ETH Price: $1,870.25 (-0.91%)

Transaction Decoder

Block:
21842401 at Feb-14-2025 04:44:35 AM +UTC
Transaction Fee:
0.000465033177826932 ETH $0.87
Gas Used:
162,041 Gas / 2.869848852 Gwei

Emitted Events:

34 WETH9.Deposit( dst=[Receiver] UniversalRouter, wad=5000000000000000 )
35 AXGT.Transfer( from=UniswapV3Pool, to=[Receiver] UniversalRouter, value=90941983803297618303 )
36 WETH9.Transfer( src=[Receiver] UniversalRouter, dst=UniswapV3Pool, wad=5000000000000000 )
37 UniswapV3Pool.Swap( sender=[Receiver] UniversalRouter, recipient=[Receiver] UniversalRouter, amount0=5000000000000000, amount1=-90941983803297618303, sqrtPriceX96=10738757669717993364121147188348, liquidity=28268642195645416568563, tick=98190 )
38 AXGT.Transfer( from=[Receiver] UniversalRouter, to=FeeCollector, value=227354959508244045 )
39 AXGT.Transfer( from=[Receiver] UniversalRouter, to=[Sender] 0xff8a2bc0ccb497923e78c0ceb1f874c83063975c, value=90714628843789374258 )

Account State Difference:

  Address   Before After State Difference Code
(Titan Builder)
9.617964707728397729 Eth9.618288789728397729 Eth0.000324082
0x7b3Ed3A3...D1759f51a
(Uniswap V3: AXGT)
0xC02aaA39...83C756Cc2 3,027,528.608157979881683686 Eth3,027,528.613157979881683686 Eth0.005
0xDd66781D...1BE27F21D
0xFF8a2bC0...83063975C
0.16931523143046357 Eth
Nonce: 56
0.163850198252636638 Eth
Nonce: 57
0.005465033177826932

