ETH Price: $2,520.17 (-0.00%)

Transaction Decoder

Block:
11527903 at Dec-26-2020 07:19:15 AM +UTC
Transaction Fee:
0.00722574 ETH $18.21
Gas Used:
200,715 Gas / 36 Gwei

Emitted Events:

210 DNSToken.Approval( owner=[Sender] 0x0405e57ce554e3f5e5a2b2aac4e5c30156c1be7e, spender=[Receiver] 0x8fcd0c224a1f6d742c62402e98340464f8d2b3c2, value=115792089237316195423570985008687907853269984665640564038791917007913129639935 )
211 DNSToken.Transfer( from=[Sender] 0x0405e57ce554e3f5e5a2b2aac4e5c30156c1be7e, to=[Receiver] 0x8fcd0c224a1f6d742c62402e98340464f8d2b3c2, value=665667000000000000000 )
212 0x8fcd0c224a1f6d742c62402e98340464f8d2b3c2.0xb4caaf29adda3eefee3ad552a8e85058589bf834c7466cae4ee58787f70589ed( 0xb4caaf29adda3eefee3ad552a8e85058589bf834c7466cae4ee58787f70589ed, 0x0000000000000000000000000405e57ce554e3f5e5a2b2aac4e5c30156c1be7e, 00000000000000000000000000000000000000000000002415fc41a523f38000, 000000000000000000000000000000000000000000005bc4927f264f48419e9d, 000000000000000000000000000000000000000000005be8a87b67f46c351e9d )

Account State Difference:

  Address   Before After State Difference Code
0x0405e57C...156C1BE7e
0.246064975898326443 Eth
Nonce: 299
0.238839235898326443 Eth
Nonce: 300
0.00722574
0x17c090F9...E3C4Ca196
(Spark Pool)
67.848229396680585598 Eth67.855455136680585598 Eth0.00722574
0x8FCd0c22...4F8d2B3c2

Execution Trace

0x8fcd0c224a1f6d742c62402e98340464f8d2b3c2.a694fc3a( )
  • DNSToken.balanceOf( account=0x0405e57Ce554e3F5E5a2b2aaC4e5C30156C1BE7e ) => ( 665667000000000000000 )
  • DNSToken.balanceOf( account=0x8FCd0c224a1F6d742C62402e98340464F8d2B3c2 ) => ( 433361467977758322826909 )
  • DNSToken.transferFrom( sender=0x0405e57Ce554e3F5E5a2b2aaC4e5C30156C1BE7e, recipient=0x8FCd0c224a1F6d742C62402e98340464F8d2B3c2, amount=665667000000000000000 ) => ( True )
  • DNSToken.balanceOf( account=0x8FCd0c224a1F6d742C62402e98340464F8d2B3c2 ) => ( 434027134977758322826909 )
    // produced by the Solididy File Flattener (c)  Created By BitDNS.vip
    // contact : BitDNS.vip
    // SPDX-License-Identifier: MIT
    
    pragma solidity ^0.6.0;
    
    /**
     * @dev Wrappers over Solidity's arithmetic operations with added overflow
     * checks.
     *
     * Arithmetic operations in Solidity wrap on overflow. This can easily result
     * in bugs, because programmers usually assume that an overflow raises an
     * error, which is the standard behavior in high level programming languages.
     * `SafeMath` restores this intuition by reverting the transaction when an
     * operation overflows.
     *
     * Using this library instead of the unchecked operations eliminates an entire
     * class of bugs, so it's recommended to use it always.
     */
    library SafeMath {
        /**
         * @dev Returns the addition of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `+` operator.
         *
         * Requirements:
         *
         * - Addition cannot overflow.
         */
        function add(uint256 a, uint256 b) internal pure returns (uint256) {
            uint256 c = a + b;
            require(c >= a, "SafeMath: addition overflow");
    
            return c;
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         *
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
            return sub(a, b, "SafeMath: subtraction overflow");
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         *
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b <= a, errorMessage);
            uint256 c = a - b;
    
            return c;
        }
    
        /**
         * @dev Returns the multiplication of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `*` operator.
         *
         * Requirements:
         *
         * - Multiplication cannot overflow.
         */
        function mul(uint256 a, uint256 b) internal pure returns (uint256) {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) {
                return 0;
            }
    
            uint256 c = a * b;
            require(c / a == b, "SafeMath: multiplication overflow");
    
            return c;
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers. Reverts on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b) internal pure returns (uint256) {
            return div(a, b, "SafeMath: division by zero");
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b > 0, errorMessage);
            uint256 c = a / b;
            // assert(a == b * c + a % b); // There is no case in which this doesn't hold
    
            return c;
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b) internal pure returns (uint256) {
            return mod(a, b, "SafeMath: modulo by zero");
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts with custom message when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b != 0, errorMessage);
            return a % b;
        }
    }
    
