                  /// @param sqrtRatioBX96 Another sqrt price
                  /// @param liquidity The change in liquidity for which to compute the amount0 delta
                  /// @return amount0 Amount of token0 corresponding to the passed liquidityDelta between the two prices
                  function getAmount0Delta(
                      uint160 sqrtRatioAX96,
                      uint160 sqrtRatioBX96,
                      int128 liquidity
                  ) internal pure returns (int256 amount0) {
                      return
                          liquidity < 0
                              ? -getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256()
                              : getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256();
                  }
                  /// @notice Helper that gets signed token1 delta
                  /// @param sqrtRatioAX96 A sqrt price
                  /// @param sqrtRatioBX96 Another sqrt price
                  /// @param liquidity The change in liquidity for which to compute the amount1 delta
                  /// @return amount1 Amount of token1 corresponding to the passed liquidityDelta between the two prices
                  function getAmount1Delta(
                      uint160 sqrtRatioAX96,
                      uint160 sqrtRatioBX96,
                      int128 liquidity
                  ) internal pure returns (int256 amount1) {
                      return
                          liquidity < 0
                              ? -getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256()
                              : getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256();
                  }
              }
              // SPDX-License-Identifier: BUSL-1.1
              pragma solidity >=0.5.0;
              import './FullMath.sol';
              import './SqrtPriceMath.sol';
              /// @title Computes the result of a swap within ticks
              /// @notice Contains methods for computing the result of a swap within a single tick price range, i.e., a single tick.
              library SwapMath {
                  /// @notice Computes the result of swapping some amount in, or amount out, given the parameters of the swap
                  /// @dev The fee, plus the amount in, will never exceed the amount remaining if the swap's `amountSpecified` is positive
                  /// @param sqrtRatioCurrentX96 The current sqrt price of the pool
                  /// @param sqrtRatioTargetX96 The price that cannot be exceeded, from which the direction of the swap is inferred
                  /// @param liquidity The usable liquidity
                  /// @param amountRemaining How much input or output amount is remaining to be swapped in/out
                  /// @param feePips The fee taken from the input amount, expressed in hundredths of a bip
                  /// @return sqrtRatioNextX96 The price after swapping the amount in/out, not to exceed the price target
                  /// @return amountIn The amount to be swapped in, of either token0 or token1, based on the direction of the swap
                  /// @return amountOut The amount to be received, of either token0 or token1, based on the direction of the swap
                  /// @return feeAmount The amount of input that will be taken as a fee
                  function computeSwapStep(
                      uint160 sqrtRatioCurrentX96,
                      uint160 sqrtRatioTargetX96,
                      uint128 liquidity,
                      int256 amountRemaining,
                      uint24 feePips
                  )
                      internal
                      pure
                      returns (
                          uint160 sqrtRatioNextX96,
                          uint256 amountIn,
                          uint256 amountOut,
                          uint256 feeAmount
                      )
                  {
                      bool zeroForOne = sqrtRatioCurrentX96 >= sqrtRatioTargetX96;
                      bool exactIn = amountRemaining >= 0;
                      if (exactIn) {
                          uint256 amountRemainingLessFee = FullMath.mulDiv(uint256(amountRemaining), 1e6 - feePips, 1e6);
                          amountIn = zeroForOne
                              ? SqrtPriceMath.getAmount0Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, true)
                              : SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, true);
                          if (amountRemainingLessFee >= amountIn) sqrtRatioNextX96 = sqrtRatioTargetX96;
                          else
                              sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromInput(
                                  sqrtRatioCurrentX96,
                                  liquidity,
                                  amountRemainingLessFee,
                                  zeroForOne
                              );
                      } else {
                          amountOut = zeroForOne
                              ? SqrtPriceMath.getAmount1Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, false)
                              : SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, false);
                          if (uint256(-amountRemaining) >= amountOut) sqrtRatioNextX96 = sqrtRatioTargetX96;
                          else
                              sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromOutput(
                                  sqrtRatioCurrentX96,
                                  liquidity,
                                  uint256(-amountRemaining),
                                  zeroForOne
                              );
                      }
                      bool max = sqrtRatioTargetX96 == sqrtRatioNextX96;
                      // get the input/output amounts
                      if (zeroForOne) {
                          amountIn = max && exactIn
                              ? amountIn
                              : SqrtPriceMath.getAmount0Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, true);
                          amountOut = max && !exactIn
                              ? amountOut
                              : SqrtPriceMath.getAmount1Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, false);
                      } else {
                          amountIn = max && exactIn
                              ? amountIn
                              : SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, true);
                          amountOut = max && !exactIn
                              ? amountOut
                              : SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, false);
                      }
                      // cap the output amount to not exceed the remaining output amount
                      if (!exactIn && amountOut > uint256(-amountRemaining)) {
                          amountOut = uint256(-amountRemaining);
                      }
                      if (exactIn && sqrtRatioNextX96 != sqrtRatioTargetX96) {
                          // we didn't reach the target, so take the remainder of the maximum input as fee
                          feeAmount = uint256(amountRemaining) - amountIn;
                      } else {
                          feeAmount = FullMath.mulDivRoundingUp(amountIn, feePips, 1e6 - feePips);
                      }
                  }
              }
              // SPDX-License-Identifier: GPL-2.0-or-later
              pragma solidity >=0.5.0;
              /// @title An interface for a contract that is capable of deploying Uniswap V3 Pools
              /// @notice A contract that constructs a pool must implement this to pass arguments to the pool
              /// @dev This is used to avoid having constructor arguments in the pool contract, which results in the init code hash
              /// of the pool being constant allowing the CREATE2 address of the pool to be cheaply computed on-chain
              interface IUniswapV3PoolDeployer {
                  /// @notice Get the parameters to be used in constructing the pool, set transiently during pool creation.
                  /// @dev Called by the pool constructor to fetch the parameters of the pool
                  /// Returns factory The factory address
                  /// Returns token0 The first token of the pool by address sort order
                  /// Returns token1 The second token of the pool by address sort order
                  /// Returns fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
                  /// Returns tickSpacing The minimum number of ticks between initialized ticks
                  function parameters()
                      external
                      view
                      returns (
                          address factory,
                          address token0,
                          address token1,
                          uint24 fee,
                          int24 tickSpacing
                      );
              }
              // SPDX-License-Identifier: GPL-2.0-or-later
              pragma solidity >=0.5.0;
              /// @title The interface for the Uniswap V3 Factory
              /// @notice The Uniswap V3 Factory facilitates creation of Uniswap V3 pools and control over the protocol fees
              interface IUniswapV3Factory {
                  /// @notice Emitted when the owner of the factory is changed
                  /// @param oldOwner The owner before the owner was changed
                  /// @param newOwner The owner after the owner was changed
                  event OwnerChanged(address indexed oldOwner, address indexed newOwner);
                  /// @notice Emitted when a pool is created
                  /// @param token0 The first token of the pool by address sort order
                  /// @param token1 The second token of the pool by address sort order
                  /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
                  /// @param tickSpacing The minimum number of ticks between initialized ticks
                  /// @param pool The address of the created pool
                  event PoolCreated(
                      address indexed token0,
                      address indexed token1,
                      uint24 indexed fee,
                      int24 tickSpacing,
                      address pool
                  );
                  /// @notice Emitted when a new fee amount is enabled for pool creation via the factory
                  /// @param fee The enabled fee, denominated in hundredths of a bip
                  /// @param tickSpacing The minimum number of ticks between initialized ticks for pools created with the given fee
                  event FeeAmountEnabled(uint24 indexed fee, int24 indexed tickSpacing);
                  /// @notice Returns the current owner of the factory
                  /// @dev Can be changed by the current owner via setOwner
                  /// @return The address of the factory owner
                  function owner() external view returns (address);
                  /// @notice Returns the tick spacing for a given fee amount, if enabled, or 0 if not enabled
                  /// @dev A fee amount can never be removed, so this value should be hard coded or cached in the calling context
                  /// @param fee The enabled fee, denominated in hundredths of a bip. Returns 0 in case of unenabled fee
                  /// @return The tick spacing
                  function feeAmountTickSpacing(uint24 fee) external view returns (int24);
                  /// @notice Returns the pool address for a given pair of tokens and a fee, or address 0 if it does not exist
                  /// @dev tokenA and tokenB may be passed in either token0/token1 or token1/token0 order
                  /// @param tokenA The contract address of either token0 or token1
                  /// @param tokenB The contract address of the other token
                  /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
                  /// @return pool The pool address
                  function getPool(
                      address tokenA,
                      address tokenB,
                      uint24 fee
                  ) external view returns (address pool);
                  /// @notice Creates a pool for the given two tokens and fee
                  /// @param tokenA One of the two tokens in the desired pool
                  /// @param tokenB The other of the two tokens in the desired pool
                  /// @param fee The desired fee for the pool
                  /// @dev tokenA and tokenB may be passed in either order: token0/token1 or token1/token0. tickSpacing is retrieved
                  /// from the fee. The call will revert if the pool already exists, the fee is invalid, or the token arguments
                  /// are invalid.
                  /// @return pool The address of the newly created pool
                  function createPool(
                      address tokenA,
                      address tokenB,
                      uint24 fee
                  ) external returns (address pool);
                  /// @notice Updates the owner of the factory
                  /// @dev Must be called by the current owner
                  /// @param _owner The new owner of the factory
                  function setOwner(address _owner) external;
                  /// @notice Enables a fee amount with the given tickSpacing
                  /// @dev Fee amounts may never be removed once enabled
                  /// @param fee The fee amount to enable, denominated in hundredths of a bip (i.e. 1e-6)
                  /// @param tickSpacing The spacing between ticks to be enforced for all pools created with the given fee amount
                  function enableFeeAmount(uint24 fee, int24 tickSpacing) external;
              }
              // SPDX-License-Identifier: GPL-2.0-or-later
              pragma solidity >=0.5.0;
              /// @title Minimal ERC20 interface for Uniswap
              /// @notice Contains a subset of the full ERC20 interface that is used in Uniswap V3
              interface IERC20Minimal {
                  /// @notice Returns the balance of a token
                  /// @param account The account for which to look up the number of tokens it has, i.e. its balance
                  /// @return The number of tokens held by the account
                  function balanceOf(address account) external view returns (uint256);
                  /// @notice Transfers the amount of token from the `msg.sender` to the recipient
                  /// @param recipient The account that will receive the amount transferred
                  /// @param amount The number of tokens to send from the sender to the recipient
                  /// @return Returns true for a successful transfer, false for an unsuccessful transfer
                  function transfer(address recipient, uint256 amount) external returns (bool);
                  /// @notice Returns the current allowance given to a spender by an owner
                  /// @param owner The account of the token owner
                  /// @param spender The account of the token spender
                  /// @return The current allowance granted by `owner` to `spender`
                  function allowance(address owner, address spender) external view returns (uint256);
                  /// @notice Sets the allowance of a spender from the `msg.sender` to the value `amount`
                  /// @param spender The account which will be allowed to spend a given amount of the owners tokens
                  /// @param amount The amount of tokens allowed to be used by `spender`
                  /// @return Returns true for a successful approval, false for unsuccessful
                  function approve(address spender, uint256 amount) external returns (bool);
                  /// @notice Transfers `amount` tokens from `sender` to `recipient` up to the allowance given to the `msg.sender`
                  /// @param sender The account from which the transfer will be initiated
                  /// @param recipient The recipient of the transfer
                  /// @param amount The amount of the transfer
                  /// @return Returns true for a successful transfer, false for unsuccessful
                  function transferFrom(
                      address sender,
                      address recipient,
                      uint256 amount
                  ) external returns (bool);
                  /// @notice Event emitted when tokens are transferred from one address to another, either via `#transfer` or `#transferFrom`.
                  /// @param from The account from which the tokens were sent, i.e. the balance decreased
                  /// @param to The account to which the tokens were sent, i.e. the balance increased
                  /// @param value The amount of tokens that were transferred
                  event Transfer(address indexed from, address indexed to, uint256 value);
                  /// @notice Event emitted when the approval amount for the spender of a given owner's tokens changes.
                  /// @param owner The account that approved spending of its tokens
                  /// @param spender The account for which the spending allowance was modified
                  /// @param value The new allowance from the owner to the spender
                  event Approval(address indexed owner, address indexed spender, uint256 value);
              }
              // SPDX-License-Identifier: GPL-2.0-or-later
              pragma solidity >=0.5.0;
              /// @title Callback for IUniswapV3PoolActions#mint
              /// @notice Any contract that calls IUniswapV3PoolActions#mint must implement this interface
              interface IUniswapV3MintCallback {
                  /// @notice Called to `msg.sender` after minting liquidity to a position from IUniswapV3Pool#mint.
                  /// @dev In the implementation you must pay the pool tokens owed for the minted liquidity.
                  /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
                  /// @param amount0Owed The amount of token0 due to the pool for the minted liquidity
                  /// @param amount1Owed The amount of token1 due to the pool for the minted liquidity
                  /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#mint call
                  function uniswapV3MintCallback(
                      uint256 amount0Owed,
                      uint256 amount1Owed,
                      bytes calldata data
                  ) external;
              }
              // SPDX-License-Identifier: GPL-2.0-or-later
              pragma solidity >=0.5.0;
              /// @title Callback for IUniswapV3PoolActions#swap
              /// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface
              interface IUniswapV3SwapCallback {
                  /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap.
                  /// @dev In the implementation you must pay the pool tokens owed for the swap.
                  /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
                  /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
                  /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
                  /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
                  /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
                  /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
                  /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call
                  function uniswapV3SwapCallback(
                      int256 amount0Delta,
                      int256 amount1Delta,
                      bytes calldata data
                  ) external;
              }
              // SPDX-License-Identifier: GPL-2.0-or-later
              pragma solidity >=0.5.0;
              /// @title Callback for IUniswapV3PoolActions#flash
              /// @notice Any contract that calls IUniswapV3PoolActions#flash must implement this interface
              interface IUniswapV3FlashCallback {
                  /// @notice Called to `msg.sender` after transferring to the recipient from IUniswapV3Pool#flash.
                  /// @dev In the implementation you must repay the pool the tokens sent by flash plus the computed fee amounts.
                  /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
                  /// @param fee0 The fee amount in token0 due to the pool by the end of the flash
                  /// @param fee1 The fee amount in token1 due to the pool by the end of the flash
                  /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#flash call
                  function uniswapV3FlashCallback(
                      uint256 fee0,
                      uint256 fee1,
                      bytes calldata data
                  ) external;
              }
              // SPDX-License-Identifier: GPL-2.0-or-later
              pragma solidity >=0.5.0;
              /// @title Pool state that never changes
              /// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values
              interface IUniswapV3PoolImmutables {
                  /// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface
                  /// @return The contract address
                  function factory() external view returns (address);
                  /// @notice The first of the two tokens of the pool, sorted by address
                  /// @return The token contract address
                  function token0() external view returns (address);
                  /// @notice The second of the two tokens of the pool, sorted by address
                  /// @return The token contract address
                  function token1() external view returns (address);
                  /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
                  /// @return The fee
                  function fee() external view returns (uint24);
                  /// @notice The pool tick spacing
                  /// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive
                  /// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ...
                  /// This value is an int24 to avoid casting even though it is always positive.
                  /// @return The tick spacing
                  function tickSpacing() external view returns (int24);
                  /// @notice The maximum amount of position liquidity that can use any tick in the range
                  /// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and
                  /// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool
                  /// @return The max amount of liquidity per tick
                  function maxLiquidityPerTick() external view returns (uint128);
              }
              // SPDX-License-Identifier: GPL-2.0-or-later
              pragma solidity >=0.5.0;
              /// @title Pool state that can change
              /// @notice These methods compose the pool's state, and can change with any frequency including multiple times
              /// per transaction
              interface IUniswapV3PoolState {
                  /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas
                  /// when accessed externally.
                  /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value
                  /// tick The current tick of the pool, i.e. according to the last tick transition that was run.
                  /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick
                  /// boundary.
                  /// observationIndex The index of the last oracle observation that was written,
                  /// observationCardinality The current maximum number of observations stored in the pool,
                  /// observationCardinalityNext The next maximum number of observations, to be updated when the observation.
                  /// feeProtocol The protocol fee for both tokens of the pool.
                  /// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0
                  /// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee.
                  /// unlocked Whether the pool is currently locked to reentrancy
                  function slot0()
                      external
                      view
                      returns (
                          uint160 sqrtPriceX96,
                          int24 tick,
                          uint16 observationIndex,
                          uint16 observationCardinality,
                          uint16 observationCardinalityNext,
                          uint8 feeProtocol,
                          bool unlocked
                      );
                  /// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool
                  /// @dev This value can overflow the uint256
                  function feeGrowthGlobal0X128() external view returns (uint256);
                  /// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool
                  /// @dev This value can overflow the uint256
                  function feeGrowthGlobal1X128() external view returns (uint256);
                  /// @notice The amounts of token0 and token1 that are owed to the protocol
                  /// @dev Protocol fees will never exceed uint128 max in either token
                  function protocolFees() external view returns (uint128 token0, uint128 token1);
                  /// @notice The currently in range liquidity available to the pool
                  /// @dev This value has no relationship to the total liquidity across all ticks
                  function liquidity() external view returns (uint128);
                  /// @notice Look up information about a specific tick in the pool
                  /// @param tick The tick to look up
                  /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or
                  /// tick upper,
                  /// liquidityNet how much liquidity changes when the pool price crosses the tick,