Execution Trace

ETH 0.005 UniversalRouter.execute( commands=0x0B000604, inputs=[AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEcN5N+CAAA==, AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEcN5N+CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArwCqqObIj/o0KDlxPJ+rZCDx1bMIAJxDdZngdDpoI1Pu17HusgLaRvifyHQAAAAAAAAAAAAAAAAAAAAAAAAAAAA==, AAAAAAAAAAAAAAAA3WZ4HQ6aCNT7tex7rIC2kb4n8h0AAAAAAAAAAAAAAAAAAAD+4ToQOhDVk7muBrPgXy5+HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZ, AAAAAAAAAAAAAAAA3WZ4HQ6aCNT7tex7rIC2kb4n8h0AAAAAAAAAAAAAAAD/iivAzLSXkj54wM6x+HTIMGOXXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABKlJnS6Fyp7u], deadline=1739510063 )
  • ETH 0.005 WETH9.CALL( )
  • UniswapV3Pool.swap( recipient=0x66a9893cC07D91D95644AEDD05D03f95e1dBA8Af, zeroForOne=True, amountSpecified=5000000000000000, sqrtPriceLimitX96=4295128740, data=0x000000000000000000000000000000000000000000000000000000000000004000000000000000000000000066A9893CC07D91D95644AEDD05D03F95E1DBA8AF000000000000000000000000000000000000000000000000000000000000002BC02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2002710DD66781D0E9A08D4FBB5EC7BAC80B691BE27F21D000000000000000000000000000000000000000000 ) => ( amount0=5000000000000000, amount1=-90941983803297618303 )
    • AXGT.transfer( recipient=0x66a9893cC07D91D95644AEDD05D03f95e1dBA8Af, amount=90941983803297618303 ) => ( True )
    • WETH9.balanceOf( 0x7b3Ed3A3444144ff526554D5F4Aa463D1759f51a ) => ( 202621439875613189699 )
    • UniversalRouter.uniswapV3SwapCallback( amount0Delta=5000000000000000, amount1Delta=-90941983803297618303, data=0x000000000000000000000000000000000000000000000000000000000000004000000000000000000000000066A9893CC07D91D95644AEDD05D03F95E1DBA8AF000000000000000000000000000000000000000000000000000000000000002BC02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2002710DD66781D0E9A08D4FBB5EC7BAC80B691BE27F21D000000000000000000000000000000000000000000 )
      • WETH9.transfer( dst=0x7b3Ed3A3444144ff526554D5F4Aa463D1759f51a, wad=5000000000000000 ) => ( True )
      • WETH9.balanceOf( 0x7b3Ed3A3444144ff526554D5F4Aa463D1759f51a ) => ( 202626439875613189699 )
      • AXGT.balanceOf( account=0x66a9893cC07D91D95644AEDD05D03f95e1dBA8Af ) => ( 90941983803297618303 )
      • AXGT.transfer( recipient=0x000000fee13a103A10D593b9AE06b3e05F2E7E1c, amount=227354959508244045 ) => ( True )
      • AXGT.balanceOf( account=0x66a9893cC07D91D95644AEDD05D03f95e1dBA8Af ) => ( 90714628843789374258 )
      • AXGT.transfer( recipient=0xFF8a2bC0ccb497923E78C0CEb1f874c83063975C, amount=90714628843789374258 ) => ( True )
        File 1 of 5: UniversalRouter
        // SPDX-License-Identifier: GPL-3.0-or-later
        pragma solidity ^0.8.24;
        // Command implementations
        import {Dispatcher} from './base/Dispatcher.sol';
        import {RouterParameters} from './types/RouterParameters.sol';
        import {PaymentsImmutables, PaymentsParameters} from './modules/PaymentsImmutables.sol';
        import {UniswapImmutables, UniswapParameters} from './modules/uniswap/UniswapImmutables.sol';
        import {V4SwapRouter} from './modules/uniswap/v4/V4SwapRouter.sol';
        import {Commands} from './libraries/Commands.sol';
        import {IUniversalRouter} from './interfaces/IUniversalRouter.sol';
        import {MigratorImmutables, MigratorParameters} from './modules/MigratorImmutables.sol';
        contract UniversalRouter is IUniversalRouter, Dispatcher {
            constructor(RouterParameters memory params)
                UniswapImmutables(
                    UniswapParameters(params.v2Factory, params.v3Factory, params.pairInitCodeHash, params.poolInitCodeHash)
                )
                V4SwapRouter(params.v4PoolManager)
                PaymentsImmutables(PaymentsParameters(params.permit2, params.weth9))
                MigratorImmutables(MigratorParameters(params.v3NFTPositionManager, params.v4PositionManager))
            {}
            modifier checkDeadline(uint256 deadline) {
                if (block.timestamp > deadline) revert TransactionDeadlinePassed();
                _;
            }
            /// @notice To receive ETH from WETH
            receive() external payable {
                if (msg.sender != address(WETH9) && msg.sender != address(poolManager)) revert InvalidEthSender();
            }
            /// @inheritdoc IUniversalRouter
            function execute(bytes calldata commands, bytes[] calldata inputs, uint256 deadline)
                external
                payable
                checkDeadline(deadline)
            {
                execute(commands, inputs);
            }
            /// @inheritdoc Dispatcher
            function execute(bytes calldata commands, bytes[] calldata inputs) public payable override isNotLocked {
                bool success;
                bytes memory output;
                uint256 numCommands = commands.length;
                if (inputs.length != numCommands) revert LengthMismatch();
                // loop through all given commands, execute them and pass along outputs as defined
                for (uint256 commandIndex = 0; commandIndex < numCommands; commandIndex++) {
                    bytes1 command = commands[commandIndex];
                    bytes calldata input = inputs[commandIndex];
                    (success, output) = dispatch(command, input);
                    if (!success && successRequired(command)) {
                        revert ExecutionFailed({commandIndex: commandIndex, message: output});
                    }
                }
            }
            function successRequired(bytes1 command) internal pure returns (bool) {
                return command & Commands.FLAG_ALLOW_REVERT == 0;
            }
        }
        // SPDX-License-Identifier: GPL-3.0-or-later
        pragma solidity ^0.8.24;
        import {V2SwapRouter} from '../modules/uniswap/v2/V2SwapRouter.sol';
        import {V3SwapRouter} from '../modules/uniswap/v3/V3SwapRouter.sol';
        import {V4SwapRouter} from '../modules/uniswap/v4/V4SwapRouter.sol';
        import {BytesLib} from '../modules/uniswap/v3/BytesLib.sol';
        import {Payments} from '../modules/Payments.sol';
        import {PaymentsImmutables} from '../modules/PaymentsImmutables.sol';
        import {V3ToV4Migrator} from '../modules/V3ToV4Migrator.sol';
        import {Commands} from '../libraries/Commands.sol';
        import {Lock} from './Lock.sol';
        import {ERC20} from 'solmate/src/tokens/ERC20.sol';
        import {IAllowanceTransfer} from 'permit2/src/interfaces/IAllowanceTransfer.sol';
        import {ActionConstants} from '@uniswap/v4-periphery/src/libraries/ActionConstants.sol';
        import {CalldataDecoder} from '@uniswap/v4-periphery/src/libraries/CalldataDecoder.sol';
        import {PoolKey} from '@uniswap/v4-core/src/types/PoolKey.sol';
        import {IPoolManager} from '@uniswap/v4-core/src/interfaces/IPoolManager.sol';
        /// @title Decodes and Executes Commands
        /// @notice Called by the UniversalRouter contract to efficiently decode and execute a singular command
        abstract contract Dispatcher is Payments, V2SwapRouter, V3SwapRouter, V4SwapRouter, V3ToV4Migrator, Lock {
            using BytesLib for bytes;
            using CalldataDecoder for bytes;
            error InvalidCommandType(uint256 commandType);
            error BalanceTooLow();
            /// @notice Executes encoded commands along with provided inputs.
            /// @param commands A set of concatenated commands, each 1 byte in length
            /// @param inputs An array of byte strings containing abi encoded inputs for each command
            function execute(bytes calldata commands, bytes[] calldata inputs) external payable virtual;
            /// @notice Public view function to be used instead of msg.sender, as the contract performs self-reentrancy and at
            /// times msg.sender == address(this). Instead msgSender() returns the initiator of the lock
            /// @dev overrides BaseActionsRouter.msgSender in V4Router
            function msgSender() public view override returns (address) {
                return _getLocker();
            }
            /// @notice Decodes and executes the given command with the given inputs
            /// @param commandType The command type to execute
            /// @param inputs The inputs to execute the command with
            /// @dev 2 masks are used to enable use of a nested-if statement in execution for efficiency reasons
            /// @return success True on success of the command, false on failure
            /// @return output The outputs or error messages, if any, from the command
            function dispatch(bytes1 commandType, bytes calldata inputs) internal returns (bool success, bytes memory output) {
                uint256 command = uint8(commandType & Commands.COMMAND_TYPE_MASK);
                success = true;
                // 0x00 <= command < 0x21
                if (command < Commands.EXECUTE_SUB_PLAN) {
                    // 0x00 <= command < 0x10
                    if (command < Commands.V4_SWAP) {
                        // 0x00 <= command < 0x08
                        if (command < Commands.V2_SWAP_EXACT_IN) {
                            if (command == Commands.V3_SWAP_EXACT_IN) {
                                // equivalent: abi.decode(inputs, (address, uint256, uint256, bytes, bool))
                                address recipient;
                                uint256 amountIn;
                                uint256 amountOutMin;
                                bool payerIsUser;
                                assembly {
                                    recipient := calldataload(inputs.offset)
                                    amountIn := calldataload(add(inputs.offset, 0x20))
                                    amountOutMin := calldataload(add(inputs.offset, 0x40))
                                    // 0x60 offset is the path, decoded below
                                    payerIsUser := calldataload(add(inputs.offset, 0x80))
                                }
                                bytes calldata path = inputs.toBytes(3);
                                address payer = payerIsUser ? msgSender() : address(this);
                                v3SwapExactInput(map(recipient), amountIn, amountOutMin, path, payer);
                            } else if (command == Commands.V3_SWAP_EXACT_OUT) {
                                // equivalent: abi.decode(inputs, (address, uint256, uint256, bytes, bool))
                                address recipient;
                                uint256 amountOut;
                                uint256 amountInMax;
                                bool payerIsUser;
                                assembly {
                                    recipient := calldataload(inputs.offset)
                                    amountOut := calldataload(add(inputs.offset, 0x20))
                                    amountInMax := calldataload(add(inputs.offset, 0x40))
                                    // 0x60 offset is the path, decoded below
                                    payerIsUser := calldataload(add(inputs.offset, 0x80))
                                }
                                bytes calldata path = inputs.toBytes(3);
                                address payer = payerIsUser ? msgSender() : address(this);
                                v3SwapExactOutput(map(recipient), amountOut, amountInMax, path, payer);
                            } else if (command == Commands.PERMIT2_TRANSFER_FROM) {
                                // equivalent: abi.decode(inputs, (address, address, uint160))
                                address token;
                                address recipient;
                                uint160 amount;
                                assembly {
                                    token := calldataload(inputs.offset)
                                    recipient := calldataload(add(inputs.offset, 0x20))
                                    amount := calldataload(add(inputs.offset, 0x40))
                                }
                                permit2TransferFrom(token, msgSender(), map(recipient), amount);
                            } else if (command == Commands.PERMIT2_PERMIT_BATCH) {
                                IAllowanceTransfer.PermitBatch calldata permitBatch;
                                assembly {
                                    // this is a variable length struct, so calldataload(inputs.offset) contains the
                                    // offset from inputs.offset at which the struct begins
                                    permitBatch := add(inputs.offset, calldataload(inputs.offset))
                                }
                                bytes calldata data = inputs.toBytes(1);
                                (success, output) = address(PERMIT2).call(
                                    abi.encodeWithSignature(
                                        'permit(address,((address,uint160,uint48,uint48)[],address,uint256),bytes)',
                                        msgSender(),
                                        permitBatch,
                                        data
                                    )
                                );
                            } else if (command == Commands.SWEEP) {
                                // equivalent:  abi.decode(inputs, (address, address, uint256))
                                address token;
                                address recipient;
                                uint160 amountMin;
                                assembly {
                                    token := calldataload(inputs.offset)
                                    recipient := calldataload(add(inputs.offset, 0x20))
                                    amountMin := calldataload(add(inputs.offset, 0x40))
                                }
                                Payments.sweep(token, map(recipient), amountMin);
                            } else if (command == Commands.TRANSFER) {
                                // equivalent:  abi.decode(inputs, (address, address, uint256))
                                address token;
                                address recipient;
                                uint256 value;
                                assembly {
                                    token := calldataload(inputs.offset)
                                    recipient := calldataload(add(inputs.offset, 0x20))
                                    value := calldataload(add(inputs.offset, 0x40))
                                }
                                Payments.pay(token, map(recipient), value);
                            } else if (command == Commands.PAY_PORTION) {
                                // equivalent:  abi.decode(inputs, (address, address, uint256))
                                address token;
                                address recipient;
                                uint256 bips;
                                assembly {
                                    token := calldataload(inputs.offset)
                                    recipient := calldataload(add(inputs.offset, 0x20))
                                    bips := calldataload(add(inputs.offset, 0x40))
                                }
                                Payments.payPortion(token, map(recipient), bips);
                            } else {
                                // placeholder area for command 0x07
                                revert InvalidCommandType(command);
                            }
                        } else {
                            // 0x08 <= command < 0x10
                            if (command == Commands.V2_SWAP_EXACT_IN) {
                                // equivalent: abi.decode(inputs, (address, uint256, uint256, bytes, bool))
                                address recipient;
                                uint256 amountIn;
                                uint256 amountOutMin;
                                bool payerIsUser;
                                assembly {
                                    recipient := calldataload(inputs.offset)
                                    amountIn := calldataload(add(inputs.offset, 0x20))
                                    amountOutMin := calldataload(add(inputs.offset, 0x40))
                                    // 0x60 offset is the path, decoded below
                                    payerIsUser := calldataload(add(inputs.offset, 0x80))
                                }
                                address[] calldata path = inputs.toAddressArray(3);
                                address payer = payerIsUser ? msgSender() : address(this);
                                v2SwapExactInput(map(recipient), amountIn, amountOutMin, path, payer);
                            } else if (command == Commands.V2_SWAP_EXACT_OUT) {
                                // equivalent: abi.decode(inputs, (address, uint256, uint256, bytes, bool))
                                address recipient;
                                uint256 amountOut;
                                uint256 amountInMax;
                                bool payerIsUser;
                                assembly {
                                    recipient := calldataload(inputs.offset)
                                    amountOut := calldataload(add(inputs.offset, 0x20))
                                    amountInMax := calldataload(add(inputs.offset, 0x40))
                                    // 0x60 offset is the path, decoded below
                                    payerIsUser := calldataload(add(inputs.offset, 0x80))
                                }
                                address[] calldata path = inputs.toAddressArray(3);
                                address payer = payerIsUser ? msgSender() : address(this);
                                v2SwapExactOutput(map(recipient), amountOut, amountInMax, path, payer);
                            } else if (command == Commands.PERMIT2_PERMIT) {
                                // equivalent: abi.decode(inputs, (IAllowanceTransfer.PermitSingle, bytes))
                                IAllowanceTransfer.PermitSingle calldata permitSingle;
                                assembly {
                                    permitSingle := inputs.offset
                                }
                                bytes calldata data = inputs.toBytes(6); // PermitSingle takes first 6 slots (0..5)
                                (success, output) = address(PERMIT2).call(
                                    abi.encodeWithSignature(
                                        'permit(address,((address,uint160,uint48,uint48),address,uint256),bytes)',
                                        msgSender(),
                                        permitSingle,
                                        data
                                    )
                                );
                            } else if (command == Commands.WRAP_ETH) {
                                // equivalent: abi.decode(inputs, (address, uint256))
                                address recipient;
                                uint256 amount;
                                assembly {
                                    recipient := calldataload(inputs.offset)
                                    amount := calldataload(add(inputs.offset, 0x20))
                                }
                                Payments.wrapETH(map(recipient), amount);
                            } else if (command == Commands.UNWRAP_WETH) {
                                // equivalent: abi.decode(inputs, (address, uint256))
                                address recipient;
                                uint256 amountMin;
                                assembly {
                                    recipient := calldataload(inputs.offset)
                                    amountMin := calldataload(add(inputs.offset, 0x20))
                                }
                                Payments.unwrapWETH9(map(recipient), amountMin);
                            } else if (command == Commands.PERMIT2_TRANSFER_FROM_BATCH) {
                                IAllowanceTransfer.AllowanceTransferDetails[] calldata batchDetails;
                                (uint256 length, uint256 offset) = inputs.toLengthOffset(0);
                                assembly {
                                    batchDetails.length := length
                                    batchDetails.offset := offset
                                }
                                permit2TransferFrom(batchDetails, msgSender());
                            } else if (command == Commands.BALANCE_CHECK_ERC20) {
                                // equivalent: abi.decode(inputs, (address, address, uint256))
                                address owner;
                                address token;
                                uint256 minBalance;
                                assembly {
                                    owner := calldataload(inputs.offset)
                                    token := calldataload(add(inputs.offset, 0x20))
                                    minBalance := calldataload(add(inputs.offset, 0x40))
                                }
                                success = (ERC20(token).balanceOf(owner) >= minBalance);
                                if (!success) output = abi.encodePacked(BalanceTooLow.selector);
                            } else {
                                // placeholder area for command 0x0f
                                revert InvalidCommandType(command);
                            }
                        }
                    } else {
                        // 0x10 <= command < 0x21
                        if (command == Commands.V4_SWAP) {
                            // pass the calldata provided to V4SwapRouter._executeActions (defined in BaseActionsRouter)
                            _executeActions(inputs);
                            // This contract MUST be approved to spend the token since its going to be doing the call on the position manager
                        } else if (command == Commands.V3_POSITION_MANAGER_PERMIT) {
                            _checkV3PermitCall(inputs);
                            (success, output) = address(V3_POSITION_MANAGER).call(inputs);
                        } else if (command == Commands.V3_POSITION_MANAGER_CALL) {
                            _checkV3PositionManagerCall(inputs, msgSender());
                            (success, output) = address(V3_POSITION_MANAGER).call(inputs);
                        } else if (command == Commands.V4_INITIALIZE_POOL) {
                            PoolKey calldata poolKey;
                            uint160 sqrtPriceX96;
                            assembly {
                                poolKey := inputs.offset
                                sqrtPriceX96 := calldataload(add(inputs.offset, 0xa0))
                            }
                            (success, output) =
                                address(poolManager).call(abi.encodeCall(IPoolManager.initialize, (poolKey, sqrtPriceX96)));
                        } else if (command == Commands.V4_POSITION_MANAGER_CALL) {
                            // should only call modifyLiquidities() to mint
                            _checkV4PositionManagerCall(inputs);
                            (success, output) = address(V4_POSITION_MANAGER).call{value: address(this).balance}(inputs);
                        } else {
                            // placeholder area for commands 0x15-0x20
                            revert InvalidCommandType(command);
                        }
                    }
                } else {
                    // 0x21 <= command
                    if (command == Commands.EXECUTE_SUB_PLAN) {
                        (bytes calldata _commands, bytes[] calldata _inputs) = inputs.decodeCommandsAndInputs();
                        (success, output) = (address(this)).call(abi.encodeCall(Dispatcher.execute, (_commands, _inputs)));
                    } else {
                        // placeholder area for commands 0x22-0x3f
                        revert InvalidCommandType(command);
                    }
                }
            }
            /// @notice Calculates the recipient address for a command
            /// @param recipient The recipient or recipient-flag for the command
            /// @return output The resultant recipient for the command
            function map(address recipient) internal view returns (address) {
                if (recipient == ActionConstants.MSG_SENDER) {
                    return msgSender();
                } else if (recipient == ActionConstants.ADDRESS_THIS) {
                    return address(this);
                } else {
                    return recipient;
                }
            }
        }
        // SPDX-License-Identifier: GPL-3.0-or-later
        pragma solidity ^0.8.24;
        struct RouterParameters {
            // Payment parameters
            address permit2;
            address weth9;
            // Uniswap swapping parameters
            address v2Factory;
            address v3Factory;
            bytes32 pairInitCodeHash;
            bytes32 poolInitCodeHash;
            address v4PoolManager;
            // Uniswap v3->v4 migration parameters
            address v3NFTPositionManager;
            address v4PositionManager;
        }
        // SPDX-License-Identifier: GPL-3.0-or-later
        pragma solidity ^0.8.24;
        import {IWETH9} from '@uniswap/v4-periphery/src/interfaces/external/IWETH9.sol';
        import {IPermit2} from 'permit2/src/interfaces/IPermit2.sol';
        struct PaymentsParameters {
            address permit2;
            address weth9;
        }
        contract PaymentsImmutables {
            /// @notice WETH9 address
            IWETH9 internal immutable WETH9;
            /// @notice Permit2 address
            IPermit2 internal immutable PERMIT2;
            constructor(PaymentsParameters memory params) {
                WETH9 = IWETH9(params.weth9);
                PERMIT2 = IPermit2(params.permit2);
            }
        }
        // SPDX-License-Identifier: GPL-3.0-or-later
        pragma solidity ^0.8.24;
        struct UniswapParameters {
            address v2Factory;
            address v3Factory;
            bytes32 pairInitCodeHash;
            bytes32 poolInitCodeHash;
        }
        contract UniswapImmutables {
            /// @notice The address of UniswapV2Factory
            address internal immutable UNISWAP_V2_FACTORY;
            /// @notice The UniswapV2Pair initcodehash
            bytes32 internal immutable UNISWAP_V2_PAIR_INIT_CODE_HASH;
            /// @notice The address of UniswapV3Factory
            address internal immutable UNISWAP_V3_FACTORY;
            /// @notice The UniswapV3Pool initcodehash
            bytes32 internal immutable UNISWAP_V3_POOL_INIT_CODE_HASH;
            constructor(UniswapParameters memory params) {
                UNISWAP_V2_FACTORY = params.v2Factory;
                UNISWAP_V2_PAIR_INIT_CODE_HASH = params.pairInitCodeHash;
                UNISWAP_V3_FACTORY = params.v3Factory;
                UNISWAP_V3_POOL_INIT_CODE_HASH = params.poolInitCodeHash;
            }
        }
        // SPDX-License-Identifier: GPL-3.0-or-later
        pragma solidity ^0.8.24;
        import {UniswapImmutables} from '../UniswapImmutables.sol';
        import {Permit2Payments} from '../../Permit2Payments.sol';
        import {V4Router} from '@uniswap/v4-periphery/src/V4Router.sol';
        import {IPoolManager} from '@uniswap/v4-core/src/interfaces/IPoolManager.sol';
        import {Currency} from '@uniswap/v4-core/src/types/Currency.sol';
        /// @title Router for Uniswap v4 Trades
        abstract contract V4SwapRouter is V4Router, Permit2Payments {
            constructor(address _poolManager) V4Router(IPoolManager(_poolManager)) {}
            function _pay(Currency token, address payer, uint256 amount) internal override {
                payOrPermit2Transfer(Currency.unwrap(token), payer, address(poolManager), amount);
            }
        }
        // SPDX-License-Identifier: GPL-3.0-or-later
        pragma solidity ^0.8.24;
        /// @title Commands
        /// @notice Command Flags used to decode commands
        library Commands {
            // Masks to extract certain bits of commands
            bytes1 internal constant FLAG_ALLOW_REVERT = 0x80;
            bytes1 internal constant COMMAND_TYPE_MASK = 0x3f;
            // Command Types. Maximum supported command at this moment is 0x3f.
            // The commands are executed in nested if blocks to minimise gas consumption
            // Command Types where value<=0x07, executed in the first nested-if block
            uint256 constant V3_SWAP_EXACT_IN = 0x00;
            uint256 constant V3_SWAP_EXACT_OUT = 0x01;
            uint256 constant PERMIT2_TRANSFER_FROM = 0x02;
            uint256 constant PERMIT2_PERMIT_BATCH = 0x03;
            uint256 constant SWEEP = 0x04;
            uint256 constant TRANSFER = 0x05;
            uint256 constant PAY_PORTION = 0x06;
            // COMMAND_PLACEHOLDER = 0x07;
            // Command Types where 0x08<=value<=0x0f, executed in the second nested-if block
            uint256 constant V2_SWAP_EXACT_IN = 0x08;
            uint256 constant V2_SWAP_EXACT_OUT = 0x09;
            uint256 constant PERMIT2_PERMIT = 0x0a;
            uint256 constant WRAP_ETH = 0x0b;
            uint256 constant UNWRAP_WETH = 0x0c;
            uint256 constant PERMIT2_TRANSFER_FROM_BATCH = 0x0d;
            uint256 constant BALANCE_CHECK_ERC20 = 0x0e;
            // COMMAND_PLACEHOLDER = 0x0f;
            // Command Types where 0x10<=value<=0x20, executed in the third nested-if block
            uint256 constant V4_SWAP = 0x10;
            uint256 constant V3_POSITION_MANAGER_PERMIT = 0x11;
            uint256 constant V3_POSITION_MANAGER_CALL = 0x12;
            uint256 constant V4_INITIALIZE_POOL = 0x13;
            uint256 constant V4_POSITION_MANAGER_CALL = 0x14;
            // COMMAND_PLACEHOLDER = 0x15 -> 0x20
            // Command Types where 0x21<=value<=0x3f
            uint256 constant EXECUTE_SUB_PLAN = 0x21;
            // COMMAND_PLACEHOLDER for 0x22 to 0x3f
        }
        // SPDX-License-Identifier: GPL-3.0-or-later
        pragma solidity ^0.8.24;
        interface IUniversalRouter {
            /// @notice Thrown when a required command has failed
            error ExecutionFailed(uint256 commandIndex, bytes message);
            /// @notice Thrown when attempting to send ETH directly to the contract
            error ETHNotAccepted();
            /// @notice Thrown when executing commands with an expired deadline
            error TransactionDeadlinePassed();
            /// @notice Thrown when attempting to execute commands and an incorrect number of inputs are provided
            error LengthMismatch();
            // @notice Thrown when an address that isn't WETH tries to send ETH to the router without calldata
            error InvalidEthSender();
            /// @notice Executes encoded commands along with provided inputs. Reverts if deadline has expired.
            /// @param commands A set of concatenated commands, each 1 byte in length
            /// @param inputs An array of byte strings containing abi encoded inputs for each command
            /// @param deadline The deadline by which the transaction must be executed
            function execute(bytes calldata commands, bytes[] calldata inputs, uint256 deadline) external payable;
        }
        // SPDX-License-Identifier: GPL-3.0-or-later
        pragma solidity ^0.8.24;
        import {INonfungiblePositionManager} from '@uniswap/v3-periphery/contracts/interfaces/INonfungiblePositionManager.sol';
        import {IPositionManager} from '@uniswap/v4-periphery/src/interfaces/IPositionManager.sol';
        import {IPoolManager} from '@uniswap/v4-core/src/interfaces/IPoolManager.sol';
        struct MigratorParameters {
            address v3PositionManager;
            address v4PositionManager;
        }
        /// @title Migrator Immutables
        /// @notice Immutable state for liquidity-migration contracts
        contract MigratorImmutables {
            /// @notice v3 PositionManager address
            INonfungiblePositionManager public immutable V3_POSITION_MANAGER;
            /// @notice v4 PositionManager address
            IPositionManager public immutable V4_POSITION_MANAGER;
            constructor(MigratorParameters memory params) {
                V3_POSITION_MANAGER = INonfungiblePositionManager(params.v3PositionManager);
                V4_POSITION_MANAGER = IPositionManager(params.v4PositionManager);
            }
        }
        // SPDX-License-Identifier: GPL-3.0-or-later
        pragma solidity ^0.8.24;
        import {IUniswapV2Pair} from '@uniswap/v2-core/contracts/interfaces/IUniswapV2Pair.sol';
        import {UniswapV2Library} from './UniswapV2Library.sol';
        import {UniswapImmutables} from '../UniswapImmutables.sol';
        import {Permit2Payments} from '../../Permit2Payments.sol';
        import {Constants} from '../../../libraries/Constants.sol';
        import {ERC20} from 'solmate/src/tokens/ERC20.sol';
        /// @title Router for Uniswap v2 Trades
        abstract contract V2SwapRouter is UniswapImmutables, Permit2Payments {
            error V2TooLittleReceived();
            error V2TooMuchRequested();
            error V2InvalidPath();
            function _v2Swap(address[] calldata path, address recipient, address pair) private {
                unchecked {
                    if (path.length < 2) revert V2InvalidPath();
                    // cached to save on duplicate operations
                    (address token0,) = UniswapV2Library.sortTokens(path[0], path[1]);
                    uint256 finalPairIndex = path.length - 1;
                    uint256 penultimatePairIndex = finalPairIndex - 1;
                    for (uint256 i; i < finalPairIndex; i++) {
                        (address input, address output) = (path[i], path[i + 1]);
                        (uint256 reserve0, uint256 reserve1,) = IUniswapV2Pair(pair).getReserves();
                        (uint256 reserveInput, uint256 reserveOutput) =
                            input == token0 ? (reserve0, reserve1) : (reserve1, reserve0);
                        uint256 amountInput = ERC20(input).balanceOf(pair) - reserveInput;
                        uint256 amountOutput = UniswapV2Library.getAmountOut(amountInput, reserveInput, reserveOutput);
                        (uint256 amount0Out, uint256 amount1Out) =
                            input == token0 ? (uint256(0), amountOutput) : (amountOutput, uint256(0));
                        address nextPair;
                        (nextPair, token0) = i < penultimatePairIndex
                            ? UniswapV2Library.pairAndToken0For(
                                UNISWAP_V2_FACTORY, UNISWAP_V2_PAIR_INIT_CODE_HASH, output, path[i + 2]
                            )
                            : (recipient, address(0));
                        IUniswapV2Pair(pair).swap(amount0Out, amount1Out, nextPair, new bytes(0));
                        pair = nextPair;
                    }
                }
            }
            /// @notice Performs a Uniswap v2 exact input swap
            /// @param recipient The recipient of the output tokens
            /// @param amountIn The amount of input tokens for the trade
            /// @param amountOutMinimum The minimum desired amount of output tokens
            /// @param path The path of the trade as an array of token addresses
            /// @param payer The address that will be paying the input
            function v2SwapExactInput(
                address recipient,
                uint256 amountIn,
                uint256 amountOutMinimum,
                address[] calldata path,
                address payer
            ) internal {
                address firstPair =
                    UniswapV2Library.pairFor(UNISWAP_V2_FACTORY, UNISWAP_V2_PAIR_INIT_CODE_HASH, path[0], path[1]);
                if (
                    amountIn != Constants.ALREADY_PAID // amountIn of 0 to signal that the pair already has the tokens
                ) {
                    payOrPermit2Transfer(path[0], payer, firstPair, amountIn);
                }
                ERC20 tokenOut = ERC20(path[path.length - 1]);
                uint256 balanceBefore = tokenOut.balanceOf(recipient);
                _v2Swap(path, recipient, firstPair);
                uint256 amountOut = tokenOut.balanceOf(recipient) - balanceBefore;
                if (amountOut < amountOutMinimum) revert V2TooLittleReceived();
            }
            /// @notice Performs a Uniswap v2 exact output swap
            /// @param recipient The recipient of the output tokens
            /// @param amountOut The amount of output tokens to receive for the trade
            /// @param amountInMaximum The maximum desired amount of input tokens
            /// @param path The path of the trade as an array of token addresses
            /// @param payer The address that will be paying the input
            function v2SwapExactOutput(
                address recipient,
                uint256 amountOut,
                uint256 amountInMaximum,
                address[] calldata path,
                address payer
            ) internal {
                (uint256 amountIn, address firstPair) =
                    UniswapV2Library.getAmountInMultihop(UNISWAP_V2_FACTORY, UNISWAP_V2_PAIR_INIT_CODE_HASH, amountOut, path);
                if (amountIn > amountInMaximum) revert V2TooMuchRequested();
                payOrPermit2Transfer(path[0], payer, firstPair, amountIn);
                _v2Swap(path, recipient, firstPair);
            }
        }
        // SPDX-License-Identifier: GPL-3.0-or-later
        pragma solidity ^0.8.24;
        import {V3Path} from './V3Path.sol';
        import {BytesLib} from './BytesLib.sol';
        import {SafeCast} from '@uniswap/v3-core/contracts/libraries/SafeCast.sol';
        import {IUniswapV3Pool} from '@uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol';
        import {IUniswapV3SwapCallback} from '@uniswap/v3-core/contracts/interfaces/callback/IUniswapV3SwapCallback.sol';
        import {ActionConstants} from '@uniswap/v4-periphery/src/libraries/ActionConstants.sol';
        import {CalldataDecoder} from '@uniswap/v4-periphery/src/libraries/CalldataDecoder.sol';
        import {Permit2Payments} from '../../Permit2Payments.sol';
        import {UniswapImmutables} from '../UniswapImmutables.sol';
        import {MaxInputAmount} from '../../../libraries/MaxInputAmount.sol';
        import {ERC20} from 'solmate/src/tokens/ERC20.sol';
        /// @title Router for Uniswap v3 Trades
        abstract contract V3SwapRouter is UniswapImmutables, Permit2Payments, IUniswapV3SwapCallback {
            using V3Path for bytes;
            using BytesLib for bytes;
            using CalldataDecoder for bytes;
            using SafeCast for uint256;
            error V3InvalidSwap();
            error V3TooLittleReceived();
            error V3TooMuchRequested();
            error V3InvalidAmountOut();
            error V3InvalidCaller();
            /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
            uint160 internal constant MIN_SQRT_RATIO = 4295128739;
            /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
            uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;
            function uniswapV3SwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external {
                if (amount0Delta <= 0 && amount1Delta <= 0) revert V3InvalidSwap(); // swaps entirely within 0-liquidity regions are not supported
                (, address payer) = abi.decode(data, (bytes, address));
                bytes calldata path = data.toBytes(0);
                // because exact output swaps are executed in reverse order, in this case tokenOut is actually tokenIn
                (address tokenIn, uint24 fee, address tokenOut) = path.decodeFirstPool();
                if (computePoolAddress(tokenIn, tokenOut, fee) != msg.sender) revert V3InvalidCaller();
                (bool isExactInput, uint256 amountToPay) =
                    amount0Delta > 0 ? (tokenIn < tokenOut, uint256(amount0Delta)) : (tokenOut < tokenIn, uint256(amount1Delta));
                if (isExactInput) {
                    // Pay the pool (msg.sender)
                    payOrPermit2Transfer(tokenIn, payer, msg.sender, amountToPay);
                } else {
                    // either initiate the next swap or pay
                    if (path.hasMultiplePools()) {
                        // this is an intermediate step so the payer is actually this contract
                        path = path.skipToken();
                        _swap(-amountToPay.toInt256(), msg.sender, path, payer, false);
                    } else {
                        if (amountToPay > MaxInputAmount.get()) revert V3TooMuchRequested();
                        // note that because exact output swaps are executed in reverse order, tokenOut is actually tokenIn
                        payOrPermit2Transfer(tokenOut, payer, msg.sender, amountToPay);
                    }
                }
            }
            /// @notice Performs a Uniswap v3 exact input swap
            /// @param recipient The recipient of the output tokens
            /// @param amountIn The amount of input tokens for the trade
            /// @param amountOutMinimum The minimum desired amount of output tokens
            /// @param path The path of the trade as a bytes string
            /// @param payer The address that will be paying the input
            function v3SwapExactInput(
                address recipient,
                uint256 amountIn,
                uint256 amountOutMinimum,
                bytes calldata path,
                address payer
            ) internal {
                // use amountIn == ActionConstants.CONTRACT_BALANCE as a flag to swap the entire balance of the contract
                if (amountIn == ActionConstants.CONTRACT_BALANCE) {
                    address tokenIn = path.decodeFirstToken();
                    amountIn = ERC20(tokenIn).balanceOf(address(this));
                }
                uint256 amountOut;
                while (true) {
                    bool hasMultiplePools = path.hasMultiplePools();
                    // the outputs of prior swaps become the inputs to subsequent ones
                    (int256 amount0Delta, int256 amount1Delta, bool zeroForOne) = _swap(
                        amountIn.toInt256(),
                        hasMultiplePools ? address(this) : recipient, // for intermediate swaps, this contract custodies
                        path.getFirstPool(), // only the first pool is needed
                        payer, // for intermediate swaps, this contract custodies
                        true
                    );
                    amountIn = uint256(-(zeroForOne ? amount1Delta : amount0Delta));
                    // decide whether to continue or terminate
                    if (hasMultiplePools) {
                        payer = address(this);
                        path = path.skipToken();
                    } else {
                        amountOut = amountIn;
                        break;
                    }
                }
                if (amountOut < amountOutMinimum) revert V3TooLittleReceived();
            }
            /// @notice Performs a Uniswap v3 exact output swap
            /// @param recipient The recipient of the output tokens
            /// @param amountOut The amount of output tokens to receive for the trade
            /// @param amountInMaximum The maximum desired amount of input tokens
            /// @param path The path of the trade as a bytes string
            /// @param payer The address that will be paying the input
            function v3SwapExactOutput(
                address recipient,
                uint256 amountOut,
                uint256 amountInMaximum,
                bytes calldata path,
                address payer
            ) internal {
                MaxInputAmount.set(amountInMaximum);
                (int256 amount0Delta, int256 amount1Delta, bool zeroForOne) =
                    _swap(-amountOut.toInt256(), recipient, path, payer, false);
                uint256 amountOutReceived = zeroForOne ? uint256(-amount1Delta) : uint256(-amount0Delta);
                if (amountOutReceived != amountOut) revert V3InvalidAmountOut();
                MaxInputAmount.set(0);
            }
            /// @dev Performs a single swap for both exactIn and exactOut
            /// For exactIn, `amount` is `amountIn`. For exactOut, `amount` is `-amountOut`
            function _swap(int256 amount, address recipient, bytes calldata path, address payer, bool isExactIn)
                private
                returns (int256 amount0Delta, int256 amount1Delta, bool zeroForOne)
            {
                (address tokenIn, uint24 fee, address tokenOut) = path.decodeFirstPool();
                zeroForOne = isExactIn ? tokenIn < tokenOut : tokenOut < tokenIn;
                (amount0Delta, amount1Delta) = IUniswapV3Pool(computePoolAddress(tokenIn, tokenOut, fee)).swap(
                    recipient,
                    zeroForOne,
                    amount,
                    (zeroForOne ? MIN_SQRT_RATIO + 1 : MAX_SQRT_RATIO - 1),
                    abi.encode(path, payer)
                );
            }
            function computePoolAddress(address tokenA, address tokenB, uint24 fee) private view returns (address pool) {
                if (tokenA > tokenB) (tokenA, tokenB) = (tokenB, tokenA);
                pool = address(
                    uint160(
                        uint256(
                            keccak256(
                                abi.encodePacked(
                                    hex'ff',
                                    UNISWAP_V3_FACTORY,
                                    keccak256(abi.encode(tokenA, tokenB, fee)),
                                    UNISWAP_V3_POOL_INIT_CODE_HASH
                                )
                            )
                        )
                    )
                );
            }
        }
        // SPDX-License-Identifier: GPL-3.0-or-later
        /// @title Library for Bytes Manipulation
        pragma solidity ^0.8.0;
        import {Constants} from '../../../libraries/Constants.sol';
        import {CalldataDecoder} from '@uniswap/v4-periphery/src/libraries/CalldataDecoder.sol';
        library BytesLib {
            using CalldataDecoder for bytes;
            error SliceOutOfBounds();
            /// @notice Returns the address starting at byte 0
            /// @dev length and overflow checks must be carried out before calling
            /// @param _bytes The input bytes string to slice
            /// @return _address The address starting at byte 0
            function toAddress(bytes calldata _bytes) internal pure returns (address _address) {
                if (_bytes.length < Constants.ADDR_SIZE) revert SliceOutOfBounds();
                assembly {
                    _address := shr(96, calldataload(_bytes.offset))
                }
            }
            /// @notice Returns the pool details starting at byte 0
            /// @dev length and overflow checks must be carried out before calling
            /// @param _bytes The input bytes string to slice
            /// @return token0 The address at byte 0
            /// @return fee The uint24 starting at byte 20
            /// @return token1 The address at byte 23
            function toPool(bytes calldata _bytes) internal pure returns (address token0, uint24 fee, address token1) {
                if (_bytes.length < Constants.V3_POP_OFFSET) revert SliceOutOfBounds();
                assembly {
                    let firstWord := calldataload(_bytes.offset)
                    token0 := shr(96, firstWord)
                    fee := and(shr(72, firstWord), 0xffffff)
                    token1 := shr(96, calldataload(add(_bytes.offset, 23)))
                }
            }
            /// @notice Decode the `_arg`-th element in `_bytes` as a dynamic array
            /// @dev The decoding of `length` and `offset` is universal,
            /// whereas the type declaration of `res` instructs the compiler how to read it.
            /// @param _bytes The input bytes string to slice
            /// @param _arg The index of the argument to extract
            /// @return length Length of the array
            /// @return offset Pointer to the data part of the array
            function toLengthOffset(bytes calldata _bytes, uint256 _arg)
                internal
                pure
                returns (uint256 length, uint256 offset)
            {
                uint256 relativeOffset;
                assembly {
                    // The offset of the `_arg`-th element is `32 * arg`, which stores the offset of the length pointer.
                    // shl(5, x) is equivalent to mul(32, x)
                    let lengthPtr := add(_bytes.offset, calldataload(add(_bytes.offset, shl(5, _arg))))
                    length := calldataload(lengthPtr)
                    offset := add(lengthPtr, 0x20)
                    relativeOffset := sub(offset, _bytes.offset)
                }
                if (_bytes.length < length + relativeOffset) revert SliceOutOfBounds();
            }
            /// @notice Decode the `_arg`-th element in `_bytes` as `address[]`
            /// @param _bytes The input bytes string to extract an address array from
            /// @param _arg The index of the argument to extract
            function toAddressArray(bytes calldata _bytes, uint256 _arg) internal pure returns (address[] calldata res) {
                (uint256 length, uint256 offset) = toLengthOffset(_bytes, _arg);
                assembly {
                    res.length := length
                    res.offset := offset
                }
            }
            /// @notice Equivalent to abi.decode(bytes, bytes[])
            /// @param _bytes The input bytes string to extract an parameters from
            function decodeCommandsAndInputs(bytes calldata _bytes) internal pure returns (bytes calldata, bytes[] calldata) {
                return _bytes.decodeActionsRouterParams();
            }
        }
        // SPDX-License-Identifier: GPL-3.0-or-later
        pragma solidity ^0.8.24;
        import {Constants} from '../libraries/Constants.sol';
        import {ActionConstants} from '@uniswap/v4-periphery/src/libraries/ActionConstants.sol';
        import {BipsLibrary} from '@uniswap/v4-periphery/src/libraries/BipsLibrary.sol';
        import {PaymentsImmutables} from '../modules/PaymentsImmutables.sol';
        import {SafeTransferLib} from 'solmate/src/utils/SafeTransferLib.sol';
        import {ERC20} from 'solmate/src/tokens/ERC20.sol';
        /// @title Payments contract
        /// @notice Performs various operations around the payment of ETH and tokens
        abstract contract Payments is PaymentsImmutables {
            using SafeTransferLib for ERC20;
            using SafeTransferLib for address;
            using BipsLibrary for uint256;
            error InsufficientToken();
            error InsufficientETH();
            /// @notice Pays an amount of ETH or ERC20 to a recipient
            /// @param token The token to pay (can be ETH using Constants.ETH)
            /// @param recipient The address that will receive the payment
            /// @param value The amount to pay
            function pay(address token, address recipient, uint256 value) internal {
                if (token == Constants.ETH) {
                    recipient.safeTransferETH(value);
                } else {
                    if (value == ActionConstants.CONTRACT_BALANCE) {
                        value = ERC20(token).balanceOf(address(this));
                    }
                    ERC20(token).safeTransfer(recipient, value);
                }
            }
            /// @notice Pays a proportion of the contract's ETH or ERC20 to a recipient
            /// @param token The token to pay (can be ETH using Constants.ETH)
            /// @param recipient The address that will receive payment
            /// @param bips Portion in bips of whole balance of the contract
            function payPortion(address token, address recipient, uint256 bips) internal {
                if (token == Constants.ETH) {
                    uint256 balance = address(this).balance;
                    uint256 amount = balance.calculatePortion(bips);
                    recipient.safeTransferETH(amount);
                } else {
                    uint256 balance = ERC20(token).balanceOf(address(this));
                    uint256 amount = balance.calculatePortion(bips);
                    ERC20(token).safeTransfer(recipient, amount);
                }
            }
            /// @notice Sweeps all of the contract's ERC20 or ETH to an address
            /// @param token The token to sweep (can be ETH using Constants.ETH)
            /// @param recipient The address that will receive payment
            /// @param amountMinimum The minimum desired amount
            function sweep(address token, address recipient, uint256 amountMinimum) internal {
                uint256 balance;
                if (token == Constants.ETH) {
                    balance = address(this).balance;
                    if (balance < amountMinimum) revert InsufficientETH();
                    if (balance > 0) recipient.safeTransferETH(balance);
                } else {
                    balance = ERC20(token).balanceOf(address(this));
                    if (balance < amountMinimum) revert InsufficientToken();
                    if (balance > 0) ERC20(token).safeTransfer(recipient, balance);
                }
            }
            /// @notice Wraps an amount of ETH into WETH
            /// @param recipient The recipient of the WETH
            /// @param amount The amount to wrap (can be CONTRACT_BALANCE)
            function wrapETH(address recipient, uint256 amount) internal {
                if (amount == ActionConstants.CONTRACT_BALANCE) {
                    amount = address(this).balance;
                } else if (amount > address(this).balance) {
                    revert InsufficientETH();
                }
                if (amount > 0) {
                    WETH9.deposit{value: amount}();
                    if (recipient != address(this)) {
                        WETH9.transfer(recipient, amount);
                    }
                }
            }
            /// @notice Unwraps all of the contract's WETH into ETH
            /// @param recipient The recipient of the ETH
            /// @param amountMinimum The minimum amount of ETH desired
            function unwrapWETH9(address recipient, uint256 amountMinimum) internal {
                uint256 value = WETH9.balanceOf(address(this));
                if (value < amountMinimum) {
                    revert InsufficientETH();
                }
                if (value > 0) {
                    WETH9.withdraw(value);
                    if (recipient != address(this)) {
                        recipient.safeTransferETH(value);
                    }
                }
            }
        }
        // SPDX-License-Identifier: GPL-3.0-or-later
        pragma solidity ^0.8.24;
        import {MigratorImmutables} from '../modules/MigratorImmutables.sol';
        import {INonfungiblePositionManager} from '@uniswap/v3-periphery/contracts/interfaces/INonfungiblePositionManager.sol';
        import {Actions} from '@uniswap/v4-periphery/src/libraries/Actions.sol';
        import {IERC721Permit} from '@uniswap/v3-periphery/contracts/interfaces/IERC721Permit.sol';
        import {CalldataDecoder} from '@uniswap/v4-periphery/src/libraries/CalldataDecoder.sol';
        /// @title V3 to V4 Migrator
        /// @notice A contract that migrates liquidity from Uniswap V3 to V4
        abstract contract V3ToV4Migrator is MigratorImmutables {
            using CalldataDecoder for bytes;
            error InvalidAction(bytes4 action);
            error OnlyMintAllowed();
            error NotAuthorizedForToken(uint256 tokenId);
            /// @dev validate if an action is decreaseLiquidity, collect, or burn
            function _isValidAction(bytes4 selector) private pure returns (bool) {
                return selector == INonfungiblePositionManager.decreaseLiquidity.selector
                    || selector == INonfungiblePositionManager.collect.selector
                    || selector == INonfungiblePositionManager.burn.selector;
            }
            /// @dev the caller is authorized for the token if its the owner, spender, or operator
            function _isAuthorizedForToken(address caller, uint256 tokenId) private view returns (bool) {
                address owner = V3_POSITION_MANAGER.ownerOf(tokenId);
                return caller == owner || V3_POSITION_MANAGER.getApproved(tokenId) == caller
                    || V3_POSITION_MANAGER.isApprovedForAll(owner, caller);
            }
            /// @dev check that a call is to the ERC721 permit function
            function _checkV3PermitCall(bytes calldata inputs) internal pure {
                bytes4 selector;
                assembly {
                    selector := calldataload(inputs.offset)
                }
                if (selector != IERC721Permit.permit.selector) {
                    revert InvalidAction(selector);
                }
            }
            /// @dev check that the v3 position manager call is a safe call
            function _checkV3PositionManagerCall(bytes calldata inputs, address caller) internal view {
                bytes4 selector;
                assembly {
                    selector := calldataload(inputs.offset)
                }
                if (!_isValidAction(selector)) {
                    revert InvalidAction(selector);
                }
                uint256 tokenId;
                assembly {
                    // tokenId is always the first parameter in the valid actions
                    tokenId := calldataload(add(inputs.offset, 0x04))
                }
                // If any other address that is not the owner wants to call this function, it also needs to be approved (in addition to this contract)
                // This can be done in 2 ways:
                //    1. This contract is permitted for the specific token and the caller is approved for ALL of the owner's tokens
                //    2. This contract is permitted for ALL of the owner's tokens and the caller is permitted for the specific token
                if (!_isAuthorizedForToken(caller, tokenId)) {
                    revert NotAuthorizedForToken(tokenId);
                }
            }
            /// @dev check that the v4 position manager call is a safe call
            /// of the position-altering Actions, we only allow Actions.MINT
            /// this is because, if a user could be tricked into approving the UniversalRouter for
            /// their position, an attacker could take their fees, or drain their entire position
            function _checkV4PositionManagerCall(bytes calldata inputs) internal view {
                bytes4 selector;
                assembly {
                    selector := calldataload(inputs.offset)
                }
                if (selector != V4_POSITION_MANAGER.modifyLiquidities.selector) {
                    revert InvalidAction(selector);
                }
                // slice is `abi.encode(bytes unlockData, uint256 deadline)`
                bytes calldata slice = inputs[4:];
                // the first bytes(0) extracts the unlockData parameter from modifyLiquidities
                // unlockData = `abi.encode(bytes actions, bytes[] params)`
                // the second bytes(0) extracts the actions parameter from unlockData
                bytes calldata actions = slice.toBytes(0).toBytes(0);
                uint256 numActions = actions.length;
                for (uint256 actionIndex = 0; actionIndex < numActions; actionIndex++) {
                    uint256 action = uint8(actions[actionIndex]);
                    if (
                        action == Actions.INCREASE_LIQUIDITY || action == Actions.DECREASE_LIQUIDITY
                            || action == Actions.BURN_POSITION
                    ) {
                        revert OnlyMintAllowed();
                    }
                }
            }
        }
        // SPDX-License-Identifier: GPL-3.0-or-later
        pragma solidity ^0.8.24;
        import {Locker} from '../libraries/Locker.sol';
        /// @title Lock
        /// @notice A contract that provides a reentrancy lock for external calls
        contract Lock {
            /// @notice Thrown when attempting to reenter a locked function from an external caller
            error ContractLocked();
            /// @notice Modifier enforcing a reentrancy lock that allows self-reentrancy
            /// @dev If the contract is not locked, use msg.sender as the locker
            modifier isNotLocked() {
                // Apply a reentrancy lock for all external callers
                if (msg.sender != address(this)) {
                    if (Locker.isLocked()) revert ContractLocked();
                    Locker.set(msg.sender);
                    _;
                    Locker.set(address(0));
                } else {
                    // The contract is allowed to reenter itself, so the lock is not checked
                    _;
                }
            }
            /// @notice return the current locker of the contract
            function _getLocker() internal view returns (address) {
                return Locker.get();
            }
        }
        // SPDX-License-Identifier: AGPL-3.0-only
        pragma solidity >=0.8.0;
        /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
        /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
        /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
        /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
        abstract contract ERC20 {
            /*//////////////////////////////////////////////////////////////
                                         EVENTS
            //////////////////////////////////////////////////////////////*/
            event Transfer(address indexed from, address indexed to, uint256 amount);
            event Approval(address indexed owner, address indexed spender, uint256 amount);
            /*//////////////////////////////////////////////////////////////
                                    METADATA STORAGE
            //////////////////////////////////////////////////////////////*/
            string public name;
            string public symbol;
            uint8 public immutable decimals;
            /*//////////////////////////////////////////////////////////////
                                      ERC20 STORAGE
            //////////////////////////////////////////////////////////////*/
            uint256 public totalSupply;
            mapping(address => uint256) public balanceOf;
            mapping(address => mapping(address => uint256)) public allowance;
            /*//////////////////////////////////////////////////////////////
                                    EIP-2612 STORAGE
            //////////////////////////////////////////////////////////////*/
            uint256 internal immutable INITIAL_CHAIN_ID;
            bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;
            mapping(address => uint256) public nonces;
            /*//////////////////////////////////////////////////////////////
                                       CONSTRUCTOR
            //////////////////////////////////////////////////////////////*/
            constructor(
                string memory _name,
                string memory _symbol,
                uint8 _decimals
            ) {
                name = _name;
                symbol = _symbol;
                decimals = _decimals;
                INITIAL_CHAIN_ID = block.chainid;
                INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
            }
            /*//////////////////////////////////////////////////////////////
                                       ERC20 LOGIC
            //////////////////////////////////////////////////////////////*/
            function approve(address spender, uint256 amount) public virtual returns (bool) {
                allowance[msg.sender][spender] = amount;
                emit Approval(msg.sender, spender, amount);
                return true;
            }
            function transfer(address to, uint256 amount) public virtual returns (bool) {
                balanceOf[msg.sender] -= amount;
                // Cannot overflow because the sum of all user
                // balances can't exceed the max uint256 value.
                unchecked {
                    balanceOf[to] += amount;
                }
                emit Transfer(msg.sender, to, amount);
                return true;
            }
            function transferFrom(
                address from,
                address to,
                uint256 amount
            ) public virtual returns (bool) {
                uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.
                if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;
                balanceOf[from] -= amount;
                // Cannot overflow because the sum of all user
                // balances can't exceed the max uint256 value.
                unchecked {
                    balanceOf[to] += amount;
                }
                emit Transfer(from, to, amount);
                return true;
            }
            /*//////////////////////////////////////////////////////////////
                                     EIP-2612 LOGIC
            //////////////////////////////////////////////////////////////*/
            function permit(
                address owner,
                address spender,
                uint256 value,
                uint256 deadline,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) public virtual {
                require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");
                // Unchecked because the only math done is incrementing
                // the owner's nonce which cannot realistically overflow.
                unchecked {
                    address recoveredAddress = ecrecover(
                        keccak256(
                            abi.encodePacked(
                                "\\x19\\x01",
                                DOMAIN_SEPARATOR(),
                                keccak256(
                                    abi.encode(
                                        keccak256(
                                            "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                                        ),
                                        owner,
                                        spender,
                                        value,
                                        nonces[owner]++,
                                        deadline
                                    )
                                )
                            )
                        ),
                        v,
                        r,
                        s
                    );
                    require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");
                    allowance[recoveredAddress][spender] = value;
                }
                emit Approval(owner, spender, value);
            }
            function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
                return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
            }
            function computeDomainSeparator() internal view virtual returns (bytes32) {
                return
                    keccak256(
                        abi.encode(
                            keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                            keccak256(bytes(name)),
                            keccak256("1"),
                            block.chainid,
                            address(this)
                        )
                    );
            }
            /*//////////////////////////////////////////////////////////////
                                INTERNAL MINT/BURN LOGIC
            //////////////////////////////////////////////////////////////*/
            function _mint(address to, uint256 amount) internal virtual {
                totalSupply += amount;
                // Cannot overflow because the sum of all user
                // balances can't exceed the max uint256 value.
                unchecked {
                    balanceOf[to] += amount;
                }
                emit Transfer(address(0), to, amount);
            }
            function _burn(address from, uint256 amount) internal virtual {
                balanceOf[from] -= amount;
                // Cannot underflow because a user's balance
                // will never be larger than the total supply.
                unchecked {
                    totalSupply -= amount;
                }
                emit Transfer(from, address(0), amount);
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import {IEIP712} from "./IEIP712.sol";
        /// @title AllowanceTransfer
        /// @notice Handles ERC20 token permissions through signature based allowance setting and ERC20 token transfers by checking allowed amounts
        /// @dev Requires user's token approval on the Permit2 contract
        interface IAllowanceTransfer is IEIP712 {
            /// @notice Thrown when an allowance on a token has expired.
            /// @param deadline The timestamp at which the allowed amount is no longer valid
            error AllowanceExpired(uint256 deadline);
            /// @notice Thrown when an allowance on a token has been depleted.
            /// @param amount The maximum amount allowed
            error InsufficientAllowance(uint256 amount);
            /// @notice Thrown when too many nonces are invalidated.
            error ExcessiveInvalidation();
            /// @notice Emits an event when the owner successfully invalidates an ordered nonce.
            event NonceInvalidation(
                address indexed owner, address indexed token, address indexed spender, uint48 newNonce, uint48 oldNonce
            );
            /// @notice Emits an event when the owner successfully sets permissions on a token for the spender.
            event Approval(
                address indexed owner, address indexed token, address indexed spender, uint160 amount, uint48 expiration
            );
            /// @notice Emits an event when the owner successfully sets permissions using a permit signature on a token for the spender.
            event Permit(
                address indexed owner,
                address indexed token,
                address indexed spender,
                uint160 amount,
                uint48 expiration,
                uint48 nonce
            );
            /// @notice Emits an event when the owner sets the allowance back to 0 with the lockdown function.
            event Lockdown(address indexed owner, address token, address spender);
            /// @notice The permit data for a token
            struct PermitDetails {
                // ERC20 token address
                address token;
                // the maximum amount allowed to spend
                uint160 amount;
                // timestamp at which a spender's token allowances become invalid
                uint48 expiration;
                // an incrementing value indexed per owner,token,and spender for each signature
                uint48 nonce;
            }
            /// @notice The permit message signed for a single token allowance
            struct PermitSingle {
                // the permit data for a single token alownce
                PermitDetails details;
                // address permissioned on the allowed tokens
                address spender;
                // deadline on the permit signature
                uint256 sigDeadline;
            }
            /// @notice The permit message signed for multiple token allowances
            struct PermitBatch {
                // the permit data for multiple token allowances
                PermitDetails[] details;
                // address permissioned on the allowed tokens
                address spender;
                // deadline on the permit signature
                uint256 sigDeadline;
            }
            /// @notice The saved permissions
            /// @dev This info is saved per owner, per token, per spender and all signed over in the permit message
            /// @dev Setting amount to type(uint160).max sets an unlimited approval
            struct PackedAllowance {
                // amount allowed
                uint160 amount;
                // permission expiry
                uint48 expiration;
                // an incrementing value indexed per owner,token,and spender for each signature
                uint48 nonce;
            }
            /// @notice A token spender pair.
            struct TokenSpenderPair {
                // the token the spender is approved
                address token;
                // the spender address
                address spender;
            }
            /// @notice Details for a token transfer.
            struct AllowanceTransferDetails {
                // the owner of the token
                address from;
                // the recipient of the token
                address to;
                // the amount of the token
                uint160 amount;
                // the token to be transferred
                address token;
            }
            /// @notice A mapping from owner address to token address to spender address to PackedAllowance struct, which contains details and conditions of the approval.
            /// @notice The mapping is indexed in the above order see: allowance[ownerAddress][tokenAddress][spenderAddress]
            /// @dev The packed slot holds the allowed amount, expiration at which the allowed amount is no longer valid, and current nonce thats updated on any signature based approvals.
            function allowance(address user, address token, address spender)
                external
                view
                returns (uint160 amount, uint48 expiration, uint48 nonce);
            /// @notice Approves the spender to use up to amount of the specified token up until the expiration
            /// @param token The token to approve
            /// @param spender The spender address to approve
            /// @param amount The approved amount of the token
            /// @param expiration The timestamp at which the approval is no longer valid
            /// @dev The packed allowance also holds a nonce, which will stay unchanged in approve
            /// @dev Setting amount to type(uint160).max sets an unlimited approval
            function approve(address token, address spender, uint160 amount, uint48 expiration) external;
            /// @notice Permit a spender to a given amount of the owners token via the owner's EIP-712 signature
            /// @dev May fail if the owner's nonce was invalidated in-flight by invalidateNonce
            /// @param owner The owner of the tokens being approved
            /// @param permitSingle Data signed over by the owner specifying the terms of approval
            /// @param signature The owner's signature over the permit data
            function permit(address owner, PermitSingle memory permitSingle, bytes calldata signature) external;
            /// @notice Permit a spender to the signed amounts of the owners tokens via the owner's EIP-712 signature
            /// @dev May fail if the owner's nonce was invalidated in-flight by invalidateNonce
            /// @param owner The owner of the tokens being approved
            /// @param permitBatch Data signed over by the owner specifying the terms of approval
            /// @param signature The owner's signature over the permit data
            function permit(address owner, PermitBatch memory permitBatch, bytes calldata signature) external;
            /// @notice Transfer approved tokens from one address to another
            /// @param from The address to transfer from
            /// @param to The address of the recipient
            /// @param amount The amount of the token to transfer
            /// @param token The token address to transfer
            /// @dev Requires the from address to have approved at least the desired amount
            /// of tokens to msg.sender.
            function transferFrom(address from, address to, uint160 amount, address token) external;
            /// @notice Transfer approved tokens in a batch
            /// @param transferDetails Array of owners, recipients, amounts, and tokens for the transfers
            /// @dev Requires the from addresses to have approved at least the desired amount
            /// of tokens to msg.sender.
            function transferFrom(AllowanceTransferDetails[] calldata transferDetails) external;
            /// @notice Enables performing a "lockdown" of the sender's Permit2 identity
            /// by batch revoking approvals
            /// @param approvals Array of approvals to revoke.
            function lockdown(TokenSpenderPair[] calldata approvals) external;
            /// @notice Invalidate nonces for a given (token, spender) pair
            /// @param token The token to invalidate nonces for
            /// @param spender The spender to invalidate nonces for
            /// @param newNonce The new nonce to set. Invalidates all nonces less than it.
            /// @dev Can't invalidate more than 2**16 nonces per transaction.
            function invalidateNonces(address token, address spender, uint48 newNonce) external;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /// @title Action Constants
        /// @notice Common constants used in actions
        /// @dev Constants are gas efficient alternatives to their literal values
        library ActionConstants {
            /// @notice used to signal that an action should use the input value of the open delta on the pool manager
            /// or of the balance that the contract holds
            uint128 internal constant OPEN_DELTA = 0;
            /// @notice used to signal that an action should use the contract's entire balance of a currency
            /// This value is equivalent to 1<<255, i.e. a singular 1 in the most significant bit.
            uint256 internal constant CONTRACT_BALANCE = 0x8000000000000000000000000000000000000000000000000000000000000000;
            /// @notice used to signal that the recipient of an action should be the msgSender
            address internal constant MSG_SENDER = address(1);
            /// @notice used to signal that the recipient of an action should be the address(this)
            address internal constant ADDRESS_THIS = address(2);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import {Currency} from "@uniswap/v4-core/src/types/Currency.sol";
        import {IV4Router} from "../interfaces/IV4Router.sol";
        import {PoolKey} from "@uniswap/v4-core/src/types/PoolKey.sol";
        /// @title Library for abi decoding in calldata
        library CalldataDecoder {
            using CalldataDecoder for bytes;
            error SliceOutOfBounds();
            /// @notice mask used for offsets and lengths to ensure no overflow
            /// @dev no sane abi encoding will pass in an offset or length greater than type(uint32).max
            ///      (note that this does deviate from standard solidity behavior and offsets/lengths will
            ///      be interpreted as mod type(uint32).max which will only impact malicious/buggy callers)
            uint256 constant OFFSET_OR_LENGTH_MASK = 0xffffffff;
            uint256 constant OFFSET_OR_LENGTH_MASK_AND_WORD_ALIGN = 0xffffffe0;
            /// @notice equivalent to SliceOutOfBounds.selector, stored in least-significant bits
            uint256 constant SLICE_ERROR_SELECTOR = 0x3b99b53d;
            /// @dev equivalent to: abi.decode(params, (bytes, bytes[])) in calldata (requires strict abi encoding)
            function decodeActionsRouterParams(bytes calldata _bytes)
                internal
                pure
                returns (bytes calldata actions, bytes[] calldata params)
            {
                assembly ("memory-safe") {
                    // Strict encoding requires that the data begin with:
                    // 0x00: 0x40 (offset to `actions.length`)
                    // 0x20: 0x60 + actions.length (offset to `params.length`)
                    // 0x40: `actions.length`
                    // 0x60: beginning of actions
                    // Verify actions offset matches strict encoding
                    let invalidData := xor(calldataload(_bytes.offset), 0x40)
                    actions.offset := add(_bytes.offset, 0x60)
                    actions.length := and(calldataload(add(_bytes.offset, 0x40)), OFFSET_OR_LENGTH_MASK)
                    // Round actions length up to be word-aligned, and add 0x60 (for the first 3 words of encoding)
                    let paramsLengthOffset := add(and(add(actions.length, 0x1f), OFFSET_OR_LENGTH_MASK_AND_WORD_ALIGN), 0x60)
                    // Verify params offset matches strict encoding
                    invalidData := or(invalidData, xor(calldataload(add(_bytes.offset, 0x20)), paramsLengthOffset))
                    let paramsLengthPointer := add(_bytes.offset, paramsLengthOffset)
                    params.length := and(calldataload(paramsLengthPointer), OFFSET_OR_LENGTH_MASK)
                    params.offset := add(paramsLengthPointer, 0x20)
                    // Expected offset for `params[0]` is params.length * 32
                    // As the first `params.length` slots are pointers to each of the array element lengths
                    let tailOffset := shl(5, params.length)
                    let expectedOffset := tailOffset
                    for { let offset := 0 } lt(offset, tailOffset) { offset := add(offset, 32) } {
                        let itemLengthOffset := calldataload(add(params.offset, offset))
                        // Verify that the offset matches the expected offset from strict encoding
                        invalidData := or(invalidData, xor(itemLengthOffset, expectedOffset))
                        let itemLengthPointer := add(params.offset, itemLengthOffset)
                        let length :=
                            add(and(add(calldataload(itemLengthPointer), 0x1f), OFFSET_OR_LENGTH_MASK_AND_WORD_ALIGN), 0x20)
                        expectedOffset := add(expectedOffset, length)
                    }
                    // if the data encoding was invalid, or the provided bytes string isnt as long as the encoding says, revert
                    if or(invalidData, lt(add(_bytes.length, _bytes.offset), add(params.offset, expectedOffset))) {
                        mstore(0, SLICE_ERROR_SELECTOR)
                        revert(0x1c, 4)
                    }
                }
            }
            /// @dev equivalent to: abi.decode(params, (uint256, uint256, uint128, uint128, bytes)) in calldata
            function decodeModifyLiquidityParams(bytes calldata params)
                internal
                pure
                returns (uint256 tokenId, uint256 liquidity, uint128 amount0, uint128 amount1, bytes calldata hookData)
            {
                // no length check performed, as there is a length check in `toBytes`
                assembly ("memory-safe") {
                    tokenId := calldataload(params.offset)
                    liquidity := calldataload(add(params.offset, 0x20))
                    amount0 := calldataload(add(params.offset, 0x40))
                    amount1 := calldataload(add(params.offset, 0x60))
                }
                hookData = params.toBytes(4);
            }
            /// @dev equivalent to: abi.decode(params, (uint256, uint128, uint128, bytes)) in calldata
            function decodeIncreaseLiquidityFromDeltasParams(bytes calldata params)
                internal
                pure
                returns (uint256 tokenId, uint128 amount0Max, uint128 amount1Max, bytes calldata hookData)
            {
                // no length check performed, as there is a length check in `toBytes`
                assembly ("memory-safe") {
                    tokenId := calldataload(params.offset)
                    amount0Max := calldataload(add(params.offset, 0x20))
                    amount1Max := calldataload(add(params.offset, 0x40))
                }
                hookData = params.toBytes(3);
            }
            /// @dev equivalent to: abi.decode(params, (PoolKey, int24, int24, uint256, uint128, uint128, address, bytes)) in calldata
            function decodeMintParams(bytes calldata params)
                internal
                pure
                returns (
                    PoolKey calldata poolKey,
                    int24 tickLower,
                    int24 tickUpper,
                    uint256 liquidity,
                    uint128 amount0Max,
                    uint128 amount1Max,
                    address owner,
                    bytes calldata hookData
                )
            {
                // no length check performed, as there is a length check in `toBytes`
                assembly ("memory-safe") {
                    poolKey := params.offset
                    tickLower := calldataload(add(params.offset, 0xa0))
                    tickUpper := calldataload(add(params.offset, 0xc0))
                    liquidity := calldataload(add(params.offset, 0xe0))
                    amount0Max := calldataload(add(params.offset, 0x100))
                    amount1Max := calldataload(add(params.offset, 0x120))
                    owner := calldataload(add(params.offset, 0x140))
                }
                hookData = params.toBytes(11);
            }
            /// @dev equivalent to: abi.decode(params, (PoolKey, int24, int24, uint128, uint128, address, bytes)) in calldata
            function decodeMintFromDeltasParams(bytes calldata params)
                internal
                pure
                returns (
                    PoolKey calldata poolKey,
                    int24 tickLower,
                    int24 tickUpper,
                    uint128 amount0Max,
                    uint128 amount1Max,
                    address owner,
                    bytes calldata hookData
                )
            {
                // no length check performed, as there is a length check in `toBytes`
                assembly ("memory-safe") {
                    poolKey := params.offset
                    tickLower := calldataload(add(params.offset, 0xa0))
                    tickUpper := calldataload(add(params.offset, 0xc0))
                    amount0Max := calldataload(add(params.offset, 0xe0))
                    amount1Max := calldataload(add(params.offset, 0x100))
                    owner := calldataload(add(params.offset, 0x120))
                }
                hookData = params.toBytes(10);
            }
            /// @dev equivalent to: abi.decode(params, (uint256, uint128, uint128, bytes)) in calldata
            function decodeBurnParams(bytes calldata params)
                internal
                pure
                returns (uint256 tokenId, uint128 amount0Min, uint128 amount1Min, bytes calldata hookData)
            {
                // no length check performed, as there is a length check in `toBytes`
                assembly ("memory-safe") {
                    tokenId := calldataload(params.offset)
                    amount0Min := calldataload(add(params.offset, 0x20))
                    amount1Min := calldataload(add(params.offset, 0x40))
                }
                hookData = params.toBytes(3);
            }
            /// @dev equivalent to: abi.decode(params, (IV4Router.ExactInputParams))
            function decodeSwapExactInParams(bytes calldata params)
                internal
                pure
                returns (IV4Router.ExactInputParams calldata swapParams)
            {
                // ExactInputParams is a variable length struct so we just have to look up its location
                assembly ("memory-safe") {
                    // only safety checks for the minimum length, where path is empty
                    // 0xa0 = 5 * 0x20 -> 3 elements, path offset, and path length 0
                    if lt(params.length, 0xa0) {
                        mstore(0, SLICE_ERROR_SELECTOR)
                        revert(0x1c, 4)
                    }
                    swapParams := add(params.offset, calldataload(params.offset))
                }
            }
            /// @dev equivalent to: abi.decode(params, (IV4Router.ExactInputSingleParams))
            function decodeSwapExactInSingleParams(bytes calldata params)
                internal
                pure
                returns (IV4Router.ExactInputSingleParams calldata swapParams)
            {
                // ExactInputSingleParams is a variable length struct so we just have to look up its location
                assembly ("memory-safe") {
                    // only safety checks for the minimum length, where hookData is empty
                    // 0x140 = 10 * 0x20 -> 8 elements, bytes offset, and bytes length 0
                    if lt(params.length, 0x140) {
                        mstore(0, SLICE_ERROR_SELECTOR)
                        revert(0x1c, 4)
                    }
                    swapParams := add(params.offset, calldataload(params.offset))
                }
            }
            /// @dev equivalent to: abi.decode(params, (IV4Router.ExactOutputParams))
            function decodeSwapExactOutParams(bytes calldata params)
                internal
                pure
                returns (IV4Router.ExactOutputParams calldata swapParams)
            {
                // ExactOutputParams is a variable length struct so we just have to look up its location
                assembly ("memory-safe") {
                    // only safety checks for the minimum length, where path is empty
                    // 0xa0 = 5 * 0x20 -> 3 elements, path offset, and path length 0
                    if lt(params.length, 0xa0) {
                        mstore(0, SLICE_ERROR_SELECTOR)
                        revert(0x1c, 4)
                    }
                    swapParams := add(params.offset, calldataload(params.offset))
                }
            }
            /// @dev equivalent to: abi.decode(params, (IV4Router.ExactOutputSingleParams))
            function decodeSwapExactOutSingleParams(bytes calldata params)
                internal
                pure
                returns (IV4Router.ExactOutputSingleParams calldata swapParams)
            {
                // ExactOutputSingleParams is a variable length struct so we just have to look up its location
                assembly ("memory-safe") {
                    // only safety checks for the minimum length, where hookData is empty
                    // 0x140 = 10 * 0x20 -> 8 elements, bytes offset, and bytes length 0
                    if lt(params.length, 0x140) {
                        mstore(0, SLICE_ERROR_SELECTOR)
                        revert(0x1c, 4)
                    }
                    swapParams := add(params.offset, calldataload(params.offset))
                }
            }
            /// @dev equivalent to: abi.decode(params, (Currency)) in calldata
            function decodeCurrency(bytes calldata params) internal pure returns (Currency currency) {
                assembly ("memory-safe") {
                    if lt(params.length, 0x20) {
                        mstore(0, SLICE_ERROR_SELECTOR)
                        revert(0x1c, 4)
                    }
                    currency := calldataload(params.offset)
                }
            }
            /// @dev equivalent to: abi.decode(params, (Currency, Currency)) in calldata
            function decodeCurrencyPair(bytes calldata params) internal pure returns (Currency currency0, Currency currency1) {
                assembly ("memory-safe") {
                    if lt(params.length, 0x40) {
                        mstore(0, SLICE_ERROR_SELECTOR)
                        revert(0x1c, 4)
                    }
                    currency0 := calldataload(params.offset)
                    currency1 := calldataload(add(params.offset, 0x20))
                }
            }
            /// @dev equivalent to: abi.decode(params, (Currency, Currency, address)) in calldata
            function decodeCurrencyPairAndAddress(bytes calldata params)
                internal
                pure
                returns (Currency currency0, Currency currency1, address _address)
            {
                assembly ("memory-safe") {
                    if lt(params.length, 0x60) {
                        mstore(0, SLICE_ERROR_SELECTOR)
                        revert(0x1c, 4)
                    }
                    currency0 := calldataload(params.offset)
                    currency1 := calldataload(add(params.offset, 0x20))
                    _address := calldataload(add(params.offset, 0x40))
                }
            }
            /// @dev equivalent to: abi.decode(params, (Currency, address)) in calldata
            function decodeCurrencyAndAddress(bytes calldata params)
                internal
                pure
                returns (Currency currency, address _address)
            {
                assembly ("memory-safe") {
                    if lt(params.length, 0x40) {
                        mstore(0, SLICE_ERROR_SELECTOR)
                        revert(0x1c, 4)
                    }
                    currency := calldataload(params.offset)
                    _address := calldataload(add(params.offset, 0x20))
                }
            }
            /// @dev equivalent to: abi.decode(params, (Currency, address, uint256)) in calldata
            function decodeCurrencyAddressAndUint256(bytes calldata params)
                internal
                pure
                returns (Currency currency, address _address, uint256 amount)
            {
                assembly ("memory-safe") {
                    if lt(params.length, 0x60) {
                        mstore(0, SLICE_ERROR_SELECTOR)
                        revert(0x1c, 4)
                    }
                    currency := calldataload(params.offset)
                    _address := calldataload(add(params.offset, 0x20))
                    amount := calldataload(add(params.offset, 0x40))
                }
            }
            /// @dev equivalent to: abi.decode(params, (Currency, uint256)) in calldata
            function decodeCurrencyAndUint256(bytes calldata params)
                internal
                pure
                returns (Currency currency, uint256 amount)
            {
                assembly ("memory-safe") {
                    if lt(params.length, 0x40) {
                        mstore(0, SLICE_ERROR_SELECTOR)
                        revert(0x1c, 4)
                    }
                    currency := calldataload(params.offset)
                    amount := calldataload(add(params.offset, 0x20))
                }
            }
            /// @dev equivalent to: abi.decode(params, (uint256)) in calldata
            function decodeUint256(bytes calldata params) internal pure returns (uint256 amount) {
                assembly ("memory-safe") {
                    if lt(params.length, 0x20) {
                        mstore(0, SLICE_ERROR_SELECTOR)
                        revert(0x1c, 4)
                    }
                    amount := calldataload(params.offset)
                }
            }
            /// @dev equivalent to: abi.decode(params, (Currency, uint256, bool)) in calldata
            function decodeCurrencyUint256AndBool(bytes calldata params)
                internal
                pure
                returns (Currency currency, uint256 amount, bool boolean)
            {
                assembly ("memory-safe") {
                    if lt(params.length, 0x60) {
                        mstore(0, SLICE_ERROR_SELECTOR)
                        revert(0x1c, 4)
                    }
                    currency := calldataload(params.offset)
                    amount := calldataload(add(params.offset, 0x20))
                    boolean := calldataload(add(params.offset, 0x40))
                }
            }
            /// @notice Decode the `_arg`-th element in `_bytes` as `bytes`
            /// @param _bytes The input bytes string to extract a bytes string from
            /// @param _arg The index of the argument to extract
            function toBytes(bytes calldata _bytes, uint256 _arg) internal pure returns (bytes calldata res) {
                uint256 length;
                assembly ("memory-safe") {
                    // The offset of the `_arg`-th element is `32 * arg`, which stores the offset of the length pointer.
                    // shl(5, x) is equivalent to mul(32, x)
                    let lengthPtr :=
                        add(_bytes.offset, and(calldataload(add(_bytes.offset, shl(5, _arg))), OFFSET_OR_LENGTH_MASK))
                    // the number of bytes in the bytes string
                    length := and(calldataload(lengthPtr), OFFSET_OR_LENGTH_MASK)
                    // the offset where the bytes string begins
                    let offset := add(lengthPtr, 0x20)
                    // assign the return parameters
                    res.length := length
                    res.offset := offset
                    // if the provided bytes string isnt as long as the encoding says, revert
                    if lt(add(_bytes.length, _bytes.offset), add(length, offset)) {
                        mstore(0, SLICE_ERROR_SELECTOR)
                        revert(0x1c, 4)
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import {Currency} from "./Currency.sol";
        import {IHooks} from "../interfaces/IHooks.sol";
        import {PoolIdLibrary} from "./PoolId.sol";
        using PoolIdLibrary for PoolKey global;
        /// @notice Returns the key for identifying a pool
        struct PoolKey {
            /// @notice The lower currency of the pool, sorted numerically
            Currency currency0;
            /// @notice The higher currency of the pool, sorted numerically
            Currency currency1;
            /// @notice The pool LP fee, capped at 1_000_000. If the highest bit is 1, the pool has a dynamic fee and must be exactly equal to 0x800000
            uint24 fee;
            /// @notice Ticks that involve positions must be a multiple of tick spacing
            int24 tickSpacing;
            /// @notice The hooks of the pool
            IHooks hooks;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.24;
        import {Currency} from "../types/Currency.sol";
        import {PoolKey} from "../types/PoolKey.sol";
        import {IHooks} from "./IHooks.sol";
        import {IERC6909Claims} from "./external/IERC6909Claims.sol";
        import {IProtocolFees} from "./IProtocolFees.sol";
        import {BalanceDelta} from "../types/BalanceDelta.sol";
        import {PoolId} from "../types/PoolId.sol";
        import {IExtsload} from "./IExtsload.sol";
        import {IExttload} from "./IExttload.sol";
        /// @notice Interface for the PoolManager
        interface IPoolManager is IProtocolFees, IERC6909Claims, IExtsload, IExttload {
            /// @notice Thrown when a currency is not netted out after the contract is unlocked
            error CurrencyNotSettled();
            /// @notice Thrown when trying to interact with a non-initialized pool
            error PoolNotInitialized();
            /// @notice Thrown when unlock is called, but the contract is already unlocked
            error AlreadyUnlocked();
            /// @notice Thrown when a function is called that requires the contract to be unlocked, but it is not
            error ManagerLocked();
            /// @notice Pools are limited to type(int16).max tickSpacing in #initialize, to prevent overflow
            error TickSpacingTooLarge(int24 tickSpacing);
            /// @notice Pools must have a positive non-zero tickSpacing passed to #initialize
            error TickSpacingTooSmall(int24 tickSpacing);
            /// @notice PoolKey must have currencies where address(currency0) < address(currency1)
            error CurrenciesOutOfOrderOrEqual(address currency0, address currency1);
            /// @notice Thrown when a call to updateDynamicLPFee is made by an address that is not the hook,
            /// or on a pool that does not have a dynamic swap fee.
            error UnauthorizedDynamicLPFeeUpdate();
            /// @notice Thrown when trying to swap amount of 0
            error SwapAmountCannotBeZero();
            ///@notice Thrown when native currency is passed to a non native settlement
            error NonzeroNativeValue();
            /// @notice Thrown when `clear` is called with an amount that is not exactly equal to the open currency delta.
            error MustClearExactPositiveDelta();
            /// @notice Emitted when a new pool is initialized
            /// @param id The abi encoded hash of the pool key struct for the new pool
            /// @param currency0 The first currency of the pool by address sort order
            /// @param currency1 The second currency of the pool by address sort order
            /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
            /// @param tickSpacing The minimum number of ticks between initialized ticks
            /// @param hooks The hooks contract address for the pool, or address(0) if none
            /// @param sqrtPriceX96 The price of the pool on initialization
            /// @param tick The initial tick of the pool corresponding to the initialized price
            event Initialize(
                PoolId indexed id,
                Currency indexed currency0,
                Currency indexed currency1,
                uint24 fee,
                int24 tickSpacing,
                IHooks hooks,
                uint160 sqrtPriceX96,
                int24 tick
            );
            /// @notice Emitted when a liquidity position is modified
            /// @param id The abi encoded hash of the pool key struct for the pool that was modified
            /// @param sender The address that modified the pool
            /// @param tickLower The lower tick of the position
            /// @param tickUpper The upper tick of the position
            /// @param liquidityDelta The amount of liquidity that was added or removed
            /// @param salt The extra data to make positions unique
            event ModifyLiquidity(
                PoolId indexed id, address indexed sender, int24 tickLower, int24 tickUpper, int256 liquidityDelta, bytes32 salt
            );
            /// @notice Emitted for swaps between currency0 and currency1
            /// @param id The abi encoded hash of the pool key struct for the pool that was modified
            /// @param sender The address that initiated the swap call, and that received the callback
            /// @param amount0 The delta of the currency0 balance of the pool
            /// @param amount1 The delta of the currency1 balance of the pool
            /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
            /// @param liquidity The liquidity of the pool after the swap
            /// @param tick The log base 1.0001 of the price of the pool after the swap
            /// @param fee The swap fee in hundredths of a bip
            event Swap(
                PoolId indexed id,
                address indexed sender,
                int128 amount0,
                int128 amount1,
                uint160 sqrtPriceX96,
                uint128 liquidity,
                int24 tick,
                uint24 fee
            );
            /// @notice Emitted for donations
            /// @param id The abi encoded hash of the pool key struct for the pool that was donated to
            /// @param sender The address that initiated the donate call
            /// @param amount0 The amount donated in currency0
            /// @param amount1 The amount donated in currency1
            event Donate(PoolId indexed id, address indexed sender, uint256 amount0, uint256 amount1);
            /// @notice All interactions on the contract that account deltas require unlocking. A caller that calls `unlock` must implement
