Transaction Hash:
Block:
19839847 at May-10-2024 01:11:11 PM +UTC
Transaction Fee:
0.002954529634275492 ETH
$8.05
Gas Used:
166,278 Gas / 17.768614214 Gwei
Emitted Events:
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x00000000...43aC78BA3 | (Uniswap Protocol: Permit2) | ||||
0x0B2b8Ef0...f9B8437F8 |
0.009995889495413121 Eth
Nonce: 12608
|
0.007041359861125453 Eth
Nonce: 12609
| 0.002954529634287668 | ||
0x1f9090aa...8e676c326
Miner
| 1.844168376503052336 Eth | 1.845933335273855592 Eth | 0.001764958770803256 | ||
0x37a8f295...61B83a327 | 0.00823126199577169 Eth | 0.009119572041574414 Eth | 0.000888310045802724 | ||
0x6F1cDbBb...acbAB6168 | (MEV Bot: 0x6f1…168) | 40.28228474966891941 Eth | 40.282284749668931586 Eth | 0.000000000000012176 | |
0x767FE9ED...959D7ca0E | |||||
0x7D59d5fc...85b24847c | 0.098752793220350357 Eth | 0.453188501495637465 Eth | 0.354435708275287108 | ||
0xC02aaA39...83C756Cc2 | 3,074,342.970798516775190109 Eth | 3,074,342.615474498454100277 Eth | 0.355324018321089832 |
Execution Trace
ETH 0.000000000000012176
MEV Bot: 0x6f1…168.82762f5c( )
ETH 0.000000000000012176
0x3ae7f0e40706fd60da1f6232575264cf4d4545e1.10dcd5e5( )
WETH9.withdraw( wad=355324018321089832 )
- ETH 0.355324018321089832
MEV Bot: 0x6f1…168.CALL( )
- ETH 0.355324018321089832
ETH 0.355324018321089832
ExclusiveDutchOrderReactor.execute( order=[{name:order, type:bytes, order:1, indexed:false, value:0x0000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000012000000000000000000000000000000000000000000000000000000000663E1CE300000000000000000000000000000000000000000000000000000000663E1D1F0000000000000000000000006F1CDBBB4D53D226CF4B917BF768B94ACBAB61680000000000000000000000000000000000000000000000000000000000000064000000000000000000000000767FE9EDC9E0DF98E07454847909B5E959D7CA0E000000000000000000000000000000000000000000000000A9D7DFE08CC9AFEB000000000000000000000000000000000000000000000000A9D7DFE08CC9AFEB00000000000000000000000000000000000000000000000000000000000002000000000000000000000000006000DA47483062A0D734BA3DC7576CE6A0B645C40000000000000000000000007D59D5FC2677D9114C9F082179E461285B24847C04683244293726382419871AB7013AAC8ED2C34E670ECCAE2C5483D690AB290100000000000000000000000000000000000000000000000000000000663E1D2B000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000C000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004EE6436EEDE5F2500000000000000000000000000000000000000000000000004DE7A22B9D678BF0000000000000000000000007D59D5FC2677D9114C9F082179E461285B24847C0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000329F496BBE7DB00000000000000000000000000000000000000000000000000031FBEA4B7650800000000000000000000000037A8F295612602F2774D331E562BE9E61B83A327, valueString:0x0000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000012000000000000000000000000000000000000000000000000000000000663E1CE300000000000000000000000000000000000000000000000000000000663E1D1F0000000000000000000000006F1CDBBB4D53D226CF4B917BF768B94ACBAB61680000000000000000000000000000000000000000000000000000000000000064000000000000000000000000767FE9EDC9E0DF98E07454847909B5E959D7CA0E000000000000000000000000000000000000000000000000A9D7DFE08CC9AFEB000000000000000000000000000000000000000000000000A9D7DFE08CC9AFEB00000000000000000000000000000000000000000000000000000000000002000000000000000000000000006000DA47483062A0D734BA3DC7576CE6A0B645C40000000000000000000000007D59D5FC2677D9114C9F082179E461285B24847C04683244293726382419871AB7013AAC8ED2C34E670ECCAE2C5483D690AB290100000000000000000000000000000000000000000000000000000000663E1D2B000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000C000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004EE6436EEDE5F2500000000000000000000000000000000000000000000000004DE7A22B9D678BF0000000000000000000000007D59D5FC2677D9114C9F082179E461285B24847C0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000329F496BBE7DB00000000000000000000000000000000000000000000000000031FBEA4B7650800000000000000000000000037A8F295612602F2774D331E562BE9E61B83A327}, {name:sig, type:bytes, order:2, indexed:false, value:0x346C9A9DC7B45E36169F15C26FB62A16141C07A4B30037D12E6861843DD9F6C47C8272A04918E66A9BE820E722D35B44E385D18DD674B8F12EFB04C8B3F3F1E21C, valueString:0x346C9A9DC7B45E36169F15C26FB62A16141C07A4B30037D12E6861843DD9F6C47C8272A04918E66A9BE820E722D35B44E385D18DD674B8F12EFB04C8B3F3F1E21C}] )
Permit2.permitWitnessTransferFrom( permit=[{name:permitted, type:tuple, order:1, indexed:false, value:[{name:token, type:address, order:1, indexed:false, value:0x767FE9EDC9E0dF98E07454847909b5E959D7ca0E, valueString:0x767FE9EDC9E0dF98E07454847909b5E959D7ca0E}, {name:amount, type:uint256, order:2, indexed:false, value:12238496667930308587, valueString:12238496667930308587}], valueString:[{name:token, type:address, order:1, indexed:false, value:0x767FE9EDC9E0dF98E07454847909b5E959D7ca0E, valueString:0x767FE9EDC9E0dF98E07454847909b5E959D7ca0E}, {name:amount, type:uint256, order:2, indexed:false, value:12238496667930308587, valueString:12238496667930308587}]}, {name:nonce, type:uint256, order:2, indexed:false, value:1993350414004221480325390121328771568516156989365521573830171557580384184577, valueString:1993350414004221480325390121328771568516156989365521573830171557580384184577}, {name:deadline, type:uint256, order:3, indexed:false, value:1715346731, valueString:1715346731}], transferDetails=[{name:to, type:address, order:1, indexed:false, value:0x6F1cDbBb4d53d226CF4B917bF768B94acbAB6168, valueString:0x6F1cDbBb4d53d226CF4B917bF768B94acbAB6168}, {name:requestedAmount, type:uint256, order:2, indexed:false, value:12238496667930308587, valueString:12238496667930308587}], owner=0x7D59d5fc2677d9114c9F082179E461285b24847c, witness=FC0D688CA03E860B85B25812240351C041F8CE31F01848356CE4D46F39075999, witnessTypeString=ExclusiveDutchOrder witness)DutchOutput(address token,uint256 startAmount,uint256 endAmount,address recipient)ExclusiveDutchOrder(OrderInfo info,uint256 decayStartTime,uint256 decayEndTime,address exclusiveFiller,uint256 exclusivityOverrideBps,address inputToken,uint256 inputStartAmount,uint256 inputEndAmount,DutchOutput[] outputs)OrderInfo(address reactor,address swapper,uint256 nonce,uint256 deadline,address additionalValidationContract,bytes additionalValidationData)TokenPermissions(address token,uint256 amount), signature=0x346C9A9DC7B45E36169F15C26FB62A16141C07A4B30037D12E6861843DD9F6C47C8272A04918E66A9BE820E722D35B44E385D18DD674B8F12EFB04C8B3F3F1E21C )
-
Null: 0x000...001.61b81bff( )
-
IlluviumERC20.transferFrom( _from=0x7D59d5fc2677d9114c9F082179E461285b24847c, _to=0x6F1cDbBb4d53d226CF4B917bF768B94acbAB6168, _value=12238496667930308587 ) => ( success=True )
-
- ETH 0.354435708275287108
0x7d59d5fc2677d9114c9f082179e461285b24847c.CALL( )
- ETH 0.000888310045802724
FeeCollector.CALL( )
File 1 of 5: WETH9
File 2 of 5: IlluviumERC20
File 3 of 5: ExclusiveDutchOrderReactor
File 4 of 5: Permit2
File 5 of 5: FeeCollector
// Copyright (C) 2015, 2016, 2017 Dapphub // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.4.18; contract WETH9 { string public name = "Wrapped Ether"; string public symbol = "WETH"; uint8 public decimals = 18; event Approval(address indexed src, address indexed guy, uint wad); event Transfer(address indexed src, address indexed dst, uint wad); event Deposit(address indexed dst, uint wad); event Withdrawal(address indexed src, uint wad); mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; function() public payable { deposit(); } function deposit() public payable { balanceOf[msg.sender] += msg.value; Deposit(msg.sender, msg.value); } function withdraw(uint wad) public { require(balanceOf[msg.sender] >= wad); balanceOf[msg.sender] -= wad; msg.sender.transfer(wad); Withdrawal(msg.sender, wad); } function totalSupply() public view returns (uint) { return this.balance; } function approve(address guy, uint wad) public returns (bool) { allowance[msg.sender][guy] = wad; Approval(msg.sender, guy, wad); return true; } function transfer(address dst, uint wad) public returns (bool) { return transferFrom(msg.sender, dst, wad); } function transferFrom(address src, address dst, uint wad) public returns (bool) { require(balanceOf[src] >= wad); if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) { require(allowance[src][msg.sender] >= wad); allowance[src][msg.sender] -= wad; } balanceOf[src] -= wad; balanceOf[dst] += wad; Transfer(src, dst, wad); return true; } } /* GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The GNU General Public License is a free, copyleft license for software and other kinds of works. The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions. Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free. The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS 0. Definitions. "This License" refers to version 3 of the GNU General Public License. "Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks. "The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you". "Licensees" and "recipients" may be individuals or organizations. To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a "modified version" of the earlier work or a work "based on" the earlier work. A "covered work" means either the unmodified Program or a work based on the Program. To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. To "convey" a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying. An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. 1. Source Code. The "source code" for a work means the preferred form of the work for making modifications to it. "Object code" means any non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language. The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it. The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source. The Corresponding Source for a work in source code form is that same work. 2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary. 3. Protecting Users' Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures. When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. 4. Conveying Verbatim Copies. You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program. You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee. 5. Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions: a) The work must carry prominent notices stating that you modified it, and giving a relevant date. b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to "keep intact all notices". c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it. d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so. A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an "aggregate" if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate. 6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways: a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange. b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge. c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements. e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product. "Installation Information" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made. If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM). The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying. 7. Additional Terms. "Additional permissions" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions. When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission. Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms: a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or d) Limiting the use for publicity purposes of names of licensors or authors of the material; or e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors. All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way. 8. Termination. You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so. 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License. An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it. 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's "contributor version". A contributor's "essential patent claims" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, "control" includes the right to grant patent sublicenses in a manner consistent with the requirements of this License. Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To "grant" such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. "Knowingly relying" means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid. If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it. A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. 12. No Surrender of Others' Freedom. If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program. 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such. 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program. Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version. 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. <one line to give the program's name and a brief idea of what it does.> Copyright (C) <year> <name of author> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. Also add information on how to contact you by electronic and paper mail. If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode: <program> Copyright (C) <year> <name of author> This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see <http://www.gnu.org/licenses/>. The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read <http://www.gnu.org/philosophy/why-not-lgpl.html>. */
File 2 of 5: IlluviumERC20
// SPDX-License-Identifier: MIT pragma solidity 0.8.1; /** * @title ERC20 token receiver interface * * @dev Interface for any contract that wants to support safe transfers * from ERC20 token smart contracts. * @dev Inspired by ERC721 and ERC223 token standards * * @dev See https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md * @dev See https://github.com/ethereum/EIPs/issues/223 * * @author Basil Gorin */ interface ERC20Receiver { /** * @notice Handle the receipt of a ERC20 token(s) * @dev The ERC20 smart contract calls this function on the recipient * after a successful transfer (`safeTransferFrom`). * This function MAY throw to revert and reject the transfer. * Return of other than the magic value MUST result in the transaction being reverted. * @notice The contract address is always the message sender. * A wallet/broker/auction application MUST implement the wallet interface * if it will accept safe transfers. * @param _operator The address which called `safeTransferFrom` function * @param _from The address which previously owned the token * @param _value amount of tokens which is being transferred * @param _data additional data with no specified format * @return `bytes4(keccak256("onERC20Received(address,address,uint256,bytes)"))` unless throwing */ function onERC20Received(address _operator, address _from, uint256 _value, bytes calldata _data) external returns(bytes4); } // SPDX-License-Identifier: MIT pragma solidity 0.8.1; import "../utils/AddressUtils.sol"; import "../utils/AccessControl.sol"; import "./ERC20Receiver.sol"; /** * @title Illuvium (ILV) ERC20 token * * @notice Illuvium is a core ERC20 token powering the game. * It serves as an in-game currency, is tradable on exchanges, * it powers up the governance protocol (Illuvium DAO) and participates in Yield Farming. * * @dev Token Summary: * - Symbol: ILV * - Name: Illuvium * - Decimals: 18 * - Initial token supply: 7,000,000 ILV * - Maximum final token supply: 10,000,000 ILV * - Up to 3,000,000 ILV may get minted in 3 years period via yield farming * - Mintable: total supply may increase * - Burnable: total supply may decrease * * @dev Token balances and total supply are effectively 192 bits long, meaning that maximum * possible total supply smart contract is able to track is 2^192 (close to 10^40 tokens) * * @dev Smart contract doesn't use safe math. All arithmetic operations are overflow/underflow safe. * Additionally, Solidity 0.8.1 enforces overflow/underflow safety. * * @dev ERC20: reviewed according to https://eips.ethereum.org/EIPS/eip-20 * * @dev ERC20: contract has passed OpenZeppelin ERC20 tests, * see https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/test/token/ERC20/ERC20.behavior.js * see https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/test/token/ERC20/ERC20.test.js * see adopted copies of these tests in the `test` folder * * @dev ERC223/ERC777: not supported; * send tokens via `safeTransferFrom` and implement `ERC20Receiver.onERC20Received` on the receiver instead * * @dev Multiple Withdrawal Attack on ERC20 Tokens (ISBN:978-1-7281-3027-9) - resolved * Related events and functions are marked with "ISBN:978-1-7281-3027-9" tag: * - event Transferred(address indexed _by, address indexed _from, address indexed _to, uint256 _value) * - event Approved(address indexed _owner, address indexed _spender, uint256 _oldValue, uint256 _value) * - function increaseAllowance(address _spender, uint256 _value) public returns (bool) * - function decreaseAllowance(address _spender, uint256 _value) public returns (bool) * See: https://ieeexplore.ieee.org/document/8802438 * See: https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * @author Basil Gorin */ contract IlluviumERC20 is AccessControl { /** * @dev Smart contract unique identifier, a random number * @dev Should be regenerated each time smart contact source code is changed * and changes smart contract itself is to be redeployed * @dev Generated using https://www.random.org/bytes/ */ uint256 public constant TOKEN_UID = 0x83ecb176af7c4f35a45ff0018282e3a05a1018065da866182df12285866f5a2c; /** * @notice Name of the token: Illuvium * * @notice ERC20 name of the token (long name) * * @dev ERC20 `function name() public view returns (string)` * * @dev Field is declared public: getter name() is created when compiled, * it returns the name of the token. */ string public constant name = "Illuvium"; /** * @notice Symbol of the token: ILV * * @notice ERC20 symbol of that token (short name) * * @dev ERC20 `function symbol() public view returns (string)` * * @dev Field is declared public: getter symbol() is created when compiled, * it returns the symbol of the token */ string public constant symbol = "ILV"; /** * @notice Decimals of the token: 18 * * @dev ERC20 `function decimals() public view returns (uint8)` * * @dev Field is declared public: getter decimals() is created when compiled, * it returns the number of decimals used to get its user representation. * For example, if `decimals` equals `6`, a balance of `1,500,000` tokens should * be displayed to a user as `1,5` (`1,500,000 / 10 ** 6`). * * @dev NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including balanceOf() and transfer(). */ uint8 public constant decimals = 18; /** * @notice Total supply of the token: initially 7,000,000, * with the potential to grow up to 10,000,000 during yield farming period (3 years) * * @dev ERC20 `function totalSupply() public view returns (uint256)` * * @dev Field is declared public: getter totalSupply() is created when compiled, * it returns the amount of tokens in existence. */ uint256 public totalSupply; // is set to 7 million * 10^18 in the constructor /** * @dev A record of all the token balances * @dev This mapping keeps record of all token owners: * owner => balance */ mapping(address => uint256) public tokenBalances; /** * @notice A record of each account's voting delegate * * @dev Auxiliary data structure used to sum up an account's voting power * * @dev This mapping keeps record of all voting power delegations: * voting delegator (token owner) => voting delegate */ mapping(address => address) public votingDelegates; /** * @notice A voting power record binds voting power of a delegate to a particular * block when the voting power delegation change happened */ struct VotingPowerRecord { /* * @dev block.number when delegation has changed; starting from * that block voting power value is in effect */ uint64 blockNumber; /* * @dev cumulative voting power a delegate has obtained starting * from the block stored in blockNumber */ uint192 votingPower; } /** * @notice A record of each account's voting power * * @dev Primarily data structure to store voting power for each account. * Voting power sums up from the account's token balance and delegated * balances. * * @dev Stores current value and entire history of its changes. * The changes are stored as an array of checkpoints. * Checkpoint is an auxiliary data structure containing voting * power (number of votes) and block number when the checkpoint is saved * * @dev Maps voting delegate => voting power record */ mapping(address => VotingPowerRecord[]) public votingPowerHistory; /** * @dev A record of nonces for signing/validating signatures in `delegateWithSig` * for every delegate, increases after successful validation * * @dev Maps delegate address => delegate nonce */ mapping(address => uint256) public nonces; /** * @notice A record of all the allowances to spend tokens on behalf * @dev Maps token owner address to an address approved to spend * some tokens on behalf, maps approved address to that amount * @dev owner => spender => value */ mapping(address => mapping(address => uint256)) public transferAllowances; /** * @notice Enables ERC20 transfers of the tokens * (transfer by the token owner himself) * @dev Feature FEATURE_TRANSFERS must be enabled in order for * `transfer()` function to succeed */ uint32 public constant FEATURE_TRANSFERS = 0x0000_0001; /** * @notice Enables ERC20 transfers on behalf * (transfer by someone else on behalf of token owner) * @dev Feature FEATURE_TRANSFERS_ON_BEHALF must be enabled in order for * `transferFrom()` function to succeed * @dev Token owner must call `approve()` first to authorize * the transfer on behalf */ uint32 public constant FEATURE_TRANSFERS_ON_BEHALF = 0x0000_0002; /** * @dev Defines if the default behavior of `transfer` and `transferFrom` * checks if the receiver smart contract supports ERC20 tokens * @dev When feature FEATURE_UNSAFE_TRANSFERS is enabled the transfers do not * check if the receiver smart contract supports ERC20 tokens, * i.e. `transfer` and `transferFrom` behave like `unsafeTransferFrom` * @dev When feature FEATURE_UNSAFE_TRANSFERS is disabled (default) the transfers * check if the receiver smart contract supports ERC20 tokens, * i.e. `transfer` and `transferFrom` behave like `safeTransferFrom` */ uint32 public constant FEATURE_UNSAFE_TRANSFERS = 0x0000_0004; /** * @notice Enables token owners to burn their own tokens, * including locked tokens which are burnt first * @dev Feature FEATURE_OWN_BURNS must be enabled in order for * `burn()` function to succeed when called by token owner */ uint32 public constant FEATURE_OWN_BURNS = 0x0000_0008; /** * @notice Enables approved operators to burn tokens on behalf of their owners, * including locked tokens which are burnt first * @dev Feature FEATURE_OWN_BURNS must be enabled in order for * `burn()` function to succeed when called by approved operator */ uint32 public constant FEATURE_BURNS_ON_BEHALF = 0x0000_0010; /** * @notice Enables delegators to elect delegates * @dev Feature FEATURE_DELEGATIONS must be enabled in order for * `delegate()` function to succeed */ uint32 public constant FEATURE_DELEGATIONS = 0x0000_0020; /** * @notice Enables delegators to elect delegates on behalf * (via an EIP712 signature) * @dev Feature FEATURE_DELEGATIONS must be enabled in order for * `delegateWithSig()` function to succeed */ uint32 public constant FEATURE_DELEGATIONS_ON_BEHALF = 0x0000_0040; /** * @notice Token creator is responsible for creating (minting) * tokens to an arbitrary address * @dev Role ROLE_TOKEN_CREATOR allows minting tokens * (calling `mint` function) */ uint32 public constant ROLE_TOKEN_CREATOR = 0x0001_0000; /** * @notice Token destroyer is responsible for destroying (burning) * tokens owned by an arbitrary address * @dev Role ROLE_TOKEN_DESTROYER allows burning tokens * (calling `burn` function) */ uint32 public constant ROLE_TOKEN_DESTROYER = 0x0002_0000; /** * @notice ERC20 receivers are allowed to receive tokens without ERC20 safety checks, * which may be useful to simplify tokens transfers into "legacy" smart contracts * @dev When `FEATURE_UNSAFE_TRANSFERS` is not enabled addresses having * `ROLE_ERC20_RECEIVER` permission are allowed to receive tokens * via `transfer` and `transferFrom` functions in the same way they * would via `unsafeTransferFrom` function * @dev When `FEATURE_UNSAFE_TRANSFERS` is enabled `ROLE_ERC20_RECEIVER` permission * doesn't affect the transfer behaviour since * `transfer` and `transferFrom` behave like `unsafeTransferFrom` for any receiver * @dev ROLE_ERC20_RECEIVER is a shortening for ROLE_UNSAFE_ERC20_RECEIVER */ uint32 public constant ROLE_ERC20_RECEIVER = 0x0004_0000; /** * @notice ERC20 senders are allowed to send tokens without ERC20 safety checks, * which may be useful to simplify tokens transfers into "legacy" smart contracts * @dev When `FEATURE_UNSAFE_TRANSFERS` is not enabled senders having * `ROLE_ERC20_SENDER` permission are allowed to send tokens * via `transfer` and `transferFrom` functions in the same way they * would via `unsafeTransferFrom` function * @dev When `FEATURE_UNSAFE_TRANSFERS` is enabled `ROLE_ERC20_SENDER` permission * doesn't affect the transfer behaviour since * `transfer` and `transferFrom` behave like `unsafeTransferFrom` for any receiver * @dev ROLE_ERC20_SENDER is a shortening for ROLE_UNSAFE_ERC20_SENDER */ uint32 public constant ROLE_ERC20_SENDER = 0x0008_0000; /** * @dev Magic value to be returned by ERC20Receiver upon successful reception of token(s) * @dev Equal to `bytes4(keccak256("onERC20Received(address,address,uint256,bytes)"))`, * which can be also obtained as `ERC20Receiver(address(0)).onERC20Received.selector` */ bytes4 private constant ERC20_RECEIVED = 0x4fc35859; /** * @notice EIP-712 contract's domain typeHash, see https://eips.ethereum.org/EIPS/eip-712#rationale-for-typehash */ bytes32 public constant DOMAIN_TYPEHASH = keccak256("EIP712Domain(string name,uint256 chainId,address verifyingContract)"); /** * @notice EIP-712 delegation struct typeHash, see https://eips.ethereum.org/EIPS/eip-712#rationale-for-typehash */ bytes32 public constant DELEGATION_TYPEHASH = keccak256("Delegation(address delegate,uint256 nonce,uint256 expiry)"); /** * @dev Fired in transfer(), transferFrom() and some other (non-ERC20) functions * * @dev ERC20 `event Transfer(address indexed _from, address indexed _to, uint256 _value)` * * @param _from an address tokens were consumed from * @param _to an address tokens were sent to * @param _value number of tokens transferred */ event Transfer(address indexed _from, address indexed _to, uint256 _value); /** * @dev Fired in approve() and approveAtomic() functions * * @dev ERC20 `event Approval(address indexed _owner, address indexed _spender, uint256 _value)` * * @param _owner an address which granted a permission to transfer * tokens on its behalf * @param _spender an address which received a permission to transfer * tokens on behalf of the owner `_owner` * @param _value amount of tokens granted to transfer on behalf */ event Approval(address indexed _owner, address indexed _spender, uint256 _value); /** * @dev Fired in mint() function * * @param _by an address which minted some tokens (transaction sender) * @param _to an address the tokens were minted to * @param _value an amount of tokens minted */ event Minted(address indexed _by, address indexed _to, uint256 _value); /** * @dev Fired in burn() function * * @param _by an address which burned some tokens (transaction sender) * @param _from an address the tokens were burnt from * @param _value an amount of tokens burnt */ event Burnt(address indexed _by, address indexed _from, uint256 _value); /** * @dev Resolution for the Multiple Withdrawal Attack on ERC20 Tokens (ISBN:978-1-7281-3027-9) * * @dev Similar to ERC20 Transfer event, but also logs an address which executed transfer * * @dev Fired in transfer(), transferFrom() and some other (non-ERC20) functions * * @param _by an address which performed the transfer * @param _from an address tokens were consumed from * @param _to an address tokens were sent to * @param _value number of tokens transferred */ event Transferred(address indexed _by, address indexed _from, address indexed _to, uint256 _value); /** * @dev Resolution for the Multiple Withdrawal Attack on ERC20 Tokens (ISBN:978-1-7281-3027-9) * * @dev Similar to ERC20 Approve event, but also logs old approval value * * @dev Fired in approve() and approveAtomic() functions * * @param _owner an address which granted a permission to transfer * tokens on its behalf * @param _spender an address which received a permission to transfer * tokens on behalf of the owner `_owner` * @param _oldValue previously granted amount of tokens to transfer on behalf * @param _value new granted amount of tokens to transfer on behalf */ event Approved(address indexed _owner, address indexed _spender, uint256 _oldValue, uint256 _value); /** * @dev Notifies that a key-value pair in `votingDelegates` mapping has changed, * i.e. a delegator address has changed its delegate address * * @param _of delegator address, a token owner * @param _from old delegate, an address which delegate right is revoked * @param _to new delegate, an address which received the voting power */ event DelegateChanged(address indexed _of, address indexed _from, address indexed _to); /** * @dev Notifies that a key-value pair in `votingPowerHistory` mapping has changed, * i.e. a delegate's voting power has changed. * * @param _of delegate whose voting power has changed * @param _fromVal previous number of votes delegate had * @param _toVal new number of votes delegate has */ event VotingPowerChanged(address indexed _of, uint256 _fromVal, uint256 _toVal); /** * @dev Deploys the token smart contract, * assigns initial token supply to the address specified * * @param _initialHolder owner of the initial token supply */ constructor(address _initialHolder) { // verify initial holder address non-zero (is set) require(_initialHolder != address(0), "_initialHolder not set (zero address)"); // mint initial supply mint(_initialHolder, 7_000_000e18); } // ===== Start: ERC20/ERC223/ERC777 functions ===== /** * @notice Gets the balance of a particular address * * @dev ERC20 `function balanceOf(address _owner) public view returns (uint256 balance)` * * @param _owner the address to query the the balance for * @return balance an amount of tokens owned by the address specified */ function balanceOf(address _owner) public view returns (uint256 balance) { // read the balance and return return tokenBalances[_owner]; } /** * @notice Transfers some tokens to an external address or a smart contract * * @dev ERC20 `function transfer(address _to, uint256 _value) public returns (bool success)` * * @dev Called by token owner (an address which has a * positive token balance tracked by this smart contract) * @dev Throws on any error like * * insufficient token balance or * * incorrect `_to` address: * * zero address or * * self address or * * smart contract which doesn't support ERC20 * * @param _to an address to transfer tokens to, * must be either an external address or a smart contract, * compliant with the ERC20 standard * @param _value amount of tokens to be transferred, must * be greater than zero * @return success true on success, throws otherwise */ function transfer(address _to, uint256 _value) public returns (bool success) { // just delegate call to `transferFrom`, // `FEATURE_TRANSFERS` is verified inside it return transferFrom(msg.sender, _to, _value); } /** * @notice Transfers some tokens on behalf of address `_from' (token owner) * to some other address `_to` * * @dev ERC20 `function transferFrom(address _from, address _to, uint256 _value) public returns (bool success)` * * @dev Called by token owner on his own or approved address, * an address approved earlier by token owner to * transfer some amount of tokens on its behalf * @dev Throws on any error like * * insufficient token balance or * * incorrect `_to` address: * * zero address or * * same as `_from` address (self transfer) * * smart contract which doesn't support ERC20 * * @param _from token owner which approved caller (transaction sender) * to transfer `_value` of tokens on its behalf * @param _to an address to transfer tokens to, * must be either an external address or a smart contract, * compliant with the ERC20 standard * @param _value amount of tokens to be transferred, must * be greater than zero * @return success true on success, throws otherwise */ function transferFrom(address _from, address _to, uint256 _value) public returns (bool success) { // depending on `FEATURE_UNSAFE_TRANSFERS` we execute either safe (default) // or unsafe transfer // if `FEATURE_UNSAFE_TRANSFERS` is enabled // or receiver has `ROLE_ERC20_RECEIVER` permission // or sender has `ROLE_ERC20_SENDER` permission if(isFeatureEnabled(FEATURE_UNSAFE_TRANSFERS) || isOperatorInRole(_to, ROLE_ERC20_RECEIVER) || isSenderInRole(ROLE_ERC20_SENDER)) { // we execute unsafe transfer - delegate call to `unsafeTransferFrom`, // `FEATURE_TRANSFERS` is verified inside it unsafeTransferFrom(_from, _to, _value); } // otherwise - if `FEATURE_UNSAFE_TRANSFERS` is disabled // and receiver doesn't have `ROLE_ERC20_RECEIVER` permission else { // we execute safe transfer - delegate call to `safeTransferFrom`, passing empty `_data`, // `FEATURE_TRANSFERS` is verified inside it safeTransferFrom(_from, _to, _value, ""); } // both `unsafeTransferFrom` and `safeTransferFrom` throw on any error, so // if we're here - it means operation successful, // just return true return true; } /** * @notice Transfers some tokens on behalf of address `_from' (token owner) * to some other address `_to` * * @dev Inspired by ERC721 safeTransferFrom, this function allows to * send arbitrary data to the receiver on successful token transfer * @dev Called by token owner on his own or approved address, * an address approved earlier by token owner to * transfer some amount of tokens on its behalf * @dev Throws on any error like * * insufficient token balance or * * incorrect `_to` address: * * zero address or * * same as `_from` address (self transfer) * * smart contract which doesn't support ERC20Receiver interface * @dev Returns silently on success, throws otherwise * * @param _from token owner which approved caller (transaction sender) * to transfer `_value` of tokens on its behalf * @param _to an address to transfer tokens to, * must be either an external address or a smart contract, * compliant with the ERC20 standard * @param _value amount of tokens to be transferred, must * be greater than zero * @param _data [optional] additional data with no specified format, * sent in onERC20Received call to `_to` in case if its a smart contract */ function safeTransferFrom(address _from, address _to, uint256 _value, bytes memory _data) public { // first delegate call to `unsafeTransferFrom` // to perform the unsafe token(s) transfer unsafeTransferFrom(_from, _to, _value); // after the successful transfer - check if receiver supports // ERC20Receiver and execute a callback handler `onERC20Received`, // reverting whole transaction on any error: // check if receiver `_to` supports ERC20Receiver interface if(AddressUtils.isContract(_to)) { // if `_to` is a contract - execute onERC20Received bytes4 response = ERC20Receiver(_to).onERC20Received(msg.sender, _from, _value, _data); // expected response is ERC20_RECEIVED require(response == ERC20_RECEIVED, "invalid onERC20Received response"); } } /** * @notice Transfers some tokens on behalf of address `_from' (token owner) * to some other address `_to` * * @dev In contrast to `safeTransferFrom` doesn't check recipient * smart contract to support ERC20 tokens (ERC20Receiver) * @dev Designed to be used by developers when the receiver is known * to support ERC20 tokens but doesn't implement ERC20Receiver interface * @dev Called by token owner on his own or approved address, * an address approved earlier by token owner to * transfer some amount of tokens on its behalf * @dev Throws on any error like * * insufficient token balance or * * incorrect `_to` address: * * zero address or * * same as `_from` address (self transfer) * @dev Returns silently on success, throws otherwise * * @param _from token owner which approved caller (transaction sender) * to transfer `_value` of tokens on its behalf * @param _to an address to transfer tokens to, * must be either an external address or a smart contract, * compliant with the ERC20 standard * @param _value amount of tokens to be transferred, must * be greater than zero */ function unsafeTransferFrom(address _from, address _to, uint256 _value) public { // if `_from` is equal to sender, require transfers feature to be enabled // otherwise require transfers on behalf feature to be enabled require(_from == msg.sender && isFeatureEnabled(FEATURE_TRANSFERS) || _from != msg.sender && isFeatureEnabled(FEATURE_TRANSFERS_ON_BEHALF), _from == msg.sender? "transfers are disabled": "transfers on behalf are disabled"); // non-zero source address check - Zeppelin // obviously, zero source address is a client mistake // it's not part of ERC20 standard but it's reasonable to fail fast // since for zero value transfer transaction succeeds otherwise require(_from != address(0), "ERC20: transfer from the zero address"); // Zeppelin msg // non-zero recipient address check require(_to != address(0), "ERC20: transfer to the zero address"); // Zeppelin msg // sender and recipient cannot be the same require(_from != _to, "sender and recipient are the same (_from = _to)"); // sending tokens to the token smart contract itself is a client mistake require(_to != address(this), "invalid recipient (transfer to the token smart contract itself)"); // according to ERC-20 Token Standard, https://eips.ethereum.org/EIPS/eip-20 // "Transfers of 0 values MUST be treated as normal transfers and fire the Transfer event." if(_value == 0) { // emit an ERC20 transfer event emit Transfer(_from, _to, _value); // don't forget to return - we're done return; } // no need to make arithmetic overflow check on the _value - by design of mint() // in case of transfer on behalf if(_from != msg.sender) { // read allowance value - the amount of tokens allowed to transfer - into the stack uint256 _allowance = transferAllowances[_from][msg.sender]; // verify sender has an allowance to transfer amount of tokens requested require(_allowance >= _value, "ERC20: transfer amount exceeds allowance"); // Zeppelin msg // update allowance value on the stack _allowance -= _value; // update the allowance value in storage transferAllowances[_from][msg.sender] = _allowance; // emit an improved atomic approve event emit Approved(_from, msg.sender, _allowance + _value, _allowance); // emit an ERC20 approval event to reflect the decrease emit Approval(_from, msg.sender, _allowance); } // verify sender has enough tokens to transfer on behalf require(tokenBalances[_from] >= _value, "ERC20: transfer amount exceeds balance"); // Zeppelin msg // perform the transfer: // decrease token owner (sender) balance tokenBalances[_from] -= _value; // increase `_to` address (receiver) balance tokenBalances[_to] += _value; // move voting power associated with the tokens transferred __moveVotingPower(votingDelegates[_from], votingDelegates[_to], _value); // emit an improved transfer event emit Transferred(msg.sender, _from, _to, _value); // emit an ERC20 transfer event emit Transfer(_from, _to, _value); } /** * @notice Approves address called `_spender` to transfer some amount * of tokens on behalf of the owner * * @dev ERC20 `function approve(address _spender, uint256 _value) public returns (bool success)` * * @dev Caller must not necessarily own any tokens to grant the permission * * @param _spender an address approved by the caller (token owner) * to spend some tokens on its behalf * @param _value an amount of tokens spender `_spender` is allowed to * transfer on behalf of the token owner * @return success true on success, throws otherwise */ function approve(address _spender, uint256 _value) public returns (bool success) { // non-zero spender address check - Zeppelin // obviously, zero spender address is a client mistake // it's not part of ERC20 standard but it's reasonable to fail fast require(_spender != address(0), "ERC20: approve to the zero address"); // Zeppelin msg // read old approval value to emmit an improved event (ISBN:978-1-7281-3027-9) uint256 _oldValue = transferAllowances[msg.sender][_spender]; // perform an operation: write value requested into the storage transferAllowances[msg.sender][_spender] = _value; // emit an improved atomic approve event (ISBN:978-1-7281-3027-9) emit Approved(msg.sender, _spender, _oldValue, _value); // emit an ERC20 approval event emit Approval(msg.sender, _spender, _value); // operation successful, return true return true; } /** * @notice Returns the amount which _spender is still allowed to withdraw from _owner. * * @dev ERC20 `function allowance(address _owner, address _spender) public view returns (uint256 remaining)` * * @dev A function to check an amount of tokens owner approved * to transfer on its behalf by some other address called "spender" * * @param _owner an address which approves transferring some tokens on its behalf * @param _spender an address approved to transfer some tokens on behalf * @return remaining an amount of tokens approved address `_spender` can transfer on behalf * of token owner `_owner` */ function allowance(address _owner, address _spender) public view returns (uint256 remaining) { // read the value from storage and return return transferAllowances[_owner][_spender]; } // ===== End: ERC20/ERC223/ERC777 functions ===== // ===== Start: Resolution for the Multiple Withdrawal Attack on ERC20 Tokens (ISBN:978-1-7281-3027-9) ===== /** * @notice Increases the allowance granted to `spender` by the transaction sender * * @dev Resolution for the Multiple Withdrawal Attack on ERC20 Tokens (ISBN:978-1-7281-3027-9) * * @dev Throws if value to increase by is zero or too big and causes arithmetic overflow * * @param _spender an address approved by the caller (token owner) * to spend some tokens on its behalf * @param _value an amount of tokens to increase by * @return success true on success, throws otherwise */ function increaseAllowance(address _spender, uint256 _value) public virtual returns (bool) { // read current allowance value uint256 currentVal = transferAllowances[msg.sender][_spender]; // non-zero _value and arithmetic overflow check on the allowance require(currentVal + _value > currentVal, "zero value approval increase or arithmetic overflow"); // delegate call to `approve` with the new value return approve(_spender, currentVal + _value); } /** * @notice Decreases the allowance granted to `spender` by the caller. * * @dev Resolution for the Multiple Withdrawal Attack on ERC20 Tokens (ISBN:978-1-7281-3027-9) * * @dev Throws if value to decrease by is zero or is bigger than currently allowed value * * @param _spender an address approved by the caller (token owner) * to spend some tokens on its behalf * @param _value an amount of tokens to decrease by * @return success true on success, throws otherwise */ function decreaseAllowance(address _spender, uint256 _value) public virtual returns (bool) { // read current allowance value uint256 currentVal = transferAllowances[msg.sender][_spender]; // non-zero _value check on the allowance require(_value > 0, "zero value approval decrease"); // verify allowance decrease doesn't underflow require(currentVal >= _value, "ERC20: decreased allowance below zero"); // delegate call to `approve` with the new value return approve(_spender, currentVal - _value); } // ===== End: Resolution for the Multiple Withdrawal Attack on ERC20 Tokens (ISBN:978-1-7281-3027-9) ===== // ===== Start: Minting/burning extension ===== /** * @dev Mints (creates) some tokens to address specified * @dev The value specified is treated as is without taking * into account what `decimals` value is * @dev Behaves effectively as `mintTo` function, allowing * to specify an address to mint tokens to * @dev Requires sender to have `ROLE_TOKEN_CREATOR` permission * * @dev Throws on overflow, if totalSupply + _value doesn't fit into uint256 * * @param _to an address to mint tokens to * @param _value an amount of tokens to mint (create) */ function mint(address _to, uint256 _value) public { // check if caller has sufficient permissions to mint tokens require(isSenderInRole(ROLE_TOKEN_CREATOR), "insufficient privileges (ROLE_TOKEN_CREATOR required)"); // non-zero recipient address check require(_to != address(0), "ERC20: mint to the zero address"); // Zeppelin msg // non-zero _value and arithmetic overflow check on the total supply // this check automatically secures arithmetic overflow on the individual balance require(totalSupply + _value > totalSupply, "zero value mint or arithmetic overflow"); // uint192 overflow check (required by voting delegation) require(totalSupply + _value <= type(uint192).max, "total supply overflow (uint192)"); // perform mint: // increase total amount of tokens value totalSupply += _value; // increase `_to` address balance tokenBalances[_to] += _value; // create voting power associated with the tokens minted __moveVotingPower(address(0), votingDelegates[_to], _value); // fire a minted event emit Minted(msg.sender, _to, _value); // emit an improved transfer event emit Transferred(msg.sender, address(0), _to, _value); // fire ERC20 compliant transfer event emit Transfer(address(0), _to, _value); } /** * @dev Burns (destroys) some tokens from the address specified * @dev The value specified is treated as is without taking * into account what `decimals` value is * @dev Behaves effectively as `burnFrom` function, allowing * to specify an address to burn tokens from * @dev Requires sender to have `ROLE_TOKEN_DESTROYER` permission * * @param _from an address to burn some tokens from * @param _value an amount of tokens to burn (destroy) */ function burn(address _from, uint256 _value) public { // check if caller has sufficient permissions to burn tokens // and if not - check for possibility to burn own tokens or to burn on behalf if(!isSenderInRole(ROLE_TOKEN_DESTROYER)) { // if `_from` is equal to sender, require own burns feature to be enabled // otherwise require burns on behalf feature to be enabled require(_from == msg.sender && isFeatureEnabled(FEATURE_OWN_BURNS) || _from != msg.sender && isFeatureEnabled(FEATURE_BURNS_ON_BEHALF), _from == msg.sender? "burns are disabled": "burns on behalf are disabled"); // in case of burn on behalf if(_from != msg.sender) { // read allowance value - the amount of tokens allowed to be burnt - into the stack uint256 _allowance = transferAllowances[_from][msg.sender]; // verify sender has an allowance to burn amount of tokens requested require(_allowance >= _value, "ERC20: burn amount exceeds allowance"); // Zeppelin msg // update allowance value on the stack _allowance -= _value; // update the allowance value in storage transferAllowances[_from][msg.sender] = _allowance; // emit an improved atomic approve event emit Approved(msg.sender, _from, _allowance + _value, _allowance); // emit an ERC20 approval event to reflect the decrease emit Approval(_from, msg.sender, _allowance); } } // at this point we know that either sender is ROLE_TOKEN_DESTROYER or // we burn own tokens or on behalf (in latest case we already checked and updated allowances) // we have left to execute balance checks and burning logic itself // non-zero burn value check require(_value != 0, "zero value burn"); // non-zero source address check - Zeppelin require(_from != address(0), "ERC20: burn from the zero address"); // Zeppelin msg // verify `_from` address has enough tokens to destroy // (basically this is a arithmetic overflow check) require(tokenBalances[_from] >= _value, "ERC20: burn amount exceeds balance"); // Zeppelin msg // perform burn: // decrease `_from` address balance tokenBalances[_from] -= _value; // decrease total amount of tokens value totalSupply -= _value; // destroy voting power associated with the tokens burnt __moveVotingPower(votingDelegates[_from], address(0), _value); // fire a burnt event emit Burnt(msg.sender, _from, _value); // emit an improved transfer event emit Transferred(msg.sender, _from, address(0), _value); // fire ERC20 compliant transfer event emit Transfer(_from, address(0), _value); } // ===== End: Minting/burning extension ===== // ===== Start: DAO Support (Compound-like voting delegation) ===== /** * @notice Gets current voting power of the account `_of` * @param _of the address of account to get voting power of * @return current cumulative voting power of the account, * sum of token balances of all its voting delegators */ function getVotingPower(address _of) public view returns (uint256) { // get a link to an array of voting power history records for an address specified VotingPowerRecord[] storage history = votingPowerHistory[_of]; // lookup the history and return latest element return history.length == 0? 