                  /// feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0,
                  /// feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1,
                  /// tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick
                  /// secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick,
                  /// secondsOutside the seconds spent on the other side of the tick from the current tick,
                  /// initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false.
                  /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0.
                  /// In addition, these values are only relative and must be used only in comparison to previous snapshots for
                  /// a specific position.
                  function ticks(int24 tick)
                      external
                      view
                      returns (
                          uint128 liquidityGross,
                          int128 liquidityNet,
                          uint256 feeGrowthOutside0X128,
                          uint256 feeGrowthOutside1X128,
                          int56 tickCumulativeOutside,
                          uint160 secondsPerLiquidityOutsideX128,
                          uint32 secondsOutside,
                          bool initialized
                      );
                  /// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information
                  function tickBitmap(int16 wordPosition) external view returns (uint256);
                  /// @notice Returns the information about a position by the position's key
                  /// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper
                  /// @return _liquidity The amount of liquidity in the position,
                  /// Returns feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke,
                  /// Returns feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke,
                  /// Returns tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke,
                  /// Returns tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke
                  function positions(bytes32 key)
                      external
                      view
                      returns (
                          uint128 _liquidity,
                          uint256 feeGrowthInside0LastX128,
                          uint256 feeGrowthInside1LastX128,
                          uint128 tokensOwed0,
                          uint128 tokensOwed1
                      );
                  /// @notice Returns data about a specific observation index
                  /// @param index The element of the observations array to fetch
                  /// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time
                  /// ago, rather than at a specific index in the array.
                  /// @return blockTimestamp The timestamp of the observation,
                  /// Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp,
                  /// Returns secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp,
                  /// Returns initialized whether the observation has been initialized and the values are safe to use
                  function observations(uint256 index)
                      external
                      view
                      returns (
                          uint32 blockTimestamp,
                          int56 tickCumulative,
                          uint160 secondsPerLiquidityCumulativeX128,
                          bool initialized
                      );
              }
              // SPDX-License-Identifier: GPL-2.0-or-later
              pragma solidity >=0.5.0;
              /// @title Pool state that is not stored
              /// @notice Contains view functions to provide information about the pool that is computed rather than stored on the
              /// blockchain. The functions here may have variable gas costs.
              interface IUniswapV3PoolDerivedState {
                  /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp
                  /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing
                  /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,
                  /// you must call it with secondsAgos = [3600, 0].
                  /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in
                  /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.
                  /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned
                  /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp
                  /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block
                  /// timestamp
                  function observe(uint32[] calldata secondsAgos)
                      external
                      view
                      returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s);
                  /// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range
                  /// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed.
                  /// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first
                  /// snapshot is taken and the second snapshot is taken.
                  /// @param tickLower The lower tick of the range
                  /// @param tickUpper The upper tick of the range
                  /// @return tickCumulativeInside The snapshot of the tick accumulator for the range
                  /// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range
                  /// @return secondsInside The snapshot of seconds per liquidity for the range
                  function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
                      external
                      view
                      returns (
                          int56 tickCumulativeInside,
                          uint160 secondsPerLiquidityInsideX128,
                          uint32 secondsInside
                      );
              }
              // SPDX-License-Identifier: GPL-2.0-or-later
              pragma solidity >=0.5.0;
              /// @title Permissionless pool actions
              /// @notice Contains pool methods that can be called by anyone
              interface IUniswapV3PoolActions {
                  /// @notice Sets the initial price for the pool
                  /// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value
                  /// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96
                  function initialize(uint160 sqrtPriceX96) external;
                  /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position
                  /// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback
                  /// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends
                  /// on tickLower, tickUpper, the amount of liquidity, and the current price.
                  /// @param recipient The address for which the liquidity will be created
                  /// @param tickLower The lower tick of the position in which to add liquidity
                  /// @param tickUpper The upper tick of the position in which to add liquidity
                  /// @param amount The amount of liquidity to mint
                  /// @param data Any data that should be passed through to the callback
                  /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback
                  /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback
                  function mint(
                      address recipient,
                      int24 tickLower,
                      int24 tickUpper,
                      uint128 amount,
                      bytes calldata data
                  ) external returns (uint256 amount0, uint256 amount1);
                  /// @notice Collects tokens owed to a position
                  /// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity.
                  /// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or
                  /// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the
                  /// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity.
                  /// @param recipient The address which should receive the fees collected
                  /// @param tickLower The lower tick of the position for which to collect fees
                  /// @param tickUpper The upper tick of the position for which to collect fees
                  /// @param amount0Requested How much token0 should be withdrawn from the fees owed
                  /// @param amount1Requested How much token1 should be withdrawn from the fees owed
                  /// @return amount0 The amount of fees collected in token0
                  /// @return amount1 The amount of fees collected in token1
                  function collect(
                      address recipient,
                      int24 tickLower,
                      int24 tickUpper,
                      uint128 amount0Requested,
                      uint128 amount1Requested
                  ) external returns (uint128 amount0, uint128 amount1);
                  /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position
                  /// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0
                  /// @dev Fees must be collected separately via a call to #collect
                  /// @param tickLower The lower tick of the position for which to burn liquidity
                  /// @param tickUpper The upper tick of the position for which to burn liquidity
                  /// @param amount How much liquidity to burn
                  /// @return amount0 The amount of token0 sent to the recipient
                  /// @return amount1 The amount of token1 sent to the recipient
                  function burn(
                      int24 tickLower,
                      int24 tickUpper,
                      uint128 amount
                  ) external returns (uint256 amount0, uint256 amount1);
                  /// @notice Swap token0 for token1, or token1 for token0
                  /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
                  /// @param recipient The address to receive the output of the swap
                  /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
                  /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
                  /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
                  /// value after the swap. If one for zero, the price cannot be greater than this value after the swap
                  /// @param data Any data to be passed through to the callback
                  /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
                  /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
                  function swap(
                      address recipient,
                      bool zeroForOne,
                      int256 amountSpecified,
                      uint160 sqrtPriceLimitX96,
                      bytes calldata data
                  ) external returns (int256 amount0, int256 amount1);
                  /// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
                  /// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback
                  /// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling
                  /// with 0 amount{0,1} and sending the donation amount(s) from the callback
                  /// @param recipient The address which will receive the token0 and token1 amounts
                  /// @param amount0 The amount of token0 to send
                  /// @param amount1 The amount of token1 to send
                  /// @param data Any data to be passed through to the callback
                  function flash(
                      address recipient,
                      uint256 amount0,
                      uint256 amount1,
                      bytes calldata data
                  ) external;
                  /// @notice Increase the maximum number of price and liquidity observations that this pool will store
                  /// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to
                  /// the input observationCardinalityNext.
                  /// @param observationCardinalityNext The desired minimum number of observations for the pool to store
                  function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external;
              }
              // SPDX-License-Identifier: GPL-2.0-or-later
              pragma solidity >=0.5.0;
              /// @title Permissioned pool actions
              /// @notice Contains pool methods that may only be called by the factory owner
              interface IUniswapV3PoolOwnerActions {
                  /// @notice Set the denominator of the protocol's % share of the fees
                  /// @param feeProtocol0 new protocol fee for token0 of the pool
                  /// @param feeProtocol1 new protocol fee for token1 of the pool
                  function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external;
                  /// @notice Collect the protocol fee accrued to the pool
                  /// @param recipient The address to which collected protocol fees should be sent
                  /// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1
                  /// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0
                  /// @return amount0 The protocol fee collected in token0
                  /// @return amount1 The protocol fee collected in token1
                  function collectProtocol(
                      address recipient,
                      uint128 amount0Requested,
                      uint128 amount1Requested
                  ) external returns (uint128 amount0, uint128 amount1);
              }
              // SPDX-License-Identifier: GPL-2.0-or-later
              pragma solidity >=0.5.0;
              /// @title Events emitted by a pool
              /// @notice Contains all events emitted by the pool
              interface IUniswapV3PoolEvents {
                  /// @notice Emitted exactly once by a pool when #initialize is first called on the pool
                  /// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize
                  /// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96
                  /// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool
                  event Initialize(uint160 sqrtPriceX96, int24 tick);
                  /// @notice Emitted when liquidity is minted for a given position
                  /// @param sender The address that minted the liquidity
                  /// @param owner The owner of the position and recipient of any minted liquidity
                  /// @param tickLower The lower tick of the position
                  /// @param tickUpper The upper tick of the position
                  /// @param amount The amount of liquidity minted to the position range
                  /// @param amount0 How much token0 was required for the minted liquidity
                  /// @param amount1 How much token1 was required for the minted liquidity
                  event Mint(
                      address sender,
                      address indexed owner,
                      int24 indexed tickLower,
                      int24 indexed tickUpper,
                      uint128 amount,
                      uint256 amount0,
                      uint256 amount1
                  );
                  /// @notice Emitted when fees are collected by the owner of a position
                  /// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees
                  /// @param owner The owner of the position for which fees are collected
                  /// @param tickLower The lower tick of the position
                  /// @param tickUpper The upper tick of the position
                  /// @param amount0 The amount of token0 fees collected
                  /// @param amount1 The amount of token1 fees collected
                  event Collect(
                      address indexed owner,
                      address recipient,
                      int24 indexed tickLower,
                      int24 indexed tickUpper,
                      uint128 amount0,
                      uint128 amount1
                  );
                  /// @notice Emitted when a position's liquidity is removed
                  /// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect
                  /// @param owner The owner of the position for which liquidity is removed
                  /// @param tickLower The lower tick of the position
                  /// @param tickUpper The upper tick of the position
                  /// @param amount The amount of liquidity to remove
                  /// @param amount0 The amount of token0 withdrawn
                  /// @param amount1 The amount of token1 withdrawn
                  event Burn(
                      address indexed owner,
                      int24 indexed tickLower,
                      int24 indexed tickUpper,
                      uint128 amount,
                      uint256 amount0,
                      uint256 amount1
                  );
                  /// @notice Emitted by the pool for any swaps between token0 and token1
                  /// @param sender The address that initiated the swap call, and that received the callback
                  /// @param recipient The address that received the output of the swap
                  /// @param amount0 The delta of the token0 balance of the pool
                  /// @param amount1 The delta of the token1 balance of the pool
                  /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
                  /// @param liquidity The liquidity of the pool after the swap
                  /// @param tick The log base 1.0001 of price of the pool after the swap
                  event Swap(
                      address indexed sender,
                      address indexed recipient,
                      int256 amount0,
                      int256 amount1,
                      uint160 sqrtPriceX96,
                      uint128 liquidity,
                      int24 tick
                  );
                  /// @notice Emitted by the pool for any flashes of token0/token1
                  /// @param sender The address that initiated the swap call, and that received the callback
                  /// @param recipient The address that received the tokens from flash
                  /// @param amount0 The amount of token0 that was flashed
                  /// @param amount1 The amount of token1 that was flashed
                  /// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee
                  /// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee
                  event Flash(
                      address indexed sender,
                      address indexed recipient,
                      uint256 amount0,
                      uint256 amount1,
                      uint256 paid0,
                      uint256 paid1
                  );
                  /// @notice Emitted by the pool for increases to the number of observations that can be stored
                  /// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index
                  /// just before a mint/swap/burn.
                  /// @param observationCardinalityNextOld The previous value of the next observation cardinality
                  /// @param observationCardinalityNextNew The updated value of the next observation cardinality
                  event IncreaseObservationCardinalityNext(
                      uint16 observationCardinalityNextOld,
                      uint16 observationCardinalityNextNew
                  );
                  /// @notice Emitted when the protocol fee is changed by the pool
                  /// @param feeProtocol0Old The previous value of the token0 protocol fee
                  /// @param feeProtocol1Old The previous value of the token1 protocol fee
                  /// @param feeProtocol0New The updated value of the token0 protocol fee
                  /// @param feeProtocol1New The updated value of the token1 protocol fee
                  event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New);
                  /// @notice Emitted when the collected protocol fees are withdrawn by the factory owner
                  /// @param sender The address that collects the protocol fees
                  /// @param recipient The address that receives the collected protocol fees
                  /// @param amount0 The amount of token0 protocol fees that is withdrawn
                  /// @param amount0 The amount of token1 protocol fees that is withdrawn
                  event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1);
              }
              // SPDX-License-Identifier: GPL-2.0-or-later
              pragma solidity >=0.5.0;
              /// @title BitMath
              /// @dev This library provides functionality for computing bit properties of an unsigned integer
              library BitMath {
                  /// @notice Returns the index of the most significant bit of the number,
                  ///     where the least significant bit is at index 0 and the most significant bit is at index 255
                  /// @dev The function satisfies the property:
                  ///     x >= 2**mostSignificantBit(x) and x < 2**(mostSignificantBit(x)+1)
                  /// @param x the value for which to compute the most significant bit, must be greater than 0
                  /// @return r the index of the most significant bit
                  function mostSignificantBit(uint256 x) internal pure returns (uint8 r) {
                      require(x > 0);
                      if (x >= 0x100000000000000000000000000000000) {
                          x >>= 128;
                          r += 128;
                      }
                      if (x >= 0x10000000000000000) {
                          x >>= 64;
                          r += 64;
                      }
                      if (x >= 0x100000000) {
                          x >>= 32;
                          r += 32;
                      }
                      if (x >= 0x10000) {
                          x >>= 16;
                          r += 16;
                      }
                      if (x >= 0x100) {
                          x >>= 8;
                          r += 8;
                      }
                      if (x >= 0x10) {
                          x >>= 4;
                          r += 4;
                      }
                      if (x >= 0x4) {
                          x >>= 2;
                          r += 2;
                      }
                      if (x >= 0x2) r += 1;
                  }
                  /// @notice Returns the index of the least significant bit of the number,
                  ///     where the least significant bit is at index 0 and the most significant bit is at index 255
                  /// @dev The function satisfies the property:
                  ///     (x & 2**leastSignificantBit(x)) != 0 and (x & (2**(leastSignificantBit(x)) - 1)) == 0)
                  /// @param x the value for which to compute the least significant bit, must be greater than 0
                  /// @return r the index of the least significant bit
                  function leastSignificantBit(uint256 x) internal pure returns (uint8 r) {
                      require(x > 0);
                      r = 255;
                      if (x & type(uint128).max > 0) {
                          r -= 128;
                      } else {
                          x >>= 128;
                      }
                      if (x & type(uint64).max > 0) {
                          r -= 64;
                      } else {
                          x >>= 64;
                      }
                      if (x & type(uint32).max > 0) {
                          r -= 32;
                      } else {
                          x >>= 32;
                      }
                      if (x & type(uint16).max > 0) {
                          r -= 16;
                      } else {
                          x >>= 16;
                      }
                      if (x & type(uint8).max > 0) {
                          r -= 8;
                      } else {
                          x >>= 8;
                      }
                      if (x & 0xf > 0) {
                          r -= 4;
                      } else {
                          x >>= 4;
                      }
                      if (x & 0x3 > 0) {
                          r -= 2;
                      } else {
                          x >>= 2;
                      }
                      if (x & 0x1 > 0) r -= 1;
                  }
              }
              // SPDX-License-Identifier: GPL-2.0-or-later
              pragma solidity >=0.5.0;
              /// @title Math functions that do not check inputs or outputs
              /// @notice Contains methods that perform common math functions but do not do any overflow or underflow checks
              library UnsafeMath {
                  /// @notice Returns ceil(x / y)
                  /// @dev division by 0 has unspecified behavior, and must be checked externally
                  /// @param x The dividend
                  /// @param y The divisor
                  /// @return z The quotient, ceil(x / y)
                  function divRoundingUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
                      assembly {
                          z := add(div(x, y), gt(mod(x, y), 0))
                      }
                  }
              }
              // SPDX-License-Identifier: GPL-2.0-or-later
              pragma solidity >=0.4.0;
              /// @title FixedPoint96
              /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
              /// @dev Used in SqrtPriceMath.sol
              library FixedPoint96 {
                  uint8 internal constant RESOLUTION = 96;
                  uint256 internal constant Q96 = 0x1000000000000000000000000;
              }
              

