Transaction Hash:
Block:
19508976 at Mar-25-2024 03:56:11 AM +UTC
Transaction Fee:
0.0018522581153508 ETH
$4.50
Gas Used:
136,200 Gas / 13.599545634 Gwei
Emitted Events:
493 |
UniswapV2Pair.Transfer( from=[Receiver] Staking, to=[Sender] 0x4f76b969fd570c5a5196f5ed5bcebd36bb5163ce, value=38000000000000000000 )
|
494 |
Staking.Withdraw( user=[Sender] 0x4f76b969fd570c5a5196f5ed5bcebd36bb5163ce, tokenAddress=UniswapV2Pair, amount=38000000000000000000 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x4F76B969...6bB5163cE |
0.084604350609752653 Eth
Nonce: 215
|
0.082752092494401853 Eth
Nonce: 216
| 0.0018522581153508 | ||
0x95222290...5CC4BAfe5
Miner
| (beaverbuild) | 17.73485280988833225 Eth | 17.73486255548361285 Eth | 0.0000097455952806 | |
0x9D2513F5...bD00105C2 | |||||
0xAf31Fd9C...4d8466205 |
Execution Trace
Staking.withdraw( tokenAddress=0xAf31Fd9C3B0350424BF96e551d2D1264d8466205, amount=38000000000000000000 )
-
UniswapV2Pair.transfer( to=0x4F76B969Fd570c5a5196f5eD5bcebD36bB5163cE, value=38000000000000000000 ) => ( True )
-
UniswapV2Pair.balanceOf( 0x9D2513F5b539DC774C66b28ACEc94e4bD00105C2 ) => ( 7691000000000000000000 )
withdraw[Staking (ln:116)]
sub[Staking (ln:118)]
transfer[Staking (ln:120)]
getCurrentEpoch[Staking (ln:122)]
epochIsInitialized[Staking (ln:124)]
manualEpochInit[Staking (ln:127)]
getCurrentEpoch[Staking (ln:185)]
epochIsInitialized[Staking (ln:192)]
epochIsInitialized[Staking (ln:193)]
ManualEpochInit[Staking (ln:198)]
balanceOf[Staking (ln:131)]
push[Staking (ln:138)]
Checkpoint[Staking (ln:138)]
sub[Staking (ln:139)]
sub[Staking (ln:146)]
getCheckpointEffectiveBalance[Staking (ln:151)]
div[Staking (ln:297)]
mul[Staking (ln:297)]
getCheckpointBalance[Staking (ln:297)]
div[Staking (ln:157)]
mul[Staking (ln:157)]
sub[Staking (ln:157)]
sub[Staking (ln:159)]
computeNewMultiplier[Staking (ln:160)]
sub[Staking (ln:167)]
sub[Staking (ln:168)]
getCheckpointEffectiveBalance[Staking (ln:173)]
div[Staking (ln:297)]
mul[Staking (ln:297)]
getCheckpointBalance[Staking (ln:297)]
sub[Staking (ln:174)]
sub[Staking (ln:174)]
Withdraw[Staking (ln:177)]
File 1 of 2: Staking
File 2 of 2: UniswapV2Pair
// SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.6.11; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@openzeppelin/contracts/math/SafeMath.sol"; import "@openzeppelin/contracts/utils/ReentrancyGuard.sol"; contract Staking is ReentrancyGuard { using SafeMath for uint256; uint128 constant private BASE_MULTIPLIER = uint128(1 * 10 ** 18); // timestamp for the epoch 1 // everything before that is considered epoch 0 which won't have a reward but allows for the initial stake uint256 public immutable epoch1Start; // duration of each epoch uint256 public immutable epochDuration; // holds the current balance of the user for each token mapping(address => mapping(address => uint256)) private balances; struct Pool { uint256 size; bool set; } // for each token, we store the total pool size mapping(address => mapping(uint256 => Pool)) private poolSize; // a checkpoint of the valid balance of a user for an epoch struct Checkpoint { uint128 epochId; uint128 multiplier; uint256 startBalance; uint256 newDeposits; } // balanceCheckpoints[user][token][] mapping(address => mapping(address => Checkpoint[])) private balanceCheckpoints; mapping(address => uint128) private lastWithdrawEpochId; event Deposit(address indexed user, address indexed tokenAddress, uint256 amount); event Withdraw(address indexed user, address indexed tokenAddress, uint256 amount); event ManualEpochInit(address indexed caller, uint128 indexed epochId, address[] tokens); event EmergencyWithdraw(address indexed user, address indexed tokenAddress, uint256 amount); constructor (uint256 _epoch1Start, uint256 _epochDuration) public { epoch1Start = _epoch1Start; epochDuration = _epochDuration; } /* * Stores `amount` of `tokenAddress` tokens for the `user` into the vault */ function deposit(address tokenAddress, uint256 amount) public nonReentrant { require(amount > 0, "Staking: Amount must be > 0"); IERC20 token = IERC20(tokenAddress); balances[msg.sender][tokenAddress] = balances[msg.sender][tokenAddress].add(amount); token.transferFrom(msg.sender, address(this), amount); // epoch logic uint128 currentEpoch = getCurrentEpoch(); uint128 currentMultiplier = currentEpochMultiplier(); uint256 