0: history[history.length - 1].votingPower; } /** * @notice Gets past voting power of the account `_of` at some block `_blockNum` * @dev Throws if `_blockNum` is not in the past (not the finalized block) * @param _of the address of account to get voting power of * @param _blockNum block number to get the voting power at * @return past cumulative voting power of the account, * sum of token balances of all its voting delegators at block number `_blockNum` */ function getVotingPowerAt(address _of, uint256 _blockNum) public view returns (uint256) { // make sure block number is not in the past (not the finalized block) require(_blockNum < block.number, "not yet determined"); // Compound msg // get a link to an array of voting power history records for an address specified VotingPowerRecord[] storage history = votingPowerHistory[_of]; // if voting power history for the account provided is empty if(history.length == 0) { // than voting power is zero - return the result return 0; } // check latest voting power history record block number: // if history was not updated after the block of interest if(history[history.length - 1].blockNumber <= _blockNum) { // we're done - return last voting power record return getVotingPower(_of); } // check first voting power history record block number: // if history was never updated before the block of interest if(history[0].blockNumber > _blockNum) { // we're done - voting power at the block num of interest was zero return 0; } // `votingPowerHistory[_of]` is an array ordered by `blockNumber`, ascending; // apply binary search on `votingPowerHistory[_of]` to find such an entry number `i`, that // `votingPowerHistory[_of][i].blockNumber <= _blockNum`, but in the same time // `votingPowerHistory[_of][i + 1].blockNumber > _blockNum` // return the result - voting power found at index `i` return history[__binaryLookup(_of, _blockNum)].votingPower; } /** * @dev Reads an entire voting power history array for the delegate specified * * @param _of delegate to query voting power history for * @return voting power history array for the delegate of interest */ function getVotingPowerHistory(address _of) public view returns(VotingPowerRecord[] memory) { // return an entire array as memory return votingPowerHistory[_of]; } /** * @dev Returns length of the voting power history array for the delegate specified; * useful since reading an entire array just to get its length is expensive (gas cost) * * @param _of delegate to query voting power history length for * @return voting power history array length for the delegate of interest */ function getVotingPowerHistoryLength(address _of) public view returns(uint256) { // read array length and return return votingPowerHistory[_of].length; } /** * @notice Delegates voting power of the delegator `msg.sender` to the delegate `_to` * * @dev Accepts zero value address to delegate voting power to, effectively * removing the delegate in that case * * @param _to address to delegate voting power to */ function delegate(address _to) public { // verify delegations are enabled require(isFeatureEnabled(FEATURE_DELEGATIONS), "delegations are disabled"); // delegate call to `__delegate` __delegate(msg.sender, _to); } /** * @notice Delegates voting power of the delegator (represented by its signature) to the delegate `_to` * * @dev Accepts zero value address to delegate voting power to, effectively * removing the delegate in that case * * @dev Compliant with EIP-712: Ethereum typed structured data hashing and signing, * see https://eips.ethereum.org/EIPS/eip-712 * * @param _to address to delegate voting power to * @param _nonce nonce used to construct the signature, and used to validate it; * nonce is increased by one after successful signature validation and vote delegation * @param _exp signature expiration time * @param v the recovery byte of the signature * @param r half of the ECDSA signature pair * @param s half of the ECDSA signature pair */ function delegateWithSig(address _to, uint256 _nonce, uint256 _exp, uint8 v, bytes32 r, bytes32 s) public { // verify delegations on behalf are enabled require(isFeatureEnabled(FEATURE_DELEGATIONS_ON_BEHALF), "delegations on behalf are disabled"); // build the EIP-712 contract domain separator bytes32 domainSeparator = keccak256(abi.encode(DOMAIN_TYPEHASH, keccak256(bytes(name)), block.chainid, address(this))); // build the EIP-712 hashStruct of the delegation message bytes32 hashStruct = keccak256(abi.encode(DELEGATION_TYPEHASH, _to, _nonce, _exp)); // calculate the EIP-712 digest "\\x19\\x01" ‖ domainSeparator ‖ hashStruct(message) bytes32 digest = keccak256(abi.encodePacked("\\x19\\x01", domainSeparator, hashStruct)); // recover the address who signed the message with v, r, s address signer = ecrecover(digest, v, r, s); // perform message integrity and security validations require(signer != address(0), "invalid signature"); // Compound msg require(_nonce == nonces[signer], "invalid nonce"); // Compound msg require(block.timestamp < _exp, "signature expired"); // Compound msg // update the nonce for that particular signer to avoid replay attack nonces[signer]++; // delegate call to `__delegate` - execute the logic required __delegate(signer, _to); } /** * @dev Auxiliary function to delegate delegator's `_from` voting power to the delegate `_to` * @dev Writes to `votingDelegates` and `votingPowerHistory` mappings * * @param _from delegator who delegates his voting power * @param _to delegate who receives the voting power */ function __delegate(address _from, address _to) private { // read current delegate to be replaced by a new one address _fromDelegate = votingDelegates[_from]; // read current voting power (it is equal to token balance) uint256 _value = tokenBalances[_from]; // reassign voting delegate to `_to` votingDelegates[_from] = _to; // update voting power for `_fromDelegate` and `_to` __moveVotingPower(_fromDelegate, _to, _value); // emit an event emit DelegateChanged(_from, _fromDelegate, _to); } /** * @dev Auxiliary function to move voting power `_value` * from delegate `_from` to the delegate `_to` * * @dev Doesn't have any effect if `_from == _to`, or if `_value == 0` * * @param _from delegate to move voting power from * @param _to delegate to move voting power to * @param _value voting power to move from `_from` to `_to` */ function __moveVotingPower(address _from, address _to, uint256 _value) private { // if there is no move (`_from == _to`) or there is nothing to move (`_value == 0`) if(_from == _to || _value == 0) { // return silently with no action return; } // if source address is not zero - decrease its voting power if(_from != address(0)) { // read current source address voting power uint256 _fromVal = getVotingPower(_from); // calculate decreased voting power // underflow is not possible by design: // voting power is limited by token balance which is checked by the callee uint256 _toVal = _fromVal - _value; // update source voting power from `_fromVal` to `_toVal` __updateVotingPower(_from, _fromVal, _toVal); } // if destination address is not zero - increase its voting power if(_to != address(0)) { // read current destination address voting power uint256 _fromVal = getVotingPower(_to); // calculate increased voting power // overflow is not possible by design: // max token supply limits the cumulative voting power uint256 _toVal = _fromVal + _value; // update destination voting power from `_fromVal` to `_toVal` __updateVotingPower(_to, _fromVal, _toVal); } } /** * @dev Auxiliary function to update voting power of the delegate `_of` * from value `_fromVal` to value `_toVal` * * @param _of delegate to update its voting power * @param _fromVal old voting power of the delegate * @param _toVal new voting power of the delegate */ function __updateVotingPower(address _of, uint256 _fromVal, uint256 _toVal) private { // get a link to an array of voting power history records for an address specified VotingPowerRecord[] storage history = votingPowerHistory[_of]; // if there is an existing voting power value stored for current block if(history.length != 0 && history[history.length - 1].blockNumber == block.number) { // update voting power which is already stored in the current block history[history.length - 1].votingPower = uint192(_toVal); } // otherwise - if there is no value stored for current block else { // add new element into array representing the value for current block history.push(VotingPowerRecord(uint64(block.number), uint192(_toVal))); } // emit an event emit VotingPowerChanged(_of, _fromVal, _toVal); } /** * @dev Auxiliary function to lookup an element in a sorted (asc) array of elements * * @dev This function finds the closest element in an array to the value * of interest (not exceeding that value) and returns its index within an array * * @dev An array to search in is `votingPowerHistory[_to][i].blockNumber`, * it is sorted in ascending order (blockNumber increases) * * @param _to an address of the delegate to get an array for * @param n value of interest to look for * @return an index of the closest element in an array to the value * of interest (not exceeding that value) */ function __binaryLookup(address _to, uint256 n) private view returns(uint256) { // get a link to an array of voting power history records for an address specified VotingPowerRecord[] storage history = votingPowerHistory[_to]; // left bound of the search interval, originally start of the array uint256 i = 0; // right bound of the search interval, originally end of the array uint256 j = history.length - 1; // the iteration process narrows down the bounds by // splitting the interval in a half oce per each iteration while(j > i) { // get an index in the middle of the interval [i, j] uint256 k = j - (j - i) / 2; // read an element to compare it with the value of interest VotingPowerRecord memory cp = history[k]; // if we've got a strict equal - we're lucky and done if(cp.blockNumber == n) { // just return the result - index `k` return k; } // if the value of interest is bigger - move left bound to the middle else if (cp.blockNumber < n) { // move left bound `i` to the middle position `k` i = k; } // otherwise, when the value of interest is smaller - move right bound to the middle else { // move right bound `j` to the middle position `k - 1`: // element at position `k` is bigger and cannot be the result j = k - 1; } } // reaching that point means no exact match found // since we're interested in the element which is not bigger than the // element of interest, we return the lower bound `i` return i; } } // ===== End: DAO Support (Compound-like voting delegation) ===== // SPDX-License-Identifier: MIT pragma solidity 0.8.1; /** * @title Access Control List * * @notice Access control smart contract provides an API to check * if specific operation is permitted globally and/or * if particular user has a permission to execute it. * * @notice It deals with two main entities: features and roles. * * @notice Features are designed to be used to enable/disable specific * functions (public functions) of the smart contract for everyone. * @notice User roles are designed to restrict access to specific * functions (restricted functions) of the smart contract to some users. * * @notice Terms "role", "permissions" and "set of permissions" have equal meaning * in the documentation text and may be used interchangeably. * @notice Terms "permission", "single permission" implies only one permission bit set. * * @dev This smart contract is designed to be inherited by other * smart contracts which require access control management capabilities. * * @author Basil Gorin */ contract AccessControl { /** * @notice Access manager is responsible for assigning the roles to users, * enabling/disabling global features of the smart contract * @notice Access manager can add, remove and update user roles, * remove and update global features * * @dev Role ROLE_ACCESS_MANAGER allows modifying user roles and global features * @dev Role ROLE_ACCESS_MANAGER has single bit at position 255 enabled */ uint256 public constant ROLE_ACCESS_MANAGER = 0x8000000000000000000000000000000000000000000000000000000000000000; /** * @dev Bitmask representing all the possible permissions (super admin role) * @dev Has all the bits are enabled (2^256 - 1 value) */ uint256 private constant FULL_PRIVILEGES_MASK = type(uint256).max; // before 0.8.0: uint256(-1) overflows to 0xFFFF... /** * @notice Privileged addresses with defined roles/permissions * @notice In the context of ERC20/ERC721 tokens these can be permissions to * allow minting or burning tokens, transferring on behalf and so on * * @dev Maps user address to the permissions bitmask (role), where each bit * represents a permission * @dev Bitmask 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF * represents all possible permissions * @dev Zero address mapping represents global features of the smart contract */ mapping(address => uint256) public userRoles; /** * @dev Fired in updateRole() and updateFeatures() * * @param _by operator which called the function * @param _to address which was granted/revoked permissions * @param _requested permissions requested * @param _actual permissions effectively set */ event RoleUpdated(address indexed _by, address indexed _to, uint256 _requested, uint256 _actual); /** * @notice Creates an access control instance, * setting contract creator to have full privileges */ constructor() { // contract creator has full privileges userRoles[msg.sender] = FULL_PRIVILEGES_MASK; } /** * @notice Retrieves globally set of features enabled * * @dev Auxiliary getter function to maintain compatibility with previous * versions of the Access Control List smart contract, where * features was a separate uint256 public field * * @return 256-bit bitmask of the features enabled */ function features() public view returns(uint256) { // according to new design features are stored in zero address // mapping of `userRoles` structure return userRoles[address(0)]; } /** * @notice Updates set of the globally enabled features (`features`), * taking into account sender's permissions * * @dev Requires transaction sender to have `ROLE_ACCESS_MANAGER` permission * @dev Function is left for backward compatibility with older versions * * @param _mask bitmask representing a set of features to enable/disable */ function updateFeatures(uint256 _mask) public { // delegate call to `updateRole` updateRole(address(0), _mask); } /** * @notice Updates set of permissions (role) for a given user, * taking into account sender's permissions. * * @dev Setting role to zero is equivalent to removing an all permissions * @dev Setting role to `FULL_PRIVILEGES_MASK` is equivalent to * copying senders' permissions (role) to the user * @dev Requires transaction sender to have `ROLE_ACCESS_MANAGER` permission * * @param operator address of a user to alter permissions for or zero * to alter global features of the smart contract * @param role bitmask representing a set of permissions to * enable/disable for a user specified */ function updateRole(address operator, uint256 role) public { // caller must have a permission to update user roles require(isSenderInRole(ROLE_ACCESS_MANAGER), "insufficient privileges (ROLE_ACCESS_MANAGER required)"); // evaluate the role and reassign it userRoles[operator] = evaluateBy(msg.sender, userRoles[operator], role); // fire an event emit RoleUpdated(msg.sender, operator, role, userRoles[operator]); } /** * @notice Determines the permission bitmask an operator can set on the * target permission set * @notice Used to calculate the permission bitmask to be set when requested * in `updateRole` and `updateFeatures` functions * * @dev Calculated based on: * 1) operator's own permission set read from userRoles[operator] * 2) target permission set - what is already set on the target * 3) desired permission set - what do we want set target to * * @dev Corner cases: * 1) Operator is super admin and its permission set is `FULL_PRIVILEGES_MASK`: * `desired` bitset is returned regardless of the `target` permission set value * (what operator sets is what they get) * 2) Operator with no permissions (zero bitset): * `target` bitset is returned regardless of the `desired` value * (operator has no authority and cannot modify anything) * * @dev Example: * Consider an operator with the permissions bitmask 00001111 * is about to modify the target permission set 01010101 * Operator wants to set that permission set to 00110011 * Based on their role, an operator has the permissions * to update only lowest 4 bits on the target, meaning that * high 4 bits of the target set in this example is left * unchanged and low 4 bits get changed as desired: 01010011 * * @param operator address of the contract operator which is about to set the permissions * @param target input set of permissions to operator is going to modify * @param desired desired set of permissions operator would like to set * @return resulting set of permissions given operator will set */ function evaluateBy(address operator, uint256 target, uint256 desired) public view returns(uint256) { // read operator's permissions uint256 p = userRoles[operator]; // taking into account operator's permissions, // 1) enable the permissions desired on the `target` target |= p & desired; // 2) disable the permissions desired on the `target` target &= FULL_PRIVILEGES_MASK ^ (p & (FULL_PRIVILEGES_MASK ^ desired)); // return calculated result return target; } /** * @notice Checks if requested set of features is enabled globally on the contract * * @param required set of features to check against * @return true if all the features requested are enabled, false otherwise */ function isFeatureEnabled(uint256 required) public view returns(bool) { // delegate call to `__hasRole`, passing `features` property return __hasRole(features(), required); } /** * @notice Checks if transaction sender `msg.sender` has all the permissions required * * @param required set of permissions (role) to check against * @return true if all the permissions requested are enabled, false otherwise */ function isSenderInRole(uint256 required) public view returns(bool) { // delegate call to `isOperatorInRole`, passing transaction sender return isOperatorInRole(msg.sender, required); } /** * @notice Checks if operator has all the permissions (role) required * * @param operator address of the user to check role for * @param required set of permissions (role) to check * @return true if all the permissions requested are enabled, false otherwise */ function isOperatorInRole(address operator, uint256 required) public view returns(bool) { // delegate call to `__hasRole`, passing operator's permissions (role) return __hasRole(userRoles[operator], required); } /** * @dev Checks if role `actual` contains all the permissions required `required` * * @param actual existent role * @param required required role * @return true if actual has required role (all permissions), false otherwise */ function __hasRole(uint256 actual, uint256 required) internal pure returns(bool) { // check the bitmask for the role required and return the result return actual & required == required; } } // SPDX-License-Identifier: MIT pragma solidity 0.8.1; /** * @title Address Utils * * @dev Utility library of inline functions on addresses * * @author Basil Gorin */ library AddressUtils { /** * @notice Checks if the target address is a contract * @dev This function will return false if invoked during the constructor of a contract, * as the code is not actually created until after the constructor finishes. * @param addr address to check * @return whether the target address is a contract */ function isContract(address addr) internal view returns (bool) { // a variable to load `extcodesize` to uint256 size = 0; // XXX Currently there is no better way to check if there is a contract in an address // than to check the size of the code at that address. // See https://ethereum.stackexchange.com/a/14016/36603 for more details about how this works. // TODO: Check this again before the Serenity release, because all addresses will be contracts. // solium-disable-next-line security/no-inline-assembly assembly { // retrieve the size of the code at address `addr` size := extcodesize(addr) } // positive size indicates a smart contract address return size > 0; } }
File 3 of 5: ExclusiveDutchOrderReactor
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import {BaseReactor} from "./BaseReactor.sol"; import {IPermit2} from "permit2/src/interfaces/IPermit2.sol"; import {ExclusivityOverrideLib} from "../lib/ExclusivityOverrideLib.sol"; import {Permit2Lib} from "../lib/Permit2Lib.sol"; import {DutchDecayLib} from "../lib/DutchDecayLib.sol"; import {ExclusiveDutchOrderLib, ExclusiveDutchOrder, DutchOutput, DutchInput} from "../lib/ExclusiveDutchOrderLib.sol"; import {SignedOrder, ResolvedOrder, OrderInfo} from "../base/ReactorStructs.sol"; /// @notice Reactor for exclusive dutch orders contract ExclusiveDutchOrderReactor is BaseReactor { using Permit2Lib for ResolvedOrder; using ExclusiveDutchOrderLib for ExclusiveDutchOrder; using DutchDecayLib for DutchOutput[]; using DutchDecayLib for DutchInput; using ExclusivityOverrideLib for ResolvedOrder; /// @notice thrown when an order's deadline is before its end time error DeadlineBeforeEndTime(); /// @notice thrown when an order's end time is before its start time error OrderEndTimeBeforeStartTime(); /// @notice thrown when an order's inputs and outputs both decay error InputAndOutputDecay(); constructor(IPermit2 _permit2, address _protocolFeeOwner) BaseReactor(_permit2, _protocolFeeOwner) {} /// @inheritdoc BaseReactor function resolve(SignedOrder calldata signedOrder) internal view virtual override returns (ResolvedOrder memory resolvedOrder) { ExclusiveDutchOrder memory order = abi.decode(signedOrder.order, (ExclusiveDutchOrder)); _validateOrder(order); resolvedOrder = ResolvedOrder({ info: order.info, input: order.input.decay(order.decayStartTime, order.decayEndTime), outputs: order.outputs.decay(order.decayStartTime, order.decayEndTime), sig: signedOrder.sig, hash: order.hash() }); resolvedOrder.handleOverride(order.exclusiveFiller, order.decayStartTime, order.exclusivityOverrideBps); } /// @inheritdoc BaseReactor function transferInputTokens(ResolvedOrder memory order, address to) internal override { permit2.permitWitnessTransferFrom( order.toPermit(), order.transferDetails(to), order.info.swapper, order.hash, ExclusiveDutchOrderLib.PERMIT2_ORDER_TYPE, order.sig ); } /// @notice validate the dutch order fields /// - deadline must be greater than or equal than decayEndTime /// - decayEndTime must be greater than or equal to decayStartTime /// - if there's input decay, outputs must not decay /// - for input decay, startAmount must < endAmount /// @dev Throws if the order is invalid function _validateOrder(ExclusiveDutchOrder memory order) internal pure { if (order.info.deadline < order.decayEndTime) { revert DeadlineBeforeEndTime(); } if (order.decayEndTime < order.decayStartTime) { revert OrderEndTimeBeforeStartTime(); } if (order.input.startAmount != order.input.endAmount) { unchecked { for (uint256 i = 0; i < order.outputs.length; i++) { if (order.outputs[i].startAmount != order.outputs[i].endAmount) { revert InputAndOutputDecay(); } } } } } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import {SafeTransferLib} from "solmate/src/utils/SafeTransferLib.sol"; import {ReentrancyGuard} from "openzeppelin-contracts/security/ReentrancyGuard.sol"; import {IPermit2} from "permit2/src/interfaces/IPermit2.sol"; import {ERC20} from "solmate/src/tokens/ERC20.sol"; import {ReactorEvents} from "../base/ReactorEvents.sol"; import {ResolvedOrderLib} from "../lib/ResolvedOrderLib.sol"; import {CurrencyLibrary, NATIVE} from "../lib/CurrencyLibrary.sol"; import {IReactorCallback} from "../interfaces/IReactorCallback.sol"; import {IReactor} from "../interfaces/IReactor.sol"; import {ProtocolFees} from "../base/ProtocolFees.sol"; import {SignedOrder, ResolvedOrder, OutputToken} from "../base/ReactorStructs.sol"; /// @notice