ETH Price: $2,426.92 (-0.30%)

Transaction Decoder

Block:
19508976 at Mar-25-2024 03:56:11 AM +UTC
Transaction Fee:
0.0018522581153508 ETH $4.50
Gas Used:
136,200 Gas / 13.599545634 Gwei

Emitted Events:

493 UniswapV2Pair.Transfer( from=[Receiver] Staking, to=[Sender] 0x4f76b969fd570c5a5196f5ed5bcebd36bb5163ce, value=38000000000000000000 )
494 Staking.Withdraw( user=[Sender] 0x4f76b969fd570c5a5196f5ed5bcebd36bb5163ce, tokenAddress=UniswapV2Pair, amount=38000000000000000000 )

Account State Difference:

  Address   Before After State Difference Code
0x4F76B969...6bB5163cE
0.084604350609752653 Eth
Nonce: 215
0.082752092494401853 Eth
Nonce: 216
0.0018522581153508
(beaverbuild)
17.73485280988833225 Eth17.73486255548361285 Eth0.0000097455952806
0x9D2513F5...bD00105C2
0xAf31Fd9C...4d8466205

Execution Trace

Staking.withdraw( tokenAddress=0xAf31Fd9C3B0350424BF96e551d2D1264d8466205, amount=38000000000000000000 )
  • UniswapV2Pair.transfer( to=0x4F76B969Fd570c5a5196f5eD5bcebD36bB5163cE, value=38000000000000000000 ) => ( True )
  • UniswapV2Pair.balanceOf( 0x9D2513F5b539DC774C66b28ACEc94e4bD00105C2 ) => ( 7691000000000000000000 )
    File 1 of 2: Staking
    // SPDX-License-Identifier: Apache-2.0
    pragma solidity ^0.6.11;
    import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import "@openzeppelin/contracts/math/SafeMath.sol";
    import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
    contract Staking is ReentrancyGuard {
        using SafeMath for uint256;
        uint128 constant private BASE_MULTIPLIER = uint128(1 * 10 ** 18);
        // timestamp for the epoch 1
        // everything before that is considered epoch 0 which won't have a reward but allows for the initial stake
        uint256 public immutable epoch1Start;
        // duration of each epoch
        uint256 public immutable epochDuration;
        // holds the current balance of the user for each token
        mapping(address => mapping(address => uint256)) private balances;
        struct Pool {
            uint256 size;
            bool set;
        }
        // for each token, we store the total pool size
        mapping(address => mapping(uint256 => Pool)) private poolSize;
        // a checkpoint of the valid balance of a user for an epoch
        struct Checkpoint {
            uint128 epochId;
            uint128 multiplier;
            uint256 startBalance;
            uint256 newDeposits;
        }
        // balanceCheckpoints[user][token][]
        mapping(address => mapping(address => Checkpoint[])) private balanceCheckpoints;
        mapping(address => uint128) private lastWithdrawEpochId;
        event Deposit(address indexed user, address indexed tokenAddress, uint256 amount);
        event Withdraw(address indexed user, address indexed tokenAddress, uint256 amount);
        event ManualEpochInit(address indexed caller, uint128 indexed epochId, address[] tokens);
        event EmergencyWithdraw(address indexed user, address indexed tokenAddress, uint256 amount);
        constructor (uint256 _epoch1Start, uint256 _epochDuration) public {
            epoch1Start = _epoch1Start;
            epochDuration = _epochDuration;
        }
        /*
         * Stores `amount` of `tokenAddress` tokens for the `user` into the vault
         */
        function deposit(address tokenAddress, uint256 amount) public nonReentrant {
            require(amount > 0, "Staking: Amount must be > 0");
            IERC20 token = IERC20(tokenAddress);
            balances[msg.sender][tokenAddress] = balances[msg.sender][tokenAddress].add(amount);
            token.transferFrom(msg.sender, address(this), amount);
            // epoch logic
            uint128 currentEpoch = getCurrentEpoch();
            uint128 currentMultiplier = currentEpochMultiplier();
            uint256 balance = balances[msg.sender][tokenAddress];
            if (!epochIsInitialized(tokenAddress, currentEpoch)) {
                address[] memory tokens = new address[](1);
                tokens[0] = tokenAddress;
                manualEpochInit(tokens, currentEpoch);
            }
            // update the next epoch pool size
            Pool storage pNextEpoch = poolSize[tokenAddress][currentEpoch + 1];
            pNextEpoch.size = token.balanceOf(address(this));
            pNextEpoch.set = true;
            Checkpoint[] storage checkpoints = balanceCheckpoints[msg.sender][tokenAddress];
            uint256 balanceBefore = getEpochUserBalance(msg.sender, tokenAddress, currentEpoch);
            // if there's no checkpoint yet, it means the user didn't have any activity
            // we want to store checkpoints both for the current epoch and next epoch because
            // if a user does a withdraw, the current epoch can also be modified and
            // we don't want to insert another checkpoint in the middle of the array as that could be expensive
            if (checkpoints.length == 0) {
                checkpoints.push(Checkpoint(currentEpoch, currentMultiplier, 0, amount));
                // next epoch => multiplier is 1, epoch deposits is 0
                checkpoints.push(Checkpoint(currentEpoch + 1, BASE_MULTIPLIER, amount, 0));
            } else {
                uint256 last = checkpoints.length - 1;