balance = balances[msg.sender][tokenAddress]; if (!epochIsInitialized(tokenAddress, currentEpoch)) { address[] memory tokens = new address[](1); tokens[0] = tokenAddress; manualEpochInit(tokens, currentEpoch); } // update the next epoch pool size Pool storage pNextEpoch = poolSize[tokenAddress][currentEpoch + 1]; pNextEpoch.size = token.balanceOf(address(this)); pNextEpoch.set = true; Checkpoint[] storage checkpoints = balanceCheckpoints[msg.sender][tokenAddress]; uint256 balanceBefore = getEpochUserBalance(msg.sender, tokenAddress, currentEpoch); // if there's no checkpoint yet, it means the user didn't have any activity // we want to store checkpoints both for the current epoch and next epoch because // if a user does a withdraw, the current epoch can also be modified and // we don't want to insert another checkpoint in the middle of the array as that could be expensive if (checkpoints.length == 0) { checkpoints.push(Checkpoint(currentEpoch, currentMultiplier, 0, amount)); // next epoch => multiplier is 1, epoch deposits is 0 checkpoints.push(Checkpoint(currentEpoch + 1, BASE_MULTIPLIER, amount, 0)); } else { uint256 last = checkpoints.length - 1; // the last action happened in an older epoch (e.g. a deposit in epoch 3, current epoch is >=5) if (checkpoints[last].epochId < currentEpoch) { uint128 multiplier = computeNewMultiplier( getCheckpointBalance(checkpoints[last]), BASE_MULTIPLIER, amount, currentMultiplier ); checkpoints.push(Checkpoint(currentEpoch, multiplier, getCheckpointBalance(checkpoints[last]), amount)); checkpoints.push(Checkpoint(currentEpoch + 1, BASE_MULTIPLIER, balance, 0)); } // the last action happened in the previous epoch else if (checkpoints[last].epochId == currentEpoch) { checkpoints[last].multiplier = computeNewMultiplier( getCheckpointBalance(checkpoints[last]), checkpoints[last].multiplier, amount, currentMultiplier ); checkpoints[last].newDeposits = checkpoints[last].newDeposits.add(amount); checkpoints.push(Checkpoint(currentEpoch + 1, BASE_MULTIPLIER, balance, 0)); } // the last action happened in the current epoch else { if (last >= 1 && checkpoints[last - 1].epochId == currentEpoch) { checkpoints[last - 1].multiplier = computeNewMultiplier( getCheckpointBalance(checkpoints[last - 1]), checkpoints[last - 1].multiplier, amount, currentMultiplier ); checkpoints[last - 1].newDeposits = checkpoints[last - 1].newDeposits.add(amount); } checkpoints[last].startBalance = balance; } } uint256 balanceAfter = getEpochUserBalance(msg.sender, tokenAddress, currentEpoch); poolSize[tokenAddress][currentEpoch].size = poolSize[tokenAddress][currentEpoch].size.add(balanceAfter.sub(balanceBefore)); emit Deposit(msg.sender, tokenAddress, amount); } /* * Removes the deposit of the user and sends the amount of `tokenAddress` back to the `user` */ function withdraw(address tokenAddress, uint256 amount) public nonReentrant { require(balances[msg.sender][tokenAddress] >= amount, "Staking: balance too small"); balances[msg.sender][tokenAddress] = balances[msg.sender][tokenAddress].sub(amount); IERC20 token = IERC20(tokenAddress); token.transfer(msg.sender, amount); // epoch logic uint128 currentEpoch = getCurrentEpoch(); lastWithdrawEpochId[tokenAddress] = currentEpoch; if (!epochIsInitialized(tokenAddress, currentEpoch)) { address[] memory tokens = new address[](1); tokens[0] = tokenAddress; manualEpochInit(tokens, currentEpoch); } // update the pool size of the next epoch to its current balance Pool storage pNextEpoch = poolSize[tokenAddress][currentEpoch + 1]; pNextEpoch.size = token.balanceOf(address(this)); pNextEpoch.set = true; Checkpoint[] storage checkpoints = balanceCheckpoints[msg.sender][tokenAddress]; uint256 last = checkpoints.length - 1; // note: it's impossible to have a withdraw and no checkpoints because the checkpoints[last] will be out of bound and revert // there was a deposit in an older epoch (more than 1 behind [eg: previous 0, now 5]) but no other action since then if (checkpoints[last].epochId < currentEpoch) { checkpoints.push(Checkpoint(currentEpoch, BASE_MULTIPLIER, balances[msg.sender][tokenAddress], 0)); poolSize[tokenAddress][currentEpoch].size = poolSize[tokenAddress][currentEpoch].size.sub(amount); } // there was a deposit in the `epochId - 1` epoch => we have a checkpoint for the current