Generic reactor logic for settling off-chain signed orders /// using arbitrary fill methods specified by a filler abstract contract BaseReactor is IReactor, ReactorEvents, ProtocolFees, ReentrancyGuard { using SafeTransferLib for ERC20; using ResolvedOrderLib for ResolvedOrder; using CurrencyLibrary for address; // Occurs when an output = ETH and the reactor does contain enough ETH but // the direct filler did not include enough ETH in their call to execute/executeBatch error InsufficientEth(); /// @notice permit2 address used for token transfers and signature verification IPermit2 public immutable permit2; constructor(IPermit2 _permit2, address _protocolFeeOwner) ProtocolFees(_protocolFeeOwner) { permit2 = _permit2; } /// @inheritdoc IReactor function execute(SignedOrder calldata order) external payable override nonReentrant { ResolvedOrder[] memory resolvedOrders = new ResolvedOrder[](1); resolvedOrders[0] = resolve(order); _prepare(resolvedOrders); _fill(resolvedOrders); } /// @inheritdoc IReactor function executeWithCallback(SignedOrder calldata order, bytes calldata callbackData) external payable override nonReentrant { ResolvedOrder[] memory resolvedOrders = new ResolvedOrder[](1); resolvedOrders[0] = resolve(order); _prepare(resolvedOrders); IReactorCallback(msg.sender).reactorCallback(resolvedOrders, callbackData); _fill(resolvedOrders); } /// @inheritdoc IReactor function executeBatch(SignedOrder[] calldata orders) external payable override nonReentrant { uint256 ordersLength = orders.length; ResolvedOrder[] memory resolvedOrders = new ResolvedOrder[](ordersLength); unchecked { for (uint256 i = 0; i < ordersLength; i++) { resolvedOrders[i] = resolve(orders[i]); } } _prepare(resolvedOrders); _fill(resolvedOrders); } /// @inheritdoc IReactor function executeBatchWithCallback(SignedOrder[] calldata orders, bytes calldata callbackData) external payable override nonReentrant { uint256 ordersLength = orders.length; ResolvedOrder[] memory resolvedOrders = new ResolvedOrder[](ordersLength); unchecked { for (uint256 i = 0; i < ordersLength; i++) { resolvedOrders[i] = resolve(orders[i]); } } _prepare(resolvedOrders); IReactorCallback(msg.sender).reactorCallback(resolvedOrders, callbackData); _fill(resolvedOrders); } /// @notice validates, injects fees, and transfers input tokens in preparation for order fill /// @param orders The orders to prepare function _prepare(ResolvedOrder[] memory orders) internal { uint256 ordersLength = orders.length; unchecked { for (uint256 i = 0; i < ordersLength; i++) { ResolvedOrder memory order = orders[i]; _injectFees(order); order.validate(msg.sender); transferInputTokens(order, msg.sender); } } } /// @notice fills a list of orders, ensuring all outputs are satisfied /// @param orders The orders to fill function _fill(ResolvedOrder[] memory orders) internal { uint256 ordersLength = orders.length; // attempt to transfer all currencies to all recipients unchecked { // transfer output tokens to their respective recipients for (uint256 i = 0; i < ordersLength; i++) { ResolvedOrder memory resolvedOrder = orders[i]; uint256 outputsLength = resolvedOrder.outputs.length; for (uint256 j = 0; j < outputsLength; j++) { OutputToken memory output = resolvedOrder.outputs[j]; output.token.transferFill(output.recipient, output.amount); } emit Fill(orders[i].hash, msg.sender, resolvedOrder.info.swapper, resolvedOrder.info.nonce); } } // refund any remaining ETH to the filler. Only occurs when filler sends more ETH than required to // `execute()` or `executeBatch()`, or when there is excess contract balance remaining from others // incorrectly calling execute/executeBatch without direct filler method but with a msg.value if (address(this).balance > 0) { CurrencyLibrary.transferNative(msg.sender, address(this).balance); } } receive() external payable { // receive native asset to support native output } /// @notice Resolve order-type specific requirements into a generic order with the final inputs and outputs. /// @param order The encoded order to resolve /// @return resolvedOrder generic resolved order of inputs and outputs /// @dev should revert on any order-type-specific validation errors function resolve(SignedOrder calldata order) internal view virtual returns (ResolvedOrder memory resolvedOrder); /// @notice Transfers tokens to the fillContract /// @param order The encoded order to transfer tokens for /// @param to The address to transfer tokens to function transferInputTokens(ResolvedOrder memory order, address to) internal virtual; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {ISignatureTransfer} from "./ISignatureTransfer.sol"; import {IAllowanceTransfer} from "./IAllowanceTransfer.sol"; /// @notice Permit2 handles signature-based transfers in SignatureTransfer and allowance-based transfers in AllowanceTransfer. /// @dev Users must approve Permit2 before calling any of the transfer functions. interface IPermit2 is ISignatureTransfer, IAllowanceTransfer { // IPermit2 unifies the two interfaces so users have maximal flexibility with their approval. } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import {FixedPointMathLib} from "solmate/src/utils/FixedPointMathLib.sol"; import {ResolvedOrder, OutputToken} from "../base/ReactorStructs.sol"; /// @title ExclusiveOverride /// @dev This library handles order exclusivity /// giving the configured filler exclusive rights to fill the order before exclusivityEndTime /// or enforcing an override price improvement by non-exclusive fillers library ExclusivityOverrideLib { using FixedPointMathLib for uint256; /// @notice thrown when an order has strict exclusivity and the filler does not have it error NoExclusiveOverride(); uint256 private constant STRICT_EXCLUSIVITY = 0; uint256 private constant BPS = 10_000; /// @notice Applies exclusivity override to the resolved order if necessary /// @param order The order to apply exclusivity override to /// @param exclusive The exclusive address /// @param exclusivityEndTime The exclusivity end time /// @param exclusivityOverrideBps The exclusivity override BPS function handleOverride( ResolvedOrder memory order, address exclusive, uint256 exclusivityEndTime, uint256 exclusivityOverrideBps ) internal view { // if the filler has fill right, we proceed with the order as-is if (checkExclusivity(exclusive, exclusivityEndTime)) { return; } // if override is 0, then assume strict exclusivity so the order cannot be filled if (exclusivityOverrideBps == STRICT_EXCLUSIVITY) { revert NoExclusiveOverride(); } // scale outputs by override amount OutputToken[] memory outputs = order.outputs; for (uint256 i = 0; i < outputs.length;) { OutputToken memory output = outputs[i]; output.amount = output.amount.mulDivDown(BPS + exclusivityOverrideBps, BPS); unchecked { i++; } } } /// @notice checks if the order currently passes the exclusivity check /// @dev if the order has no exclusivity, always returns true /// @dev if the order has exclusivity and the current filler is the exclusive address, returns true /// @dev if the order has exclusivity and the current filler is not the exclusive address, returns false function checkExclusivity(address exclusive, uint256 exclusivityEndTime) internal view returns (bool pass) { return exclusive == address(0) || block.timestamp > exclusivityEndTime || exclusive == msg.sender; } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import {ERC20} from "solmate/src/tokens/ERC20.sol"; import {ISignatureTransfer} from "permit2/src/interfaces/ISignatureTransfer.sol"; import {ResolvedOrder} from "../base/ReactorStructs.sol"; /// @notice handling some permit2-specific encoding library Permit2Lib { /// @notice returns a ResolvedOrder into a permit object function toPermit(ResolvedOrder memory order) internal pure returns (ISignatureTransfer.PermitTransferFrom memory) { return ISignatureTransfer.PermitTransferFrom({ permitted: ISignatureTransfer.TokenPermissions({ token: address(order.input.token), amount: order.input.maxAmount }), nonce: order.info.nonce, deadline: order.info.deadline }); } /// @notice returns a ResolvedOrder into a permit object function transferDetails(ResolvedOrder memory order, address to) internal pure returns (ISignatureTransfer.SignatureTransferDetails memory) { return ISignatureTransfer.SignatureTransferDetails({to: to, requestedAmount: order.input.amount}); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import {OutputToken, InputToken} from "../base/ReactorStructs.sol"; import {DutchOutput, DutchInput} from "../lib/DutchOrderLib.sol"; import {FixedPointMathLib} from "solmate/src/utils/FixedPointMathLib.sol"; /// @notice helpers for handling dutch order objects library DutchDecayLib { using FixedPointMathLib for uint256; /// @notice thrown if the decay direction is incorrect /// - for DutchInput, startAmount must be less than or equal toendAmount /// - for DutchOutput, startAmount must be greater than or equal to endAmount error IncorrectAmounts(); /// @notice thrown if the endTime of an order is before startTime error EndTimeBeforeStartTime(); /// @notice calculates an amount using linear decay over time from decayStartTime to decayEndTime /// @dev handles both positive and negative decay depending on startAmount and endAmount /// @param startAmount The amount of tokens at decayStartTime /// @param endAmount The amount of tokens at decayEndTime /// @param decayStartTime The time to start decaying linearly /// @param decayEndTime The time to stop decaying linearly function decay(uint256 startAmount, uint256 endAmount, uint256 decayStartTime, uint256 decayEndTime) internal view returns (uint256 decayedAmount) { if (decayEndTime < decayStartTime) { revert EndTimeBeforeStartTime(); } else if (decayEndTime <= block.timestamp) { decayedAmount = endAmount; } else if (decayStartTime >= block.timestamp) { decayedAmount = startAmount; } else { unchecked { uint256 elapsed = block.timestamp - decayStartTime; uint256 duration = decayEndTime - decayStartTime; if (endAmount < startAmount) { decayedAmount = startAmount - (startAmount - endAmount).mulDivDown(elapsed, duration); } else { decayedAmount = startAmount + (endAmount - startAmount).mulDivDown(elapsed, duration); } } } } /// @notice returns a decayed output using the given dutch spec and times /// @param output The output to decay /// @param decayStartTime The time to start decaying /// @param decayEndTime The time to end decaying /// @return result a decayed output function decay(DutchOutput memory output, uint256 decayStartTime, uint256 decayEndTime) internal view returns (OutputToken memory result) { if (output.startAmount < output.endAmount) { revert IncorrectAmounts(); } uint256 decayedOutput = DutchDecayLib.decay(output.startAmount, output.endAmount, decayStartTime, decayEndTime); result = OutputToken(output.token, decayedOutput, output.recipient); } /// @notice returns a decayed output array using the given dutch spec and times /// @param outputs The output array to decay /// @param decayStartTime The time to start decaying /// @param decayEndTime The time to end decaying /// @return result a decayed output array function decay(DutchOutput[] memory outputs, uint256 decayStartTime, uint256 decayEndTime) internal view returns (OutputToken[] memory result) { uint256 outputLength = outputs.length; result = new OutputToken[](outputLength); unchecked { for (uint256 i = 0; i < outputLength; i++) { result[i] = decay(outputs[i], decayStartTime, decayEndTime); } } } /// @notice returns a decayed input using the given dutch spec and times /// @param input The input to decay /// @param decayStartTime The time to start decaying /// @param decayEndTime The time to end decaying /// @return result a decayed input function decay(DutchInput memory input, uint256 decayStartTime, uint256 decayEndTime) internal view returns (InputToken memory result) { if (input.startAmount > input.endAmount) { revert IncorrectAmounts(); } uint256 decayedInput = DutchDecayLib.decay(input.startAmount, input.endAmount, decayStartTime, decayEndTime); result = InputToken(input.token, decayedInput, input.endAmount); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import {OrderInfo} from "../base/ReactorStructs.sol"; import {DutchOutput, DutchInput, DutchOrderLib} from "./DutchOrderLib.sol"; import {OrderInfoLib} from "./OrderInfoLib.sol"; struct ExclusiveDutchOrder { // generic order information OrderInfo info; // The time at which the DutchOutputs start decaying uint256 decayStartTime; // The time at which price becomes static uint256 decayEndTime; // The address who has exclusive rights to the order until decayStartTime address exclusiveFiller; // The amount in bps that a non-exclusive filler needs to improve the outputs by to be able to fill the order uint256 exclusivityOverrideBps; // The tokens that the swapper will provide when settling the order DutchInput input; // The tokens that must be received to satisfy the order DutchOutput[] outputs; } /// @notice helpers for handling dutch order objects library ExclusiveDutchOrderLib { using DutchOrderLib for DutchOutput[]; using OrderInfoLib for OrderInfo; bytes internal constant EXCLUSIVE_DUTCH_LIMIT_ORDER_TYPE = abi.encodePacked( "ExclusiveDutchOrder(", "OrderInfo info,", "uint256 decayStartTime,", "uint256 decayEndTime,", "address exclusiveFiller,", "uint256 exclusivityOverrideBps,", "address inputToken,", "uint256 inputStartAmount,", "uint256 inputEndAmount,", "DutchOutput[] outputs)" ); bytes internal constant ORDER_TYPE = abi.encodePacked( EXCLUSIVE_DUTCH_LIMIT_ORDER_TYPE, DutchOrderLib.DUTCH_OUTPUT_TYPE, OrderInfoLib.ORDER_INFO_TYPE ); bytes32 internal constant ORDER_TYPE_HASH = keccak256(ORDER_TYPE); /// @dev Note that sub-structs have to be defined in alphabetical order in the EIP-712 spec string internal constant PERMIT2_ORDER_TYPE = string( abi.encodePacked( "ExclusiveDutchOrder witness)", DutchOrderLib.DUTCH_OUTPUT_TYPE, EXCLUSIVE_DUTCH_LIMIT_ORDER_TYPE, OrderInfoLib.ORDER_INFO_TYPE, DutchOrderLib.TOKEN_PERMISSIONS_TYPE ) ); /// @notice hash the given order /// @param order the order to hash /// @return the eip-712 order hash function hash(ExclusiveDutchOrder memory order) internal pure returns (bytes32) { return keccak256( abi.encode( ORDER_TYPE_HASH, order.info.hash(), order.decayStartTime, order.decayEndTime, order.exclusiveFiller, order.exclusivityOverrideBps, order.input.token, order.input.startAmount, order.input.endAmount, order.outputs.hash() ) ); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import {IReactor} from "../interfaces/IReactor.sol"; import {IValidationCallback} from "../interfaces/IValidationCallback.sol"; import {ERC20} from "solmate/src/tokens/ERC20.sol"; /// @dev generic order information /// should be included as the first field in any concrete order types struct OrderInfo { // The address of the reactor that this order is targeting // Note that this must be included in every order so the swapper // signature commits to the specific reactor that they trust to fill their order properly IReactor reactor; // The address of the user which created the order // Note that this must be included so that order hashes are unique by swapper address swapper; // The nonce of the order, allowing for signature replay protection and cancellation uint256 nonce; // The timestamp after which this order is no longer valid uint256 deadline; // Custom validation contract IValidationCallback additionalValidationContract; // Encoded validation params for additionalValidationContract bytes additionalValidationData; } /// @dev tokens that need to be sent from the swapper in order to satisfy an order struct InputToken { ERC20 token; uint256 amount; // Needed for dutch decaying inputs uint256 maxAmount; } /// @dev tokens that need to be received by the recipient in order to satisfy an order struct OutputToken { address token; uint256 amount; address recipient; } /// @dev generic concrete order that specifies exact tokens which need to be sent and received struct ResolvedOrder { OrderInfo info; InputToken input; OutputToken[] outputs; bytes sig; bytes32 hash; } /// @dev external struct including a generic encoded order and swapper signature /// The order bytes will be parsed and mapped to a ResolvedOrder in the concrete reactor contract struct SignedOrder { bytes order; bytes sig; } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; import {ERC20} from "../tokens/ERC20.sol"; /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol) /// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer. /// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller. library SafeTransferLib { /*////////////////////////////////////////////////////////////// ETH OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferETH(address to, uint256 amount) internal { bool success; /// @solidity memory-safe-assembly assembly { // Transfer the ETH and store if it succeeded or not. success := call(gas(), to, amount, 0, 0, 0, 0) } require(success, "ETH_TRANSFER_FAILED"); } /*////////////////////////////////////////////////////////////// ERC20 OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferFrom( ERC20 token, address from, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), and(from, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "from" argument. mstore(add(freeMemoryPointer, 36), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument. mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 100, 0, 32) ) } require(success, "TRANSFER_FROM_FAILED"); } function safeTransfer( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "TRANSFER_FAILED"); } function safeApprove( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "APPROVE_FAILED"); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be _NOT_ENTERED require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == _ENTERED; } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol) /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol) /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it. abstract contract ERC20 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); /*////////////////////////////////////////////////////////////// METADATA STORAGE //////////////////////////////////////////////////////////////*/ string public name; string public symbol; uint8 public immutable decimals; /*////////////////////////////////////////////////////////////// ERC20 STORAGE //////////////////////////////////////////////////////////////*/ uint256 public totalSupply; mapping(address => uint256) public balanceOf; mapping(address => mapping(address => uint256)) public allowance; /*////////////////////////////////////////////////////////////// EIP-2612 STORAGE //////////////////////////////////////////////////////////////*/ uint256 internal immutable INITIAL_CHAIN_ID; bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR; mapping(address => uint256) public nonces; /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor( string memory _name, string memory _symbol, uint8 _decimals ) { name = _name; symbol = _symbol; decimals = _decimals; INITIAL_CHAIN_ID = block.chainid; INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator(); } /*////////////////////////////////////////////////////////////// ERC20 LOGIC //////////////////////////////////////////////////////////////*/ function approve(address spender, uint256 amount) public virtual returns (bool) { allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } function transfer(address to, uint256 amount) public virtual returns (bool) { balanceOf[msg.sender] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(msg.sender, to, amount); return true; } function transferFrom( address from, address to, uint256 amount ) public virtual returns (bool) { uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals. if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount; balanceOf[from] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(from, to, amount); return true; } /*////////////////////////////////////////////////////////////// EIP-2612 LOGIC //////////////////////////////////////////////////////////////*/ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED"); // Unchecked because the only math done is incrementing // the owner's nonce which cannot realistically overflow. unchecked { address recoveredAddress = ecrecover( keccak256( abi.encodePacked( "\\x19\\x01", DOMAIN_SEPARATOR(), keccak256( abi.encode( keccak256( "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)" ), owner, spender, value, nonces[owner]++, deadline ) ) ) ), v, r, s ); require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER"); allowance[recoveredAddress][spender] = value; } emit Approval(owner, spender, value); } function DOMAIN_SEPARATOR() public view virtual returns (bytes32) { return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator(); } function computeDomainSeparator() internal view virtual returns (bytes32) { return keccak256( abi.encode( keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"), keccak256(bytes(name)), keccak256("1"), block.chainid, address(this) ) ); } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint(address to, uint256 amount) internal virtual { totalSupply += amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(address(0), to, amount); } function _burn(address from, uint256 amount) internal virtual { balanceOf[from] -= amount; // Cannot underflow because a user's balance // will never be larger than the total supply. unchecked { totalSupply -= amount; } emit Transfer(from, address(0), amount); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; /// @notice standardized events that should be emitted by all reactors /// @dev collated into one library to help with forge expectEmit integration /// @dev and for reactors which dont use base interface ReactorEvents { /// @notice emitted when an order is filled /// @param orderHash The hash of the order that was filled /// @param filler The address which executed the fill /// @param nonce The nonce of the filled order /// @param swapper The swapper of the filled order event Fill(bytes32 indexed orderHash, address indexed filler, address indexed swapper, uint256 nonce); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import {ResolvedOrder} from "../base/ReactorStructs.sol"; import {IValidationCallback} from "../interfaces/IValidationCallback.sol"; library ResolvedOrderLib { /// @notice thrown when the order targets a different reactor error InvalidReactor(); /// @notice thrown if the order has expired error DeadlinePassed(); /// @notice Validates a resolved order, reverting if invalid /// @param filler The filler of the order function validate(ResolvedOrder memory resolvedOrder, address filler) internal view { if (address(this) != address(resolvedOrder.info.reactor)) { revert InvalidReactor(); } if (block.timestamp > resolvedOrder.info.deadline) { revert DeadlinePassed(); } if (address(resolvedOrder.info.additionalValidationContract) != address(0)) { resolvedOrder.info.additionalValidationContract.validate(filler, resolvedOrder); } } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import {ERC20} from "solmate/src/tokens/ERC20.sol"; import {IPermit2} from "permit2/src/interfaces/IPermit2.sol"; import {SafeCast} from "openzeppelin-contracts/utils/math/SafeCast.sol"; import {SafeTransferLib} from "solmate/src/utils/SafeTransferLib.sol"; address constant NATIVE = 0x0000000000000000000000000000000000000000; uint256 constant TRANSFER_NATIVE_GAS_LIMIT = 6900; /// @title CurrencyLibrary /// @dev This library allows for transferring native ETH and ERC20s via direct filler OR fill contract. library CurrencyLibrary { using SafeTransferLib for ERC20; /// @notice Thrown when a native transfer fails error NativeTransferFailed(); /// @notice Get the balance of a currency for addr /// @param currency The currency to get the balance of /// @param addr The address to get the balance of /// @return balance The balance of the currency for addr function balanceOf(address currency, address addr) internal view returns (uint256 balance) { if (isNative(currency)) { balance = addr.balance; } else { balance = ERC20(currency).balanceOf(addr); } } /// @notice Transfer currency from the caller to recipient /// @dev for native outputs we will already have the currency in local balance /// @param currency The currency to transfer /// @param recipient The recipient of the currency /// @param amount The amount of currency