                // the last action happened in an older epoch (e.g. a deposit in epoch 3, current epoch is >=5)
                if (checkpoints[last].epochId < currentEpoch) {
                    uint128 multiplier = computeNewMultiplier(
                        getCheckpointBalance(checkpoints[last]),
                        BASE_MULTIPLIER,
                        amount,
                        currentMultiplier
                    );
                    checkpoints.push(Checkpoint(currentEpoch, multiplier, getCheckpointBalance(checkpoints[last]), amount));
                    checkpoints.push(Checkpoint(currentEpoch + 1, BASE_MULTIPLIER, balance, 0));
                }
                // the last action happened in the previous epoch
                else if (checkpoints[last].epochId == currentEpoch) {
                    checkpoints[last].multiplier = computeNewMultiplier(
                        getCheckpointBalance(checkpoints[last]),
                        checkpoints[last].multiplier,
                        amount,
                        currentMultiplier
                    );
                    checkpoints[last].newDeposits = checkpoints[last].newDeposits.add(amount);
                    checkpoints.push(Checkpoint(currentEpoch + 1, BASE_MULTIPLIER, balance, 0));
                }
                // the last action happened in the current epoch
                else {
                    if (last >= 1 && checkpoints[last - 1].epochId == currentEpoch) {
                        checkpoints[last - 1].multiplier = computeNewMultiplier(
                            getCheckpointBalance(checkpoints[last - 1]),
                            checkpoints[last - 1].multiplier,
                            amount,
                            currentMultiplier
                        );
                        checkpoints[last - 1].newDeposits = checkpoints[last - 1].newDeposits.add(amount);
                    }
                    checkpoints[last].startBalance = balance;
                }
            }
            uint256 balanceAfter = getEpochUserBalance(msg.sender, tokenAddress, currentEpoch);
            poolSize[tokenAddress][currentEpoch].size = poolSize[tokenAddress][currentEpoch].size.add(balanceAfter.sub(balanceBefore));
            emit Deposit(msg.sender, tokenAddress, amount);
        }
        /*
         * Removes the deposit of the user and sends the amount of `tokenAddress` back to the `user`
         */
        function withdraw(address tokenAddress, uint256 amount) public nonReentrant {
            require(balances[msg.sender][tokenAddress] >= amount, "Staking: balance too small");
            balances[msg.sender][tokenAddress] = balances[msg.sender][tokenAddress].sub(amount);
            IERC20 token = IERC20(tokenAddress);
            token.transfer(msg.sender, amount);
            // epoch logic
            uint128 currentEpoch = getCurrentEpoch();
            lastWithdrawEpochId[tokenAddress] = currentEpoch;
            if (!epochIsInitialized(tokenAddress, currentEpoch)) {
                address[] memory tokens = new address[](1);
                tokens[0] = tokenAddress;
                manualEpochInit(tokens, currentEpoch);
            }
            // update the pool size of the next epoch to its current balance
            Pool storage pNextEpoch = poolSize[tokenAddress][currentEpoch + 1];
            pNextEpoch.size = token.balanceOf(address(this));
            pNextEpoch.set = true;
            Checkpoint[] storage checkpoints = balanceCheckpoints[msg.sender][tokenAddress];
            uint256 last = checkpoints.length - 1;
            // note: it's impossible to have a withdraw and no checkpoints because the checkpoints[last] will be out of bound and revert
            // there was a deposit in an older epoch (more than 1 behind [eg: previous 0, now 5]) but no other action since then
            if (checkpoints[last].epochId < currentEpoch) {
                checkpoints.push(Checkpoint(currentEpoch, BASE_MULTIPLIER, balances[msg.sender][tokenAddress], 0));
                poolSize[tokenAddress][currentEpoch].size = poolSize[tokenAddress][currentEpoch].size.sub(amount);
            }
            // there was a deposit in the `epochId - 1` epoch => we have a checkpoint for the current epoch
            else if (checkpoints[last].epochId == currentEpoch) {
                checkpoints[last].startBalance = balances[msg.sender][tokenAddress];
                checkpoints[last].newDeposits = 0;
                checkpoints[last].multiplier = BASE_MULTIPLIER;
                poolSize[tokenAddress][currentEpoch].size = poolSize[tokenAddress][currentEpoch].size.sub(amount);
            }
            // there was a deposit in the current epoch
            else {
                Checkpoint storage currentEpochCheckpoint = checkpoints[last - 1];
                uint256 balanceBefore = getCheckpointEffectiveBalance(currentEpochCheckpoint);
                // in case of withdraw, we have 2 branches:
                // 1. the user withdraws less than he added in the current epoch
                // 2. the user withdraws more than he added in the current epoch (including 0)
                if (amount < currentEpochCheckpoint.newDeposits) {
                    uint128 avgDepositMultiplier = uint128(
