ETH Price: $1,885.13 (-0.44%)

Transaction Decoder

Block:
13108027 at Aug-27-2021 02:45:38 PM +UTC
Transaction Fee:
0.009412628327019741 ETH $17.74
Gas Used:
93,963 Gas / 100.173774007 Gwei

Emitted Events:

252 PolkamonToken.Transfer( from=[Sender] 0x5f23c4bd6ff20a8cb49c5a27953f286737d129a7, to=[Receiver] AdminUpgradeabilityProxy, value=9271420000000000000 )
253 PolkamonToken.Approval( owner=[Sender] 0x5f23c4bd6ff20a8cb49c5a27953f286737d129a7, spender=[Receiver] AdminUpgradeabilityProxy, value=115792089237316195423570985008687907853269984665640564039448312587913129639935 )
254 PolkamonToken.Transfer( from=[Sender] 0x5f23c4bd6ff20a8cb49c5a27953f286737d129a7, to=0xad20eb8bd1e2c5703Ed5A5c7de22AD353FAec85B, value=18580000000000000 )
255 PolkamonToken.Approval( owner=[Sender] 0x5f23c4bd6ff20a8cb49c5a27953f286737d129a7, spender=[Receiver] AdminUpgradeabilityProxy, value=115792089237316195423570985008687907853269984665640564039448294007913129639935 )
256 AdminUpgradeabilityProxy.0x04d49d32a0507dfc2856d4fbe4067e7b8be60aded0aa263534a72be27700016f( 0x04d49d32a0507dfc2856d4fbe4067e7b8be60aded0aa263534a72be27700016f, 0x0000000000000000000000001796ae0b0fa4862485106a0de9b654efe301d0b2, 0x0000000000000000000000005f23c4bd6ff20a8cb49c5a27953f286737d129a7, 0000000000000000000000000000000000000000000000007f476de5d1e9c000, 0000000000000000000000000000000000000000000000000000000000000001, 0000000000000000000000000000000000000000000000000000000000000d7a )

Account State Difference:

  Address   Before After State Difference Code
0x1796ae0b...FE301D0b2
0x1FFD0b47...0D66AafC5
0x5f23C4bD...737d129A7
0.016182914145047024 Eth
Nonce: 244
0.006770285818027283 Eth
Nonce: 245
0.009412628327019741
(Ethermine)
3,771.581265461228891265 Eth3,771.581406405728891265 Eth0.0001409445

Execution Trace

AdminUpgradeabilityProxy.90d25074( )
  • 0xed7f276a25f0df2feb0dc92de2436c3c4a57594d.90d25074( )
    • PolkamonToken.transferFrom( sender=0x5f23C4bD6fF20a8CB49C5A27953f286737d129A7, recipient=0x1FFD0b47127fdd4097E54521C9E2c7f0D66AafC5, amount=9271420000000000000 ) => ( True )
    • PolkamonToken.transferFrom( sender=0x5f23C4bD6fF20a8CB49C5A27953f286737d129A7, recipient=0xad20eb8bd1e2c5703Ed5A5c7de22AD353FAec85B, amount=18580000000000000 ) => ( True )
      File 1 of 2: AdminUpgradeabilityProxy
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.6.0;
      import './UpgradeabilityProxy.sol';
      /**
       * @title AdminUpgradeabilityProxy
       * @dev This contract combines an upgradeability proxy with an authorization
       * mechanism for administrative tasks.
       * All external functions in this contract must be guarded by the
       * `ifAdmin` modifier. See ethereum/solidity#3864 for a Solidity
       * feature proposal that would enable this to be done automatically.
       */
      contract AdminUpgradeabilityProxy is UpgradeabilityProxy {
        /**
         * Contract constructor.
         * @param _logic address of the initial implementation.
         * @param _admin Address of the proxy administrator.
         * @param _data Data to send as msg.data to the implementation to initialize the proxied contract.
         * It should include the signature and the parameters of the function to be called, as described in
         * https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
         * This parameter is optional, if no data is given the initialization call to proxied contract will be skipped.