            /// `IUnlockCallback(msg.sender).unlockCallback(data)`, where they interact with the remaining functions on this contract.
            /// @dev The only functions callable without an unlocking are `initialize` and `updateDynamicLPFee`
            /// @param data Any data to pass to the callback, via `IUnlockCallback(msg.sender).unlockCallback(data)`
            /// @return The data returned by the call to `IUnlockCallback(msg.sender).unlockCallback(data)`
            function unlock(bytes calldata data) external returns (bytes memory);
            /// @notice Initialize the state for a given pool ID
            /// @dev A swap fee totaling MAX_SWAP_FEE (100%) makes exact output swaps impossible since the input is entirely consumed by the fee
            /// @param key The pool key for the pool to initialize
            /// @param sqrtPriceX96 The initial square root price
            /// @return tick The initial tick of the pool
            function initialize(PoolKey memory key, uint160 sqrtPriceX96) external returns (int24 tick);
            struct ModifyLiquidityParams {
                // the lower and upper tick of the position
                int24 tickLower;
                int24 tickUpper;
                // how to modify the liquidity
                int256 liquidityDelta;
                // a value to set if you want unique liquidity positions at the same range
                bytes32 salt;
            }
            /// @notice Modify the liquidity for the given pool
            /// @dev Poke by calling with a zero liquidityDelta
            /// @param key The pool to modify liquidity in
            /// @param params The parameters for modifying the liquidity
            /// @param hookData The data to pass through to the add/removeLiquidity hooks
            /// @return callerDelta The balance delta of the caller of modifyLiquidity. This is the total of both principal, fee deltas, and hook deltas if applicable
            /// @return feesAccrued The balance delta of the fees generated in the liquidity range. Returned for informational purposes
            /// @dev Note that feesAccrued can be artificially inflated by a malicious actor and integrators should be careful using the value
            /// For pools with a single liquidity position, actors can donate to themselves to inflate feeGrowthGlobal (and consequently feesAccrued)
            /// atomically donating and collecting fees in the same unlockCallback may make the inflated value more extreme
            function modifyLiquidity(PoolKey memory key, ModifyLiquidityParams memory params, bytes calldata hookData)
                external
                returns (BalanceDelta callerDelta, BalanceDelta feesAccrued);
            struct SwapParams {
                /// Whether to swap token0 for token1 or vice versa
                bool zeroForOne;
                /// The desired input amount if negative (exactIn), or the desired output amount if positive (exactOut)
                int256 amountSpecified;
                /// The sqrt price at which, if reached, the swap will stop executing
                uint160 sqrtPriceLimitX96;
            }
            /// @notice Swap against the given pool
            /// @param key The pool to swap in
            /// @param params The parameters for swapping
            /// @param hookData The data to pass through to the swap hooks
            /// @return swapDelta The balance delta of the address swapping
            /// @dev Swapping on low liquidity pools may cause unexpected swap amounts when liquidity available is less than amountSpecified.
            /// Additionally note that if interacting with hooks that have the BEFORE_SWAP_RETURNS_DELTA_FLAG or AFTER_SWAP_RETURNS_DELTA_FLAG
            /// the hook may alter the swap input/output. Integrators should perform checks on the returned swapDelta.
            function swap(PoolKey memory key, SwapParams memory params, bytes calldata hookData)
                external
                returns (BalanceDelta swapDelta);
            /// @notice Donate the given currency amounts to the in-range liquidity providers of a pool
            /// @dev Calls to donate can be frontrun adding just-in-time liquidity, with the aim of receiving a portion donated funds.
            /// Donors should keep this in mind when designing donation mechanisms.
            /// @dev This function donates to in-range LPs at slot0.tick. In certain edge-cases of the swap algorithm, the `sqrtPrice` of
            /// a pool can be at the lower boundary of tick `n`, but the `slot0.tick` of the pool is already `n - 1`. In this case a call to
            /// `donate` would donate to tick `n - 1` (slot0.tick) not tick `n` (getTickAtSqrtPrice(slot0.sqrtPriceX96)).
            /// Read the comments in `Pool.swap()` for more information about this.
            /// @param key The key of the pool to donate to
            /// @param amount0 The amount of currency0 to donate
            /// @param amount1 The amount of currency1 to donate
            /// @param hookData The data to pass through to the donate hooks
            /// @return BalanceDelta The delta of the caller after the donate
            function donate(PoolKey memory key, uint256 amount0, uint256 amount1, bytes calldata hookData)
                external
                returns (BalanceDelta);
            /// @notice Writes the current ERC20 balance of the specified currency to transient storage
            /// This is used to checkpoint balances for the manager and derive deltas for the caller.
            /// @dev This MUST be called before any ERC20 tokens are sent into the contract, but can be skipped
            /// for native tokens because the amount to settle is determined by the sent value.
            /// However, if an ERC20 token has been synced and not settled, and the caller instead wants to settle
            /// native funds, this function can be called with the native currency to then be able to settle the native currency
            function sync(Currency currency) external;
            /// @notice Called by the user to net out some value owed to the user
            /// @dev Will revert if the requested amount is not available, consider using `mint` instead
            /// @dev Can also be used as a mechanism for free flash loans
            /// @param currency The currency to withdraw from the pool manager
            /// @param to The address to withdraw to
            /// @param amount The amount of currency to withdraw
            function take(Currency currency, address to, uint256 amount) external;
            /// @notice Called by the user to pay what is owed
            /// @return paid The amount of currency settled
            function settle() external payable returns (uint256 paid);
            /// @notice Called by the user to pay on behalf of another address
            /// @param recipient The address to credit for the payment
            /// @return paid The amount of currency settled
            function settleFor(address recipient) external payable returns (uint256 paid);
            /// @notice WARNING - Any currency that is cleared, will be non-retrievable, and locked in the contract permanently.
            /// A call to clear will zero out a positive balance WITHOUT a corresponding transfer.
            /// @dev This could be used to clear a balance that is considered dust.
            /// Additionally, the amount must be the exact positive balance. This is to enforce that the caller is aware of the amount being cleared.
            function clear(Currency currency, uint256 amount) external;
            /// @notice Called by the user to move value into ERC6909 balance
            /// @param to The address to mint the tokens to
            /// @param id The currency address to mint to ERC6909s, as a uint256
            /// @param amount The amount of currency to mint
            /// @dev The id is converted to a uint160 to correspond to a currency address
            /// If the upper 12 bytes are not 0, they will be 0-ed out
            function mint(address to, uint256 id, uint256 amount) external;
            /// @notice Called by the user to move value from ERC6909 balance
            /// @param from The address to burn the tokens from
            /// @param id The currency address to burn from ERC6909s, as a uint256
            /// @param amount The amount of currency to burn
            /// @dev The id is converted to a uint160 to correspond to a currency address
            /// If the upper 12 bytes are not 0, they will be 0-ed out
            function burn(address from, uint256 id, uint256 amount) external;
            /// @notice Updates the pools lp fees for the a pool that has enabled dynamic lp fees.
            /// @dev A swap fee totaling MAX_SWAP_FEE (100%) makes exact output swaps impossible since the input is entirely consumed by the fee
            /// @param key The key of the pool to update dynamic LP fees for
            /// @param newDynamicLPFee The new dynamic pool LP fee
            function updateDynamicLPFee(PoolKey memory key, uint24 newDynamicLPFee) external;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
        /// @title IWETH9
        interface IWETH9 is IERC20 {
            /// @notice Deposit ether to get wrapped ether
            function deposit() external payable;
            /// @notice Withdraw wrapped ether to get ether
            function withdraw(uint256) external;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import {ISignatureTransfer} from "./ISignatureTransfer.sol";
        import {IAllowanceTransfer} from "./IAllowanceTransfer.sol";
        /// @notice Permit2 handles signature-based transfers in SignatureTransfer and allowance-based transfers in AllowanceTransfer.
        /// @dev Users must approve Permit2 before calling any of the transfer functions.
        interface IPermit2 is ISignatureTransfer, IAllowanceTransfer {
        // IPermit2 unifies the two interfaces so users have maximal flexibility with their approval.
        }
        // SPDX-License-Identifier: GPL-3.0-or-later
        pragma solidity ^0.8.24;
        import {IAllowanceTransfer} from 'permit2/src/interfaces/IAllowanceTransfer.sol';
        import {SafeCast160} from 'permit2/src/libraries/SafeCast160.sol';
        import {Payments} from './Payments.sol';
        /// @title Payments through Permit2
        /// @notice Performs interactions with Permit2 to transfer tokens
        abstract contract Permit2Payments is Payments {
            using SafeCast160 for uint256;
            error FromAddressIsNotOwner();
            /// @notice Performs a transferFrom on Permit2
            /// @param token The token to transfer
            /// @param from The address to transfer from
            /// @param to The recipient of the transfer
            /// @param amount The amount to transfer
            function permit2TransferFrom(address token, address from, address to, uint160 amount) internal {
                PERMIT2.transferFrom(from, to, amount, token);
            }
            /// @notice Performs a batch transferFrom on Permit2
            /// @param batchDetails An array detailing each of the transfers that should occur
            /// @param owner The address that should be the owner of all transfers
            function permit2TransferFrom(IAllowanceTransfer.AllowanceTransferDetails[] calldata batchDetails, address owner)
                internal
            {
                uint256 batchLength = batchDetails.length;
                for (uint256 i = 0; i < batchLength; ++i) {
                    if (batchDetails[i].from != owner) revert FromAddressIsNotOwner();
                }
                PERMIT2.transferFrom(batchDetails);
            }
            /// @notice Either performs a regular payment or transferFrom on Permit2, depending on the payer address
            /// @param token The token to transfer
            /// @param payer The address to pay for the transfer
            /// @param recipient The recipient of the transfer
            /// @param amount The amount to transfer
            function payOrPermit2Transfer(address token, address payer, address recipient, uint256 amount) internal {
                if (payer == address(this)) pay(token, recipient, amount);
                else permit2TransferFrom(token, payer, recipient, amount.toUint160());
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.26;
        import {IPoolManager} from "@uniswap/v4-core/src/interfaces/IPoolManager.sol";
        import {BalanceDelta} from "@uniswap/v4-core/src/types/BalanceDelta.sol";
        import {PoolKey} from "@uniswap/v4-core/src/types/PoolKey.sol";
        import {Currency} from "@uniswap/v4-core/src/types/Currency.sol";
        import {TickMath} from "@uniswap/v4-core/src/libraries/TickMath.sol";
        import {SafeCast} from "@uniswap/v4-core/src/libraries/SafeCast.sol";
        import {PathKey} from "./libraries/PathKey.sol";
        import {CalldataDecoder} from "./libraries/CalldataDecoder.sol";
        import {IV4Router} from "./interfaces/IV4Router.sol";
        import {BaseActionsRouter} from "./base/BaseActionsRouter.sol";
        import {DeltaResolver} from "./base/DeltaResolver.sol";
        import {Actions} from "./libraries/Actions.sol";
        import {ActionConstants} from "./libraries/ActionConstants.sol";
        import {BipsLibrary} from "./libraries/BipsLibrary.sol";
        /// @title UniswapV4Router
        /// @notice Abstract contract that contains all internal logic needed for routing through Uniswap v4 pools
        /// @dev the entry point to executing actions in this contract is calling `BaseActionsRouter._executeActions`
        /// An inheriting contract should call _executeActions at the point that they wish actions to be executed
        abstract contract V4Router is IV4Router, BaseActionsRouter, DeltaResolver {
            using SafeCast for *;
            using CalldataDecoder for bytes;
            using BipsLibrary for uint256;
            constructor(IPoolManager _poolManager) BaseActionsRouter(_poolManager) {}
            function _handleAction(uint256 action, bytes calldata params) internal override {
                // swap actions and payment actions in different blocks for gas efficiency
                if (action < Actions.SETTLE) {
                    if (action == Actions.SWAP_EXACT_IN) {
                        IV4Router.ExactInputParams calldata swapParams = params.decodeSwapExactInParams();
                        _swapExactInput(swapParams);
                        return;
                    } else if (action == Actions.SWAP_EXACT_IN_SINGLE) {
                        IV4Router.ExactInputSingleParams calldata swapParams = params.decodeSwapExactInSingleParams();
                        _swapExactInputSingle(swapParams);
                        return;
                    } else if (action == Actions.SWAP_EXACT_OUT) {
                        IV4Router.ExactOutputParams calldata swapParams = params.decodeSwapExactOutParams();
                        _swapExactOutput(swapParams);
                        return;
                    } else if (action == Actions.SWAP_EXACT_OUT_SINGLE) {
                        IV4Router.ExactOutputSingleParams calldata swapParams = params.decodeSwapExactOutSingleParams();
                        _swapExactOutputSingle(swapParams);
                        return;
                    }
                } else {
                    if (action == Actions.SETTLE_ALL) {
                        (Currency currency, uint256 maxAmount) = params.decodeCurrencyAndUint256();
                        uint256 amount = _getFullDebt(currency);
                        if (amount > maxAmount) revert V4TooMuchRequested(maxAmount, amount);
                        _settle(currency, msgSender(), amount);
                        return;
                    } else if (action == Actions.TAKE_ALL) {
                        (Currency currency, uint256 minAmount) = params.decodeCurrencyAndUint256();
                        uint256 amount = _getFullCredit(currency);
                        if (amount < minAmount) revert V4TooLittleReceived(minAmount, amount);
                        _take(currency, msgSender(), amount);
                        return;
                    } else if (action == Actions.SETTLE) {
                        (Currency currency, uint256 amount, bool payerIsUser) = params.decodeCurrencyUint256AndBool();
                        _settle(currency, _mapPayer(payerIsUser), _mapSettleAmount(amount, currency));
                        return;
                    } else if (action == Actions.TAKE) {
                        (Currency currency, address recipient, uint256 amount) = params.decodeCurrencyAddressAndUint256();
                        _take(currency, _mapRecipient(recipient), _mapTakeAmount(amount, currency));
                        return;
                    } else if (action == Actions.TAKE_PORTION) {
                        (Currency currency, address recipient, uint256 bips) = params.decodeCurrencyAddressAndUint256();
                        _take(currency, _mapRecipient(recipient), _getFullCredit(currency).calculatePortion(bips));
                        return;
                    }
                }
                revert UnsupportedAction(action);
            }
            function _swapExactInputSingle(IV4Router.ExactInputSingleParams calldata params) private {
                uint128 amountIn = params.amountIn;
                if (amountIn == ActionConstants.OPEN_DELTA) {
                    amountIn =
                        _getFullCredit(params.zeroForOne ? params.poolKey.currency0 : params.poolKey.currency1).toUint128();
                }
                uint128 amountOut =
                    _swap(params.poolKey, params.zeroForOne, -int256(uint256(amountIn)), params.hookData).toUint128();
                if (amountOut < params.amountOutMinimum) revert V4TooLittleReceived(params.amountOutMinimum, amountOut);
            }
            function _swapExactInput(IV4Router.ExactInputParams calldata params) private {
                unchecked {
                    // Caching for gas savings
                    uint256 pathLength = params.path.length;
                    uint128 amountOut;
                    Currency currencyIn = params.currencyIn;
                    uint128 amountIn = params.amountIn;
                    if (amountIn == ActionConstants.OPEN_DELTA) amountIn = _getFullCredit(currencyIn).toUint128();
                    PathKey calldata pathKey;
                    for (uint256 i = 0; i < pathLength; i++) {
                        pathKey = params.path[i];
                        (PoolKey memory poolKey, bool zeroForOne) = pathKey.getPoolAndSwapDirection(currencyIn);
                        // The output delta will always be positive, except for when interacting with certain hook pools
                        amountOut = _swap(poolKey, zeroForOne, -int256(uint256(amountIn)), pathKey.hookData).toUint128();
                        amountIn = amountOut;
                        currencyIn = pathKey.intermediateCurrency;
                    }
                    if (amountOut < params.amountOutMinimum) revert V4TooLittleReceived(params.amountOutMinimum, amountOut);
                }
            }
            function _swapExactOutputSingle(IV4Router.ExactOutputSingleParams calldata params) private {
                uint128 amountOut = params.amountOut;
                if (amountOut == ActionConstants.OPEN_DELTA) {
                    amountOut =
                        _getFullDebt(params.zeroForOne ? params.poolKey.currency1 : params.poolKey.currency0).toUint128();
                }
                uint128 amountIn = (
                    uint256(-int256(_swap(params.poolKey, params.zeroForOne, int256(uint256(amountOut)), params.hookData)))
                ).toUint128();
                if (amountIn > params.amountInMaximum) revert V4TooMuchRequested(params.amountInMaximum, amountIn);
            }
            function _swapExactOutput(IV4Router.ExactOutputParams calldata params) private {
                unchecked {
                    // Caching for gas savings
                    uint256 pathLength = params.path.length;
                    uint128 amountIn;
                    uint128 amountOut = params.amountOut;
                    Currency currencyOut = params.currencyOut;
                    PathKey calldata pathKey;
                    if (amountOut == ActionConstants.OPEN_DELTA) {
                        amountOut = _getFullDebt(currencyOut).toUint128();
                    }
                    for (uint256 i = pathLength; i > 0; i--) {
                        pathKey = params.path[i - 1];
                        (PoolKey memory poolKey, bool oneForZero) = pathKey.getPoolAndSwapDirection(currencyOut);
                        // The output delta will always be negative, except for when interacting with certain hook pools
                        amountIn = (uint256(-int256(_swap(poolKey, !oneForZero, int256(uint256(amountOut)), pathKey.hookData))))
                            .toUint128();
                        amountOut = amountIn;
                        currencyOut = pathKey.intermediateCurrency;
                    }
                    if (amountIn > params.amountInMaximum) revert V4TooMuchRequested(params.amountInMaximum, amountIn);
                }
            }
            function _swap(PoolKey memory poolKey, bool zeroForOne, int256 amountSpecified, bytes calldata hookData)
                private
                returns (int128 reciprocalAmount)
            {
                // for protection of exactOut swaps, sqrtPriceLimit is not exposed as a feature in this contract
                unchecked {
                    BalanceDelta delta = poolManager.swap(
                        poolKey,
                        IPoolManager.SwapParams(
                            zeroForOne, amountSpecified, zeroForOne ? TickMath.MIN_SQRT_PRICE + 1 : TickMath.MAX_SQRT_PRICE - 1
                        ),
                        hookData
                    );
                    reciprocalAmount = (zeroForOne == amountSpecified < 0) ? delta.amount1() : delta.amount0();
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import {IERC20Minimal} from "../interfaces/external/IERC20Minimal.sol";
        import {CustomRevert} from "../libraries/CustomRevert.sol";
        type Currency is address;
        using {greaterThan as >, lessThan as <, greaterThanOrEqualTo as >=, equals as ==} for Currency global;
        using CurrencyLibrary for Currency global;
        function equals(Currency currency, Currency other) pure returns (bool) {
            return Currency.unwrap(currency) == Currency.unwrap(other);
        }
        function greaterThan(Currency currency, Currency other) pure returns (bool) {
            return Currency.unwrap(currency) > Currency.unwrap(other);
        }
        function lessThan(Currency currency, Currency other) pure returns (bool) {
            return Currency.unwrap(currency) < Currency.unwrap(other);
        }
        function greaterThanOrEqualTo(Currency currency, Currency other) pure returns (bool) {
            return Currency.unwrap(currency) >= Currency.unwrap(other);
        }
        /// @title CurrencyLibrary
        /// @dev This library allows for transferring and holding native tokens and ERC20 tokens
        library CurrencyLibrary {
            /// @notice Additional context for ERC-7751 wrapped error when a native transfer fails
            error NativeTransferFailed();
            /// @notice Additional context for ERC-7751 wrapped error when an ERC20 transfer fails
            error ERC20TransferFailed();
            /// @notice A constant to represent the native currency
            Currency public constant ADDRESS_ZERO = Currency.wrap(address(0));
            function transfer(Currency currency, address to, uint256 amount) internal {
                // altered from https://github.com/transmissions11/solmate/blob/44a9963d4c78111f77caa0e65d677b8b46d6f2e6/src/utils/SafeTransferLib.sol
                // modified custom error selectors
                bool success;
                if (currency.isAddressZero()) {
                    assembly ("memory-safe") {
                        // Transfer the ETH and revert if it fails.
                        success := call(gas(), to, amount, 0, 0, 0, 0)
                    }
                    // revert with NativeTransferFailed, containing the bubbled up error as an argument
                    if (!success) {
                        CustomRevert.bubbleUpAndRevertWith(to, bytes4(0), NativeTransferFailed.selector);
                    }
                } else {
                    assembly ("memory-safe") {
                        // Get a pointer to some free memory.
                        let fmp := mload(0x40)
                        // Write the abi-encoded calldata into memory, beginning with the function selector.
                        mstore(fmp, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
                        mstore(add(fmp, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
                        mstore(add(fmp, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.
                        success :=
                            and(
                                // Set success to whether the call reverted, if not we check it either
                                // returned exactly 1 (can't just be non-zero data), or had no return data.
                                or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                                // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                                // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                                // Counterintuitively, this call must be positioned second to the or() call in the
                                // surrounding and() call or else returndatasize() will be zero during the computation.
                                call(gas(), currency, 0, fmp, 68, 0, 32)
                            )
                        // Now clean the memory we used
                        mstore(fmp, 0) // 4 byte `selector` and 28 bytes of `to` were stored here
                        mstore(add(fmp, 0x20), 0) // 4 bytes of `to` and 28 bytes of `amount` were stored here
                        mstore(add(fmp, 0x40), 0) // 4 bytes of `amount` were stored here
                    }
                    // revert with ERC20TransferFailed, containing the bubbled up error as an argument
                    if (!success) {
                        CustomRevert.bubbleUpAndRevertWith(
                            Currency.unwrap(currency), IERC20Minimal.transfer.selector, ERC20TransferFailed.selector
                        );
                    }
                }
            }
            function balanceOfSelf(Currency currency) internal view returns (uint256) {
                if (currency.isAddressZero()) {
                    return address(this).balance;
                } else {
                    return IERC20Minimal(Currency.unwrap(currency)).balanceOf(address(this));
                }
            }
            function balanceOf(Currency currency, address owner) internal view returns (uint256) {
                if (currency.isAddressZero()) {
                    return owner.balance;
                } else {
                    return IERC20Minimal(Currency.unwrap(currency)).balanceOf(owner);
                }
            }
            function isAddressZero(Currency currency) internal pure returns (bool) {
                return Currency.unwrap(currency) == Currency.unwrap(ADDRESS_ZERO);
            }
            function toId(Currency currency) internal pure returns (uint256) {
                return uint160(Currency.unwrap(currency));
            }
            // If the upper 12 bytes are non-zero, they will be zero-ed out
            // Therefore, fromId() and toId() are not inverses of each other
            function fromId(uint256 id) internal pure returns (Currency) {
                return Currency.wrap(address(uint160(id)));
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.7.5;
        pragma abicoder v2;
        import '@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol';
        import '@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol';
        import './IPoolInitializer.sol';
        import './IERC721Permit.sol';
        import './IPeripheryPayments.sol';
        import './IPeripheryImmutableState.sol';
        import '../libraries/PoolAddress.sol';
        /// @title Non-fungible token for positions
        /// @notice Wraps Uniswap V3 positions in a non-fungible token interface which allows for them to be transferred
        /// and authorized.
        interface INonfungiblePositionManager is
            IPoolInitializer,
            IPeripheryPayments,
            IPeripheryImmutableState,
            IERC721Metadata,
            IERC721Enumerable,
            IERC721Permit
        {
            /// @notice Emitted when liquidity is increased for a position NFT
            /// @dev Also emitted when a token is minted
            /// @param tokenId The ID of the token for which liquidity was increased
            /// @param liquidity The amount by which liquidity for the NFT position was increased
            /// @param amount0 The amount of token0 that was paid for the increase in liquidity
            /// @param amount1 The amount of token1 that was paid for the increase in liquidity
            event IncreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1);
            /// @notice Emitted when liquidity is decreased for a position NFT
            /// @param tokenId The ID of the token for which liquidity was decreased
            /// @param liquidity The amount by which liquidity for the NFT position was decreased
            /// @param amount0 The amount of token0 that was accounted for the decrease in liquidity
            /// @param amount1 The amount of token1 that was accounted for the decrease in liquidity
            event DecreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1);
            /// @notice Emitted when tokens are collected for a position NFT
            /// @dev The amounts reported may not be exactly equivalent to the amounts transferred, due to rounding behavior
            /// @param tokenId The ID of the token for which underlying tokens were collected
            /// @param recipient The address of the account that received the collected tokens
            /// @param amount0 The amount of token0 owed to the position that was collected
            /// @param amount1 The amount of token1 owed to the position that was collected
            event Collect(uint256 indexed tokenId, address recipient, uint256 amount0, uint256 amount1);
            /// @notice Returns the position information associated with a given token ID.
            /// @dev Throws if the token ID is not valid.
            /// @param tokenId The ID of the token that represents the position
            /// @return nonce The nonce for permits
            /// @return operator The address that is approved for spending
            /// @return token0 The address of the token0 for a specific pool
            /// @return token1 The address of the token1 for a specific pool
            /// @return fee The fee associated with the pool
            /// @return tickLower The lower end of the tick range for the position
            /// @return tickUpper The higher end of the tick range for the position
            /// @return liquidity The liquidity of the position
            /// @return feeGrowthInside0LastX128 The fee growth of token0 as of the last action on the individual position
            /// @return feeGrowthInside1LastX128 The fee growth of token1 as of the last action on the individual position
            /// @return tokensOwed0 The uncollected amount of token0 owed to the position as of the last computation
            /// @return tokensOwed1 The uncollected amount of token1 owed to the position as of the last computation
            function positions(uint256 tokenId)
                external
                view
                returns (
                    uint96 nonce,
                    address operator,
                    address token0,
                    address token1,
                    uint24 fee,
                    int24 tickLower,
                    int24 tickUpper,
                    uint128 liquidity,
                    uint256 feeGrowthInside0LastX128,
                    uint256 feeGrowthInside1LastX128,
                    uint128 tokensOwed0,
                    uint128 tokensOwed1
                );
            struct MintParams {
                address token0;
                address token1;
                uint24 fee;
                int24 tickLower;
                int24 tickUpper;
                uint256 amount0Desired;
                uint256 amount1Desired;
                uint256 amount0Min;
                uint256 amount1Min;
                address recipient;
                uint256 deadline;
            }
            /// @notice Creates a new position wrapped in a NFT
            /// @dev Call this when the pool does exist and is initialized. Note that if the pool is created but not initialized
            /// a method does not exist, i.e. the pool is assumed to be initialized.
            /// @param params The params necessary to mint a position, encoded as `MintParams` in calldata
            /// @return tokenId The ID of the token that represents the minted position
            /// @return liquidity The amount of liquidity for this position
            /// @return amount0 The amount of token0
            /// @return amount1 The amount of token1
            function mint(MintParams calldata params)
                external
                payable
                returns (
                    uint256 tokenId,
                    uint128 liquidity,
                    uint256 amount0,
                    uint256 amount1
                );
            struct IncreaseLiquidityParams {
                uint256 tokenId;
                uint256 amount0Desired;
                uint256 amount1Desired;
                uint256 amount0Min;
                uint256 amount1Min;
                uint256 deadline;
            }
            /// @notice Increases the amount of liquidity in a position, with tokens paid by the `msg.sender`
            /// @param params tokenId The ID of the token for which liquidity is being increased,
            /// amount0Desired The desired amount of token0 to be spent,
            /// amount1Desired The desired amount of token1 to be spent,
            /// amount0Min The minimum amount of token0 to spend, which serves as a slippage check,
            /// amount1Min The minimum amount of token1 to spend, which serves as a slippage check,
            /// deadline The time by which the transaction must be included to effect the change
            /// @return liquidity The new liquidity amount as a result of the increase
            /// @return amount0 The amount of token0 to acheive resulting liquidity
            /// @return amount1 The amount of token1 to acheive resulting liquidity
            function increaseLiquidity(IncreaseLiquidityParams calldata params)
                external
                payable
                returns (
                    uint128 liquidity,
                    uint256 amount0,
                    uint256 amount1
                );
            struct DecreaseLiquidityParams {
                uint256 tokenId;
                uint128 liquidity;
                uint256 amount0Min;
                uint256 amount1Min;
                uint256 deadline;
            }
            /// @notice Decreases the amount of liquidity in a position and accounts it to the position
            /// @param params tokenId The ID of the token for which liquidity is being decreased,
            /// amount The amount by which liquidity will be decreased,
            /// amount0Min The minimum amount of token0 that should be accounted for the burned liquidity,
            /// amount1Min The minimum amount of token1 that should be accounted for the burned liquidity,
            /// deadline The time by which the transaction must be included to effect the change
            /// @return amount0 The amount of token0 accounted to the position's tokens owed
            /// @return amount1 The amount of token1 accounted to the position's tokens owed
            function decreaseLiquidity(DecreaseLiquidityParams calldata params)
                external
                payable
                returns (uint256 amount0, uint256 amount1);
            struct CollectParams {
                uint256 tokenId;
                address recipient;
                uint128 amount0Max;
                uint128 amount1Max;
            }
            /// @notice Collects up to a maximum amount of fees owed to a specific position to the recipient
            /// @param params tokenId The ID of the NFT for which tokens are being collected,
            /// recipient The account that should receive the tokens,
            /// amount0Max The maximum amount of token0 to collect,
            /// amount1Max The maximum amount of token1 to collect
            /// @return amount0 The amount of fees collected in token0
            /// @return amount1 The amount of fees collected in token1
            function collect(CollectParams calldata params) external payable returns (uint256 amount0, uint256 amount1);
            /// @notice Burns a token ID, which deletes it from the NFT contract. The token must have 0 liquidity and all tokens
            /// must be collected first.
            /// @param tokenId The ID of the token that is being burned
            function burn(uint256 tokenId) external payable;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import {PoolKey} from "@uniswap/v4-core/src/types/PoolKey.sol";
        import {PositionInfo} from "../libraries/PositionInfoLibrary.sol";
        import {INotifier} from "./INotifier.sol";
        import {IImmutableState} from "./IImmutableState.sol";
        import {IERC721Permit_v4} from "./IERC721Permit_v4.sol";
        import {IEIP712_v4} from "./IEIP712_v4.sol";
        import {IMulticall_v4} from "./IMulticall_v4.sol";
        import {IPoolInitializer_v4} from "./IPoolInitializer_v4.sol";
        import {IUnorderedNonce} from "./IUnorderedNonce.sol";
        import {IPermit2Forwarder} from "./IPermit2Forwarder.sol";
        /// @title IPositionManager
        /// @notice Interface for the PositionManager contract
        interface IPositionManager is
            INotifier,
            IImmutableState,
            IERC721Permit_v4,
            IEIP712_v4,
            IMulticall_v4,
            IPoolInitializer_v4,
            IUnorderedNonce,
            IPermit2Forwarder
        {
            /// @notice Thrown when the caller is not approved to modify a position
            error NotApproved(address caller);
            /// @notice Thrown when the block.timestamp exceeds the user-provided deadline
            error DeadlinePassed(uint256 deadline);
            /// @notice Thrown when calling transfer, subscribe, or unsubscribe when the PoolManager is unlocked.
            /// @dev This is to prevent hooks from being able to trigger notifications at the same time the position is being modified.
            error PoolManagerMustBeLocked();
            /// @notice Unlocks Uniswap v4 PoolManager and batches actions for modifying liquidity
            /// @dev This is the standard entrypoint for the PositionManager
            /// @param unlockData is an encoding of actions, and parameters for those actions
            /// @param deadline is the deadline for the batched actions to be executed
            function modifyLiquidities(bytes calldata unlockData, uint256 deadline) external payable;
            /// @notice Batches actions for modifying liquidity without unlocking v4 PoolManager
            /// @dev This must be called by a contract that has already unlocked the v4 PoolManager
            /// @param actions the actions to perform
            /// @param params the parameters to provide for the actions
            function modifyLiquiditiesWithoutUnlock(bytes calldata actions, bytes[] calldata params) external payable;
            /// @notice Used to get the ID that will be used for the next minted liquidity position
            /// @return uint256 The next token ID
            function nextTokenId() external view returns (uint256);
            /// @notice Returns the liquidity of a position
            /// @param tokenId the ERC721 tokenId
            /// @return liquidity the position's liquidity, as a liquidityAmount
            /// @dev this value can be processed as an amount0 and amount1 by using the LiquidityAmounts library
            function getPositionLiquidity(uint256 tokenId) external view returns (uint128 liquidity);
            /// @notice Returns the pool key and position info of a position
            /// @param tokenId the ERC721 tokenId
            /// @return poolKey the pool key of the position
            /// @return PositionInfo a uint256 packed value holding information about the position including the range (tickLower, tickUpper)
            function getPoolAndPositionInfo(uint256 tokenId) external view returns (PoolKey memory, PositionInfo);
            /// @notice Returns the position info of a position
            /// @param tokenId the ERC721 tokenId
            /// @return a uint256 packed value holding information about the position including the range (tickLower, tickUpper)
            function positionInfo(uint256 tokenId) external view returns (PositionInfo);
        }
        pragma solidity >=0.5.0;
        interface IUniswapV2Pair {
            event Approval(address indexed owner, address indexed spender, uint value);
            event Transfer(address indexed from, address indexed to, uint value);
            function name() external pure returns (string memory);
            function symbol() external pure returns (string memory);
            function decimals() external pure returns (uint8);
            function totalSupply() external view returns (uint);
            function balanceOf(address owner) external view returns (uint);
            function allowance(address owner, address spender) external view returns (uint);
            function approve(address spender, uint value) external returns (bool);
            function transfer(address to, uint value) external returns (bool);
            function transferFrom(address from, address to, uint value) external returns (bool);
            function DOMAIN_SEPARATOR() external view returns (bytes32);
            function PERMIT_TYPEHASH() external pure returns (bytes32);
            function nonces(address owner) external view returns (uint);
            function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
            event Mint(address indexed sender, uint amount0, uint amount1);
            event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
            event Swap(
                address indexed sender,
                uint amount0In,
                uint amount1In,
                uint amount0Out,
                uint amount1Out,
                address indexed to
            );
            event Sync(uint112 reserve0, uint112 reserve1);
            function MINIMUM_LIQUIDITY() external pure returns (uint);
            function factory() external view returns (address);
            function token0() external view returns (address);
            function token1() external view returns (address);
            function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
            function price0CumulativeLast() external view returns (uint);
            function price1CumulativeLast() external view returns (uint);
            function kLast() external view returns (uint);
            function mint(address to) external returns (uint liquidity);
            function burn(address to) external returns (uint amount0, uint amount1);
            function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
            function skim(address to) external;
            function sync() external;
            function initialize(address, address) external;
        }
        // SPDX-License-Identifier: GPL-3.0-or-later
        pragma solidity >=0.8.0;
        import {IUniswapV2Pair} from '@uniswap/v2-core/contracts/interfaces/IUniswapV2Pair.sol';
        /// @title Uniswap v2 Helper Library
        /// @notice Calculates the recipient address for a command
        library UniswapV2Library {
            error InvalidReserves();
            error InvalidPath();
            /// @notice Calculates the v2 address for a pair without making any external calls
            /// @param factory The address of the v2 factory
            /// @param initCodeHash The hash of the pair initcode
            /// @param tokenA One of the tokens in the pair
            /// @param tokenB The other token in the pair
            /// @return pair The resultant v2 pair address
            function pairFor(address factory, bytes32 initCodeHash, address tokenA, address tokenB)
                internal
                pure
                returns (address pair)
            {
                (address token0, address token1) = sortTokens(tokenA, tokenB);
                pair = pairForPreSorted(factory, initCodeHash, token0, token1);
            }
            /// @notice Calculates the v2 address for a pair and the pair's token0
            /// @param factory The address of the v2 factory
            /// @param initCodeHash The hash of the pair initcode
            /// @param tokenA One of the tokens in the pair
            /// @param tokenB The other token in the pair
            /// @return pair The resultant v2 pair address
            /// @return token0 The token considered token0 in this pair
            function pairAndToken0For(address factory, bytes32 initCodeHash, address tokenA, address tokenB)
                internal
                pure
                returns (address pair, address token0)
            {
                address token1;
                (token0, token1) = sortTokens(tokenA, tokenB);
                pair = pairForPreSorted(factory, initCodeHash, token0, token1);
            }
            /// @notice Calculates the v2 address for a pair assuming the input tokens are pre-sorted
            /// @param factory The address of the v2 factory
            /// @param initCodeHash The hash of the pair initcode
            /// @param token0 The pair's token0
            /// @param token1 The pair's token1
            /// @return pair The resultant v2 pair address
            function pairForPreSorted(address factory, bytes32 initCodeHash, address token0, address token1)
                private
                pure
                returns (address pair)
            {
                pair = address(
                    uint160(
                        uint256(
                            keccak256(
                                abi.encodePacked(hex'ff', factory, keccak256(abi.encodePacked(token0, token1)), initCodeHash)
                            )
                        )
                    )
                );
            }
            /// @notice Calculates the v2 address for a pair and fetches the reserves for each token
            /// @param factory The address of the v2 factory
            /// @param initCodeHash The hash of the pair initcode
            /// @param tokenA One of the tokens in the pair
            /// @param tokenB The other token in the pair
            /// @return pair The resultant v2 pair address
            /// @return reserveA The reserves for tokenA
            /// @return reserveB The reserves for tokenB
            function pairAndReservesFor(address factory, bytes32 initCodeHash, address tokenA, address tokenB)
                private
                view
                returns (address pair, uint256 reserveA, uint256 reserveB)
            {
                address token0;
                (pair, token0) = pairAndToken0For(factory, initCodeHash, tokenA, tokenB);
                (uint256 reserve0, uint256 reserve1,) = IUniswapV2Pair(pair).getReserves();
                (reserveA, reserveB) = tokenA == token0 ? (reserve0, reserve1) : (reserve1, reserve0);
            }
            /// @notice Given an input asset amount returns the maximum output amount of the other asset
            /// @param amountIn The token input amount
            /// @param reserveIn The reserves available of the input token
            /// @param reserveOut The reserves available of the output token
            /// @return amountOut The output amount of the output token
            function getAmountOut(uint256 amountIn, uint256 reserveIn, uint256 reserveOut)
                internal
                pure
                returns (uint256 amountOut)
            {
                if (reserveIn == 0 || reserveOut == 0) revert InvalidReserves();
                uint256 amountInWithFee = amountIn * 997;
                uint256 numerator = amountInWithFee * reserveOut;
                uint256 denominator = reserveIn * 1000 + amountInWithFee;
                amountOut = numerator / denominator;
            }
            /// @notice Returns the input amount needed for a desired output amount in a single-hop trade
            /// @param amountOut The desired output amount
            /// @param reserveIn The reserves available of the input token
            /// @param reserveOut The reserves available of the output token
            /// @return amountIn The input amount of the input token
            function getAmountIn(uint256 amountOut, uint256 reserveIn, uint256 reserveOut)
                internal
                pure
                returns (uint256 amountIn)
            {
                if (reserveIn == 0 || reserveOut == 0) revert InvalidReserves();
                uint256 numerator = reserveIn * amountOut * 1000;
                uint256 denominator = (reserveOut - amountOut) * 997;
                amountIn = (numerator / denominator) + 1;
            }
            /// @notice Returns the input amount needed for a desired output amount in a multi-hop trade
            /// @param factory The address of the v2 factory
            /// @param initCodeHash The hash of the pair initcode
            /// @param amountOut The desired output amount
            /// @param path The path of the multi-hop trade
            /// @return amount The input amount of the input token
            /// @return pair The first pair in the trade
            function getAmountInMultihop(address factory, bytes32 initCodeHash, uint256 amountOut, address[] calldata path)
                internal
                view
                returns (uint256 amount, address pair)
            {
                if (path.length < 2) revert InvalidPath();
                amount = amountOut;
                for (uint256 i = path.length - 1; i > 0; i--) {
                    uint256 reserveIn;
                    uint256 reserveOut;
                    (pair, reserveIn, reserveOut) = pairAndReservesFor(factory, initCodeHash, path[i - 1], path[i]);
                    amount = getAmountIn(amount, reserveIn, reserveOut);
                }
            }
            /// @notice Sorts two tokens to return token0 and token1
            /// @param tokenA The first token to sort
            /// @param tokenB The other token to sort
            /// @return token0 The smaller token by address value
            /// @return token1 The larger token by address value
            function sortTokens(address tokenA, address tokenB) internal pure returns (address token0, address token1) {
                (token0, token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
            }
        }
        // SPDX-License-Identifier: GPL-3.0-or-later
        pragma solidity ^0.8.24;
        /// @title Constant state
        /// @notice Constant state used by the Universal Router
        library Constants {
            /// @dev Used for identifying cases when a v2 pair has already received input tokens
            uint256 internal constant ALREADY_PAID = 0;
            /// @dev Used as a flag for identifying the transfer of ETH instead of a token
            address internal constant ETH = address(0);
            /// @dev The length of the bytes encoded address
            uint256 internal constant ADDR_SIZE = 20;
            /// @dev The length of the bytes encoded fee
            uint256 internal constant V3_FEE_SIZE = 3;
            /// @dev The offset of a single token address (20) and pool fee (3)
            uint256 internal constant NEXT_V3_POOL_OFFSET = ADDR_SIZE + V3_FEE_SIZE;
            /// @dev The offset of an encoded pool key
            /// Token (20) + Fee (3) + Token (20) = 43
            uint256 internal constant V3_POP_OFFSET = NEXT_V3_POOL_OFFSET + ADDR_SIZE;
            /// @dev The minimum length of an encoding that contains 2 or more pools
            uint256 internal constant MULTIPLE_V3_POOLS_MIN_LENGTH = V3_POP_OFFSET + NEXT_V3_POOL_OFFSET;
        }
        // SPDX-License-Identifier: GPL-3.0-or-later
        pragma solidity >=0.6.0;
        import {BytesLib} from './BytesLib.sol';
        import {Constants} from '../../../libraries/Constants.sol';
        /// @title Functions for manipulating path data for multihop swaps
        library V3Path {
            using BytesLib for bytes;
            /// @notice Returns true iff the path contains two or more pools
            /// @param path The encoded swap path
            /// @return True if path contains two or more pools, otherwise false
            function hasMultiplePools(bytes calldata path) internal pure returns (bool) {
                return path.length >= Constants.MULTIPLE_V3_POOLS_MIN_LENGTH;
            }
            /// @notice Decodes the first pool in path
            /// @param path The bytes encoded swap path
            /// @return tokenA The first token of the given pool
            /// @return fee The fee level of the pool
            /// @return tokenB The second token of the given pool
            function decodeFirstPool(bytes calldata path) internal pure returns (address, uint24, address) {
                return path.toPool();
            }
            /// @notice Gets the segment corresponding to the first pool in the path
            /// @param path The bytes encoded swap path
            /// @return The segment containing all data necessary to target the first pool in the path
            function getFirstPool(bytes calldata path) internal pure returns (bytes calldata) {
                return path[:Constants.V3_POP_OFFSET];
            }
            function decodeFirstToken(bytes calldata path) internal pure returns (address tokenA) {
                tokenA = path.toAddress();
            }
            /// @notice Skips a token + fee element
            /// @param path The swap path
            function skipToken(bytes calldata path) internal pure returns (bytes calldata) {
                return path[Constants.NEXT_V3_POOL_OFFSET:];
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Safe casting methods
        /// @notice Contains methods for safely casting between types
        library SafeCast {
            /// @notice Cast a uint256 to a uint160, revert on overflow
            /// @param y The uint256 to be downcasted
            /// @return z The downcasted integer, now type uint160
            function toUint160(uint256 y) internal pure returns (uint160 z) {
                require((z = uint160(y)) == y);
            }
            /// @notice Cast a int256 to a int128, revert on overflow or underflow
            /// @param y The int256 to be downcasted
            /// @return z The downcasted integer, now type int128
            function toInt128(int256 y) internal pure returns (int128 z) {
                require((z = int128(y)) == y);
            }
            /// @notice Cast a uint256 to a int256, revert on overflow
            /// @param y The uint256 to be casted
            /// @return z The casted integer, now type int256
            function toInt256(uint256 y) internal pure returns (int256 z) {
                require(y < 2**255);
                z = int256(y);
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        import './pool/IUniswapV3PoolImmutables.sol';
        import './pool/IUniswapV3PoolState.sol';
        import './pool/IUniswapV3PoolDerivedState.sol';
        import './pool/IUniswapV3PoolActions.sol';
        import './pool/IUniswapV3PoolOwnerActions.sol';
        import './pool/IUniswapV3PoolEvents.sol';
        /// @title The interface for a Uniswap V3 Pool
        /// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform
        /// to the ERC20 specification
        /// @dev The pool interface is broken up into many smaller pieces
        interface IUniswapV3Pool is
            IUniswapV3PoolImmutables,
            IUniswapV3PoolState,
            IUniswapV3PoolDerivedState,
            IUniswapV3PoolActions,
            IUniswapV3PoolOwnerActions,
            IUniswapV3PoolEvents
        {
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Callback for IUniswapV3PoolActions#swap
        /// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface
        interface IUniswapV3SwapCallback {
            /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap.
            /// @dev In the implementation you must pay the pool tokens owed for the swap.
            /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
            /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
            /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
            /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
            /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
            /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
            /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call
            function uniswapV3SwapCallback(
                int256 amount0Delta,
                int256 amount1Delta,
                bytes calldata data
            ) external;
        }
        // SPDX-License-Identifier: GPL-3.0-or-later
        pragma solidity ^0.8.24;
        /// @notice A library used to store the maximum desired amount of input tokens for exact output swaps; used for checking slippage
        library MaxInputAmount {
            // The slot holding the the maximum desired amount of input tokens, transiently. bytes32(uint256(keccak256("MaxAmountIn")) - 1)
            bytes32 constant MAX_AMOUNT_IN_SLOT = 0xaf28d9864a81dfdf71cab65f4e5d79a0cf9b083905fb8971425e6cb581b3f692;
            function set(uint256 maxAmountIn) internal {
                assembly ("memory-safe") {
                    tstore(MAX_AMOUNT_IN_SLOT, maxAmountIn)
                }
            }
            function get() internal view returns (uint256 maxAmountIn) {
                assembly ("memory-safe") {
                    maxAmountIn := tload(MAX_AMOUNT_IN_SLOT)
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /// @title For calculating a percentage of an amount, using bips
        library BipsLibrary {
            uint256 internal constant BPS_DENOMINATOR = 10_000;
            /// @notice emitted when an invalid percentage is provided
            error InvalidBips();
            /// @param amount The total amount to calculate a percentage of
            /// @param bips The percentage to calculate, in bips
            function calculatePortion(uint256 amount, uint256 bips) internal pure returns (uint256) {
                if (bips > BPS_DENOMINATOR) revert InvalidBips();
                return (amount * bips) / BPS_DENOMINATOR;
            }
        }
        // SPDX-License-Identifier: AGPL-3.0-only
        pragma solidity >=0.8.0;
        import {ERC20} from "../tokens/ERC20.sol";
        /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
        /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
        /// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer.
        /// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller.
        library SafeTransferLib {
            /*//////////////////////////////////////////////////////////////
                                     ETH OPERATIONS
            //////////////////////////////////////////////////////////////*/
            function safeTransferETH(address to, uint256 amount) internal {
                bool success;
                /// @solidity memory-safe-assembly
                assembly {
                    // Transfer the ETH and store if it succeeded or not.
                    success := call(gas(), to, amount, 0, 0, 0, 0)
                }
                require(success, "ETH_TRANSFER_FAILED");
            }
            /*//////////////////////////////////////////////////////////////
                                    ERC20 OPERATIONS
            //////////////////////////////////////////////////////////////*/
            function safeTransferFrom(
                ERC20 token,
                address from,
                address to,
                uint256 amount
            ) internal {
                bool success;
                /// @solidity memory-safe-assembly
                assembly {
                    // Get a pointer to some free memory.
                    let freeMemoryPointer := mload(0x40)
                    // Write the abi-encoded calldata into memory, beginning with the function selector.
                    mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
                    mstore(add(freeMemoryPointer, 4), from) // Append the "from" argument.
                    mstore(add(freeMemoryPointer, 36), to) // Append the "to" argument.
                    mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument.
                    success := and(
                        // Set success to whether the call reverted, if not we check it either
                        // returned exactly 1 (can't just be non-zero data), or had no return data.
                        or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                        // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3.
                        // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                        // Counterintuitively, this call must be positioned second to the or() call in the
                        // surrounding and() call or else returndatasize() will be zero during the computation.
                        call(gas(), token, 0, freeMemoryPointer, 100, 0, 32)
                    )
                }
                require(success, "TRANSFER_FROM_FAILED");
            }
            function safeTransfer(
                ERC20 token,
                address to,
                uint256 amount
            ) internal {
                bool success;
                /// @solidity memory-safe-assembly
                assembly {
                    // Get a pointer to some free memory.
                    let freeMemoryPointer := mload(0x40)
                    // Write the abi-encoded calldata into memory, beginning with the function selector.
                    mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
                    mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument.
                    mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument.
                    success := and(
                        // Set success to whether the call reverted, if not we check it either
                        // returned exactly 1 (can't just be non-zero data), or had no return data.
                        or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                        // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                        // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                        // Counterintuitively, this call must be positioned second to the or() call in the
                        // surrounding and() call or else returndatasize() will be zero during the computation.
                        call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
                    )
                }
                require(success, "TRANSFER_FAILED");
            }
            function safeApprove(
                ERC20 token,
                address to,
                uint256 amount
            ) internal {
                bool success;
                /// @solidity memory-safe-assembly
                assembly {
                    // Get a pointer to some free memory.
                    let freeMemoryPointer := mload(0x40)
                    // Write the abi-encoded calldata into memory, beginning with the function selector.
                    mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
                    mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument.
                    mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument.
                    success := and(
                        // Set success to whether the call reverted, if not we check it either
                        // returned exactly 1 (can't just be non-zero data), or had no return data.
                        or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                        // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                        // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                        // Counterintuitively, this call must be positioned second to the or() call in the
                        // surrounding and() call or else returndatasize() will be zero during the computation.
                        call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
                    )
                }
                require(success, "APPROVE_FAILED");
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /// @notice Library to define different pool actions.
        /// @dev These are suggested common commands, however additional commands should be defined as required
        /// Some of these actions are not supported in the Router contracts or Position Manager contracts, but are left as they may be helpful commands for other peripheral contracts.
        library Actions {
            // pool actions
            // liquidity actions
            uint256 internal constant INCREASE_LIQUIDITY = 0x00;
            uint256 internal constant DECREASE_LIQUIDITY = 0x01;
            uint256 internal constant MINT_POSITION = 0x02;
            uint256 internal constant BURN_POSITION = 0x03;
            uint256 internal constant INCREASE_LIQUIDITY_FROM_DELTAS = 0x04;
            uint256 internal constant MINT_POSITION_FROM_DELTAS = 0x05;
            // swapping
            uint256 internal constant SWAP_EXACT_IN_SINGLE = 0x06;
            uint256 internal constant SWAP_EXACT_IN = 0x07;
            uint256 internal constant SWAP_EXACT_OUT_SINGLE = 0x08;
            uint256 internal constant SWAP_EXACT_OUT = 0x09;
            // donate
            // note this is not supported in the position manager or router
            uint256 internal constant DONATE = 0x0a;
            // closing deltas on the pool manager
            // settling
            uint256 internal constant SETTLE = 0x0b;
            uint256 internal constant SETTLE_ALL = 0x0c;
            uint256 internal constant SETTLE_PAIR = 0x0d;
            // taking
            uint256 internal constant TAKE = 0x0e;
            uint256 internal constant TAKE_ALL = 0x0f;
            uint256 internal constant TAKE_PORTION = 0x10;
            uint256 internal constant TAKE_PAIR = 0x11;
            uint256 internal constant CLOSE_CURRENCY = 0x12;
            uint256 internal constant CLEAR_OR_TAKE = 0x13;
            uint256 internal constant SWEEP = 0x14;
            uint256 internal constant WRAP = 0x15;
            uint256 internal constant UNWRAP = 0x16;
            // minting/burning 6909s to close deltas
            // note this is not supported in the position manager or router
            uint256 internal constant MINT_6909 = 0x17;
            uint256 internal constant BURN_6909 = 0x18;
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.7.5;
        import '@openzeppelin/contracts/token/ERC721/IERC721.sol';
        /// @title ERC721 with permit
        /// @notice Extension to ERC721 that includes a permit function for signature based approvals
        interface IERC721Permit is IERC721 {
            /// @notice The permit typehash used in the permit signature
            /// @return The typehash for the permit
            function PERMIT_TYPEHASH() external pure returns (bytes32);
            /// @notice The domain separator used in the permit signature
            /// @return The domain seperator used in encoding of permit signature
            function DOMAIN_SEPARATOR() external view returns (bytes32);
            /// @notice Approve of a specific token ID for spending by spender via signature
            /// @param spender The account that is being approved
            /// @param tokenId The ID of the token that is being approved for spending
            /// @param deadline The deadline timestamp by which the call must be mined for the approve to work
            /// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s`
            /// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s`
            /// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v`
            function permit(
                address spender,
                uint256 tokenId,
                uint256 deadline,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) external payable;
        }
        // SPDX-License-Identifier: GPL-3.0-or-later
        pragma solidity ^0.8.24;
        /// @notice A library to implement a reentrancy lock in transient storage.
        /// @dev Instead of storing a boolean, the locker's address is stored to allow the contract to know who locked the contract
        /// TODO: This library can be deleted when we have the transient keyword support in solidity.
        library Locker {
            // The slot holding the locker state, transiently. bytes32(uint256(keccak256("Locker")) - 1)
            bytes32 constant LOCKER_SLOT = 0x0e87e1788ebd9ed6a7e63c70a374cd3283e41cad601d21fbe27863899ed4a708;
            function set(address locker) internal {
                // The locker is always msg.sender or address(0) so does not need to be cleaned
                assembly ("memory-safe") {
                    tstore(LOCKER_SLOT, locker)
                }
            }
            function get() internal view returns (address locker) {
                assembly ("memory-safe") {
                    locker := tload(LOCKER_SLOT)
                }
            }
            function isLocked() internal view returns (bool) {
                return Locker.get() != address(0);
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        interface IEIP712 {
            function DOMAIN_SEPARATOR() external view returns (bytes32);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import {PoolKey} from "@uniswap/v4-core/src/types/PoolKey.sol";
        import {Currency} from "@uniswap/v4-core/src/types/Currency.sol";
        import {PathKey} from "../libraries/PathKey.sol";
        import {IImmutableState} from "./IImmutableState.sol";
        /// @title IV4Router
        /// @notice Interface for the V4Router contract
        interface IV4Router is IImmutableState {
            /// @notice Emitted when an exactInput swap does not receive its minAmountOut
            error V4TooLittleReceived(uint256 minAmountOutReceived, uint256 amountReceived);
            /// @notice Emitted when an exactOutput is asked for more than its maxAmountIn
            error V4TooMuchRequested(uint256 maxAmountInRequested, uint256 amountRequested);
            /// @notice Parameters for a single-hop exact-input swap
            struct ExactInputSingleParams {
                PoolKey poolKey;
                bool zeroForOne;
                uint128 amountIn;
                uint128 amountOutMinimum;
                bytes hookData;
            }
            /// @notice Parameters for a multi-hop exact-input swap
            struct ExactInputParams {
                Currency currencyIn;
                PathKey[] path;
                uint128 amountIn;
                uint128 amountOutMinimum;
            }
            /// @notice Parameters for a single-hop exact-output swap
            struct ExactOutputSingleParams {
                PoolKey poolKey;
                bool zeroForOne;
                uint128 amountOut;
                uint128 amountInMaximum;
                bytes hookData;
            }
            /// @notice Parameters for a multi-hop exact-output swap
            struct ExactOutputParams {
                Currency currencyOut;
                PathKey[] path;
                uint128 amountOut;
                uint128 amountInMaximum;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import {PoolKey} from "../types/PoolKey.sol";
        import {BalanceDelta} from "../types/BalanceDelta.sol";
        import {IPoolManager} from "./IPoolManager.sol";
        import {BeforeSwapDelta} from "../types/BeforeSwapDelta.sol";
        /// @notice V4 decides whether to invoke specific hooks by inspecting the least significant bits
        /// of the address that the hooks contract is deployed to.
        /// For example, a hooks contract deployed to address: 0x0000000000000000000000000000000000002400
        /// has the lowest bits '10 0100 0000 0000' which would cause the 'before initialize' and 'after add liquidity' hooks to be used.
        /// See the Hooks library for the full spec.
        /// @dev Should only be callable by the v4 PoolManager.
        interface IHooks {
            /// @notice The hook called before the state of a pool is initialized
            /// @param sender The initial msg.sender for the initialize call
            /// @param key The key for the pool being initialized
            /// @param sqrtPriceX96 The sqrt(price) of the pool as a Q64.96
            /// @return bytes4 The function selector for the hook
            function beforeInitialize(address sender, PoolKey calldata key, uint160 sqrtPriceX96) external returns (bytes4);
            /// @notice The hook called after the state of a pool is initialized
            /// @param sender The initial msg.sender for the initialize call
            /// @param key The key for the pool being initialized
            /// @param sqrtPriceX96 The sqrt(price) of the pool as a Q64.96
            /// @param tick The current tick after the state of a pool is initialized
            /// @return bytes4 The function selector for the hook
            function afterInitialize(address sender, PoolKey calldata key, uint160 sqrtPriceX96, int24 tick)
                external
                returns (bytes4);
            /// @notice The hook called before liquidity is added
            /// @param sender The initial msg.sender for the add liquidity call
            /// @param key The key for the pool
            /// @param params The parameters for adding liquidity
            /// @param hookData Arbitrary data handed into the PoolManager by the liquidity provider to be passed on to the hook
            /// @return bytes4 The function selector for the hook
            function beforeAddLiquidity(
                address sender,
                PoolKey calldata key,
                IPoolManager.ModifyLiquidityParams calldata params,
                bytes calldata hookData
            ) external returns (bytes4);
            /// @notice The hook called after liquidity is added
            /// @param sender The initial msg.sender for the add liquidity call
            /// @param key The key for the pool
            /// @param params The parameters for adding liquidity
            /// @param delta The caller's balance delta after adding liquidity; the sum of principal delta, fees accrued, and hook delta
            /// @param feesAccrued The fees accrued since the last time fees were collected from this position
            /// @param hookData Arbitrary data handed into the PoolManager by the liquidity provider to be passed on to the hook
            /// @return bytes4 The function selector for the hook
            /// @return BalanceDelta The hook's delta in token0 and token1. Positive: the hook is owed/took currency, negative: the hook owes/sent currency
            function afterAddLiquidity(
                address sender,
                PoolKey calldata key,
                IPoolManager.ModifyLiquidityParams calldata params,
                BalanceDelta delta,
                BalanceDelta feesAccrued,
                bytes calldata hookData
            ) external returns (bytes4, BalanceDelta);
            /// @notice The hook called before liquidity is removed
            /// @param sender The initial msg.sender for the remove liquidity call
            /// @param key The key for the pool
            /// @param params The parameters for removing liquidity
            /// @param hookData Arbitrary data handed into the PoolManager by the liquidity provider to be be passed on to the hook
            /// @return bytes4 The function selector for the hook
            function beforeRemoveLiquidity(
                address sender,
                PoolKey calldata key,
                IPoolManager.ModifyLiquidityParams calldata params,
                bytes calldata hookData
            ) external returns (bytes4);
            /// @notice The hook called after liquidity is removed
            /// @param sender The initial msg.sender for the remove liquidity call
            /// @param key The key for the pool
            /// @param params The parameters for removing liquidity
            /// @param delta The caller's balance delta after removing liquidity; the sum of principal delta, fees accrued, and hook delta
            /// @param feesAccrued The fees accrued since the last time fees were collected from this position
            /// @param hookData Arbitrary data handed into the PoolManager by the liquidity provider to be be passed on to the hook
            /// @return bytes4 The function selector for the hook
            /// @return BalanceDelta The hook's delta in token0 and token1. Positive: the hook is owed/took currency, negative: the hook owes/sent currency
            function afterRemoveLiquidity(
                address sender,
                PoolKey calldata key,
                IPoolManager.ModifyLiquidityParams calldata params,
                BalanceDelta delta,
                BalanceDelta feesAccrued,
                bytes calldata hookData
            ) external returns (bytes4, BalanceDelta);
            /// @notice The hook called before a swap
            /// @param sender The initial msg.sender for the swap call
            /// @param key The key for the pool
            /// @param params The parameters for the swap
            /// @param hookData Arbitrary data handed into the PoolManager by the swapper to be be passed on to the hook
            /// @return bytes4 The function selector for the hook
            /// @return BeforeSwapDelta The hook's delta in specified and unspecified currencies. Positive: the hook is owed/took currency, negative: the hook owes/sent currency
            /// @return uint24 Optionally override the lp fee, only used if three conditions are met: 1. the Pool has a dynamic fee, 2. the value's 2nd highest bit is set (23rd bit, 0x400000), and 3. the value is less than or equal to the maximum fee (1 million)
            function beforeSwap(
                address sender,
                PoolKey calldata key,
                IPoolManager.SwapParams calldata params,
                bytes calldata hookData
            ) external returns (bytes4, BeforeSwapDelta, uint24);
            /// @notice The hook called after a swap
            /// @param sender The initial msg.sender for the swap call
            /// @param key The key for the pool
            /// @param params The parameters for the swap
            /// @param delta The amount owed to the caller (positive) or owed to the pool (negative)
            /// @param hookData Arbitrary data handed into the PoolManager by the swapper to be be passed on to the hook
            /// @return bytes4 The function selector for the hook
            /// @return int128 The hook's delta in unspecified currency. Positive: the hook is owed/took currency, negative: the hook owes/sent currency
            function afterSwap(
                address sender,
                PoolKey calldata key,
                IPoolManager.SwapParams calldata params,
                BalanceDelta delta,
                bytes calldata hookData
            ) external returns (bytes4, int128);
            /// @notice The hook called before donate
            /// @param sender The initial msg.sender for the donate call
            /// @param key The key for the pool
            /// @param amount0 The amount of token0 being donated
            /// @param amount1 The amount of token1 being donated
            /// @param hookData Arbitrary data handed into the PoolManager by the donor to be be passed on to the hook
            /// @return bytes4 The function selector for the hook
            function beforeDonate(
                address sender,
                PoolKey calldata key,
                uint256 amount0,
                uint256 amount1,
                bytes calldata hookData
            ) external returns (bytes4);
            /// @notice The hook called after donate
            /// @param sender The initial msg.sender for the donate call
            /// @param key The key for the pool
            /// @param amount0 The amount of token0 being donated
            /// @param amount1 The amount of token1 being donated
            /// @param hookData Arbitrary data handed into the PoolManager by the donor to be be passed on to the hook
            /// @return bytes4 The function selector for the hook
            function afterDonate(
                address sender,
                PoolKey calldata key,
                uint256 amount0,
                uint256 amount1,
                bytes calldata hookData
            ) external returns (bytes4);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import {PoolKey} from "./PoolKey.sol";
        type PoolId is bytes32;
        /// @notice Library for computing the ID of a pool
        library PoolIdLibrary {
            /// @notice Returns value equal to keccak256(abi.encode(poolKey))
            function toId(PoolKey memory poolKey) internal pure returns (PoolId poolId) {
                assembly ("memory-safe") {
                    // 0xa0 represents the total size of the poolKey struct (5 slots of 32 bytes)
                    poolId := keccak256(poolKey, 0xa0)
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /// @notice Interface for claims over a contract balance, wrapped as a ERC6909
        interface IERC6909Claims {
            /*//////////////////////////////////////////////////////////////
                                         EVENTS
            //////////////////////////////////////////////////////////////*/
            event OperatorSet(address indexed owner, address indexed operator, bool approved);
            event Approval(address indexed owner, address indexed spender, uint256 indexed id, uint256 amount);
            event Transfer(address caller, address indexed from, address indexed to, uint256 indexed id, uint256 amount);
            /*//////////////////////////////////////////////////////////////
                                         FUNCTIONS
            //////////////////////////////////////////////////////////////*/
            /// @notice Owner balance of an id.
            /// @param owner The address of the owner.
            /// @param id The id of the token.
            /// @return amount The balance of the token.
            function balanceOf(address owner, uint256 id) external view returns (uint256 amount);
            /// @notice Spender allowance of an id.
            /// @param owner The address of the owner.
            /// @param spender The address of the spender.
            /// @param id The id of the token.
            /// @return amount The allowance of the token.
            function allowance(address owner, address spender, uint256 id) external view returns (uint256 amount);
            /// @notice Checks if a spender is approved by an owner as an operator
            /// @param owner The address of the owner.
            /// @param spender The address of the spender.
            /// @return approved The approval status.
            function isOperator(address owner, address spender) external view returns (bool approved);
            /// @notice Transfers an amount of an id from the caller to a receiver.
            /// @param receiver The address of the receiver.
            /// @param id The id of the token.
            /// @param amount The amount of the token.
            /// @return bool True, always, unless the function reverts
            function transfer(address receiver, uint256 id, uint256 amount) external returns (bool);
            /// @notice Transfers an amount of an id from a sender to a receiver.
            /// @param sender The address of the sender.
            /// @param receiver The address of the receiver.
            /// @param id The id of the token.
            /// @param amount The amount of the token.
            /// @return bool True, always, unless the function reverts
            function transferFrom(address sender, address receiver, uint256 id, uint256 amount) external returns (bool);
            /// @notice Approves an amount of an id to a spender.
            /// @param spender The address of the spender.
            /// @param id The id of the token.
            /// @param amount The amount of the token.
            /// @return bool True, always
            function approve(address spender, uint256 id, uint256 amount) external returns (bool);
            /// @notice Sets or removes an operator for the caller.
            /// @param operator The address of the operator.
            /// @param approved The approval status.
            /// @return bool True, always
            function setOperator(address operator, bool approved) external returns (bool);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import {Currency} from "../types/Currency.sol";
        import {PoolId} from "../types/PoolId.sol";
        import {PoolKey} from "../types/PoolKey.sol";
        /// @notice Interface for all protocol-fee related functions in the pool manager
        interface IProtocolFees {
            /// @notice Thrown when protocol fee is set too high
            error ProtocolFeeTooLarge(uint24 fee);
            /// @notice Thrown when collectProtocolFees or setProtocolFee is not called by the controller.
            error InvalidCaller();
            /// @notice Thrown when collectProtocolFees is attempted on a token that is synced.
            error ProtocolFeeCurrencySynced();
            /// @notice Emitted when the protocol fee controller address is updated in setProtocolFeeController.
            event ProtocolFeeControllerUpdated(address indexed protocolFeeController);
            /// @notice Emitted when the protocol fee is updated for a pool.
            event ProtocolFeeUpdated(PoolId indexed id, uint24 protocolFee);
            /// @notice Given a currency address, returns the protocol fees accrued in that currency
            /// @param currency The currency to check
            /// @return amount The amount of protocol fees accrued in the currency
            function protocolFeesAccrued(Currency currency) external view returns (uint256 amount);
            /// @notice Sets the protocol fee for the given pool
            /// @param key The key of the pool to set a protocol fee for
            /// @param newProtocolFee The fee to set
            function setProtocolFee(PoolKey memory key, uint24 newProtocolFee) external;
            /// @notice Sets the protocol fee controller
            /// @param controller The new protocol fee controller
            function setProtocolFeeController(address controller) external;
            /// @notice Collects the protocol fees for a given recipient and currency, returning the amount collected
            /// @dev This will revert if the contract is unlocked
            /// @param recipient The address to receive the protocol fees
            /// @param currency The currency to withdraw
            /// @param amount The amount of currency to withdraw
            /// @return amountCollected The amount of currency successfully withdrawn
            function collectProtocolFees(address recipient, Currency currency, uint256 amount)
                external
                returns (uint256 amountCollected);
            /// @notice Returns the current protocol fee controller address
            /// @return address The current protocol fee controller address
            function protocolFeeController() external view returns (address);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import {SafeCast} from "../libraries/SafeCast.sol";
        /// @dev Two `int128` values packed into a single `int256` where the upper 128 bits represent the amount0
        /// and the lower 128 bits represent the amount1.
        type BalanceDelta is int256;
        using {add as +, sub as -, eq as ==, neq as !=} for BalanceDelta global;
        using BalanceDeltaLibrary for BalanceDelta global;
        using SafeCast for int256;
        function toBalanceDelta(int128 _amount0, int128 _amount1) pure returns (BalanceDelta balanceDelta) {
            assembly ("memory-safe") {
                balanceDelta := or(shl(128, _amount0), and(sub(shl(128, 1), 1), _amount1))
            }
        }
        function add(BalanceDelta a, BalanceDelta b) pure returns (BalanceDelta) {
            int256 res0;
            int256 res1;
            assembly ("memory-safe") {
                let a0 := sar(128, a)
                let a1 := signextend(15, a)
                let b0 := sar(128, b)
                let b1 := signextend(15, b)
                res0 := add(a0, b0)
                res1 := add(a1, b1)
            }
            return toBalanceDelta(res0.toInt128(), res1.toInt128());
        }
        function sub(BalanceDelta a, BalanceDelta b) pure returns (BalanceDelta) {
            int256 res0;
            int256 res1;
            assembly ("memory-safe") {
                let a0 := sar(128, a)
                let a1 := signextend(15, a)
                let b0 := sar(128, b)
                let b1 := signextend(15, b)
                res0 := sub(a0, b0)
                res1 := sub(a1, b1)
            }
            return toBalanceDelta(res0.toInt128(), res1.toInt128());
        }
        function eq(BalanceDelta a, BalanceDelta b) pure returns (bool) {
            return BalanceDelta.unwrap(a) == BalanceDelta.unwrap(b);
        }
        function neq(BalanceDelta a, BalanceDelta b) pure returns (bool) {
            return BalanceDelta.unwrap(a) != BalanceDelta.unwrap(b);
        }
        /// @notice Library for getting the amount0 and amount1 deltas from the BalanceDelta type
        library BalanceDeltaLibrary {
            /// @notice A BalanceDelta of 0
            BalanceDelta public constant ZERO_DELTA = BalanceDelta.wrap(0);
            function amount0(BalanceDelta balanceDelta) internal pure returns (int128 _amount0) {
                assembly ("memory-safe") {
                    _amount0 := sar(128, balanceDelta)
                }
            }
            function amount1(BalanceDelta balanceDelta) internal pure returns (int128 _amount1) {
                assembly ("memory-safe") {
                    _amount1 := signextend(15, balanceDelta)
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /// @notice Interface for functions to access any storage slot in a contract
        interface IExtsload {
            /// @notice Called by external contracts to access granular pool state
            /// @param slot Key of slot to sload
            /// @return value The value of the slot as bytes32
            function extsload(bytes32 slot) external view returns (bytes32 value);
            /// @notice Called by external contracts to access granular pool state
            /// @param startSlot Key of slot to start sloading from
            /// @param nSlots Number of slots to load into return value
            /// @return values List of loaded values.
            function extsload(bytes32 startSlot, uint256 nSlots) external view returns (bytes32[] memory values);
            /// @notice Called by external contracts to access sparse pool state
            /// @param slots List of slots to SLOAD from.
            /// @return values List of loaded values.
            function extsload(bytes32[] calldata slots) external view returns (bytes32[] memory values);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.24;
        /// @notice Interface for functions to access any transient storage slot in a contract
        interface IExttload {
            /// @notice Called by external contracts to access transient storage of the contract
            /// @param slot Key of slot to tload
            /// @return value The value of the slot as bytes32
            function exttload(bytes32 slot) external view returns (bytes32 value);
            /// @notice Called by external contracts to access sparse transient pool state
            /// @param slots List of slots to tload
            /// @return values List of loaded values
            function exttload(bytes32[] calldata slots) external view returns (bytes32[] memory values);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Interface of the ERC20 standard as defined in the EIP.
         */
        interface IERC20 {
            /**
             * @dev Emitted when `value` tokens are moved from one account (`from`) to
             * another (`to`).
             *
             * Note that `value` may be zero.
             */
            event Transfer(address indexed from, address indexed to, uint256 value);
            /**
             * @dev Emitted when the allowance of a `spender` for an `owner` is set by
             * a call to {approve}. `value` is the new allowance.
             */
            event Approval(address indexed owner, address indexed spender, uint256 value);
            /**
             * @dev Returns the value of tokens in existence.
             */
            function totalSupply() external view returns (uint256);
            /**
             * @dev Returns the value of tokens owned by `account`.
             */
            function balanceOf(address account) external view returns (uint256);
            /**
             * @dev Moves a `value` amount of tokens from the caller's account to `to`.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transfer(address to, uint256 value) external returns (bool);
            /**
             * @dev Returns the remaining number of tokens that `spender` will be
             * allowed to spend on behalf of `owner` through {transferFrom}. This is
             * zero by default.
             *
             * This value changes when {approve} or {transferFrom} are called.
             */
            function allowance(address owner, address spender) external view returns (uint256);
            /**
             * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
             * caller's tokens.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * IMPORTANT: Beware that changing an allowance with this method brings the risk
             * that someone may use both the old and the new allowance by unfortunate
             * transaction ordering. One possible solution to mitigate this race
             * condition is to first reduce the spender's allowance to 0 and set the
             * desired value afterwards:
             * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
             *
             * Emits an {Approval} event.
             */
            function approve(address spender, uint256 value) external returns (bool);
            /**
             * @dev Moves a `value` amount of tokens from `from` to `to` using the
             * allowance mechanism. `value` is then deducted from the caller's
             * allowance.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transferFrom(address from, address to, uint256 value) external returns (bool);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import {IEIP712} from "./IEIP712.sol";
        /// @title SignatureTransfer
        /// @notice Handles ERC20 token transfers through signature based actions
        /// @dev Requires user's token approval on the Permit2 contract
        interface ISignatureTransfer is IEIP712 {
            /// @notice Thrown when the requested amount for a transfer is larger than the permissioned amount
            /// @param maxAmount The maximum amount a spender can request to transfer
            error InvalidAmount(uint256 maxAmount);
            /// @notice Thrown when the number of tokens permissioned to a spender does not match the number of tokens being transferred
            /// @dev If the spender does not need to transfer the number of tokens permitted, the spender can request amount 0 to be transferred
            error LengthMismatch();
            /// @notice Emits an event when the owner successfully invalidates an unordered nonce.
            event UnorderedNonceInvalidation(address indexed owner, uint256 word, uint256 mask);
            /// @notice The token and amount details for a transfer signed in the permit transfer signature
            struct TokenPermissions {
                // ERC20 token address
                address token;
                // the maximum amount that can be spent
                uint256 amount;
            }
            /// @notice The signed permit message for a single token transfer
            struct PermitTransferFrom {
                TokenPermissions permitted;
                // a unique value for every token owner's signature to prevent signature replays
                uint256 nonce;
                // deadline on the permit signature
                uint256 deadline;
            }
            /// @notice Specifies the recipient address and amount for batched transfers.
            /// @dev Recipients and amounts correspond to the index of the signed token permissions array.
            /// @dev Reverts if the requested amount is greater than the permitted signed amount.
            struct SignatureTransferDetails {
                // recipient address
                address to;
                // spender requested amount
                uint256 requestedAmount;
            }
            /// @notice Used to reconstruct the signed permit message for multiple token transfers
            /// @dev Do not need to pass in spender address as it is required that it is msg.sender
            /// @dev Note that a user still signs over a spender address
            struct PermitBatchTransferFrom {
                // the tokens and corresponding amounts permitted for a transfer
                TokenPermissions[] permitted;
                // a unique value for every token owner's signature to prevent signature replays
                uint256 nonce;
                // deadline on the permit signature
                uint256 deadline;
            }
            /// @notice A map from token owner address and a caller specified word index to a bitmap. Used to set bits in the bitmap to prevent against signature replay protection
            /// @dev Uses unordered nonces so that permit messages do not need to be spent in a certain order
            /// @dev The mapping is indexed first by the token owner, then by an index specified in the nonce
            /// @dev It returns a uint256 bitmap
            /// @dev The index, or wordPosition is capped at type(uint248).max
            function nonceBitmap(address, uint256) external view returns (uint256);
            /// @notice Transfers a token using a signed permit message
            /// @dev Reverts if the requested amount is greater than the permitted signed amount
            /// @param permit The permit data signed over by the owner
            /// @param owner The owner of the tokens to transfer
            /// @param transferDetails The spender's requested transfer details for the permitted token
            /// @param signature The signature to verify
            function permitTransferFrom(
                PermitTransferFrom memory permit,
                SignatureTransferDetails calldata transferDetails,
                address owner,
                bytes calldata signature
            ) external;
            /// @notice Transfers a token using a signed permit message
            /// @notice Includes extra data provided by the caller to verify signature over
            /// @dev The witness type string must follow EIP712 ordering of nested structs and must include the TokenPermissions type definition
            /// @dev Reverts if the requested amount is greater than the permitted signed amount
            /// @param permit The permit data signed over by the owner
            /// @param owner The owner of the tokens to transfer
            /// @param transferDetails The spender's requested transfer details for the permitted token
            /// @param witness Extra data to include when checking the user signature
            /// @param witnessTypeString The EIP-712 type definition for remaining string stub of the typehash
            /// @param signature The signature to verify
            function permitWitnessTransferFrom(
                PermitTransferFrom memory permit,
                SignatureTransferDetails calldata transferDetails,
                address owner,
                bytes32 witness,
                string calldata witnessTypeString,
                bytes calldata signature
            ) external;
            /// @notice Transfers multiple tokens using a signed permit message
            /// @param permit The permit data signed over by the owner
            /// @param owner The owner of the tokens to transfer
            /// @param transferDetails Specifies the recipient and requested amount for the token transfer
            /// @param signature The signature to verify
            function permitTransferFrom(
                PermitBatchTransferFrom memory permit,
                SignatureTransferDetails[] calldata transferDetails,
                address owner,
                bytes calldata signature
            ) external;
            /// @notice Transfers multiple tokens using a signed permit message
            /// @dev The witness type string must follow EIP712 ordering of nested structs and must include the TokenPermissions type definition
            /// @notice Includes extra data provided by the caller to verify signature over
            /// @param permit The permit data signed over by the owner
            /// @param owner The owner of the tokens to transfer
            /// @param transferDetails Specifies the recipient and requested amount for the token transfer
            /// @param witness Extra data to include when checking the user signature
            /// @param witnessTypeString The EIP-712 type definition for remaining string stub of the typehash
            /// @param signature The signature to verify
            function permitWitnessTransferFrom(
                PermitBatchTransferFrom memory permit,
                SignatureTransferDetails[] calldata transferDetails,
                address owner,
                bytes32 witness,
                string calldata witnessTypeString,
                bytes calldata signature
            ) external;
            /// @notice Invalidates the bits specified in mask for the bitmap at the word position
            /// @dev The wordPos is maxed at type(uint248).max
            /// @param wordPos A number to index the nonceBitmap at
            /// @param mask A bitmap masked against msg.sender's current bitmap at the word position
            function invalidateUnorderedNonces(uint256 wordPos, uint256 mask) external;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.17;
        library SafeCast160 {
            /// @notice Thrown when a valude greater than type(uint160).max is cast to uint160
            error UnsafeCast();
            /// @notice Safely casts uint256 to uint160
            /// @param value The uint256 to be cast
            function toUint160(uint256 value) internal pure returns (uint160) {
                if (value > type(uint160).max) revert UnsafeCast();
                return uint160(value);
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import {BitMath} from "./BitMath.sol";
        import {CustomRevert} from "./CustomRevert.sol";
        /// @title Math library for computing sqrt prices from ticks and vice versa
        /// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
        /// prices between 2**-128 and 2**128
        library TickMath {
            using CustomRevert for bytes4;
            /// @notice Thrown when the tick passed to #getSqrtPriceAtTick is not between MIN_TICK and MAX_TICK