                        balanceBefore.sub(currentEpochCheckpoint.startBalance).mul(BASE_MULTIPLIER).div(currentEpochCheckpoint.newDeposits)
                    );
                    currentEpochCheckpoint.newDeposits = currentEpochCheckpoint.newDeposits.sub(amount);
                    currentEpochCheckpoint.multiplier = computeNewMultiplier(
                        currentEpochCheckpoint.startBalance,
                        BASE_MULTIPLIER,
                        currentEpochCheckpoint.newDeposits,
                        avgDepositMultiplier
                    );
                } else {
                    currentEpochCheckpoint.startBalance = currentEpochCheckpoint.startBalance.sub(
                        amount.sub(currentEpochCheckpoint.newDeposits)
                    );
                    currentEpochCheckpoint.newDeposits = 0;
                    currentEpochCheckpoint.multiplier = BASE_MULTIPLIER;
                }
                uint256 balanceAfter = getCheckpointEffectiveBalance(currentEpochCheckpoint);
                poolSize[tokenAddress][currentEpoch].size = poolSize[tokenAddress][currentEpoch].size.sub(balanceBefore.sub(balanceAfter));
                checkpoints[last].startBalance = balances[msg.sender][tokenAddress];
            }
            emit Withdraw(msg.sender, tokenAddress, amount);
        }
        /*
         * manualEpochInit can be used by anyone to initialize an epoch based on the previous one
         * This is only applicable if there was no action (deposit/withdraw) in the current epoch.
         * Any deposit and withdraw will automatically initialize the current and next epoch.
         */
        function manualEpochInit(address[] memory tokens, uint128 epochId) public {
            require(epochId <= getCurrentEpoch(), "can't init a future epoch");
            for (uint i = 0; i < tokens.length; i++) {
                Pool storage p = poolSize[tokens[i]][epochId];
                if (epochId == 0) {
                    p.size = uint256(0);
                    p.set = true;
                } else {
                    require(!epochIsInitialized(tokens[i], epochId), "Staking: epoch already initialized");
                    require(epochIsInitialized(tokens[i], epochId - 1), "Staking: previous epoch not initialized");
                    p.size = poolSize[tokens[i]][epochId - 1].size;
                    p.set = true;
                }
            }
            emit ManualEpochInit(msg.sender, epochId, tokens);
        }
        function emergencyWithdraw(address tokenAddress) public {
            require((getCurrentEpoch() - lastWithdrawEpochId[tokenAddress]) >= 10, "At least 10 epochs must pass without success");
            uint256 totalUserBalance = balances[msg.sender][tokenAddress];
            require(totalUserBalance > 0, "Amount must be > 0");
            balances[msg.sender][tokenAddress] = 0;
            IERC20 token = IERC20(tokenAddress);
            token.transfer(msg.sender, totalUserBalance);
            emit EmergencyWithdraw(msg.sender, tokenAddress, totalUserBalance);
        }
        /*
         * Returns the valid balance of a user that was taken into consideration in the total pool size for the epoch
         * A deposit will only change the next epoch balance.
         * A withdraw will decrease the current epoch (and subsequent) balance.
         */
        function getEpochUserBalance(address user, address token, uint128 epochId) public view returns (uint256) {
            Checkpoint[] storage checkpoints = balanceCheckpoints[user][token];
            // if there are no checkpoints, it means the user never deposited any tokens, so the balance is 0
            if (checkpoints.length == 0 || epochId < checkpoints[0].epochId) {
                return 0;
            }
            uint min = 0;
            uint max = checkpoints.length - 1;
            // shortcut for blocks newer than the latest checkpoint == current balance
            if (epochId >= checkpoints[max].epochId) {
                return getCheckpointEffectiveBalance(checkpoints[max]);
            }
            // binary search of the value in the array
            while (max > min) {
                uint mid = (max + min + 1) / 2;
                if (checkpoints[mid].epochId <= epochId) {
                    min = mid;
                } else {
                    max = mid - 1;
                }
            }
            return getCheckpointEffectiveBalance(checkpoints[min]);
        }
        /*
         * Returns the amount of `token` that the `user` has currently staked
         */
        function balanceOf(address user, address token) public view returns (uint256) {
            return balances[user][token];
        }
        /*
         * Returns the id of the current epoch derived from block.timestamp
         */
        function getCurrentEpoch() public view returns (uint128) {
            if (block.timestamp < epoch1Start) {
                return 0;
            }
            return uint128((block.timestamp - epoch1Start) / epochDuration + 1);
        }
        /*
         * Returns the total amount of `tokenAddress` that was locked from beginning to end of epoch identified by `epochId`
         */