    
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies in extcodesize, which returns 0 for contracts in
            // construction, since the code is only stored at the end of the
            // constructor execution.
    
            uint256 size;
            // solhint-disable-next-line no-inline-assembly
            assembly { size := extcodesize(account) }
            return size > 0;
        }
    
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
    
            // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
            (bool success, ) = recipient.call{ value: amount }("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
    
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain`call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
          return functionCall(target, data, "Address: low-level call failed");
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
            return _functionCallWithValue(target, data, 0, errorMessage);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
    
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            return _functionCallWithValue(target, data, value, errorMessage);
        }
    
        function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
            require(isContract(target), "Address: call to non-contract");
    
            // solhint-disable-next-line avoid-low-level-calls
            (bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
            if (success) {
                return returndata;
            } else {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
    
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
    }
    
    
    /*
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with GSN meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address payable) {
            return msg.sender;
        }
    
        function _msgData() internal view virtual returns (bytes memory) {
            this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
            return msg.data;
        }
    }
    
    
    /**
     * @dev Standard math utilities missing in the Solidity language.
     */
    library Math {
        /**
         * @dev Returns the largest of two numbers.
         */
        function max(uint256 a, uint256 b) internal pure returns (uint256) {
            return a >= b ? a : b;
        }
    
        /**
         * @dev Returns the smallest of two numbers.
         */
        function min(uint256 a, uint256 b) internal pure returns (uint256) {
            return a < b ? a : b;
        }
    
        /**
         * @dev Returns the average of two numbers. The result is rounded towards
         * zero.
         */
        function average(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b) / 2 can overflow, so we distribute
            return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);
        }
    }
    
    
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
    
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
    
        /**
         * @dev Moves `amount` tokens from the caller's account to `recipient`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
    
        /**
         * @dev Moves `amount` tokens from `sender` to `recipient` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
    
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    }
    
    
    /**
     * @title Counters
     * @author Matt Condon (@shrugs)
     * @dev Provides counters that can only be incremented or decremented by one. This can be used e.g. to track the number
     * of elements in a mapping, issuing ERC721 ids, or counting request ids.
     *
     * Include with `using Counters for Counters.Counter;`
     * Since it is not possible to overflow a 256 bit integer with increments of one, `increment` can skip the {SafeMath}
     * overflow check, thereby saving gas. This does assume however correct usage, in that the underlying `_value` is never
     * directly accessed.
     */
    library Counters {
        using SafeMath for uint256;
    
        struct Counter {
            // This variable should never be directly accessed by users of the library: interactions must be restricted to
            // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
            // this feature: see https://github.com/ethereum/solidity/issues/4637
            uint256 _value; // default: 0
        }
    
        function current(Counter storage counter) internal view returns (uint256) {
            return counter._value;
        }
    
        function increment(Counter storage counter) internal {
            // The {SafeMath} overflow check can be skipped here, see the comment at the top
            counter._value += 1;
        }
    
        function decrement(Counter storage counter) internal {
            counter._value = counter._value.sub(1);
        }
    }
    
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    contract Ownable is Context {
        address private _owner;
    
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor () internal {
            address msgSender = _msgSender();
            _owner = msgSender;
            emit OwnershipTransferred(address(0), msgSender);
        }
    
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view returns (address) {
            return _owner;
        }
    
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            require(_owner == _msgSender(), "Ownable: caller is not the owner");
            _;
        }
    
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions anymore. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            emit OwnershipTransferred(_owner, address(0));
            _owner = address(0);
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            emit OwnershipTransferred(_owner, newOwner);
            _owner = newOwner;
        }
    }
    