            error InvalidTick(int24 tick);
            /// @notice Thrown when the price passed to #getTickAtSqrtPrice does not correspond to a price between MIN_TICK and MAX_TICK
            error InvalidSqrtPrice(uint160 sqrtPriceX96);
            /// @dev The minimum tick that may be passed to #getSqrtPriceAtTick computed from log base 1.0001 of 2**-128
            /// @dev If ever MIN_TICK and MAX_TICK are not centered around 0, the absTick logic in getSqrtPriceAtTick cannot be used
            int24 internal constant MIN_TICK = -887272;
            /// @dev The maximum tick that may be passed to #getSqrtPriceAtTick computed from log base 1.0001 of 2**128
            /// @dev If ever MIN_TICK and MAX_TICK are not centered around 0, the absTick logic in getSqrtPriceAtTick cannot be used
            int24 internal constant MAX_TICK = 887272;
            /// @dev The minimum tick spacing value drawn from the range of type int16 that is greater than 0, i.e. min from the range [1, 32767]
            int24 internal constant MIN_TICK_SPACING = 1;
            /// @dev The maximum tick spacing value drawn from the range of type int16, i.e. max from the range [1, 32767]
            int24 internal constant MAX_TICK_SPACING = type(int16).max;
            /// @dev The minimum value that can be returned from #getSqrtPriceAtTick. Equivalent to getSqrtPriceAtTick(MIN_TICK)
            uint160 internal constant MIN_SQRT_PRICE = 4295128739;
            /// @dev The maximum value that can be returned from #getSqrtPriceAtTick. Equivalent to getSqrtPriceAtTick(MAX_TICK)
            uint160 internal constant MAX_SQRT_PRICE = 1461446703485210103287273052203988822378723970342;
            /// @dev A threshold used for optimized bounds check, equals `MAX_SQRT_PRICE - MIN_SQRT_PRICE - 1`
            uint160 internal constant MAX_SQRT_PRICE_MINUS_MIN_SQRT_PRICE_MINUS_ONE =
                1461446703485210103287273052203988822378723970342 - 4295128739 - 1;
            /// @notice Given a tickSpacing, compute the maximum usable tick
            function maxUsableTick(int24 tickSpacing) internal pure returns (int24) {
                unchecked {
                    return (MAX_TICK / tickSpacing) * tickSpacing;
                }
            }
            /// @notice Given a tickSpacing, compute the minimum usable tick
            function minUsableTick(int24 tickSpacing) internal pure returns (int24) {
                unchecked {
                    return (MIN_TICK / tickSpacing) * tickSpacing;
                }
            }
            /// @notice Calculates sqrt(1.0001^tick) * 2^96
            /// @dev Throws if |tick| > max tick
            /// @param tick The input tick for the above formula
            /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the price of the two assets (currency1/currency0)
            /// at the given tick
            function getSqrtPriceAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
                unchecked {
                    uint256 absTick;
                    assembly ("memory-safe") {
                        tick := signextend(2, tick)
                        // mask = 0 if tick >= 0 else -1 (all 1s)
                        let mask := sar(255, tick)
                        // if tick >= 0, |tick| = tick = 0 ^ tick
                        // if tick < 0, |tick| = ~~|tick| = ~(-|tick| - 1) = ~(tick - 1) = (-1) ^ (tick - 1)
                        // either way, |tick| = mask ^ (tick + mask)
                        absTick := xor(mask, add(mask, tick))
                    }
                    if (absTick > uint256(int256(MAX_TICK))) InvalidTick.selector.revertWith(tick);
                    // The tick is decomposed into bits, and for each bit with index i that is set, the product of 1/sqrt(1.0001^(2^i))
                    // is calculated (using Q128.128). The constants used for this calculation are rounded to the nearest integer
                    // Equivalent to:
                    //     price = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000;
                    //     or price = int(2**128 / sqrt(1.0001)) if (absTick & 0x1) else 1 << 128
                    uint256 price;
                    assembly ("memory-safe") {
                        price := xor(shl(128, 1), mul(xor(shl(128, 1), 0xfffcb933bd6fad37aa2d162d1a594001), and(absTick, 0x1)))
                    }
                    if (absTick & 0x2 != 0) price = (price * 0xfff97272373d413259a46990580e213a) >> 128;
                    if (absTick & 0x4 != 0) price = (price * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
                    if (absTick & 0x8 != 0) price = (price * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
                    if (absTick & 0x10 != 0) price = (price * 0xffcb9843d60f6159c9db58835c926644) >> 128;
                    if (absTick & 0x20 != 0) price = (price * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
                    if (absTick & 0x40 != 0) price = (price * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
                    if (absTick & 0x80 != 0) price = (price * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
                    if (absTick & 0x100 != 0) price = (price * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
                    if (absTick & 0x200 != 0) price = (price * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
                    if (absTick & 0x400 != 0) price = (price * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
                    if (absTick & 0x800 != 0) price = (price * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
                    if (absTick & 0x1000 != 0) price = (price * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
                    if (absTick & 0x2000 != 0) price = (price * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
                    if (absTick & 0x4000 != 0) price = (price * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
                    if (absTick & 0x8000 != 0) price = (price * 0x31be135f97d08fd981231505542fcfa6) >> 128;
                    if (absTick & 0x10000 != 0) price = (price * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
                    if (absTick & 0x20000 != 0) price = (price * 0x5d6af8dedb81196699c329225ee604) >> 128;
                    if (absTick & 0x40000 != 0) price = (price * 0x2216e584f5fa1ea926041bedfe98) >> 128;
                    if (absTick & 0x80000 != 0) price = (price * 0x48a170391f7dc42444e8fa2) >> 128;
                    assembly ("memory-safe") {
                        // if (tick > 0) price = type(uint256).max / price;
                        if sgt(tick, 0) { price := div(not(0), price) }
                        // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
                        // we then downcast because we know the result always fits within 160 bits due to our tick input constraint
                        // we round up in the division so getTickAtSqrtPrice of the output price is always consistent
                        // `sub(shl(32, 1), 1)` is `type(uint32).max`
                        // `price + type(uint32).max` will not overflow because `price` fits in 192 bits
                        sqrtPriceX96 := shr(32, add(price, sub(shl(32, 1), 1)))
                    }
                }
            }
            /// @notice Calculates the greatest tick value such that getSqrtPriceAtTick(tick) <= sqrtPriceX96
            /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_PRICE, as MIN_SQRT_PRICE is the lowest value getSqrtPriceAtTick may
            /// ever return.
            /// @param sqrtPriceX96 The sqrt price for which to compute the tick as a Q64.96
            /// @return tick The greatest tick for which the getSqrtPriceAtTick(tick) is less than or equal to the input sqrtPriceX96
            function getTickAtSqrtPrice(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
                unchecked {
                    // Equivalent: if (sqrtPriceX96 < MIN_SQRT_PRICE || sqrtPriceX96 >= MAX_SQRT_PRICE) revert InvalidSqrtPrice();
                    // second inequality must be >= because the price can never reach the price at the max tick
                    // if sqrtPriceX96 < MIN_SQRT_PRICE, the `sub` underflows and `gt` is true
                    // if sqrtPriceX96 >= MAX_SQRT_PRICE, sqrtPriceX96 - MIN_SQRT_PRICE > MAX_SQRT_PRICE - MIN_SQRT_PRICE - 1
                    if ((sqrtPriceX96 - MIN_SQRT_PRICE) > MAX_SQRT_PRICE_MINUS_MIN_SQRT_PRICE_MINUS_ONE) {
                        InvalidSqrtPrice.selector.revertWith(sqrtPriceX96);
                    }
                    uint256 price = uint256(sqrtPriceX96) << 32;
                    uint256 r = price;
                    uint256 msb = BitMath.mostSignificantBit(r);
                    if (msb >= 128) r = price >> (msb - 127);
                    else r = price << (127 - msb);
                    int256 log_2 = (int256(msb) - 128) << 64;
                    assembly ("memory-safe") {
                        r := shr(127, mul(r, r))
                        let f := shr(128, r)
                        log_2 := or(log_2, shl(63, f))
                        r := shr(f, r)
                    }
                    assembly ("memory-safe") {
                        r := shr(127, mul(r, r))
                        let f := shr(128, r)
                        log_2 := or(log_2, shl(62, f))
                        r := shr(f, r)
                    }
                    assembly ("memory-safe") {
                        r := shr(127, mul(r, r))
                        let f := shr(128, r)
                        log_2 := or(log_2, shl(61, f))
                        r := shr(f, r)
                    }
                    assembly ("memory-safe") {
                        r := shr(127, mul(r, r))
                        let f := shr(128, r)
                        log_2 := or(log_2, shl(60, f))
                        r := shr(f, r)
                    }
                    assembly ("memory-safe") {
                        r := shr(127, mul(r, r))
                        let f := shr(128, r)
                        log_2 := or(log_2, shl(59, f))
                        r := shr(f, r)
                    }
                    assembly ("memory-safe") {
                        r := shr(127, mul(r, r))
                        let f := shr(128, r)
                        log_2 := or(log_2, shl(58, f))
                        r := shr(f, r)
                    }
                    assembly ("memory-safe") {
                        r := shr(127, mul(r, r))
                        let f := shr(128, r)
                        log_2 := or(log_2, shl(57, f))
                        r := shr(f, r)
                    }
                    assembly ("memory-safe") {
                        r := shr(127, mul(r, r))
                        let f := shr(128, r)
                        log_2 := or(log_2, shl(56, f))
                        r := shr(f, r)
                    }
                    assembly ("memory-safe") {
                        r := shr(127, mul(r, r))
                        let f := shr(128, r)
                        log_2 := or(log_2, shl(55, f))
                        r := shr(f, r)
                    }
                    assembly ("memory-safe") {
                        r := shr(127, mul(r, r))
                        let f := shr(128, r)
                        log_2 := or(log_2, shl(54, f))
                        r := shr(f, r)
                    }
                    assembly ("memory-safe") {
                        r := shr(127, mul(r, r))
                        let f := shr(128, r)
                        log_2 := or(log_2, shl(53, f))
                        r := shr(f, r)
                    }
                    assembly ("memory-safe") {
                        r := shr(127, mul(r, r))
                        let f := shr(128, r)
                        log_2 := or(log_2, shl(52, f))
                        r := shr(f, r)
                    }
                    assembly ("memory-safe") {
                        r := shr(127, mul(r, r))
                        let f := shr(128, r)
                        log_2 := or(log_2, shl(51, f))
                        r := shr(f, r)
                    }
                    assembly ("memory-safe") {
                        r := shr(127, mul(r, r))
                        let f := shr(128, r)
                        log_2 := or(log_2, shl(50, f))
                    }
                    int256 log_sqrt10001 = log_2 * 255738958999603826347141; // Q22.128 number
                    // Magic number represents the ceiling of the maximum value of the error when approximating log_sqrt10001(x)
                    int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
                    // Magic number represents the minimum value of the error when approximating log_sqrt10001(x), when
                    // sqrtPrice is from the range (2^-64, 2^64). This is safe as MIN_SQRT_PRICE is more than 2^-64. If MIN_SQRT_PRICE
                    // is changed, this may need to be changed too
                    int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);
                    tick = tickLow == tickHi ? tickLow : getSqrtPriceAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import {CustomRevert} from "./CustomRevert.sol";
        /// @title Safe casting methods
        /// @notice Contains methods for safely casting between types
        library SafeCast {
            using CustomRevert for bytes4;
            error SafeCastOverflow();
            /// @notice Cast a uint256 to a uint160, revert on overflow
            /// @param x The uint256 to be downcasted
            /// @return y The downcasted integer, now type uint160
            function toUint160(uint256 x) internal pure returns (uint160 y) {
                y = uint160(x);
                if (y != x) SafeCastOverflow.selector.revertWith();
            }
            /// @notice Cast a uint256 to a uint128, revert on overflow
            /// @param x The uint256 to be downcasted
            /// @return y The downcasted integer, now type uint128
            function toUint128(uint256 x) internal pure returns (uint128 y) {
                y = uint128(x);
                if (x != y) SafeCastOverflow.selector.revertWith();
            }
            /// @notice Cast a int128 to a uint128, revert on overflow or underflow
            /// @param x The int128 to be casted
            /// @return y The casted integer, now type uint128
            function toUint128(int128 x) internal pure returns (uint128 y) {
                if (x < 0) SafeCastOverflow.selector.revertWith();
                y = uint128(x);
            }
            /// @notice Cast a int256 to a int128, revert on overflow or underflow
            /// @param x The int256 to be downcasted
            /// @return y The downcasted integer, now type int128
            function toInt128(int256 x) internal pure returns (int128 y) {
                y = int128(x);
                if (y != x) SafeCastOverflow.selector.revertWith();
            }
            /// @notice Cast a uint256 to a int256, revert on overflow
            /// @param x The uint256 to be casted
            /// @return y The casted integer, now type int256
            function toInt256(uint256 x) internal pure returns (int256 y) {
                y = int256(x);
                if (y < 0) SafeCastOverflow.selector.revertWith();
            }
            /// @notice Cast a uint256 to a int128, revert on overflow
            /// @param x The uint256 to be downcasted
            /// @return The downcasted integer, now type int128
            function toInt128(uint256 x) internal pure returns (int128) {
                if (x >= 1 << 127) SafeCastOverflow.selector.revertWith();
                return int128(int256(x));
            }
        }
        //SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import {Currency} from "@uniswap/v4-core/src/types/Currency.sol";
        import {IHooks} from "@uniswap/v4-core/src/interfaces/IHooks.sol";
        import {PoolKey} from "@uniswap/v4-core/src/types/PoolKey.sol";
        struct PathKey {
            Currency intermediateCurrency;
            uint24 fee;
            int24 tickSpacing;
            IHooks hooks;
            bytes hookData;
        }
        using PathKeyLibrary for PathKey global;
        /// @title PathKey Library
        /// @notice Functions for working with PathKeys
        library PathKeyLibrary {
            /// @notice Get the pool and swap direction for a given PathKey
            /// @param params the given PathKey
            /// @param currencyIn the input currency
            /// @return poolKey the pool key of the swap
            /// @return zeroForOne the direction of the swap, true if currency0 is being swapped for currency1
            function getPoolAndSwapDirection(PathKey calldata params, Currency currencyIn)
                internal
                pure
                returns (PoolKey memory poolKey, bool zeroForOne)
            {
                Currency currencyOut = params.intermediateCurrency;
                (Currency currency0, Currency currency1) =
                    currencyIn < currencyOut ? (currencyIn, currencyOut) : (currencyOut, currencyIn);
                zeroForOne = currencyIn == currency0;
                poolKey = PoolKey(currency0, currency1, params.fee, params.tickSpacing, params.hooks);
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import {IPoolManager} from "@uniswap/v4-core/src/interfaces/IPoolManager.sol";
        import {SafeCallback} from "./SafeCallback.sol";
        import {CalldataDecoder} from "../libraries/CalldataDecoder.sol";
        import {ActionConstants} from "../libraries/ActionConstants.sol";
        /// @notice Abstract contract for performing a combination of actions on Uniswap v4.
        /// @dev Suggested uint256 action values are defined in Actions.sol, however any definition can be used
        abstract contract BaseActionsRouter is SafeCallback {
            using CalldataDecoder for bytes;
            /// @notice emitted when different numbers of parameters and actions are provided
            error InputLengthMismatch();
            /// @notice emitted when an inheriting contract does not support an action
            error UnsupportedAction(uint256 action);
            constructor(IPoolManager _poolManager) SafeCallback(_poolManager) {}
            /// @notice internal function that triggers the execution of a set of actions on v4
            /// @dev inheriting contracts should call this function to trigger execution
            function _executeActions(bytes calldata unlockData) internal {
                poolManager.unlock(unlockData);
            }
            /// @notice function that is called by the PoolManager through the SafeCallback.unlockCallback
            /// @param data Abi encoding of (bytes actions, bytes[] params)
            /// where params[i] is the encoded parameters for actions[i]
            function _unlockCallback(bytes calldata data) internal override returns (bytes memory) {
                // abi.decode(data, (bytes, bytes[]));
                (bytes calldata actions, bytes[] calldata params) = data.decodeActionsRouterParams();
                _executeActionsWithoutUnlock(actions, params);
                return "";
            }
            function _executeActionsWithoutUnlock(bytes calldata actions, bytes[] calldata params) internal {
                uint256 numActions = actions.length;
                if (numActions != params.length) revert InputLengthMismatch();
                for (uint256 actionIndex = 0; actionIndex < numActions; actionIndex++) {
                    uint256 action = uint8(actions[actionIndex]);
                    _handleAction(action, params[actionIndex]);
                }
            }
            /// @notice function to handle the parsing and execution of an action and its parameters
            function _handleAction(uint256 action, bytes calldata params) internal virtual;
            /// @notice function that returns address considered executor of the actions
            /// @dev The other context functions, _msgData and _msgValue, are not supported by this contract
            /// In many contracts this will be the address that calls the initial entry point that calls `_executeActions`
            /// `msg.sender` shouldn't be used, as this will be the v4 pool manager contract that calls `unlockCallback`
            /// If using ReentrancyLock.sol, this function can return _getLocker()
            function msgSender() public view virtual returns (address);
            /// @notice Calculates the address for a action
            function _mapRecipient(address recipient) internal view returns (address) {
                if (recipient == ActionConstants.MSG_SENDER) {
                    return msgSender();
                } else if (recipient == ActionConstants.ADDRESS_THIS) {
                    return address(this);
                } else {
                    return recipient;
                }
            }
            /// @notice Calculates the payer for an action
            function _mapPayer(bool payerIsUser) internal view returns (address) {
                return payerIsUser ? msgSender() : address(this);
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.24;
        import {Currency} from "@uniswap/v4-core/src/types/Currency.sol";
        import {TransientStateLibrary} from "@uniswap/v4-core/src/libraries/TransientStateLibrary.sol";
        import {IPoolManager} from "@uniswap/v4-core/src/interfaces/IPoolManager.sol";
        import {ImmutableState} from "./ImmutableState.sol";
        import {ActionConstants} from "../libraries/ActionConstants.sol";
        /// @notice Abstract contract used to sync, send, and settle funds to the pool manager
        /// @dev Note that sync() is called before any erc-20 transfer in `settle`.
        abstract contract DeltaResolver is ImmutableState {
            using TransientStateLibrary for IPoolManager;
            /// @notice Emitted trying to settle a positive delta.
            error DeltaNotPositive(Currency currency);
            /// @notice Emitted trying to take a negative delta.
            error DeltaNotNegative(Currency currency);
            /// @notice Emitted when the contract does not have enough balance to wrap or unwrap.
            error InsufficientBalance();
            /// @notice Take an amount of currency out of the PoolManager
            /// @param currency Currency to take
            /// @param recipient Address to receive the currency
            /// @param amount Amount to take
            /// @dev Returns early if the amount is 0
            function _take(Currency currency, address recipient, uint256 amount) internal {
                if (amount == 0) return;
                poolManager.take(currency, recipient, amount);
            }
            /// @notice Pay and settle a currency to the PoolManager
            /// @dev The implementing contract must ensure that the `payer` is a secure address
            /// @param currency Currency to settle
            /// @param payer Address of the payer
            /// @param amount Amount to send
            /// @dev Returns early if the amount is 0
            function _settle(Currency currency, address payer, uint256 amount) internal {
                if (amount == 0) return;
                poolManager.sync(currency);
                if (currency.isAddressZero()) {
                    poolManager.settle{value: amount}();
                } else {
                    _pay(currency, payer, amount);
                    poolManager.settle();
                }
            }
            /// @notice Abstract function for contracts to implement paying tokens to the poolManager
            /// @dev The recipient of the payment should be the poolManager
            /// @param token The token to settle. This is known not to be the native currency
            /// @param payer The address who should pay tokens
            /// @param amount The number of tokens to send
            function _pay(Currency token, address payer, uint256 amount) internal virtual;
            /// @notice Obtain the full amount owed by this contract (negative delta)
            /// @param currency Currency to get the delta for
            /// @return amount The amount owed by this contract as a uint256
            function _getFullDebt(Currency currency) internal view returns (uint256 amount) {
                int256 _amount = poolManager.currencyDelta(address(this), currency);
                // If the amount is positive, it should be taken not settled.
                if (_amount > 0) revert DeltaNotNegative(currency);
                // Casting is safe due to limits on the total supply of a pool
                amount = uint256(-_amount);
            }
            /// @notice Obtain the full credit owed to this contract (positive delta)
            /// @param currency Currency to get the delta for
            /// @return amount The amount owed to this contract as a uint256
            function _getFullCredit(Currency currency) internal view returns (uint256 amount) {
                int256 _amount = poolManager.currencyDelta(address(this), currency);
                // If the amount is negative, it should be settled not taken.
                if (_amount < 0) revert DeltaNotPositive(currency);
                amount = uint256(_amount);
            }
            /// @notice Calculates the amount for a settle action
            function _mapSettleAmount(uint256 amount, Currency currency) internal view returns (uint256) {
                if (amount == ActionConstants.CONTRACT_BALANCE) {
                    return currency.balanceOfSelf();
                } else if (amount == ActionConstants.OPEN_DELTA) {
                    return _getFullDebt(currency);
                } else {
                    return amount;
                }
            }
            /// @notice Calculates the amount for a take action
            function _mapTakeAmount(uint256 amount, Currency currency) internal view returns (uint256) {
                if (amount == ActionConstants.OPEN_DELTA) {
                    return _getFullCredit(currency);
                } else {
                    return amount;
                }
            }
            /// @notice Calculates the sanitized amount before wrapping/unwrapping.
            /// @param inputCurrency The currency, either native or wrapped native, that this contract holds
            /// @param amount The amount to wrap or unwrap. Can be CONTRACT_BALANCE, OPEN_DELTA or a specific amount
            /// @param outputCurrency The currency after the wrap/unwrap that the user may owe a balance in on the poolManager
            function _mapWrapUnwrapAmount(Currency inputCurrency, uint256 amount, Currency outputCurrency)
                internal
                view
                returns (uint256)
            {
                // if wrapping, the balance in this contract is in ETH
                // if unwrapping, the balance in this contract is in WETH
                uint256 balance = inputCurrency.balanceOf(address(this));
                if (amount == ActionConstants.CONTRACT_BALANCE) {
                    // return early to avoid unnecessary balance check
                    return balance;
                }
                if (amount == ActionConstants.OPEN_DELTA) {
                    // if wrapping, the open currency on the PoolManager is WETH.
                    // if unwrapping, the open currency on the PoolManager is ETH.
                    // note that we use the DEBT amount. Positive deltas can be taken and then wrapped.
                    amount = _getFullDebt(outputCurrency);
                }
                if (amount > balance) revert InsufficientBalance();
                return amount;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /// @title Minimal ERC20 interface for Uniswap
        /// @notice Contains a subset of the full ERC20 interface that is used in Uniswap V3
        interface IERC20Minimal {
            /// @notice Returns an account's balance in the token
            /// @param account The account for which to look up the number of tokens it has, i.e. its balance
            /// @return The number of tokens held by the account
            function balanceOf(address account) external view returns (uint256);
            /// @notice Transfers the amount of token from the `msg.sender` to the recipient
            /// @param recipient The account that will receive the amount transferred
            /// @param amount The number of tokens to send from the sender to the recipient
            /// @return Returns true for a successful transfer, false for an unsuccessful transfer
            function transfer(address recipient, uint256 amount) external returns (bool);
            /// @notice Returns the current allowance given to a spender by an owner
            /// @param owner The account of the token owner
            /// @param spender The account of the token spender
            /// @return The current allowance granted by `owner` to `spender`
            function allowance(address owner, address spender) external view returns (uint256);
            /// @notice Sets the allowance of a spender from the `msg.sender` to the value `amount`
            /// @param spender The account which will be allowed to spend a given amount of the owners tokens
            /// @param amount The amount of tokens allowed to be used by `spender`
            /// @return Returns true for a successful approval, false for unsuccessful
            function approve(address spender, uint256 amount) external returns (bool);
            /// @notice Transfers `amount` tokens from `sender` to `recipient` up to the allowance given to the `msg.sender`
            /// @param sender The account from which the transfer will be initiated
            /// @param recipient The recipient of the transfer
            /// @param amount The amount of the transfer
            /// @return Returns true for a successful transfer, false for unsuccessful
            function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
            /// @notice Event emitted when tokens are transferred from one address to another, either via `#transfer` or `#transferFrom`.
            /// @param from The account from which the tokens were sent, i.e. the balance decreased
            /// @param to The account to which the tokens were sent, i.e. the balance increased
            /// @param value The amount of tokens that were transferred
            event Transfer(address indexed from, address indexed to, uint256 value);
            /// @notice Event emitted when the approval amount for the spender of a given owner's tokens changes.
            /// @param owner The account that approved spending of its tokens
            /// @param spender The account for which the spending allowance was modified
            /// @param value The new allowance from the owner to the spender
            event Approval(address indexed owner, address indexed spender, uint256 value);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /// @title Library for reverting with custom errors efficiently
        /// @notice Contains functions for reverting with custom errors with different argument types efficiently
        /// @dev To use this library, declare `using CustomRevert for bytes4;` and replace `revert CustomError()` with
        /// `CustomError.selector.revertWith()`
        /// @dev The functions may tamper with the free memory pointer but it is fine since the call context is exited immediately
        library CustomRevert {
            /// @dev ERC-7751 error for wrapping bubbled up reverts
            error WrappedError(address target, bytes4 selector, bytes reason, bytes details);
            /// @dev Reverts with the selector of a custom error in the scratch space
            function revertWith(bytes4 selector) internal pure {
                assembly ("memory-safe") {
                    mstore(0, selector)
                    revert(0, 0x04)
                }
            }
            /// @dev Reverts with a custom error with an address argument in the scratch space
            function revertWith(bytes4 selector, address addr) internal pure {
                assembly ("memory-safe") {
                    mstore(0, selector)
                    mstore(0x04, and(addr, 0xffffffffffffffffffffffffffffffffffffffff))
                    revert(0, 0x24)
                }
            }
            /// @dev Reverts with a custom error with an int24 argument in the scratch space
            function revertWith(bytes4 selector, int24 value) internal pure {
                assembly ("memory-safe") {
                    mstore(0, selector)
                    mstore(0x04, signextend(2, value))
                    revert(0, 0x24)
                }
            }
            /// @dev Reverts with a custom error with a uint160 argument in the scratch space
            function revertWith(bytes4 selector, uint160 value) internal pure {
                assembly ("memory-safe") {
                    mstore(0, selector)
                    mstore(0x04, and(value, 0xffffffffffffffffffffffffffffffffffffffff))
                    revert(0, 0x24)
                }
            }
            /// @dev Reverts with a custom error with two int24 arguments
            function revertWith(bytes4 selector, int24 value1, int24 value2) internal pure {
                assembly ("memory-safe") {
                    let fmp := mload(0x40)
                    mstore(fmp, selector)
                    mstore(add(fmp, 0x04), signextend(2, value1))
                    mstore(add(fmp, 0x24), signextend(2, value2))
                    revert(fmp, 0x44)
                }
            }
            /// @dev Reverts with a custom error with two uint160 arguments
            function revertWith(bytes4 selector, uint160 value1, uint160 value2) internal pure {
                assembly ("memory-safe") {
                    let fmp := mload(0x40)
                    mstore(fmp, selector)
                    mstore(add(fmp, 0x04), and(value1, 0xffffffffffffffffffffffffffffffffffffffff))
                    mstore(add(fmp, 0x24), and(value2, 0xffffffffffffffffffffffffffffffffffffffff))
                    revert(fmp, 0x44)
                }
            }
            /// @dev Reverts with a custom error with two address arguments
            function revertWith(bytes4 selector, address value1, address value2) internal pure {
                assembly ("memory-safe") {
                    let fmp := mload(0x40)
                    mstore(fmp, selector)
                    mstore(add(fmp, 0x04), and(value1, 0xffffffffffffffffffffffffffffffffffffffff))
                    mstore(add(fmp, 0x24), and(value2, 0xffffffffffffffffffffffffffffffffffffffff))
                    revert(fmp, 0x44)
                }
            }
            /// @notice bubble up the revert message returned by a call and revert with a wrapped ERC-7751 error
            /// @dev this method can be vulnerable to revert data bombs
            function bubbleUpAndRevertWith(
                address revertingContract,
                bytes4 revertingFunctionSelector,
                bytes4 additionalContext
            ) internal pure {
                bytes4 wrappedErrorSelector = WrappedError.selector;
                assembly ("memory-safe") {
                    // Ensure the size of the revert data is a multiple of 32 bytes
                    let encodedDataSize := mul(div(add(returndatasize(), 31), 32), 32)
                    let fmp := mload(0x40)
                    // Encode wrapped error selector, address, function selector, offset, additional context, size, revert reason
                    mstore(fmp, wrappedErrorSelector)
                    mstore(add(fmp, 0x04), and(revertingContract, 0xffffffffffffffffffffffffffffffffffffffff))
                    mstore(
                        add(fmp, 0x24),
                        and(revertingFunctionSelector, 0xffffffff00000000000000000000000000000000000000000000000000000000)
                    )
                    // offset revert reason
                    mstore(add(fmp, 0x44), 0x80)
                    // offset additional context
                    mstore(add(fmp, 0x64), add(0xa0, encodedDataSize))
                    // size revert reason
                    mstore(add(fmp, 0x84), returndatasize())
                    // revert reason
                    returndatacopy(add(fmp, 0xa4), 0, returndatasize())
                    // size additional context
                    mstore(add(fmp, add(0xa4, encodedDataSize)), 0x04)
                    // additional context
                    mstore(
                        add(fmp, add(0xc4, encodedDataSize)),
                        and(additionalContext, 0xffffffff00000000000000000000000000000000000000000000000000000000)
                    )
                    revert(fmp, add(0xe4, encodedDataSize))
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)
        pragma solidity ^0.8.0;
        import "../IERC721.sol";
        /**
         * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
         * @dev See https://eips.ethereum.org/EIPS/eip-721
         */
        interface IERC721Metadata is IERC721 {
            /**
             * @dev Returns the token collection name.
             */
            function name() external view returns (string memory);
            /**
             * @dev Returns the token collection symbol.
             */
            function symbol() external view returns (string memory);
            /**
             * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
             */
            function tokenURI(uint256 tokenId) external view returns (string memory);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC721/extensions/IERC721Enumerable.sol)
        pragma solidity ^0.8.0;
        import "../IERC721.sol";
        /**
         * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
         * @dev See https://eips.ethereum.org/EIPS/eip-721
         */
        interface IERC721Enumerable is IERC721 {
            /**
             * @dev Returns the total amount of tokens stored by the contract.
             */
            function totalSupply() external view returns (uint256);
            /**
             * @dev Returns a token ID owned by `owner` at a given `index` of its token list.
             * Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
             */
            function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);
            /**
             * @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
             * Use along with {totalSupply} to enumerate all tokens.
             */
            function tokenByIndex(uint256 index) external view returns (uint256);
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.7.5;
        pragma abicoder v2;
        /// @title Creates and initializes V3 Pools
        /// @notice Provides a method for creating and initializing a pool, if necessary, for bundling with other methods that
        /// require the pool to exist.
        interface IPoolInitializer {
            /// @notice Creates a new pool if it does not exist, then initializes if not initialized
            /// @dev This method can be bundled with others via IMulticall for the first action (e.g. mint) performed against a pool
            /// @param token0 The contract address of token0 of the pool
            /// @param token1 The contract address of token1 of the pool
            /// @param fee The fee amount of the v3 pool for the specified token pair
            /// @param sqrtPriceX96 The initial square root price of the pool as a Q64.96 value
            /// @return pool Returns the pool address based on the pair of tokens and fee, will return the newly created pool address if necessary
            function createAndInitializePoolIfNecessary(
                address token0,
                address token1,
                uint24 fee,
                uint160 sqrtPriceX96
            ) external payable returns (address pool);
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.7.5;
        /// @title Periphery Payments
        /// @notice Functions to ease deposits and withdrawals of ETH
        interface IPeripheryPayments {
            /// @notice Unwraps the contract's WETH9 balance and sends it to recipient as ETH.
            /// @dev The amountMinimum parameter prevents malicious contracts from stealing WETH9 from users.
            /// @param amountMinimum The minimum amount of WETH9 to unwrap
            /// @param recipient The address receiving ETH
            function unwrapWETH9(uint256 amountMinimum, address recipient) external payable;
            /// @notice Refunds any ETH balance held by this contract to the `msg.sender`
            /// @dev Useful for bundling with mint or increase liquidity that uses ether, or exact output swaps
            /// that use ether for the input amount
            function refundETH() external payable;
            /// @notice Transfers the full amount of a token held by this contract to recipient
            /// @dev The amountMinimum parameter prevents malicious contracts from stealing the token from users
            /// @param token The contract address of the token which will be transferred to `recipient`
            /// @param amountMinimum The minimum amount of token required for a transfer
            /// @param recipient The destination address of the token
            function sweepToken(
                address token,
                uint256 amountMinimum,
                address recipient
            ) external payable;
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Immutable state
        /// @notice Functions that return immutable state of the router
        interface IPeripheryImmutableState {
            /// @return Returns the address of the Uniswap V3 factory
            function factory() external view returns (address);
            /// @return Returns the address of WETH9
            function WETH9() external view returns (address);
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Provides functions for deriving a pool address from the factory, tokens, and the fee
        library PoolAddress {
            bytes32 internal constant POOL_INIT_CODE_HASH = 0xa598dd2fba360510c5a8f02f44423a4468e902df5857dbce3ca162a43a3a31ff;
            /// @notice The identifying key of the pool
            struct PoolKey {
                address token0;
                address token1;
                uint24 fee;
            }
            /// @notice Returns PoolKey: the ordered tokens with the matched fee levels
            /// @param tokenA The first token of a pool, unsorted
            /// @param tokenB The second token of a pool, unsorted
            /// @param fee The fee level of the pool
            /// @return Poolkey The pool details with ordered token0 and token1 assignments
            function getPoolKey(
                address tokenA,
                address tokenB,
                uint24 fee
            ) internal pure returns (PoolKey memory) {
                if (tokenA > tokenB) (tokenA, tokenB) = (tokenB, tokenA);
                return PoolKey({token0: tokenA, token1: tokenB, fee: fee});
            }
            /// @notice Deterministically computes the pool address given the factory and PoolKey
            /// @param factory The Uniswap V3 factory contract address
            /// @param key The PoolKey
            /// @return pool The contract address of the V3 pool
            function computeAddress(address factory, PoolKey memory key) internal pure returns (address pool) {
                require(key.token0 < key.token1);
                pool = address(
                    uint160(
                        uint256(
                            keccak256(
                                abi.encodePacked(
                                    hex'ff',
                                    factory,
                                    keccak256(abi.encode(key.token0, key.token1, key.fee)),
                                    POOL_INIT_CODE_HASH
                                )
                            )
                        )
                    )
                );
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.24;
        import {PoolKey} from "@uniswap/v4-core/src/types/PoolKey.sol";
        import {PoolId} from "@uniswap/v4-core/src/types/PoolId.sol";
        /**
         * @dev PositionInfo is a packed version of solidity structure.
         * Using the packaged version saves gas and memory by not storing the structure fields in memory slots.
         *
         * Layout:
         * 200 bits poolId | 24 bits tickUpper | 24 bits tickLower | 8 bits hasSubscriber
         *
         * Fields in the direction from the least significant bit:
         *
         * A flag to know if the tokenId is subscribed to an address
         * uint8 hasSubscriber;
         *
         * The tickUpper of the position
         * int24 tickUpper;
         *
         * The tickLower of the position
         * int24 tickLower;
         *
         * The truncated poolId. Truncates a bytes32 value so the most signifcant (highest) 200 bits are used.
         * bytes25 poolId;
         *
         * Note: If more bits are needed, hasSubscriber can be a single bit.
         *
         */
        type PositionInfo is uint256;
        using PositionInfoLibrary for PositionInfo global;
        library PositionInfoLibrary {
            PositionInfo internal constant EMPTY_POSITION_INFO = PositionInfo.wrap(0);
            uint256 internal constant MASK_UPPER_200_BITS = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000000000;
            uint256 internal constant MASK_8_BITS = 0xFF;
            uint24 internal constant MASK_24_BITS = 0xFFFFFF;
            uint256 internal constant SET_UNSUBSCRIBE = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00;
            uint256 internal constant SET_SUBSCRIBE = 0x01;
            uint8 internal constant TICK_LOWER_OFFSET = 8;
            uint8 internal constant TICK_UPPER_OFFSET = 32;
            /// @dev This poolId is NOT compatible with the poolId used in UniswapV4 core. It is truncated to 25 bytes, and just used to lookup PoolKey in the poolKeys mapping.
            function poolId(PositionInfo info) internal pure returns (bytes25 _poolId) {
                assembly ("memory-safe") {
                    _poolId := and(MASK_UPPER_200_BITS, info)
                }
            }
            function tickLower(PositionInfo info) internal pure returns (int24 _tickLower) {
                assembly ("memory-safe") {
                    _tickLower := signextend(2, shr(TICK_LOWER_OFFSET, info))
                }
            }
            function tickUpper(PositionInfo info) internal pure returns (int24 _tickUpper) {
                assembly ("memory-safe") {
                    _tickUpper := signextend(2, shr(TICK_UPPER_OFFSET, info))
                }
            }
            function hasSubscriber(PositionInfo info) internal pure returns (bool _hasSubscriber) {
                assembly ("memory-safe") {
                    _hasSubscriber := and(MASK_8_BITS, info)
                }
            }
            /// @dev this does not actually set any storage
            function setSubscribe(PositionInfo info) internal pure returns (PositionInfo _info) {
                assembly ("memory-safe") {
                    _info := or(info, SET_SUBSCRIBE)
                }
            }
            /// @dev this does not actually set any storage
            function setUnsubscribe(PositionInfo info) internal pure returns (PositionInfo _info) {
                assembly ("memory-safe") {
                    _info := and(info, SET_UNSUBSCRIBE)
                }
            }
            /// @notice Creates the default PositionInfo struct
            /// @dev Called when minting a new position
            /// @param _poolKey the pool key of the position
            /// @param _tickLower the lower tick of the position
            /// @param _tickUpper the upper tick of the position
            /// @return info packed position info, with the truncated poolId and the hasSubscriber flag set to false
            function initialize(PoolKey memory _poolKey, int24 _tickLower, int24 _tickUpper)
                internal
                pure
                returns (PositionInfo info)
            {
                bytes25 _poolId = bytes25(PoolId.unwrap(_poolKey.toId()));
                assembly {
                    info :=
                        or(
                            or(and(MASK_UPPER_200_BITS, _poolId), shl(TICK_UPPER_OFFSET, and(MASK_24_BITS, _tickUpper))),
                            shl(TICK_LOWER_OFFSET, and(MASK_24_BITS, _tickLower))
                        )
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import {ISubscriber} from "./ISubscriber.sol";
        /// @title INotifier
        /// @notice Interface for the Notifier contract
        interface INotifier {
            /// @notice Thrown when unsubscribing without a subscriber
            error NotSubscribed();
            /// @notice Thrown when a subscriber does not have code
            error NoCodeSubscriber();
            /// @notice Thrown when a user specifies a gas limit too low to avoid valid unsubscribe notifications
            error GasLimitTooLow();
            /// @notice Wraps the revert message of the subscriber contract on a reverting subscription
            error SubscriptionReverted(address subscriber, bytes reason);
            /// @notice Wraps the revert message of the subscriber contract on a reverting modify liquidity notification
            error ModifyLiquidityNotificationReverted(address subscriber, bytes reason);
            /// @notice Wraps the revert message of the subscriber contract on a reverting burn notification
            error BurnNotificationReverted(address subscriber, bytes reason);
            /// @notice Thrown when a tokenId already has a subscriber
            error AlreadySubscribed(uint256 tokenId, address subscriber);
            /// @notice Emitted on a successful call to subscribe
            event Subscription(uint256 indexed tokenId, address indexed subscriber);
            /// @notice Emitted on a successful call to unsubscribe
            event Unsubscription(uint256 indexed tokenId, address indexed subscriber);
            /// @notice Returns the subscriber for a respective position
            /// @param tokenId the ERC721 tokenId
            /// @return subscriber the subscriber contract
            function subscriber(uint256 tokenId) external view returns (ISubscriber subscriber);
            /// @notice Enables the subscriber to receive notifications for a respective position
            /// @param tokenId the ERC721 tokenId
            /// @param newSubscriber the address of the subscriber contract
            /// @param data caller-provided data that's forwarded to the subscriber contract
            /// @dev Calling subscribe when a position is already subscribed will revert
            /// @dev payable so it can be multicalled with NATIVE related actions
            /// @dev will revert if pool manager is locked
            function subscribe(uint256 tokenId, address newSubscriber, bytes calldata data) external payable;
            /// @notice Removes the subscriber from receiving notifications for a respective position
            /// @param tokenId the ERC721 tokenId
            /// @dev Callers must specify a high gas limit (remaining gas should be higher than unsubscriberGasLimit) such that the subscriber can be notified
            /// @dev payable so it can be multicalled with NATIVE related actions
            /// @dev Must always allow a user to unsubscribe. In the case of a malicious subscriber, a user can always unsubscribe safely, ensuring liquidity is always modifiable.
            /// @dev will revert if pool manager is locked
            function unsubscribe(uint256 tokenId) external payable;
            /// @notice Returns and determines the maximum allowable gas-used for notifying unsubscribe
            /// @return uint256 the maximum gas limit when notifying a subscriber's `notifyUnsubscribe` function
            function unsubscribeGasLimit() external view returns (uint256);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import {IPoolManager} from "@uniswap/v4-core/src/interfaces/IPoolManager.sol";
        /// @title IImmutableState
        /// @notice Interface for the ImmutableState contract
        interface IImmutableState {
            /// @notice The Uniswap v4 PoolManager contract
            function poolManager() external view returns (IPoolManager);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /// @title IERC721Permit_v4
        /// @notice Interface for the ERC721Permit_v4 contract
        interface IERC721Permit_v4 {
            error SignatureDeadlineExpired();
            error NoSelfPermit();
            error Unauthorized();
            /// @notice Approve of a specific token ID for spending by spender via signature
            /// @param spender The account that is being approved
            /// @param tokenId The ID of the token that is being approved for spending
            /// @param deadline The deadline timestamp by which the call must be mined for the approve to work
            /// @param nonce a unique value, for an owner, to prevent replay attacks; an unordered nonce where the top 248 bits correspond to a word and the bottom 8 bits calculate the bit position of the word
            /// @param signature Concatenated data from a valid secp256k1 signature from the holder, i.e. abi.encodePacked(r, s, v)
            /// @dev payable so it can be multicalled with NATIVE related actions
            function permit(address spender, uint256 tokenId, uint256 deadline, uint256 nonce, bytes calldata signature)
                external
                payable;
            /// @notice Set an operator with full permission to an owner's tokens via signature
            /// @param owner The address that is setting the operator
            /// @param operator The address that will be set as an operator for the owner
            /// @param approved The permission to set on the operator
            /// @param deadline The deadline timestamp by which the call must be mined for the approve to work
            /// @param nonce a unique value, for an owner, to prevent replay attacks; an unordered nonce where the top 248 bits correspond to a word and the bottom 8 bits calculate the bit position of the word
            /// @param signature Concatenated data from a valid secp256k1 signature from the holder, i.e. abi.encodePacked(r, s, v)
            /// @dev payable so it can be multicalled with NATIVE related actions
            function permitForAll(
                address owner,
                address operator,
                bool approved,
                uint256 deadline,
                uint256 nonce,
                bytes calldata signature
            ) external payable;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /// @title IEIP712_v4
        /// @notice Interface for the EIP712 contract
        interface IEIP712_v4 {
            /// @notice Returns the domain separator for the current chain.
            /// @return bytes32 The domain separator
            function DOMAIN_SEPARATOR() external view returns (bytes32);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /// @title IMulticall_v4
        /// @notice Interface for the Multicall_v4 contract
        interface IMulticall_v4 {
            /// @notice Call multiple functions in the current contract and return the data from all of them if they all succeed
            /// @dev The `msg.value` is passed onto all subcalls, even if a previous subcall has consumed the ether.
            /// Subcalls can instead use `address(this).value` to see the available ETH, and consume it using {value: x}.
            /// @param data The encoded function data for each of the calls to make to this contract
            /// @return results The results from each of the calls passed in via data
            function multicall(bytes[] calldata data) external payable returns (bytes[] memory results);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import {PoolKey} from "@uniswap/v4-core/src/types/PoolKey.sol";
        /// @title IPoolInitializer_v4
        /// @notice Interface for the PoolInitializer_v4 contract
        interface IPoolInitializer_v4 {
            /// @notice Initialize a Uniswap v4 Pool
            /// @dev If the pool is already initialized, this function will not revert and just return type(int24).max
            /// @param key The PoolKey of the pool to initialize
            /// @param sqrtPriceX96 The initial starting price of the pool, expressed as a sqrtPriceX96
            /// @return The current tick of the pool, or type(int24).max if the pool creation failed, or the pool already existed
            function initializePool(PoolKey calldata key, uint160 sqrtPriceX96) external payable returns (int24);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /// @title IUnorderedNonce
        /// @notice Interface for the UnorderedNonce contract
        interface IUnorderedNonce {
            error NonceAlreadyUsed();
            /// @notice mapping of nonces consumed by each address, where a nonce is a single bit on the 256-bit bitmap
            /// @dev word is at most type(uint248).max
            function nonces(address owner, uint256 word) external view returns (uint256);
            /// @notice Revoke a nonce by spending it, preventing it from being used again
            /// @dev Used in cases where a valid nonce has not been broadcasted onchain, and the owner wants to revoke the validity of the nonce
            /// @dev payable so it can be multicalled with native-token related actions
            function revokeNonce(uint256 nonce) external payable;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import {IAllowanceTransfer} from "permit2/src/interfaces/IAllowanceTransfer.sol";
        /// @title IPermit2Forwarder
        /// @notice Interface for the Permit2Forwarder contract
        interface IPermit2Forwarder {
            /// @notice allows forwarding a single permit to permit2
            /// @dev this function is payable to allow multicall with NATIVE based actions
            /// @param owner the owner of the tokens
            /// @param permitSingle the permit data
            /// @param signature the signature of the permit; abi.encodePacked(r, s, v)
            /// @return err the error returned by a reverting permit call, empty if successful
            function permit(address owner, IAllowanceTransfer.PermitSingle calldata permitSingle, bytes calldata signature)
                external
                payable
                returns (bytes memory err);
            /// @notice allows forwarding batch permits to permit2
            /// @dev this function is payable to allow multicall with NATIVE based actions
            /// @param owner the owner of the tokens
            /// @param _permitBatch a batch of approvals
            /// @param signature the signature of the permit; abi.encodePacked(r, s, v)
            /// @return err the error returned by a reverting permit call, empty if successful
            function permitBatch(address owner, IAllowanceTransfer.PermitBatch calldata _permitBatch, bytes calldata signature)
                external
                payable
                returns (bytes memory err);
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Pool state that never changes
        /// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values
        interface IUniswapV3PoolImmutables {
            /// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface
            /// @return The contract address
            function factory() external view returns (address);
            /// @notice The first of the two tokens of the pool, sorted by address
            /// @return The token contract address
            function token0() external view returns (address);
            /// @notice The second of the two tokens of the pool, sorted by address
            /// @return The token contract address
            function token1() external view returns (address);
            /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
            /// @return The fee
            function fee() external view returns (uint24);
            /// @notice The pool tick spacing
            /// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive
            /// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ...
            /// This value is an int24 to avoid casting even though it is always positive.
            /// @return The tick spacing
            function tickSpacing() external view returns (int24);
            /// @notice The maximum amount of position liquidity that can use any tick in the range
            /// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and
            /// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool
            /// @return The max amount of liquidity per tick
            function maxLiquidityPerTick() external view returns (uint128);
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Pool state that can change
        /// @notice These methods compose the pool's state, and can change with any frequency including multiple times
        /// per transaction
        interface IUniswapV3PoolState {
            /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas
            /// when accessed externally.
            /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value
            /// tick The current tick of the pool, i.e. according to the last tick transition that was run.
            /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick
            /// boundary.
            /// observationIndex The index of the last oracle observation that was written,
            /// observationCardinality The current maximum number of observations stored in the pool,
            /// observationCardinalityNext The next maximum number of observations, to be updated when the observation.
            /// feeProtocol The protocol fee for both tokens of the pool.
            /// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0
            /// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee.
            /// unlocked Whether the pool is currently locked to reentrancy
            function slot0()
                external
                view
                returns (
                    uint160 sqrtPriceX96,
                    int24 tick,
                    uint16 observationIndex,
                    uint16 observationCardinality,
                    uint16 observationCardinalityNext,
                    uint8 feeProtocol,
                    bool unlocked
                );
            /// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool
            /// @dev This value can overflow the uint256
            function feeGrowthGlobal0X128() external view returns (uint256);
            /// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool
            /// @dev This value can overflow the uint256
            function feeGrowthGlobal1X128() external view returns (uint256);
            /// @notice The amounts of token0 and token1 that are owed to the protocol
            /// @dev Protocol fees will never exceed uint128 max in either token
            function protocolFees() external view returns (uint128 token0, uint128 token1);
            /// @notice The currently in range liquidity available to the pool
            /// @dev This value has no relationship to the total liquidity across all ticks
            function liquidity() external view returns (uint128);
            /// @notice Look up information about a specific tick in the pool
            /// @param tick The tick to look up
            /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or
            /// tick upper,
            /// liquidityNet how much liquidity changes when the pool price crosses the tick,
            /// feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0,
            /// feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1,
            /// tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick
            /// secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick,
            /// secondsOutside the seconds spent on the other side of the tick from the current tick,
            /// initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false.
            /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0.
            /// In addition, these values are only relative and must be used only in comparison to previous snapshots for
            /// a specific position.
            function ticks(int24 tick)
                external
                view
                returns (
                    uint128 liquidityGross,
                    int128 liquidityNet,
                    uint256 feeGrowthOutside0X128,
                    uint256 feeGrowthOutside1X128,
                    int56 tickCumulativeOutside,
                    uint160 secondsPerLiquidityOutsideX128,
                    uint32 secondsOutside,
                    bool initialized
                );
            /// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information
            function tickBitmap(int16 wordPosition) external view returns (uint256);
            /// @notice Returns the information about a position by the position's key
            /// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper
            /// @return _liquidity The amount of liquidity in the position,
            /// Returns feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke,
            /// Returns feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke,
            /// Returns tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke,
            /// Returns tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke
            function positions(bytes32 key)
                external
                view
                returns (
                    uint128 _liquidity,
                    uint256 feeGrowthInside0LastX128,
                    uint256 feeGrowthInside1LastX128,
                    uint128 tokensOwed0,
                    uint128 tokensOwed1
                );
            /// @notice Returns data about a specific observation index
            /// @param index The element of the observations array to fetch
            /// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time
            /// ago, rather than at a specific index in the array.
            /// @return blockTimestamp The timestamp of the observation,
            /// Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp,
            /// Returns secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp,
            /// Returns initialized whether the observation has been initialized and the values are safe to use
            function observations(uint256 index)
                external
                view
                returns (
                    uint32 blockTimestamp,
                    int56 tickCumulative,
                    uint160 secondsPerLiquidityCumulativeX128,
                    bool initialized
                );
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Pool state that is not stored
        /// @notice Contains view functions to provide information about the pool that is computed rather than stored on the
        /// blockchain. The functions here may have variable gas costs.
        interface IUniswapV3PoolDerivedState {
            /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp
            /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing
            /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,
            /// you must call it with secondsAgos = [3600, 0].
            /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in
            /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.
            /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned
            /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp
            /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block
            /// timestamp
            function observe(uint32[] calldata secondsAgos)
                external
                view
                returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s);
            /// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range
            /// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed.
            /// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first
            /// snapshot is taken and the second snapshot is taken.
            /// @param tickLower The lower tick of the range
            /// @param tickUpper The upper tick of the range
            /// @return tickCumulativeInside The snapshot of the tick accumulator for the range
            /// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range
            /// @return secondsInside The snapshot of seconds per liquidity for the range
            function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
                external
                view
                returns (
                    int56 tickCumulativeInside,
                    uint160 secondsPerLiquidityInsideX128,
                    uint32 secondsInside
                );
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Permissionless pool actions
        /// @notice Contains pool methods that can be called by anyone
        interface IUniswapV3PoolActions {
            /// @notice Sets the initial price for the pool
            /// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value
            /// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96
            function initialize(uint160 sqrtPriceX96) external;
            /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position
            /// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback
            /// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends
            /// on tickLower, tickUpper, the amount of liquidity, and the current price.
            /// @param recipient The address for which the liquidity will be created
            /// @param tickLower The lower tick of the position in which to add liquidity
            /// @param tickUpper The upper tick of the position in which to add liquidity
            /// @param amount The amount of liquidity to mint
            /// @param data Any data that should be passed through to the callback
            /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback
            /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback
            function mint(
                address recipient,
                int24 tickLower,
                int24 tickUpper,
                uint128 amount,
                bytes calldata data
            ) external returns (uint256 amount0, uint256 amount1);
            /// @notice Collects tokens owed to a position
            /// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity.
            /// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or
            /// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the
            /// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity.
            /// @param recipient The address which should receive the fees collected
            /// @param tickLower The lower tick of the position for which to collect fees
            /// @param tickUpper The upper tick of the position for which to collect fees
            /// @param amount0Requested How much token0 should be withdrawn from the fees owed
            /// @param amount1Requested How much token1 should be withdrawn from the fees owed
            /// @return amount0 The amount of fees collected in token0
            /// @return amount1 The amount of fees collected in token1
            function collect(
                address recipient,
                int24 tickLower,
                int24 tickUpper,
                uint128 amount0Requested,
                uint128 amount1Requested
            ) external returns (uint128 amount0, uint128 amount1);
            /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position
            /// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0
            /// @dev Fees must be collected separately via a call to #collect
            /// @param tickLower The lower tick of the position for which to burn liquidity
            /// @param tickUpper The upper tick of the position for which to burn liquidity
            /// @param amount How much liquidity to burn
            /// @return amount0 The amount of token0 sent to the recipient
            /// @return amount1 The amount of token1 sent to the recipient
            function burn(
                int24 tickLower,
                int24 tickUpper,
                uint128 amount
            ) external returns (uint256 amount0, uint256 amount1);
            /// @notice Swap token0 for token1, or token1 for token0
            /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
            /// @param recipient The address to receive the output of the swap
            /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
            /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
            /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
            /// value after the swap. If one for zero, the price cannot be greater than this value after the swap
            /// @param data Any data to be passed through to the callback
            /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
            /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
            function swap(
                address recipient,
                bool zeroForOne,
                int256 amountSpecified,
                uint160 sqrtPriceLimitX96,
                bytes calldata data
            ) external returns (int256 amount0, int256 amount1);
            /// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
            /// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback
            /// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling
            /// with 0 amount{0,1} and sending the donation amount(s) from the callback
            /// @param recipient The address which will receive the token0 and token1 amounts
            /// @param amount0 The amount of token0 to send
            /// @param amount1 The amount of token1 to send
            /// @param data Any data to be passed through to the callback
            function flash(
                address recipient,
                uint256 amount0,
                uint256 amount1,
                bytes calldata data
            ) external;
            /// @notice Increase the maximum number of price and liquidity observations that this pool will store
            /// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to
            /// the input observationCardinalityNext.
            /// @param observationCardinalityNext The desired minimum number of observations for the pool to store
            function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external;
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Permissioned pool actions
        /// @notice Contains pool methods that may only be called by the factory owner
        interface IUniswapV3PoolOwnerActions {
            /// @notice Set the denominator of the protocol's % share of the fees
            /// @param feeProtocol0 new protocol fee for token0 of the pool
            /// @param feeProtocol1 new protocol fee for token1 of the pool
            function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external;
            /// @notice Collect the protocol fee accrued to the pool
            /// @param recipient The address to which collected protocol fees should be sent
            /// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1
            /// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0
            /// @return amount0 The protocol fee collected in token0
            /// @return amount1 The protocol fee collected in token1
            function collectProtocol(
                address recipient,
                uint128 amount0Requested,
                uint128 amount1Requested
            ) external returns (uint128 amount0, uint128 amount1);
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Events emitted by a pool
        /// @notice Contains all events emitted by the pool
        interface IUniswapV3PoolEvents {
            /// @notice Emitted exactly once by a pool when #initialize is first called on the pool
            /// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize
            /// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96
            /// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool
            event Initialize(uint160 sqrtPriceX96, int24 tick);
            /// @notice Emitted when liquidity is minted for a given position
            /// @param sender The address that minted the liquidity
            /// @param owner The owner of the position and recipient of any minted liquidity
            /// @param tickLower The lower tick of the position
            /// @param tickUpper The upper tick of the position
            /// @param amount The amount of liquidity minted to the position range
            /// @param amount0 How much token0 was required for the minted liquidity
            /// @param amount1 How much token1 was required for the minted liquidity
            event Mint(
                address sender,
                address indexed owner,
                int24 indexed tickLower,
                int24 indexed tickUpper,
                uint128 amount,
                uint256 amount0,
                uint256 amount1
            );
            /// @notice Emitted when fees are collected by the owner of a position
            /// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees
            /// @param owner The owner of the position for which fees are collected
            /// @param tickLower The lower tick of the position
            /// @param tickUpper The upper tick of the position
            /// @param amount0 The amount of token0 fees collected
            /// @param amount1 The amount of token1 fees collected
            event Collect(
                address indexed owner,
                address recipient,
                int24 indexed tickLower,
                int24 indexed tickUpper,
                uint128 amount0,
                uint128 amount1
            );
            /// @notice Emitted when a position's liquidity is removed
            /// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect
            /// @param owner The owner of the position for which liquidity is removed
            /// @param tickLower The lower tick of the position
            /// @param tickUpper The upper tick of the position
            /// @param amount The amount of liquidity to remove
            /// @param amount0 The amount of token0 withdrawn
            /// @param amount1 The amount of token1 withdrawn
            event Burn(
                address indexed owner,
                int24 indexed tickLower,
                int24 indexed tickUpper,
                uint128 amount,
                uint256 amount0,
                uint256 amount1
            );
            /// @notice Emitted by the pool for any swaps between token0 and token1
            /// @param sender The address that initiated the swap call, and that received the callback
            /// @param recipient The address that received the output of the swap
            /// @param amount0 The delta of the token0 balance of the pool
            /// @param amount1 The delta of the token1 balance of the pool
            /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
            /// @param liquidity The liquidity of the pool after the swap
            /// @param tick The log base 1.0001 of price of the pool after the swap
            event Swap(
                address indexed sender,
                address indexed recipient,
                int256 amount0,
                int256 amount1,
                uint160 sqrtPriceX96,
                uint128 liquidity,
                int24 tick
            );
            /// @notice Emitted by the pool for any flashes of token0/token1
            /// @param sender The address that initiated the swap call, and that received the callback
            /// @param recipient The address that received the tokens from flash
            /// @param amount0 The amount of token0 that was flashed
            /// @param amount1 The amount of token1 that was flashed
            /// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee
            /// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee
            event Flash(
                address indexed sender,
                address indexed recipient,
                uint256 amount0,
                uint256 amount1,
                uint256 paid0,
                uint256 paid1
            );
            /// @notice Emitted by the pool for increases to the number of observations that can be stored
            /// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index
            /// just before a mint/swap/burn.
            /// @param observationCardinalityNextOld The previous value of the next observation cardinality
            /// @param observationCardinalityNextNew The updated value of the next observation cardinality
            event IncreaseObservationCardinalityNext(
                uint16 observationCardinalityNextOld,
                uint16 observationCardinalityNextNew
            );
            /// @notice Emitted when the protocol fee is changed by the pool
            /// @param feeProtocol0Old The previous value of the token0 protocol fee
            /// @param feeProtocol1Old The previous value of the token1 protocol fee
            /// @param feeProtocol0New The updated value of the token0 protocol fee
            /// @param feeProtocol1New The updated value of the token1 protocol fee
            event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New);
            /// @notice Emitted when the collected protocol fees are withdrawn by the factory owner
            /// @param sender The address that collects the protocol fees
            /// @param recipient The address that receives the collected protocol fees
            /// @param amount0 The amount of token0 protocol fees that is withdrawn
            /// @param amount0 The amount of token1 protocol fees that is withdrawn
            event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC721/IERC721.sol)
        pragma solidity ^0.8.0;
        import "../../utils/introspection/IERC165.sol";
        /**
         * @dev Required interface of an ERC721 compliant contract.
         */
        interface IERC721 is IERC165 {
            /**
             * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
             */
            event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
            /**
             * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
             */
            event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
            /**
             * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
             */
            event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
            /**
             * @dev Returns the number of tokens in ``owner``'s account.
             */
            function balanceOf(address owner) external view returns (uint256 balance);
            /**
             * @dev Returns the owner of the `tokenId` token.
             *
             * Requirements:
             *
             * - `tokenId` must exist.
             */
            function ownerOf(uint256 tokenId) external view returns (address owner);
            /**
             * @dev Safely transfers `tokenId` token from `from` to `to`.
             *
             * Requirements:
             *
             * - `from` cannot be the zero address.
             * - `to` cannot be the zero address.
             * - `tokenId` token must exist and be owned by `from`.
             * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
             * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
             *
             * Emits a {Transfer} event.
             */
            function safeTransferFrom(
                address from,
                address to,
                uint256 tokenId,
                bytes calldata data
            ) external;
            /**
             * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
             * are aware of the ERC721 protocol to prevent tokens from being forever locked.
             *
             * Requirements:
             *
             * - `from` cannot be the zero address.
             * - `to` cannot be the zero address.
             * - `tokenId` token must exist and be owned by `from`.
             * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
             * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
             *
             * Emits a {Transfer} event.
             */
            function safeTransferFrom(
                address from,
                address to,
                uint256 tokenId
            ) external;
            /**
             * @dev Transfers `tokenId` token from `from` to `to`.
             *
             * WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible.
             *
             * Requirements:
             *
             * - `from` cannot be the zero address.
             * - `to` cannot be the zero address.
             * - `tokenId` token must be owned by `from`.
             * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
             *
             * Emits a {Transfer} event.
             */
            function transferFrom(
                address from,
                address to,
                uint256 tokenId
            ) external;
            /**
             * @dev Gives permission to `to` to transfer `tokenId` token to another account.
             * The approval is cleared when the token is transferred.
             *
             * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
             *
             * Requirements:
             *
             * - The caller must own the token or be an approved operator.
             * - `tokenId` must exist.
             *
             * Emits an {Approval} event.
             */
            function approve(address to, uint256 tokenId) external;
            /**
             * @dev Approve or remove `operator` as an operator for the caller.
             * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
             *
             * Requirements:
             *
             * - The `operator` cannot be the caller.
             *
             * Emits an {ApprovalForAll} event.
             */
            function setApprovalForAll(address operator, bool _approved) external;
            /**
             * @dev Returns the account approved for `tokenId` token.
             *
             * Requirements:
             *
             * - `tokenId` must exist.
             */
            function getApproved(uint256 tokenId) external view returns (address operator);
            /**
             * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
             *
             * See {setApprovalForAll}
             */
            function isApprovedForAll(address owner, address operator) external view returns (bool);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        // Return type of the beforeSwap hook.
        // Upper 128 bits is the delta in specified tokens. Lower 128 bits is delta in unspecified tokens (to match the afterSwap hook)
        type BeforeSwapDelta is int256;
        // Creates a BeforeSwapDelta from specified and unspecified
        function toBeforeSwapDelta(int128 deltaSpecified, int128 deltaUnspecified)
            pure
            returns (BeforeSwapDelta beforeSwapDelta)
        {
            assembly ("memory-safe") {
                beforeSwapDelta := or(shl(128, deltaSpecified), and(sub(shl(128, 1), 1), deltaUnspecified))
            }
        }
        /// @notice Library for getting the specified and unspecified deltas from the BeforeSwapDelta type
        library BeforeSwapDeltaLibrary {
            /// @notice A BeforeSwapDelta of 0
            BeforeSwapDelta public constant ZERO_DELTA = BeforeSwapDelta.wrap(0);
            /// extracts int128 from the upper 128 bits of the BeforeSwapDelta
            /// returned by beforeSwap
            function getSpecifiedDelta(BeforeSwapDelta delta) internal pure returns (int128 deltaSpecified) {
                assembly ("memory-safe") {
                    deltaSpecified := sar(128, delta)
                }
            }
            /// extracts int128 from the lower 128 bits of the BeforeSwapDelta
            /// returned by beforeSwap and afterSwap
            function getUnspecifiedDelta(BeforeSwapDelta delta) internal pure returns (int128 deltaUnspecified) {
                assembly ("memory-safe") {
                    deltaUnspecified := signextend(15, delta)
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /// @title BitMath
        /// @dev This library provides functionality for computing bit properties of an unsigned integer
        /// @author Solady (https://github.com/Vectorized/solady/blob/8200a70e8dc2a77ecb074fc2e99a2a0d36547522/src/utils/LibBit.sol)
        library BitMath {
            /// @notice Returns the index of the most significant bit of the number,
            ///     where the least significant bit is at index 0 and the most significant bit is at index 255
            /// @param x the value for which to compute the most significant bit, must be greater than 0
            /// @return r the index of the most significant bit
            function mostSignificantBit(uint256 x) internal pure returns (uint8 r) {
                require(x > 0);
                assembly ("memory-safe") {
                    r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                    r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                    r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                    r := or(r, shl(4, lt(0xffff, shr(r, x))))
                    r := or(r, shl(3, lt(0xff, shr(r, x))))
                    // forgefmt: disable-next-item
                    r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                        0x0706060506020500060203020504000106050205030304010505030400000000))
                }
            }
            /// @notice Returns the index of the least significant bit of the number,
            ///     where the least significant bit is at index 0 and the most significant bit is at index 255
            /// @param x the value for which to compute the least significant bit, must be greater than 0
            /// @return r the index of the least significant bit
            function leastSignificantBit(uint256 x) internal pure returns (uint8 r) {
                require(x > 0);
                assembly ("memory-safe") {
                    // Isolate the least significant bit.
                    x := and(x, sub(0, x))
                    // For the upper 3 bits of the result, use a De Bruijn-like lookup.
                    // Credit to adhusson: https://blog.adhusson.com/cheap-find-first-set-evm/
                    // forgefmt: disable-next-item
                    r := shl(5, shr(252, shl(shl(2, shr(250, mul(x,
                        0xb6db6db6ddddddddd34d34d349249249210842108c6318c639ce739cffffffff))),
                        0x8040405543005266443200005020610674053026020000107506200176117077)))
                    // For the lower 5 bits of the result, use a De Bruijn lookup.
                    // forgefmt: disable-next-item
                    r := or(r, byte(and(div(0xd76453e0, shr(r, x)), 0x1f),
                        0x001f0d1e100c1d070f090b19131c1706010e11080a1a141802121b1503160405))
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import {IUnlockCallback} from "@uniswap/v4-core/src/interfaces/callback/IUnlockCallback.sol";
        import {IPoolManager} from "@uniswap/v4-core/src/interfaces/IPoolManager.sol";
        import {ImmutableState} from "./ImmutableState.sol";
        /// @title Safe Callback
        /// @notice A contract that only allows the Uniswap v4 PoolManager to call the unlockCallback
        abstract contract SafeCallback is ImmutableState, IUnlockCallback {
            /// @notice Thrown when calling unlockCallback where the caller is not PoolManager
            error NotPoolManager();
            constructor(IPoolManager _poolManager) ImmutableState(_poolManager) {}
            /// @notice Only allow calls from the PoolManager contract
            modifier onlyPoolManager() {
                if (msg.sender != address(poolManager)) revert NotPoolManager();
                _;
            }
            /// @inheritdoc IUnlockCallback
            /// @dev We force the onlyPoolManager modifier by exposing a virtual function after the onlyPoolManager check.
            function unlockCallback(bytes calldata data) external onlyPoolManager returns (bytes memory) {
                return _unlockCallback(data);
            }
            /// @dev to be implemented by the child contract, to safely guarantee the logic is only executed by the PoolManager
            function _unlockCallback(bytes calldata data) internal virtual returns (bytes memory);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.24;
        import {IPoolManager} from "../interfaces/IPoolManager.sol";
        import {Currency} from "../types/Currency.sol";
        import {CurrencyReserves} from "./CurrencyReserves.sol";
        import {NonzeroDeltaCount} from "./NonzeroDeltaCount.sol";
        import {Lock} from "./Lock.sol";
        /// @notice A helper library to provide state getters that use exttload
        library TransientStateLibrary {
            /// @notice returns the reserves for the synced currency
            /// @param manager The pool manager contract.
            /// @return uint256 The reserves of the currency.
            /// @dev returns 0 if the reserves are not synced or value is 0.
            /// Checks the synced currency to only return valid reserve values (after a sync and before a settle).
            function getSyncedReserves(IPoolManager manager) internal view returns (uint256) {
                if (getSyncedCurrency(manager).isAddressZero()) return 0;
                return uint256(manager.exttload(CurrencyReserves.RESERVES_OF_SLOT));
            }
            function getSyncedCurrency(IPoolManager manager) internal view returns (Currency) {
                return Currency.wrap(address(uint160(uint256(manager.exttload(CurrencyReserves.CURRENCY_SLOT)))));
            }
            /// @notice Returns the number of nonzero deltas open on the PoolManager that must be zeroed out before the contract is locked
            function getNonzeroDeltaCount(IPoolManager manager) internal view returns (uint256) {
                return uint256(manager.exttload(NonzeroDeltaCount.NONZERO_DELTA_COUNT_SLOT));
            }
            /// @notice Get the current delta for a caller in the given currency
            /// @param target The credited account address
            /// @param currency The currency for which to lookup the delta
            function currencyDelta(IPoolManager manager, address target, Currency currency) internal view returns (int256) {
                bytes32 key;
                assembly ("memory-safe") {
                    mstore(0, and(target, 0xffffffffffffffffffffffffffffffffffffffff))
                    mstore(32, and(currency, 0xffffffffffffffffffffffffffffffffffffffff))
                    key := keccak256(0, 64)
                }
                return int256(uint256(manager.exttload(key)));
            }
            /// @notice Returns whether the contract is unlocked or not
            function isUnlocked(IPoolManager manager) internal view returns (bool) {
                return manager.exttload(Lock.IS_UNLOCKED_SLOT) != 0x0;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import {IPoolManager} from "@uniswap/v4-core/src/interfaces/IPoolManager.sol";
        import {IImmutableState} from "../interfaces/IImmutableState.sol";
        /// @title Immutable State
        /// @notice A collection of immutable state variables, commonly used across multiple contracts
        contract ImmutableState is IImmutableState {
            /// @inheritdoc IImmutableState
            IPoolManager public immutable poolManager;
            constructor(IPoolManager _poolManager) {
                poolManager = _poolManager;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import {BalanceDelta} from "@uniswap/v4-core/src/types/BalanceDelta.sol";
        import {PositionInfo} from "../libraries/PositionInfoLibrary.sol";
        /// @title ISubscriber
        /// @notice Interface that a Subscriber contract should implement to receive updates from the v4 position manager
        interface ISubscriber {
            /// @notice Called when a position subscribes to this subscriber contract
            /// @param tokenId the token ID of the position
            /// @param data additional data passed in by the caller
            function notifySubscribe(uint256 tokenId, bytes memory data) external;
            /// @notice Called when a position unsubscribes from the subscriber
            /// @dev This call's gas is capped at `unsubscribeGasLimit` (set at deployment)
            /// @dev Because of EIP-150, solidity may only allocate 63/64 of gasleft()
            /// @param tokenId the token ID of the position
            function notifyUnsubscribe(uint256 tokenId) external;
            /// @notice Called when a position is burned
            /// @param tokenId the token ID of the position
            /// @param owner the current owner of the tokenId
            /// @param info information about the position
            /// @param liquidity the amount of liquidity decreased in the position, may be 0
            /// @param feesAccrued the fees accrued by the position if liquidity was decreased
            function notifyBurn(uint256 tokenId, address owner, PositionInfo info, uint256 liquidity, BalanceDelta feesAccrued)
                external;
            /// @notice Called when a position modifies its liquidity or collects fees
            /// @param tokenId the token ID of the position
            /// @param liquidityChange the change in liquidity on the underlying position
            /// @param feesAccrued the fees to be collected from the position as a result of the modifyLiquidity call
            /// @dev Note that feesAccrued can be artificially inflated by a malicious user
            /// Pools with a single liquidity position can inflate feeGrowthGlobal (and consequently feesAccrued) by donating to themselves;
            /// atomically donating and collecting fees within the same unlockCallback may further inflate feeGrowthGlobal/feesAccrued
            function notifyModifyLiquidity(uint256 tokenId, int256 liquidityChange, BalanceDelta feesAccrued) external;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Interface of the ERC165 standard, as defined in the
         * https://eips.ethereum.org/EIPS/eip-165[EIP].
         *
         * Implementers can declare support of contract interfaces, which can then be
         * queried by others ({ERC165Checker}).
         *
         * For an implementation, see {ERC165}.
         */
        interface IERC165 {
            /**
             * @dev Returns true if this contract implements the interface defined by
             * `interfaceId`. See the corresponding
             * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
             * to learn more about how these ids are created.
             *
             * This function call must use less than 30 000 gas.
             */
            function supportsInterface(bytes4 interfaceId) external view returns (bool);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /// @notice Interface for the callback executed when an address unlocks the pool manager
        interface IUnlockCallback {
            /// @notice Called by the pool manager on `msg.sender` when the manager is unlocked
            /// @param data The data that was passed to the call to unlock
            /// @return Any data that you want to be returned from the unlock call
            function unlockCallback(bytes calldata data) external returns (bytes memory);
        }
        // SPDX-License-Identifier: BUSL-1.1
        pragma solidity ^0.8.24;
        import {Currency} from "../types/Currency.sol";
        import {CustomRevert} from "./CustomRevert.sol";
        library CurrencyReserves {
            using CustomRevert for bytes4;
            /// bytes32(uint256(keccak256("ReservesOf")) - 1)
            bytes32 constant RESERVES_OF_SLOT = 0x1e0745a7db1623981f0b2a5d4232364c00787266eb75ad546f190e6cebe9bd95;
            /// bytes32(uint256(keccak256("Currency")) - 1)
            bytes32 constant CURRENCY_SLOT = 0x27e098c505d44ec3574004bca052aabf76bd35004c182099d8c575fb238593b9;
            function getSyncedCurrency() internal view returns (Currency currency) {
                assembly ("memory-safe") {
                    currency := tload(CURRENCY_SLOT)
                }
            }
            function resetCurrency() internal {
                assembly ("memory-safe") {
                    tstore(CURRENCY_SLOT, 0)
                }
            }
            function syncCurrencyAndReserves(Currency currency, uint256 value) internal {
                assembly ("memory-safe") {
                    tstore(CURRENCY_SLOT, and(currency, 0xffffffffffffffffffffffffffffffffffffffff))
                    tstore(RESERVES_OF_SLOT, value)
                }
            }
            function getSyncedReserves() internal view returns (uint256 value) {
                assembly ("memory-safe") {
                    value := tload(RESERVES_OF_SLOT)
                }
            }
        }
        // SPDX-License-Identifier: BUSL-1.1
        pragma solidity ^0.8.24;
        /// @notice This is a temporary library that allows us to use transient storage (tstore/tload)
        /// for the nonzero delta count.
        /// TODO: This library can be deleted when we have the transient keyword support in solidity.
        library NonzeroDeltaCount {
            // The slot holding the number of nonzero deltas. bytes32(uint256(keccak256("NonzeroDeltaCount")) - 1)
            bytes32 internal constant NONZERO_DELTA_COUNT_SLOT =
                0x7d4b3164c6e45b97e7d87b7125a44c5828d005af88f9d751cfd78729c5d99a0b;
            function read() internal view returns (uint256 count) {
                assembly ("memory-safe") {
                    count := tload(NONZERO_DELTA_COUNT_SLOT)
                }
            }
            function increment() internal {
                assembly ("memory-safe") {
                    let count := tload(NONZERO_DELTA_COUNT_SLOT)
                    count := add(count, 1)
                    tstore(NONZERO_DELTA_COUNT_SLOT, count)
                }
            }
            /// @notice Potential to underflow. Ensure checks are performed by integrating contracts to ensure this does not happen.
            /// Current usage ensures this will not happen because we call decrement with known boundaries (only up to the number of times we call increment).
            function decrement() internal {
                assembly ("memory-safe") {
                    let count := tload(NONZERO_DELTA_COUNT_SLOT)
                    count := sub(count, 1)
                    tstore(NONZERO_DELTA_COUNT_SLOT, count)
                }
            }
        }
        // SPDX-License-Identifier: BUSL-1.1
        pragma solidity ^0.8.24;
        /// @notice This is a temporary library that allows us to use transient storage (tstore/tload)
        /// TODO: This library can be deleted when we have the transient keyword support in solidity.
        library Lock {
            // The slot holding the unlocked state, transiently. bytes32(uint256(keccak256("Unlocked")) - 1)
            bytes32 internal constant IS_UNLOCKED_SLOT = 0xc090fc4683624cfc3884e9d8de5eca132f2d0ec062aff75d43c0465d5ceeab23;
            function unlock() internal {
                assembly ("memory-safe") {
                    // unlock
                    tstore(IS_UNLOCKED_SLOT, true)
                }
            }
            function lock() internal {
                assembly ("memory-safe") {
                    tstore(IS_UNLOCKED_SLOT, false)
                }
            }
            function isUnlocked() internal view returns (bool unlocked) {
                assembly ("memory-safe") {
                    unlocked := tload(IS_UNLOCKED_SLOT)
                }
            }
        }
        