         */
        constructor(address _logic, address _admin, bytes memory _data) UpgradeabilityProxy(_logic, _data) public payable {
          assert(ADMIN_SLOT == bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1));
          _setAdmin(_admin);
        }
        /**
         * @dev Emitted when the administration has been transferred.
         * @param previousAdmin Address of the previous admin.
         * @param newAdmin Address of the new admin.
         */
        event AdminChanged(address previousAdmin, address newAdmin);
        /**
         * @dev Storage slot with the admin of the contract.
         * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
         * validated in the constructor.
         */
        bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
        /**
         * @dev Modifier to check whether the `msg.sender` is the admin.
         * If it is, it will run the function. Otherwise, it will delegate the call
         * to the implementation.
         */
        modifier ifAdmin() {
          if (msg.sender == _admin()) {
            _;
          } else {
            _fallback();
          }
        }
        /**
         * @return The address of the proxy admin.
         */
        function admin() external ifAdmin returns (address) {
          return _admin();
        }
        /**
         * @return The address of the implementation.
         */
        function implementation() external ifAdmin returns (address) {
          return _implementation();
        }
        /**
         * @dev Changes the admin of the proxy.
         * Only the current admin can call this function.
         * @param newAdmin Address to transfer proxy administration to.
         */
        function changeAdmin(address newAdmin) external ifAdmin {
          require(newAdmin != address(0), "Cannot change the admin of a proxy to the zero address");
          emit AdminChanged(_admin(), newAdmin);
          _setAdmin(newAdmin);
        }
        /**
         * @dev Upgrade the backing implementation of the proxy.
         * Only the admin can call this function.
         * @param newImplementation Address of the new implementation.
         */
        function upgradeTo(address newImplementation) external ifAdmin {
          _upgradeTo(newImplementation);
        }
        /**
         * @dev Upgrade the backing implementation of the proxy and call a function
         * on the new implementation.
         * This is useful to initialize the proxied contract.
         * @param newImplementation Address of the new implementation.
         * @param data Data to send as msg.data in the low level call.
         * It should include the signature and the parameters of the function to be called, as described in
         * https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
         */
        function upgradeToAndCall(address newImplementation, bytes calldata data) payable external ifAdmin {
          _upgradeTo(newImplementation);
          (bool success,) = newImplementation.delegatecall(data);
          require(success);
        }
        /**
         * @return adm The admin slot.
         */
        function _admin() internal view returns (address adm) {
          bytes32 slot = ADMIN_SLOT;
          assembly {
            adm := sload(slot)
          }
        }
        /**
         * @dev Sets the address of the proxy admin.
         * @param newAdmin Address of the new proxy admin.
         */
        function _setAdmin(address newAdmin) internal {
          bytes32 slot = ADMIN_SLOT;
          assembly {
            sstore(slot, newAdmin)
          }
        }
        /**
         * @dev Only fall back when the sender is not the admin.
         */
        function _willFallback() internal override virtual {
          require(msg.sender != _admin(), "Cannot call fallback function from the proxy admin");
          super._willFallback();
        }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.6.0;
      import './Proxy.sol';
      import '@openzeppelin/contracts/utils/Address.sol';
      /**
       * @title UpgradeabilityProxy
       * @dev This contract implements a proxy that allows to change the
       * implementation address to which it will delegate.
       * Such a change is called an implementation upgrade.
       */
      contract UpgradeabilityProxy is Proxy {
        /**
         * @dev Contract constructor.
         * @param _logic Address of the initial implementation.
         * @param _data Data to send as msg.data to the implementation to initialize the proxied contract.
         * It should include the signature and the parameters of the function to be called, as described in
         * https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
         * This parameter is optional, if no data is given the initialization call to proxied contract will be skipped.
         */
        constructor(address _logic, bytes memory _data) public payable {
          assert(IMPLEMENTATION_SLOT == bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1));
          _setImplementation(_logic);
          if(_data.length > 0) {
            (bool success,) = _logic.delegatecall(_data);
            require(success);
          }
        }  
        /**
         * @dev Emitted when the implementation is upgraded.