    
    /**
     * @dev Collection of functions related to array types.
     */
    library Arrays {
       /**
         * @dev Searches a sorted `array` and returns the first index that contains
         * a value greater or equal to `element`. If no such index exists (i.e. all
         * values in the array are strictly less than `element`), the array length is
         * returned. Time complexity O(log n).
         *
         * `array` is expected to be sorted in ascending order, and to contain no
         * repeated elements.
         */
        function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
            if (array.length == 0) {
                return 0;
            }
    
            uint256 low = 0;
            uint256 high = array.length;
    
            while (low < high) {
                uint256 mid = Math.average(low, high);
    
                // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
                // because Math.average rounds down (it does integer division with truncation).
                if (array[mid] > element) {
                    high = mid;
                } else {
                    low = mid + 1;
                }
            }
    
            // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
            if (low > 0 && array[low - 1] == element) {
                return low - 1;
            } else {
                return low;
            }
        }
    }
    
    
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     * For a generic mechanism see {ERC20PresetMinterPauser}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * We have followed general OpenZeppelin guidelines: functions revert instead
     * of returning `false` on failure. This behavior is nonetheless conventional
     * and does not conflict with the expectations of ERC20 applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See {IERC20-approve}.
     */
    contract ERC20 is Context, IERC20 {
        using SafeMath for uint256;
        using Address for address;
    
        mapping (address => uint256) private _balances;
    
        mapping (address => mapping (address => uint256)) private _allowances;
    
        uint256 private _totalSupply;
    
        string private _name;
        string private _symbol;
        uint8 private _decimals;
    
        /**
         * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
         * a default value of 18.
         *
         * To select a different value for {decimals}, use {_setupDecimals}.
         *
         * All three of these values are immutable: they can only be set once during
         * construction.
         */
        constructor (string memory name, string memory symbol) public {
            _name = name;
            _symbol = symbol;
            _decimals = 18;
        }
    
        /**
         * @dev Returns the name of the token.
         */
        function name() public view returns (string memory) {
            return _name;
        }
    
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view returns (string memory) {
            return _symbol;
        }
    
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5,05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
         * called.
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view returns (uint8) {
            return _decimals;
        }
    
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view override returns (uint256) {
            return _totalSupply;
        }
    
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view override returns (uint256) {
            return _balances[account];
        }
    
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `recipient` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
            _transfer(_msgSender(), recipient, amount);
            return true;
        }
    
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view virtual override returns (uint256) {
            return _allowances[owner][spender];
        }
    
        /**
         * @dev See {IERC20-approve}.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 amount) public virtual override returns (bool) {
            require((_allowances[_msgSender()][spender] == 0) || (amount == 0), "ERC20: use increaseAllowance or decreaseAllowance instead");
            _approve(_msgSender(), spender, amount);
            return true;
        }
    
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20};
         *
         * Requirements:
         * - `sender` and `recipient` cannot be the zero address.
         * - `sender` must have a balance of at least `amount`.
         * - the caller must have allowance for ``sender``'s tokens of at least
         * `amount`.
         */
        function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
            _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
            _transfer(sender, recipient, amount);
            return true;
        }
    
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
            _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
            return true;
        }
    
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
            _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
            return true;
        }
    
        /**
         * @dev Moves tokens `amount` from `sender` to `recipient`.
         *
         * This is internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * Requirements:
         *
         * - `sender` cannot be the zero address.
         * - `recipient` cannot be the zero address.
         * - `sender` must have a balance of at least `amount`.
         */
        function _transfer(address sender, address recipient, uint256 amount) internal virtual {
            require(sender != address(0), "ERC20: transfer from the zero address");
            require(recipient != address(0), "ERC20: transfer to the zero address");
    
            _beforeTokenTransfer(sender, recipient, amount);
    
            _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
            _balances[recipient] = _balances[recipient].add(amount);
            emit Transfer(sender, recipient, amount);
        }
    
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * Requirements
         *
         * - `to` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: mint to the zero address");
    
            _beforeTokenTransfer(address(0), account, amount);
    
            _totalSupply = _totalSupply.add(amount);
            _balances[account] = _balances[account].add(amount);
            emit Transfer(address(0), account, amount);
        }
    
        /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * Requirements
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: burn from the zero address");
    
            _beforeTokenTransfer(account, address(0), amount);
    