to transfer function transferFill(address currency, address recipient, uint256 amount) internal { if (isNative(currency)) { // we will have received native assets directly so can directly transfer transferNative(recipient, amount); } else { // else the caller must have approved the token for the fill ERC20(currency).safeTransferFrom(msg.sender, recipient, amount); } } /// @notice Transfer native currency to recipient /// @param recipient The recipient of the currency /// @param amount The amount of currency to transfer function transferNative(address recipient, uint256 amount) internal { (bool success,) = recipient.call{value: amount, gas: TRANSFER_NATIVE_GAS_LIMIT}(""); if (!success) revert NativeTransferFailed(); } /// @notice returns true if currency is native /// @param currency The currency to check /// @return true if currency is native function isNative(address currency) internal pure returns (bool) { return currency == NATIVE; } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import {ResolvedOrder} from "../base/ReactorStructs.sol"; /// @notice Callback for executing orders through a reactor. interface IReactorCallback { /// @notice Called by the reactor during the execution of an order /// @param resolvedOrders Has inputs and outputs /// @param callbackData The callbackData specified for an order execution /// @dev Must have approved each token and amount in outputs to the msg.sender function reactorCallback(ResolvedOrder[] memory resolvedOrders, bytes memory callbackData) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import {ResolvedOrder, SignedOrder} from "../base/ReactorStructs.sol"; import {IReactorCallback} from "./IReactorCallback.sol"; /// @notice Interface for order execution reactors interface IReactor { /// @notice Execute a single order /// @param order The order definition and valid signature to execute function execute(SignedOrder calldata order) external payable; /// @notice Execute a single order using the given callback data /// @param order The order definition and valid signature to execute function executeWithCallback(SignedOrder calldata order, bytes calldata callbackData) external payable; /// @notice Execute the given orders at once /// @param orders The order definitions and valid signatures to execute function executeBatch(SignedOrder[] calldata orders) external payable; /// @notice Execute the given orders at once using a callback with the given callback data /// @param orders The order definitions and valid signatures to execute /// @param callbackData The callbackData to pass to the callback function executeBatchWithCallback(SignedOrder[] calldata orders, bytes calldata callbackData) external payable; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import {Owned} from "solmate/src/auth/Owned.sol"; import {SafeTransferLib} from "solmate/src/utils/SafeTransferLib.sol"; import {FixedPointMathLib} from "solmate/src/utils/FixedPointMathLib.sol"; import {ERC20} from "solmate/src/tokens/ERC20.sol"; import {IProtocolFeeController} from "../interfaces/IProtocolFeeController.sol"; import {CurrencyLibrary} from "../lib/CurrencyLibrary.sol"; import {ResolvedOrder, OutputToken} from "../base/ReactorStructs.sol"; /// @notice Handling for protocol fees abstract contract ProtocolFees is Owned { using SafeTransferLib for ERC20; using FixedPointMathLib for uint256; using CurrencyLibrary for address; /// @notice thrown if two fee outputs have the same token error DuplicateFeeOutput(address duplicateToken); /// @notice thrown if a given fee output is greater than MAX_FEE_BPS of the order outputs error FeeTooLarge(address token, uint256 amount, address recipient); /// @notice thrown if a fee output token does not have a corresponding non-fee output error InvalidFeeToken(address feeToken); event ProtocolFeeControllerSet(address oldFeeController, address newFeeController); uint256 private constant BPS = 10_000; uint256 private constant MAX_FEE_BPS = 5; /// @dev The address of the fee controller IProtocolFeeController public feeController; // @notice Required to customize owner from constructor of BaseReactor.sol constructor(address _owner) Owned(_owner) {} /// @notice Injects fees into an order /// @dev modifies the orders to include protocol fee outputs /// @param order The encoded order to inject fees into function _injectFees(ResolvedOrder memory order) internal view { if (address(feeController) == address(0)) { return; } OutputToken[] memory feeOutputs = feeController.getFeeOutputs(order); uint256 outputsLength = order.outputs.length; uint256 feeOutputsLength = feeOutputs.length; // apply fee outputs // fill new outputs with old outputs OutputToken[] memory newOutputs = new OutputToken[]( outputsLength + feeOutputsLength ); unchecked { for (uint256 i = 0; i < outputsLength; i++) { newOutputs[i] = order.outputs[i]; } } for (uint256 i = 0; i < feeOutputsLength;) { OutputToken memory feeOutput = feeOutputs[i]; // assert no duplicates unchecked { for (uint256 j = 0; j < i; j++) { if (feeOutput.token == feeOutputs[j].token) { revert DuplicateFeeOutput(feeOutput.token); } } } // assert not greater than MAX_FEE_BPS uint256 tokenValue; for (uint256 j = 0; j < outputsLength;) { OutputToken memory output = order.outputs[j]; if (output.token == feeOutput.token) { tokenValue += output.amount; } unchecked { j++; } } // allow fee on input token as well if (address(order.input.token) == feeOutput.token) { tokenValue += order.input.amount; } if (tokenValue == 0) revert InvalidFeeToken(feeOutput.token); if (feeOutput.amount > tokenValue.mulDivDown(MAX_FEE_BPS, BPS)) { revert FeeTooLarge(feeOutput.token, feeOutput.amount, feeOutput.recipient); } newOutputs[outputsLength + i] = feeOutput; unchecked { i++; } } order.outputs = newOutputs; } /// @notice sets the protocol fee controller /// @dev only callable by the owner /// @param _newFeeController the new fee controller function setProtocolFeeController(address _newFeeController) external onlyOwner { address oldFeeController = address(feeController); feeController = IProtocolFeeController(_newFeeController); emit ProtocolFeeControllerSet(oldFeeController, _newFeeController); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; import {IEIP712} from "./IEIP712.sol"; /// @title SignatureTransfer /// @notice Handles ERC20 token transfers through signature based actions /// @dev Requires user's token approval on the Permit2 contract interface ISignatureTransfer is IEIP712 { /// @notice Thrown when the requested amount for a transfer is larger than the permissioned amount /// @param maxAmount The maximum amount a spender can request to transfer error InvalidAmount(uint256 maxAmount); /// @notice Thrown when the number of tokens permissioned to a spender does not match the number of tokens being transferred /// @dev If the spender does not need to transfer the number of tokens permitted, the spender can request amount 0 to be transferred error LengthMismatch(); /// @notice Emits an event when the owner successfully invalidates an unordered nonce. event UnorderedNonceInvalidation(address indexed owner, uint256 word, uint256 mask); /// @notice The token and amount details for a transfer signed in the permit transfer signature struct TokenPermissions { // ERC20 token address address token; // the maximum amount that can be spent uint256 amount; } /// @notice The signed permit message for a single token transfer struct PermitTransferFrom { TokenPermissions permitted; // a unique value for every token owner's signature to prevent signature replays uint256 nonce; // deadline on the permit signature uint256 deadline; } /// @notice Specifies the recipient address and amount for batched transfers. /// @dev Recipients and amounts correspond to the index of the signed token permissions array. /// @dev Reverts if the requested amount is greater than the permitted signed amount. struct SignatureTransferDetails { // recipient address address to; // spender requested amount uint256 requestedAmount; } /// @notice Used to reconstruct the signed permit message for multiple token transfers /// @dev Do not need to pass in spender address as it is required that it is msg.sender /// @dev Note that a user still signs over a spender address struct PermitBatchTransferFrom { // the tokens and corresponding amounts permitted for a transfer TokenPermissions[] permitted; // a unique value for every token owner's signature to prevent signature replays uint256 nonce; // deadline on the permit signature uint256 deadline; } /// @notice A map from token owner address and a caller specified word index to a bitmap. Used to set bits in the bitmap to prevent against signature replay protection /// @dev Uses unordered nonces so that permit messages do not need to be spent in a certain order /// @dev The mapping is indexed first by the token owner, then by an index specified in the nonce /// @dev It returns a uint256 bitmap /// @dev The index, or wordPosition is capped at type(uint248).max function nonceBitmap(address, uint256) external view returns (uint256); /// @notice Transfers a token using a signed permit message /// @dev Reverts if the requested amount is greater than the permitted signed amount /// @param permit The permit data signed over by the owner /// @param owner The owner of the tokens to transfer /// @param transferDetails The spender's requested transfer details for the permitted token /// @param signature The signature to verify function permitTransferFrom( PermitTransferFrom memory permit, SignatureTransferDetails calldata transferDetails, address owner, bytes calldata signature ) external; /// @notice Transfers a token using a signed permit message /// @notice Includes extra data provided by the caller to verify signature over /// @dev The witness type string must follow EIP712 ordering of nested structs and must include the TokenPermissions type definition /// @dev Reverts if the requested amount is greater than the permitted signed amount /// @param permit The permit data signed over by the owner /// @param owner The owner of the tokens to transfer /// @param transferDetails The spender's requested transfer details for the permitted token /// @param witness Extra data to include when checking the user signature /// @param witnessTypeString The EIP-712 type definition for remaining string stub of the typehash /// @param signature The signature to verify function permitWitnessTransferFrom( PermitTransferFrom memory permit, SignatureTransferDetails calldata transferDetails, address owner, bytes32 witness, string calldata witnessTypeString, bytes calldata signature ) external; /// @notice Transfers multiple tokens using a signed permit message /// @param permit The permit data signed over by the owner /// @param owner The owner of the tokens to transfer /// @param transferDetails Specifies the recipient and requested amount for the token transfer /// @param signature The signature to verify function permitTransferFrom( PermitBatchTransferFrom memory permit, SignatureTransferDetails[] calldata transferDetails, address owner, bytes calldata signature ) external; /// @notice Transfers multiple tokens using a signed permit message /// @dev The witness type string must follow EIP712 ordering of nested structs and must include the TokenPermissions type definition /// @notice Includes extra data provided by the caller to verify signature over /// @param permit The permit data signed over by the owner /// @param owner The owner of the tokens to transfer /// @param transferDetails Specifies the recipient and requested amount for the token transfer /// @param witness Extra data to include when checking the user signature /// @param witnessTypeString The EIP-712 type definition for remaining string stub of the typehash /// @param signature The signature to verify function permitWitnessTransferFrom( PermitBatchTransferFrom memory permit, SignatureTransferDetails[] calldata transferDetails, address owner, bytes32 witness, string calldata witnessTypeString, bytes calldata signature ) external; /// @notice Invalidates the bits specified in mask for the bitmap at the word position /// @dev The wordPos is maxed at type(uint248).max /// @param wordPos A number to index the nonceBitmap at /// @param mask A bitmap masked against msg.sender's current bitmap at the word position function invalidateUnorderedNonces(uint256 wordPos, uint256 mask) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; import {IEIP712} from "./IEIP712.sol"; /// @title AllowanceTransfer /// @notice Handles ERC20 token permissions through signature based allowance setting and ERC20 token transfers by checking allowed amounts /// @dev Requires user's token approval on the Permit2 contract interface IAllowanceTransfer is IEIP712 { /// @notice Thrown when an allowance on a token has expired. /// @param deadline The timestamp at which the allowed amount is no longer valid error AllowanceExpired(uint256 deadline); /// @notice Thrown when an allowance on a token has been depleted. /// @param amount The maximum amount allowed error InsufficientAllowance(uint256 amount); /// @notice Thrown when too many nonces are invalidated. error ExcessiveInvalidation(); /// @notice Emits an event when the owner successfully invalidates an ordered nonce. event NonceInvalidation( address indexed owner, address indexed token, address indexed spender, uint48 newNonce, uint48 oldNonce ); /// @notice Emits an event when the owner successfully sets permissions on a token for the spender. event Approval( address indexed owner, address indexed token, address indexed spender, uint160 amount, uint48 expiration ); /// @notice Emits an event when the owner successfully sets permissions using a permit signature on a token for the spender. event Permit( address indexed owner, address indexed token, address indexed spender, uint160 amount, uint48 expiration, uint48 nonce ); /// @notice Emits an event when the owner sets the allowance back to 0 with the lockdown function. event Lockdown(address indexed owner, address token, address spender); /// @notice The permit data for a token struct PermitDetails { // ERC20 token address address token; // the maximum amount allowed to spend uint160 amount; // timestamp at which a spender's token allowances become invalid uint48 expiration; // an incrementing value indexed per owner,token,and spender for each signature uint48 nonce; } /// @notice The permit message signed for a single token allownce struct PermitSingle { // the permit data for a single token alownce PermitDetails details; // address permissioned on the allowed tokens address spender; // deadline on the permit signature uint256 sigDeadline; } /// @notice The permit message signed for multiple token allowances struct PermitBatch { // the permit data for multiple token allowances PermitDetails[] details; // address permissioned on the allowed tokens address spender; // deadline on the permit signature uint256 sigDeadline; } /// @notice The saved permissions /// @dev This info is saved per owner, per token, per spender and all signed over in the permit message /// @dev Setting amount to type(uint160).max sets an unlimited approval struct PackedAllowance { // amount allowed uint160 amount; // permission expiry uint48 expiration; // an incrementing value indexed per owner,token,and spender for each signature uint48 nonce; } /// @notice A token spender pair. struct TokenSpenderPair { // the token the spender is approved address token; // the spender address address spender; } /// @notice Details for a token transfer. struct AllowanceTransferDetails { // the owner of the token address from; // the recipient of the token address to; // the amount of the token uint160 amount; // the token to be transferred address token; } /// @notice A mapping from owner address to token address to spender address to PackedAllowance struct, which contains details and conditions of the approval. /// @notice The mapping is indexed in the above order see: allowance[ownerAddress][tokenAddress][spenderAddress] /// @dev The packed slot holds the allowed amount, expiration at which the allowed amount is no longer valid, and current nonce thats updated on any signature based approvals. function allowance(address user, address token, address spender) external view returns (uint160 amount, uint48 expiration, uint48 nonce); /// @notice Approves the spender to use up to amount of the specified token up until the expiration /// @param token The token to approve /// @param spender The spender address to approve /// @param amount The approved amount of the token /// @param expiration The timestamp at which the approval is no longer valid /// @dev The packed allowance also holds a nonce, which will stay unchanged in approve /// @dev Setting amount to type(uint160).max sets an unlimited approval function approve(address token, address spender, uint160 amount, uint48 expiration) external; /// @notice Permit a spender to a given amount of the owners token via the owner's EIP-712 signature /// @dev May fail if the owner's nonce was invalidated in-flight by invalidateNonce /// @param owner The owner of the tokens being approved /// @param permitSingle Data signed over by the owner specifying the terms of approval /// @param signature The owner's signature over the permit data function permit(address owner, PermitSingle memory permitSingle, bytes calldata signature) external; /// @notice Permit a spender to the signed amounts of the owners tokens via the owner's EIP-712 signature /// @dev May fail if the owner's nonce was invalidated in-flight by invalidateNonce /// @param owner The owner of the tokens being approved /// @param permitBatch Data signed over by the owner specifying the terms of approval /// @param signature The owner's signature over the permit data function permit(address owner, PermitBatch memory permitBatch, bytes calldata signature) external; /// @notice Transfer approved tokens from one address to another /// @param from The address to transfer from /// @param to The address of the recipient /// @param amount The amount of the token to transfer /// @param token The token address to transfer /// @dev Requires the from address to have approved at least the desired amount /// of tokens to msg.sender. function transferFrom(address from, address to, uint160 amount, address token) external; /// @notice Transfer approved tokens in a batch /// @param transferDetails Array of owners, recipients, amounts, and tokens for the transfers /// @dev Requires the from addresses to have approved at least the desired amount /// of tokens to msg.sender. function transferFrom(AllowanceTransferDetails[] calldata transferDetails) external; /// @notice Enables performing a "lockdown" of the sender's Permit2 identity /// by batch revoking approvals /// @param approvals Array of approvals to revoke. function lockdown(TokenSpenderPair[] calldata approvals) external; /// @notice Invalidate nonces for a given (token, spender) pair /// @param token The token to invalidate nonces for /// @param spender The spender to invalidate nonces for /// @param newNonce The new nonce to set. Invalidates all nonces less than it. /// @dev Can't invalidate more than 2**16 nonces per transaction. function invalidateNonces(address token, address spender, uint48 newNonce) external; } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Arithmetic library with operations for fixed-point numbers. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol) /// @author Inspired by USM (https://github.com/usmfum/USM/blob/master/contracts/WadMath.sol) library FixedPointMathLib { /*////////////////////////////////////////////////////////////// SIMPLIFIED FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ uint256 internal constant MAX_UINT256 = 2**256 - 1; uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s. function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down. } function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up. } function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down. } function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up. } /*////////////////////////////////////////////////////////////// LOW LEVEL FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ function mulDivDown( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y)) if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) { revert(0, 0) } // Divide x * y by the denominator. z := div(mul(x, y), denominator) } } function mulDivUp( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y)) if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) { revert(0, 0) } // If x * y modulo the denominator is strictly greater than 0, // 1 is added to round up the division of x * y by the denominator. z := add(gt(mod(mul(x, y), denominator), 0), div(mul(x, y), denominator)) } } function rpow( uint256 x, uint256 n, uint256 scalar ) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { switch x case 0 { switch n case 0 { // 0 ** 0 = 1 z := scalar } default { // 0 ** n = 0 z := 0 } } default { switch mod(n, 2) case 0 { // If n is even, store scalar in z for now. z := scalar } default { // If n is odd, store x in z for now. z := x } // Shifting right by 1 is like dividing by 2. let half := shr(1, scalar) for { // Shift n right by 1 before looping to halve it. n := shr(1, n) } n { // Shift n right by 1 each iteration to halve it. n := shr(1, n) } { // Revert immediately if x ** 2 would overflow. // Equivalent to iszero(eq(div(xx, x), x)) here. if shr(128, x) { revert(0, 0) } // Store x squared. let xx := mul(x, x) // Round to the nearest number. let xxRound := add(xx, half) // Revert if xx + half overflowed. if lt(xxRound, xx) { revert(0, 0) } // Set x to scaled xxRound. x := div(xxRound, scalar) // If n is even: if mod(n, 2) { // Compute z * x. let zx := mul(z, x) // If z * x overflowed: if iszero(eq(div(zx, x), z)) { // Revert if x is non-zero. if iszero(iszero(x)) { revert(0, 0) } } // Round to the nearest number. let zxRound := add(zx, half) // Revert if zx + half overflowed. if lt(zxRound, zx) { revert(0, 0) } // Return properly scaled zxRound. z := div(zxRound, scalar) } } } } } /*////////////////////////////////////////////////////////////// GENERAL NUMBER UTILITIES //////////////////////////////////////////////////////////////*/ function sqrt(uint256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { let y := x // We start y at x, which will help us make our initial estimate. z := 181 // The "correct" value is 1, but this saves a multiplication later. // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically. // We check y >= 2^(k + 8) but shift right by k bits // each branch to ensure that if x >= 256, then y >= 256. if iszero(lt(y, 0x10000000000000000000000000000000000)) { y := shr(128, y) z := shl(64, z) } if iszero(lt(y, 0x1000000000000000000)) { y := shr(64, y) z := shl(32, z) } if iszero(lt(y, 0x10000000000)) { y := shr(32, y) z := shl(16, z) } if iszero(lt(y, 0x1000000)) { y := shr(16, y) z := shl(8, z) } // Goal was to get z*z*y within a small factor of x. More iterations could // get y in a tighter range. Currently, we will have y in [256, 256*2^16). // We ensured y >= 256 so that the relative difference between y and y+1 is small. // That's not possible if x < 256 but we can just verify those cases exhaustively. // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256. // Correctness can be checked exhaustively for x < 256, so we assume y >= 256. // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps. // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256. // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18. // There is no overflow risk here since y < 2^136 after the first branch above. z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181. // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough. z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) // If x+1 is a perfect square, the Babylonian method cycles between // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor. // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case. // If you don't care whether the floor or ceil square root is returned, you can remove this statement. z := sub(z, lt(div(x, z), z)) } } function unsafeMod(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Mod x by y. Note this will return // 0 instead of reverting if y is zero. z := mod(x, y) } } function unsafeDiv(uint256 