epoch else if (checkpoints[last].epochId == currentEpoch) { checkpoints[last].startBalance = balances[msg.sender][tokenAddress]; checkpoints[last].newDeposits = 0; checkpoints[last].multiplier = BASE_MULTIPLIER; poolSize[tokenAddress][currentEpoch].size = poolSize[tokenAddress][currentEpoch].size.sub(amount); } // there was a deposit in the current epoch else { Checkpoint storage currentEpochCheckpoint = checkpoints[last - 1]; uint256 balanceBefore = getCheckpointEffectiveBalance(currentEpochCheckpoint); // in case of withdraw, we have 2 branches: // 1. the user withdraws less than he added in the current epoch // 2. the user withdraws more than he added in the current epoch (including 0) if (amount < currentEpochCheckpoint.newDeposits) { uint128 avgDepositMultiplier = uint128( balanceBefore.sub(currentEpochCheckpoint.startBalance).mul(BASE_MULTIPLIER).div(currentEpochCheckpoint.newDeposits) ); currentEpochCheckpoint.newDeposits = currentEpochCheckpoint.newDeposits.sub(amount); currentEpochCheckpoint.multiplier = computeNewMultiplier( currentEpochCheckpoint.startBalance, BASE_MULTIPLIER, currentEpochCheckpoint.newDeposits, avgDepositMultiplier ); } else { currentEpochCheckpoint.startBalance = currentEpochCheckpoint.startBalance.sub( amount.sub(currentEpochCheckpoint.newDeposits) ); currentEpochCheckpoint.newDeposits = 0; currentEpochCheckpoint.multiplier = BASE_MULTIPLIER; } uint256 balanceAfter = getCheckpointEffectiveBalance(currentEpochCheckpoint); poolSize[tokenAddress][currentEpoch].size = poolSize[tokenAddress][currentEpoch].size.sub(balanceBefore.sub(balanceAfter)); checkpoints[last].startBalance = balances[msg.sender][tokenAddress]; } emit Withdraw(msg.sender, tokenAddress, amount); } /* * manualEpochInit can be used by anyone to initialize an epoch based on the previous one * This is only applicable if there was no action (deposit/withdraw) in the current epoch. * Any deposit and withdraw will automatically initialize the current and next epoch. */ function manualEpochInit(address[] memory tokens, uint128 epochId) public { require(epochId <= getCurrentEpoch(), "can't init a future epoch"); for (uint i = 0; i < tokens.length; i++) { Pool storage p = poolSize[tokens[i]][epochId]; if (epochId == 0) { p.size = uint256(0); p.set = true; } else { require(!epochIsInitialized(tokens[i], epochId), "Staking: epoch already initialized"); require(epochIsInitialized(tokens[i], epochId - 1), "Staking: previous epoch not initialized"); p.size = poolSize[tokens[i]][epochId - 1].size; p.set = true; } } emit ManualEpochInit(msg.sender, epochId, tokens); } function emergencyWithdraw(address tokenAddress) public { require((getCurrentEpoch() - lastWithdrawEpochId[tokenAddress]) >= 10, "At least 10 epochs must pass without success"); uint256 totalUserBalance = balances[msg.sender][tokenAddress]; require(totalUserBalance > 0, "Amount must be > 0"); balances[msg.sender][tokenAddress] = 0; IERC20 token = IERC20(tokenAddress); token.transfer(msg.sender, totalUserBalance); emit EmergencyWithdraw(msg.sender, tokenAddress, totalUserBalance); } /* * Returns the valid balance of a user that was taken into consideration in the total pool size for the epoch * A deposit will only change the next epoch balance. * A withdraw will decrease the current epoch (and subsequent) balance. */ function getEpochUserBalance(address user, address token, uint128 epochId) public view returns (uint256) { Checkpoint[] storage checkpoints = balanceCheckpoints[user][token]; // if there are no checkpoints, it means the user never deposited any tokens, so the balance is 0 if (checkpoints.length == 0 || epochId < checkpoints[0].epochId) { return 0; } uint min = 0; uint max = checkpoints.length - 1; // shortcut for blocks newer than the latest checkpoint == current balance if (epochId >= checkpoints[max].epochId) { return getCheckpointEffectiveBalance(checkpoints[max]); } // binary search of the value in the array while (max > min) { uint mid = (max + min + 1) / 2; if (checkpoints[mid].epochId <= epochId) { min = mid; } else { max = mid - 1; } } return getCheckpointEffectiveBalance(checkpoints[min]); } /* * Returns the amount of `token` that the `user` has currently staked */ function balanceOf(address user, address token) public view returns (uint256) { return balances[user][token]; } /* * Returns