        function getEpochPoolSize(address tokenAddress, uint128 epochId) public view returns (uint256) {
            // Premises:
            // 1. it's impossible to have gaps of uninitialized epochs
            // - any deposit or withdraw initialize the current epoch which requires the previous one to be initialized
            if (epochIsInitialized(tokenAddress, epochId)) {
                return poolSize[tokenAddress][epochId].size;
            }
            // epochId not initialized and epoch 0 not initialized => there was never any action on this pool
            if (!epochIsInitialized(tokenAddress, 0)) {
                return 0;
            }
            // epoch 0 is initialized => there was an action at some point but none that initialized the epochId
            // which means the current pool size is equal to the current balance of token held by the staking contract
            IERC20 token = IERC20(tokenAddress);
            return token.balanceOf(address(this));
        }
        /*
         * Returns the percentage of time left in the current epoch
         */
        function currentEpochMultiplier() public view returns (uint128) {
            uint128 currentEpoch = getCurrentEpoch();
            uint256 currentEpochEnd = epoch1Start + currentEpoch * epochDuration;
            uint256 timeLeft = currentEpochEnd - block.timestamp;
            uint128 multiplier = uint128(timeLeft * BASE_MULTIPLIER / epochDuration);
            return multiplier;
        }
        function computeNewMultiplier(uint256 prevBalance, uint128 prevMultiplier, uint256 amount, uint128 currentMultiplier) public pure returns (uint128) {
            uint256 prevAmount = prevBalance.mul(prevMultiplier).div(BASE_MULTIPLIER);
            uint256 addAmount = amount.mul(currentMultiplier).div(BASE_MULTIPLIER);
            uint128 newMultiplier = uint128(prevAmount.add(addAmount).mul(BASE_MULTIPLIER).div(prevBalance.add(amount)));
            return newMultiplier;
        }
        /*
         * Checks if an epoch is initialized, meaning we have a pool size set for it
         */
        function epochIsInitialized(address token, uint128 epochId) public view returns (bool) {
            return poolSize[token][epochId].set;
        }
        function getCheckpointBalance(Checkpoint memory c) internal pure returns (uint256) {
            return c.startBalance.add(c.newDeposits);
        }
        function getCheckpointEffectiveBalance(Checkpoint memory c) internal pure returns (uint256) {
            return getCheckpointBalance(c).mul(c.multiplier).div(BASE_MULTIPLIER);
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.6.0 <0.8.0;
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Moves `amount` tokens from the caller's account to `recipient`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address recipient, uint256 amount) external returns (bool);
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
        /**
         * @dev Moves `amount` tokens from `sender` to `recipient` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    }
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.6.0 <0.8.0;
    /**
     * @dev Wrappers over Solidity's arithmetic operations with added overflow
     * checks.
     *
     * Arithmetic operations in Solidity wrap on overflow. This can easily result
     * in bugs, because programmers usually assume that an overflow raises an
     * error, which is the standard behavior in high level programming languages.
     * `SafeMath` restores this intuition by reverting the transaction when an
     * operation overflows.
     *
     * Using this library instead of the unchecked operations eliminates an entire
     * class of bugs, so it's recommended to use it always.
     */
    library SafeMath {
        /**
         * @dev Returns the addition of two unsigned integers, with an overflow flag.
         *
         * _Available since v3.4._
         */
        function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
        /**
         * @dev Returns the substraction of two unsigned integers, with an overflow flag.
         *
         * _Available since v3.4._
         */
        function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
        /**
         * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
         *
         * _Available since v3.4._
         */
        function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
        /**
         * @dev Returns the division of two unsigned integers, with a division by zero flag.
         *
         * _Available since v3.4._
         */
        function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
        /**
         * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
         *
         * _Available since v3.4._
         */
        function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
        /**
         * @dev Returns the addition of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `+` operator.
         *
         * Requirements:
         *
         * - Addition cannot overflow.
         */
        function add(uint256 a, uint256 b) internal pure returns (uint256) {
            uint256 c = a + b;
            require(c >= a, "SafeMath: addition overflow");
            return c;
        }