              File 2 of 4: TetherToken
              pragma solidity ^0.4.17;
              
              /**
               * @title SafeMath
               * @dev Math operations with safety checks that throw on error
               */
              library SafeMath {
                  function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                      if (a == 0) {
                          return 0;
                      }
                      uint256 c = a * b;
                      assert(c / a == b);
                      return c;
                  }
              
                  function div(uint256 a, uint256 b) internal pure returns (uint256) {
                      // assert(b > 0); // Solidity automatically throws when dividing by 0
                      uint256 c = a / b;
                      // assert(a == b * c + a % b); // There is no case in which this doesn't hold
                      return c;
                  }
              
                  function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                      assert(b <= a);
                      return a - b;
                  }
              
                  function add(uint256 a, uint256 b) internal pure returns (uint256) {
                      uint256 c = a + b;
                      assert(c >= a);
                      return c;
                  }
              }
              
              /**
               * @title Ownable
               * @dev The Ownable contract has an owner address, and provides basic authorization control
               * functions, this simplifies the implementation of "user permissions".
               */
              contract Ownable {
                  address public owner;
              
                  /**
                    * @dev The Ownable constructor sets the original `owner` of the contract to the sender
                    * account.
                    */
                  function Ownable() public {
                      owner = msg.sender;
                  }
              
                  /**
                    * @dev Throws if called by any account other than the owner.
                    */
                  modifier onlyOwner() {
                      require(msg.sender == owner);
                      _;
                  }
              