            _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
            _totalSupply = _totalSupply.sub(amount);
            emit Transfer(account, address(0), amount);
        }
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
         *
         * This is internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(address owner, address spender, uint256 amount) internal virtual {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
    
            _allowances[owner][spender] = amount;
            emit Approval(owner, spender, amount);
        }
    
        /**
         * @dev Sets {decimals} to a value other than the default one of 18.
         *
         * WARNING: This function should only be called from the constructor. Most
         * applications that interact with token contracts will not expect
         * {decimals} to ever change, and may work incorrectly if it does.
         */
        function _setupDecimals(uint8 decimals_) internal {
            _decimals = decimals_;
        }
    
        /**
         * @dev Hook that is called before any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * will be to transferred to `to`.
         * - when `from` is zero, `amount` tokens will be minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
    }
    
    
    /**
     * @dev This contract extends an ERC20 token with a snapshot mechanism. When a snapshot is created, the balances and
     * total supply at the time are recorded for later access.
     *
     * This can be used to safely create mechanisms based on token balances such as trustless dividends or weighted voting.
     * In naive implementations it's possible to perform a "double spend" attack by reusing the same balance from different
     * accounts. By using snapshots to calculate dividends or voting power, those attacks no longer apply. It can also be
     * used to create an efficient ERC20 forking mechanism.
     *
     * Snapshots are created by the internal {_snapshot} function, which will emit the {Snapshot} event and return a
     * snapshot id. To get the total supply at the time of a snapshot, call the function {totalSupplyAt} with the snapshot
     * id. To get the balance of an account at the time of a snapshot, call the {balanceOfAt} function with the snapshot id
     * and the account address.
     *
     * ==== Gas Costs
     *
     * Snapshots are efficient. Snapshot creation is _O(1)_. Retrieval of balances or total supply from a snapshot is _O(log
     * n)_ in the number of snapshots that have been created, although _n_ for a specific account will generally be much
     * smaller since identical balances in subsequent snapshots are stored as a single entry.
     *
     * There is a constant overhead for normal ERC20 transfers due to the additional snapshot bookkeeping. This overhead is
     * only significant for the first transfer that immediately follows a snapshot for a particular account. Subsequent
     * transfers will have normal cost until the next snapshot, and so on.
     */
    abstract contract ERC20Snapshot is ERC20 {
        // Inspired by Jordi Baylina's MiniMeToken to record historical balances:
        // https://github.com/Giveth/minimd/blob/ea04d950eea153a04c51fa510b068b9dded390cb/contracts/MiniMeToken.sol
    
        using SafeMath for uint256;
        using Arrays for uint256[];
        using Counters for Counters.Counter;
    
        // Snapshotted values have arrays of ids and the value corresponding to that id. These could be an array of a
        // Snapshot struct, but that would impede usage of functions that work on an array.
        struct Snapshots {
            uint256[] ids;
            uint256[] values;
        }
    
        mapping (address => Snapshots) private _accountBalanceSnapshots;
        Snapshots private _totalSupplySnapshots;
    
        // Snapshot ids increase monotonically, with the first value being 1. An id of 0 is invalid.
        Counters.Counter private _currentSnapshotId;
    
        /**
         * @dev Emitted by {_snapshot} when a snapshot identified by `id` is created.
         */
        event Snapshot(uint256 id);
    
        /**
         * @dev Creates a new snapshot and returns its snapshot id.
         *
         * Emits a {Snapshot} event that contains the same id.
         *
         * {_snapshot} is `internal` and you have to decide how to expose it externally. Its usage may be restricted to a
         * set of accounts, for example using {AccessControl}, or it may be open to the public.
         *
         * [WARNING]
         * ====
         * While an open way of calling {_snapshot} is required for certain trust minimization mechanisms such as forking,
         * you must consider that it can potentially be used by attackers in two ways.
         *
         * First, it can be used to increase the cost of retrieval of values from snapshots, although it will grow
         * logarithmically thus rendering this attack ineffective in the long term. Second, it can be used to target
         * specific accounts and increase the cost of ERC20 transfers for them, in the ways specified in the Gas Costs
         * section above.
         *
         * We haven't measured the actual numbers; if this is something you're interested in please reach out to us.
         * ====
         */
        function _snapshot() internal virtual returns (uint256) {
            _currentSnapshotId.increment();
    
            uint256 currentId = _currentSnapshotId.current();
            emit Snapshot(currentId);
            return currentId;
        }
    