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         *
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
            require(b <= a, "SafeMath: subtraction overflow");
            return a - b;
        }
        /**
         * @dev Returns the multiplication of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `*` operator.
         *
         * Requirements:
         *
         * - Multiplication cannot overflow.
         */
        function mul(uint256 a, uint256 b) internal pure returns (uint256) {
            if (a == 0) return 0;
            uint256 c = a * b;
            require(c / a == b, "SafeMath: multiplication overflow");
            return c;
        }
        /**
         * @dev Returns the integer division of two unsigned integers, reverting on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b) internal pure returns (uint256) {
            require(b > 0, "SafeMath: division by zero");
            return a / b;
        }
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * reverting when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b) internal pure returns (uint256) {
            require(b > 0, "SafeMath: modulo by zero");
            return a % b;
        }
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
         * overflow (when the result is negative).
         *
         * CAUTION: This function is deprecated because it requires allocating memory for the error
         * message unnecessarily. For custom revert reasons use {trySub}.
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         *
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b <= a, errorMessage);
            return a - b;
        }
        /**
         * @dev Returns the integer division of two unsigned integers, reverting with custom message on
         * division by zero. The result is rounded towards zero.
         *
         * CAUTION: This function is deprecated because it requires allocating memory for the error
         * message unnecessarily. For custom revert reasons use {tryDiv}.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b > 0, errorMessage);
            return a / b;
        }
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * reverting with custom message when dividing by zero.
         *
         * CAUTION: This function is deprecated because it requires allocating memory for the error
         * message unnecessarily. For custom revert reasons use {tryMod}.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b > 0, errorMessage);
            return a % b;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.6.0 <0.8.0;
    /**
     * @dev Contract module that helps prevent reentrant calls to a function.
     *
     * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
     * available, which can be applied to functions to make sure there are no nested
     * (reentrant) calls to them.
     *
     * Note that because there is a single `nonReentrant` guard, functions marked as
     * `nonReentrant` may not call one another. This can be worked around by making
     * those functions `private`, and then adding `external` `nonReentrant` entry
     * points to them.
     *
     * TIP: If you would like to learn more about reentrancy and alternative ways
     * to protect against it, check out our blog post
     * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
     */
    abstract contract ReentrancyGuard {
        // Booleans are more expensive than uint256 or any type that takes up a full
        // word because each write operation emits an extra SLOAD to first read the
        // slot's contents, replace the bits taken up by the boolean, and then write
        // back. This is the compiler's defense against contract upgrades and
        // pointer aliasing, and it cannot be disabled.
        // The values being non-zero value makes deployment a bit more expensive,
        // but in exchange the refund on every call to nonReentrant will be lower in
        // amount. Since refunds are capped to a percentage of the total
        // transaction's gas, it is best to keep them low in cases like this one, to
        // increase the likelihood of the full refund coming into effect.
        uint256 private constant _NOT_ENTERED = 1;
        uint256 private constant _ENTERED = 2;
        uint256 private _status;
        constructor () internal {
            _status = _NOT_ENTERED;
        }
        /**
         * @dev Prevents a contract from calling itself, directly or indirectly.
         * Calling a `nonReentrant` function from another `nonReentrant`
         * function is not supported. It is possible to prevent this from happening
         * by making the `nonReentrant` function external, and make it call a
         * `private` function that does the actual work.
         */
        modifier nonReentrant() {
            // On the first call to nonReentrant, _notEntered will be true
            require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
            // Any calls to nonReentrant after this point will fail
            _status = _ENTERED;
            _;
            // By storing the original value once again, a refund is triggered (see
            // https://eips.ethereum.org/EIPS/eip-2200)
            _status = _NOT_ENTERED;
        }
    }
    