                  /**
                  * @dev Allows the current owner to transfer control of the contract to a newOwner.
                  * @param newOwner The address to transfer ownership to.
                  */
                  function transferOwnership(address newOwner) public onlyOwner {
                      if (newOwner != address(0)) {
                          owner = newOwner;
                      }
                  }
              
              }
              
              /**
               * @title ERC20Basic
               * @dev Simpler version of ERC20 interface
               * @dev see https://github.com/ethereum/EIPs/issues/20
               */
              contract ERC20Basic {
                  uint public _totalSupply;
                  function totalSupply() public constant returns (uint);
                  function balanceOf(address who) public constant returns (uint);
                  function transfer(address to, uint value) public;
                  event Transfer(address indexed from, address indexed to, uint value);
              }
              
              /**
               * @title ERC20 interface
               * @dev see https://github.com/ethereum/EIPs/issues/20
               */
              contract ERC20 is ERC20Basic {
                  function allowance(address owner, address spender) public constant returns (uint);
                  function transferFrom(address from, address to, uint value) public;
                  function approve(address spender, uint value) public;
                  event Approval(address indexed owner, address indexed spender, uint value);
              }
              
              /**
               * @title Basic token
               * @dev Basic version of StandardToken, with no allowances.
               */
              contract BasicToken is Ownable, ERC20Basic {
                  using SafeMath for uint;
              
                  mapping(address => uint) public balances;
              
                  // additional variables for use if transaction fees ever became necessary
                  uint public basisPointsRate = 0;
                  uint public maximumFee = 0;
              
                  /**
                  * @dev Fix for the ERC20 short address attack.
                  */
                  modifier onlyPayloadSize(uint size) {
                      require(!(msg.data.length < size + 4));
                      _;
                  }
              
                  /**
                  * @dev transfer token for a specified address
                  * @param _to The address to transfer to.
                  * @param _value The amount to be transferred.
                  */
                  function transfer(address _to, uint _value) public onlyPayloadSize(2 * 32) {
                      uint fee = (_value.mul(basisPointsRate)).div(10000);
                      if (fee > maximumFee) {
                          fee = maximumFee;
                      }
                      uint sendAmount = _value.sub(fee);
                      balances[msg.sender] = balances[msg.sender].sub(_value);
                      balances[_to] = balances[_to].add(sendAmount);
                      if (fee > 0) {
                          balances[owner] = balances[owner].add(fee);
                          Transfer(msg.sender, owner, fee);
                      }
                      Transfer(msg.sender, _to, sendAmount);
                  }
              
                  /**
                  * @dev Gets the balance of the specified address.
                  * @param _owner The address to query the the balance of.
                  * @return An uint representing the amount owned by the passed address.
                  */
                  function balanceOf(address _owner) public constant returns (uint balance) {
                      return balances[_owner];
                  }
              
              }
              
              /**
               * @title Standard ERC20 token
               *
               * @dev Implementation of the basic standard token.
               * @dev https://github.com/ethereum/EIPs/issues/20
               * @dev Based oncode by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
               */
              contract StandardToken is BasicToken, ERC20 {
              
                  mapping (address => mapping (address => uint)) public allowed;
              
                  uint public constant MAX_UINT = 2**256 - 1;
              
                  /**
                  * @dev Transfer tokens from one address to another
                  * @param _from address The address which you want to send tokens from
                  * @param _to address The address which you want to transfer to
                  * @param _value uint the amount of tokens to be transferred
                  */
                  function transferFrom(address _from, address _to, uint _value) public onlyPayloadSize(3 * 32) {
                      var _allowance = allowed[_from][msg.sender];
              
                      // Check is not needed because sub(_allowance, _value) will already throw if this condition is not met
                      // if (_value > _allowance) throw;
              
                      uint fee = (_value.mul(basisPointsRate)).div(10000);
                      if (fee > maximumFee) {
                          fee = maximumFee;
                      }
                      if (_allowance < MAX_UINT) {
                          allowed[_from][msg.sender] = _allowance.sub(_value);
                      }
                      uint sendAmount = _value.sub(fee);
                      balances[_from] = balances[_from].sub(_value);
                      balances[_to] = balances[_to].add(sendAmount);
                      if (fee > 0) {
                          balances[owner] = balances[owner].add(fee);
                          Transfer(_from, owner, fee);
                      }
                      Transfer(_from, _to, sendAmount);
                  }
              
                  /**
                  * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
                  * @param _spender The address which will spend the funds.
                  * @param _value The amount of tokens to be spent.
                  */
                  function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) {
              
                      // To change the approve amount you first have to reduce the addresses`
                      //  allowance to zero by calling `approve(_spender, 0)` if it is not
                      //  already 0 to mitigate the race condition described here:
                      //  https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                      require(!((_value != 0) && (allowed[msg.sender][_spender] != 0)));
              
                      allowed[msg.sender][_spender] = _value;
                      Approval(msg.sender, _spender, _value);
                  }
              
                  /**
                  * @dev Function to check the amount of tokens than an owner allowed to a spender.
                  * @param _owner address The address which owns the funds.
                  * @param _spender address The address which will spend the funds.
                  * @return A uint specifying the amount of tokens still available for the spender.
                  */
                  function allowance(address _owner, address _spender) public constant returns (uint remaining) {
                      return allowed[_owner][_spender];
                  }
              
              }
              
              
              /**
               * @title Pausable
               * @dev Base contract which allows children to implement an emergency stop mechanism.
               */
              contract Pausable is Ownable {
                event Pause();
                event Unpause();
              
                bool public paused = false;
              
              
                /**
                 * @dev Modifier to make a function callable only when the contract is not paused.
                 */
                modifier whenNotPaused() {
                  require(!paused);
                  _;
                }
              
                /**
                 * @dev Modifier to make a function callable only when the contract is paused.
                 */
                modifier whenPaused() {
                  require(paused);
                  _;
                }
              
                /**
                 * @dev called by the owner to pause, triggers stopped state
                 */
                function pause() onlyOwner whenNotPaused public {
                  paused = true;
                  Pause();
                }
              
                /**
                 * @dev called by the owner to unpause, returns to normal state
                 */
                function unpause() onlyOwner whenPaused public {
                  paused = false;
                  Unpause();
                }
              }
              
              contract BlackList is Ownable, BasicToken {
              
                  /////// Getters to allow the same blacklist to be used also by other contracts (including upgraded Tether) ///////
                  function getBlackListStatus(address _maker) external constant returns (bool) {
                      return isBlackListed[_maker];
                  }
              
                  function getOwner() external constant returns (address) {
                      return owner;
                  }
              
                  mapping (address => bool) public isBlackListed;
                  
                  function addBlackList (address _evilUser) public onlyOwner {
                      isBlackListed[_evilUser] = true;
                      AddedBlackList(_evilUser);
                  }
              
                  function removeBlackList (address _clearedUser) public onlyOwner {
                      isBlackListed[_clearedUser] = false;
                      RemovedBlackList(_clearedUser);
                  }
              
                  function destroyBlackFunds (address _blackListedUser) public onlyOwner {
                      require(isBlackListed[_blackListedUser]);
                      uint dirtyFunds = balanceOf(_blackListedUser);
                      balances[_blackListedUser] = 0;
                      _totalSupply -= dirtyFunds;
                      DestroyedBlackFunds(_blackListedUser, dirtyFunds);
                  }
              
                  event DestroyedBlackFunds(address _blackListedUser, uint _balance);
              
                  event AddedBlackList(address _user);
              
                  event RemovedBlackList(address _user);
              
              }
              
              contract UpgradedStandardToken is StandardToken{
                  // those methods are called by the legacy contract
                  // and they must ensure msg.sender to be the contract address
                  function transferByLegacy(address from, address to, uint value) public;
                  function transferFromByLegacy(address sender, address from, address spender, uint value) public;
                  function approveByLegacy(address from, address spender, uint value) public;
              }
              
              contract TetherToken is Pausable, StandardToken, BlackList {
              
                  string public name;
                  string public symbol;
                  uint public decimals;
                  address public upgradedAddress;
                  bool public deprecated;
              
                  //  The contract can be initialized with a number of tokens
                  //  All the tokens are deposited to the owner address
                  //
                  // @param _balance Initial supply of the contract
                  // @param _name Token Name
                  // @param _symbol Token symbol
                  // @param _decimals Token decimals
                  function TetherToken(uint _initialSupply, string _name, string _symbol, uint _decimals) public {
                      _totalSupply = _initialSupply;
                      name = _name;
                      symbol = _symbol;
                      decimals = _decimals;
                      balances[owner] = _initialSupply;
                      deprecated = false;
                  }
              
                  // Forward ERC20 methods to upgraded contract if this one is deprecated
                  function transfer(address _to, uint _value) public whenNotPaused {
                      require(!isBlackListed[msg.sender]);
                      if (deprecated) {
                          return UpgradedStandardToken(upgradedAddress).transferByLegacy(msg.sender, _to, _value);
                      } else {
                          return super.transfer(_to, _value);
                      }
                  }
              
                  // Forward ERC20 methods to upgraded contract if this one is deprecated
                  function transferFrom(address _from, address _to, uint _value) public whenNotPaused {
                      require(!isBlackListed[_from]);
                      if (deprecated) {
                          return UpgradedStandardToken(upgradedAddress).transferFromByLegacy(msg.sender, _from, _to, _value);
                      } else {
                          return super.transferFrom(_from, _to, _value);
                      }
                  }
              
                  // Forward ERC20 methods to upgraded contract if this one is deprecated
                  function balanceOf(address who) public constant returns (uint) {
                      if (deprecated) {
                          return UpgradedStandardToken(upgradedAddress).balanceOf(who);
                      } else {
                          return super.balanceOf(who);
                      }
                  }
              
                  // Forward ERC20 methods to upgraded contract if this one is deprecated
                  function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) {
                      if (deprecated) {
                          return UpgradedStandardToken(upgradedAddress).approveByLegacy(msg.sender, _spender, _value);
                      } else {
                          return super.approve(_spender, _value);
                      }
                  }
              
                  // Forward ERC20 methods to upgraded contract if this one is deprecated
                  function allowance(address _owner, address _spender) public constant returns (uint remaining) {
                      if (deprecated) {
                          return StandardToken(upgradedAddress).allowance(_owner, _spender);
                      } else {
                          return super.allowance(_owner, _spender);
                      }
                  }
              
                  // deprecate current contract in favour of a new one
                  function deprecate(address _upgradedAddress) public onlyOwner {
                      deprecated = true;
                      upgradedAddress = _upgradedAddress;
                      Deprecate(_upgradedAddress);
                  }
              
                  // deprecate current contract if favour of a new one
                  function totalSupply() public constant returns (uint) {
                      if (deprecated) {
                          return StandardToken(upgradedAddress).totalSupply();
                      } else {
                          return _totalSupply;
                      }
                  }
              
                  // Issue a new amount of tokens
                  // these tokens are deposited into the owner address
                  //
                  // @param _amount Number of tokens to be issued
                  function issue(uint amount) public onlyOwner {
                      require(_totalSupply + amount > _totalSupply);
                      require(balances[owner] + amount > balances[owner]);
              
                      balances[owner] += amount;
                      _totalSupply += amount;
                      Issue(amount);
                  }
              
                  // Redeem tokens.
                  // These tokens are withdrawn from the owner address
                  // if the balance must be enough to cover the redeem
                  // or the call will fail.
                  // @param _amount Number of tokens to be issued
                  function redeem(uint amount) public onlyOwner {
                      require(_totalSupply >= amount);
                      require(balances[owner] >= amount);
              