the id of the current epoch derived from block.timestamp */ function getCurrentEpoch() public view returns (uint128) { if (block.timestamp < epoch1Start) { return 0; } return uint128((block.timestamp - epoch1Start) / epochDuration + 1); } /* * Returns the total amount of `tokenAddress` that was locked from beginning to end of epoch identified by `epochId` */ function getEpochPoolSize(address tokenAddress, uint128 epochId) public view returns (uint256) { // Premises: // 1. it's impossible to have gaps of uninitialized epochs // - any deposit or withdraw initialize the current epoch which requires the previous one to be initialized if (epochIsInitialized(tokenAddress, epochId)) { return poolSize[tokenAddress][epochId].size; } // epochId not initialized and epoch 0 not initialized => there was never any action on this pool if (!epochIsInitialized(tokenAddress, 0)) { return 0; } // epoch 0 is initialized => there was an action at some point but none that initialized the epochId // which means the current pool size is equal to the current balance of token held by the staking contract IERC20 token = IERC20(tokenAddress); return token.balanceOf(address(this)); } /* * Returns the percentage of time left in the current epoch */ function currentEpochMultiplier() public view returns (uint128) { uint128 currentEpoch = getCurrentEpoch(); uint256 currentEpochEnd = epoch1Start + currentEpoch * epochDuration; uint256 timeLeft = currentEpochEnd - block.timestamp; uint128 multiplier = uint128(timeLeft * BASE_MULTIPLIER / epochDuration); return multiplier; } function computeNewMultiplier(uint256 prevBalance, uint128 prevMultiplier, uint256 amount, uint128 currentMultiplier) public pure returns (uint128) { uint256 prevAmount = prevBalance.mul(prevMultiplier).div(BASE_MULTIPLIER); uint256 addAmount = amount.mul(currentMultiplier).div(BASE_MULTIPLIER); uint128 newMultiplier = uint128(prevAmount.add(addAmount).mul(BASE_MULTIPLIER).div(prevBalance.add(amount))); return newMultiplier; } /* * Checks if an epoch is initialized, meaning we have a pool size set for it */ function epochIsInitialized(address token, uint128 epochId) public view returns (bool) { return poolSize[token][epochId].set; } function getCheckpointBalance(Checkpoint memory c) internal pure returns (uint256) { return c.startBalance.add(c.newDeposits); } function getCheckpointEffectiveBalance(Checkpoint memory c) internal pure returns (uint256) { return getCheckpointBalance(c).mul(c.multiplier).div(BASE_MULTIPLIER); } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } /** * @dev Returns the substraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b > a) return (false, 0); return (true, a - b); } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a / b); } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a % b); } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SafeMath: subtraction overflow"); return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) return 0; uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: division by zero"); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: modulo by zero"); return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); return a - b; } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryDiv}. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a % b; } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor () internal { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and make it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } }
File 2 of 2: UniswapV2Pair
// File: contracts/interfaces/IUniswapV2Pair.sol pragma solidity >=0.5.0; interface IUniswapV2Pair { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); function DOMAIN_SEPARATOR() external view returns (bytes32); function PERMIT_TYPEHASH() external pure returns (bytes32); function nonces(address owner) external view returns (uint); function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external; event Mint(address indexed sender, uint amount0, uint amount1); event Burn(address indexed sender, uint amount0, uint amount1, address indexed to); event Swap( address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, address indexed to ); event Sync(uint112 reserve0, uint112 reserve1); function MINIMUM_LIQUIDITY() external pure returns (uint); function