        File 2 of 5: WETH9
        // Copyright (C) 2015, 2016, 2017 Dapphub
        
        // This program is free software: you can redistribute it and/or modify
        // it under the terms of the GNU General Public License as published by
        // the Free Software Foundation, either version 3 of the License, or
        // (at your option) any later version.
        
        // This program is distributed in the hope that it will be useful,
        // but WITHOUT ANY WARRANTY; without even the implied warranty of
        // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
        // GNU General Public License for more details.
        
        // You should have received a copy of the GNU General Public License
        // along with this program.  If not, see <http://www.gnu.org/licenses/>.
        
        pragma solidity ^0.4.18;
        
        contract WETH9 {
            string public name     = "Wrapped Ether";
            string public symbol   = "WETH";
            uint8  public decimals = 18;
        
            event  Approval(address indexed src, address indexed guy, uint wad);
            event  Transfer(address indexed src, address indexed dst, uint wad);
            event  Deposit(address indexed dst, uint wad);
            event  Withdrawal(address indexed src, uint wad);
        
            mapping (address => uint)                       public  balanceOf;
            mapping (address => mapping (address => uint))  public  allowance;
        
            function() public payable {
                deposit();
            }
            function deposit() public payable {
                balanceOf[msg.sender] += msg.value;
                Deposit(msg.sender, msg.value);
            }
            function withdraw(uint wad) public {
                require(balanceOf[msg.sender] >= wad);
                balanceOf[msg.sender] -= wad;
                msg.sender.transfer(wad);
                Withdrawal(msg.sender, wad);
            }
        
            function totalSupply() public view returns (uint) {
                return this.balance;
            }
        
            function approve(address guy, uint wad) public returns (bool) {
                allowance[msg.sender][guy] = wad;
                Approval(msg.sender, guy, wad);
                return true;
            }
        
            function transfer(address dst, uint wad) public returns (bool) {
                return transferFrom(msg.sender, dst, wad);
            }
        
            function transferFrom(address src, address dst, uint wad)
                public
                returns (bool)
            {
                require(balanceOf[src] >= wad);
        
                if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) {
                    require(allowance[src][msg.sender] >= wad);
                    allowance[src][msg.sender] -= wad;
                }
        
                balanceOf[src] -= wad;
                balanceOf[dst] += wad;
        
                Transfer(src, dst, wad);
        
                return true;
            }
        }
        
        
        /*
                            GNU GENERAL PUBLIC LICENSE
                               Version 3, 29 June 2007
        
         Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
         Everyone is permitted to copy and distribute verbatim copies
         of this license document, but changing it is not allowed.
        
                                    Preamble
        
          The GNU General Public License is a free, copyleft license for
        software and other kinds of works.
        
          The licenses for most software and other practical works are designed
        to take away your freedom to share and change the works.  By contrast,
        the GNU General Public License is intended to guarantee your freedom to
        share and change all versions of a program--to make sure it remains free
        software for all its users.  We, the Free Software Foundation, use the
        GNU General Public License for most of our software; it applies also to
        any other work released this way by its authors.  You can apply it to
        your programs, too.
        
          When we speak of free software, we are referring to freedom, not
        price.  Our General Public Licenses are designed to make sure that you
        have the freedom to distribute copies of free software (and charge for
        them if you wish), that you receive source code or can get it if you
        want it, that you can change the software or use pieces of it in new
        free programs, and that you know you can do these things.
        
          To protect your rights, we need to prevent others from denying you
        these rights or asking you to surrender the rights.  Therefore, you have
        certain responsibilities if you distribute copies of the software, or if
        you modify it: responsibilities to respect the freedom of others.
        
          For example, if you distribute copies of such a program, whether
        gratis or for a fee, you must pass on to the recipients the same
        freedoms that you received.  You must make sure that they, too, receive
        or can get the source code.  And you must show them these terms so they
        know their rights.
        
          Developers that use the GNU GPL protect your rights with two steps:
        (1) assert copyright on the software, and (2) offer you this License
        giving you legal permission to copy, distribute and/or modify it.
        
          For the developers' and authors' protection, the GPL clearly explains
        that there is no warranty for this free software.  For both users' and
        authors' sake, the GPL requires that modified versions be marked as
        changed, so that their problems will not be attributed erroneously to
        authors of previous versions.
        
          Some devices are designed to deny users access to install or run
        modified versions of the software inside them, although the manufacturer
        can do so.  This is fundamentally incompatible with the aim of
        protecting users' freedom to change the software.  The systematic
        pattern of such abuse occurs in the area of products for individuals to
        use, which is precisely where it is most unacceptable.  Therefore, we
        have designed this version of the GPL to prohibit the practice for those
        products.  If such problems arise substantially in other domains, we
        stand ready to extend this provision to those domains in future versions
        of the GPL, as needed to protect the freedom of users.
        
          Finally, every program is threatened constantly by software patents.
        States should not allow patents to restrict development and use of
        software on general-purpose computers, but in those that do, we wish to
        avoid the special danger that patents applied to a free program could
        make it effectively proprietary.  To prevent this, the GPL assures that
        patents cannot be used to render the program non-free.
        
          The precise terms and conditions for copying, distribution and
        modification follow.
        
                               TERMS AND CONDITIONS
        
          0. Definitions.
        
          "This License" refers to version 3 of the GNU General Public License.
        
          "Copyright" also means copyright-like laws that apply to other kinds of
        works, such as semiconductor masks.
        
          "The Program" refers to any copyrightable work licensed under this
        License.  Each licensee is addressed as "you".  "Licensees" and
        "recipients" may be individuals or organizations.
        
          To "modify" a work means to copy from or adapt all or part of the work
        in a fashion requiring copyright permission, other than the making of an
        exact copy.  The resulting work is called a "modified version" of the
        earlier work or a work "based on" the earlier work.
        
          A "covered work" means either the unmodified Program or a work based
        on the Program.
        
          To "propagate" a work means to do anything with it that, without
        permission, would make you directly or secondarily liable for
        infringement under applicable copyright law, except executing it on a
        computer or modifying a private copy.  Propagation includes copying,
        distribution (with or without modification), making available to the
        public, and in some countries other activities as well.
        
          To "convey" a work means any kind of propagation that enables other
        parties to make or receive copies.  Mere interaction with a user through
        a computer network, with no transfer of a copy, is not conveying.
        
          An interactive user interface displays "Appropriate Legal Notices"
        to the extent that it includes a convenient and prominently visible
        feature that (1) displays an appropriate copyright notice, and (2)
        tells the user that there is no warranty for the work (except to the
        extent that warranties are provided), that licensees may convey the
        work under this License, and how to view a copy of this License.  If
        the interface presents a list of user commands or options, such as a
        menu, a prominent item in the list meets this criterion.
        
          1. Source Code.
        
          The "source code" for a work means the preferred form of the work
        for making modifications to it.  "Object code" means any non-source
        form of a work.
        
          A "Standard Interface" means an interface that either is an official
        standard defined by a recognized standards body, or, in the case of
        interfaces specified for a particular programming language, one that
        is widely used among developers working in that language.
        
          The "System Libraries" of an executable work include anything, other
        than the work as a whole, that (a) is included in the normal form of
        packaging a Major Component, but which is not part of that Major
        Component, and (b) serves only to enable use of the work with that
        Major Component, or to implement a Standard Interface for which an
        implementation is available to the public in source code form.  A
        "Major Component", in this context, means a major essential component
        (kernel, window system, and so on) of the specific operating system
        (if any) on which the executable work runs, or a compiler used to
        produce the work, or an object code interpreter used to run it.
        
          The "Corresponding Source" for a work in object code form means all
        the source code needed to generate, install, and (for an executable
        work) run the object code and to modify the work, including scripts to
        control those activities.  However, it does not include the work's
        System Libraries, or general-purpose tools or generally available free
        programs which are used unmodified in performing those activities but
        which are not part of the work.  For example, Corresponding Source
        includes interface definition files associated with source files for
        the work, and the source code for shared libraries and dynamically
        linked subprograms that the work is specifically designed to require,
        such as by intimate data communication or control flow between those
        subprograms and other parts of the work.
        
          The Corresponding Source need not include anything that users
        can regenerate automatically from other parts of the Corresponding
        Source.
        
          The Corresponding Source for a work in source code form is that
        same work.
        
          2. Basic Permissions.
        
          All rights granted under this License are granted for the term of
        copyright on the Program, and are irrevocable provided the stated
        conditions are met.  This License explicitly affirms your unlimited
        permission to run the unmodified Program.  The output from running a
        covered work is covered by this License only if the output, given its
        content, constitutes a covered work.  This License acknowledges your
        rights of fair use or other equivalent, as provided by copyright law.
        
          You may make, run and propagate covered works that you do not
        convey, without conditions so long as your license otherwise remains
        in force.  You may convey covered works to others for the sole purpose
        of having them make modifications exclusively for you, or provide you
        with facilities for running those works, provided that you comply with
        the terms of this License in conveying all material for which you do
        not control copyright.  Those thus making or running the covered works
        for you must do so exclusively on your behalf, under your direction
        and control, on terms that prohibit them from making any copies of
        your copyrighted material outside their relationship with you.
        
          Conveying under any other circumstances is permitted solely under
        the conditions stated below.  Sublicensing is not allowed; section 10
        makes it unnecessary.
        
          3. Protecting Users' Legal Rights From Anti-Circumvention Law.
        
          No covered work shall be deemed part of an effective technological
        measure under any applicable law fulfilling obligations under article
        11 of the WIPO copyright treaty adopted on 20 December 1996, or
        similar laws prohibiting or restricting circumvention of such
        measures.
        
          When you convey a covered work, you waive any legal power to forbid
        circumvention of technological measures to the extent such circumvention
        is effected by exercising rights under this License with respect to
        the covered work, and you disclaim any intention to limit operation or
        modification of the work as a means of enforcing, against the work's
        users, your or third parties' legal rights to forbid circumvention of
        technological measures.
        
          4. Conveying Verbatim Copies.
        
          You may convey verbatim copies of the Program's source code as you
        receive it, in any medium, provided that you conspicuously and
        appropriately publish on each copy an appropriate copyright notice;
        keep intact all notices stating that this License and any
        non-permissive terms added in accord with section 7 apply to the code;
        keep intact all notices of the absence of any warranty; and give all
        recipients a copy of this License along with the Program.
        
          You may charge any price or no price for each copy that you convey,
        and you may offer support or warranty protection for a fee.
        
          5. Conveying Modified Source Versions.
        
          You may convey a work based on the Program, or the modifications to
        produce it from the Program, in the form of source code under the
        terms of section 4, provided that you also meet all of these conditions:
        
            a) The work must carry prominent notices stating that you modified
            it, and giving a relevant date.
        
            b) The work must carry prominent notices stating that it is
            released under this License and any conditions added under section
            7.  This requirement modifies the requirement in section 4 to
            "keep intact all notices".
        
            c) You must license the entire work, as a whole, under this
            License to anyone who comes into possession of a copy.  This
            License will therefore apply, along with any applicable section 7
            additional terms, to the whole of the work, and all its parts,
            regardless of how they are packaged.  This License gives no
            permission to license the work in any other way, but it does not
            invalidate such permission if you have separately received it.
        
            d) If the work has interactive user interfaces, each must display
            Appropriate Legal Notices; however, if the Program has interactive
            interfaces that do not display Appropriate Legal Notices, your
            work need not make them do so.
        
          A compilation of a covered work with other separate and independent
        works, which are not by their nature extensions of the covered work,
        and which are not combined with it such as to form a larger program,
        in or on a volume of a storage or distribution medium, is called an
        "aggregate" if the compilation and its resulting copyright are not
        used to limit the access or legal rights of the compilation's users
        beyond what the individual works permit.  Inclusion of a covered work
        in an aggregate does not cause this License to apply to the other
        parts of the aggregate.
        
          6. Conveying Non-Source Forms.
        
          You may convey a covered work in object code form under the terms
        of sections 4 and 5, provided that you also convey the
        machine-readable Corresponding Source under the terms of this License,
        in one of these ways:
        
            a) Convey the object code in, or embodied in, a physical product
            (including a physical distribution medium), accompanied by the
            Corresponding Source fixed on a durable physical medium
            customarily used for software interchange.
        
            b) Convey the object code in, or embodied in, a physical product
            (including a physical distribution medium), accompanied by a
            written offer, valid for at least three years and valid for as
            long as you offer spare parts or customer support for that product
            model, to give anyone who possesses the object code either (1) a
            copy of the Corresponding Source for all the software in the
            product that is covered by this License, on a durable physical
            medium customarily used for software interchange, for a price no
            more than your reasonable cost of physically performing this
            conveying of source, or (2) access to copy the
            Corresponding Source from a network server at no charge.
        
            c) Convey individual copies of the object code with a copy of the
            written offer to provide the Corresponding Source.  This
            alternative is allowed only occasionally and noncommercially, and
            only if you received the object code with such an offer, in accord
            with subsection 6b.
        
            d) Convey the object code by offering access from a designated
            place (gratis or for a charge), and offer equivalent access to the
            Corresponding Source in the same way through the same place at no
            further charge.  You need not require recipients to copy the
            Corresponding Source along with the object code.  If the place to
            copy the object code is a network server, the Corresponding Source
            may be on a different server (operated by you or a third party)
            that supports equivalent copying facilities, provided you maintain
            clear directions next to the object code saying where to find the
            Corresponding Source.  Regardless of what server hosts the
            Corresponding Source, you remain obligated to ensure that it is
            available for as long as needed to satisfy these requirements.
        
            e) Convey the object code using peer-to-peer transmission, provided
            you inform other peers where the object code and Corresponding
            Source of the work are being offered to the general public at no
            charge under subsection 6d.
        
          A separable portion of the object code, whose source code is excluded
        from the Corresponding Source as a System Library, need not be
        included in conveying the object code work.
        
          A "User Product" is either (1) a "consumer product", which means any
        tangible personal property which is normally used for personal, family,
        or household purposes, or (2) anything designed or sold for incorporation
        into a dwelling.  In determining whether a product is a consumer product,
        doubtful cases shall be resolved in favor of coverage.  For a particular
        product received by a particular user, "normally used" refers to a
        typical or common use of that class of product, regardless of the status
        of the particular user or of the way in which the particular user
        actually uses, or expects or is expected to use, the product.  A product
        is a consumer product regardless of whether the product has substantial
        commercial, industrial or non-consumer uses, unless such uses represent
        the only significant mode of use of the product.
        
          "Installation Information" for a User Product means any methods,
        procedures, authorization keys, or other information required to install
        and execute modified versions of a covered work in that User Product from
        a modified version of its Corresponding Source.  The information must
        suffice to ensure that the continued functioning of the modified object
        code is in no case prevented or interfered with solely because
        modification has been made.
        
          If you convey an object code work under this section in, or with, or
        specifically for use in, a User Product, and the conveying occurs as
        part of a transaction in which the right of possession and use of the
        User Product is transferred to the recipient in perpetuity or for a
        fixed term (regardless of how the transaction is characterized), the
        Corresponding Source conveyed under this section must be accompanied
        by the Installation Information.  But this requirement does not apply
        if neither you nor any third party retains the ability to install
        modified object code on the User Product (for example, the work has
        been installed in ROM).
        
          The requirement to provide Installation Information does not include a
        requirement to continue to provide support service, warranty, or updates
        for a work that has been modified or installed by the recipient, or for
        the User Product in which it has been modified or installed.  Access to a
        network may be denied when the modification itself materially and
        adversely affects the operation of the network or violates the rules and
        protocols for communication across the network.
        
          Corresponding Source conveyed, and Installation Information provided,
        in accord with this section must be in a format that is publicly
        documented (and with an implementation available to the public in
        source code form), and must require no special password or key for
        unpacking, reading or copying.
        
          7. Additional Terms.
        
          "Additional permissions" are terms that supplement the terms of this
        License by making exceptions from one or more of its conditions.
        Additional permissions that are applicable to the entire Program shall
        be treated as though they were included in this License, to the extent
        that they are valid under applicable law.  If additional permissions
        apply only to part of the Program, that part may be used separately
        under those permissions, but the entire Program remains governed by
        this License without regard to the additional permissions.
        
          When you convey a copy of a covered work, you may at your option
        remove any additional permissions from that copy, or from any part of
        it.  (Additional permissions may be written to require their own
        removal in certain cases when you modify the work.)  You may place
        additional permissions on material, added by you to a covered work,
        for which you have or can give appropriate copyright permission.
        
          Notwithstanding any other provision of this License, for material you
        add to a covered work, you may (if authorized by the copyright holders of
        that material) supplement the terms of this License with terms:
        
            a) Disclaiming warranty or limiting liability differently from the
            terms of sections 15 and 16 of this License; or
        
            b) Requiring preservation of specified reasonable legal notices or
            author attributions in that material or in the Appropriate Legal
            Notices displayed by works containing it; or
        
            c) Prohibiting misrepresentation of the origin of that material, or
            requiring that modified versions of such material be marked in
            reasonable ways as different from the original version; or
        
            d) Limiting the use for publicity purposes of names of licensors or
            authors of the material; or
        
            e) Declining to grant rights under trademark law for use of some
            trade names, trademarks, or service marks; or
        
            f) Requiring indemnification of licensors and authors of that
            material by anyone who conveys the material (or modified versions of
            it) with contractual assumptions of liability to the recipient, for
            any liability that these contractual assumptions directly impose on
            those licensors and authors.
        
          All other non-permissive additional terms are considered "further
        restrictions" within the meaning of section 10.  If the Program as you
        received it, or any part of it, contains a notice stating that it is
        governed by this License along with a term that is a further
        restriction, you may remove that term.  If a license document contains
        a further restriction but permits relicensing or conveying under this
        License, you may add to a covered work material governed by the terms
        of that license document, provided that the further restriction does
        not survive such relicensing or conveying.
        
          If you add terms to a covered work in accord with this section, you
        must place, in the relevant source files, a statement of the
        additional terms that apply to those files, or a notice indicating
        where to find the applicable terms.
        
          Additional terms, permissive or non-permissive, may be stated in the
        form of a separately written license, or stated as exceptions;
        the above requirements apply either way.
        
          8. Termination.
        
          You may not propagate or modify a covered work except as expressly
        provided under this License.  Any attempt otherwise to propagate or
        modify it is void, and will automatically terminate your rights under
        this License (including any patent licenses granted under the third
        paragraph of section 11).
        
          However, if you cease all violation of this License, then your
        license from a particular copyright holder is reinstated (a)
        provisionally, unless and until the copyright holder explicitly and
        finally terminates your license, and (b) permanently, if the copyright
        holder fails to notify you of the violation by some reasonable means
        prior to 60 days after the cessation.
        
          Moreover, your license from a particular copyright holder is
        reinstated permanently if the copyright holder notifies you of the
        violation by some reasonable means, this is the first time you have
        received notice of violation of this License (for any work) from that
        copyright holder, and you cure the violation prior to 30 days after
        your receipt of the notice.
        
          Termination of your rights under this section does not terminate the
        licenses of parties who have received copies or rights from you under
        this License.  If your rights have been terminated and not permanently
        reinstated, you do not qualify to receive new licenses for the same
        material under section 10.
        
          9. Acceptance Not Required for Having Copies.
        
          You are not required to accept this License in order to receive or
        run a copy of the Program.  Ancillary propagation of a covered work
        occurring solely as a consequence of using peer-to-peer transmission
        to receive a copy likewise does not require acceptance.  However,
        nothing other than this License grants you permission to propagate or
        modify any covered work.  These actions infringe copyright if you do
        not accept this License.  Therefore, by modifying or propagating a
        covered work, you indicate your acceptance of this License to do so.
        
          10. Automatic Licensing of Downstream Recipients.
        
          Each time you convey a covered work, the recipient automatically
        receives a license from the original licensors, to run, modify and
        propagate that work, subject to this License.  You are not responsible
        for enforcing compliance by third parties with this License.
        
          An "entity transaction" is a transaction transferring control of an
        organization, or substantially all assets of one, or subdividing an
        organization, or merging organizations.  If propagation of a covered
        work results from an entity transaction, each party to that
        transaction who receives a copy of the work also receives whatever
        licenses to the work the party's predecessor in interest had or could
        give under the previous paragraph, plus a right to possession of the
        Corresponding Source of the work from the predecessor in interest, if
        the predecessor has it or can get it with reasonable efforts.
        
          You may not impose any further restrictions on the exercise of the
        rights granted or affirmed under this License.  For example, you may
        not impose a license fee, royalty, or other charge for exercise of
        rights granted under this License, and you may not initiate litigation
        (including a cross-claim or counterclaim in a lawsuit) alleging that
        any patent claim is infringed by making, using, selling, offering for
        sale, or importing the Program or any portion of it.
        
          11. Patents.
        
          A "contributor" is a copyright holder who authorizes use under this
        License of the Program or a work on which the Program is based.  The
        work thus licensed is called the contributor's "contributor version".
        
          A contributor's "essential patent claims" are all patent claims
        owned or controlled by the contributor, whether already acquired or
        hereafter acquired, that would be infringed by some manner, permitted
        by this License, of making, using, or selling its contributor version,
        but do not include claims that would be infringed only as a
        consequence of further modification of the contributor version.  For
        purposes of this definition, "control" includes the right to grant
        patent sublicenses in a manner consistent with the requirements of
        this License.
        
          Each contributor grants you a non-exclusive, worldwide, royalty-free
        patent license under the contributor's essential patent claims, to
        make, use, sell, offer for sale, import and otherwise run, modify and
        propagate the contents of its contributor version.
        
          In the following three paragraphs, a "patent license" is any express
        agreement or commitment, however denominated, not to enforce a patent
        (such as an express permission to practice a patent or covenant not to
        sue for patent infringement).  To "grant" such a patent license to a
        party means to make such an agreement or commitment not to enforce a
        patent against the party.
        
          If you convey a covered work, knowingly relying on a patent license,
        and the Corresponding Source of the work is not available for anyone
        to copy, free of charge and under the terms of this License, through a
        publicly available network server or other readily accessible means,
        then you must either (1) cause the Corresponding Source to be so
        available, or (2) arrange to deprive yourself of the benefit of the
        patent license for this particular work, or (3) arrange, in a manner
        consistent with the requirements of this License, to extend the patent
        license to downstream recipients.  "Knowingly relying" means you have
        actual knowledge that, but for the patent license, your conveying the
        covered work in a country, or your recipient's use of the covered work
        in a country, would infringe one or more identifiable patents in that
        country that you have reason to believe are valid.
        
          If, pursuant to or in connection with a single transaction or
        arrangement, you convey, or propagate by procuring conveyance of, a
        covered work, and grant a patent license to some of the parties
        receiving the covered work authorizing them to use, propagate, modify
        or convey a specific copy of the covered work, then the patent license
        you grant is automatically extended to all recipients of the covered
        work and works based on it.
        