                      _totalSupply -= amount;
                      balances[owner] -= amount;
                      Redeem(amount);
                  }
              
                  function setParams(uint newBasisPoints, uint newMaxFee) public onlyOwner {
                      // Ensure transparency by hardcoding limit beyond which fees can never be added
                      require(newBasisPoints < 20);
                      require(newMaxFee < 50);
              
                      basisPointsRate = newBasisPoints;
                      maximumFee = newMaxFee.mul(10**decimals);
              
                      Params(basisPointsRate, maximumFee);
                  }
              
                  // Called when new token are issued
                  event Issue(uint amount);
              
                  // Called when tokens are redeemed
                  event Redeem(uint amount);
              
                  // Called when contract is deprecated
                  event Deprecate(address newAddress);
              
                  // Called if contract ever adds fees
                  event Params(uint feeBasisPoints, uint maxFee);
              }

              File 3 of 4: TransparentUpgradeableProxy
              // SPDX-License-Identifier: MIT
              pragma solidity >=0.6.0 <0.8.0;
              import "./UpgradeableProxy.sol";
              /**
               * @dev This contract implements a proxy that is upgradeable by an admin.
               *
               * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
               * clashing], which can potentially be used in an attack, this contract uses the
               * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
               * things that go hand in hand:
               *
               * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
               * that call matches one of the admin functions exposed by the proxy itself.
               * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the
               * implementation. If the admin tries to call a function on the implementation it will fail with an error that says
               * "admin cannot fallback to proxy target".
               *
               * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing
               * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due
               * to sudden errors when trying to call a function from the proxy implementation.
               *
               * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way,
               * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy.
               */
              contract TransparentUpgradeableProxy is UpgradeableProxy {
                  /**
                   * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
                   * optionally initialized with `_data` as explained in {UpgradeableProxy-constructor}.
                   */
                  constructor(address _logic, address admin_, bytes memory _data) public payable UpgradeableProxy(_logic, _data) {
                      assert(_ADMIN_SLOT == bytes32(uint256(keccak256("eip1967.proxy.admin")) - 1));
                      _setAdmin(admin_);
                  }
                  /**
                   * @dev Emitted when the admin account has changed.
                   */
                  event AdminChanged(address previousAdmin, address newAdmin);
                  /**
                   * @dev Storage slot with the admin of the contract.
                   * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
                   * validated in the constructor.
                   */
                  bytes32 private constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                  /**
                   * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
                   */
                  modifier ifAdmin() {
                      if (msg.sender == _admin()) {
                          _;
                      } else {
                          _fallback();
                      }
                  }
                  /**
                   * @dev Returns the current admin.
                   *
                   * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyAdmin}.
                   *
                   * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
                   * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
                   * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
                   */
                  function admin() external ifAdmin returns (address admin_) {
                      admin_ = _admin();
                  }
                  /**
                   * @dev Returns the current implementation.
                   *
                   * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyImplementation}.
                   *
                   * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
                   * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
                   * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
                   */
                  function implementation() external ifAdmin returns (address implementation_) {
                      implementation_ = _implementation();
                  }
                  /**
                   * @dev Changes the admin of the proxy.
                   *
                   * Emits an {AdminChanged} event.
                   *
                   * NOTE: Only the admin can call this function. See {ProxyAdmin-changeProxyAdmin}.
                   */
                  function changeAdmin(address newAdmin) external virtual ifAdmin {
                      require(newAdmin != address(0), "TransparentUpgradeableProxy: new admin is the zero address");
                      emit AdminChanged(_admin(), newAdmin);
                      _setAdmin(newAdmin);
                  }
                  /**
                   * @dev Upgrade the implementation of the proxy.
                   *
                   * NOTE: Only the admin can call this function. See {ProxyAdmin-upgrade}.
                   */
                  function upgradeTo(address newImplementation) external virtual ifAdmin {
                      _upgradeTo(newImplementation);
                  }
                  /**
                   * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
                   * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
                   * proxied contract.
                   *
                   * NOTE: Only the admin can call this function. See {ProxyAdmin-upgradeAndCall}.
                   */
                  function upgradeToAndCall(address newImplementation, bytes calldata data) external payable virtual ifAdmin {
                      _upgradeTo(newImplementation);
                      Address.functionDelegateCall(newImplementation, data);
                  }
                  /**
                   * @dev Returns the current admin.
                   */
                  function _admin() internal view virtual returns (address adm) {
                      bytes32 slot = _ADMIN_SLOT;
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          adm := sload(slot)
                      }
                  }
                  /**
                   * @dev Stores a new address in the EIP1967 admin slot.
                   */
                  function _setAdmin(address newAdmin) private {
                      bytes32 slot = _ADMIN_SLOT;
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          sstore(slot, newAdmin)
                      }
                  }
                  /**
                   * @dev Makes sure the admin cannot access the fallback function. See {Proxy-_beforeFallback}.
                   */
                  function _beforeFallback() internal virtual override {
                      require(msg.sender != _admin(), "TransparentUpgradeableProxy: admin cannot fallback to proxy target");
                      super._beforeFallback();
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >=0.6.0 <0.8.0;
              import "./Proxy.sol";
              import "../utils/Address.sol";
              /**
               * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
               * implementation address that can be changed. This address is stored in storage in the location specified by
               * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
               * implementation behind the proxy.
               *
               * Upgradeability is only provided internally through {_upgradeTo}. For an externally upgradeable proxy see
               * {TransparentUpgradeableProxy}.
               */
              contract UpgradeableProxy is Proxy {
                  /**
                   * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
                   *
                   * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
                   * function call, and allows initializating the storage of the proxy like a Solidity constructor.
                   */
                  constructor(address _logic, bytes memory _data) public payable {
                      assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1));
                      _setImplementation(_logic);
                      if(_data.length > 0) {
                          Address.functionDelegateCall(_logic, _data);
                      }
                  }
                  /**
                   * @dev Emitted when the implementation is upgraded.
                   */
                  event Upgraded(address indexed implementation);
                  /**
                   * @dev Storage slot with the address of the current implementation.
                   * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
                   * validated in the constructor.
                   */
                  bytes32 private constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                  /**
                   * @dev Returns the current implementation address.
                   */
                  function _implementation() internal view virtual override returns (address impl) {
                      bytes32 slot = _IMPLEMENTATION_SLOT;
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          impl := sload(slot)
                      }
                  }
                  /**
                   * @dev Upgrades the proxy to a new implementation.
                   *
                   * Emits an {Upgraded} event.
                   */
                  function _upgradeTo(address newImplementation) internal virtual {
                      _setImplementation(newImplementation);
                      emit Upgraded(newImplementation);
                  }
                  /**
                   * @dev Stores a new address in the EIP1967 implementation slot.
                   */
                  function _setImplementation(address newImplementation) private {
                      require(Address.isContract(newImplementation), "UpgradeableProxy: new implementation is not a contract");
                      bytes32 slot = _IMPLEMENTATION_SLOT;
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          sstore(slot, newImplementation)
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >=0.6.2 <0.8.0;
              /**
               * @dev Collection of functions related to the address type
               */
              library Address {
                  /**
                   * @dev Returns true if `account` is a contract.
                   *
                   * [IMPORTANT]
                   * ====
                   * It is unsafe to assume that an address for which this function returns
                   * false is an externally-owned account (EOA) and not a contract.
                   *
                   * Among others, `isContract` will return false for the following
                   * types of addresses:
                   *
                   *  - an externally-owned account
                   *  - a contract in construction
                   *  - an address where a contract will be created
                   *  - an address where a contract lived, but was destroyed
                   * ====
                   */
                  function isContract(address account) internal view returns (bool) {
                      // This method relies on extcodesize, which returns 0 for contracts in
                      // construction, since the code is only stored at the end of the
                      // constructor execution.
                      uint256 size;
                      // solhint-disable-next-line no-inline-assembly
                      assembly { size := extcodesize(account) }
                      return size > 0;
                  }
                  /**
                   * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                   * `recipient`, forwarding all available gas and reverting on errors.
                   *
                   * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                   * of certain opcodes, possibly making contracts go over the 2300 gas limit
                   * imposed by `transfer`, making them unable to receive funds via
                   * `transfer`. {sendValue} removes this limitation.
                   *
                   * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                   *
                   * IMPORTANT: because control is transferred to `recipient`, care must be
                   * taken to not create reentrancy vulnerabilities. Consider using
                   * {ReentrancyGuard} or the
                   * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                   */
                  function sendValue(address payable recipient, uint256 amount) internal {
                      require(address(this).balance >= amount, "Address: insufficient balance");
                      // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
                      (bool success, ) = recipient.call{ value: amount }("");
                      require(success, "Address: unable to send value, recipient may have reverted");
                  }
                  /**
                   * @dev Performs a Solidity function call using a low level `call`. A
                   * plain`call` is an unsafe replacement for a function call: use this
                   * function instead.
                   *
                   * If `target` reverts with a revert reason, it is bubbled up by this
                   * function (like regular Solidity function calls).
                   *
                   * Returns the raw returned data. To convert to the expected return value,
                   * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                   *
                   * Requirements:
                   *
                   * - `target` must be a contract.
                   * - calling `target` with `data` must not revert.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionCall(target, data, "Address: low-level call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                   * `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, 0, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but also transferring `value` wei to `target`.
                   *
                   * Requirements:
                   *
                   * - the calling contract must have an ETH balance of at least `value`.
                   * - the called Solidity function must be `payable`.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                   * with `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
                      require(address(this).balance >= value, "Address: insufficient balance for call");
                      require(isContract(target), "Address: call to non-contract");
                      // solhint-disable-next-line avoid-low-level-calls
                      (bool success, bytes memory returndata) = target.call{ value: value }(data);
                      return _verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                      return functionStaticCall(target, data, "Address: low-level static call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
                      require(isContract(target), "Address: static call to non-contract");
                      // solhint-disable-next-line avoid-low-level-calls
                      (bool success, bytes memory returndata) = target.staticcall(data);
                      return _verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                      require(isContract(target), "Address: delegate call to non-contract");
                      // solhint-disable-next-line avoid-low-level-calls
                      (bool success, bytes memory returndata) = target.delegatecall(data);
                      return _verifyCallResult(success, returndata, errorMessage);
                  }
                  function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
                      if (success) {
                          return returndata;
                      } else {
                          // Look for revert reason and bubble it up if present
                          if (returndata.length > 0) {
                              // The easiest way to bubble the revert reason is using memory via assembly
                              // solhint-disable-next-line no-inline-assembly
                              assembly {
                                  let returndata_size := mload(returndata)
                                  revert(add(32, returndata), returndata_size)
                              }
                          } else {
                              revert(errorMessage);
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >=0.6.0 <0.8.0;
              /**
               * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
               * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
               * be specified by overriding the virtual {_implementation} function.
               *
               * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
               * different contract through the {_delegate} function.
               *
               * The success and return data of the delegated call will be returned back to the caller of the proxy.
               */
              abstract contract Proxy {
                  /**
                   * @dev Delegates the current call to `implementation`.
                   *
                   * This function does not return to its internall call site, it will return directly to the external caller.
                   */
                  function _delegate(address implementation) internal virtual {
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          // Copy msg.data. We take full control of memory in this inline assembly
                          // block because it will not return to Solidity code. We overwrite the
                          // Solidity scratch pad at memory position 0.
                          calldatacopy(0, 0, calldatasize())
                          // Call the implementation.
                          // out and outsize are 0 because we don't know the size yet.
                          let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                          // Copy the returned data.
                          returndatacopy(0, 0, returndatasize())
                          switch result
                          // delegatecall returns 0 on error.
                          case 0 { revert(0, returndatasize()) }
                          default { return(0, returndatasize()) }
                      }
                  }
                  /**
                   * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function
                   * and {_fallback} should delegate.
                   */
                  function _implementation() internal view virtual returns (address);
                  /**
                   * @dev Delegates the current call to the address returned by `_implementation()`.
                   *
                   * This function does not return to its internall call site, it will return directly to the external caller.
                   */
                  function _fallback() internal virtual {
                      _beforeFallback();
                      _delegate(_implementation());
                  }
                  /**
                   * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
                   * function in the contract matches the call data.
                   */
                  fallback () external payable virtual {
                      _fallback();
                  }
                  /**
                   * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
                   * is empty.
                   */
                  receive () external payable virtual {
                      _fallback();
                  }
                  /**
                   * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
                   * call, or as part of the Solidity `fallback` or `receive` functions.
                   *
                   * If overriden should call `super._beforeFallback()`.
                   */
                  function _beforeFallback() internal virtual {
                  }
              }
              