    File 2 of 2: UniswapV2Pair
    // File: contracts/interfaces/IUniswapV2Pair.sol
    
    pragma solidity >=0.5.0;
    
    interface IUniswapV2Pair {
        event Approval(address indexed owner, address indexed spender, uint value);
        event Transfer(address indexed from, address indexed to, uint value);
    
        function name() external pure returns (string memory);
        function symbol() external pure returns (string memory);
        function decimals() external pure returns (uint8);
        function totalSupply() external view returns (uint);
        function balanceOf(address owner) external view returns (uint);
        function allowance(address owner, address spender) external view returns (uint);
    
        function approve(address spender, uint value) external returns (bool);
        function transfer(address to, uint value) external returns (bool);
        function transferFrom(address from, address to, uint value) external returns (bool);
    
        function DOMAIN_SEPARATOR() external view returns (bytes32);
        function PERMIT_TYPEHASH() external pure returns (bytes32);
        function nonces(address owner) external view returns (uint);
    
        function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
    
        event Mint(address indexed sender, uint amount0, uint amount1);
        event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
        event Swap(
            address indexed sender,
            uint amount0In,
            uint amount1In,
            uint amount0Out,
            uint amount1Out,
            address indexed to
        );
        event Sync(uint112 reserve0, uint112 reserve1);
    
        function MINIMUM_LIQUIDITY() external pure returns (uint);
        function factory() external view returns (address);
        function token0() external view returns (address);
        function token1() external view returns (address);
        function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
        function price0CumulativeLast() external view returns (uint);
        function price1CumulativeLast() external view returns (uint);
        function kLast() external view returns (uint);
    
        function mint(address to) external returns (uint liquidity);
        function burn(address to) external returns (uint amount0, uint amount1);
        function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
        function skim(address to) external;
        function sync() external;
    
        function initialize(address, address) external;
    }
    
    // File: contracts/interfaces/IUniswapV2ERC20.sol
    
    pragma solidity >=0.5.0;
    
    interface IUniswapV2ERC20 {
        event Approval(address indexed owner, address indexed spender, uint value);
        event Transfer(address indexed from, address indexed to, uint value);
    
        function name() external pure returns (string memory);
        function symbol() external pure returns (string memory);
        function decimals() external pure returns (uint8);
        function totalSupply() external view returns (uint);
        function balanceOf(address owner) external view returns (uint);
        function allowance(address owner, address spender) external view returns (uint);
    
        function approve(address spender, uint value) external returns (bool);
        function transfer(address to, uint value) external returns (bool);
        function transferFrom(address from, address to, uint value) external returns (bool);
    
        function DOMAIN_SEPARATOR() external view returns (bytes32);
        function PERMIT_TYPEHASH() external pure returns (bytes32);
        function nonces(address owner) external view returns (uint);
    
        function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
    }
    
    // File: contracts/libraries/SafeMath.sol
    
    pragma solidity =0.5.16;
    
    // a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math)
    
    library SafeMath {
        function add(uint x, uint y) internal pure returns (uint z) {
            require((z = x + y) >= x, 'ds-math-add-overflow');
        }
    
        function sub(uint x, uint y) internal pure returns (uint z) {
            require((z = x - y) <= x, 'ds-math-sub-underflow');
        }
    
        function mul(uint x, uint y) internal pure returns (uint z) {
            require(y == 0 || (z = x * y) / y == x, 'ds-math-mul-overflow');
        }
    }
    
    // File: contracts/UniswapV2ERC20.sol
    
    pragma solidity =0.5.16;
    
    
    
    contract UniswapV2ERC20 is IUniswapV2ERC20 {
        using SafeMath for uint;
    
        string public constant name = 'Uniswap V2';
        string public constant symbol = 'UNI-V2';
        uint8 public constant decimals = 18;
        uint  public totalSupply;
        mapping(address => uint) public balanceOf;
        mapping(address => mapping(address => uint)) public allowance;
    
        bytes32 public DOMAIN_SEPARATOR;
        // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
        bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
        mapping(address => uint) public nonces;
    
        event Approval(address indexed owner, address indexed spender, uint value);
        event Transfer(address indexed from, address indexed to, uint value);
    
        constructor() public {
            uint chainId;
            assembly {
                chainId := chainid
            }
            DOMAIN_SEPARATOR = keccak256(
                abi.encode(
                    keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)'),
                    keccak256(bytes(name)),
                    keccak256(bytes('1')),
                    chainId,
                    address(this)
                )
            );
        }
    
        function _mint(address to, uint value) internal {
            totalSupply = totalSupply.add(value);
            balanceOf[to] = balanceOf[to].add(value);
            emit Transfer(address(0), to, value);
        }
    
        function _burn(address from, uint value) internal {
            balanceOf[from] = balanceOf[from].sub(value);
            totalSupply = totalSupply.sub(value);
            emit Transfer(from, address(0), value);
        }
    
        function _approve(address owner, address spender, uint value) private {
            allowance[owner][spender] = value;
            emit Approval(owner, spender, value);
        }
    
        function _transfer(address from, address to, uint value) private {
            balanceOf[from] = balanceOf[from].sub(value);
            balanceOf[to] = balanceOf[to].add(value);
            emit Transfer(from, to, value);
        }
    
        function approve(address spender, uint value) external returns (bool) {
            _approve(msg.sender, spender, value);
            return true;
        }
    
        function transfer(address to, uint value) external returns (bool) {
            _transfer(msg.sender, to, value);
            return true;
        }
    
        function transferFrom(address from, address to, uint value) external returns (bool) {
            if (allowance[from][msg.sender] != uint(-1)) {
                allowance[from][msg.sender] = allowance[from][msg.sender].sub(value);
            }
            _transfer(from, to, value);
            return true;
        }
    
        function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external {
            require(deadline >= block.timestamp, 'UniswapV2: EXPIRED');
            bytes32 digest = keccak256(
                abi.encodePacked(
                    '\x19\x01',
                    DOMAIN_SEPARATOR,
                    keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline))
                )
            );
            address recoveredAddress = ecrecover(digest, v, r, s);
            require(recoveredAddress != address(0) && recoveredAddress == owner, 'UniswapV2: INVALID_SIGNATURE');
            _approve(owner, spender, value);
        }
    }
    