x, uint256 y) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { // Divide x by y. Note this will return // 0 instead of reverting if y is zero. r := div(x, y) } } function unsafeDivUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Add 1 to x * y if x % y > 0. Note this will // return 0 instead of reverting if y is zero. z := add(gt(mod(x, y), 0), div(x, y)) } } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import {OrderInfo} from "../base/ReactorStructs.sol"; import {OrderInfoLib} from "./OrderInfoLib.sol"; import {ERC20} from "solmate/src/tokens/ERC20.sol"; /// @dev An amount of output tokens that decreases linearly over time struct DutchOutput { // The ERC20 token address (or native ETH address) address token; // The amount of tokens at the start of the time period uint256 startAmount; // The amount of tokens at the end of the time period uint256 endAmount; // The address who must receive the tokens to satisfy the order address recipient; } /// @dev An amount of input tokens that increases linearly over time struct DutchInput { // The ERC20 token address ERC20 token; // The amount of tokens at the start of the time period uint256 startAmount; // The amount of tokens at the end of the time period uint256 endAmount; } struct DutchOrder { // generic order information OrderInfo info; // The time at which the DutchOutputs start decaying uint256 decayStartTime; // The time at which price becomes static uint256 decayEndTime; // The tokens that the swapper will provide when settling the order DutchInput input; // The tokens that must be received to satisfy the order DutchOutput[] outputs; } /// @notice helpers for handling dutch order objects library DutchOrderLib { using OrderInfoLib for OrderInfo; bytes internal constant DUTCH_OUTPUT_TYPE = "DutchOutput(address token,uint256 startAmount,uint256 endAmount,address recipient)"; bytes32 internal constant DUTCH_OUTPUT_TYPE_HASH = keccak256(DUTCH_OUTPUT_TYPE); bytes internal constant DUTCH_LIMIT_ORDER_TYPE = abi.encodePacked( "DutchOrder(", "OrderInfo info,", "uint256 decayStartTime,", "uint256 decayEndTime,", "address inputToken,", "uint256 inputStartAmount,", "uint256 inputEndAmount,", "DutchOutput[] outputs)" ); /// @dev Note that sub-structs have to be defined in alphabetical order in the EIP-712 spec bytes internal constant ORDER_TYPE = abi.encodePacked(DUTCH_LIMIT_ORDER_TYPE, DUTCH_OUTPUT_TYPE, OrderInfoLib.ORDER_INFO_TYPE); bytes32 internal constant ORDER_TYPE_HASH = keccak256(ORDER_TYPE); string internal constant TOKEN_PERMISSIONS_TYPE = "TokenPermissions(address token,uint256 amount)"; string internal constant PERMIT2_ORDER_TYPE = string(abi.encodePacked("DutchOrder witness)", ORDER_TYPE, TOKEN_PERMISSIONS_TYPE)); /// @notice hash the given output /// @param output the output to hash /// @return the eip-712 output hash function hash(DutchOutput memory output) internal pure returns (bytes32) { return keccak256( abi.encode(DUTCH_OUTPUT_TYPE_HASH, output.token, output.startAmount, output.endAmount, output.recipient) ); } /// @notice hash the given outputs /// @param outputs the outputs to hash /// @return the eip-712 outputs hash function hash(DutchOutput[] memory outputs) internal pure returns (bytes32) { unchecked { bytes memory packedHashes = new bytes(32 * outputs.length); for (uint256 i = 0; i < outputs.length; i++) { bytes32 outputHash = hash(outputs[i]); assembly { mstore(add(add(packedHashes, 0x20), mul(i, 0x20)), outputHash) } } return keccak256(packedHashes); } } /// @notice hash the given order /// @param order the order to hash /// @return the eip-712 order hash function hash(DutchOrder memory order) internal pure returns (bytes32) { return keccak256( abi.encode( ORDER_TYPE_HASH, order.info.hash(), order.decayStartTime, order.decayEndTime, order.input.token, order.input.startAmount, order.input.endAmount, hash(order.outputs) ) ); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import {OrderInfo} from "../base/ReactorStructs.sol"; /// @notice helpers for handling OrderInfo objects library OrderInfoLib { bytes internal constant ORDER_INFO_TYPE = "OrderInfo(address reactor,address swapper,uint256 nonce,uint256 deadline,address additionalValidationContract,bytes additionalValidationData)"; bytes32 internal constant ORDER_INFO_TYPE_HASH = keccak256(ORDER_INFO_TYPE); /// @notice hash an OrderInfo object /// @param info The OrderInfo object to hash function hash(OrderInfo memory info) internal pure returns (bytes32) { return keccak256( abi.encode( ORDER_INFO_TYPE_HASH, info.reactor, info.swapper, info.nonce, info.deadline, info.additionalValidationContract, keccak256(info.additionalValidationData) ) ); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import {OrderInfo, ResolvedOrder} from "../base/ReactorStructs.sol"; /// @notice Callback to validate an order interface IValidationCallback { /// @notice Called by the reactor for custom validation of an order. Will revert if validation fails /// @param filler The filler of the order /// @param resolvedOrder The resolved order to fill function validate(address filler, ResolvedOrder calldata resolvedOrder) external view; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.0; /** * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. * * Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing * all math on `uint256` and `int256` and then downcasting. */ library SafeCast { /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits * * _Available since v4.7._ */ function toUint248(uint256 value) internal pure returns (uint248) { require(value <= type(uint248).max, "SafeCast: value doesn't fit in 248 bits"); return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits * * _Available since v4.7._ */ function toUint240(uint256 value) internal pure returns (uint240) { require(value <= type(uint240).max, "SafeCast: value doesn't fit in 240 bits"); return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits * * _Available since v4.7._ */ function toUint232(uint256 value) internal pure returns (uint232) { require(value <= type(uint232).max, "SafeCast: value doesn't fit in 232 bits"); return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits * * _Available since v4.2._ */ function toUint224(uint256 value) internal pure returns (uint224) { require(value <= type(uint224).max, "SafeCast: value doesn't fit in 224 bits"); return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits * * _Available since v4.7._ */ function toUint216(uint256 value) internal pure returns (uint216) { require(value <= type(uint216).max, "SafeCast: value doesn't fit in 216 bits"); return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits * * _Available since v4.7._ */ function toUint208(uint256 value) internal pure returns (uint208) { require(value <= type(uint208).max, "SafeCast: value doesn't fit in 208 bits"); return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits * * _Available since v4.7._ */ function toUint200(uint256 value) internal pure returns (uint200) { require(value <= type(uint200).max, "SafeCast: value doesn't fit in 200 bits"); return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits * * _Available since v4.7._ */ function toUint192(uint256 value) internal pure returns (uint192) { require(value <= type(uint192).max, "SafeCast: value doesn't fit in 192 bits"); return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits * * _Available since v4.7._ */ function toUint184(uint256 value) internal pure returns (uint184) { require(value <= type(uint184).max, "SafeCast: value doesn't fit in 184 bits"); return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits * * _Available since v4.7._ */ function toUint176(uint256 value) internal pure returns (uint176) { require(value <= type(uint176).max, "SafeCast: value doesn't fit in 176 bits"); return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits * * _Available since v4.7._ */ function toUint168(uint256 value) internal pure returns (uint168) { require(value <= type(uint168).max, "SafeCast: value doesn't fit in 168 bits"); return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits * * _Available since v4.7._ */ function toUint160(uint256 value) internal pure returns (uint160) { require(value <= type(uint160).max, "SafeCast: value doesn't fit in 160 bits"); return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits * * _Available since v4.7._ */ function toUint152(uint256 value) internal pure returns (uint152) { require(value <= type(uint152).max, "SafeCast: value doesn't fit in 152 bits"); return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits * * _Available since v4.7._ */ function toUint144(uint256 value) internal pure returns (uint144) { require(value <= type(uint144).max, "SafeCast: value doesn't fit in 144 bits"); return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits * * _Available since v4.7._ */ function toUint136(uint256 value) internal pure returns (uint136) { require(value <= type(uint136).max, "SafeCast: value doesn't fit in 136 bits"); return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits * * _Available since v2.5._ */ function toUint128(uint256 value) internal pure returns (uint128) { require(value <= type(uint128).max, "SafeCast: value doesn't fit in 128 bits"); return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits * * _Available since v4.7._ */ function toUint120(uint256 value) internal pure returns (uint120) { require(value <= type(uint120).max, "SafeCast: value doesn't fit in 120 bits"); return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits * * _Available since v4.7._ */ function toUint112(uint256 value) internal pure returns (uint112) { require(value <= type(uint112).max, "SafeCast: value doesn't fit in 112 bits"); return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits * * _Available since v4.7._ */ function toUint104(uint256 value) internal pure returns (uint104) { require(value <= type(uint104).max, "SafeCast: value doesn't fit in 104 bits"); return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits * * _Available since v4.2._ */ function toUint96(uint256 value) internal pure returns (uint96) { require(value <= type(uint96).max, "SafeCast: value doesn't fit in 96 bits"); return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits * * _Available since v4.7._ */ function toUint88(uint256 value) internal pure returns (uint88) { require(value <= type(uint88).max, "SafeCast: value doesn't fit in 88 bits"); return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits * * _Available since v4.7._ */ function toUint80(uint256 value) internal pure returns (uint80) { require(value <= type(uint80).max, "SafeCast: value doesn't fit in 80 bits"); return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits * * _Available since v4.7._ */ function toUint72(uint256 value) internal pure returns (uint72) { require(value <= type(uint72).max, "SafeCast: value doesn't fit in 72 bits"); return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits * * _Available since v2.5._ */ function toUint64(uint256 value) internal pure returns (uint64) { require(value <= type(uint64).max, "SafeCast: value doesn't fit in 64 bits"); return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits * * _Available since v4.7._ */ function toUint56(uint256 value) internal pure returns (uint56) { require(value <= type(uint56).max, "SafeCast: value doesn't fit in 56 bits"); return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits * * _Available since v4.7._ */ function toUint48(uint256 value) internal pure returns (uint48) { require(value <= type(uint48).max, "SafeCast: value doesn't fit in 48 bits"); return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits * * _Available since v4.7._ */ function toUint40(uint256 value) internal pure returns (uint40) { require(value <= type(uint40).max, "SafeCast: value doesn't fit in 40 bits"); return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits * * _Available since v2.5._ */ function toUint32(uint256 value) internal pure returns (uint32) { require(value <= type(uint32).max, "SafeCast: value doesn't fit in 32 bits"); return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits * * _Available since v4.7._ */ function toUint24(uint256 value) internal pure returns (uint24) { require(value <= type(uint24).max, "SafeCast: value doesn't fit in 24 bits"); return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits * * _Available since v2.5._ */ function toUint16(uint256 value) internal pure returns (uint16) { require(value <= type(uint16).max, "SafeCast: value doesn't fit in 16 bits"); return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits * * _Available since v2.5._ */ function toUint8(uint256 value) internal pure returns (uint8) { require(value <= type(uint8).max, "SafeCast: value doesn't fit in 8 bits"); return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. * * _Available since v3.0._ */ function toUint256(int256 value) internal pure returns (uint256) { require(value >= 0, "SafeCast: value must be positive"); return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits * * _Available since v4.7._ */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); require(downcasted == value, "SafeCast: value doesn't fit in 248 bits"); } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits * * _Available since v4.7._ */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); require(downcasted == value, "SafeCast: value doesn't fit in 240 bits"); } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits * * _Available since v4.7._ */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); require(downcasted == value, "SafeCast: value doesn't fit in 232 bits"); } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits * * _Available since v4.7._ */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); require(downcasted == value, "SafeCast: value doesn't fit in 224 bits"); } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits * * _Available since v4.7._ */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); require(downcasted == value, "SafeCast: value doesn't fit in 216 bits"); } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits * * _Available since v4.7._ */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); require(downcasted == value, "SafeCast: value doesn't fit in 208 bits"); } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits * * _Available since v4.7._ */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); require(downcasted == value, "SafeCast: value doesn't fit in 200 bits"); } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits * * _Available since v4.7._ */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); require(downcasted == value, "SafeCast: value doesn't fit in 192 bits"); } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits * * _Available since v4.7._ */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); require(downcasted == value, "SafeCast: value doesn't fit in 184 bits"); } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits * * _Available since v4.7._ */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); require(downcasted == value, "SafeCast: value doesn't fit in 176 bits"); } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits * * _Available since v4.7._ */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); require(downcasted == value, "SafeCast: value doesn't fit in 168 bits"); } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits * * _Available since v4.7._ */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); require(downcasted == value, "SafeCast: value doesn't fit in 160 bits"); } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits * * _Available since v4.7._ */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); require(downcasted == value, "SafeCast: value doesn't fit in 152 bits"); } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits * * _Available since v4.7._ */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); require(downcasted == value, "SafeCast: value doesn't fit in 144 bits"); } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits * * _Available since v4.7._ */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); require(downcasted == value, "SafeCast: value doesn't fit in 136 bits"); } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits * * _Available since v3.1._ */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); require(downcasted == value, "SafeCast: value doesn't fit in 128 bits"); } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits * * _Available since v4.7._ */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); require(downcasted == value, "SafeCast: value doesn't fit in 120 bits"); } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits * * _Available since v4.7._ */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); require(downcasted == value, "SafeCast: value doesn't fit in 112 bits"); } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits * * _Available since v4.7._ */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); require(downcasted == value, "SafeCast: value doesn't fit in 104 bits"); } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits * * _Available since v4.7._ */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); require(downcasted == value, "SafeCast: value doesn't fit in 96 bits"); } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits * * _Available since v4.7._ */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); require(downcasted == value, "SafeCast: value doesn't fit in 88 bits"); } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits * * _Available since v4.7._ */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); require(downcasted == value, "SafeCast: value doesn't fit in 80 bits"); } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits * * _Available since v4.7._ */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); require(downcasted == value, "SafeCast: value doesn't fit in 72 bits"); } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits * * _Available since v3.1._ */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); require(downcasted == value, "SafeCast: value doesn't fit in 64 bits"); } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits * * _Available since v4.7._ */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); require(downcasted == value, "SafeCast: value doesn't fit in 56 bits"); } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits * * _Available since v4.7._ */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); require(downcasted == value, "SafeCast: value doesn't fit in 48 bits"); } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits * * _Available since v4.7._ */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); require(downcasted == value, "SafeCast: value doesn't fit in 40 bits"); } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits * * _Available since v3.1._ */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); require(downcasted == value, "SafeCast: value doesn't fit in 32 bits"); } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits * * _Available since v4.7._ */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); require(downcasted == value, "SafeCast: value doesn't fit in 24 bits"); } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits * * _Available since v3.1._ */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); require(downcasted == value, "SafeCast: value doesn't fit in 16 bits"); } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits * * _Available since v3.1._ */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); require(downcasted == value, "SafeCast: value doesn't fit in 8 bits"); } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. * * _Available since v3.0._ */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an int256"); return int256(value); } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Simple single owner authorization mixin. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/auth/Owned.sol) abstract contract Owned { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event OwnershipTransferred(address indexed user, address indexed newOwner); /*////////////////////////////////////////////////////////////// OWNERSHIP STORAGE //////////////////////////////////////////////////////////////*/ address public owner; modifier onlyOwner() virtual { require(msg.sender == owner, "UNAUTHORIZED"); _; } /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor(address _owner) { owner = _owner; emit OwnershipTransferred(address(0), _owner); } /*////////////////////////////////////////////////////////////// OWNERSHIP LOGIC //////////////////////////////////////////////////////////////*/ function transferOwnership(address newOwner) public virtual onlyOwner { owner = newOwner; emit OwnershipTransferred(msg.sender, newOwner); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import {ResolvedOrder, OutputToken} from "../base/ReactorStructs.sol"; /// @notice Interface for getting fee outputs interface IProtocolFeeController { /// @notice Get fee outputs for the given orders /// @param order The orders to get fee outputs for /// @return List of fee outputs to append for each provided order function getFeeOutputs(ResolvedOrder memory order) external view returns (OutputToken[] memory); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; interface IEIP712 { function DOMAIN_SEPARATOR() external view returns (bytes32); }
File 4 of 5: Permit2