          A patent license is "discriminatory" if it does not include within
        the scope of its coverage, prohibits the exercise of, or is
        conditioned on the non-exercise of one or more of the rights that are
        specifically granted under this License.  You may not convey a covered
        work if you are a party to an arrangement with a third party that is
        in the business of distributing software, under which you make payment
        to the third party based on the extent of your activity of conveying
        the work, and under which the third party grants, to any of the
        parties who would receive the covered work from you, a discriminatory
        patent license (a) in connection with copies of the covered work
        conveyed by you (or copies made from those copies), or (b) primarily
        for and in connection with specific products or compilations that
        contain the covered work, unless you entered into that arrangement,
        or that patent license was granted, prior to 28 March 2007.
        
          Nothing in this License shall be construed as excluding or limiting
        any implied license or other defenses to infringement that may
        otherwise be available to you under applicable patent law.
        
          12. No Surrender of Others' Freedom.
        
          If conditions are imposed on you (whether by court order, agreement or
        otherwise) that contradict the conditions of this License, they do not
        excuse you from the conditions of this License.  If you cannot convey a
        covered work so as to satisfy simultaneously your obligations under this
        License and any other pertinent obligations, then as a consequence you may
        not convey it at all.  For example, if you agree to terms that obligate you
        to collect a royalty for further conveying from those to whom you convey
        the Program, the only way you could satisfy both those terms and this
        License would be to refrain entirely from conveying the Program.
        
          13. Use with the GNU Affero General Public License.
        
          Notwithstanding any other provision of this License, you have
        permission to link or combine any covered work with a work licensed
        under version 3 of the GNU Affero General Public License into a single
        combined work, and to convey the resulting work.  The terms of this
        License will continue to apply to the part which is the covered work,
        but the special requirements of the GNU Affero General Public License,
        section 13, concerning interaction through a network will apply to the
        combination as such.
        
          14. Revised Versions of this License.
        
          The Free Software Foundation may publish revised and/or new versions of
        the GNU General Public License from time to time.  Such new versions will
        be similar in spirit to the present version, but may differ in detail to
        address new problems or concerns.
        
          Each version is given a distinguishing version number.  If the
        Program specifies that a certain numbered version of the GNU General
        Public License "or any later version" applies to it, you have the
        option of following the terms and conditions either of that numbered
        version or of any later version published by the Free Software
        Foundation.  If the Program does not specify a version number of the
        GNU General Public License, you may choose any version ever published
        by the Free Software Foundation.
        
          If the Program specifies that a proxy can decide which future
        versions of the GNU General Public License can be used, that proxy's
        public statement of acceptance of a version permanently authorizes you
        to choose that version for the Program.
        
          Later license versions may give you additional or different
        permissions.  However, no additional obligations are imposed on any
        author or copyright holder as a result of your choosing to follow a
        later version.
        
          15. Disclaimer of Warranty.
        
          THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
        APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
        HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
        OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
        THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
        PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
        IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
        ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
        
          16. Limitation of Liability.
        
          IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
        WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
        THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
        GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
        USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
        DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
        PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
        EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
        SUCH DAMAGES.
        
          17. Interpretation of Sections 15 and 16.
        
          If the disclaimer of warranty and limitation of liability provided
        above cannot be given local legal effect according to their terms,
        reviewing courts shall apply local law that most closely approximates
        an absolute waiver of all civil liability in connection with the
        Program, unless a warranty or assumption of liability accompanies a
        copy of the Program in return for a fee.
        
                             END OF TERMS AND CONDITIONS
        
                    How to Apply These Terms to Your New Programs
        
          If you develop a new program, and you want it to be of the greatest
        possible use to the public, the best way to achieve this is to make it
        free software which everyone can redistribute and change under these terms.
        
          To do so, attach the following notices to the program.  It is safest
        to attach them to the start of each source file to most effectively
        state the exclusion of warranty; and each file should have at least
        the "copyright" line and a pointer to where the full notice is found.
        
            <one line to give the program's name and a brief idea of what it does.>
            Copyright (C) <year>  <name of author>
        
            This program is free software: you can redistribute it and/or modify
            it under the terms of the GNU General Public License as published by
            the Free Software Foundation, either version 3 of the License, or
            (at your option) any later version.
        
            This program is distributed in the hope that it will be useful,
            but WITHOUT ANY WARRANTY; without even the implied warranty of
            MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
            GNU General Public License for more details.
        
            You should have received a copy of the GNU General Public License
            along with this program.  If not, see <http://www.gnu.org/licenses/>.
        
        Also add information on how to contact you by electronic and paper mail.
        
          If the program does terminal interaction, make it output a short
        notice like this when it starts in an interactive mode:
        
            <program>  Copyright (C) <year>  <name of author>
            This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
            This is free software, and you are welcome to redistribute it
            under certain conditions; type `show c' for details.
        
        The hypothetical commands `show w' and `show c' should show the appropriate
        parts of the General Public License.  Of course, your program's commands
        might be different; for a GUI interface, you would use an "about box".
        
          You should also get your employer (if you work as a programmer) or school,
        if any, to sign a "copyright disclaimer" for the program, if necessary.
        For more information on this, and how to apply and follow the GNU GPL, see
        <http://www.gnu.org/licenses/>.
        
          The GNU General Public License does not permit incorporating your program
        into proprietary programs.  If your program is a subroutine library, you
        may consider it more useful to permit linking proprietary applications with
        the library.  If this is what you want to do, use the GNU Lesser General
        Public License instead of this License.  But first, please read
        <http://www.gnu.org/philosophy/why-not-lgpl.html>.
        