         * @param implementation Address of the new implementation.
         */
        event Upgraded(address indexed implementation);
        /**
         * @dev Storage slot with the address of the current implementation.
         * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
         * validated in the constructor.
         */
        bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
        /**
         * @dev Returns the current implementation.
         * @return impl Address of the current implementation
         */
        function _implementation() internal override view returns (address impl) {
          bytes32 slot = IMPLEMENTATION_SLOT;
          assembly {
            impl := sload(slot)
          }
        }
        /**
         * @dev Upgrades the proxy to a new implementation.
         * @param newImplementation Address of the new implementation.
         */
        function _upgradeTo(address newImplementation) internal {
          _setImplementation(newImplementation);
          emit Upgraded(newImplementation);
        }
        /**
         * @dev Sets the implementation address of the proxy.
         * @param newImplementation Address of the new implementation.
         */
        function _setImplementation(address newImplementation) internal {
          require(Address.isContract(newImplementation), "Cannot set a proxy implementation to a non-contract address");
          bytes32 slot = IMPLEMENTATION_SLOT;
          assembly {
            sstore(slot, newImplementation)
          }
        }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.6.0;
      /**
       * @title Proxy
       * @dev Implements delegation of calls to other contracts, with proper
       * forwarding of return values and bubbling of failures.
       * It defines a fallback function that delegates all calls to the address
       * returned by the abstract _implementation() internal function.
       */
      abstract contract Proxy {
        /**
         * @dev Fallback function.
         * Implemented entirely in `_fallback`.
         */
        fallback () payable external {
          _fallback();
        }
        /**
         * @dev Receive function.
         * Implemented entirely in `_fallback`.
         */
        receive () payable external {
          _fallback();
        }
        /**
         * @return The Address of the implementation.
         */
        function _implementation() internal virtual view returns (address);
        /**
         * @dev Delegates execution to an implementation contract.
         * This is a low level function that doesn't return to its internal call site.
         * It will return to the external caller whatever the implementation returns.
         * @param implementation Address to delegate.
         */
        function _delegate(address implementation) internal {
          assembly {
            // Copy msg.data. We take full control of memory in this inline assembly
            // block because it will not return to Solidity code. We overwrite the
            // Solidity scratch pad at memory position 0.
            calldatacopy(0, 0, calldatasize())
            // Call the implementation.
            // out and outsize are 0 because we don't know the size yet.
            let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
            // Copy the returned data.
            returndatacopy(0, 0, returndatasize())
            switch result
            // delegatecall returns 0 on error.
            case 0 { revert(0, returndatasize()) }
            default { return(0, returndatasize()) }
          }
        }
        /**
         * @dev Function that is run as the first thing in the fallback function.
         * Can be redefined in derived contracts to add functionality.
         * Redefinitions must call super._willFallback().
         */
        function _willFallback() internal virtual {
        }
        /**
         * @dev fallback implementation.
         * Extracted to enable manual triggering.
         */
        function _fallback() internal {
          _willFallback();
          _delegate(_implementation());
        }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity >=0.6.2 <0.8.0;
      /**
       * @dev Collection of functions related to the address type
       */
      library Address {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // This method relies on extcodesize, which returns 0 for contracts in
              // construction, since the code is only stored at the end of the
              // constructor execution.
              uint256 size;
              // solhint-disable-next-line no-inline-assembly
              assembly { size := extcodesize(account) }
              return size > 0;
          }
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              require(address(this).balance >= amount, "Address: insufficient balance");
              // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
              (bool success, ) = recipient.call{ value: amount }("");
              require(success, "Address: unable to send value, recipient may have reverted");
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain`call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason, it is bubbled up by this
           * function (like regular Solidity function calls).