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol) /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol) /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it. abstract contract ERC20 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); /*////////////////////////////////////////////////////////////// METADATA STORAGE //////////////////////////////////////////////////////////////*/ string public name; string public symbol; uint8 public immutable decimals; /*////////////////////////////////////////////////////////////// ERC20 STORAGE //////////////////////////////////////////////////////////////*/ uint256 public totalSupply; mapping(address => uint256) public balanceOf; mapping(address => mapping(address => uint256)) public allowance; /*////////////////////////////////////////////////////////////// EIP-2612 STORAGE //////////////////////////////////////////////////////////////*/ uint256 internal immutable INITIAL_CHAIN_ID; bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR; mapping(address => uint256) public nonces; /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor( string memory _name, string memory _symbol, uint8 _decimals ) { name = _name; symbol = _symbol; decimals = _decimals; INITIAL_CHAIN_ID = block.chainid; INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator(); } /*////////////////////////////////////////////////////////////// ERC20 LOGIC //////////////////////////////////////////////////////////////*/ function approve(address spender, uint256 amount) public virtual returns (bool) { allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } function transfer(address to, uint256 amount) public virtual returns (bool) { balanceOf[msg.sender] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(msg.sender, to, amount); return true; } function transferFrom( address from, address to, uint256 amount ) public virtual returns (bool) { uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals. if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount; balanceOf[from] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(from, to, amount); return true; } /*////////////////////////////////////////////////////////////// EIP-2612 LOGIC //////////////////////////////////////////////////////////////*/ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED"); // Unchecked because the only math done is incrementing // the owner's nonce which cannot realistically overflow. unchecked { address recoveredAddress = ecrecover( keccak256( abi.encodePacked( "\\x19\\x01", DOMAIN_SEPARATOR(), keccak256( abi.encode( keccak256( "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)" ), owner, spender, value, nonces[owner]++, deadline ) ) ) ), v, r, s ); require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER"); allowance[recoveredAddress][spender] = value; } emit Approval(owner, spender, value); } function DOMAIN_SEPARATOR() public view virtual returns (bytes32) { return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator(); } function computeDomainSeparator() internal view virtual returns (bytes32) { return keccak256( abi.encode( keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"), keccak256(bytes(name)), keccak256("1"), block.chainid, address(this) ) ); } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint(address to, uint256 amount) internal virtual { totalSupply += amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(address(0), to, amount); } function _burn(address from, uint256 amount) internal virtual { balanceOf[from] -= amount; // Cannot underflow because a user's balance // will never be larger than the total supply. unchecked { totalSupply -= amount; } emit Transfer(from, address(0), amount); } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; import {ERC20} from "../tokens/ERC20.sol"; /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol) /// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer. /// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller. library SafeTransferLib { /*////////////////////////////////////////////////////////////// ETH OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferETH(address to, uint256 amount) internal { bool success; /// @solidity memory-safe-assembly assembly { // Transfer the ETH and store if it succeeded or not. success := call(gas(), to, amount, 0, 0, 0, 0) } require(success, "ETH_TRANSFER_FAILED"); } /*////////////////////////////////////////////////////////////// ERC20 OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferFrom( ERC20 token, address from, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), from) // Append the "from" argument. mstore(add(freeMemoryPointer, 36), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 100, 0, 32) ) } require(success, "TRANSFER_FROM_FAILED"); } function safeTransfer( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "TRANSFER_FAILED"); } function safeApprove( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "APPROVE_FAILED"); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; import {ERC20} from "solmate/tokens/ERC20.sol"; import {SafeTransferLib} from "solmate/utils/SafeTransferLib.sol"; import {PermitHash} from "./libraries/PermitHash.sol"; import {SignatureVerification} from "./libraries/SignatureVerification.sol"; import {EIP712} from "./EIP712.sol"; import {IAllowanceTransfer} from "../src/interfaces/IAllowanceTransfer.sol"; import {SignatureExpired, InvalidNonce} from "./PermitErrors.sol"; import {Allowance} from "./libraries/Allowance.sol"; contract AllowanceTransfer is IAllowanceTransfer, EIP712 { using SignatureVerification for bytes; using SafeTransferLib for ERC20; using PermitHash for PermitSingle; using PermitHash for PermitBatch; using Allowance for PackedAllowance; /// @notice Maps users to tokens to spender addresses and information about the approval on the token /// @dev Indexed in the order of token owner address, token address, spender address /// @dev The stored word saves the allowed amount, expiration on the allowance, and nonce mapping(address => mapping(address => mapping(address => PackedAllowance))) public allowance; /// @inheritdoc IAllowanceTransfer function approve(address token, address spender, uint160 amount, uint48 expiration) external { PackedAllowance storage allowed = allowance[msg.sender][token][spender]; allowed.updateAmountAndExpiration(amount, expiration); emit Approval(msg.sender, token, spender, amount, expiration); } /// @inheritdoc IAllowanceTransfer function permit(address owner, PermitSingle memory permitSingle, bytes calldata signature) external { if (block.timestamp > permitSingle.sigDeadline) revert SignatureExpired(permitSingle.sigDeadline); // Verify the signer address from the signature. signature.verify(_hashTypedData(permitSingle.hash()), owner); _updateApproval(permitSingle.details, owner, permitSingle.spender); } /// @inheritdoc IAllowanceTransfer function permit(address owner, PermitBatch memory permitBatch, bytes calldata signature) external { if (block.timestamp > permitBatch.sigDeadline) revert SignatureExpired(permitBatch.sigDeadline); // Verify the signer address from the signature. signature.verify(_hashTypedData(permitBatch.hash()), owner); address spender = permitBatch.spender; unchecked { uint256 length = permitBatch.details.length; for (uint256 i = 0; i < length; ++i) { _updateApproval(permitBatch.details[i], owner, spender); } } } /// @inheritdoc IAllowanceTransfer function transferFrom(address from, address to, uint160 amount, address token) external { _transfer(from, to, amount, token); } /// @inheritdoc IAllowanceTransfer function transferFrom(AllowanceTransferDetails[] calldata transferDetails) external { unchecked { uint256 length = transferDetails.length; for (uint256 i = 0; i < length; ++i) { AllowanceTransferDetails memory transferDetail = transferDetails[i]; _transfer(transferDetail.from, transferDetail.to, transferDetail.amount, transferDetail.token); } } } /// @notice Internal function for transferring tokens using stored allowances /// @dev Will fail if the allowed timeframe has passed function _transfer(address from, address to, uint160 amount, address token) private { PackedAllowance storage allowed = allowance[from][token][msg.sender]; if (block.timestamp > allowed.expiration) revert AllowanceExpired(allowed.expiration); uint256 maxAmount = allowed.amount; if (maxAmount != type(uint160).max) { if (amount > maxAmount) { revert InsufficientAllowance(maxAmount); } else { unchecked { allowed.amount = uint160(maxAmount) - amount; } } } // Transfer the tokens from the from address to the recipient. ERC20(token).safeTransferFrom(from, to, amount); } /// @inheritdoc IAllowanceTransfer function lockdown(TokenSpenderPair[] calldata approvals) external { address owner = msg.sender; // Revoke allowances for each pair of spenders and tokens. unchecked { uint256 length = approvals.length; for (uint256 i = 0; i < length; ++i) { address token = approvals[i].token; address spender = approvals[i].spender; allowance[owner][token][spender].amount = 0; emit Lockdown(owner, token, spender); } } } /// @inheritdoc IAllowanceTransfer function invalidateNonces(address token, address spender, uint48 newNonce) external { uint48 oldNonce = allowance[msg.sender][token][spender].nonce; if (newNonce <= oldNonce) revert InvalidNonce(); // Limit the amount of nonces that can be invalidated in one transaction. unchecked { uint48 delta = newNonce - oldNonce; if (delta > type(uint16).max) revert ExcessiveInvalidation(); } allowance[msg.sender][token][spender].nonce = newNonce; emit NonceInvalidation(msg.sender, token, spender, newNonce, oldNonce); } /// @notice Sets the new values for amount, expiration, and nonce. /// @dev Will check that the signed nonce is equal to the current nonce and then incrememnt the nonce value by 1. /// @dev Emits a Permit event. function _updateApproval(PermitDetails memory details, address owner, address spender) private { uint48 nonce = details.nonce; address token = details.token; uint160 amount = details.amount; uint48 expiration = details.expiration; PackedAllowance storage allowed = allowance[owner][token][spender]; if (allowed.nonce != nonce) revert InvalidNonce(); allowed.updateAll(amount, expiration, nonce); emit Permit(owner, token, spender, amount, expiration, nonce); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; /// @notice EIP712 helpers for permit2 /// @dev Maintains cross-chain replay protection in the event of a fork /// @dev Reference: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/EIP712.sol contract EIP712 { // Cache the domain separator as an immutable value, but also store the chain id that it // corresponds to, in order to invalidate the cached domain separator if the chain id changes. bytes32 private immutable _CACHED_DOMAIN_SEPARATOR; uint256 private immutable _CACHED_CHAIN_ID; bytes32 private constant _HASHED_NAME = keccak256("Permit2"); bytes32 private constant _TYPE_HASH = keccak256("EIP712Domain(string name,uint256 chainId,address verifyingContract)"); constructor() { _CACHED_CHAIN_ID = block.chainid; _CACHED_DOMAIN_SEPARATOR = _buildDomainSeparator(_TYPE_HASH, _HASHED_NAME); } /// @notice Returns the domain separator for the current chain. /// @dev Uses cached version if chainid and address are unchanged from construction. function DOMAIN_SEPARATOR() public view returns (bytes32) { return block.chainid == _CACHED_CHAIN_ID ? _CACHED_DOMAIN_SEPARATOR : _buildDomainSeparator(_TYPE_HASH, _HASHED_NAME); } /// @notice Builds a domain separator using the current chainId and contract address. function _buildDomainSeparator(bytes32 typeHash, bytes32 nameHash) private view returns (bytes32) { return keccak256(abi.encode(typeHash, nameHash, block.chainid, address(this))); } /// @notice Creates an EIP-712 typed data hash function _hashTypedData(bytes32 dataHash) internal view returns (bytes32) { return keccak256(abi.encodePacked("\\x19\\x01", DOMAIN_SEPARATOR(), dataHash)); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; import {SignatureTransfer} from "./SignatureTransfer.sol"; import {AllowanceTransfer} from "./AllowanceTransfer.sol"; /// @notice Permit2 handles signature-based transfers in SignatureTransfer and allowance-based transfers in AllowanceTransfer. /// @dev Users must approve Permit2 before calling any of the transfer functions. contract Permit2 is SignatureTransfer, AllowanceTransfer { // Permit2 unifies the two contracts so users have maximal flexibility with their approval. } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; /// @notice Shared errors between signature based transfers and allowance based transfers. /// @notice Thrown when validating an inputted signature that is stale /// @param signatureDeadline The timestamp at which a signature is no longer valid error SignatureExpired(uint256 signatureDeadline); /// @notice Thrown when validating that the inputted nonce has not been used error InvalidNonce(); // SPDX-License-Identifier: MIT pragma solidity 0.8.17; import {ISignatureTransfer} from "./interfaces/ISignatureTransfer.sol"; import {SignatureExpired, InvalidNonce} from "./PermitErrors.sol"; import {ERC20} from "solmate/tokens/ERC20.sol"; import {SafeTransferLib} from "solmate/utils/SafeTransferLib.sol"; import {SignatureVerification} from "./libraries/SignatureVerification.sol"; import {PermitHash} from "./libraries/PermitHash.sol"; import {EIP712} from "./EIP712.sol"; contract SignatureTransfer is ISignatureTransfer, EIP712 { using SignatureVerification for bytes; using SafeTransferLib for ERC20; using PermitHash for PermitTransferFrom; using PermitHash for PermitBatchTransferFrom; /// @inheritdoc ISignatureTransfer mapping(address => mapping(uint256 => uint256)) public nonceBitmap; /// @inheritdoc ISignatureTransfer function permitTransferFrom( PermitTransferFrom memory permit, SignatureTransferDetails calldata transferDetails, address owner, bytes calldata signature ) external { _permitTransferFrom(permit, transferDetails, owner, permit.hash(), signature); } /// @inheritdoc ISignatureTransfer function permitWitnessTransferFrom( PermitTransferFrom memory permit, SignatureTransferDetails calldata transferDetails, address owner, bytes32 witness, string calldata witnessTypeString, bytes calldata signature ) external { _permitTransferFrom( permit, transferDetails, owner, permit.hashWithWitness(witness, witnessTypeString), signature ); } /// @notice Transfers a token using a signed permit message. /// @dev If to is the zero address, the tokens are sent to the spender. /// @param permit The permit data signed over by the owner /// @param dataHash The EIP-712 hash of permit data to include when checking signature /// @param owner The owner of the tokens to transfer /// @param transferDetails The spender's requested transfer details for the permitted token /// @param signature The signature to verify function _permitTransferFrom( PermitTransferFrom memory permit, SignatureTransferDetails calldata transferDetails, address owner, bytes32 dataHash, bytes calldata signature ) private { uint256 requestedAmount = transferDetails.requestedAmount; if (block.timestamp > permit.deadline) revert SignatureExpired(permit.deadline); if (requestedAmount > permit.permitted.amount) revert InvalidAmount(permit.permitted.amount); _useUnorderedNonce(owner, permit.nonce); signature.verify(_hashTypedData(dataHash), owner); ERC20(permit.permitted.token).safeTransferFrom(owner, transferDetails.to, requestedAmount); } /// @inheritdoc ISignatureTransfer function permitTransferFrom( PermitBatchTransferFrom memory permit, SignatureTransferDetails[] calldata transferDetails, address owner, bytes calldata signature ) external { _permitTransferFrom(permit, transferDetails, owner, permit.hash(), signature); } /// @inheritdoc ISignatureTransfer function permitWitnessTransferFrom( PermitBatchTransferFrom memory permit, SignatureTransferDetails[] calldata transferDetails, address owner, bytes32 witness, string calldata witnessTypeString, bytes calldata signature ) external { _permitTransferFrom( permit, transferDetails, owner, permit.hashWithWitness(witness, witnessTypeString), signature ); } /// @notice Transfers tokens using a signed permit messages /// @dev If to is the zero address, the tokens are sent to the spender /// @param permit The permit data signed over by the owner /// @param dataHash The EIP-712 hash of permit data to include when checking signature /// @param owner The owner of the tokens to transfer /// @param signature The signature to verify function _permitTransferFrom( PermitBatchTransferFrom memory permit, SignatureTransferDetails[] calldata transferDetails, address owner, bytes32 dataHash, bytes calldata signature ) private { uint256 numPermitted = permit.permitted.length; if (block.timestamp > permit.deadline) revert SignatureExpired(permit.deadline); if (numPermitted != transferDetails.length) revert LengthMismatch(); _useUnorderedNonce(owner, permit.nonce); signature.verify(_hashTypedData(dataHash), owner); unchecked { for (uint256 i = 0; i < numPermitted; ++i) { TokenPermissions memory permitted = permit.permitted[i]; uint256 requestedAmount = transferDetails[i].requestedAmount; if (requestedAmount > permitted.amount) revert InvalidAmount(permitted.amount); if (requestedAmount != 0) { // allow spender to specify which of the permitted tokens should be transferred ERC20(permitted.token).safeTransferFrom(owner, transferDetails[i].to, requestedAmount); } } } } /// @inheritdoc ISignatureTransfer function invalidateUnorderedNonces(uint256 wordPos, uint256 mask) external { nonceBitmap[msg.sender][wordPos] |= mask; emit UnorderedNonceInvalidation(msg.sender, wordPos, mask); } /// @notice Returns the index of the bitmap and the bit position within the bitmap. Used for unordered nonces /// @param nonce The nonce to get the associated word and bit positions /// @return wordPos The word position or index into the nonceBitmap /// @return bitPos The bit position /// @dev The first 248 bits of the nonce value is the index of the desired bitmap /// @dev The last 8 bits of the nonce value is the position of the bit in the bitmap function bitmapPositions(uint256 nonce) private pure returns (uint256 wordPos, uint256 bitPos) { wordPos = uint248(nonce >> 8); bitPos = uint8(nonce); } /// @notice Checks whether a nonce is taken and sets the bit at the bit position in the bitmap at the word position /// @param from The address to use the nonce at /// @param nonce The nonce to spend function _useUnorderedNonce(address from, uint256 nonce) internal { (uint256 wordPos, uint256 bitPos) = bitmapPositions(nonce); uint256 bit = 1 << bitPos; uint256 flipped = nonceBitmap[from][wordPos] ^= bit; if (flipped & bit == 0) revert InvalidNonce(); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; /// @title AllowanceTransfer /// @notice Handles ERC20 token permissions through signature based allowance setting and ERC20 token transfers by checking allowed amounts /// @dev Requires user's token approval on the Permit2 contract interface IAllowanceTransfer { /// @notice Thrown when an allowance on a token has expired. /// @param deadline The timestamp at which the allowed amount is no longer valid error AllowanceExpired(uint256 deadline); /// @notice Thrown when an allowance on a token has been depleted. /// @param amount The maximum amount allowed error InsufficientAllowance(uint256 amount); /// @notice Thrown when too many nonces are invalidated. error ExcessiveInvalidation(); /// @notice Emits an event when the owner successfully invalidates an ordered nonce. event NonceInvalidation( address indexed owner, address indexed token, address indexed spender, uint48 newNonce, uint48 oldNonce ); /// @notice Emits an event when the owner successfully sets permissions on a token for the spender. event Approval( address indexed owner, address indexed token, address indexed spender, uint160 amount, uint48 expiration ); /// @notice Emits an event when the owner successfully sets permissions using a permit signature on a token for the spender. event Permit( address indexed owner, address indexed token, address indexed spender, uint160 amount, uint48 expiration, uint48 nonce ); /// @notice Emits an event when the owner sets the allowance back to 0 with the lockdown function. event Lockdown(address indexed owner, address token, address spender); /// @notice The permit data for a token struct PermitDetails { // ERC20 token address address token; // the maximum amount allowed to spend uint160 amount; // timestamp at which a spender's token allowances become invalid uint48 expiration; // an incrementing value indexed per owner,token,and spender for each signature uint48 nonce; } /// @notice The permit message signed for a single token allownce struct PermitSingle { // the permit data for a single token alownce PermitDetails details; // address permissioned on the allowed tokens address spender; // deadline on the permit signature uint256 sigDeadline; } /// @notice The permit message signed for multiple token allowances struct PermitBatch { // the permit data for multiple token allowances PermitDetails[] details; // address permissioned on the allowed tokens address spender; // deadline on the permit signature uint256 sigDeadline; } /// @notice The saved permissions /// @dev This info is saved per owner, per token, per spender and all signed over in the permit message /// @dev Setting amount to type(uint160).max sets an unlimited approval struct PackedAllowance { // amount allowed uint160 amount; // permission expiry uint48 expiration; // an incrementing value indexed per owner,token,and spender for each signature uint48 nonce; } /// @notice A token spender pair. struct TokenSpenderPair { // the token the spender is approved address token; // the spender address address spender; } /// @notice Details for a token transfer. struct AllowanceTransferDetails { // the owner of the token address from; // the recipient of the token address to; // the amount of the token uint160 amount; // the token to be transferred address token; } /// @notice A mapping from owner address to token address to spender address to PackedAllowance struct, which contains details and conditions of the approval. /// @notice The mapping is indexed in the above order see: allowance[ownerAddress][tokenAddress][spenderAddress] /// @dev The packed slot holds the allowed amount, expiration at which the allowed amount is no longer valid, and current nonce thats updated on any signature based approvals. function allowance(address, address, address) external view returns (uint160, uint48, uint48); /// @notice Approves the spender to use up to amount of the specified token up until the expiration /// @param token The token to approve /// @param spender The spender address to approve /// @param amount The approved amount of the token /// @param expiration The timestamp at which the approval is no longer valid /// @dev The packed allowance also holds a nonce, which will stay unchanged in approve /// @dev Setting amount to type(uint160).max sets an unlimited approval function approve(address token, address spender, uint160 amount, uint48 expiration) external; /// @notice Permit a spender to a given amount of the owners token via the owner's EIP-712 signature /// @dev May fail if the owner's nonce was invalidated in-flight by invalidateNonce /// @param owner The owner of the tokens being approved /// @param permitSingle Data signed over by the owner specifying the terms of approval /// @param signature The owner's signature over the permit data function permit(address owner, PermitSingle memory permitSingle, bytes calldata signature) external; /// @notice Permit a spender to the signed amounts of the owners tokens via the owner's EIP-712 signature /// @dev May fail if the owner's nonce was invalidated in-flight by invalidateNonce /// @param owner The owner of the tokens being approved /// @param permitBatch Data signed over by the owner specifying the terms of approval /// @param signature The owner's signature over the permit data function permit(address owner, PermitBatch memory permitBatch, bytes calldata signature) external; /// @notice Transfer approved tokens from one address to another /// @param from The address to transfer from /// @param to The address of the recipient /// @param amount The amount of the token to transfer /// @param token The token address to transfer /// @dev Requires the from address to have approved at least the desired amount /// of tokens to msg.sender. function transferFrom(address from, address to, uint160 amount, address token) external; /// @notice Transfer approved tokens in a batch /// @param transferDetails Array of owners, recipients, amounts, and tokens for the transfers /// @dev Requires the from addresses to have approved at least the desired amount /// of tokens to msg.sender. function transferFrom(AllowanceTransferDetails[] calldata transferDetails) external; /// @notice Enables performing a "lockdown" of the sender's Permit2 identity /// by batch revoking approvals /// @param approvals Array of approvals to revoke. function lockdown(TokenSpenderPair[] calldata approvals) external; /// @notice Invalidate nonces for a given (token, spender) pair /// @param token The token to invalidate nonces for /// @param spender The spender to invalidate nonces for /// @param newNonce The new nonce to set. Invalidates all nonces less than it. /// @dev Can't invalidate more than 2**16 nonces per transaction. function invalidateNonces(address token, address spender, uint48 newNonce) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; interface IERC1271 { /// @dev Should return whether the signature provided is valid for the provided data /// @param hash Hash of the data to be signed /// @param signature Signature byte array associated with _data /// @return magicValue The bytes4 magic value 0x1626ba7e function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; /// @title SignatureTransfer /// @notice Handles ERC20 token transfers through signature based actions /// @dev Requires user's token approval on the Permit2 contract interface ISignatureTransfer { /// @notice Thrown when the requested amount for a transfer is larger than the permissioned amount /// @param maxAmount The maximum amount a spender can request to transfer error InvalidAmount(uint256 maxAmount); /// @notice Thrown when the number of tokens permissioned to a spender does not match the number of tokens being transferred /// @dev If the spender does not need to transfer the number of tokens permitted, the spender can request amount 0 to be transferred error LengthMismatch(); /// @notice Emits an event when the owner successfully invalidates an unordered nonce. event UnorderedNonceInvalidation(address indexed owner, uint256 word, uint256 mask); /// @notice The token and amount details for a transfer signed in the permit transfer signature struct TokenPermissions { // ERC20 token address address token; // the maximum amount that can be spent uint256 amount; } /// @notice The signed permit message for a single token transfer struct PermitTransferFrom { TokenPermissions permitted; // a unique value for every token owner's signature to prevent signature replays uint256 nonce; // deadline on the permit