              File 4 of 4: BridgeMintableTokenV2
              // Sources flattened with hardhat v2.11.2 https://hardhat.org
              
              // File @openzeppelin/contracts-upgradeable/utils/[email protected]
              
              
              pragma solidity >=0.6.2 <0.8.0;
              
              /**
               * @dev Collection of functions related to the address type
               */
              library AddressUpgradeable {
                  /**
                   * @dev Returns true if `account` is a contract.
                   *
                   * [IMPORTANT]
                   * ====
                   * It is unsafe to assume that an address for which this function returns
                   * false is an externally-owned account (EOA) and not a contract.
                   *
                   * Among others, `isContract` will return false for the following
                   * types of addresses:
                   *
                   *  - an externally-owned account
                   *  - a contract in construction
                   *  - an address where a contract will be created
                   *  - an address where a contract lived, but was destroyed
                   * ====
                   */
                  function isContract(address account) internal view returns (bool) {
                      // This method relies on extcodesize, which returns 0 for contracts in
                      // construction, since the code is only stored at the end of the
                      // constructor execution.
              
                      uint256 size;
                      // solhint-disable-next-line no-inline-assembly
                      assembly { size := extcodesize(account) }
                      return size > 0;
                  }
              
                  /**
                   * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                   * `recipient`, forwarding all available gas and reverting on errors.
                   *
                   * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                   * of certain opcodes, possibly making contracts go over the 2300 gas limit
                   * imposed by `transfer`, making them unable to receive funds via
                   * `transfer`. {sendValue} removes this limitation.
                   *
                   * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                   *
                   * IMPORTANT: because control is transferred to `recipient`, care must be
                   * taken to not create reentrancy vulnerabilities. Consider using
                   * {ReentrancyGuard} or the
                   * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                   */
                  function sendValue(address payable recipient, uint256 amount) internal {
                      require(address(this).balance >= amount, "Address: insufficient balance");
              
                      // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
                      (bool success, ) = recipient.call{ value: amount }("");
                      require(success, "Address: unable to send value, recipient may have reverted");
                  }
              
                  /**
                   * @dev Performs a Solidity function call using a low level `call`. A
                   * plain`call` is an unsafe replacement for a function call: use this
                   * function instead.
                   *
                   * If `target` reverts with a revert reason, it is bubbled up by this
                   * function (like regular Solidity function calls).
                   *
                   * Returns the raw returned data. To convert to the expected return value,
                   * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                   *
                   * Requirements:
                   *
                   * - `target` must be a contract.
                   * - calling `target` with `data` must not revert.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionCall(target, data, "Address: low-level call failed");
                  }
              
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                   * `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, 0, errorMessage);
                  }
              
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but also transferring `value` wei to `target`.
                   *
                   * Requirements:
                   *
                   * - the calling contract must have an ETH balance of at least `value`.
                   * - the called Solidity function must be `payable`.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                  }
              
                  /**
                   * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                   * with `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
                      require(address(this).balance >= value, "Address: insufficient balance for call");
                      require(isContract(target), "Address: call to non-contract");
              
                      // solhint-disable-next-line avoid-low-level-calls
                      (bool success, bytes memory returndata) = target.call{ value: value }(data);
                      return _verifyCallResult(success, returndata, errorMessage);
                  }
              
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                      return functionStaticCall(target, data, "Address: low-level static call failed");
                  }
              
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
                      require(isContract(target), "Address: static call to non-contract");
              
                      // solhint-disable-next-line avoid-low-level-calls
                      (bool success, bytes memory returndata) = target.staticcall(data);
                      return _verifyCallResult(success, returndata, errorMessage);
                  }
              
                  function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
                      if (success) {
                          return returndata;
                      } else {
                          // Look for revert reason and bubble it up if present
                          if (returndata.length > 0) {
                              // The easiest way to bubble the revert reason is using memory via assembly
              
                              // solhint-disable-next-line no-inline-assembly
                              assembly {
                                  let returndata_size := mload(returndata)
                                  revert(add(32, returndata), returndata_size)
                              }
                          } else {
                              revert(errorMessage);
                          }
                      }
                  }
              }
              
              
              // File @openzeppelin/contracts-upgradeable/proxy/[email protected]
              
              
              // solhint-disable-next-line compiler-version
              pragma solidity >=0.4.24 <0.8.0;
              
              /**
               * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
               * behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an
               * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
               * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
               *
               * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
               * possible by providing the encoded function call as the `_data` argument to {UpgradeableProxy-constructor}.
               *
               * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
               * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
               */
              abstract contract Initializable {
              
                  /**
                   * @dev Indicates that the contract has been initialized.
                   */
                  bool private _initialized;
              
                  /**
                   * @dev Indicates that the contract is in the process of being initialized.
                   */
                  bool private _initializing;
              
                  /**
                   * @dev Modifier to protect an initializer function from being invoked twice.
                   */
                  modifier initializer() {
                      require(_initializing || _isConstructor() || !_initialized, "Initializable: contract is already initialized");
              
                      bool isTopLevelCall = !_initializing;
                      if (isTopLevelCall) {
                          _initializing = true;
                          _initialized = true;
                      }
              
                      _;
              
                      if (isTopLevelCall) {
                          _initializing = false;
                      }
                  }
              
                  /// @dev Returns true if and only if the function is running in the constructor
                  function _isConstructor() private view returns (bool) {
                      return !AddressUpgradeable.isContract(address(this));
                  }
              }
              
              
              // File @openzeppelin/contracts-upgradeable/utils/[email protected]
              
              
              pragma solidity >=0.6.0 <0.8.0;
              
              /*
               * @dev Provides information about the current execution context, including the
               * sender of the transaction and its data. While these are generally available
               * via msg.sender and msg.data, they should not be accessed in such a direct
               * manner, since when dealing with GSN meta-transactions the account sending and
               * paying for execution may not be the actual sender (as far as an application
               * is concerned).
               *
               * This contract is only required for intermediate, library-like contracts.
               */
              abstract contract ContextUpgradeable is Initializable {
                  function __Context_init() internal initializer {
                      __Context_init_unchained();
                  }
              
                  function __Context_init_unchained() internal initializer {
                  }
                  function _msgSender() internal view virtual returns (address payable) {
                      return msg.sender;
                  }
              
                  function _msgData() internal view virtual returns (bytes memory) {
                      this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
                      return msg.data;
                  }
                  uint256[50] private __gap;
              }
              
              
              // File @openzeppelin/contracts-upgradeable/utils/[email protected]
              
              
              pragma solidity >=0.6.0 <0.8.0;
              
              
              /**
               * @dev Contract module which allows children to implement an emergency stop
               * mechanism that can be triggered by an authorized account.
               *
               * This module is used through inheritance. It will make available the
               * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
               * the functions of your contract. Note that they will not be pausable by
               * simply including this module, only once the modifiers are put in place.
               */
              abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
                  /**
                   * @dev Emitted when the pause is triggered by `account`.
                   */
                  event Paused(address account);
              
                  /**
                   * @dev Emitted when the pause is lifted by `account`.
                   */
                  event Unpaused(address account);
              
                  bool private _paused;
              
                  /**
                   * @dev Initializes the contract in unpaused state.
                   */
                  function __Pausable_init() internal initializer {
                      __Context_init_unchained();
                      __Pausable_init_unchained();
                  }
              
                  function __Pausable_init_unchained() internal initializer {
                      _paused = false;
                  }
              
                  /**
                   * @dev Returns true if the contract is paused, and false otherwise.
                   */
                  function paused() public view virtual returns (bool) {
                      return _paused;
                  }
              
                  /**
                   * @dev Modifier to make a function callable only when the contract is not paused.
                   *
                   * Requirements:
                   *
                   * - The contract must not be paused.
                   */
                  modifier whenNotPaused() {
                      require(!paused(), "Pausable: paused");
                      _;
                  }
              
                  /**
                   * @dev Modifier to make a function callable only when the contract is paused.
                   *
                   * Requirements:
                   *
                   * - The contract must be paused.
                   */
                  modifier whenPaused() {
                      require(paused(), "Pausable: not paused");
                      _;
                  }
              
                  /**
                   * @dev Triggers stopped state.
                   *
                   * Requirements:
                   *
                   * - The contract must not be paused.
                   */
                  function _pause() internal virtual whenNotPaused {
                      _paused = true;
                      emit Paused(_msgSender());
                  }
              
                  /**
                   * @dev Returns to normal state.
                   *
                   * Requirements:
                   *
                   * - The contract must be paused.
                   */
                  function _unpause() internal virtual whenPaused {
                      _paused = false;
                      emit Unpaused(_msgSender());
                  }
                  uint256[49] private __gap;
              }
              
              
              // File @openzeppelin/contracts/token/ERC20/[email protected]
              
              
              pragma solidity >=0.6.0 <0.8.0;
              
              /**
               * @dev Interface of the ERC20 standard as defined in the EIP.
               */
              interface IERC20 {
                  /**
                   * @dev Returns the amount of tokens in existence.
                   */
                  function totalSupply() external view returns (uint256);
              
                  /**
                   * @dev Returns the amount of tokens owned by `account`.
                   */
                  function balanceOf(address account) external view returns (uint256);
              
                  /**
                   * @dev Moves `amount` tokens from the caller's account to `recipient`.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transfer(address recipient, uint256 amount) external returns (bool);
              
                  /**
                   * @dev Returns the remaining number of tokens that `spender` will be
                   * allowed to spend on behalf of `owner` through {transferFrom}. This is
                   * zero by default.
                   *
                   * This value changes when {approve} or {transferFrom} are called.
                   */
                  function allowance(address owner, address spender) external view returns (uint256);
              
                  /**
                   * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * IMPORTANT: Beware that changing an allowance with this method brings the risk
                   * that someone may use both the old and the new allowance by unfortunate
                   * transaction ordering. One possible solution to mitigate this race
                   * condition is to first reduce the spender's allowance to 0 and set the
                   * desired value afterwards:
                   * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                   *
                   * Emits an {Approval} event.
                   */
                  function approve(address spender, uint256 amount) external returns (bool);
              
                  /**
                   * @dev Moves `amount` tokens from `sender` to `recipient` using the
                   * allowance mechanism. `amount` is then deducted from the caller's
                   * allowance.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
              
                  /**
                   * @dev Emitted when `value` tokens are moved from one account (`from`) to
                   * another (`to`).
                   *
                   * Note that `value` may be zero.
                   */
                  event Transfer(address indexed from, address indexed to, uint256 value);
              
                  /**
                   * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                   * a call to {approve}. `value` is the new allowance.
                   */
                  event Approval(address indexed owner, address indexed spender, uint256 value);
              }
              
              
              // File @openzeppelin/contracts-upgradeable/token/ERC20/[email protected]
              
              
              pragma solidity >=0.6.0 <0.8.0;
              
              /**
               * @dev Interface of the ERC20 standard as defined in the EIP.
               */
              interface IERC20Upgradeable {
                  /**
                   * @dev Returns the amount of tokens in existence.
                   */
                  function totalSupply() external view returns (uint256);
              