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCall(target, data, "Address: low-level call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
           * `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
          }
          /**
           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
           * with `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
              require(address(this).balance >= value, "Address: insufficient balance for call");
              require(isContract(target), "Address: call to non-contract");
              // solhint-disable-next-line avoid-low-level-calls
              (bool success, bytes memory returndata) = target.call{ value: value }(data);
              return _verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              return functionStaticCall(target, data, "Address: low-level static call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
              require(isContract(target), "Address: static call to non-contract");
              // solhint-disable-next-line avoid-low-level-calls
              (bool success, bytes memory returndata) = target.staticcall(data);
              return _verifyCallResult(success, returndata, errorMessage);
          }
          function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
              if (success) {
                  return returndata;
              } else {
                  // Look for revert reason and bubble it up if present
                  if (returndata.length > 0) {
                      // The easiest way to bubble the revert reason is using memory via assembly
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          let returndata_size := mload(returndata)
                          revert(add(32, returndata), returndata_size)
                      }
                  } else {
                      revert(errorMessage);
                  }
              }
          }
      }
      

      File 2 of 2: PolkamonToken
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
      contract PolkamonToken is ERC20Burnable {
          constructor(
              string memory name,
              string memory symbol,
              uint256 initialSupply,
              address owner
          ) ERC20(name, symbol) {
              _mint(owner, initialSupply);
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import "../ERC20.sol";
      import "../../../utils/Context.sol";
      /**
       * @dev Extension of {ERC20} that allows token holders to destroy both their own
       * tokens and those that they have an allowance for, in a way that can be
       * recognized off-chain (via event analysis).
       */
      abstract contract ERC20Burnable is Context, ERC20 {
          /**
           * @dev Destroys `amount` tokens from the caller.
           *
           * See {ERC20-_burn}.
           */
          function burn(uint256 amount) public virtual {
              _burn(_msgSender(), amount);
          }
          /**
           * @dev Destroys `amount` tokens from `account`, deducting from the caller's
           * allowance.
           *
           * See {ERC20-_burn} and {ERC20-allowance}.
           *
           * Requirements:
           *
           * - the caller must have allowance for ``accounts``'s tokens of at least
           * `amount`.
           */
          function burnFrom(address account, uint256 amount) public virtual {
              uint256 currentAllowance = allowance(account, _msgSender());
              require(currentAllowance >= amount, "ERC20: burn amount exceeds allowance");
              _approve(account, _msgSender(), currentAllowance - amount);
              _burn(account, amount);
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import "./IERC20.sol";
      import "../../utils/Context.sol";
      /**
       * @dev Implementation of the {IERC20} interface.
       *
       * This implementation is agnostic to the way tokens are created. This means
       * that a supply mechanism has to be added in a derived contract using {_mint}.
       * For a generic mechanism see {ERC20PresetMinterPauser}.
       *
       * TIP: For a detailed writeup see our guide
       * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
       * to implement supply mechanisms].
       *
       * We have followed general OpenZeppelin guidelines: functions revert instead
       * of returning `false` on failure. This behavior is nonetheless conventional
       * and does not conflict with the expectations of ERC20 applications.
       *
       * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
       * This allows applications to reconstruct the allowance for all accounts just
       * by listening to said events. Other implementations of the EIP may not emit
       * these events, as it isn't required by the specification.
       *
       * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
       * functions have been added to mitigate the well-known issues around setting
       * allowances. See {IERC20-approve}.
       */
      contract ERC20 is Context, IERC20 {
          mapping (address => uint256) private _balances;
          mapping (address => mapping (address => uint256)) private _allowances;
          uint256 private _totalSupply;
          string private _name;
          string private _symbol;
          /**
           * @dev Sets the values for {name} and {symbol}.
           *
           * The defaut value of {decimals} is 18. To select a different value for
           * {decimals} you should overload it.
           *
           * All three of these values are immutable: they can only be set once during
           * construction.
           */
          constructor (string memory name_, string memory symbol_) {
              _name = name_;
              _symbol = symbol_;
          }
          /**
           * @dev Returns the name of the token.
           */
          function name() public view virtual returns (string memory) {
              return _name;
          }
          /**
           * @dev Returns the symbol of the token, usually a shorter version of the
           * name.