    // File: contracts/libraries/Math.sol
    
    pragma solidity =0.5.16;
    
    // a library for performing various math operations
    
    library Math {
        function min(uint x, uint y) internal pure returns (uint z) {
            z = x < y ? x : y;
        }
    
        // babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method)
        function sqrt(uint y) internal pure returns (uint z) {
            if (y > 3) {
                z = y;
                uint x = y / 2 + 1;
                while (x < z) {
                    z = x;
                    x = (y / x + x) / 2;
                }
            } else if (y != 0) {
                z = 1;
            }
        }
    }
    
    // File: contracts/libraries/UQ112x112.sol
    
    pragma solidity =0.5.16;
    
    // a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format))
    
    // range: [0, 2**112 - 1]
    // resolution: 1 / 2**112
    
    library UQ112x112 {
        uint224 constant Q112 = 2**112;
    
        // encode a uint112 as a UQ112x112
        function encode(uint112 y) internal pure returns (uint224 z) {
            z = uint224(y) * Q112; // never overflows
        }
    
        // divide a UQ112x112 by a uint112, returning a UQ112x112
        function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) {
            z = x / uint224(y);
        }
    }
    
    // File: contracts/interfaces/IERC20.sol
    
    pragma solidity >=0.5.0;
    
    interface IERC20 {
        event Approval(address indexed owner, address indexed spender, uint value);
        event Transfer(address indexed from, address indexed to, uint value);
    
        function name() external view returns (string memory);
        function symbol() external view returns (string memory);
        function decimals() external view returns (uint8);
        function totalSupply() external view returns (uint);
        function balanceOf(address owner) external view returns (uint);
        function allowance(address owner, address spender) external view returns (uint);
    
        function approve(address spender, uint value) external returns (bool);
        function transfer(address to, uint value) external returns (bool);
        function transferFrom(address from, address to, uint value) external returns (bool);
    }
    
    // File: contracts/interfaces/IUniswapV2Factory.sol
    
    pragma solidity >=0.5.0;
    
    interface IUniswapV2Factory {
        event PairCreated(address indexed token0, address indexed token1, address pair, uint);
    
        function feeTo() external view returns (address);
        function feeToSetter() external view returns (address);
    
        function getPair(address tokenA, address tokenB) external view returns (address pair);
        function allPairs(uint) external view returns (address pair);
        function allPairsLength() external view returns (uint);
    
        function createPair(address tokenA, address tokenB) external returns (address pair);
    
        function setFeeTo(address) external;
        function setFeeToSetter(address) external;
    }
    
    // File: contracts/interfaces/IUniswapV2Callee.sol
    
    pragma solidity >=0.5.0;
    
    interface IUniswapV2Callee {
        function uniswapV2Call(address sender, uint amount0, uint amount1, bytes calldata data) external;
    }
    
    // File: contracts/UniswapV2Pair.sol
    
    pragma solidity =0.5.16;
    
    
    
    
    
    
    
    
    contract UniswapV2Pair is IUniswapV2Pair, UniswapV2ERC20 {
        using SafeMath  for uint;
        using UQ112x112 for uint224;
    
        uint public constant MINIMUM_LIQUIDITY = 10**3;
        bytes4 private constant SELECTOR = bytes4(keccak256(bytes('transfer(address,uint256)')));
    
        address public factory;
        address public token0;
        address public token1;
    
        uint112 private reserve0;           // uses single storage slot, accessible via getReserves
        uint112 private reserve1;           // uses single storage slot, accessible via getReserves
        uint32  private blockTimestampLast; // uses single storage slot, accessible via getReserves
    
        uint public price0CumulativeLast;
        uint public price1CumulativeLast;
        uint public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event
    
        uint private unlocked = 1;
        modifier lock() {
            require(unlocked == 1, 'UniswapV2: LOCKED');
            unlocked = 0;
            _;
            unlocked = 1;
        }
    
        function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) {
            _reserve0 = reserve0;
            _reserve1 = reserve1;
            _blockTimestampLast = blockTimestampLast;
        }
    
        function _safeTransfer(address token, address to, uint value) private {
            (bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value));
            require(success && (data.length == 0 || abi.decode(data, (bool))), 'UniswapV2: TRANSFER_FAILED');
        }
    
        event Mint(address indexed sender, uint amount0, uint amount1);
        event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
        event Swap(
            address indexed sender,
            uint amount0In,
            uint amount1In,
            uint amount0Out,
            uint amount1Out,
            address indexed to
        );
        event Sync(uint112 reserve0, uint112 reserve1);
    
        constructor() public {
            factory = msg.sender;
        }
    
        // called once by the factory at time of deployment
        function initialize(address _token0, address _token1) external {
            require(msg.sender == factory, 'UniswapV2: FORBIDDEN'); // sufficient check
            token0 = _token0;
            token1 = _token1;
        }
    