                  /**
                   * @dev Returns the amount of tokens owned by `account`.
                   */
                  function balanceOf(address account) external view returns (uint256);
              
                  /**
                   * @dev Moves `amount` tokens from the caller's account to `recipient`.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transfer(address recipient, uint256 amount) external returns (bool);
              
                  /**
                   * @dev Returns the remaining number of tokens that `spender` will be
                   * allowed to spend on behalf of `owner` through {transferFrom}. This is
                   * zero by default.
                   *
                   * This value changes when {approve} or {transferFrom} are called.
                   */
                  function allowance(address owner, address spender) external view returns (uint256);
              
                  /**
                   * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * IMPORTANT: Beware that changing an allowance with this method brings the risk
                   * that someone may use both the old and the new allowance by unfortunate
                   * transaction ordering. One possible solution to mitigate this race
                   * condition is to first reduce the spender's allowance to 0 and set the
                   * desired value afterwards:
                   * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                   *
                   * Emits an {Approval} event.
                   */
                  function approve(address spender, uint256 amount) external returns (bool);
              
                  /**
                   * @dev Moves `amount` tokens from `sender` to `recipient` using the
                   * allowance mechanism. `amount` is then deducted from the caller's
                   * allowance.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
              
                  /**
                   * @dev Emitted when `value` tokens are moved from one account (`from`) to
                   * another (`to`).
                   *
                   * Note that `value` may be zero.
                   */
                  event Transfer(address indexed from, address indexed to, uint256 value);
              
                  /**
                   * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                   * a call to {approve}. `value` is the new allowance.
                   */
                  event Approval(address indexed owner, address indexed spender, uint256 value);
              }
              
              
              // File @openzeppelin/contracts-upgradeable/math/[email protected]
              
              
              pragma solidity >=0.6.0 <0.8.0;
              
              /**
               * @dev Wrappers over Solidity's arithmetic operations with added overflow
               * checks.
               *
               * Arithmetic operations in Solidity wrap on overflow. This can easily result
               * in bugs, because programmers usually assume that an overflow raises an
               * error, which is the standard behavior in high level programming languages.
               * `SafeMath` restores this intuition by reverting the transaction when an
               * operation overflows.
               *
               * Using this library instead of the unchecked operations eliminates an entire
               * class of bugs, so it's recommended to use it always.
               */
              library SafeMathUpgradeable {
                  /**
                   * @dev Returns the addition of two unsigned integers, with an overflow flag.
                   *
                   * _Available since v3.4._
                   */
                  function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                      uint256 c = a + b;
                      if (c < a) return (false, 0);
                      return (true, c);
                  }
              
                  /**
                   * @dev Returns the substraction of two unsigned integers, with an overflow flag.
                   *
                   * _Available since v3.4._
                   */
                  function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                      if (b > a) return (false, 0);
                      return (true, a - b);
                  }
              
                  /**
                   * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
                   *
                   * _Available since v3.4._
                   */
                  function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                      // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                      // benefit is lost if 'b' is also tested.
                      // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                      if (a == 0) return (true, 0);
                      uint256 c = a * b;
                      if (c / a != b) return (false, 0);
                      return (true, c);
                  }
              
                  /**
                   * @dev Returns the division of two unsigned integers, with a division by zero flag.
                   *
                   * _Available since v3.4._
                   */
                  function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                      if (b == 0) return (false, 0);
                      return (true, a / b);
                  }
              
                  /**
                   * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
                   *
                   * _Available since v3.4._
                   */
                  function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                      if (b == 0) return (false, 0);
                      return (true, a % b);
                  }
              
                  /**
                   * @dev Returns the addition of two unsigned integers, reverting on
                   * overflow.
                   *
                   * Counterpart to Solidity's `+` operator.
                   *
                   * Requirements:
                   *
                   * - Addition cannot overflow.
                   */
                  function add(uint256 a, uint256 b) internal pure returns (uint256) {
                      uint256 c = a + b;
                      require(c >= a, "SafeMath: addition overflow");
                      return c;
                  }
              
                  /**
                   * @dev Returns the subtraction of two unsigned integers, reverting on
                   * overflow (when the result is negative).
                   *
                   * Counterpart to Solidity's `-` operator.
                   *
                   * Requirements:
                   *
                   * - Subtraction cannot overflow.
                   */
                  function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                      require(b <= a, "SafeMath: subtraction overflow");
                      return a - b;
                  }
              
                  /**
                   * @dev Returns the multiplication of two unsigned integers, reverting on
                   * overflow.
                   *
                   * Counterpart to Solidity's `*` operator.
                   *
                   * Requirements:
                   *
                   * - Multiplication cannot overflow.
                   */
                  function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                      if (a == 0) return 0;
                      uint256 c = a * b;
                      require(c / a == b, "SafeMath: multiplication overflow");
                      return c;
                  }
              
                  /**
                   * @dev Returns the integer division of two unsigned integers, reverting on
                   * division by zero. The result is rounded towards zero.
                   *
                   * Counterpart to Solidity's `/` operator. Note: this function uses a
                   * `revert` opcode (which leaves remaining gas untouched) while Solidity
                   * uses an invalid opcode to revert (consuming all remaining gas).
                   *
                   * Requirements:
                   *
                   * - The divisor cannot be zero.
                   */
                  function div(uint256 a, uint256 b) internal pure returns (uint256) {
                      require(b > 0, "SafeMath: division by zero");
                      return a / b;
                  }
              
                  /**
                   * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
                   * reverting when dividing by zero.
                   *
                   * Counterpart to Solidity's `%` operator. This function uses a `revert`
                   * opcode (which leaves remaining gas untouched) while Solidity uses an
                   * invalid opcode to revert (consuming all remaining gas).
                   *
                   * Requirements:
                   *
                   * - The divisor cannot be zero.
                   */
                  function mod(uint256 a, uint256 b) internal pure returns (uint256) {
                      require(b > 0, "SafeMath: modulo by zero");
                      return a % b;
                  }
              
                  /**
                   * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
                   * overflow (when the result is negative).
                   *
                   * CAUTION: This function is deprecated because it requires allocating memory for the error
                   * message unnecessarily. For custom revert reasons use {trySub}.
                   *
                   * Counterpart to Solidity's `-` operator.
                   *
                   * Requirements:
                   *
                   * - Subtraction cannot overflow.
                   */
                  function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                      require(b <= a, errorMessage);
                      return a - b;
                  }
              
                  /**
                   * @dev Returns the integer division of two unsigned integers, reverting with custom message on
                   * division by zero. The result is rounded towards zero.
                   *
                   * CAUTION: This function is deprecated because it requires allocating memory for the error
                   * message unnecessarily. For custom revert reasons use {tryDiv}.
                   *
                   * Counterpart to Solidity's `/` operator. Note: this function uses a
                   * `revert` opcode (which leaves remaining gas untouched) while Solidity
                   * uses an invalid opcode to revert (consuming all remaining gas).
                   *
                   * Requirements:
                   *
                   * - The divisor cannot be zero.
                   */
                  function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                      require(b > 0, errorMessage);
                      return a / b;
                  }
              
                  /**
                   * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
                   * reverting with custom message when dividing by zero.
                   *
                   * CAUTION: This function is deprecated because it requires allocating memory for the error
                   * message unnecessarily. For custom revert reasons use {tryMod}.
                   *
                   * Counterpart to Solidity's `%` operator. This function uses a `revert`
                   * opcode (which leaves remaining gas untouched) while Solidity uses an
                   * invalid opcode to revert (consuming all remaining gas).
                   *
                   * Requirements:
                   *
                   * - The divisor cannot be zero.
                   */
                  function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                      require(b > 0, errorMessage);
                      return a % b;
                  }
              }
              
              
              // File @openzeppelin/contracts-upgradeable/token/ERC20/[email protected]
              
              
              pragma solidity >=0.6.0 <0.8.0;
              
              
              
              
              /**
               * @dev Implementation of the {IERC20} interface.
               *
               * This implementation is agnostic to the way tokens are created. This means
               * that a supply mechanism has to be added in a derived contract using {_mint}.
               * For a generic mechanism see {ERC20PresetMinterPauser}.
               *
               * TIP: For a detailed writeup see our guide
               * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
               * to implement supply mechanisms].
               *
               * We have followed general OpenZeppelin guidelines: functions revert instead
               * of returning `false` on failure. This behavior is nonetheless conventional
               * and does not conflict with the expectations of ERC20 applications.
               *
               * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
               * This allows applications to reconstruct the allowance for all accounts just
               * by listening to said events. Other implementations of the EIP may not emit
               * these events, as it isn't required by the specification.
               *
               * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
               * functions have been added to mitigate the well-known issues around setting
               * allowances. See {IERC20-approve}.
               */
              contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20Upgradeable {
                  using SafeMathUpgradeable for uint256;
              
                  mapping (address => uint256) private _balances;
              
                  mapping (address => mapping (address => uint256)) private _allowances;
              
                  uint256 private _totalSupply;
              
                  string private _name;
                  string private _symbol;
                  uint8 private _decimals;
              
                  /**
                   * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
                   * a default value of 18.
                   *
                   * To select a different value for {decimals}, use {_setupDecimals}.
                   *
                   * All three of these values are immutable: they can only be set once during
                   * construction.
                   */
                  function __ERC20_init(string memory name_, string memory symbol_) internal initializer {
                      __Context_init_unchained();
                      __ERC20_init_unchained(name_, symbol_);
                  }
              
                  function __ERC20_init_unchained(string memory name_, string memory symbol_) internal initializer {
                      _name = name_;
                      _symbol = symbol_;
                      _decimals = 18;
                  }
              
                  /**
                   * @dev Returns the name of the token.
                   */
                  function name() public view virtual returns (string memory) {
                      return _name;
                  }
              
                  /**
                   * @dev Returns the symbol of the token, usually a shorter version of the
                   * name.
                   */
                  function symbol() public view virtual returns (string memory) {
                      return _symbol;
                  }
              
                  /**
                   * @dev Returns the number of decimals used to get its user representation.
                   * For example, if `decimals` equals `2`, a balance of `505` tokens should
                   * be displayed to a user as `5,05` (`505 / 10 ** 2`).
                   *
                   * Tokens usually opt for a value of 18, imitating the relationship between
                   * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
                   * called.
                   *
                   * NOTE: This information is only used for _display_ purposes: it in
                   * no way affects any of the arithmetic of the contract, including
                   * {IERC20-balanceOf} and {IERC20-transfer}.
                   */
                  function decimals() public view virtual returns (uint8) {
                      return _decimals;
                  }
              
                  /**
                   * @dev See {IERC20-totalSupply}.
                   */
                  function totalSupply() public view virtual override returns (uint256) {
                      return _totalSupply;
                  }
              
                  /**
                   * @dev See {IERC20-balanceOf}.
                   */
                  function balanceOf(address account) public view virtual override returns (uint256) {
                      return _balances[account];
                  }
              
                  /**
                   * @dev See {IERC20-transfer}.
                   *
                   * Requirements:
                   *
                   * - `recipient` cannot be the zero address.
                   * - the caller must have a balance of at least `amount`.
                   */
                  function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
                      _transfer(_msgSender(), recipient, amount);
                      return true;
                  }
              
                  /**
                   * @dev See {IERC20-allowance}.
                   */
                  function allowance(address owner, address spender) public view virtual override returns (uint256) {
                      return _allowances[owner][spender];
                  }
              
                  /**
                   * @dev See {IERC20-approve}.
                   *
                   * Requirements:
                   *
                   * - `spender` cannot be the zero address.
                   */
                  function approve(address spender, uint256 amount) public virtual override returns (bool) {
                      _approve(_msgSender(), spender, amount);
                      return true;
                  }
              