           */
          function symbol() public view virtual returns (string memory) {
              return _symbol;
          }
          /**
           * @dev Returns the number of decimals used to get its user representation.
           * For example, if `decimals` equals `2`, a balance of `505` tokens should
           * be displayed to a user as `5,05` (`505 / 10 ** 2`).
           *
           * Tokens usually opt for a value of 18, imitating the relationship between
           * Ether and Wei. This is the value {ERC20} uses, unless this function is
           * overloaded;
           *
           * NOTE: This information is only used for _display_ purposes: it in
           * no way affects any of the arithmetic of the contract, including
           * {IERC20-balanceOf} and {IERC20-transfer}.
           */
          function decimals() public view virtual returns (uint8) {
              return 18;
          }
          /**
           * @dev See {IERC20-totalSupply}.
           */
          function totalSupply() public view virtual override returns (uint256) {
              return _totalSupply;
          }
          /**
           * @dev See {IERC20-balanceOf}.
           */
          function balanceOf(address account) public view virtual override returns (uint256) {
              return _balances[account];
          }
          /**
           * @dev See {IERC20-transfer}.
           *
           * Requirements:
           *
           * - `recipient` cannot be the zero address.
           * - the caller must have a balance of at least `amount`.
           */
          function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
              _transfer(_msgSender(), recipient, amount);
              return true;
          }
          /**
           * @dev See {IERC20-allowance}.
           */
          function allowance(address owner, address spender) public view virtual override returns (uint256) {
              return _allowances[owner][spender];
          }
          /**
           * @dev See {IERC20-approve}.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function approve(address spender, uint256 amount) public virtual override returns (bool) {
              _approve(_msgSender(), spender, amount);
              return true;
          }
          /**
           * @dev See {IERC20-transferFrom}.
           *
           * Emits an {Approval} event indicating the updated allowance. This is not
           * required by the EIP. See the note at the beginning of {ERC20}.
           *
           * Requirements:
           *
           * - `sender` and `recipient` cannot be the zero address.
           * - `sender` must have a balance of at least `amount`.
           * - the caller must have allowance for ``sender``'s tokens of at least
           * `amount`.
           */
          function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
              _transfer(sender, recipient, amount);
              uint256 currentAllowance = _allowances[sender][_msgSender()];
              require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance");
              _approve(sender, _msgSender(), currentAllowance - amount);
              return true;
          }
          /**
           * @dev Atomically increases the allowance granted to `spender` by the caller.
           *
           * This is an alternative to {approve} that can be used as a mitigation for
           * problems described in {IERC20-approve}.
           *
           * Emits an {Approval} event indicating the updated allowance.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
              _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);
              return true;
          }
          /**
           * @dev Atomically decreases the allowance granted to `spender` by the caller.
           *
           * This is an alternative to {approve} that can be used as a mitigation for
           * problems described in {IERC20-approve}.
           *
           * Emits an {Approval} event indicating the updated allowance.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           * - `spender` must have allowance for the caller of at least
           * `subtractedValue`.
           */
          function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
              uint256 currentAllowance = _allowances[_msgSender()][spender];
              require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
              _approve(_msgSender(), spender, currentAllowance - subtractedValue);
              return true;
          }
          /**
           * @dev Moves tokens `amount` from `sender` to `recipient`.
           *
           * This is internal function is equivalent to {transfer}, and can be used to
           * e.g. implement automatic token fees, slashing mechanisms, etc.
           *
           * Emits a {Transfer} event.
           *
           * Requirements:
           *
           * - `sender` cannot be the zero address.
           * - `recipient` cannot be the zero address.
           * - `sender` must have a balance of at least `amount`.
           */
          function _transfer(address sender, address recipient, uint256 amount) internal virtual {
              require(sender != address(0), "ERC20: transfer from the zero address");
              require(recipient != address(0), "ERC20: transfer to the zero address");
              _beforeTokenTransfer(sender, recipient, amount);
              uint256 senderBalance = _balances[sender];
              require(senderBalance >= amount, "ERC20: transfer amount exceeds balance");
              _balances[sender] = senderBalance - amount;
              _balances[recipient] += amount;
              emit Transfer(sender, recipient, amount);
          }
          /** @dev Creates `amount` tokens and assigns them to `account`, increasing
           * the total supply.