signature uint256 deadline; } /// @notice Specifies the recipient address and amount for batched transfers. /// @dev Recipients and amounts correspond to the index of the signed token permissions array. /// @dev Reverts if the requested amount is greater than the permitted signed amount. struct SignatureTransferDetails { // recipient address address to; // spender requested amount uint256 requestedAmount; } /// @notice Used to reconstruct the signed permit message for multiple token transfers /// @dev Do not need to pass in spender address as it is required that it is msg.sender /// @dev Note that a user still signs over a spender address struct PermitBatchTransferFrom { // the tokens and corresponding amounts permitted for a transfer TokenPermissions[] permitted; // a unique value for every token owner's signature to prevent signature replays uint256 nonce; // deadline on the permit signature uint256 deadline; } /// @notice A map from token owner address and a caller specified word index to a bitmap. Used to set bits in the bitmap to prevent against signature replay protection /// @dev Uses unordered nonces so that permit messages do not need to be spent in a certain order /// @dev The mapping is indexed first by the token owner, then by an index specified in the nonce /// @dev It returns a uint256 bitmap /// @dev The index, or wordPosition is capped at type(uint248).max function nonceBitmap(address, uint256) external view returns (uint256); /// @notice Transfers a token using a signed permit message /// @dev Reverts if the requested amount is greater than the permitted signed amount /// @param permit The permit data signed over by the owner /// @param owner The owner of the tokens to transfer /// @param transferDetails The spender's requested transfer details for the permitted token /// @param signature The signature to verify function permitTransferFrom( PermitTransferFrom memory permit, SignatureTransferDetails calldata transferDetails, address owner, bytes calldata signature ) external; /// @notice Transfers a token using a signed permit message /// @notice Includes extra data provided by the caller to verify signature over /// @dev The witness type string must follow EIP712 ordering of nested structs and must include the TokenPermissions type definition /// @dev Reverts if the requested amount is greater than the permitted signed amount /// @param permit The permit data signed over by the owner /// @param owner The owner of the tokens to transfer /// @param transferDetails The spender's requested transfer details for the permitted token /// @param witness Extra data to include when checking the user signature /// @param witnessTypeString The EIP-712 type definition for remaining string stub of the typehash /// @param signature The signature to verify function permitWitnessTransferFrom( PermitTransferFrom memory permit, SignatureTransferDetails calldata transferDetails, address owner, bytes32 witness, string calldata witnessTypeString, bytes calldata signature ) external; /// @notice Transfers multiple tokens using a signed permit message /// @param permit The permit data signed over by the owner /// @param owner The owner of the tokens to transfer /// @param transferDetails Specifies the recipient and requested amount for the token transfer /// @param signature The signature to verify function permitTransferFrom( PermitBatchTransferFrom memory permit, SignatureTransferDetails[] calldata transferDetails, address owner, bytes calldata signature ) external; /// @notice Transfers multiple tokens using a signed permit message /// @dev The witness type string must follow EIP712 ordering of nested structs and must include the TokenPermissions type definition /// @notice Includes extra data provided by the caller to verify signature over /// @param permit The permit data signed over by the owner /// @param owner The owner of the tokens to transfer /// @param transferDetails Specifies the recipient and requested amount for the token transfer /// @param witness Extra data to include when checking the user signature /// @param witnessTypeString The EIP-712 type definition for remaining string stub of the typehash /// @param signature The signature to verify function permitWitnessTransferFrom( PermitBatchTransferFrom memory permit, SignatureTransferDetails[] calldata transferDetails, address owner, bytes32 witness, string calldata witnessTypeString, bytes calldata signature ) external; /// @notice Invalidates the bits specified in mask for the bitmap at the word position /// @dev The wordPos is maxed at type(uint248).max /// @param wordPos A number to index the nonceBitmap at /// @param mask A bitmap masked against msg.sender's current bitmap at the word position function invalidateUnorderedNonces(uint256 wordPos, uint256 mask) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; import {IAllowanceTransfer} from "../interfaces/IAllowanceTransfer.sol"; library Allowance { // note if the expiration passed is 0, then it the approval set to the block.timestamp uint256 private constant BLOCK_TIMESTAMP_EXPIRATION = 0; /// @notice Sets the allowed amount, expiry, and nonce of the spender's permissions on owner's token. /// @dev Nonce is incremented. /// @dev If the inputted expiration is 0, the stored expiration is set to block.timestamp function updateAll( IAllowanceTransfer.PackedAllowance storage allowed, uint160 amount, uint48 expiration, uint48 nonce ) internal { uint48 storedNonce; unchecked { storedNonce = nonce + 1; } uint48 storedExpiration = expiration == BLOCK_TIMESTAMP_EXPIRATION ? uint48(block.timestamp) : expiration; uint256 word = pack(amount, storedExpiration, storedNonce); assembly { sstore(allowed.slot, word) } } /// @notice Sets the allowed amount and expiry of the spender's permissions on owner's token. /// @dev Nonce does not need to be incremented. function updateAmountAndExpiration( IAllowanceTransfer.PackedAllowance storage allowed, uint160 amount, uint48 expiration ) internal { // If the inputted expiration is 0, the allowance only lasts the duration of the block. allowed.expiration = expiration == 0 ? uint48(block.timestamp) : expiration; allowed.amount = amount; } /// @notice Computes the packed slot of the amount, expiration, and nonce that make up PackedAllowance function pack(uint160 amount, uint48 expiration, uint48 nonce) internal pure returns (uint256 word) { word = (uint256(nonce) << 208) | uint256(expiration) << 160 | amount; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; import {IAllowanceTransfer} from "../interfaces/IAllowanceTransfer.sol"; import {ISignatureTransfer} from "../interfaces/ISignatureTransfer.sol"; library PermitHash { bytes32 public constant _PERMIT_DETAILS_TYPEHASH = keccak256("PermitDetails(address token,uint160 amount,uint48 expiration,uint48 nonce)"); bytes32 public constant _PERMIT_SINGLE_TYPEHASH = keccak256( "PermitSingle(PermitDetails details,address spender,uint256 sigDeadline)PermitDetails(address token,uint160 amount,uint48 expiration,uint48 nonce)" ); bytes32 public constant _PERMIT_BATCH_TYPEHASH = keccak256( "PermitBatch(PermitDetails[] details,address spender,uint256 sigDeadline)PermitDetails(address token,uint160 amount,uint48 expiration,uint48 nonce)" ); bytes32 public constant _TOKEN_PERMISSIONS_TYPEHASH = keccak256("TokenPermissions(address token,uint256 amount)"); bytes32 public constant _PERMIT_TRANSFER_FROM_TYPEHASH = keccak256( "PermitTransferFrom(TokenPermissions permitted,address spender,uint256 nonce,uint256 deadline)TokenPermissions(address token,uint256 amount)" ); bytes32 public constant _PERMIT_BATCH_TRANSFER_FROM_TYPEHASH = keccak256( "PermitBatchTransferFrom(TokenPermissions[] permitted,address spender,uint256 nonce,uint256 deadline)TokenPermissions(address token,uint256 amount)" ); string public constant _TOKEN_PERMISSIONS_TYPESTRING = "TokenPermissions(address token,uint256 amount)"; string public constant _PERMIT_TRANSFER_FROM_WITNESS_TYPEHASH_STUB = "PermitWitnessTransferFrom(TokenPermissions permitted,address spender,uint256 nonce,uint256 deadline,"; string public constant _PERMIT_BATCH_WITNESS_TRANSFER_FROM_TYPEHASH_STUB = "PermitBatchWitnessTransferFrom(TokenPermissions[] permitted,address spender,uint256 nonce,uint256 deadline,"; function hash(IAllowanceTransfer.PermitSingle memory permitSingle) internal pure returns (bytes32) { bytes32 permitHash = _hashPermitDetails(permitSingle.details); return keccak256(abi.encode(_PERMIT_SINGLE_TYPEHASH, permitHash, permitSingle.spender, permitSingle.sigDeadline)); } function hash(IAllowanceTransfer.PermitBatch memory permitBatch) internal pure returns (bytes32) { uint256 numPermits = permitBatch.details.length; bytes32[] memory permitHashes = new bytes32[](numPermits); for (uint256 i = 0; i < numPermits; ++i) { permitHashes[i] = _hashPermitDetails(permitBatch.details[i]); } return keccak256( abi.encode( _PERMIT_BATCH_TYPEHASH, keccak256(abi.encodePacked(permitHashes)), permitBatch.spender, permitBatch.sigDeadline ) ); } function hash(ISignatureTransfer.PermitTransferFrom memory permit) internal view returns (bytes32) { bytes32 tokenPermissionsHash = _hashTokenPermissions(permit.permitted); return keccak256( abi.encode(_PERMIT_TRANSFER_FROM_TYPEHASH, tokenPermissionsHash, msg.sender, permit.nonce, permit.deadline) ); } function hash(ISignatureTransfer.PermitBatchTransferFrom memory permit) internal view returns (bytes32) { uint256 numPermitted = permit.permitted.length; bytes32[] memory tokenPermissionHashes = new bytes32[](numPermitted); for (uint256 i = 0; i < numPermitted; ++i) { tokenPermissionHashes[i] = _hashTokenPermissions(permit.permitted[i]); } return keccak256( abi.encode( _PERMIT_BATCH_TRANSFER_FROM_TYPEHASH, keccak256(abi.encodePacked(tokenPermissionHashes)), msg.sender, permit.nonce, permit.deadline ) ); } function hashWithWitness( ISignatureTransfer.PermitTransferFrom memory permit, bytes32 witness, string calldata witnessTypeString ) internal view returns (bytes32) { bytes32 typeHash = keccak256(abi.encodePacked(_PERMIT_TRANSFER_FROM_WITNESS_TYPEHASH_STUB, witnessTypeString)); bytes32 tokenPermissionsHash = _hashTokenPermissions(permit.permitted); return keccak256(abi.encode(typeHash, tokenPermissionsHash, msg.sender, permit.nonce, permit.deadline, witness)); } function hashWithWitness( ISignatureTransfer.PermitBatchTransferFrom memory permit, bytes32 witness, string calldata witnessTypeString ) internal view returns (bytes32) { bytes32 typeHash = keccak256(abi.encodePacked(_PERMIT_BATCH_WITNESS_TRANSFER_FROM_TYPEHASH_STUB, witnessTypeString)); uint256 numPermitted = permit.permitted.length; bytes32[] memory tokenPermissionHashes = new bytes32[](numPermitted); for (uint256 i = 0; i < numPermitted; ++i) { tokenPermissionHashes[i] = _hashTokenPermissions(permit.permitted[i]); } return keccak256( abi.encode( typeHash, keccak256(abi.encodePacked(tokenPermissionHashes)), msg.sender, permit.nonce, permit.deadline, witness ) ); } function _hashPermitDetails(IAllowanceTransfer.PermitDetails memory details) private pure returns (bytes32) { return keccak256(abi.encode(_PERMIT_DETAILS_TYPEHASH, details)); } function _hashTokenPermissions(ISignatureTransfer.TokenPermissions memory permitted) private pure returns (bytes32) { return keccak256(abi.encode(_TOKEN_PERMISSIONS_TYPEHASH, permitted)); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; import {IERC1271} from "../interfaces/IERC1271.sol"; library SignatureVerification { /// @notice Thrown when the passed in signature is not a valid length error InvalidSignatureLength(); /// @notice Thrown when the recovered signer is equal to the zero address error InvalidSignature(); /// @notice Thrown when the recovered signer does not equal the claimedSigner error InvalidSigner(); /// @notice Thrown when the recovered contract signature is incorrect error InvalidContractSignature(); bytes32 constant UPPER_BIT_MASK = (0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); function verify(bytes calldata signature, bytes32 hash, address claimedSigner) internal view { bytes32 r; bytes32 s; uint8 v; if (claimedSigner.code.length == 0) { if (signature.length == 65) { (r, s) = abi.decode(signature, (bytes32, bytes32)); v = uint8(signature[64]); } else if (signature.length == 64) { // EIP-2098 bytes32 vs; (r, vs) = abi.decode(signature, (bytes32, bytes32)); s = vs & UPPER_BIT_MASK; v = uint8(uint256(vs >> 255)) + 27; } else { revert InvalidSignatureLength(); } address signer = ecrecover(hash, v, r, s); if (signer == address(0)) revert InvalidSignature(); if (signer != claimedSigner) revert InvalidSigner(); } else { bytes4 magicValue = IERC1271(claimedSigner).isValidSignature(hash, signature); if (magicValue != IERC1271.isValidSignature.selector) revert InvalidContractSignature(); } } }
File 5 of 5: FeeCollector
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import {Owned} from "solmate/auth/Owned.sol"; import {ERC20} from "solmate/tokens/ERC20.sol"; import {SafeTransferLib} from "solmate/utils/SafeTransferLib.sol"; import {IFeeCollector} from "./interfaces/IFeeCollector.sol"; import {IPermit2} from "./external/IPermit2.sol"; /// @notice The collector of protocol fees that will be used to swap and send to a fee recipient address. contract FeeCollector is Owned, IFeeCollector { using SafeTransferLib for ERC20; error UniversalRouterCallFailed(); address private immutable universalRouter; ERC20 private immutable feeToken; IPermit2 private immutable permit2; uint256 private constant MAX_APPROVAL_AMOUNT = type(uint256).max; uint160 private constant MAX_PERMIT2_APPROVAL_AMOUNT = type(uint160).max; uint48 private constant MAX_PERMIT2_DEADLINE = type(uint48).max; constructor(address _owner, address _universalRouter, address _permit2, address _feeToken) Owned(_owner) { universalRouter = _universalRouter; feeToken = ERC20(_feeToken); permit2 = IPermit2(_permit2); } /// @inheritdoc IFeeCollector function swapBalance(bytes calldata swapData, uint256 nativeValue) external onlyOwner { _execute(swapData, nativeValue); } /// @inheritdoc IFeeCollector function swapBalance(bytes calldata swapData, uint256 nativeValue, ERC20[] calldata tokensToApprove) external onlyOwner { unchecked { for (uint256 i = 0; i < tokensToApprove.length; i++) { tokensToApprove[i].safeApprove(address(permit2), MAX_APPROVAL_AMOUNT); permit2.approve( address(tokensToApprove[i]), universalRouter, MAX_PERMIT2_APPROVAL_AMOUNT, MAX_PERMIT2_DEADLINE ); } } _execute(swapData, nativeValue); } /// @notice Helper function to call UniversalRouter. /// @param swapData The bytes call data to be forwarded to UniversalRouter. /// @param nativeValue The amount of native currency to send to UniversalRouter. function _execute(bytes calldata swapData, uint256 nativeValue) internal { (bool success,) = universalRouter.call{value: nativeValue}(swapData); if (!success) revert UniversalRouterCallFailed(); } /// @inheritdoc IFeeCollector function withdrawFeeToken(address feeRecipient, uint256 amount) external onlyOwner { feeToken.safeTransfer(feeRecipient, amount); } receive() external payable {} } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Simple single owner authorization mixin. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/auth/Owned.sol) abstract contract Owned { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event OwnershipTransferred(address indexed user, address indexed newOwner); /*////////////////////////////////////////////////////////////// OWNERSHIP STORAGE //////////////////////////////////////////////////////////////*/ address public owner; modifier onlyOwner() virtual { require(msg.sender == owner, "UNAUTHORIZED"); _; } /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor(address _owner) { owner = _owner; emit OwnershipTransferred(address(0), _owner); } /*////////////////////////////////////////////////////////////// OWNERSHIP LOGIC //////////////////////////////////////////////////////////////*/ function transferOwnership(address newOwner) public virtual onlyOwner { owner = newOwner; emit OwnershipTransferred(msg.sender, newOwner); } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol) /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol) /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it. abstract contract ERC20 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); /*////////////////////////////////////////////////////////////// METADATA STORAGE //////////////////////////////////////////////////////////////*/ string public name; string public symbol; uint8 public immutable decimals; /*////////////////////////////////////////////////////////////// ERC20 STORAGE //////////////////////////////////////////////////////////////*/ uint256 public totalSupply; mapping(address => uint256) public balanceOf; mapping(address => mapping(address => uint256)) public allowance; /*////////////////////////////////////////////////////////////// EIP-2612 STORAGE //////////////////////////////////////////////////////////////*/ uint256 internal immutable INITIAL_CHAIN_ID; bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR; mapping(address => uint256) public nonces; /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor( string memory _name, string memory _symbol, uint8 _decimals ) { name = _name; symbol = _symbol; decimals = _decimals; INITIAL_CHAIN_ID = block.chainid; INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator(); } /*////////////////////////////////////////////////////////////// ERC20 LOGIC //////////////////////////////////////////////////////////////*/ function approve(address spender, uint256 amount) public virtual returns (bool) { allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } function transfer(address to, uint256 amount) public virtual returns (bool) { balanceOf[msg.sender] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(msg.sender, to, amount); return true; } function transferFrom( address from, address to, uint256 amount ) public virtual returns (bool) { uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals. if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount; balanceOf[from] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(from, to, amount); return true; } /*////////////////////////////////////////////////////////////// EIP-2612 LOGIC //////////////////////////////////////////////////////////////*/ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED"); // Unchecked because the only math done is incrementing // the owner's nonce which cannot realistically overflow. unchecked { address recoveredAddress = ecrecover( keccak256( abi.encodePacked( "\\x19\\x01", DOMAIN_SEPARATOR(), keccak256( abi.encode( keccak256( "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)" ), owner, spender, value, nonces[owner]++, deadline ) ) ) ), v, r, s ); require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER"); allowance[recoveredAddress][spender] = value; } emit Approval(owner, spender, value); } function DOMAIN_SEPARATOR() public view virtual returns (bytes32) { return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator(); } function computeDomainSeparator() internal view virtual returns (bytes32) { return keccak256( abi.encode( keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"), keccak256(bytes(name)), keccak256("1"), block.chainid, address(this) ) ); } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint(address to, uint256 amount) internal virtual { totalSupply += amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(address(0), to, amount); } function _burn(address from, uint256 amount) internal virtual { balanceOf[from] -= amount; // Cannot underflow because a user's balance // will never be larger than the total supply. unchecked { totalSupply -= amount; } emit Transfer(from, address(0), amount); } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; import {ERC20} from "../tokens/ERC20.sol"; /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol) /// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer. /// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller. library SafeTransferLib { /*////////////////////////////////////////////////////////////// ETH OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferETH(address to, uint256 amount) internal { bool success; /// @solidity memory-safe-assembly assembly { // Transfer the ETH and store if it succeeded or not. success := call(gas(), to, amount, 0, 0, 0, 0) } require(success, "ETH_TRANSFER_FAILED"); } /*////////////////////////////////////////////////////////////// ERC20 OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferFrom( ERC20 token, address from, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), and(from, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "from" argument. mstore(add(freeMemoryPointer, 36), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument. mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 100, 0, 32) ) } require(success, "TRANSFER_FROM_FAILED"); } function safeTransfer( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "TRANSFER_FAILED"); } function safeApprove( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "APPROVE_FAILED"); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.13; import {ERC20} from "solmate/tokens/ERC20.sol"; /// @notice The collector of protocol fees that will be used to swap and send to a fee recipient address. interface IFeeCollector { /// @notice Swaps the contract balance. /// @param swapData The bytes call data to be forwarded to UniversalRouter. /// @param nativeValue The amount of native currency to send to UniversalRouter. function swapBalance(bytes calldata swapData, uint256 nativeValue) external; /// @notice Approves tokens for swapping and then swaps the contract balance. /// @param swapData The bytes call data to be forwarded to UniversalRouter. /// @param nativeValue The amount of native currency to send to UniversalRouter. /// @param tokensToApprove An array of ERC20 tokens to approve for spending. function swapBalance(bytes calldata swapData, uint256 nativeValue, ERC20[] calldata tokensToApprove) external; /// @notice Transfers the fee token balance from this contract to the fee recipient. /// @param feeRecipient The address to send the fee token balance to. /// @param amount The amount to withdraw. function withdrawFeeToken(address feeRecipient, uint256 amount) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {IAllowanceTransfer} from "./IAllowanceTransfer.sol"; /// @notice Permit2 handles signature-based transfers in SignatureTransfer and allowance-based transfers in AllowanceTransfer. /// @dev Users must approve Permit2 before calling any of the transfer functions. interface IPermit2 is IAllowanceTransfer { // IPermit2 unifies the two interfaces so users have maximal flexibility with their approval. } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {IEIP712} from "./IEIP712.sol"; /// @title AllowanceTransfer /// @notice Handles ERC20 token permissions through signature based allowance setting and ERC20 token transfers by checking allowed amounts /// @dev Requires user's token approval on the Permit2 contract interface IAllowanceTransfer is IEIP712 { /// @notice A mapping from owner address to token address to spender address to PackedAllowance struct, which contains details and conditions of the approval. /// @notice The mapping is indexed in the above order see: allowance[ownerAddress][tokenAddress][spenderAddress] /// @dev The packed slot holds the allowed amount, expiration at which the allowed amount is no longer valid, and current nonce thats updated on any signature based approvals. function allowance(address user, address token, address spender) external view returns (uint160 amount, uint48 expiration, uint48 nonce); /// @notice Approves the spender to use up to amount of the specified token up until the expiration /// @param token The token to approve /// @param spender The spender address to approve /// @param amount The approved amount of the token /// @param expiration The timestamp at which the approval is no longer valid /// @dev The packed allowance also holds a nonce, which will stay unchanged in approve /// @dev Setting amount to type(uint160).max sets an unlimited approval function approve(address token, address spender, uint160 amount, uint48 expiration) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IEIP712 { function DOMAIN_SEPARATOR() external view returns (bytes32); }