        */

        File 3 of 5: UniswapV3Pool
        // SPDX-License-Identifier: BUSL-1.1
        pragma solidity =0.7.6;
        import './interfaces/IUniswapV3Pool.sol';
        import './NoDelegateCall.sol';
        import './libraries/LowGasSafeMath.sol';
        import './libraries/SafeCast.sol';
        import './libraries/Tick.sol';
        import './libraries/TickBitmap.sol';
        import './libraries/Position.sol';
        import './libraries/Oracle.sol';
        import './libraries/FullMath.sol';
        import './libraries/FixedPoint128.sol';
        import './libraries/TransferHelper.sol';
        import './libraries/TickMath.sol';
        import './libraries/LiquidityMath.sol';
        import './libraries/SqrtPriceMath.sol';
        import './libraries/SwapMath.sol';
        import './interfaces/IUniswapV3PoolDeployer.sol';
        import './interfaces/IUniswapV3Factory.sol';
        import './interfaces/IERC20Minimal.sol';
        import './interfaces/callback/IUniswapV3MintCallback.sol';
        import './interfaces/callback/IUniswapV3SwapCallback.sol';
        import './interfaces/callback/IUniswapV3FlashCallback.sol';
        contract UniswapV3Pool is IUniswapV3Pool, NoDelegateCall {
            using LowGasSafeMath for uint256;
            using LowGasSafeMath for int256;
            using SafeCast for uint256;
            using SafeCast for int256;
            using Tick for mapping(int24 => Tick.Info);
            using TickBitmap for mapping(int16 => uint256);
            using Position for mapping(bytes32 => Position.Info);
            using Position for Position.Info;
            using Oracle for Oracle.Observation[65535];
            /// @inheritdoc IUniswapV3PoolImmutables
            address public immutable override factory;
            /// @inheritdoc IUniswapV3PoolImmutables
            address public immutable override token0;
            /// @inheritdoc IUniswapV3PoolImmutables
            address public immutable override token1;
            /// @inheritdoc IUniswapV3PoolImmutables
            uint24 public immutable override fee;
            /// @inheritdoc IUniswapV3PoolImmutables
            int24 public immutable override tickSpacing;
            /// @inheritdoc IUniswapV3PoolImmutables
            uint128 public immutable override maxLiquidityPerTick;
            struct Slot0 {
                // the current price
                uint160 sqrtPriceX96;
                // the current tick
                int24 tick;
                // the most-recently updated index of the observations array
                uint16 observationIndex;
                // the current maximum number of observations that are being stored
                uint16 observationCardinality;
                // the next maximum number of observations to store, triggered in observations.write
                uint16 observationCardinalityNext;
                // the current protocol fee as a percentage of the swap fee taken on withdrawal
                // represented as an integer denominator (1/x)%
                uint8 feeProtocol;
                // whether the pool is locked
                bool unlocked;
            }
            /// @inheritdoc IUniswapV3PoolState
            Slot0 public override slot0;
            /// @inheritdoc IUniswapV3PoolState
            uint256 public override feeGrowthGlobal0X128;
            /// @inheritdoc IUniswapV3PoolState
            uint256 public override feeGrowthGlobal1X128;
            // accumulated protocol fees in token0/token1 units
            struct ProtocolFees {
                uint128 token0;
                uint128 token1;
            }
            /// @inheritdoc IUniswapV3PoolState
            ProtocolFees public override protocolFees;
            /// @inheritdoc IUniswapV3PoolState
            uint128 public override liquidity;
            /// @inheritdoc IUniswapV3PoolState
            mapping(int24 => Tick.Info) public override ticks;
            /// @inheritdoc IUniswapV3PoolState
            mapping(int16 => uint256) public override tickBitmap;
            /// @inheritdoc IUniswapV3PoolState
            mapping(bytes32 => Position.Info) public override positions;
            /// @inheritdoc IUniswapV3PoolState
            Oracle.Observation[65535] public override observations;
            /// @dev Mutually exclusive reentrancy protection into the pool to/from a method. This method also prevents entrance
            /// to a function before the pool is initialized. The reentrancy guard is required throughout the contract because
            /// we use balance checks to determine the payment status of interactions such as mint, swap and flash.
            modifier lock() {
                require(slot0.unlocked, 'LOK');
                slot0.unlocked = false;
                _;
                slot0.unlocked = true;
            }
            /// @dev Prevents calling a function from anyone except the address returned by IUniswapV3Factory#owner()
            modifier onlyFactoryOwner() {
                require(msg.sender == IUniswapV3Factory(factory).owner());
                _;
            }
            constructor() {
                int24 _tickSpacing;
                (factory, token0, token1, fee, _tickSpacing) = IUniswapV3PoolDeployer(msg.sender).parameters();
                tickSpacing = _tickSpacing;
                maxLiquidityPerTick = Tick.tickSpacingToMaxLiquidityPerTick(_tickSpacing);
            }
            /// @dev Common checks for valid tick inputs.
            function checkTicks(int24 tickLower, int24 tickUpper) private pure {
                require(tickLower < tickUpper, 'TLU');
                require(tickLower >= TickMath.MIN_TICK, 'TLM');
                require(tickUpper <= TickMath.MAX_TICK, 'TUM');
            }
            /// @dev Returns the block timestamp truncated to 32 bits, i.e. mod 2**32. This method is overridden in tests.
            function _blockTimestamp() internal view virtual returns (uint32) {
                return uint32(block.timestamp); // truncation is desired
            }
            /// @dev Get the pool's balance of token0
            /// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize
            /// check
            function balance0() private view returns (uint256) {
                (bool success, bytes memory data) =
                    token0.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this)));
                require(success && data.length >= 32);
                return abi.decode(data, (uint256));
            }
            /// @dev Get the pool's balance of token1
            /// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize
            /// check
            function balance1() private view returns (uint256) {
                (bool success, bytes memory data) =
                    token1.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this)));
                require(success && data.length >= 32);
                return abi.decode(data, (uint256));
            }
            /// @inheritdoc IUniswapV3PoolDerivedState
            function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
                external
                view
                override
                noDelegateCall
                returns (
                    int56 tickCumulativeInside,
                    uint160 secondsPerLiquidityInsideX128,
                    uint32 secondsInside
                )
            {
                checkTicks(tickLower, tickUpper);
                int56 tickCumulativeLower;
                int56 tickCumulativeUpper;
                uint160 secondsPerLiquidityOutsideLowerX128;
                uint160 secondsPerLiquidityOutsideUpperX128;
                uint32 secondsOutsideLower;
                uint32 secondsOutsideUpper;
                {
                    Tick.Info storage lower = ticks[tickLower];
                    Tick.Info storage upper = ticks[tickUpper];
                    bool initializedLower;
                    (tickCumulativeLower, secondsPerLiquidityOutsideLowerX128, secondsOutsideLower, initializedLower) = (
                        lower.tickCumulativeOutside,
                        lower.secondsPerLiquidityOutsideX128,
                        lower.secondsOutside,
                        lower.initialized
                    );
                    require(initializedLower);
                    bool initializedUpper;
                    (tickCumulativeUpper, secondsPerLiquidityOutsideUpperX128, secondsOutsideUpper, initializedUpper) = (
                        upper.tickCumulativeOutside,
                        upper.secondsPerLiquidityOutsideX128,
                        upper.secondsOutside,
                        upper.initialized
                    );
                    require(initializedUpper);
                }
                Slot0 memory _slot0 = slot0;
                if (_slot0.tick < tickLower) {
                    return (
                        tickCumulativeLower - tickCumulativeUpper,
                        secondsPerLiquidityOutsideLowerX128 - secondsPerLiquidityOutsideUpperX128,
                        secondsOutsideLower - secondsOutsideUpper
                    );
                } else if (_slot0.tick < tickUpper) {
                    uint32 time = _blockTimestamp();
                    (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) =
                        observations.observeSingle(
                            time,
                            0,
                            _slot0.tick,
                            _slot0.observationIndex,
                            liquidity,
                            _slot0.observationCardinality
                        );
                    return (
                        tickCumulative - tickCumulativeLower - tickCumulativeUpper,
                        secondsPerLiquidityCumulativeX128 -
                            secondsPerLiquidityOutsideLowerX128 -
                            secondsPerLiquidityOutsideUpperX128,
                        time - secondsOutsideLower - secondsOutsideUpper
                    );
                } else {
                    return (
                        tickCumulativeUpper - tickCumulativeLower,
                        secondsPerLiquidityOutsideUpperX128 - secondsPerLiquidityOutsideLowerX128,
                        secondsOutsideUpper - secondsOutsideLower
                    );
                }
            }
            /// @inheritdoc IUniswapV3PoolDerivedState
            function observe(uint32[] calldata secondsAgos)
                external
                view
                override
                noDelegateCall
                returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s)
            {
                return
                    observations.observe(
                        _blockTimestamp(),
                        secondsAgos,
                        slot0.tick,
                        slot0.observationIndex,
                        liquidity,
                        slot0.observationCardinality
                    );
            }
            /// @inheritdoc IUniswapV3PoolActions
            function increaseObservationCardinalityNext(uint16 observationCardinalityNext)
                external
                override
                lock
                noDelegateCall
            {
                uint16 observationCardinalityNextOld = slot0.observationCardinalityNext; // for the event
                uint16 observationCardinalityNextNew =
                    observations.grow(observationCardinalityNextOld, observationCardinalityNext);
                slot0.observationCardinalityNext = observationCardinalityNextNew;
                if (observationCardinalityNextOld != observationCardinalityNextNew)
                    emit IncreaseObservationCardinalityNext(observationCardinalityNextOld, observationCardinalityNextNew);
            }
            /// @inheritdoc IUniswapV3PoolActions
            /// @dev not locked because it initializes unlocked
            function initialize(uint160 sqrtPriceX96) external override {
                require(slot0.sqrtPriceX96 == 0, 'AI');
                int24 tick = TickMath.getTickAtSqrtRatio(sqrtPriceX96);
                (uint16 cardinality, uint16 cardinalityNext) = observations.initialize(_blockTimestamp());
                slot0 = Slot0({
                    sqrtPriceX96: sqrtPriceX96,
                    tick: tick,
                    observationIndex: 0,
                    observationCardinality: cardinality,
                    observationCardinalityNext: cardinalityNext,
                    feeProtocol: 0,
                    unlocked: true
                });
                emit Initialize(sqrtPriceX96, tick);
            }
            struct ModifyPositionParams {
                // the address that owns the position
                address owner;
                // the lower and upper tick of the position
                int24 tickLower;
                int24 tickUpper;
                // any change in liquidity
                int128 liquidityDelta;
            }
            /// @dev Effect some changes to a position
            /// @param params the position details and the change to the position's liquidity to effect
            /// @return position a storage pointer referencing the position with the given owner and tick range
            /// @return amount0 the amount of token0 owed to the pool, negative if the pool should pay the recipient
            /// @return amount1 the amount of token1 owed to the pool, negative if the pool should pay the recipient
            function _modifyPosition(ModifyPositionParams memory params)
                private
                noDelegateCall
                returns (
                    Position.Info storage position,
                    int256 amount0,
                    int256 amount1
                )
            {
                checkTicks(params.tickLower, params.tickUpper);
                Slot0 memory _slot0 = slot0; // SLOAD for gas optimization
                position = _updatePosition(
                    params.owner,
                    params.tickLower,
                    params.tickUpper,
                    params.liquidityDelta,
                    _slot0.tick
                );
                if (params.liquidityDelta != 0) {
                    if (_slot0.tick < params.tickLower) {
                        // current tick is below the passed range; liquidity can only become in range by crossing from left to
                        // right, when we'll need _more_ token0 (it's becoming more valuable) so user must provide it
                        amount0 = SqrtPriceMath.getAmount0Delta(
                            TickMath.getSqrtRatioAtTick(params.tickLower),
                            TickMath.getSqrtRatioAtTick(params.tickUpper),
                            params.liquidityDelta
                        );
                    } else if (_slot0.tick < params.tickUpper) {
                        // current tick is inside the passed range
                        uint128 liquidityBefore = liquidity; // SLOAD for gas optimization
                        // write an oracle entry
                        (slot0.observationIndex, slot0.observationCardinality) = observations.write(
                            _slot0.observationIndex,
                            _blockTimestamp(),
                            _slot0.tick,
                            liquidityBefore,
                            _slot0.observationCardinality,
                            _slot0.observationCardinalityNext
                        );
                        amount0 = SqrtPriceMath.getAmount0Delta(
                            _slot0.sqrtPriceX96,
                            TickMath.getSqrtRatioAtTick(params.tickUpper),
                            params.liquidityDelta
                        );
                        amount1 = SqrtPriceMath.getAmount1Delta(
                            TickMath.getSqrtRatioAtTick(params.tickLower),
                            _slot0.sqrtPriceX96,
                            params.liquidityDelta
                        );
                        liquidity = LiquidityMath.addDelta(liquidityBefore, params.liquidityDelta);
                    } else {
                        // current tick is above the passed range; liquidity can only become in range by crossing from right to
                        // left, when we'll need _more_ token1 (it's becoming more valuable) so user must provide it
                        amount1 = SqrtPriceMath.getAmount1Delta(
                            TickMath.getSqrtRatioAtTick(params.tickLower),
                            TickMath.getSqrtRatioAtTick(params.tickUpper),
                            params.liquidityDelta
                        );
                    }
                }
            }
            /// @dev Gets and updates a position with the given liquidity delta
            /// @param owner the owner of the position
            /// @param tickLower the lower tick of the position's tick range
            /// @param tickUpper the upper tick of the position's tick range
            /// @param tick the current tick, passed to avoid sloads
            function _updatePosition(
                address owner,
                int24 tickLower,
                int24 tickUpper,
                int128 liquidityDelta,
                int24 tick
            ) private returns (Position.Info storage position) {
                position = positions.get(owner, tickLower, tickUpper);
                uint256 _feeGrowthGlobal0X128 = feeGrowthGlobal0X128; // SLOAD for gas optimization
                uint256 _feeGrowthGlobal1X128 = feeGrowthGlobal1X128; // SLOAD for gas optimization
                // if we need to update the ticks, do it
                bool flippedLower;
                bool flippedUpper;
                if (liquidityDelta != 0) {
                    uint32 time = _blockTimestamp();
                    (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) =
                        observations.observeSingle(
                            time,
                            0,
                            slot0.tick,
                            slot0.observationIndex,
                            liquidity,
                            slot0.observationCardinality
                        );
                    flippedLower = ticks.update(
                        tickLower,
                        tick,
                        liquidityDelta,
                        _feeGrowthGlobal0X128,
                        _feeGrowthGlobal1X128,
                        secondsPerLiquidityCumulativeX128,
                        tickCumulative,
                        time,
                        false,
                        maxLiquidityPerTick
                    );
                    flippedUpper = ticks.update(
                        tickUpper,
                        tick,
                        liquidityDelta,
                        _feeGrowthGlobal0X128,
                        _feeGrowthGlobal1X128,
                        secondsPerLiquidityCumulativeX128,
                        tickCumulative,
                        time,
                        true,
                        maxLiquidityPerTick
                    );
                    if (flippedLower) {
                        tickBitmap.flipTick(tickLower, tickSpacing);
                    }
                    if (flippedUpper) {
                        tickBitmap.flipTick(tickUpper, tickSpacing);
                    }
                }
                (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) =
                    ticks.getFeeGrowthInside(tickLower, tickUpper, tick, _feeGrowthGlobal0X128, _feeGrowthGlobal1X128);
                position.update(liquidityDelta, feeGrowthInside0X128, feeGrowthInside1X128);
                // clear any tick data that is no longer needed
                if (liquidityDelta < 0) {
                    if (flippedLower) {
                        ticks.clear(tickLower);
                    }
                    if (flippedUpper) {
                        ticks.clear(tickUpper);
                    }
                }
            }
            /// @inheritdoc IUniswapV3PoolActions
            /// @dev noDelegateCall is applied indirectly via _modifyPosition
            function mint(
                address recipient,
                int24 tickLower,
                int24 tickUpper,
                uint128 amount,
                bytes calldata data
            ) external override lock returns (uint256 amount0, uint256 amount1) {
                require(amount > 0);
                (, int256 amount0Int, int256 amount1Int) =
                    _modifyPosition(
                        ModifyPositionParams({
                            owner: recipient,
                            tickLower: tickLower,
                            tickUpper: tickUpper,
                            liquidityDelta: int256(amount).toInt128()
                        })
                    );
                amount0 = uint256(amount0Int);
                amount1 = uint256(amount1Int);
                uint256 balance0Before;
                uint256 balance1Before;
                if (amount0 > 0) balance0Before = balance0();
                if (amount1 > 0) balance1Before = balance1();
                IUniswapV3MintCallback(msg.sender).uniswapV3MintCallback(amount0, amount1, data);
                if (amount0 > 0) require(balance0Before.add(amount0) <= balance0(), 'M0');
                if (amount1 > 0) require(balance1Before.add(amount1) <= balance1(), 'M1');
                emit Mint(msg.sender, recipient, tickLower, tickUpper, amount, amount0, amount1);
            }
            /// @inheritdoc IUniswapV3PoolActions
            function collect(
                address recipient,
                int24 tickLower,
                int24 tickUpper,
                uint128 amount0Requested,
                uint128 amount1Requested
            ) external override lock returns (uint128 amount0, uint128 amount1) {
                // we don't need to checkTicks here, because invalid positions will never have non-zero tokensOwed{0,1}
                Position.Info storage position = positions.get(msg.sender, tickLower, tickUpper);
                amount0 = amount0Requested > position.tokensOwed0 ? position.tokensOwed0 : amount0Requested;
                amount1 = amount1Requested > position.tokensOwed1 ? position.tokensOwed1 : amount1Requested;
                if (amount0 > 0) {
                    position.tokensOwed0 -= amount0;
                    TransferHelper.safeTransfer(token0, recipient, amount0);
                }
                if (amount1 > 0) {
                    position.tokensOwed1 -= amount1;
                    TransferHelper.safeTransfer(token1, recipient, amount1);
                }
                emit Collect(msg.sender, recipient, tickLower, tickUpper, amount0, amount1);
            }
            /// @inheritdoc IUniswapV3PoolActions
            /// @dev noDelegateCall is applied indirectly via _modifyPosition
            function burn(
                int24 tickLower,
                int24 tickUpper,
                uint128 amount
            ) external override lock returns (uint256 amount0, uint256 amount1) {
                (Position.Info storage position, int256 amount0Int, int256 amount1Int) =
                    _modifyPosition(
                        ModifyPositionParams({
                            owner: msg.sender,
                            tickLower: tickLower,
                            tickUpper: tickUpper,
                            liquidityDelta: -int256(amount).toInt128()
                        })
                    );
                amount0 = uint256(-amount0Int);
                amount1 = uint256(-amount1Int);
                if (amount0 > 0 || amount1 > 0) {
                    (position.tokensOwed0, position.tokensOwed1) = (
                        position.tokensOwed0 + uint128(amount0),
                        position.tokensOwed1 + uint128(amount1)
                    );
                }
                emit Burn(msg.sender, tickLower, tickUpper, amount, amount0, amount1);
            }
            struct SwapCache {
                // the protocol fee for the input token
                uint8 feeProtocol;
                // liquidity at the beginning of the swap
                uint128 liquidityStart;
                // the timestamp of the current block
                uint32 blockTimestamp;
                // the current value of the tick accumulator, computed only if we cross an initialized tick
                int56 tickCumulative;
                // the current value of seconds per liquidity accumulator, computed only if we cross an initialized tick
                uint160 secondsPerLiquidityCumulativeX128;
                // whether we've computed and cached the above two accumulators
                bool computedLatestObservation;
            }
            // the top level state of the swap, the results of which are recorded in storage at the end
            struct SwapState {
                // the amount remaining to be swapped in/out of the input/output asset
                int256 amountSpecifiedRemaining;
                // the amount already swapped out/in of the output/input asset
                int256 amountCalculated;
                // current sqrt(price)
                uint160 sqrtPriceX96;
                // the tick associated with the current price
                int24 tick;
                // the global fee growth of the input token
                uint256 feeGrowthGlobalX128;
                // amount of input token paid as protocol fee
                uint128 protocolFee;
                // the current liquidity in range
                uint128 liquidity;
            }
            struct StepComputations {
                // the price at the beginning of the step
                uint160 sqrtPriceStartX96;
                // the next tick to swap to from the current tick in the swap direction
                int24 tickNext;
                // whether tickNext is initialized or not
                bool initialized;
                // sqrt(price) for the next tick (1/0)
                uint160 sqrtPriceNextX96;
                // how much is being swapped in in this step
                uint256 amountIn;
                // how much is being swapped out
                uint256 amountOut;
                // how much fee is being paid in
                uint256 feeAmount;
            }
            /// @inheritdoc IUniswapV3PoolActions
            function swap(
                address recipient,
                bool zeroForOne,
                int256 amountSpecified,
                uint160 sqrtPriceLimitX96,
                bytes calldata data
            ) external override noDelegateCall returns (int256 amount0, int256 amount1) {
                require(amountSpecified != 0, 'AS');
                Slot0 memory slot0Start = slot0;
                require(slot0Start.unlocked, 'LOK');
                require(
                    zeroForOne
                        ? sqrtPriceLimitX96 < slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 > TickMath.MIN_SQRT_RATIO
                        : sqrtPriceLimitX96 > slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 < TickMath.MAX_SQRT_RATIO,
                    'SPL'
                );
                slot0.unlocked = false;
                SwapCache memory cache =
                    SwapCache({
                        liquidityStart: liquidity,
                        blockTimestamp: _blockTimestamp(),
                        feeProtocol: zeroForOne ? (slot0Start.feeProtocol % 16) : (slot0Start.feeProtocol >> 4),
                        secondsPerLiquidityCumulativeX128: 0,
                        tickCumulative: 0,
                        computedLatestObservation: false
                    });
                bool exactInput = amountSpecified > 0;
                SwapState memory state =
                    SwapState({
                        amountSpecifiedRemaining: amountSpecified,
                        amountCalculated: 0,
                        sqrtPriceX96: slot0Start.sqrtPriceX96,
                        tick: slot0Start.tick,
                        feeGrowthGlobalX128: zeroForOne ? feeGrowthGlobal0X128 : feeGrowthGlobal1X128,
                        protocolFee: 0,
                        liquidity: cache.liquidityStart
                    });
                // continue swapping as long as we haven't used the entire input/output and haven't reached the price limit
                while (state.amountSpecifiedRemaining != 0 && state.sqrtPriceX96 != sqrtPriceLimitX96) {
                    StepComputations memory step;
                    step.sqrtPriceStartX96 = state.sqrtPriceX96;
                    (step.tickNext, step.initialized) = tickBitmap.nextInitializedTickWithinOneWord(
                        state.tick,
                        tickSpacing,
                        zeroForOne
                    );
                    // ensure that we do not overshoot the min/max tick, as the tick bitmap is not aware of these bounds
                    if (step.tickNext < TickMath.MIN_TICK) {
                        step.tickNext = TickMath.MIN_TICK;
                    } else if (step.tickNext > TickMath.MAX_TICK) {
                        step.tickNext = TickMath.MAX_TICK;
                    }
                    // get the price for the next tick
                    step.sqrtPriceNextX96 = TickMath.getSqrtRatioAtTick(step.tickNext);
                    // compute values to swap to the target tick, price limit, or point where input/output amount is exhausted
                    (state.sqrtPriceX96, step.amountIn, step.amountOut, step.feeAmount) = SwapMath.computeSwapStep(
                        state.sqrtPriceX96,
                        (zeroForOne ? step.sqrtPriceNextX96 < sqrtPriceLimitX96 : step.sqrtPriceNextX96 > sqrtPriceLimitX96)
                            ? sqrtPriceLimitX96
                            : step.sqrtPriceNextX96,
                        state.liquidity,
                        state.amountSpecifiedRemaining,
                        fee
                    );
                    if (exactInput) {
                        state.amountSpecifiedRemaining -= (step.amountIn + step.feeAmount).toInt256();
                        state.amountCalculated = state.amountCalculated.sub(step.amountOut.toInt256());
                    } else {
                        state.amountSpecifiedRemaining += step.amountOut.toInt256();
                        state.amountCalculated = state.amountCalculated.add((step.amountIn + step.feeAmount).toInt256());
                    }
                    // if the protocol fee is on, calculate how much is owed, decrement feeAmount, and increment protocolFee
                    if (cache.feeProtocol > 0) {
                        uint256 delta = step.feeAmount / cache.feeProtocol;
                        step.feeAmount -= delta;
                        state.protocolFee += uint128(delta);
                    }
                    // update global fee tracker
                    if (state.liquidity > 0)
                        state.feeGrowthGlobalX128 += FullMath.mulDiv(step.feeAmount, FixedPoint128.Q128, state.liquidity);
                    // shift tick if we reached the next price
                    if (state.sqrtPriceX96 == step.sqrtPriceNextX96) {
                        // if the tick is initialized, run the tick transition
                        if (step.initialized) {
                            // check for the placeholder value, which we replace with the actual value the first time the swap
                            // crosses an initialized tick
                            if (!cache.computedLatestObservation) {
                                (cache.tickCumulative, cache.secondsPerLiquidityCumulativeX128) = observations.observeSingle(
                                    cache.blockTimestamp,
                                    0,
                                    slot0Start.tick,
                                    slot0Start.observationIndex,
                                    cache.liquidityStart,
                                    slot0Start.observationCardinality
                                );
                                cache.computedLatestObservation = true;
                            }
                            int128 liquidityNet =
                                ticks.cross(
                                    step.tickNext,
                                    (zeroForOne ? state.feeGrowthGlobalX128 : feeGrowthGlobal0X128),
                                    (zeroForOne ? feeGrowthGlobal1X128 : state.feeGrowthGlobalX128),
                                    cache.secondsPerLiquidityCumulativeX128,
                                    cache.tickCumulative,
                                    cache.blockTimestamp
                                );
                            // if we're moving leftward, we interpret liquidityNet as the opposite sign
                            // safe because liquidityNet cannot be type(int128).min
                            if (zeroForOne) liquidityNet = -liquidityNet;
                            state.liquidity = LiquidityMath.addDelta(state.liquidity, liquidityNet);
                        }
                        state.tick = zeroForOne ? step.tickNext - 1 : step.tickNext;
                    } else if (state.sqrtPriceX96 != step.sqrtPriceStartX96) {
                        // recompute unless we're on a lower tick boundary (i.e. already transitioned ticks), and haven't moved
                        state.tick = TickMath.getTickAtSqrtRatio(state.sqrtPriceX96);
                    }
                }
                // update tick and write an oracle entry if the tick change
                if (state.tick != slot0Start.tick) {
                    (uint16 observationIndex, uint16 observationCardinality) =
                        observations.write(
                            slot0Start.observationIndex,
                            cache.blockTimestamp,
                            slot0Start.tick,
                            cache.liquidityStart,
                            slot0Start.observationCardinality,
                            slot0Start.observationCardinalityNext
                        );
                    (slot0.sqrtPriceX96, slot0.tick, slot0.observationIndex, slot0.observationCardinality) = (
                        state.sqrtPriceX96,
                        state.tick,
                        observationIndex,
                        observationCardinality
                    );
                } else {
                    // otherwise just update the price
                    slot0.sqrtPriceX96 = state.sqrtPriceX96;
                }
                // update liquidity if it changed
                if (cache.liquidityStart != state.liquidity) liquidity = state.liquidity;
                // update fee growth global and, if necessary, protocol fees
                // overflow is acceptable, protocol has to withdraw before it hits type(uint128).max fees
                if (zeroForOne) {
                    feeGrowthGlobal0X128 = state.feeGrowthGlobalX128;
                    if (state.protocolFee > 0) protocolFees.token0 += state.protocolFee;
                } else {
                    feeGrowthGlobal1X128 = state.feeGrowthGlobalX128;
                    if (state.protocolFee > 0) protocolFees.token1 += state.protocolFee;
                }
                (amount0, amount1) = zeroForOne == exactInput
                    ? (amountSpecified - state.amountSpecifiedRemaining, state.amountCalculated)
                    : (state.amountCalculated, amountSpecified - state.amountSpecifiedRemaining);
                // do the transfers and collect payment
                if (zeroForOne) {
                    if (amount1 < 0) TransferHelper.safeTransfer(token1, recipient, uint256(-amount1));
                    uint256 balance0Before = balance0();
                    IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data);
                    require(balance0Before.add(uint256(amount0)) <= balance0(), 'IIA');
                } else {
                    if (amount0 < 0) TransferHelper.safeTransfer(token0, recipient, uint256(-amount0));
                    uint256 balance1Before = balance1();
                    IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data);
                    require(balance1Before.add(uint256(amount1)) <= balance1(), 'IIA');
                }
                emit Swap(msg.sender, recipient, amount0, amount1, state.sqrtPriceX96, state.liquidity, state.tick);
                slot0.unlocked = true;
            }
            /// @inheritdoc IUniswapV3PoolActions
            function flash(
                address recipient,
                uint256 amount0,
                uint256 amount1,
                bytes calldata data
            ) external override lock noDelegateCall {
                uint128 _liquidity = liquidity;
                require(_liquidity > 0, 'L');
                uint256 fee0 = FullMath.mulDivRoundingUp(amount0, fee, 1e6);
                uint256 fee1 = FullMath.mulDivRoundingUp(amount1, fee, 1e6);
                uint256 balance0Before = balance0();
                uint256 balance1Before = balance1();
                if (amount0 > 0) TransferHelper.safeTransfer(token0, recipient, amount0);
                if (amount1 > 0) TransferHelper.safeTransfer(token1, recipient, amount1);
                IUniswapV3FlashCallback(msg.sender).uniswapV3FlashCallback(fee0, fee1, data);
                uint256 balance0After = balance0();
                uint256 balance1After = balance1();
                require(balance0Before.add(fee0) <= balance0After, 'F0');
                require(balance1Before.add(fee1) <= balance1After, 'F1');
                // sub is safe because we know balanceAfter is gt balanceBefore by at least fee
                uint256 paid0 = balance0After - balance0Before;
                uint256 paid1 = balance1After - balance1Before;
                if (paid0 > 0) {
                    uint8 feeProtocol0 = slot0.feeProtocol % 16;
                    uint256 fees0 = feeProtocol0 == 0 ? 0 : paid0 / feeProtocol0;
                    if (uint128(fees0) > 0) protocolFees.token0 += uint128(fees0);
                    feeGrowthGlobal0X128 += FullMath.mulDiv(paid0 - fees0, FixedPoint128.Q128, _liquidity);
                }
                if (paid1 > 0) {
                    uint8 feeProtocol1 = slot0.feeProtocol >> 4;
                    uint256 fees1 = feeProtocol1 == 0 ? 0 : paid1 / feeProtocol1;
                    if (uint128(fees1) > 0) protocolFees.token1 += uint128(fees1);
                    feeGrowthGlobal1X128 += FullMath.mulDiv(paid1 - fees1, FixedPoint128.Q128, _liquidity);
                }
                emit Flash(msg.sender, recipient, amount0, amount1, paid0, paid1);
            }
            /// @inheritdoc IUniswapV3PoolOwnerActions
            function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external override lock onlyFactoryOwner {
                require(
                    (feeProtocol0 == 0 || (feeProtocol0 >= 4 && feeProtocol0 <= 10)) &&
                        (feeProtocol1 == 0 || (feeProtocol1 >= 4 && feeProtocol1 <= 10))
                );
                uint8 feeProtocolOld = slot0.feeProtocol;
                slot0.feeProtocol = feeProtocol0 + (feeProtocol1 << 4);
                emit SetFeeProtocol(feeProtocolOld % 16, feeProtocolOld >> 4, feeProtocol0, feeProtocol1);
            }
            /// @inheritdoc IUniswapV3PoolOwnerActions
            function collectProtocol(
                address recipient,
                uint128 amount0Requested,
                uint128 amount1Requested
            ) external override lock onlyFactoryOwner returns (uint128 amount0, uint128 amount1) {
                amount0 = amount0Requested > protocolFees.token0 ? protocolFees.token0 : amount0Requested;
                amount1 = amount1Requested > protocolFees.token1 ? protocolFees.token1 : amount1Requested;
                if (amount0 > 0) {
                    if (amount0 == protocolFees.token0) amount0--; // ensure that the slot is not cleared, for gas savings
                    protocolFees.token0 -= amount0;
                    TransferHelper.safeTransfer(token0, recipient, amount0);
                }
                if (amount1 > 0) {
                    if (amount1 == protocolFees.token1) amount1--; // ensure that the slot is not cleared, for gas savings
                    protocolFees.token1 -= amount1;
                    TransferHelper.safeTransfer(token1, recipient, amount1);
                }
                emit CollectProtocol(msg.sender, recipient, amount0, amount1);
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        import './pool/IUniswapV3PoolImmutables.sol';
        import './pool/IUniswapV3PoolState.sol';
        import './pool/IUniswapV3PoolDerivedState.sol';
        import './pool/IUniswapV3PoolActions.sol';
        import './pool/IUniswapV3PoolOwnerActions.sol';
        import './pool/IUniswapV3PoolEvents.sol';
        /// @title The interface for a Uniswap V3 Pool
        /// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform
        /// to the ERC20 specification
        /// @dev The pool interface is broken up into many smaller pieces
        interface IUniswapV3Pool is
            IUniswapV3PoolImmutables,
            IUniswapV3PoolState,
            IUniswapV3PoolDerivedState,
            IUniswapV3PoolActions,
            IUniswapV3PoolOwnerActions,
            IUniswapV3PoolEvents
        {
        }
        // SPDX-License-Identifier: BUSL-1.1
        pragma solidity =0.7.6;
        /// @title Prevents delegatecall to a contract
        /// @notice Base contract that provides a modifier for preventing delegatecall to methods in a child contract
        abstract contract NoDelegateCall {
            /// @dev The original address of this contract
            address private immutable original;
            constructor() {
                // Immutables are computed in the init code of the contract, and then inlined into the deployed bytecode.
                // In other words, this variable won't change when it's checked at runtime.
                original = address(this);
            }
            /// @dev Private method is used instead of inlining into modifier because modifiers are copied into each method,
            ///     and the use of immutable means the address bytes are copied in every place the modifier is used.
            function checkNotDelegateCall() private view {
                require(address(this) == original);
            }
            /// @notice Prevents delegatecall into the modified method
            modifier noDelegateCall() {
                checkNotDelegateCall();
                _;
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.7.0;
        /// @title Optimized overflow and underflow safe math operations
        /// @notice Contains methods for doing math operations that revert on overflow or underflow for minimal gas cost
        library LowGasSafeMath {
            /// @notice Returns x + y, reverts if sum overflows uint256
            /// @param x The augend
            /// @param y The addend
            /// @return z The sum of x and y
            function add(uint256 x, uint256 y) internal pure returns (uint256 z) {
                require((z = x + y) >= x);
            }
            /// @notice Returns x - y, reverts if underflows
            /// @param x The minuend
            /// @param y The subtrahend
            /// @return z The difference of x and y
            function sub(uint256 x, uint256 y) internal pure returns (uint256 z) {
                require((z = x - y) <= x);
            }
            /// @notice Returns x * y, reverts if overflows
            /// @param x The multiplicand
            /// @param y The multiplier
            /// @return z The product of x and y
            function mul(uint256 x, uint256 y) internal pure returns (uint256 z) {
                require(x == 0 || (z = x * y) / x == y);
            }
            /// @notice Returns x + y, reverts if overflows or underflows
            /// @param x The augend
            /// @param y The addend
            /// @return z The sum of x and y
            function add(int256 x, int256 y) internal pure returns (int256 z) {
                require((z = x + y) >= x == (y >= 0));
            }
            /// @notice Returns x - y, reverts if overflows or underflows
            /// @param x The minuend
            /// @param y The subtrahend
            /// @return z The difference of x and y
            function sub(int256 x, int256 y) internal pure returns (int256 z) {
                require((z = x - y) <= x == (y >= 0));
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Safe casting methods
        /// @notice Contains methods for safely casting between types
        library SafeCast {
            /// @notice Cast a uint256 to a uint160, revert on overflow
            /// @param y The uint256 to be downcasted
            /// @return z The downcasted integer, now type uint160
            function toUint160(uint256 y) internal pure returns (uint160 z) {
                require((z = uint160(y)) == y);
            }
            /// @notice Cast a int256 to a int128, revert on overflow or underflow
            /// @param y The int256 to be downcasted
            /// @return z The downcasted integer, now type int128
            function toInt128(int256 y) internal pure returns (int128 z) {
                require((z = int128(y)) == y);
            }
            /// @notice Cast a uint256 to a int256, revert on overflow
            /// @param y The uint256 to be casted
            /// @return z The casted integer, now type int256
            function toInt256(uint256 y) internal pure returns (int256 z) {
                require(y < 2**255);
                z = int256(y);
            }
        }
        // SPDX-License-Identifier: BUSL-1.1
        pragma solidity >=0.5.0;
        import './LowGasSafeMath.sol';
        import './SafeCast.sol';
        import './TickMath.sol';
        import './LiquidityMath.sol';
        /// @title Tick
        /// @notice Contains functions for managing tick processes and relevant calculations
        library Tick {
            using LowGasSafeMath for int256;
            using SafeCast for int256;
            // info stored for each initialized individual tick
            struct Info {
                // the total position liquidity that references this tick
                uint128 liquidityGross;
                // amount of net liquidity added (subtracted) when tick is crossed from left to right (right to left),
                int128 liquidityNet;
                // fee growth per unit of liquidity on the _other_ side of this tick (relative to the current tick)
                // only has relative meaning, not absolute — the value depends on when the tick is initialized
                uint256 feeGrowthOutside0X128;
                uint256 feeGrowthOutside1X128;
                // the cumulative tick value on the other side of the tick
                int56 tickCumulativeOutside;
                // the seconds per unit of liquidity on the _other_ side of this tick (relative to the current tick)
                // only has relative meaning, not absolute — the value depends on when the tick is initialized
                uint160 secondsPerLiquidityOutsideX128;
                // the seconds spent on the other side of the tick (relative to the current tick)
                // only has relative meaning, not absolute — the value depends on when the tick is initialized
                uint32 secondsOutside;
                // true iff the tick is initialized, i.e. the value is exactly equivalent to the expression liquidityGross != 0
                // these 8 bits are set to prevent fresh sstores when crossing newly initialized ticks
                bool initialized;
            }
            /// @notice Derives max liquidity per tick from given tick spacing
            /// @dev Executed within the pool constructor
            /// @param tickSpacing The amount of required tick separation, realized in multiples of `tickSpacing`
            ///     e.g., a tickSpacing of 3 requires ticks to be initialized every 3rd tick i.e., ..., -6, -3, 0, 3, 6, ...
            /// @return The max liquidity per tick
            function tickSpacingToMaxLiquidityPerTick(int24 tickSpacing) internal pure returns (uint128) {
                int24 minTick = (TickMath.MIN_TICK / tickSpacing) * tickSpacing;
                int24 maxTick = (TickMath.MAX_TICK / tickSpacing) * tickSpacing;
                uint24 numTicks = uint24((maxTick - minTick) / tickSpacing) + 1;
                return type(uint128).max / numTicks;
            }
            /// @notice Retrieves fee growth data
            /// @param self The mapping containing all tick information for initialized ticks
            /// @param tickLower The lower tick boundary of the position
            /// @param tickUpper The upper tick boundary of the position
            /// @param tickCurrent The current tick
            /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
            /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
            /// @return feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
            /// @return feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
            function getFeeGrowthInside(
                mapping(int24 => Tick.Info) storage self,
                int24 tickLower,
                int24 tickUpper,
                int24 tickCurrent,
                uint256 feeGrowthGlobal0X128,
                uint256 feeGrowthGlobal1X128
            ) internal view returns (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) {
                Info storage lower = self[tickLower];
                Info storage upper = self[tickUpper];
                // calculate fee growth below
                uint256 feeGrowthBelow0X128;
                uint256 feeGrowthBelow1X128;
                if (tickCurrent >= tickLower) {
                    feeGrowthBelow0X128 = lower.feeGrowthOutside0X128;
                    feeGrowthBelow1X128 = lower.feeGrowthOutside1X128;
                } else {
                    feeGrowthBelow0X128 = feeGrowthGlobal0X128 - lower.feeGrowthOutside0X128;
                    feeGrowthBelow1X128 = feeGrowthGlobal1X128 - lower.feeGrowthOutside1X128;
                }
                // calculate fee growth above
                uint256 feeGrowthAbove0X128;
                uint256 feeGrowthAbove1X128;
                if (tickCurrent < tickUpper) {
                    feeGrowthAbove0X128 = upper.feeGrowthOutside0X128;
                    feeGrowthAbove1X128 = upper.feeGrowthOutside1X128;
                } else {
                    feeGrowthAbove0X128 = feeGrowthGlobal0X128 - upper.feeGrowthOutside0X128;
                    feeGrowthAbove1X128 = feeGrowthGlobal1X128 - upper.feeGrowthOutside1X128;
                }
                feeGrowthInside0X128 = feeGrowthGlobal0X128 - feeGrowthBelow0X128 - feeGrowthAbove0X128;
                feeGrowthInside1X128 = feeGrowthGlobal1X128 - feeGrowthBelow1X128 - feeGrowthAbove1X128;
            }
            /// @notice Updates a tick and returns true if the tick was flipped from initialized to uninitialized, or vice versa
            /// @param self The mapping containing all tick information for initialized ticks
            /// @param tick The tick that will be updated
            /// @param tickCurrent The current tick
            /// @param liquidityDelta A new amount of liquidity to be added (subtracted) when tick is crossed from left to right (right to left)
            /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
            /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
            /// @param secondsPerLiquidityCumulativeX128 The all-time seconds per max(1, liquidity) of the pool
            /// @param time The current block timestamp cast to a uint32
            /// @param upper true for updating a position's upper tick, or false for updating a position's lower tick
            /// @param maxLiquidity The maximum liquidity allocation for a single tick
            /// @return flipped Whether the tick was flipped from initialized to uninitialized, or vice versa
            function update(
                mapping(int24 => Tick.Info) storage self,
                int24 tick,
                int24 tickCurrent,
                int128 liquidityDelta,
                uint256 feeGrowthGlobal0X128,
                uint256 feeGrowthGlobal1X128,
                uint160 secondsPerLiquidityCumulativeX128,
                int56 tickCumulative,
                uint32 time,
                bool upper,
                uint128 maxLiquidity
            ) internal returns (bool flipped) {
                Tick.Info storage info = self[tick];
                uint128 liquidityGrossBefore = info.liquidityGross;
                uint128 liquidityGrossAfter = LiquidityMath.addDelta(liquidityGrossBefore, liquidityDelta);
                require(liquidityGrossAfter <= maxLiquidity, 'LO');
                flipped = (liquidityGrossAfter == 0) != (liquidityGrossBefore == 0);
                if (liquidityGrossBefore == 0) {
                    // by convention, we assume that all growth before a tick was initialized happened _below_ the tick
                    if (tick <= tickCurrent) {
                        info.feeGrowthOutside0X128 = feeGrowthGlobal0X128;
                        info.feeGrowthOutside1X128 = feeGrowthGlobal1X128;
                        info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128;
                        info.tickCumulativeOutside = tickCumulative;
                        info.secondsOutside = time;
                    }
                    info.initialized = true;
                }
                info.liquidityGross = liquidityGrossAfter;
                // when the lower (upper) tick is crossed left to right (right to left), liquidity must be added (removed)
                info.liquidityNet = upper
                    ? int256(info.liquidityNet).sub(liquidityDelta).toInt128()
                    : int256(info.liquidityNet).add(liquidityDelta).toInt128();
            }
            /// @notice Clears tick data
            /// @param self The mapping containing all initialized tick information for initialized ticks
            /// @param tick The tick that will be cleared
            function clear(mapping(int24 => Tick.Info) storage self, int24 tick) internal {
                delete self[tick];
            }
            /// @notice Transitions to next tick as needed by price movement
            /// @param self The mapping containing all tick information for initialized ticks
            /// @param tick The destination tick of the transition
            /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
            /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
            /// @param secondsPerLiquidityCumulativeX128 The current seconds per liquidity
            /// @param time The current block.timestamp
            /// @return liquidityNet The amount of liquidity added (subtracted) when tick is crossed from left to right (right to left)
            function cross(
                mapping(int24 => Tick.Info) storage self,
                int24 tick,
                uint256 feeGrowthGlobal0X128,
                uint256 feeGrowthGlobal1X128,
                uint160 secondsPerLiquidityCumulativeX128,
                int56 tickCumulative,
                uint32 time
            ) internal returns (int128 liquidityNet) {
                Tick.Info storage info = self[tick];
                info.feeGrowthOutside0X128 = feeGrowthGlobal0X128 - info.feeGrowthOutside0X128;
                info.feeGrowthOutside1X128 = feeGrowthGlobal1X128 - info.feeGrowthOutside1X128;
                info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128 - info.secondsPerLiquidityOutsideX128;
                info.tickCumulativeOutside = tickCumulative - info.tickCumulativeOutside;
                info.secondsOutside = time - info.secondsOutside;
                liquidityNet = info.liquidityNet;
            }
        }
        // SPDX-License-Identifier: BUSL-1.1
        pragma solidity >=0.5.0;
        import './BitMath.sol';
        /// @title Packed tick initialized state library
        /// @notice Stores a packed mapping of tick index to its initialized state
        /// @dev The mapping uses int16 for keys since ticks are represented as int24 and there are 256 (2^8) values per word.
        library TickBitmap {
            /// @notice Computes the position in the mapping where the initialized bit for a tick lives
            /// @param tick The tick for which to compute the position
            /// @return wordPos The key in the mapping containing the word in which the bit is stored
            /// @return bitPos The bit position in the word where the flag is stored
            function position(int24 tick) private pure returns (int16 wordPos, uint8 bitPos) {
                wordPos = int16(tick >> 8);
                bitPos = uint8(tick % 256);
            }
            /// @notice Flips the initialized state for a given tick from false to true, or vice versa
            /// @param self The mapping in which to flip the tick
            /// @param tick The tick to flip
            /// @param tickSpacing The spacing between usable ticks
            function flipTick(
                mapping(int16 => uint256) storage self,
                int24 tick,
                int24 tickSpacing
            ) internal {
                require(tick % tickSpacing == 0); // ensure that the tick is spaced
                (int16 wordPos, uint8 bitPos) = position(tick / tickSpacing);
                uint256 mask = 1 << bitPos;
                self[wordPos] ^= mask;
            }
            /// @notice Returns the next initialized tick contained in the same word (or adjacent word) as the tick that is either
            /// to the left (less than or equal to) or right (greater than) of the given tick
            /// @param self The mapping in which to compute the next initialized tick
            /// @param tick The starting tick
            /// @param tickSpacing The spacing between usable ticks
            /// @param lte Whether to search for the next initialized tick to the left (less than or equal to the starting tick)
            /// @return next The next initialized or uninitialized tick up to 256 ticks away from the current tick
            /// @return initialized Whether the next tick is initialized, as the function only searches within up to 256 ticks
            function nextInitializedTickWithinOneWord(
                mapping(int16 => uint256) storage self,
                int24 tick,
                int24 tickSpacing,
                bool lte
            ) internal view returns (int24 next, bool initialized) {
                int24 compressed = tick / tickSpacing;
                if (tick < 0 && tick % tickSpacing != 0) compressed--; // round towards negative infinity
                if (lte) {
                    (int16 wordPos, uint8 bitPos) = position(compressed);
                    // all the 1s at or to the right of the current bitPos
                    uint256 mask = (1 << bitPos) - 1 + (1 << bitPos);
                    uint256 masked = self[wordPos] & mask;
                    // if there are no initialized ticks to the right of or at the current tick, return rightmost in the word
                    initialized = masked != 0;
                    // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
                    next = initialized
                        ? (compressed - int24(bitPos - BitMath.mostSignificantBit(masked))) * tickSpacing
                        : (compressed - int24(bitPos)) * tickSpacing;
                } else {
                    // start from the word of the next tick, since the current tick state doesn't matter
                    (int16 wordPos, uint8 bitPos) = position(compressed + 1);
                    // all the 1s at or to the left of the bitPos
                    uint256 mask = ~((1 << bitPos) - 1);
                    uint256 masked = self[wordPos] & mask;
                    // if there are no initialized ticks to the left of the current tick, return leftmost in the word
                    initialized = masked != 0;
                    // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
                    next = initialized
                        ? (compressed + 1 + int24(BitMath.leastSignificantBit(masked) - bitPos)) * tickSpacing
                        : (compressed + 1 + int24(type(uint8).max - bitPos)) * tickSpacing;
                }
            }
        }
        // SPDX-License-Identifier: BUSL-1.1
        pragma solidity >=0.5.0;
        import './FullMath.sol';
        import './FixedPoint128.sol';
        import './LiquidityMath.sol';
        /// @title Position
        /// @notice Positions represent an owner address' liquidity between a lower and upper tick boundary
        /// @dev Positions store additional state for tracking fees owed to the position
        library Position {
            // info stored for each user's position
            struct Info {
                // the amount of liquidity owned by this position
                uint128 liquidity;
                // fee growth per unit of liquidity as of the last update to liquidity or fees owed
                uint256 feeGrowthInside0LastX128;
                uint256 feeGrowthInside1LastX128;
                // the fees owed to the position owner in token0/token1
                uint128 tokensOwed0;
                uint128 tokensOwed1;
            }
            /// @notice Returns the Info struct of a position, given an owner and position boundaries
            /// @param self The mapping containing all user positions
            /// @param owner The address of the position owner
            /// @param tickLower The lower tick boundary of the position
            /// @param tickUpper The upper tick boundary of the position
            /// @return position The position info struct of the given owners' position
            function get(
                mapping(bytes32 => Info) storage self,
                address owner,
                int24 tickLower,
                int24 tickUpper
            ) internal view returns (Position.Info storage position) {
                position = self[keccak256(abi.encodePacked(owner, tickLower, tickUpper))];
            }
            /// @notice Credits accumulated fees to a user's position
            /// @param self The individual position to update
            /// @param liquidityDelta The change in pool liquidity as a result of the position update
            /// @param feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
            /// @param feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
            function update(
                Info storage self,
                int128 liquidityDelta,
                uint256 feeGrowthInside0X128,
                uint256 feeGrowthInside1X128
            ) internal {
                Info memory _self = self;
                uint128 liquidityNext;
                if (liquidityDelta == 0) {
                    require(_self.liquidity > 0, 'NP'); // disallow pokes for 0 liquidity positions
                    liquidityNext = _self.liquidity;
                } else {
                    liquidityNext = LiquidityMath.addDelta(_self.liquidity, liquidityDelta);
                }
                // calculate accumulated fees
                uint128 tokensOwed0 =
                    uint128(
                        FullMath.mulDiv(
                            feeGrowthInside0X128 - _self.feeGrowthInside0LastX128,
                            _self.liquidity,
                            FixedPoint128.Q128
                        )
                    );
                uint128 tokensOwed1 =
                    uint128(
                        FullMath.mulDiv(
                            feeGrowthInside1X128 - _self.feeGrowthInside1LastX128,
                            _self.liquidity,
                            FixedPoint128.Q128
                        )
                    );
                // update the position
                if (liquidityDelta != 0) self.liquidity = liquidityNext;
                self.feeGrowthInside0LastX128 = feeGrowthInside0X128;
                self.feeGrowthInside1LastX128 = feeGrowthInside1X128;
                if (tokensOwed0 > 0 || tokensOwed1 > 0) {
                    // overflow is acceptable, have to withdraw before you hit type(uint128).max fees
                    self.tokensOwed0 += tokensOwed0;
                    self.tokensOwed1 += tokensOwed1;
                }
            }
        }
        // SPDX-License-Identifier: BUSL-1.1
        pragma solidity >=0.5.0;
        /// @title Oracle
        /// @notice Provides price and liquidity data useful for a wide variety of system designs
        /// @dev Instances of stored oracle data, "observations", are collected in the oracle array
        /// Every pool is initialized with an oracle array length of 1. Anyone can pay the SSTOREs to increase the
        /// maximum length of the oracle array. New slots will be added when the array is fully populated.
        /// Observations are overwritten when the full length of the oracle array is populated.
        /// The most recent observation is available, independent of the length of the oracle array, by passing 0 to observe()
        library Oracle {
            struct Observation {
                // the block timestamp of the observation
                uint32 blockTimestamp;
                // the tick accumulator, i.e. tick * time elapsed since the pool was first initialized
                int56 tickCumulative;
                // the seconds per liquidity, i.e. seconds elapsed / max(1, liquidity) since the pool was first initialized
                uint160 secondsPerLiquidityCumulativeX128;
                // whether or not the observation is initialized
                bool initialized;
            }
            /// @notice Transforms a previous observation into a new observation, given the passage of time and the current tick and liquidity values
            /// @dev blockTimestamp _must_ be chronologically equal to or greater than last.blockTimestamp, safe for 0 or 1 overflows
            /// @param last The specified observation to be transformed
            /// @param blockTimestamp The timestamp of the new observation
            /// @param tick The active tick at the time of the new observation
            /// @param liquidity The total in-range liquidity at the time of the new observation
            /// @return Observation The newly populated observation
            function transform(
                Observation memory last,
                uint32 blockTimestamp,
                int24 tick,
                uint128 liquidity
            ) private pure returns (Observation memory) {
                uint32 delta = blockTimestamp - last.blockTimestamp;
                return
                    Observation({
                        blockTimestamp: blockTimestamp,
                        tickCumulative: last.tickCumulative + int56(tick) * delta,
                        secondsPerLiquidityCumulativeX128: last.secondsPerLiquidityCumulativeX128 +
                            ((uint160(delta) << 128) / (liquidity > 0 ? liquidity : 1)),
                        initialized: true
                    });
            }
            /// @notice Initialize the oracle array by writing the first slot. Called once for the lifecycle of the observations array
            /// @param self The stored oracle array
            /// @param time The time of the oracle initialization, via block.timestamp truncated to uint32
            /// @return cardinality The number of populated elements in the oracle array
            /// @return cardinalityNext The new length of the oracle array, independent of population
            function initialize(Observation[65535] storage self, uint32 time)
                internal
                returns (uint16 cardinality, uint16 cardinalityNext)
            {
                self[0] = Observation({
                    blockTimestamp: time,
                    tickCumulative: 0,
                    secondsPerLiquidityCumulativeX128: 0,
                    initialized: true
                });
                return (1, 1);
            }
            /// @notice Writes an oracle observation to the array
            /// @dev Writable at most once per block. Index represents the most recently written element. cardinality and index must be tracked externally.
            /// If the index is at the end of the allowable array length (according to cardinality), and the next cardinality
            /// is greater than the current one, cardinality may be increased. This restriction is created to preserve ordering.
            /// @param self The stored oracle array
            /// @param index The index of the observation that was most recently written to the observations array
            /// @param blockTimestamp The timestamp of the new observation
            /// @param tick The active tick at the time of the new observation
            /// @param liquidity The total in-range liquidity at the time of the new observation
            /// @param cardinality The number of populated elements in the oracle array
            /// @param cardinalityNext The new length of the oracle array, independent of population
            /// @return indexUpdated The new index of the most recently written element in the oracle array
            /// @return cardinalityUpdated The new cardinality of the oracle array
            function write(
                Observation[65535] storage self,
                uint16 index,
                uint32 blockTimestamp,
                int24 tick,
                uint128 liquidity,
                uint16 cardinality,
                uint16 cardinalityNext
            ) internal returns (uint16 indexUpdated, uint16 cardinalityUpdated) {
                Observation memory last = self[index];
                // early return if we've already written an observation this block
                if (last.blockTimestamp == blockTimestamp) return (index, cardinality);
                // if the conditions are right, we can bump the cardinality
                if (cardinalityNext > cardinality && index == (cardinality - 1)) {
                    cardinalityUpdated = cardinalityNext;
                } else {
                    cardinalityUpdated = cardinality;
                }
                indexUpdated = (index + 1) % cardinalityUpdated;
                self[indexUpdated] = transform(last, blockTimestamp, tick, liquidity);
            }
            /// @notice Prepares the oracle array to store up to `next` observations
            /// @param self The stored oracle array
            /// @param current The current next cardinality of the oracle array
            /// @param next The proposed next cardinality which will be populated in the oracle array
            /// @return next The next cardinality which will be populated in the oracle array
            function grow(
                Observation[65535] storage self,
                uint16 current,
                uint16 next
            ) internal returns (uint16) {
                require(current > 0, 'I');
                // no-op if the passed next value isn't greater than the current next value
                if (next <= current) return current;
                // store in each slot to prevent fresh SSTOREs in swaps
                // this data will not be used because the initialized boolean is still false
                for (uint16 i = current; i < next; i++) self[i].blockTimestamp = 1;
                return next;
            }
            /// @notice comparator for 32-bit timestamps
            /// @dev safe for 0 or 1 overflows, a and b _must_ be chronologically before or equal to time
            /// @param time A timestamp truncated to 32 bits
            /// @param a A comparison timestamp from which to determine the relative position of `time`
            /// @param b From which to determine the relative position of `time`
            /// @return bool Whether `a` is chronologically <= `b`
            function lte(
                uint32 time,
                uint32 a,
                uint32 b
            ) private pure returns (bool) {
                // if there hasn't been overflow, no need to adjust
                if (a <= time && b <= time) return a <= b;
                uint256 aAdjusted = a > time ? a : a + 2**32;
                uint256 bAdjusted = b > time ? b : b + 2**32;
                return aAdjusted <= bAdjusted;
            }
            /// @notice Fetches the observations beforeOrAt and atOrAfter a target, i.e. where [beforeOrAt, atOrAfter] is satisfied.
            /// The result may be the same observation, or adjacent observations.
            /// @dev The answer must be contained in the array, used when the target is located within the stored observation
            /// boundaries: older than the most recent observation and younger, or the same age as, the oldest observation
            /// @param self The stored oracle array
            /// @param time The current block.timestamp
            /// @param target The timestamp at which the reserved observation should be for
            /// @param index The index of the observation that was most recently written to the observations array
            /// @param cardinality The number of populated elements in the oracle array
            /// @return beforeOrAt The observation recorded before, or at, the target
            /// @return atOrAfter The observation recorded at, or after, the target
            function binarySearch(
                Observation[65535] storage self,
                uint32 time,
                uint32 target,
                uint16 index,
                uint16 cardinality
            ) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) {
                uint256 l = (index + 1) % cardinality; // oldest observation
                uint256 r = l + cardinality - 1; // newest observation
                uint256 i;
                while (true) {
                    i = (l + r) / 2;
                    beforeOrAt = self[i % cardinality];
                    // we've landed on an uninitialized tick, keep searching higher (more recently)
                    if (!beforeOrAt.initialized) {
                        l = i + 1;
                        continue;
                    }
                    atOrAfter = self[(i + 1) % cardinality];
                    bool targetAtOrAfter = lte(time, beforeOrAt.blockTimestamp, target);
                    // check if we've found the answer!
                    if (targetAtOrAfter && lte(time, target, atOrAfter.blockTimestamp)) break;
                    if (!targetAtOrAfter) r = i - 1;
                    else l = i + 1;
                }
            }
            /// @notice Fetches the observations beforeOrAt and atOrAfter a given target, i.e. where [beforeOrAt, atOrAfter] is satisfied
            /// @dev Assumes there is at least 1 initialized observation.
            /// Used by observeSingle() to compute the counterfactual accumulator values as of a given block timestamp.
            /// @param self The stored oracle array
            /// @param time The current block.timestamp
            /// @param target The timestamp at which the reserved observation should be for
            /// @param tick The active tick at the time of the returned or simulated observation
            /// @param index The index of the observation that was most recently written to the observations array
            /// @param liquidity The total pool liquidity at the time of the call
            /// @param cardinality The number of populated elements in the oracle array
            /// @return beforeOrAt The observation which occurred at, or before, the given timestamp
            /// @return atOrAfter The observation which occurred at, or after, the given timestamp
            function getSurroundingObservations(
                Observation[65535] storage self,
                uint32 time,
                uint32 target,
                int24 tick,
                uint16 index,
                uint128 liquidity,
                uint16 cardinality
            ) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) {
                // optimistically set before to the newest observation
                beforeOrAt = self[index];
                // if the target is chronologically at or after the newest observation, we can early return
                if (lte(time, beforeOrAt.blockTimestamp, target)) {
                    if (beforeOrAt.blockTimestamp == target) {
                        // if newest observation equals target, we're in the same block, so we can ignore atOrAfter
                        return (beforeOrAt, atOrAfter);
                    } else {
                        // otherwise, we need to transform
                        return (beforeOrAt, transform(beforeOrAt, target, tick, liquidity));
                    }
                }
                // now, set before to the oldest observation
                beforeOrAt = self[(index + 1) % cardinality];
                if (!beforeOrAt.initialized) beforeOrAt = self[0];
                // ensure that the target is chronologically at or after the oldest observation
                require(lte(time, beforeOrAt.blockTimestamp, target), 'OLD');
                // if we've reached this point, we have to binary search
                return binarySearch(self, time, target, index, cardinality);
            }
            /// @dev Reverts if an observation at or before the desired observation timestamp does not exist.
            /// 0 may be passed as `secondsAgo' to return the current cumulative values.
            /// If called with a timestamp falling between two observations, returns the counterfactual accumulator values
            /// at exactly the timestamp between the two observations.
            /// @param self The stored oracle array
            /// @param time The current block timestamp
            /// @param secondsAgo The amount of time to look back, in seconds, at which point to return an observation
            /// @param tick The current tick
            /// @param index The index of the observation that was most recently written to the observations array
            /// @param liquidity The current in-range pool liquidity
            /// @param cardinality The number of populated elements in the oracle array
            /// @return tickCumulative The tick * time elapsed since the pool was first initialized, as of `secondsAgo`
            /// @return secondsPerLiquidityCumulativeX128 The time elapsed / max(1, liquidity) since the pool was first initialized, as of `secondsAgo`
            function observeSingle(
                Observation[65535] storage self,
                uint32 time,
                uint32 secondsAgo,
                int24 tick,
                uint16 index,
                uint128 liquidity,
                uint16 cardinality
            ) internal view returns (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) {
                if (secondsAgo == 0) {
                    Observation memory last = self[index];
                    if (last.blockTimestamp != time) last = transform(last, time, tick, liquidity);
                    return (last.tickCumulative, last.secondsPerLiquidityCumulativeX128);
                }
                uint32 target = time - secondsAgo;
                (Observation memory beforeOrAt, Observation memory atOrAfter) =
                    getSurroundingObservations(self, time, target, tick, index, liquidity, cardinality);
                if (target == beforeOrAt.blockTimestamp) {
                    // we're at the left boundary
                    return (beforeOrAt.tickCumulative, beforeOrAt.secondsPerLiquidityCumulativeX128);
                } else if (target == atOrAfter.blockTimestamp) {
                    // we're at the right boundary
                    return (atOrAfter.tickCumulative, atOrAfter.secondsPerLiquidityCumulativeX128);
                } else {
                    // we're in the middle
                    uint32 observationTimeDelta = atOrAfter.blockTimestamp - beforeOrAt.blockTimestamp;
                    uint32 targetDelta = target - beforeOrAt.blockTimestamp;
                    return (
                        beforeOrAt.tickCumulative +
                            ((atOrAfter.tickCumulative - beforeOrAt.tickCumulative) / observationTimeDelta) *
                            targetDelta,
                        beforeOrAt.secondsPerLiquidityCumulativeX128 +
                            uint160(
                                (uint256(
                                    atOrAfter.secondsPerLiquidityCumulativeX128 - beforeOrAt.secondsPerLiquidityCumulativeX128
                                ) * targetDelta) / observationTimeDelta
                            )
                    );
                }
            }
            /// @notice Returns the accumulator values as of each time seconds ago from the given time in the array of `secondsAgos`
            /// @dev Reverts if `secondsAgos` > oldest observation
            /// @param self The stored oracle array
            /// @param time The current block.timestamp
            /// @param secondsAgos Each amount of time to look back, in seconds, at which point to return an observation
            /// @param tick The current tick
            /// @param index The index of the observation that was most recently written to the observations array
            /// @param liquidity The current in-range pool liquidity
            /// @param cardinality The number of populated elements in the oracle array
            /// @return tickCumulatives The tick * time elapsed since the pool was first initialized, as of each `secondsAgo`
            /// @return secondsPerLiquidityCumulativeX128s The cumulative seconds / max(1, liquidity) since the pool was first initialized, as of each `secondsAgo`
            function observe(
                Observation[65535] storage self,
                uint32 time,
                uint32[] memory secondsAgos,
                int24 tick,
                uint16 index,
                uint128 liquidity,
                uint16 cardinality
            ) internal view returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) {
                require(cardinality > 0, 'I');
                tickCumulatives = new int56[](secondsAgos.length);
                secondsPerLiquidityCumulativeX128s = new uint160[](secondsAgos.length);
                for (uint256 i = 0; i < secondsAgos.length; i++) {
                    (tickCumulatives[i], secondsPerLiquidityCumulativeX128s[i]) = observeSingle(
                        self,
                        time,
                        secondsAgos[i],
                        tick,
                        index,
                        liquidity,
                        cardinality
                    );
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.4.0;
        /// @title Contains 512-bit math functions
        /// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
        /// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
        library FullMath {
            /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
            /// @param a The multiplicand
            /// @param b The multiplier
            /// @param denominator The divisor
            /// @return result The 256-bit result
            /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
            function mulDiv(
                uint256 a,
                uint256 b,
                uint256 denominator
            ) internal pure returns (uint256 result) {
                // 512-bit multiply [prod1 prod0] = a * b
                // Compute the product mod 2**256 and mod 2**256 - 1
                // then use the Chinese Remainder Theorem to reconstruct
                // the 512 bit result. The result is stored in two 256
                // variables such that product = prod1 * 2**256 + prod0
                uint256 prod0; // Least significant 256 bits of the product
                uint256 prod1; // Most significant 256 bits of the product
                assembly {
                    let mm := mulmod(a, b, not(0))
                    prod0 := mul(a, b)
                    prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                }
                // Handle non-overflow cases, 256 by 256 division
                if (prod1 == 0) {
                    require(denominator > 0);
                    assembly {
                        result := div(prod0, denominator)
                    }
                    return result;
                }
                // Make sure the result is less than 2**256.
                // Also prevents denominator == 0
                require(denominator > prod1);
                ///////////////////////////////////////////////
                // 512 by 256 division.
                ///////////////////////////////////////////////
                // Make division exact by subtracting the remainder from [prod1 prod0]
                // Compute remainder using mulmod
                uint256 remainder;
                assembly {
                    remainder := mulmod(a, b, denominator)
                }
                // Subtract 256 bit number from 512 bit number
                assembly {
                    prod1 := sub(prod1, gt(remainder, prod0))
                    prod0 := sub(prod0, remainder)
                }
                // Factor powers of two out of denominator
                // Compute largest power of two divisor of denominator.
                // Always >= 1.
                uint256 twos = -denominator & denominator;
                // Divide denominator by power of two
                assembly {
                    denominator := div(denominator, twos)
                }
                // Divide [prod1 prod0] by the factors of two
                assembly {
                    prod0 := div(prod0, twos)
                }
                // Shift in bits from prod1 into prod0. For this we need
                // to flip `twos` such that it is 2**256 / twos.
                // If twos is zero, then it becomes one
                assembly {
                    twos := add(div(sub(0, twos), twos), 1)
                }
                prod0 |= prod1 * twos;
                // Invert denominator mod 2**256
                // Now that denominator is an odd number, it has an inverse
                // modulo 2**256 such that denominator * inv = 1 mod 2**256.
                // Compute the inverse by starting with a seed that is correct
                // correct for four bits. That is, denominator * inv = 1 mod 2**4
                uint256 inv = (3 * denominator) ^ 2;
                // Now use Newton-Raphson iteration to improve the precision.
                // Thanks to Hensel's lifting lemma, this also works in modular
                // arithmetic, doubling the correct bits in each step.
                inv *= 2 - denominator * inv; // inverse mod 2**8
                inv *= 2 - denominator * inv; // inverse mod 2**16
                inv *= 2 - denominator * inv; // inverse mod 2**32
                inv *= 2 - denominator * inv; // inverse mod 2**64
                inv *= 2 - denominator * inv; // inverse mod 2**128
                inv *= 2 - denominator * inv; // inverse mod 2**256
                // Because the division is now exact we can divide by multiplying
                // with the modular inverse of denominator. This will give us the
                // correct result modulo 2**256. Since the precoditions guarantee
                // that the outcome is less than 2**256, this is the final result.
                // We don't need to compute the high bits of the result and prod1
                // is no longer required.
                result = prod0 * inv;
                return result;
            }
            /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
            /// @param a The multiplicand
            /// @param b The multiplier
            /// @param denominator The divisor
            /// @return result The 256-bit result
            function mulDivRoundingUp(
                uint256 a,
                uint256 b,
                uint256 denominator
            ) internal pure returns (uint256 result) {
                result = mulDiv(a, b, denominator);
                if (mulmod(a, b, denominator) > 0) {
                    require(result < type(uint256).max);
                    result++;
                }
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.4.0;
        /// @title FixedPoint128
        /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
        library FixedPoint128 {
            uint256 internal constant Q128 = 0x100000000000000000000000000000000;
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.6.0;
        import '../interfaces/IERC20Minimal.sol';
        /// @title TransferHelper
        /// @notice Contains helper methods for interacting with ERC20 tokens that do not consistently return true/false
        library TransferHelper {
            /// @notice Transfers tokens from msg.sender to a recipient
            /// @dev Calls transfer on token contract, errors with TF if transfer fails
            /// @param token The contract address of the token which will be transferred
            /// @param to The recipient of the transfer
            /// @param value The value of the transfer
            function safeTransfer(
                address token,
                address to,
                uint256 value
            ) internal {
                (bool success, bytes memory data) =
                    token.call(abi.encodeWithSelector(IERC20Minimal.transfer.selector, to, value));
                require(success && (data.length == 0 || abi.decode(data, (bool))), 'TF');
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Math library for computing sqrt prices from ticks and vice versa
        /// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
        /// prices between 2**-128 and 2**128
        library TickMath {
            /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
            int24 internal constant MIN_TICK = -887272;
            /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
            int24 internal constant MAX_TICK = -MIN_TICK;
            /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
            uint160 internal constant MIN_SQRT_RATIO = 4295128739;
            /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
            uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;
            /// @notice Calculates sqrt(1.0001^tick) * 2^96
            /// @dev Throws if |tick| > max tick
            /// @param tick The input tick for the above formula
            /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
            /// at the given tick
            function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
                uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));
                require(absTick <= uint256(MAX_TICK), 'T');
                uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000;
                if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
                if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
                if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
                if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
                if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
                if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
                if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
                if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
                if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
                if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
                if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
                if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
                if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
                if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
                if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
                if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
                if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
                if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
                if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;
                if (tick > 0) ratio = type(uint256).max / ratio;
                // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
                // we then downcast because we know the result always fits within 160 bits due to our tick input constraint
                // we round up in the division so getTickAtSqrtRatio of the output price is always consistent
                sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
            }
            /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
            /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
            /// ever return.
            /// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
            /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
            function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
                // second inequality must be < because the price can never reach the price at the max tick
                require(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO, 'R');
                uint256 ratio = uint256(sqrtPriceX96) << 32;
                uint256 r = ratio;
                uint256 msb = 0;
                assembly {
                    let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
                    msb := or(msb, f)
                    r := shr(f, r)
                }
                assembly {
                    let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
                    msb := or(msb, f)
                    r := shr(f, r)
                }
                assembly {
                    let f := shl(5, gt(r, 0xFFFFFFFF))
                    msb := or(msb, f)
                    r := shr(f, r)
                }
                assembly {
                    let f := shl(4, gt(r, 0xFFFF))
                    msb := or(msb, f)
                    r := shr(f, r)
                }
                assembly {
                    let f := shl(3, gt(r, 0xFF))
                    msb := or(msb, f)
                    r := shr(f, r)
                }
                assembly {
                    let f := shl(2, gt(r, 0xF))
                    msb := or(msb, f)
                    r := shr(f, r)
                }
                assembly {
                    let f := shl(1, gt(r, 0x3))
                    msb := or(msb, f)
                    r := shr(f, r)
                }
                assembly {
                    let f := gt(r, 0x1)
                    msb := or(msb, f)
                }
                if (msb >= 128) r = ratio >> (msb - 127);
                else r = ratio << (127 - msb);
                int256 log_2 = (int256(msb) - 128) << 64;
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(63, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(62, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(61, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(60, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(59, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(58, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(57, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(56, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(55, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(54, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(53, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(52, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(51, f))
                    r := shr(f, r)
                }
                assembly {
                    r := shr(127, mul(r, r))
                    let f := shr(128, r)
                    log_2 := or(log_2, shl(50, f))
                }
                int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number
                int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
                int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);
                tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Math library for liquidity
        library LiquidityMath {
            /// @notice Add a signed liquidity delta to liquidity and revert if it overflows or underflows
            /// @param x The liquidity before change
            /// @param y The delta by which liquidity should be changed
            /// @return z The liquidity delta
            function addDelta(uint128 x, int128 y) internal pure returns (uint128 z) {
                if (y < 0) {
                    require((z = x - uint128(-y)) < x, 'LS');
                } else {
                    require((z = x + uint128(y)) >= x, 'LA');
                }
            }
        }
        // SPDX-License-Identifier: BUSL-1.1
        pragma solidity >=0.5.0;
        import './LowGasSafeMath.sol';
        import './SafeCast.sol';
        import './FullMath.sol';
        import './UnsafeMath.sol';
        import './FixedPoint96.sol';
        /// @title Functions based on Q64.96 sqrt price and liquidity
        /// @notice Contains the math that uses square root of price as a Q64.96 and liquidity to compute deltas
        library SqrtPriceMath {
            using LowGasSafeMath for uint256;
            using SafeCast for uint256;
            /// @notice Gets the next sqrt price given a delta of token0
            /// @dev Always rounds up, because in the exact output case (increasing price) we need to move the price at least
            /// far enough to get the desired output amount, and in the exact input case (decreasing price) we need to move the
            /// price less in order to not send too much output.
            /// The most precise formula for this is liquidity * sqrtPX96 / (liquidity +- amount * sqrtPX96),
            /// if this is impossible because of overflow, we calculate liquidity / (liquidity / sqrtPX96 +- amount).
            /// @param sqrtPX96 The starting price, i.e. before accounting for the token0 delta
            /// @param liquidity The amount of usable liquidity
            /// @param amount How much of token0 to add or remove from virtual reserves
            /// @param add Whether to add or remove the amount of token0
            /// @return The price after adding or removing amount, depending on add
            function getNextSqrtPriceFromAmount0RoundingUp(
                uint160 sqrtPX96,
                uint128 liquidity,
                uint256 amount,
                bool add
            ) internal pure returns (uint160) {
                // we short circuit amount == 0 because the result is otherwise not guaranteed to equal the input price
                if (amount == 0) return sqrtPX96;
                uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;
                if (add) {
                    uint256 product;
                    if ((product = amount * sqrtPX96) / amount == sqrtPX96) {
                        uint256 denominator = numerator1 + product;
                        if (denominator >= numerator1)
                            // always fits in 160 bits
                            return uint160(FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator));
                    }
                    return uint160(UnsafeMath.divRoundingUp(numerator1, (numerator1 / sqrtPX96).add(amount)));
                } else {
                    uint256 product;
                    // if the product overflows, we know the denominator underflows
                    // in addition, we must check that the denominator does not underflow
                    require((product = amount * sqrtPX96) / amount == sqrtPX96 && numerator1 > product);
                    uint256 denominator = numerator1 - product;
                    return FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator).toUint160();
                }
            }
            /// @notice Gets the next sqrt price given a delta of token1
            /// @dev Always rounds down, because in the exact output case (decreasing price) we need to move the price at least
            /// far enough to get the desired output amount, and in the exact input case (increasing price) we need to move the
            /// price less in order to not send too much output.
            /// The formula we compute is within <1 wei of the lossless version: sqrtPX96 +- amount / liquidity
            /// @param sqrtPX96 The starting price, i.e., before accounting for the token1 delta
            /// @param liquidity The amount of usable liquidity
            /// @param amount How much of token1 to add, or remove, from virtual reserves
            /// @param add Whether to add, or remove, the amount of token1
            /// @return The price after adding or removing `amount`
            function getNextSqrtPriceFromAmount1RoundingDown(
                uint160 sqrtPX96,
                uint128 liquidity,
                uint256 amount,
                bool add
            ) internal pure returns (uint160) {
                // if we're adding (subtracting), rounding down requires rounding the quotient down (up)
                // in both cases, avoid a mulDiv for most inputs
                if (add) {
                    uint256 quotient =
                        (
                            amount <= type(uint160).max
                                ? (amount << FixedPoint96.RESOLUTION) / liquidity
                                : FullMath.mulDiv(amount, FixedPoint96.Q96, liquidity)
                        );
                    return uint256(sqrtPX96).add(quotient).toUint160();
                } else {
                    uint256 quotient =
                        (
                            amount <= type(uint160).max
                                ? UnsafeMath.divRoundingUp(amount << FixedPoint96.RESOLUTION, liquidity)
                                : FullMath.mulDivRoundingUp(amount, FixedPoint96.Q96, liquidity)
                        );
                    require(sqrtPX96 > quotient);
                    // always fits 160 bits
                    return uint160(sqrtPX96 - quotient);
                }
            }
            /// @notice Gets the next sqrt price given an input amount of token0 or token1
            /// @dev Throws if price or liquidity are 0, or if the next price is out of bounds
            /// @param sqrtPX96 The starting price, i.e., before accounting for the input amount
            /// @param liquidity The amount of usable liquidity
            /// @param amountIn How much of token0, or token1, is being swapped in
            /// @param zeroForOne Whether the amount in is token0 or token1
            /// @return sqrtQX96 The price after adding the input amount to token0 or token1
            function getNextSqrtPriceFromInput(
                uint160 sqrtPX96,
                uint128 liquidity,
                uint256 amountIn,
                bool zeroForOne
            ) internal pure returns (uint160 sqrtQX96) {
                require(sqrtPX96 > 0);
                require(liquidity > 0);
                // round to make sure that we don't pass the target price
                return
                    zeroForOne
                        ? getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountIn, true)
                        : getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountIn, true);
            }
            /// @notice Gets the next sqrt price given an output amount of token0 or token1
            /// @dev Throws if price or liquidity are 0 or the next price is out of bounds
            /// @param sqrtPX96 The starting price before accounting for the output amount
            /// @param liquidity The amount of usable liquidity
            /// @param amountOut How much of token0, or token1, is being swapped out
            /// @param zeroForOne Whether the amount out is token0 or token1
            /// @return sqrtQX96 The price after removing the output amount of token0 or token1
            function getNextSqrtPriceFromOutput(
                uint160 sqrtPX96,
                uint128 liquidity,
                uint256 amountOut,
                bool zeroForOne
            ) internal pure returns (uint160 sqrtQX96) {
                require(sqrtPX96 > 0);
                require(liquidity > 0);
                // round to make sure that we pass the target price
                return
                    zeroForOne
                        ? getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountOut, false)
                        : getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountOut, false);
            }
            /// @notice Gets the amount0 delta between two prices
            /// @dev Calculates liquidity / sqrt(lower) - liquidity / sqrt(upper),
            /// i.e. liquidity * (sqrt(upper) - sqrt(lower)) / (sqrt(upper) * sqrt(lower))
            /// @param sqrtRatioAX96 A sqrt price
            /// @param sqrtRatioBX96 Another sqrt price
            /// @param liquidity The amount of usable liquidity
            /// @param roundUp Whether to round the amount up or down
            /// @return amount0 Amount of token0 required to cover a position of size liquidity between the two passed prices
            function getAmount0Delta(
                uint160 sqrtRatioAX96,
                uint160 sqrtRatioBX96,
                uint128 liquidity,
                bool roundUp
            ) internal pure returns (uint256 amount0) {
                if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
                uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;
                uint256 numerator2 = sqrtRatioBX96 - sqrtRatioAX96;
                require(sqrtRatioAX96 > 0);
                return
                    roundUp
                        ? UnsafeMath.divRoundingUp(
                            FullMath.mulDivRoundingUp(numerator1, numerator2, sqrtRatioBX96),
                            sqrtRatioAX96
                        )
                        : FullMath.mulDiv(numerator1, numerator2, sqrtRatioBX96) / sqrtRatioAX96;
            }
            /// @notice Gets the amount1 delta between two prices
            /// @dev Calculates liquidity * (sqrt(upper) - sqrt(lower))
            /// @param sqrtRatioAX96 A sqrt price
            /// @param sqrtRatioBX96 Another sqrt price
            /// @param liquidity The amount of usable liquidity
            /// @param roundUp Whether to round the amount up, or down
            /// @return amount1 Amount of token1 required to cover a position of size liquidity between the two passed prices
            function getAmount1Delta(
                uint160 sqrtRatioAX96,
                uint160 sqrtRatioBX96,
                uint128 liquidity,
                bool roundUp
            ) internal pure returns (uint256 amount1) {
                if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
                return
                    roundUp
                        ? FullMath.mulDivRoundingUp(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96)
                        : FullMath.mulDiv(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96);
            }
            /// @notice Helper that gets signed token0 delta
            /// @param sqrtRatioAX96 A sqrt price
            /// @param sqrtRatioBX96 Another sqrt price
            /// @param liquidity The change in liquidity for which to compute the amount0 delta
            /// @return amount0 Amount of token0 corresponding to the passed liquidityDelta between the two prices
            function getAmount0Delta(
                uint160 sqrtRatioAX96,
                uint160 sqrtRatioBX96,
                int128 liquidity
            ) internal pure returns (int256 amount0) {
                return
                    liquidity < 0
                        ? -getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256()
                        : getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256();
            }
            /// @notice Helper that gets signed token1 delta
            /// @param sqrtRatioAX96 A sqrt price
            /// @param sqrtRatioBX96 Another sqrt price
            /// @param liquidity The change in liquidity for which to compute the amount1 delta
            /// @return amount1 Amount of token1 corresponding to the passed liquidityDelta between the two prices
            function getAmount1Delta(
                uint160 sqrtRatioAX96,
                uint160 sqrtRatioBX96,
                int128 liquidity
            ) internal pure returns (int256 amount1) {
                return
                    liquidity < 0
                        ? -getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256()
                        : getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256();
            }
        }
        // SPDX-License-Identifier: BUSL-1.1
        pragma solidity >=0.5.0;
        import './FullMath.sol';
        import './SqrtPriceMath.sol';
        /// @title Computes the result of a swap within ticks
        /// @notice Contains methods for computing the result of a swap within a single tick price range, i.e., a single tick.
        library SwapMath {
            /// @notice Computes the result of swapping some amount in, or amount out, given the parameters of the swap
            /// @dev The fee, plus the amount in, will never exceed the amount remaining if the swap's `amountSpecified` is positive
            /// @param sqrtRatioCurrentX96 The current sqrt price of the pool
            /// @param sqrtRatioTargetX96 The price that cannot be exceeded, from which the direction of the swap is inferred
            /// @param liquidity The usable liquidity
            /// @param amountRemaining How much input or output amount is remaining to be swapped in/out
            /// @param feePips The fee taken from the input amount, expressed in hundredths of a bip
            /// @return sqrtRatioNextX96 The price after swapping the amount in/out, not to exceed the price target
            /// @return amountIn The amount to be swapped in, of either token0 or token1, based on the direction of the swap
            /// @return amountOut The amount to be received, of either token0 or token1, based on the direction of the swap
            /// @return feeAmount The amount of input that will be taken as a fee
            function computeSwapStep(
                uint160 sqrtRatioCurrentX96,
                uint160 sqrtRatioTargetX96,
                uint128 liquidity,
                int256 amountRemaining,
                uint24 feePips
            )
                internal
                pure
                returns (
                    uint160 sqrtRatioNextX96,
                    uint256 amountIn,
                    uint256 amountOut,
                    uint256 feeAmount
                )
            {
                bool zeroForOne = sqrtRatioCurrentX96 >= sqrtRatioTargetX96;
                bool exactIn = amountRemaining >= 0;
                if (exactIn) {
                    uint256 amountRemainingLessFee = FullMath.mulDiv(uint256(amountRemaining), 1e6 - feePips, 1e6);
                    amountIn = zeroForOne
                        ? SqrtPriceMath.getAmount0Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, true)
                        : SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, true);
                    if (amountRemainingLessFee >= amountIn) sqrtRatioNextX96 = sqrtRatioTargetX96;
                    else
                        sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromInput(
                            sqrtRatioCurrentX96,
                            liquidity,
                            amountRemainingLessFee,
                            zeroForOne
                        );
                } else {
                    amountOut = zeroForOne
                        ? SqrtPriceMath.getAmount1Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, false)
                        : SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, false);
                    if (uint256(-amountRemaining) >= amountOut) sqrtRatioNextX96 = sqrtRatioTargetX96;
                    else
                        sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromOutput(
                            sqrtRatioCurrentX96,
                            liquidity,
                            uint256(-amountRemaining),
                            zeroForOne
                        );
                }
                bool max = sqrtRatioTargetX96 == sqrtRatioNextX96;
                // get the input/output amounts
                if (zeroForOne) {
                    amountIn = max && exactIn
                        ? amountIn
                        : SqrtPriceMath.getAmount0Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, true);
                    amountOut = max && !exactIn
                        ? amountOut
                        : SqrtPriceMath.getAmount1Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, false);
                } else {
                    amountIn = max && exactIn
                        ? amountIn
                        : SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, true);
                    amountOut = max && !exactIn
                        ? amountOut
                        : SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, false);
                }
                // cap the output amount to not exceed the remaining output amount
                if (!exactIn && amountOut > uint256(-amountRemaining)) {
                    amountOut = uint256(-amountRemaining);
                }
                if (exactIn && sqrtRatioNextX96 != sqrtRatioTargetX96) {
                    // we didn't reach the target, so take the remainder of the maximum input as fee
                    feeAmount = uint256(amountRemaining) - amountIn;
                } else {
                    feeAmount = FullMath.mulDivRoundingUp(amountIn, feePips, 1e6 - feePips);
                }
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title An interface for a contract that is capable of deploying Uniswap V3 Pools
        /// @notice A contract that constructs a pool must implement this to pass arguments to the pool
        /// @dev This is used to avoid having constructor arguments in the pool contract, which results in the init code hash
        /// of the pool being constant allowing the CREATE2 address of the pool to be cheaply computed on-chain
        interface IUniswapV3PoolDeployer {
            /// @notice Get the parameters to be used in constructing the pool, set transiently during pool creation.
            /// @dev Called by the pool constructor to fetch the parameters of the pool
            /// Returns factory The factory address
            /// Returns token0 The first token of the pool by address sort order
            /// Returns token1 The second token of the pool by address sort order
            /// Returns fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
            /// Returns tickSpacing The minimum number of ticks between initialized ticks
            function parameters()
                external
                view
                returns (
                    address factory,
                    address token0,
                    address token1,
                    uint24 fee,
                    int24 tickSpacing
                );
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title The interface for the Uniswap V3 Factory
        /// @notice The Uniswap V3 Factory facilitates creation of Uniswap V3 pools and control over the protocol fees
        interface IUniswapV3Factory {
            /// @notice Emitted when the owner of the factory is changed
            /// @param oldOwner The owner before the owner was changed
            /// @param newOwner The owner after the owner was changed
            event OwnerChanged(address indexed oldOwner, address indexed newOwner);
            /// @notice Emitted when a pool is created
            /// @param token0 The first token of the pool by address sort order
            /// @param token1 The second token of the pool by address sort order
            /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
            /// @param tickSpacing The minimum number of ticks between initialized ticks
            /// @param pool The address of the created pool
            event PoolCreated(
                address indexed token0,
                address indexed token1,
                uint24 indexed fee,
                int24 tickSpacing,
                address pool
            );
            /// @notice Emitted when a new fee amount is enabled for pool creation via the factory
            /// @param fee The enabled fee, denominated in hundredths of a bip
            /// @param tickSpacing The minimum number of ticks between initialized ticks for pools created with the given fee
            event FeeAmountEnabled(uint24 indexed fee, int24 indexed tickSpacing);
            /// @notice Returns the current owner of the factory
            /// @dev Can be changed by the current owner via setOwner
            /// @return The address of the factory owner
            function owner() external view returns (address);
            /// @notice Returns the tick spacing for a given fee amount, if enabled, or 0 if not enabled
            /// @dev A fee amount can never be removed, so this value should be hard coded or cached in the calling context
            /// @param fee The enabled fee, denominated in hundredths of a bip. Returns 0 in case of unenabled fee
            /// @return The tick spacing
            function feeAmountTickSpacing(uint24 fee) external view returns (int24);
            /// @notice Returns the pool address for a given pair of tokens and a fee, or address 0 if it does not exist
            /// @dev tokenA and tokenB may be passed in either token0/token1 or token1/token0 order
            /// @param tokenA The contract address of either token0 or token1
            /// @param tokenB The contract address of the other token
            /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
            /// @return pool The pool address
            function getPool(
                address tokenA,
                address tokenB,
                uint24 fee
            ) external view returns (address pool);
            /// @notice Creates a pool for the given two tokens and fee
            /// @param tokenA One of the two tokens in the desired pool
            /// @param tokenB The other of the two tokens in the desired pool
            /// @param fee The desired fee for the pool
            /// @dev tokenA and tokenB may be passed in either order: token0/token1 or token1/token0. tickSpacing is retrieved
            /// from the fee. The call will revert if the pool already exists, the fee is invalid, or the token arguments
            /// are invalid.
            /// @return pool The address of the newly created pool
            function createPool(
                address tokenA,
                address tokenB,
                uint24 fee
            ) external returns (address pool);
            /// @notice Updates the owner of the factory
            /// @dev Must be called by the current owner
            /// @param _owner The new owner of the factory
            function setOwner(address _owner) external;
            /// @notice Enables a fee amount with the given tickSpacing
            /// @dev Fee amounts may never be removed once enabled
            /// @param fee The fee amount to enable, denominated in hundredths of a bip (i.e. 1e-6)
            /// @param tickSpacing The spacing between ticks to be enforced for all pools created with the given fee amount
            function enableFeeAmount(uint24 fee, int24 tickSpacing) external;
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Minimal ERC20 interface for Uniswap
        /// @notice Contains a subset of the full ERC20 interface that is used in Uniswap V3
        interface IERC20Minimal {
            /// @notice Returns the balance of a token
            /// @param account The account for which to look up the number of tokens it has, i.e. its balance
            /// @return The number of tokens held by the account
            function balanceOf(address account) external view returns (uint256);
            /// @notice Transfers the amount of token from the `msg.sender` to the recipient
            /// @param recipient The account that will receive the amount transferred
            /// @param amount The number of tokens to send from the sender to the recipient
            /// @return Returns true for a successful transfer, false for an unsuccessful transfer
            function transfer(address recipient, uint256 amount) external returns (bool);
            /// @notice Returns the current allowance given to a spender by an owner
            /// @param owner The account of the token owner
            /// @param spender The account of the token spender
            /// @return The current allowance granted by `owner` to `spender`
            function allowance(address owner, address spender) external view returns (uint256);
            /// @notice Sets the allowance of a spender from the `msg.sender` to the value `amount`
            /// @param spender The account which will be allowed to spend a given amount of the owners tokens
            /// @param amount The amount of tokens allowed to be used by `spender`
            /// @return Returns true for a successful approval, false for unsuccessful
            function approve(address spender, uint256 amount) external returns (bool);
            /// @notice Transfers `amount` tokens from `sender` to `recipient` up to the allowance given to the `msg.sender`
            /// @param sender The account from which the transfer will be initiated
            /// @param recipient The recipient of the transfer
            /// @param amount The amount of the transfer
            /// @return Returns true for a successful transfer, false for unsuccessful
            function transferFrom(
                address sender,
                address recipient,
                uint256 amount
            ) external returns (bool);
            /// @notice Event emitted when tokens are transferred from one address to another, either via `#transfer` or `#transferFrom`.
            /// @param from The account from which the tokens were sent, i.e. the balance decreased
            /// @param to The account to which the tokens were sent, i.e. the balance increased
            /// @param value The amount of tokens that were transferred
            event Transfer(address indexed from, address indexed to, uint256 value);
            /// @notice Event emitted when the approval amount for the spender of a given owner's tokens changes.
            /// @param owner The account that approved spending of its tokens
            /// @param spender The account for which the spending allowance was modified
            /// @param value The new allowance from the owner to the spender
            event Approval(address indexed owner, address indexed spender, uint256 value);
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Callback for IUniswapV3PoolActions#mint
        /// @notice Any contract that calls IUniswapV3PoolActions#mint must implement this interface
        interface IUniswapV3MintCallback {
            /// @notice Called to `msg.sender` after minting liquidity to a position from IUniswapV3Pool#mint.
            /// @dev In the implementation you must pay the pool tokens owed for the minted liquidity.
            /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
            /// @param amount0Owed The amount of token0 due to the pool for the minted liquidity
            /// @param amount1Owed The amount of token1 due to the pool for the minted liquidity
            /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#mint call
            function uniswapV3MintCallback(
                uint256 amount0Owed,
                uint256 amount1Owed,
                bytes calldata data
            ) external;
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Callback for IUniswapV3PoolActions#swap
        /// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface
        interface IUniswapV3SwapCallback {
            /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap.
            /// @dev In the implementation you must pay the pool tokens owed for the swap.
            /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
            /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
            /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
            /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
            /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
            /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
            /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call
            function uniswapV3SwapCallback(
                int256 amount0Delta,
                int256 amount1Delta,
                bytes calldata data
            ) external;
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Callback for IUniswapV3PoolActions#flash
        /// @notice Any contract that calls IUniswapV3PoolActions#flash must implement this interface
        interface IUniswapV3FlashCallback {
            /// @notice Called to `msg.sender` after transferring to the recipient from IUniswapV3Pool#flash.
            /// @dev In the implementation you must repay the pool the tokens sent by flash plus the computed fee amounts.
            /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
            /// @param fee0 The fee amount in token0 due to the pool by the end of the flash
            /// @param fee1 The fee amount in token1 due to the pool by the end of the flash
            /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#flash call
            function uniswapV3FlashCallback(
                uint256 fee0,
                uint256 fee1,
                bytes calldata data
            ) external;
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Pool state that never changes
        /// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values
        interface IUniswapV3PoolImmutables {
            /// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface
            /// @return The contract address
            function factory() external view returns (address);
            /// @notice The first of the two tokens of the pool, sorted by address
            /// @return The token contract address
            function token0() external view returns (address);
            /// @notice The second of the two tokens of the pool, sorted by address
            /// @return The token contract address
            function token1() external view returns (address);
            /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
            /// @return The fee
            function fee() external view returns (uint24);
            /// @notice The pool tick spacing
            /// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive
            /// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ...
            /// This value is an int24 to avoid casting even though it is always positive.
            /// @return The tick spacing
            function tickSpacing() external view returns (int24);
            /// @notice The maximum amount of position liquidity that can use any tick in the range
            /// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and
            /// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool
            /// @return The max amount of liquidity per tick
            function maxLiquidityPerTick() external view returns (uint128);
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Pool state that can change
        /// @notice These methods compose the pool's state, and can change with any frequency including multiple times
        /// per transaction
        interface IUniswapV3PoolState {
            /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas
            /// when accessed externally.
            /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value
            /// tick The current tick of the pool, i.e. according to the last tick transition that was run.
            /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick
            /// boundary.
            /// observationIndex The index of the last oracle observation that was written,
            /// observationCardinality The current maximum number of observations stored in the pool,
            /// observationCardinalityNext The next maximum number of observations, to be updated when the observation.
            /// feeProtocol The protocol fee for both tokens of the pool.
            /// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0
            /// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee.
            /// unlocked Whether the pool is currently locked to reentrancy
            function slot0()
                external
                view
                returns (
                    uint160 sqrtPriceX96,
                    int24 tick,
                    uint16 observationIndex,
                    uint16 observationCardinality,
                    uint16 observationCardinalityNext,
                    uint8 feeProtocol,
                    bool unlocked
                );
            /// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool
            /// @dev This value can overflow the uint256
            function feeGrowthGlobal0X128() external view returns (uint256);
            /// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool
            /// @dev This value can overflow the uint256
            function feeGrowthGlobal1X128() external view returns (uint256);
            /// @notice The amounts of token0 and token1 that are owed to the protocol
            /// @dev Protocol fees will never exceed uint128 max in either token
            function protocolFees() external view returns (uint128 token0, uint128 token1);
            /// @notice The currently in range liquidity available to the pool
            /// @dev This value has no relationship to the total liquidity across all ticks
            function liquidity() external view returns (uint128);
            /// @notice Look up information about a specific tick in the pool
            /// @param tick The tick to look up
            /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or
            /// tick upper,
            /// liquidityNet how much liquidity changes when the pool price crosses the tick,
            /// feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0,
            /// feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1,
            /// tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick
            /// secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick,
            /// secondsOutside the seconds spent on the other side of the tick from the current tick,
            /// initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false.
            /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0.
            /// In addition, these values are only relative and must be used only in comparison to previous snapshots for
            /// a specific position.
            function ticks(int24 tick)
                external
                view
                returns (
                    uint128 liquidityGross,
                    int128 liquidityNet,
                    uint256 feeGrowthOutside0X128,
                    uint256 feeGrowthOutside1X128,
                    int56 tickCumulativeOutside,
                    uint160 secondsPerLiquidityOutsideX128,
                    uint32 secondsOutside,
                    bool initialized
                );
            /// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information
            function tickBitmap(int16 wordPosition) external view returns (uint256);
            /// @notice Returns the information about a position by the position's key
            /// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper
            /// @return _liquidity The amount of liquidity in the position,
            /// Returns feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke,
            /// Returns feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke,
            /// Returns tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke,
            /// Returns tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke
            function positions(bytes32 key)
                external
                view
                returns (
                    uint128 _liquidity,
                    uint256 feeGrowthInside0LastX128,
                    uint256 feeGrowthInside1LastX128,
                    uint128 tokensOwed0,
                    uint128 tokensOwed1
                );
            /// @notice Returns data about a specific observation index
            /// @param index The element of the observations array to fetch
            /// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time
            /// ago, rather than at a specific index in the array.
            /// @return blockTimestamp The timestamp of the observation,
            /// Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp,
            /// Returns secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp,
            /// Returns initialized whether the observation has been initialized and the values are safe to use
            function observations(uint256 index)
                external
                view
                returns (
                    uint32 blockTimestamp,
                    int56 tickCumulative,
                    uint160 secondsPerLiquidityCumulativeX128,
                    bool initialized
                );
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Pool state that is not stored
        /// @notice Contains view functions to provide information about the pool that is computed rather than stored on the
        /// blockchain. The functions here may have variable gas costs.
        interface IUniswapV3PoolDerivedState {
            /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp
            /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing
            /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,
            /// you must call it with secondsAgos = [3600, 0].
            /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in
            /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.
            /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned
            /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp
            /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block
            /// timestamp
            function observe(uint32[] calldata secondsAgos)
                external
                view
                returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s);
            /// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range
            /// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed.
            /// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first
            /// snapshot is taken and the second snapshot is taken.
            /// @param tickLower The lower tick of the range
            /// @param tickUpper The upper tick of the range
            /// @return tickCumulativeInside The snapshot of the tick accumulator for the range
            /// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range
            /// @return secondsInside The snapshot of seconds per liquidity for the range
            function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
                external
                view
                returns (
                    int56 tickCumulativeInside,
                    uint160 secondsPerLiquidityInsideX128,
                    uint32 secondsInside
                );
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Permissionless pool actions
        /// @notice Contains pool methods that can be called by anyone
        interface IUniswapV3PoolActions {
            /// @notice Sets the initial price for the pool
            /// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value
            /// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96
            function initialize(uint160 sqrtPriceX96) external;
            /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position
            /// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback
            /// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends
            /// on tickLower, tickUpper, the amount of liquidity, and the current price.
            /// @param recipient The address for which the liquidity will be created
            /// @param tickLower The lower tick of the position in which to add liquidity
            /// @param tickUpper The upper tick of the position in which to add liquidity
            /// @param amount The amount of liquidity to mint
            /// @param data Any data that should be passed through to the callback
            /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback
            /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback
            function mint(
                address recipient,
                int24 tickLower,
                int24 tickUpper,
                uint128 amount,
                bytes calldata data
            ) external returns (uint256 amount0, uint256 amount1);
            /// @notice Collects tokens owed to a position
            /// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity.
            /// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or
            /// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the
            /// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity.
            /// @param recipient The address which should receive the fees collected
            /// @param tickLower The lower tick of the position for which to collect fees
            /// @param tickUpper The upper tick of the position for which to collect fees
            /// @param amount0Requested How much token0 should be withdrawn from the fees owed
            /// @param amount1Requested How much token1 should be withdrawn from the fees owed
            /// @return amount0 The amount of fees collected in token0
            /// @return amount1 The amount of fees collected in token1
            function collect(
                address recipient,
                int24 tickLower,
                int24 tickUpper,
                uint128 amount0Requested,
                uint128 amount1Requested
            ) external returns (uint128 amount0, uint128 amount1);
            /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position
            /// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0
            /// @dev Fees must be collected separately via a call to #collect
            /// @param tickLower The lower tick of the position for which to burn liquidity
            /// @param tickUpper The upper tick of the position for which to burn liquidity
            /// @param amount How much liquidity to burn
            /// @return amount0 The amount of token0 sent to the recipient
            /// @return amount1 The amount of token1 sent to the recipient
            function burn(
                int24 tickLower,
                int24 tickUpper,
                uint128 amount
            ) external returns (uint256 amount0, uint256 amount1);
            /// @notice Swap token0 for token1, or token1 for token0
            /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
            /// @param recipient The address to receive the output of the swap
            /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
            /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
            /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
            /// value after the swap. If one for zero, the price cannot be greater than this value after the swap
            /// @param data Any data to be passed through to the callback
            /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
            /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
            function swap(
                address recipient,
                bool zeroForOne,
                int256 amountSpecified,
                uint160 sqrtPriceLimitX96,
                bytes calldata data
            ) external returns (int256 amount0, int256 amount1);
            /// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
            /// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback
            /// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling
            /// with 0 amount{0,1} and sending the donation amount(s) from the callback
            /// @param recipient The address which will receive the token0 and token1 amounts
            /// @param amount0 The amount of token0 to send
            /// @param amount1 The amount of token1 to send
            /// @param data Any data to be passed through to the callback
            function flash(
                address recipient,
                uint256 amount0,
                uint256 amount1,
                bytes calldata data
            ) external;
            /// @notice Increase the maximum number of price and liquidity observations that this pool will store
            /// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to
            /// the input observationCardinalityNext.
            /// @param observationCardinalityNext The desired minimum number of observations for the pool to store
            function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external;
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Permissioned pool actions
        /// @notice Contains pool methods that may only be called by the factory owner
        interface IUniswapV3PoolOwnerActions {
            /// @notice Set the denominator of the protocol's % share of the fees
            /// @param feeProtocol0 new protocol fee for token0 of the pool
            /// @param feeProtocol1 new protocol fee for token1 of the pool
            function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external;
            /// @notice Collect the protocol fee accrued to the pool
            /// @param recipient The address to which collected protocol fees should be sent
            /// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1
            /// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0
            /// @return amount0 The protocol fee collected in token0
            /// @return amount1 The protocol fee collected in token1
            function collectProtocol(
                address recipient,
                uint128 amount0Requested,
                uint128 amount1Requested
            ) external returns (uint128 amount0, uint128 amount1);
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Events emitted by a pool
        /// @notice Contains all events emitted by the pool
        interface IUniswapV3PoolEvents {
            /// @notice Emitted exactly once by a pool when #initialize is first called on the pool
            /// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize
            /// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96
            /// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool
            event Initialize(uint160 sqrtPriceX96, int24 tick);
            /// @notice Emitted when liquidity is minted for a given position
            /// @param sender The address that minted the liquidity
            /// @param owner The owner of the position and recipient of any minted liquidity
            /// @param tickLower The lower tick of the position
            /// @param tickUpper The upper tick of the position
            /// @param amount The amount of liquidity minted to the position range
            /// @param amount0 How much token0 was required for the minted liquidity
            /// @param amount1 How much token1 was required for the minted liquidity
            event Mint(
                address sender,
                address indexed owner,
                int24 indexed tickLower,
                int24 indexed tickUpper,
                uint128 amount,
                uint256 amount0,
                uint256 amount1
            );
            /// @notice Emitted when fees are collected by the owner of a position
            /// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees
            /// @param owner The owner of the position for which fees are collected
            /// @param tickLower The lower tick of the position
            /// @param tickUpper The upper tick of the position
            /// @param amount0 The amount of token0 fees collected
            /// @param amount1 The amount of token1 fees collected
            event Collect(
                address indexed owner,
                address recipient,
                int24 indexed tickLower,
                int24 indexed tickUpper,
                uint128 amount0,
                uint128 amount1
            );
            /// @notice Emitted when a position's liquidity is removed
            /// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect
            /// @param owner The owner of the position for which liquidity is removed
            /// @param tickLower The lower tick of the position
            /// @param tickUpper The upper tick of the position
            /// @param amount The amount of liquidity to remove
            /// @param amount0 The amount of token0 withdrawn
            /// @param amount1 The amount of token1 withdrawn
            event Burn(
                address indexed owner,
                int24 indexed tickLower,
                int24 indexed tickUpper,
                uint128 amount,
                uint256 amount0,
                uint256 amount1
            );
            /// @notice Emitted by the pool for any swaps between token0 and token1
            /// @param sender The address that initiated the swap call, and that received the callback
            /// @param recipient The address that received the output of the swap
            /// @param amount0 The delta of the token0 balance of the pool
            /// @param amount1 The delta of the token1 balance of the pool
            /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
            /// @param liquidity The liquidity of the pool after the swap
            /// @param tick The log base 1.0001 of price of the pool after the swap
            event Swap(
                address indexed sender,
                address indexed recipient,
                int256 amount0,
                int256 amount1,
                uint160 sqrtPriceX96,
                uint128 liquidity,
                int24 tick
            );
            /// @notice Emitted by the pool for any flashes of token0/token1
            /// @param sender The address that initiated the swap call, and that received the callback
            /// @param recipient The address that received the tokens from flash
            /// @param amount0 The amount of token0 that was flashed
            /// @param amount1 The amount of token1 that was flashed
            /// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee
            /// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee
            event Flash(
                address indexed sender,
                address indexed recipient,
                uint256 amount0,
                uint256 amount1,
                uint256 paid0,
                uint256 paid1
            );
            /// @notice Emitted by the pool for increases to the number of observations that can be stored
            /// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index
            /// just before a mint/swap/burn.
            /// @param observationCardinalityNextOld The previous value of the next observation cardinality
            /// @param observationCardinalityNextNew The updated value of the next observation cardinality
            event IncreaseObservationCardinalityNext(
                uint16 observationCardinalityNextOld,
                uint16 observationCardinalityNextNew
            );
            /// @notice Emitted when the protocol fee is changed by the pool
            /// @param feeProtocol0Old The previous value of the token0 protocol fee
            /// @param feeProtocol1Old The previous value of the token1 protocol fee
            /// @param feeProtocol0New The updated value of the token0 protocol fee
            /// @param feeProtocol1New The updated value of the token1 protocol fee
            event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New);
            /// @notice Emitted when the collected protocol fees are withdrawn by the factory owner
            /// @param sender The address that collects the protocol fees
            /// @param recipient The address that receives the collected protocol fees
            /// @param amount0 The amount of token0 protocol fees that is withdrawn
            /// @param amount0 The amount of token1 protocol fees that is withdrawn
            event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1);
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title BitMath
        /// @dev This library provides functionality for computing bit properties of an unsigned integer
        library BitMath {
            /// @notice Returns the index of the most significant bit of the number,
            ///     where the least significant bit is at index 0 and the most significant bit is at index 255
            /// @dev The function satisfies the property:
            ///     x >= 2**mostSignificantBit(x) and x < 2**(mostSignificantBit(x)+1)
            /// @param x the value for which to compute the most significant bit, must be greater than 0
            /// @return r the index of the most significant bit
            function mostSignificantBit(uint256 x) internal pure returns (uint8 r) {
                require(x > 0);
                if (x >= 0x100000000000000000000000000000000) {
                    x >>= 128;
                    r += 128;
                }
                if (x >= 0x10000000000000000) {
                    x >>= 64;
                    r += 64;
                }
                if (x >= 0x100000000) {
                    x >>= 32;
                    r += 32;
                }
                if (x >= 0x10000) {
                    x >>= 16;
                    r += 16;
                }
                if (x >= 0x100) {
                    x >>= 8;
                    r += 8;
                }
                if (x >= 0x10) {
                    x >>= 4;
                    r += 4;
                }
                if (x >= 0x4) {
                    x >>= 2;
                    r += 2;
                }
                if (x >= 0x2) r += 1;
            }
            /// @notice Returns the index of the least significant bit of the number,
            ///     where the least significant bit is at index 0 and the most significant bit is at index 255
            /// @dev The function satisfies the property:
            ///     (x & 2**leastSignificantBit(x)) != 0 and (x & (2**(leastSignificantBit(x)) - 1)) == 0)
            /// @param x the value for which to compute the least significant bit, must be greater than 0
            /// @return r the index of the least significant bit
            function leastSignificantBit(uint256 x) internal pure returns (uint8 r) {
                require(x > 0);
                r = 255;
                if (x & type(uint128).max > 0) {
                    r -= 128;
                } else {
                    x >>= 128;
                }
                if (x & type(uint64).max > 0) {
                    r -= 64;
                } else {
                    x >>= 64;
                }
                if (x & type(uint32).max > 0) {
                    r -= 32;
                } else {
                    x >>= 32;
                }
                if (x & type(uint16).max > 0) {
                    r -= 16;
                } else {
                    x >>= 16;
                }
                if (x & type(uint8).max > 0) {
                    r -= 8;
                } else {
                    x >>= 8;
                }
                if (x & 0xf > 0) {
                    r -= 4;
                } else {
                    x >>= 4;
                }
                if (x & 0x3 > 0) {
                    r -= 2;
                } else {
                    x >>= 2;
                }
                if (x & 0x1 > 0) r -= 1;
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.5.0;
        /// @title Math functions that do not check inputs or outputs
        /// @notice Contains methods that perform common math functions but do not do any overflow or underflow checks
        library UnsafeMath {
            /// @notice Returns ceil(x / y)
            /// @dev division by 0 has unspecified behavior, and must be checked externally
            /// @param x The dividend
            /// @param y The divisor
            /// @return z The quotient, ceil(x / y)
            function divRoundingUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
                assembly {
                    z := add(div(x, y), gt(mod(x, y), 0))
                }
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity >=0.4.0;
        /// @title FixedPoint96
        /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
        /// @dev Used in SqrtPriceMath.sol
        library FixedPoint96 {
            uint8 internal constant RESOLUTION = 96;
            uint256 internal constant Q96 = 0x1000000000000000000000000;
        }
        