        // update reserves and, on the first call per block, price accumulators
        function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) private {
            require(balance0 <= uint112(-1) && balance1 <= uint112(-1), 'UniswapV2: OVERFLOW');
            uint32 blockTimestamp = uint32(block.timestamp % 2**32);
            uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired
            if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {
                // * never overflows, and + overflow is desired
                price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed;
                price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed;
            }
            reserve0 = uint112(balance0);
            reserve1 = uint112(balance1);
            blockTimestampLast = blockTimestamp;
            emit Sync(reserve0, reserve1);
        }
    
        // if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k)
        function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) {
            address feeTo = IUniswapV2Factory(factory).feeTo();
            feeOn = feeTo != address(0);
            uint _kLast = kLast; // gas savings
            if (feeOn) {
                if (_kLast != 0) {
                    uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1));
                    uint rootKLast = Math.sqrt(_kLast);
                    if (rootK > rootKLast) {
                        uint numerator = totalSupply.mul(rootK.sub(rootKLast));
                        uint denominator = rootK.mul(5).add(rootKLast);
                        uint liquidity = numerator / denominator;
                        if (liquidity > 0) _mint(feeTo, liquidity);
                    }
                }
            } else if (_kLast != 0) {
                kLast = 0;
            }
        }
    
        // this low-level function should be called from a contract which performs important safety checks
        function mint(address to) external lock returns (uint liquidity) {
            (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
            uint balance0 = IERC20(token0).balanceOf(address(this));
            uint balance1 = IERC20(token1).balanceOf(address(this));
            uint amount0 = balance0.sub(_reserve0);
            uint amount1 = balance1.sub(_reserve1);
    
            bool feeOn = _mintFee(_reserve0, _reserve1);
            uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
            if (_totalSupply == 0) {
                liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY);
               _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens
            } else {
                liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1);
            }
            require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED');
            _mint(to, liquidity);
    
            _update(balance0, balance1, _reserve0, _reserve1);
            if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
            emit Mint(msg.sender, amount0, amount1);
        }
    
        // this low-level function should be called from a contract which performs important safety checks
        function burn(address to) external lock returns (uint amount0, uint amount1) {
            (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
            address _token0 = token0;                                // gas savings
            address _token1 = token1;                                // gas savings
            uint balance0 = IERC20(_token0).balanceOf(address(this));
            uint balance1 = IERC20(_token1).balanceOf(address(this));
            uint liquidity = balanceOf[address(this)];
    
            bool feeOn = _mintFee(_reserve0, _reserve1);
            uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
            amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution
            amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution
            require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED');
            _burn(address(this), liquidity);
            _safeTransfer(_token0, to, amount0);
            _safeTransfer(_token1, to, amount1);
            balance0 = IERC20(_token0).balanceOf(address(this));
            balance1 = IERC20(_token1).balanceOf(address(this));
    
            _update(balance0, balance1, _reserve0, _reserve1);
            if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
            emit Burn(msg.sender, amount0, amount1, to);
        }
    
        // this low-level function should be called from a contract which performs important safety checks
        function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock {
            require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT');
            (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
            require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY');
    
            uint balance0;
            uint balance1;
            { // scope for _token{0,1}, avoids stack too deep errors
            address _token0 = token0;
            address _token1 = token1;
            require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO');
            if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens
            if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens
            if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data);
            balance0 = IERC20(_token0).balanceOf(address(this));
            balance1 = IERC20(_token1).balanceOf(address(this));
            }
            uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0;
            uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0;
            require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT');
            { // scope for reserve{0,1}Adjusted, avoids stack too deep errors
            uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3));
            uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3));
            require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K');
            }
    
            _update(balance0, balance1, _reserve0, _reserve1);
            emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);
        }
    
        // force balances to match reserves
        function skim(address to) external lock {
            address _token0 = token0; // gas savings
            address _token1 = token1; // gas savings
            _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0));
            _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1));
        }
    
        // force reserves to match balances
        function sync() external lock {
            _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1);
        }
    }