                  /**
                   * @dev See {IERC20-transferFrom}.
                   *
                   * Emits an {Approval} event indicating the updated allowance. This is not
                   * required by the EIP. See the note at the beginning of {ERC20}.
                   *
                   * Requirements:
                   *
                   * - `sender` and `recipient` cannot be the zero address.
                   * - `sender` must have a balance of at least `amount`.
                   * - the caller must have allowance for ``sender``'s tokens of at least
                   * `amount`.
                   */
                  function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
                      _transfer(sender, recipient, amount);
                      _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
                      return true;
                  }
              
                  /**
                   * @dev Atomically increases the allowance granted to `spender` by the caller.
                   *
                   * This is an alternative to {approve} that can be used as a mitigation for
                   * problems described in {IERC20-approve}.
                   *
                   * Emits an {Approval} event indicating the updated allowance.
                   *
                   * Requirements:
                   *
                   * - `spender` cannot be the zero address.
                   */
                  function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
                      _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
                      return true;
                  }
              
                  /**
                   * @dev Atomically decreases the allowance granted to `spender` by the caller.
                   *
                   * This is an alternative to {approve} that can be used as a mitigation for
                   * problems described in {IERC20-approve}.
                   *
                   * Emits an {Approval} event indicating the updated allowance.
                   *
                   * Requirements:
                   *
                   * - `spender` cannot be the zero address.
                   * - `spender` must have allowance for the caller of at least
                   * `subtractedValue`.
                   */
                  function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
                      _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
                      return true;
                  }
              
                  /**
                   * @dev Moves tokens `amount` from `sender` to `recipient`.
                   *
                   * This is internal function is equivalent to {transfer}, and can be used to
                   * e.g. implement automatic token fees, slashing mechanisms, etc.
                   *
                   * Emits a {Transfer} event.
                   *
                   * Requirements:
                   *
                   * - `sender` cannot be the zero address.
                   * - `recipient` cannot be the zero address.
                   * - `sender` must have a balance of at least `amount`.
                   */
                  function _transfer(address sender, address recipient, uint256 amount) internal virtual {
                      require(sender != address(0), "ERC20: transfer from the zero address");
                      require(recipient != address(0), "ERC20: transfer to the zero address");
              
                      _beforeTokenTransfer(sender, recipient, amount);
              
                      _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
                      _balances[recipient] = _balances[recipient].add(amount);
                      emit Transfer(sender, recipient, amount);
                  }
              
                  /** @dev Creates `amount` tokens and assigns them to `account`, increasing
                   * the total supply.
                   *
                   * Emits a {Transfer} event with `from` set to the zero address.
                   *
                   * Requirements:
                   *
                   * - `to` cannot be the zero address.
                   */
                  function _mint(address account, uint256 amount) internal virtual {
                      require(account != address(0), "ERC20: mint to the zero address");
              
                      _beforeTokenTransfer(address(0), account, amount);
              
                      _totalSupply = _totalSupply.add(amount);
                      _balances[account] = _balances[account].add(amount);
                      emit Transfer(address(0), account, amount);
                  }
              
                  /**
                   * @dev Destroys `amount` tokens from `account`, reducing the
                   * total supply.
                   *
                   * Emits a {Transfer} event with `to` set to the zero address.
                   *
                   * Requirements:
                   *
                   * - `account` cannot be the zero address.
                   * - `account` must have at least `amount` tokens.
                   */
                  function _burn(address account, uint256 amount) internal virtual {
                      require(account != address(0), "ERC20: burn from the zero address");
              
                      _beforeTokenTransfer(account, address(0), amount);
              
                      _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
                      _totalSupply = _totalSupply.sub(amount);
                      emit Transfer(account, address(0), amount);
                  }
              
                  /**
                   * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
                   *
                   * This internal function is equivalent to `approve`, and can be used to
                   * e.g. set automatic allowances for certain subsystems, etc.
                   *
                   * Emits an {Approval} event.
                   *
                   * Requirements:
                   *
                   * - `owner` cannot be the zero address.
                   * - `spender` cannot be the zero address.
                   */
                  function _approve(address owner, address spender, uint256 amount) internal virtual {
                      require(owner != address(0), "ERC20: approve from the zero address");
                      require(spender != address(0), "ERC20: approve to the zero address");
              
                      _allowances[owner][spender] = amount;
                      emit Approval(owner, spender, amount);
                  }
              
                  /**
                   * @dev Sets {decimals} to a value other than the default one of 18.
                   *
                   * WARNING: This function should only be called from the constructor. Most
                   * applications that interact with token contracts will not expect
                   * {decimals} to ever change, and may work incorrectly if it does.
                   */
                  function _setupDecimals(uint8 decimals_) internal virtual {
                      _decimals = decimals_;
                  }
              
                  /**
                   * @dev Hook that is called before any transfer of tokens. This includes
                   * minting and burning.
                   *
                   * Calling conditions:
                   *
                   * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
                   * will be to transferred to `to`.
                   * - when `from` is zero, `amount` tokens will be minted for `to`.
                   * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
                   * - `from` and `to` are never both zero.
                   *
                   * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
                   */
                  function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
                  uint256[44] private __gap;
              }
              
              
              // File contracts/token/BridgeMintableTokenV2.sol
              
              pragma solidity 0.6.12;
              
              
              
              /**
               * BridgeMintableToken contract V2.
               * @author Marko Lazic
               * Date created: 7.10.21.
               * Github: markolazic01
               */
              contract BridgeMintableTokenV2 is ERC20Upgradeable, PausableUpgradeable {
              
                  address public chainportBridge;
                  address public chainportCongress;
                  mapping(address => bool) public isBlocked;
              
                  event Mint(address indexed to, uint256 amount);
                  event AddressBlocked(address indexed addr);
                  event AddressUnblocked(address indexed addr);
                  event ChainportBridgeChanged(address indexed addr);
                  event ChainportCongressChanged(address indexed addr);
                  event StuckTokenWithdrawn(address indexed token, address indexed to, uint256 amount);
                  event BlackFundsDestroyed(address indexed token, uint256 amount);
              
                  function initialize(
                      string memory tokenName_,
                      string memory tokenSymbol_,
                      uint8 decimals_,
                      address chainportCongress_
                  )
                      public
                      initializer
                  {
                      __ERC20_init(tokenName_, tokenSymbol_);
                      __Pausable_init();
                      _setupDecimals(decimals_);
                      chainportCongress = chainportCongress_;
                      chainportBridge = msg.sender;
                  }
              
                  /**
                   * @dev     Modifier to make function callable only by classified authorities
                   */
                  modifier onlyClassifiedAuthority() {
                      require(
                          msg.sender == chainportBridge || msg.sender == chainportCongress,
                          "BridgeMintableToken: Function can be called only by a classified authority."
                      );
                      _;
                  }
              
                  /**
                   * @dev     Modifier to make function callable only by chainportCongress
                   */
                  modifier onlyChainportCongress() {
                      require(
                          msg.sender == chainportCongress,
                          "BridgeMintableToken: Function can be called only by Chainport Congress."
                      );
                      _;
                  }
              
                  /**
                   * @notice  Function onlyClassifiedAuthority minting
                   *
                   * @param   _to is address of user to which tokens will be minted
                   * @param   _amount is amount of tokens to be minted
                   */
                  function mint(address _to, uint256 _amount) public whenNotPaused onlyClassifiedAuthority {
                      _mint(_to, _amount);
                      emit Mint(_to, _amount);
                  }
              
                  /**
                   * @dev Destroys `amount` tokens from the caller.
                   *
                   * See {ERC20-_burn}.
                   */
                  function burn(uint256 amount) public {
                      _burn(_msgSender(), amount);
                  }
              
                  /**
                   * @dev Destroys `amount` tokens from `account`, deducting from the caller's
                   * allowance.
                   *
                   * See {ERC20-_burn} and {ERC20-allowance}.
                   *
                   * Requirements:
                   *
                   * - the caller must have allowance for ``accounts``'s tokens of at least
                   * `amount`.
                   */
                  function burnFrom(address account, uint256 amount) public {
                      uint256 decreasedAllowance = allowance(account, _msgSender()).sub(amount, "ERC20: burn amount exceeds allowance");
              
                      _approve(account, _msgSender(), decreasedAllowance);
                      _burn(account, amount);
                  }
              
                  /**
                   * @dev See {ERC20-_beforeTokenTransfer}.
                   *
                   * Requirements:
                   *
                   * - the contract must not be paused.
                   * - 'from' address must not be blocked.
                   *
                   * Affects only 'transfer' & 'transferFrom'
                   */
                  function _beforeTokenTransfer(address from, address to, uint256 amount) internal override {
                      super._beforeTokenTransfer(from, to, amount);
              
                      // Exclude chainportCongress'
                      if(from != chainportCongress) {
                          require(!paused(), "ChainportToken: Token paused.");
                          require(!isBlocked[from], "ChainportToken: Sender address blocked.");
                      }
                  }
              
                  /**
                   * @notice  Function to pause token contract
                   */
                  function pause() external onlyClassifiedAuthority {
                      _pause();
                  }
              
                  /**
                   * @notice  Function to unpause token contract
                   */
                  function unpause() external onlyChainportCongress {
                      _unpause();
                  }
              
                  /**
                   * @notice  Function used to block transfers from malicious address in case of breach
                   *
                   * @param   addressToBlock is an address that needs to be blocked
                   */
                  function blockAddress(address addressToBlock) external onlyClassifiedAuthority {
                      isBlocked[addressToBlock] = true;
                      emit AddressBlocked(addressToBlock);
                  }
              
                  /**
                   * @notice  Function used to unblock an address in case of false block
                   *
                   * @param   addressToUnblock is an address that needs to be unblocked
                   */
                  function unblockAddress(address addressToUnblock) external onlyChainportCongress {
                      isBlocked[addressToUnblock] = false;
                      emit AddressUnblocked(addressToUnblock);
                  }
              
                  /**
                   * @notice  Function for replacing proxy address of bridge in case of migration
                   *
                   * @param   _chainportBridge is new proxy address
                   */
                  function setSideBridgeContract(address _chainportBridge) external onlyChainportCongress {
                      require(_chainportBridge != address(0), "BridgeMintableToken: Address malformed.");
                      chainportBridge = _chainportBridge;
                      emit ChainportBridgeChanged(chainportBridge);
                  }
              
                  /**
                   * @notice  Function for replacing chainport congress
                   *
                   * @param   _chainportCongress is new congress address
                   */
                  function setChainportCongress(address _chainportCongress) external onlyChainportCongress {
                      require(_chainportCongress != address(0), "BridgeMintableToken: Address malformed.");
                      chainportCongress = _chainportCongress;
                      emit ChainportCongressChanged(chainportCongress);
                  }
              
                  /**
              	 * @notice  Function for removing black funds from malicious address
              	 *
              	 * @param   maliciousAddress is address containing black funds
              	 * @param 	amount is amount of black funds to be destroyed
              	 */
                  function destroyBlackFunds(address maliciousAddress, uint256 amount) external onlyChainportCongress {
                      _burn(maliciousAddress, amount);
                      emit BlackFundsDestroyed(maliciousAddress, amount);
                  }
              
                  /**
                   * @notice  Function for withdraw of accidentally stuck tokens on contract
                   *
                   * @param   token is an address of token that got stuck on contract address
                   * @param   beneficiary is an address of token sender
                   */
                  function withdrawTokenIfStuck(address token, address beneficiary) external onlyChainportCongress {
                      uint256 amount = IERC20(token).balanceOf(address(this));
                      IERC20(token).transfer(beneficiary, amount);
                      emit StuckTokenWithdrawn(token, beneficiary, amount);
                  }
              }