factory() external view returns (address); function token0() external view returns (address); function token1() external view returns (address); function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast); function price0CumulativeLast() external view returns (uint); function price1CumulativeLast() external view returns (uint); function kLast() external view returns (uint); function mint(address to) external returns (uint liquidity); function burn(address to) external returns (uint amount0, uint amount1); function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external; function skim(address to) external; function sync() external; function initialize(address, address) external; } // File: contracts/interfaces/IUniswapV2ERC20.sol pragma solidity >=0.5.0; interface IUniswapV2ERC20 { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); function DOMAIN_SEPARATOR() external view returns (bytes32); function PERMIT_TYPEHASH() external pure returns (bytes32); function nonces(address owner) external view returns (uint); function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external; } // File: contracts/libraries/SafeMath.sol pragma solidity =0.5.16; // a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math) library SafeMath { function add(uint x, uint y) internal pure returns (uint z) { require((z = x + y) >= x, 'ds-math-add-overflow'); } function sub(uint x, uint y) internal pure returns (uint z) { require((z = x - y) <= x, 'ds-math-sub-underflow'); } function mul(uint x, uint y) internal pure returns (uint z) { require(y == 0 || (z = x * y) / y == x, 'ds-math-mul-overflow'); } } // File: contracts/UniswapV2ERC20.sol pragma solidity =0.5.16; contract UniswapV2ERC20 is IUniswapV2ERC20 { using SafeMath for uint; string public constant name = 'Uniswap V2'; string public constant symbol = 'UNI-V2'; uint8 public constant decimals = 18; uint public totalSupply; mapping(address => uint) public balanceOf; mapping(address => mapping(address => uint)) public allowance; bytes32 public DOMAIN_SEPARATOR; // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9; mapping(address => uint) public nonces; event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); constructor() public { uint chainId; assembly { chainId := chainid } DOMAIN_SEPARATOR = keccak256( abi.encode( keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)'), keccak256(bytes(name)), keccak256(bytes('1')), chainId, address(this) ) ); } function _mint(address to, uint value) internal { totalSupply = totalSupply.add(value); balanceOf[to] = balanceOf[to].add(value); emit Transfer(address(0), to, value); } function _burn(address from, uint value) internal { balanceOf[from] = balanceOf[from].sub(value); totalSupply = totalSupply.sub(value); emit Transfer(from, address(0), value); } function _approve(address owner, address spender, uint value) private { allowance[owner][spender] = value; emit Approval(owner, spender, value); } function _transfer(address from, address to, uint value) private { balanceOf[from] = balanceOf[from].sub(value); balanceOf[to] = balanceOf[to].add(value); emit Transfer(from, to, value); } function approve(address spender, uint value) external returns (bool) { _approve(msg.sender, spender, value); return true; } function transfer(address to, uint value) external returns (bool) { _transfer(msg.sender, to, value); return true; } function transferFrom(address from, address to, uint value) external returns (bool) { if (allowance[from][msg.sender] != uint(-1)) { allowance[from][msg.sender] = allowance[from][msg.sender].sub(value); } _transfer(from, to, value); return true; } function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external { require(deadline >= block.timestamp, 'UniswapV2: EXPIRED'); bytes32 digest = keccak256( abi.encodePacked( '\x19\x01', DOMAIN_SEPARATOR, keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline)) ) ); address recoveredAddress = ecrecover(digest, v, r, s); require(recoveredAddress != address(0) && recoveredAddress == owner, 'UniswapV2: INVALID_SIGNATURE'); _approve(owner, spender, value); } } // File: contracts/libraries/Math.sol pragma solidity =0.5.16; // a library for performing various math operations library Math { function min(uint x, uint y) internal pure returns (uint z) { z = x < y ? x : y; } // babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method) function sqrt(uint y) internal pure returns (uint z) { if (y > 3) { z = y; uint x = y / 2 + 1; while (x < z) { z = x; x = (y / x + x) / 2; } } else if (y != 0) { z = 1; } } } // File: contracts/libraries/UQ112x112.sol pragma solidity =0.5.16; // a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format)) // range: [0, 2**112 - 1] // resolution: 1 / 2**112 library UQ112x112 { uint224 constant Q112 = 2**112; // encode a uint112 as a UQ112x112 function encode(uint112 y) internal pure returns (uint224 z) { z = uint224(y) * Q112; // never overflows } // divide a UQ112x112 by a uint112, returning a UQ112x112 function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) { z = x / uint224(y); } } // File: contracts/interfaces/IERC20.sol pragma solidity >=0.5.0; interface IERC20 { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external view returns (string memory); function symbol() external view returns (string memory); function decimals() external view returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); } // File: contracts/interfaces/IUniswapV2Factory.sol pragma solidity >=0.5.0; interface IUniswapV2Factory { event PairCreated(address indexed token0, address indexed token1, address pair, uint); function feeTo() external view returns (address); function feeToSetter() external view returns (address); function getPair(address tokenA, address tokenB) external view returns (address pair); function allPairs(uint) external view returns (address pair); function allPairsLength() external view returns (uint); function createPair(address tokenA, address tokenB) external returns (address pair); function setFeeTo(address) external; function setFeeToSetter(address) external; } // File: contracts/interfaces/IUniswapV2Callee.sol pragma solidity >=0.5.0; interface IUniswapV2Callee { function uniswapV2Call(address sender, uint amount0, uint amount1, bytes calldata data) external; } // File: contracts/UniswapV2Pair.sol pragma solidity =0.5.16; contract UniswapV2Pair is IUniswapV2Pair, UniswapV2ERC20 { using SafeMath for uint; using UQ112x112 for uint224; uint public constant MINIMUM_LIQUIDITY = 10**3; bytes4 private constant SELECTOR = bytes4(keccak256(bytes('transfer(address,uint256)'))); address public factory; address public token0; address public token1; uint112 private reserve0; // uses single storage slot, accessible via getReserves uint112 private reserve1; // uses single storage slot, accessible via getReserves uint32 private blockTimestampLast; // uses single storage slot, accessible via getReserves uint public price0CumulativeLast; uint public price1CumulativeLast; uint public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event uint private unlocked = 1; modifier lock() { require(unlocked == 1, 'UniswapV2: LOCKED'); unlocked = 0; _; unlocked = 1; } function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) { _reserve0 = reserve0; _reserve1 = reserve1; _blockTimestampLast = blockTimestampLast; } function _safeTransfer(address token, address to, uint value) private { (bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value)); require(success && (data.length == 0 || abi.decode(data, (bool))), 'UniswapV2: TRANSFER_FAILED'); } event Mint(address indexed sender, uint amount0, uint amount1); event Burn(address indexed sender, uint amount0, uint amount1, address indexed to); event Swap( address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, address indexed to ); event Sync(uint112 reserve0, uint112 reserve1); constructor() public { factory = msg.sender; } // called once by the factory at time of deployment function initialize(address _token0, address _token1) external { require(msg.sender == factory, 'UniswapV2: FORBIDDEN'); // sufficient check token0 = _token0; token1 = _token1; } // update reserves and, on the first call per block, price accumulators function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) private { require(balance0 <= uint112(-1) && balance1 <= uint112(-1), 'UniswapV2: OVERFLOW'); uint32 blockTimestamp = uint32(block.timestamp % 2**32); uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) { // * never overflows, and + overflow is desired price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed; price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed; } reserve0 = uint112(balance0); reserve1 = uint112(balance1); blockTimestampLast = blockTimestamp; emit Sync(reserve0, reserve1); } // if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k) function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) { address feeTo = IUniswapV2Factory(factory).feeTo(); feeOn = feeTo != address(0); uint _kLast = kLast; // gas savings if (feeOn) { if (_kLast != 0) { uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1)); uint rootKLast = Math.sqrt(_kLast); if (rootK > rootKLast) { uint numerator = totalSupply.mul(rootK.sub(rootKLast)); uint denominator = rootK.mul(5).add(rootKLast); uint liquidity = numerator / denominator; if (liquidity > 0) _mint(feeTo, liquidity); } } } else if (_kLast != 0) { kLast = 0; } } // this low-level function should be called from a contract which performs important safety checks function mint(address to) external lock returns (uint liquidity) { (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings uint balance0 = IERC20(token0).balanceOf(address(this)); uint balance1 = IERC20(token1).balanceOf(address(this)); uint amount0 = balance0.sub(_reserve0); uint amount1 = balance1.sub(_reserve1); bool feeOn = _mintFee(_reserve0, _reserve1); uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee if (_totalSupply == 0) { liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY); _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens } else { liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1); } require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED'); _mint(to, liquidity); _update(balance0, balance1, _reserve0, _reserve1); if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date emit Mint(msg.sender, amount0, amount1); } // this low-level function should be called from a contract which performs important safety checks function burn(address to) external lock returns (uint amount0, uint amount1) { (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings address _token0 = token0; // gas savings address _token1 = token1; // gas savings uint balance0 = IERC20(_token0).balanceOf(address(this)); uint balance1 = IERC20(_token1).balanceOf(address(this)); uint liquidity = balanceOf[address(this)]; bool feeOn = _mintFee(_reserve0, _reserve1); uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED'); _burn(address(this), liquidity); _safeTransfer(_token0, to, amount0); _safeTransfer(_token1, to, amount1); balance0 = IERC20(_token0).balanceOf(address(this)); balance1 = IERC20(_token1).balanceOf(address(this)); _update(balance0, balance1, _reserve0, _reserve1); if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date emit Burn(msg.sender, amount0, amount1, to); } // this low-level function should be called from a contract which performs important safety checks function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock { require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT'); (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY'); uint balance0; uint balance1; { // scope for _token{0,1}, avoids stack too deep errors address _token0 = token0; address _token1 = token1; require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO'); if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data); balance0 = IERC20(_token0).balanceOf(address(this)); balance1 = IERC20(_token1).balanceOf(address(this)); } uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0; uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0; require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT'); { // scope for reserve{0,1}Adjusted, avoids stack too deep errors uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3)); uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3)); require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K'); } _update(balance0, balance1, _reserve0, _reserve1); emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to); } // force balances to match reserves function skim(address to) external lock { address _token0 = token0; // gas savings address _token1 = token1; // gas savings _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0)); _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1)); } // force reserves to match balances function sync() external lock { _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1); } }