           *
           * Emits a {Transfer} event with `from` set to the zero address.
           *
           * Requirements:
           *
           * - `to` cannot be the zero address.
           */
          function _mint(address account, uint256 amount) internal virtual {
              require(account != address(0), "ERC20: mint to the zero address");
              _beforeTokenTransfer(address(0), account, amount);
              _totalSupply += amount;
              _balances[account] += amount;
              emit Transfer(address(0), account, amount);
          }
          /**
           * @dev Destroys `amount` tokens from `account`, reducing the
           * total supply.
           *
           * Emits a {Transfer} event with `to` set to the zero address.
           *
           * Requirements:
           *
           * - `account` cannot be the zero address.
           * - `account` must have at least `amount` tokens.
           */
          function _burn(address account, uint256 amount) internal virtual {
              require(account != address(0), "ERC20: burn from the zero address");
              _beforeTokenTransfer(account, address(0), amount);
              uint256 accountBalance = _balances[account];
              require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
              _balances[account] = accountBalance - amount;
              _totalSupply -= amount;
              emit Transfer(account, address(0), amount);
          }
          /**
           * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
           *
           * This internal function is equivalent to `approve`, and can be used to
           * e.g. set automatic allowances for certain subsystems, etc.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `owner` cannot be the zero address.
           * - `spender` cannot be the zero address.
           */
          function _approve(address owner, address spender, uint256 amount) internal virtual {
              require(owner != address(0), "ERC20: approve from the zero address");
              require(spender != address(0), "ERC20: approve to the zero address");
              _allowances[owner][spender] = amount;
              emit Approval(owner, spender, amount);
          }
          /**
           * @dev Hook that is called before any transfer of tokens. This includes
           * minting and burning.
           *
           * Calling conditions:
           *
           * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
           * will be to transferred to `to`.
           * - when `from` is zero, `amount` tokens will be minted for `to`.
           * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
           * - `from` and `to` are never both zero.
           *
           * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
           */
          function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      /*
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
              return msg.data;
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      /**
       * @dev Interface of the ERC20 standard as defined in the EIP.
       */
      interface IERC20 {
          /**
           * @dev Returns the amount of tokens in existence.
           */
          function totalSupply() external view returns (uint256);
          /**
           * @dev Returns the amount of tokens owned by `account`.
           */
          function balanceOf(address account) external view returns (uint256);
          /**
           * @dev Moves `amount` tokens from the caller's account to `recipient`.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transfer(address recipient, uint256 amount) external returns (bool);
          /**
           * @dev Returns the remaining number of tokens that `spender` will be
           * allowed to spend on behalf of `owner` through {transferFrom}. This is
           * zero by default.
           *
           * This value changes when {approve} or {transferFrom} are called.
           */
          function allowance(address owner, address spender) external view returns (uint256);
          /**
           * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * IMPORTANT: Beware that changing an allowance with this method brings the risk
           * that someone may use both the old and the new allowance by unfortunate
           * transaction ordering. One possible solution to mitigate this race
           * condition is to first reduce the spender's allowance to 0 and set the
           * desired value afterwards:
           * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
           *
           * Emits an {Approval} event.
           */
          function approve(address spender, uint256 amount) external returns (bool);
          /**
           * @dev Moves `amount` tokens from `sender` to `recipient` using the
           * allowance mechanism. `amount` is then deducted from the caller's
           * allowance.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
          /**
           * @dev Emitted when `value` tokens are moved from one account (`from`) to
           * another (`to`).
           *
           * Note that `value` may be zero.
           */
          event Transfer(address indexed from, address indexed to, uint256 value);
          /**
           * @dev Emitted when the allowance of a `spender` for an `owner` is set by
           * a call to {approve}. `value` is the new allowance.
           */
          event Approval(address indexed owner, address indexed spender, uint256 value);
      }