        File 4 of 5: AXGT
        /**
         *Submitted for verification at Etherscan.io on 2023-09-25
        */
        
        // SPDX-License-Identifier: MIT
        
        /*
        
        ░█████╗░██╗░░██╗░██████╗░████████╗
        ██╔══██╗╚██╗██╔╝██╔════╝░╚══██╔══╝
        ███████║░╚███╔╝░██║░░██╗░░░░██║░░░
        ██╔══██║░██╔██╗░██║░░╚██╗░░░██║░░░
        ██║░░██║██╔╝╚██╗╚██████╔╝░░░██║░░░
        ╚═╝░░╚═╝╚═╝░░╚═╝░╚═════╝░░░░╚═╝░░░
        
        */
        
        pragma solidity 0.8.7;
        
        
        
        contract ReentrancyGuard {
            bool internal locked = false;
        
            modifier nonReentrant() {
                require(!locked, "Reentrant call");
                locked = true;
                _;
                locked = false;
            }
        }
        
        abstract contract Context {
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
        
            function _msgData() internal view virtual returns (bytes calldata) {
                this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
                return msg.data;
            }
        }
        
        
        
        // File: @openzeppelin/contracts/token/ERC20/IERC20.sol
        
        /**
         * @dev Interface of the ERC20 standard as defined in the EIP.
         */
        interface IERC20 {
            /**
             * @dev Returns the amount of tokens in existence.
             */
            function totalSupply() external view returns (uint256);
        
            /**
             * @dev Returns the amount of tokens owned by `account`.
             */
            function balanceOf(address account) external view returns (uint256);
        
            /**
             * @dev Moves `amount` tokens from the caller's account to `recipient`.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transfer(address recipient, uint256 amount) external returns (bool);
        
            /**
             * @dev Returns the remaining number of tokens that `spender` will be
             * allowed to spend on behalf of `owner` through {transferFrom}. This is
             * zero by default.
             *
             * This value changes when {approve} or {transferFrom} are called.
             */
            function allowance(address owner, address spender) external view returns (uint256);
        
            /**
             * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * IMPORTANT: Beware that changing an allowance with this method brings the risk
             * that someone may use both the old and the new allowance by unfortunate
             * transaction ordering. One possible solution to mitigate this race
             * condition is to first reduce the spender's allowance to 0 and set the
             * desired value afterwards:
             * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
             *
             * Emits an {Approval} event.
             */
            function approve(address spender, uint256 amount) external returns (bool);
        
            /**
             * @dev Moves `amount` tokens from `sender` to `recipient` using the
             * allowance mechanism. `amount` is then deducted from the caller's
             * allowance.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
        
            /**
             * @dev Emitted when `value` tokens are moved from one account (`from`) to
             * another (`to`).
             *
             * Note that `value` may be zero.
             */
            event Transfer(address indexed from, address indexed to, uint256 value);
        
            /**
             * @dev Emitted when the allowance of a `spender` for an `owner` is set by
             * a call to {approve}. `value` is the new allowance.
             */
            event Approval(address indexed owner, address indexed spender, uint256 value);
        }
        
        // File: @openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol
        
        
        /**
         * @dev Interface for the optional metadata functions from the ERC20 standard.
         *
         * _Available since v4.1._
         */
        interface IERC20Metadata is IERC20 {
            /**
             * @dev Returns the name of the token.
             */
            function name() external view returns (string memory);
        
            /**
             * @dev Returns the symbol of the token.
             */
            function symbol() external view returns (string memory);
        
            /**
             * @dev Returns the decimals places of the token.
             */
            function decimals() external view returns (uint8);
        }
        
        // File: @openzeppelin/contracts/token/ERC20/ERC20.sol
        
        
        
        
        /**
         * @dev Implementation of the {IERC20} interface.
         *
         * This implementation is agnostic to the way tokens are created. This means
         * that a supply mechanism has to be added in a derived contract using {_mint}.
         * For a generic mechanism see {ERC20PresetMinterPauser}.
         *
         * TIP: For a detailed writeup see our guide
         * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
         * to implement supply mechanisms].
         *
         * We have followed general OpenZeppelin guidelines: functions revert instead
         * of returning `false` on failure. This behavior is nonetheless conventional
         * and does not conflict with the expectations of ERC20 applications.
         *
         * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
         * This allows applications to reconstruct the allowance for all accounts just
         * by listening to said events. Other implementations of the EIP may not emit
         * these events, as it isn't required by the specification.
         *
         * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
         * functions have been added to mitigate the well-known issues around setting
         * allowances. See {IERC20-approve}.
         */
        contract ERC20 is Context, IERC20, IERC20Metadata {
            mapping (address => uint256) private _balances;
        
            mapping (address => mapping (address => uint256)) private _allowances;
        
            uint256 private _totalSupply;
        
            string private _name;
            string private _symbol;
        
            /**
             * @dev Sets the values for {name} and {symbol}.
             *
             * The defaut value of {decimals} is 18. To select a different value for
             * {decimals} you should overload it.
             *
             * All two of these values are immutable: they can only be set once during
             * construction.
             */
            constructor (string memory name_, string memory symbol_) {
                _name = name_;
                _symbol = symbol_;
            }
        
            /**
             * @dev Returns the name of the token.
             */
            function name() public view virtual override returns (string memory) {
                return _name;
            }
        
            /**
             * @dev Returns the symbol of the token, usually a shorter version of the
             * name.
             */
            function symbol() public view virtual override returns (string memory) {
                return _symbol;
            }
        
            /**
             * @dev Returns the number of decimals used to get its user representation.
             * For example, if `decimals` equals `2`, a balance of `505` tokens should
             * be displayed to a user as `5,05` (`505 / 10 ** 2`).
             *
             * Tokens usually opt for a value of 18, imitating the relationship between
             * Ether and Wei. This is the value {ERC20} uses, unless this function is
             * overridden;
             *
             * NOTE: This information is only used for _display_ purposes: it in
             * no way affects any of the arithmetic of the contract, including
             * {IERC20-balanceOf} and {IERC20-transfer}.
             */
            function decimals() public view virtual override returns (uint8) {
                return 18;
            }
        
            /**
             * @dev See {IERC20-totalSupply}.
             */
            function totalSupply() public view virtual override returns (uint256) {
                return _totalSupply;
            }
        
            /**
             * @dev See {IERC20-balanceOf}.
             */
            function balanceOf(address account) public view virtual override returns (uint256) {
                return _balances[account];
            }
        
            /**
             * @dev See {IERC20-transfer}.
             *
             * Requirements:
             *
             * - `recipient` cannot be the zero address.
             * - the caller must have a balance of at least `amount`.
             */
            function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
                _transfer(_msgSender(), recipient, amount);
                return true;
            }
        
            /**
             * @dev See {IERC20-allowance}.
             */
            function allowance(address owner, address spender) public view virtual override returns (uint256) {
                return _allowances[owner][spender];
            }
        
            /**
             * @dev See {IERC20-approve}.
             *
             * Requirements:
             *
             * - `spender` cannot be the zero address.
             */
            function approve(address spender, uint256 amount) public virtual override returns (bool) {
                _approve(_msgSender(), spender, amount);
                return true;
            }
        
            /**
             * @dev See {IERC20-transferFrom}.
             *
             * Emits an {Approval} event indicating the updated allowance. This is not
             * required by the EIP. See the note at the beginning of {ERC20}.
             *
             * Requirements:
             *
             * - `sender` and `recipient` cannot be the zero address.
             * - `sender` must have a balance of at least `amount`.
             * - the caller must have allowance for ``sender``'s tokens of at least
             * `amount`.
             */
            function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
                _transfer(sender, recipient, amount);
        
                uint256 currentAllowance = _allowances[sender][_msgSender()];
                require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance");
                _approve(sender, _msgSender(), currentAllowance - amount);
        
                return true;
            }
        
            /**
             * @dev Atomically increases the allowance granted to `spender` by the caller.
             *
             * This is an alternative to {approve} that can be used as a mitigation for
             * problems described in {IERC20-approve}.
             *
             * Emits an {Approval} event indicating the updated allowance.
             *
             * Requirements:
             *
             * - `spender` cannot be the zero address.
             */
            function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
                _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);
                return true;
            }
        
            /**
             * @dev Atomically decreases the allowance granted to `spender` by the caller.
             *
             * This is an alternative to {approve} that can be used as a mitigation for
             * problems described in {IERC20-approve}.
             *
             * Emits an {Approval} event indicating the updated allowance.
             *
             * Requirements:
             *
             * - `spender` cannot be the zero address.
             * - `spender` must have allowance for the caller of at least
             * `subtractedValue`.
             */
            function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
                uint256 currentAllowance = _allowances[_msgSender()][spender];
                require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
                _approve(_msgSender(), spender, currentAllowance - subtractedValue);
        
                return true;
            }
        
            /**
             * @dev Moves tokens `amount` from `sender` to `recipient`.
             *
             * This is internal function is equivalent to {transfer}, and can be used to
             * e.g. implement automatic token fees, slashing mechanisms, etc.
             *
             * Emits a {Transfer} event.
             *
             * Requirements:
             *
             * - `sender` cannot be the zero address.
             * - `recipient` cannot be the zero address.
             * - `sender` must have a balance of at least `amount`.
             */
            function _transfer(address sender, address recipient, uint256 amount) internal virtual {
                require(sender != address(0), "ERC20: transfer from the zero address");
                require(recipient != address(0), "ERC20: transfer to the zero address");
        
                _beforeTokenTransfer(sender, recipient, amount);
        
                uint256 senderBalance = _balances[sender];
                require(senderBalance >= amount, "ERC20: transfer amount exceeds balance");
                _balances[sender] = senderBalance - amount;
                _balances[recipient] += amount;
        
                emit Transfer(sender, recipient, amount);
            }
        
            /** @dev Creates `amount` tokens and assigns them to `account`, increasing
             * the total supply.
             *
             * Emits a {Transfer} event with `from` set to the zero address.
             *
             * Requirements:
             *
             * - `to` cannot be the zero address.
             */
            function _mint(address account, uint256 amount) internal virtual {
                require(account != address(0), "ERC20: mint to the zero address");
        
                _beforeTokenTransfer(address(0), account, amount);
        
                _totalSupply += amount;
                _balances[account] += amount;
                emit Transfer(address(0), account, amount);
            }
        
            /**
             * @dev Destroys `amount` tokens from `account`, reducing the
             * total supply.
             *
             * Emits a {Transfer} event with `to` set to the zero address.
             *
             * Requirements:
             *
             * - `account` cannot be the zero address.
             * - `account` must have at least `amount` tokens.
             */
            function _burn(address account, uint256 amount) internal virtual {
                require(account != address(0), "ERC20: burn from the zero address");
        
                _beforeTokenTransfer(account, address(0), amount);
        
                uint256 accountBalance = _balances[account];
                require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
                _balances[account] = accountBalance - amount;
                _totalSupply -= amount;
        
                emit Transfer(account, address(0), amount);
            }
        
            /**
             * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
             *
             * This internal function is equivalent to `approve`, and can be used to
             * e.g. set automatic allowances for certain subsystems, etc.
             *
             * Emits an {Approval} event.
             *
             * Requirements:
             *
             * - `owner` cannot be the zero address.
             * - `spender` cannot be the zero address.
             */
            function _approve(address owner, address spender, uint256 amount) internal virtual {
                require(owner != address(0), "ERC20: approve from the zero address");
                require(spender != address(0), "ERC20: approve to the zero address");
        
                _allowances[owner][spender] = amount;
                emit Approval(owner, spender, amount);
            }
        
            /**
             * @dev Hook that is called before any transfer of tokens. This includes
             * minting and burning.
             *
             * Calling conditions:
             *
             * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
             * will be to transferred to `to`.
             * - when `from` is zero, `amount` tokens will be minted for `to`.
             * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
             * - `from` and `to` are never both zero.
             *
             * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
             */
            function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
        }
        
        
        
        contract Ownable is Context {
            address private _owner;
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            constructor ()  {
                address msgSender = _msgSender();
                _owner = msgSender;
                emit OwnershipTransferred(address(0), msgSender);
            }
            function owner() public view returns (address) {
                return _owner;
            }
            modifier onlyOwner() {
                require(_owner == _msgSender(), "Ownable: caller is not the owner");
                _;
            }
            function renounceOwnership() public virtual onlyOwner {
                emit OwnershipTransferred(_owner, address(0));
                _owner = address(0);
            }
            function transferOwnership(address newOwner) public virtual onlyOwner {
                require(newOwner != address(0), "Ownable: new owner is the zero address");
                emit OwnershipTransferred(_owner, newOwner);
                _owner = newOwner;
            }
        }
        
        interface IUniswapV2Pair {
            event Approval(address indexed owner, address indexed spender, uint value);
            event Transfer(address indexed from, address indexed to, uint value);
        
            function name() external pure returns (string memory);
            function symbol() external pure returns (string memory);
            function decimals() external pure returns (uint8);
            function totalSupply() external view returns (uint);
            function balanceOf(address owner) external view returns (uint);
            function allowance(address owner, address spender) external view returns (uint);
            function approve(address spender, uint value) external returns (bool);
            function transfer(address to, uint value) external returns (bool);
            function transferFrom(address from, address to, uint value) external returns (bool);
            function DOMAIN_SEPARATOR() external view returns (bytes32);
            function PERMIT_TYPEHASH() external pure returns (bytes32);
            function nonces(address owner) external view returns (uint);
        
            function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
        
            event Mint(address indexed sender, uint amount0, uint amount1);
            event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
            event Swap(
                address indexed sender,
                uint amount0In,
                uint amount1In,
                uint amount0Out,
                uint amount1Out,
                address indexed to
            );
            event Sync(uint112 reserve0, uint112 reserve1);
        
            function MINIMUM_LIQUIDITY() external pure returns (uint);
            function factory() external view returns (address);
            function token0() external view returns (address);
            function token1() external view returns (address);
            function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
            function price0CumulativeLast() external view returns (uint);
            function price1CumulativeLast() external view returns (uint);
            function kLast() external view returns (uint);
        
            function mint(address to) external returns (uint liquidity);
            function burn(address to) external returns (uint amount0, uint amount1);
            function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
            function skim(address to) external;
            function sync() external;
        
            function initialize(address, address) external;
        }
        
        interface IUniswapV2Factory {
            event PairCreated(address indexed token0, address indexed token1, address pair, uint);
        
            function feeTo() external view returns (address);
            function feeToSetter() external view returns (address);
        
            function getPair(address tokenA, address tokenB) external view returns (address pair);
            function allPairs(uint) external view returns (address pair);
            function allPairsLength() external view returns (uint);
        
            function createPair(address tokenA, address tokenB) external returns (address pair);
        
            function setFeeTo(address) external;
            function setFeeToSetter(address) external;
        }
        
        interface IUniswapV2Router01 {
            function factory() external pure returns (address);
            function WETH() external pure returns (address);
        
            function addLiquidity(
                address tokenA,
                address tokenB,
                uint amountADesired,
                uint amountBDesired,
                uint amountAMin,
                uint amountBMin,
                address to,
                uint deadline
            ) external returns (uint amountA, uint amountB, uint liquidity);
            function addLiquidityETH(
                address token,
                uint amountTokenDesired,
                uint amountTokenMin,
                uint amountETHMin,
                address to,
                uint deadline
            ) external payable returns (uint amountToken, uint amountETH, uint liquidity);
            function removeLiquidity(
                address tokenA,
                address tokenB,
                uint liquidity,
                uint amountAMin,
                uint amountBMin,
                address to,
                uint deadline
            ) external returns (uint amountA, uint amountB);
            function removeLiquidityETH(
                address token,
                uint liquidity,
                uint amountTokenMin,
                uint amountETHMin,
                address to,
                uint deadline
            ) external returns (uint amountToken, uint amountETH);
            function removeLiquidityWithPermit(
                address tokenA,
                address tokenB,
                uint liquidity,
                uint amountAMin,
                uint amountBMin,
                address to,
                uint deadline,
                bool approveMax, uint8 v, bytes32 r, bytes32 s
            ) external returns (uint amountA, uint amountB);
            function removeLiquidityETHWithPermit(
                address token,
                uint liquidity,
                uint amountTokenMin,
                uint amountETHMin,
                address to,
                uint deadline,
                bool approveMax, uint8 v, bytes32 r, bytes32 s
            ) external returns (uint amountToken, uint amountETH);
            function swapExactTokensForTokens(
                uint amountIn,
                uint amountOutMin,
                address[] calldata path,
                address to,
                uint deadline
            ) external returns (uint[] memory amounts);
            function swapTokensForExactTokens(
                uint amountOut,
                uint amountInMax,
                address[] calldata path,
                address to,
                uint deadline
            ) external returns (uint[] memory amounts);
            function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
                external
                payable
                returns (uint[] memory amounts);
            function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
                external
                returns (uint[] memory amounts);
            function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
                external
                returns (uint[] memory amounts);
            function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
                external
                payable
                returns (uint[] memory amounts);
        
            function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
            function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
            function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
            function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
            function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
        }
        
        interface IUniswapV2Router02 is IUniswapV2Router01 {
            function removeLiquidityETHSupportingFeeOnTransferTokens(
                address token,
                uint liquidity,
                uint amountTokenMin,
                uint amountETHMin,
                address to,
                uint deadline
            ) external returns (uint amountETH);
            function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
                address token,
                uint liquidity,
                uint amountTokenMin,
                uint amountETHMin,
                address to,
                uint deadline,
                bool approveMax, uint8 v, bytes32 r, bytes32 s
            ) external returns (uint amountETH);
        
            function swapExactTokensForTokensSupportingFeeOnTransferTokens(
                uint amountIn,
                uint amountOutMin,
                address[] calldata path,
                address to,
                uint deadline
            ) external;
            function swapExactETHForTokensSupportingFeeOnTransferTokens(
                uint amountOutMin,
                address[] calldata path,
                address to,
                uint deadline
            ) external payable;
            function swapExactTokensForETHSupportingFeeOnTransferTokens(
                uint amountIn,
                uint amountOutMin,
                address[] calldata path,
                address to,
                uint deadline
            ) external;
        }
        
        
        contract AXGT is ERC20, Ownable, ReentrancyGuard {
        
            IUniswapV2Router02 public uniswapV2Router;
            address public uniswapV2Pair;
        
            uint256 private constant TOKEN_DECIMALS = 10**18;
            uint8 private constant percentageOfMaximumTokensToAccumate = 10;
            
            bool private swapping;
        
            
        
            uint256 public swapTokensAtAmount = 10 ** 5 * TOKEN_DECIMALS;
            uint256 public balanceLimit = 2 * 10 ** 7 * TOKEN_DECIMALS;
            address public adminWallet = 0x44fF56eF2f0654cF95200cB53c0873bbB669222d;
            address public fundWallet = 0x2322F9c0C2F09677CB0892699a5936ED1A937B56;
        
            uint16 public liquidityFee = 133;
            uint16 public adminFee = 133;
            uint16 public fundFee = 133;
        
            mapping (address => bool) public isExcluded;
            mapping (address => bool) public isLimitExcluded;
        
            event TransferFailed(address _recipient, uint256 _amount);
            event SetFee(uint16 liquidityFee, uint16 adminFee, uint16 fundFee);
            event SetSwapAtAmount(uint256 amount);
            event SetLimit(uint256 limit);
        
        
        
            constructor()  ERC20("AxonDAO Governance Token", "AXGT") {
                IUniswapV2Router02 _UniswapV2Router = IUniswapV2Router02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D);
                address _UniswapV2Pair = IUniswapV2Factory(_UniswapV2Router.factory())
                    .createPair(address(this), _UniswapV2Router.WETH());
                uniswapV2Router = _UniswapV2Router;
                uniswapV2Pair = _UniswapV2Pair;
                isExcluded[owner()] = true;
                isExcluded[address(this)] = true;
                isExcluded[adminWallet] = true;
                isExcluded[fundWallet] = true;
        
                isLimitExcluded[owner()] = true;
                isLimitExcluded[address(this)] = true;
                isLimitExcluded[adminWallet] = true;
                isLimitExcluded[fundWallet] = true;
                isLimitExcluded[_UniswapV2Pair] = true;
        
                
                _mint(owner(),  10 ** 9 * TOKEN_DECIMALS);
        
            }
        
            receive() external payable {
            }
        
            function setUniswapV2Router(address _uniswapV2Router) external onlyOwner {
                IUniswapV2Router02 _UniswapV2Router = IUniswapV2Router02(_uniswapV2Router);
                IUniswapV2Factory factory = IUniswapV2Factory(_UniswapV2Router.factory());
        
                // Check if pair already exists
                address existingPair = factory.getPair(address(this), _UniswapV2Router.WETH());
        
                address _UniswapV2Pair;
                if (existingPair == address(0)) { // If pair does not exist, create it
                    _UniswapV2Pair = factory.createPair(address(this), _UniswapV2Router.WETH());
                } else { // If pair exists, use existing pair address
                    _UniswapV2Pair = existingPair;
                }
                require(_UniswapV2Pair != address(0), "Pair address set to zero");
                uniswapV2Router = _UniswapV2Router;
                uniswapV2Pair = _UniswapV2Pair;
                isLimitExcluded[_UniswapV2Pair] = true;
            }
        
        
            function _burnToken (uint256 _amount) external onlyOwner{
                _burn(owner(), _amount);
            }
        
            function _transfer(address from,  address to,  uint256 amount) internal override {
        
        
                if(amount == 0) {
                    super._transfer(from, to, 0);
                    return;
                }
        
                uint256 contractTokenBalance = balanceOf(address(this));
                bool canSwap = contractTokenBalance >= swapTokensAtAmount;
                if(
                    canSwap &&
                    !swapping &&
                    from != uniswapV2Pair &&
                    from != owner() &&
                    to != owner()
                ) {
                    swapping = true;
                    
                    swapAndLiquify(contractTokenBalance);
                    sendDividends();
                    swapping = false;
                }
        
                if(!swapping){        
                    bool takeFee = false;
        
                    if(!isExcluded[from] && (from == uniswapV2Pair || to == uniswapV2Pair)){
                            takeFee = true;
                        }
        
                        if (takeFee){
                            uint256 fees = amount * (liquidityFee + adminFee + fundFee) / 10000;
                            amount = amount - fees;
                            super._transfer(from, address(this), fees);
                        }
                }
                if (!isLimitExcluded[to]){
                    require((balanceOf(to) + amount) <= balanceLimit, "maxlimit");
                }
                super._transfer(from, to, amount);
        
            }
        
            function swapAndLiquify(uint256 contractTokenBalance) private {
                uint256 tokens = (contractTokenBalance * liquidityFee) / (liquidityFee + fundFee + adminFee);
                uint256 half = tokens / 2;
                uint256 otherHalf = tokens - half;
                
                uint256 initialBalance = address(this).balance;
                uint256 halfPlusDividents = contractTokenBalance-otherHalf;
                swapTokensForEth(halfPlusDividents);
                uint256 newBalance = address(this).balance - initialBalance;
                addLiquidity(otherHalf, (newBalance*half)/halfPlusDividents);
            }
        
            function swapTokensForEth(uint256 tokenAmount) private {
                address[] memory path = new address[](2);
                path[0] = address(this);
                path[1] = uniswapV2Router.WETH();
                _approve(address(this), address(uniswapV2Router), tokenAmount);
                uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(
                    tokenAmount,
                    0,
                    path,
                    address(this),
                    block.timestamp + 200
                );
            }
        
            function addLiquidity(uint256 tokenAmount, uint256 ethAmount) private {
                _approve(address(this), address(uniswapV2Router), tokenAmount);
                uniswapV2Router.addLiquidityETH{value: ethAmount}(
                    address(this),
                    tokenAmount,
                    0,
                    0,
                    owner(),
                    block.timestamp + 200
                );
            }
        
            function sendDividends() private nonReentrant {
                uint256 ethBalance = address(this).balance;
                uint256 adminETH = (ethBalance * adminFee) / (adminFee + fundFee);
                uint256 fundETH  = ethBalance - adminETH;
                bool successAdmin = payable(adminWallet).send(adminETH);
                bool successFund = payable(fundWallet).send(fundETH);
        
                if (!successAdmin) {
                    emit TransferFailed(adminWallet, adminETH);
                }
                if (!successFund) {
                    emit TransferFailed(fundWallet, fundETH);
                }
            }
        
        
            function setSwapAtAmount (uint256 amount) external onlyOwner {
                require(amount <= (percentageOfMaximumTokensToAccumate * totalSupply()) / 100, "Amount greater than max accumulated percentage");
                require(swapTokensAtAmount != amount, "Same value provided");
                swapTokensAtAmount = amount;
        
                emit SetSwapAtAmount(amount);
            }
        
            function setAdminWallet (address _address) external onlyOwner {
                require(_address != address(0) && adminWallet != _address, "Invalid or same address provided");
                isExcluded[adminWallet] = false;
                adminWallet = _address;
                isExcluded[adminWallet] = true;
            }
        
            function setFundWAllet (address _address) external onlyOwner {
                require(_address != address(0) && fundWallet != _address, "Invalid or same address provided");
                isExcluded[fundWallet] = false;
                fundWallet = _address;
                isExcluded[fundWallet] = true;
            }
        
        //should never be mixed with the direct transferOwnership unless owner doesn't want to be excluded
            function changeOwner (address _address) external onlyOwner {
                require(_address != address(0) && owner() != _address, "Invalid or same address provided");
                isExcluded[owner()] = false;
                transferOwnership(_address);
                isExcluded[_address] = true;
            }
        
            function setExcludeWallet (address _address, bool _value) external onlyOwner{
                require(isExcluded[_address] != _value, "Same exclusion value provided");
                isExcluded[_address] = _value;
            }
        
            function setExcludeLimitWallet (address _address, bool _value) external onlyOwner{
                require(isLimitExcluded[_address] != _value, "Same limit exclusion value provided");
                isLimitExcluded[_address] = _value;
            }
        
            function setLimit (uint256 _limit) external onlyOwner {
                require(_limit > 10 ** 6 * TOKEN_DECIMALS && balanceLimit != _limit, "Limit is too small or same value provided");
                
                balanceLimit = _limit;
        
                emit SetLimit(_limit);
            }
        
            function setFee (uint16 _newLPFee, uint16 _newadminFee, uint16 _newfundFee) external onlyOwner{
                require (0 < _newLPFee + _newadminFee + _newfundFee &&  _newLPFee + _newadminFee + _newfundFee< 2500, "need to be strictly positive and smaller than 25%");
                liquidityFee = _newLPFee;
                adminFee = _newadminFee;
                fundFee = _newfundFee;
        
                emit SetFee(liquidityFee, adminFee, fundFee);
            }
        }

        File 5 of 5: FeeCollector
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity ^0.8.0;
        import {Owned} from "solmate/auth/Owned.sol";
        import {ERC20} from "solmate/tokens/ERC20.sol";
        import {SafeTransferLib} from "solmate/utils/SafeTransferLib.sol";
        import {IFeeCollector} from "./interfaces/IFeeCollector.sol";
        import {IPermit2} from "./external/IPermit2.sol";
        /// @notice The collector of protocol fees that will be used to swap and send to a fee recipient address.
        contract FeeCollector is Owned, IFeeCollector {
            using SafeTransferLib for ERC20;
            address public universalRouter;
            ERC20 public immutable feeToken;
            IPermit2 public immutable permit2;
            uint256 public constant MAX_APPROVAL_AMOUNT = type(uint256).max;
            uint160 public constant MAX_PERMIT2_APPROVAL_AMOUNT = type(uint160).max;
            uint48 public constant MAX_PERMIT2_DEADLINE = type(uint48).max;
            constructor(address _owner, address _universalRouter, address _permit2, address _feeToken) Owned(_owner) {
                universalRouter = _universalRouter;
                feeToken = ERC20(_feeToken);
                permit2 = IPermit2(_permit2);
            }
            /// @inheritdoc IFeeCollector
            function swapBalance(bytes calldata swapData, uint256 nativeValue) external onlyOwner {
                _execute(swapData, nativeValue);
            }
            /// @inheritdoc IFeeCollector
            function swapBalance(bytes calldata swapData, uint256 nativeValue, ERC20[] calldata tokensToApprove)
                external
                onlyOwner
            {
                unchecked {
                    for (uint256 i = 0; i < tokensToApprove.length; i++) {
                        tokensToApprove[i].safeApprove(address(permit2), MAX_APPROVAL_AMOUNT);
                        permit2.approve(
                            address(tokensToApprove[i]), universalRouter, MAX_PERMIT2_APPROVAL_AMOUNT, MAX_PERMIT2_DEADLINE
                        );
                    }
                }
                _execute(swapData, nativeValue);
            }
            /// @notice Helper function to call UniversalRouter.
            /// @param swapData The bytes call data to be forwarded to UniversalRouter.
            /// @param nativeValue The amount of native currency to send to UniversalRouter.
            function _execute(bytes calldata swapData, uint256 nativeValue) internal {
                (bool success,) = universalRouter.call{value: nativeValue}(swapData);
                if (!success) revert UniversalRouterCallFailed();
            }
            /// @inheritdoc IFeeCollector
            function revokeTokenApprovals(ERC20[] calldata tokensToRevoke) external onlyOwner {
                unchecked {
                    for (uint256 i = 0; i < tokensToRevoke.length; i++) {
                        tokensToRevoke[i].safeApprove(address(permit2), 0);
                    }
                }
            }
            /// @inheritdoc IFeeCollector
            function revokePermit2Approvals(IPermit2.TokenSpenderPair[] calldata approvals) external onlyOwner {
                permit2.lockdown(approvals);
            }
            /// @inheritdoc IFeeCollector
            function withdrawFeeToken(address feeRecipient, uint256 amount) external onlyOwner {
                feeToken.safeTransfer(feeRecipient, amount);
            }
            /// @inheritdoc IFeeCollector
            function setUniversalRouter(address _universalRouter) external onlyOwner {
                emit UniversalRouterChanged(universalRouter, _universalRouter);
                universalRouter = _universalRouter;
            }
            receive() external payable {}
        }
        // SPDX-License-Identifier: AGPL-3.0-only
        pragma solidity >=0.8.0;
        /// @notice Simple single owner authorization mixin.
        /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/auth/Owned.sol)
        abstract contract Owned {
            /*//////////////////////////////////////////////////////////////
                                         EVENTS
            //////////////////////////////////////////////////////////////*/
            event OwnershipTransferred(address indexed user, address indexed newOwner);
            /*//////////////////////////////////////////////////////////////
                                    OWNERSHIP STORAGE
            //////////////////////////////////////////////////////////////*/
            address public owner;
            modifier onlyOwner() virtual {
                require(msg.sender == owner, "UNAUTHORIZED");
                _;
            }
            /*//////////////////////////////////////////////////////////////
                                       CONSTRUCTOR
            //////////////////////////////////////////////////////////////*/
            constructor(address _owner) {
                owner = _owner;
                emit OwnershipTransferred(address(0), _owner);
            }
            /*//////////////////////////////////////////////////////////////
                                     OWNERSHIP LOGIC
            //////////////////////////////////////////////////////////////*/
            function transferOwnership(address newOwner) public virtual onlyOwner {
                owner = newOwner;
                emit OwnershipTransferred(msg.sender, newOwner);
            }
        }
        // SPDX-License-Identifier: AGPL-3.0-only
        pragma solidity >=0.8.0;
        /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
        /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
        /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
        /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
        abstract contract ERC20 {
            /*//////////////////////////////////////////////////////////////
                                         EVENTS
            //////////////////////////////////////////////////////////////*/
            event Transfer(address indexed from, address indexed to, uint256 amount);
            event Approval(address indexed owner, address indexed spender, uint256 amount);
            /*//////////////////////////////////////////////////////////////
                                    METADATA STORAGE
            //////////////////////////////////////////////////////////////*/
            string public name;
            string public symbol;
            uint8 public immutable decimals;
            /*//////////////////////////////////////////////////////////////
                                      ERC20 STORAGE
            //////////////////////////////////////////////////////////////*/
            uint256 public totalSupply;
            mapping(address => uint256) public balanceOf;
            mapping(address => mapping(address => uint256)) public allowance;
            /*//////////////////////////////////////////////////////////////
                                    EIP-2612 STORAGE
            //////////////////////////////////////////////////////////////*/
            uint256 internal immutable INITIAL_CHAIN_ID;
            bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;
            mapping(address => uint256) public nonces;
            /*//////////////////////////////////////////////////////////////
                                       CONSTRUCTOR
            //////////////////////////////////////////////////////////////*/
            constructor(
                string memory _name,
                string memory _symbol,
                uint8 _decimals
            ) {
                name = _name;
                symbol = _symbol;
                decimals = _decimals;
                INITIAL_CHAIN_ID = block.chainid;
                INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
            }
            /*//////////////////////////////////////////////////////////////
                                       ERC20 LOGIC
            //////////////////////////////////////////////////////////////*/
            function approve(address spender, uint256 amount) public virtual returns (bool) {
                allowance[msg.sender][spender] = amount;
                emit Approval(msg.sender, spender, amount);
                return true;
            }
            function transfer(address to, uint256 amount) public virtual returns (bool) {
                balanceOf[msg.sender] -= amount;
                // Cannot overflow because the sum of all user
                // balances can't exceed the max uint256 value.
                unchecked {
                    balanceOf[to] += amount;
                }
                emit Transfer(msg.sender, to, amount);
                return true;
            }
            function transferFrom(
                address from,
                address to,
                uint256 amount
            ) public virtual returns (bool) {
                uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.
                if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;
                balanceOf[from] -= amount;
                // Cannot overflow because the sum of all user
                // balances can't exceed the max uint256 value.
                unchecked {
                    balanceOf[to] += amount;
                }
                emit Transfer(from, to, amount);
                return true;
            }
            /*//////////////////////////////////////////////////////////////
                                     EIP-2612 LOGIC
            //////////////////////////////////////////////////////////////*/
            function permit(
                address owner,
                address spender,
                uint256 value,
                uint256 deadline,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) public virtual {
                require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");
                // Unchecked because the only math done is incrementing
                // the owner's nonce which cannot realistically overflow.
                unchecked {
                    address recoveredAddress = ecrecover(
                        keccak256(
                            abi.encodePacked(
                                "\\x19\\x01",
                                DOMAIN_SEPARATOR(),
                                keccak256(
                                    abi.encode(
                                        keccak256(
                                            "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                                        ),
                                        owner,
                                        spender,
                                        value,
                                        nonces[owner]++,
                                        deadline
                                    )
                                )
                            )
                        ),
                        v,
                        r,
                        s
                    );
                    require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");
                    allowance[recoveredAddress][spender] = value;
                }
                emit Approval(owner, spender, value);
            }
            function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
                return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
            }
            function computeDomainSeparator() internal view virtual returns (bytes32) {
                return
                    keccak256(
                        abi.encode(
                            keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                            keccak256(bytes(name)),
                            keccak256("1"),
                            block.chainid,
                            address(this)
                        )
                    );
            }
            /*//////////////////////////////////////////////////////////////
                                INTERNAL MINT/BURN LOGIC
            //////////////////////////////////////////////////////////////*/
            function _mint(address to, uint256 amount) internal virtual {
                totalSupply += amount;
                // Cannot overflow because the sum of all user
                // balances can't exceed the max uint256 value.
                unchecked {
                    balanceOf[to] += amount;
                }
                emit Transfer(address(0), to, amount);
            }
            function _burn(address from, uint256 amount) internal virtual {
                balanceOf[from] -= amount;
                // Cannot underflow because a user's balance
                // will never be larger than the total supply.
                unchecked {
                    totalSupply -= amount;
                }
                emit Transfer(from, address(0), amount);
            }
        }
        // SPDX-License-Identifier: AGPL-3.0-only
        pragma solidity >=0.8.0;
        import {ERC20} from "../tokens/ERC20.sol";
        /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
        /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
        /// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer.
        /// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller.
        library SafeTransferLib {
            /*//////////////////////////////////////////////////////////////
                                     ETH OPERATIONS
            //////////////////////////////////////////////////////////////*/
            function safeTransferETH(address to, uint256 amount) internal {
                bool success;
                /// @solidity memory-safe-assembly
                assembly {
                    // Transfer the ETH and store if it succeeded or not.
                    success := call(gas(), to, amount, 0, 0, 0, 0)
                }
                require(success, "ETH_TRANSFER_FAILED");
            }
            /*//////////////////////////////////////////////////////////////
                                    ERC20 OPERATIONS
            //////////////////////////////////////////////////////////////*/
            function safeTransferFrom(
                ERC20 token,
                address from,
                address to,
                uint256 amount
            ) internal {
                bool success;
                /// @solidity memory-safe-assembly
                assembly {
                    // Get a pointer to some free memory.
                    let freeMemoryPointer := mload(0x40)
                    // Write the abi-encoded calldata into memory, beginning with the function selector.
                    mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
                    mstore(add(freeMemoryPointer, 4), and(from, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "from" argument.
                    mstore(add(freeMemoryPointer, 36), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
                    mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.
                    success := and(
                        // Set success to whether the call reverted, if not we check it either
                        // returned exactly 1 (can't just be non-zero data), or had no return data.
                        or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                        // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3.
                        // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                        // Counterintuitively, this call must be positioned second to the or() call in the
                        // surrounding and() call or else returndatasize() will be zero during the computation.
                        call(gas(), token, 0, freeMemoryPointer, 100, 0, 32)
                    )
                }
                require(success, "TRANSFER_FROM_FAILED");
            }
            function safeTransfer(
                ERC20 token,
                address to,
                uint256 amount
            ) internal {
                bool success;
                /// @solidity memory-safe-assembly
                assembly {
                    // Get a pointer to some free memory.
                    let freeMemoryPointer := mload(0x40)
                    // Write the abi-encoded calldata into memory, beginning with the function selector.
                    mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
                    mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
                    mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.
                    success := and(
                        // Set success to whether the call reverted, if not we check it either
                        // returned exactly 1 (can't just be non-zero data), or had no return data.
                        or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                        // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                        // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                        // Counterintuitively, this call must be positioned second to the or() call in the
                        // surrounding and() call or else returndatasize() will be zero during the computation.
                        call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
                    )
                }
                require(success, "TRANSFER_FAILED");
            }
            function safeApprove(
                ERC20 token,
                address to,
                uint256 amount
            ) internal {
                bool success;
                /// @solidity memory-safe-assembly
                assembly {
                    // Get a pointer to some free memory.
                    let freeMemoryPointer := mload(0x40)
                    // Write the abi-encoded calldata into memory, beginning with the function selector.
                    mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
                    mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
                    mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.
                    success := and(
                        // Set success to whether the call reverted, if not we check it either
                        // returned exactly 1 (can't just be non-zero data), or had no return data.
                        or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                        // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                        // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                        // Counterintuitively, this call must be positioned second to the or() call in the
                        // surrounding and() call or else returndatasize() will be zero during the computation.
                        call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
                    )
                }
                require(success, "APPROVE_FAILED");
            }
        }
        // SPDX-License-Identifier: GPL-2.0-or-later
        pragma solidity ^0.8.13;
        import {ERC20} from "solmate/tokens/ERC20.sol";
        import {IPermit2} from "../external/IPermit2.sol";
        /// @notice The collector of protocol fees that will be used to swap and send to a fee recipient address.
        interface IFeeCollector {
            /// @notice Error thrown when the call to UniversalRouter fails.
            error UniversalRouterCallFailed();
            /// @notice Emitted when the UniversalRouter address is changed.
            /// @param oldUniversalRouter The old router address.
            /// @param newUniversalRouter The new router address.
            event UniversalRouterChanged(address oldUniversalRouter, address newUniversalRouter);
            /// @notice Swaps the contract balance.
            /// @param swapData The bytes call data to be forwarded to UniversalRouter.
            /// @param nativeValue The amount of native currency to send to UniversalRouter.
            function swapBalance(bytes calldata swapData, uint256 nativeValue) external;
            /// @notice Approves tokens for swapping and then swaps the contract balance.
            /// @param swapData The bytes call data to be forwarded to UniversalRouter.
            /// @param nativeValue The amount of native currency to send to UniversalRouter.
            /// @param tokensToApprove An array of ERC20 tokens to approve for spending.
            function swapBalance(bytes calldata swapData, uint256 nativeValue, ERC20[] calldata tokensToApprove) external;
            /// @notice Revokes approvals on tokens by setting their allowance to 0.
            /// @param tokensToRevoke The token to revoke the approval for.
            function revokeTokenApprovals(ERC20[] calldata tokensToRevoke) external;
            /// @notice Revokes the permit2 allowance of a spender by setting token allowances to 0.
            /// @param approvals The approvals to revoke.
            function revokePermit2Approvals(IPermit2.TokenSpenderPair[] calldata approvals) external;
            /// @notice Transfers the fee token balance from this contract to the fee recipient.
            /// @param feeRecipient The address to send the fee token balance to.
            /// @param amount The amount to withdraw.
            function withdrawFeeToken(address feeRecipient, uint256 amount) external;
            /// @notice Sets the address of the UniversalRouter contract.
            /// @param _universalRouter The address of the UniversalRouter contract.
            function setUniversalRouter(address _universalRouter) external;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import {IAllowanceTransfer} from "./IAllowanceTransfer.sol";
        /// @notice Permit2 handles signature-based transfers in SignatureTransfer and allowance-based transfers in AllowanceTransfer.
        /// @dev Users must approve Permit2 before calling any of the transfer functions.
        interface IPermit2 is IAllowanceTransfer {
        // IPermit2 unifies the two interfaces so users have maximal flexibility with their approval.
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import {IEIP712} from "./IEIP712.sol";
        /// @title AllowanceTransfer
        /// @notice Handles ERC20 token permissions through signature based allowance setting and ERC20 token transfers by checking allowed amounts
        /// @dev Requires user's token approval on the Permit2 contract
        interface IAllowanceTransfer is IEIP712 {
            /// @notice A token spender pair.
            struct TokenSpenderPair {
                // the token the spender is approved
                address token;
                // the spender address
                address spender;
            }
            /// @notice A mapping from owner address to token address to spender address to PackedAllowance struct, which contains details and conditions of the approval.
            /// @notice The mapping is indexed in the above order see: allowance[ownerAddress][tokenAddress][spenderAddress]
            /// @dev The packed slot holds the allowed amount, expiration at which the allowed amount is no longer valid, and current nonce thats updated on any signature based approvals.
            function allowance(address user, address token, address spender)
                external
                view
                returns (uint160 amount, uint48 expiration, uint48 nonce);
            /// @notice Approves the spender to use up to amount of the specified token up until the expiration
            /// @param token The token to approve
            /// @param spender The spender address to approve
            /// @param amount The approved amount of the token
            /// @param expiration The timestamp at which the approval is no longer valid
            /// @dev The packed allowance also holds a nonce, which will stay unchanged in approve
            /// @dev Setting amount to type(uint160).max sets an unlimited approval
            function approve(address token, address spender, uint160 amount, uint48 expiration) external;
            /// @notice Enables performing a "lockdown" of the sender's Permit2 identity
            /// by batch revoking approvals
            /// @param approvals Array of approvals to revoke.
            function lockdown(TokenSpenderPair[] calldata approvals) external;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        interface IEIP712 {
            function DOMAIN_SEPARATOR() external view returns (bytes32);
        }