        /**
         * @dev Retrieves the balance of `account` at the time `snapshotId` was created.
         */
        function balanceOfAt(address account, uint256 snapshotId) public view returns (uint256) {
            (bool snapshotted, uint256 value) = _valueAt(snapshotId, _accountBalanceSnapshots[account]);
    
            return snapshotted ? value : balanceOf(account);
        }
    
        /**
         * @dev Retrieves the total supply at the time `snapshotId` was created.
         */
        function totalSupplyAt(uint256 snapshotId) public view returns(uint256) {
            (bool snapshotted, uint256 value) = _valueAt(snapshotId, _totalSupplySnapshots);
    
            return snapshotted ? value : totalSupply();
        }
    
        // _transfer, _mint and _burn are the only functions where the balances are modified, so it is there that the
        // snapshots are updated. Note that the update happens _before_ the balance change, with the pre-modified value.
        // The same is true for the total supply and _mint and _burn.
        function _transfer(address from, address to, uint256 value) internal virtual override {
            _updateAccountSnapshot(from);
            _updateAccountSnapshot(to);
    
            super._transfer(from, to, value);
        }
    
        function _mint(address account, uint256 value) internal virtual override {
            _updateAccountSnapshot(account);
            _updateTotalSupplySnapshot();
    
            super._mint(account, value);
        }
    
        function _burn(address account, uint256 value) internal virtual override {
            _updateAccountSnapshot(account);
            _updateTotalSupplySnapshot();
    
            super._burn(account, value);
        }
    
        function _valueAt(uint256 snapshotId, Snapshots storage snapshots)
            private view returns (bool, uint256)
        {
            require(snapshotId > 0, "ERC20Snapshot: id is 0");
            // solhint-disable-next-line max-line-length
            require(snapshotId <= _currentSnapshotId.current(), "ERC20Snapshot: nonexistent id");
    
            // When a valid snapshot is queried, there are three possibilities:
            //  a) The queried value was not modified after the snapshot was taken. Therefore, a snapshot entry was never
            //  created for this id, and all stored snapshot ids are smaller than the requested one. The value that corresponds
            //  to this id is the current one.
            //  b) The queried value was modified after the snapshot was taken. Therefore, there will be an entry with the
            //  requested id, and its value is the one to return.
            //  c) More snapshots were created after the requested one, and the queried value was later modified. There will be
            //  no entry for the requested id: the value that corresponds to it is that of the smallest snapshot id that is
            //  larger than the requested one.
            //
            // In summary, we need to find an element in an array, returning the index of the smallest value that is larger if
            // it is not found, unless said value doesn't exist (e.g. when all values are smaller). Arrays.findUpperBound does
            // exactly this.
    
            uint256 index = snapshots.ids.findUpperBound(snapshotId);
    
            if (index == snapshots.ids.length) {
                return (false, 0);
            } else {
                return (true, snapshots.values[index]);
            }
        }
    
        function _updateAccountSnapshot(address account) private {
            _updateSnapshot(_accountBalanceSnapshots[account], balanceOf(account));
        }
    
        function _updateTotalSupplySnapshot() private {
            _updateSnapshot(_totalSupplySnapshots, totalSupply());
        }
    
        function _updateSnapshot(Snapshots storage snapshots, uint256 currentValue) private {
            uint256 currentId = _currentSnapshotId.current();
            if (_lastSnapshotId(snapshots.ids) < currentId) {
                snapshots.ids.push(currentId);
                snapshots.values.push(currentValue);
            }
        }
    
        function _lastSnapshotId(uint256[] storage ids) private view returns (uint256) {
            if (ids.length == 0) {
                return 0;
            } else {
                return ids[ids.length - 1];
            }
        }
    }
    
    
    /**
     * @dev Extension of {ERC20} that allows token holders to destroy both their own
     * tokens and those that they have an allowance for, in a way that can be
     * recognized off-chain (via event analysis).
     */
    abstract contract ERC20Burnable is Context, ERC20 {
        /**
         * @dev Destroys `amount` tokens from the caller.
         *
         * See {ERC20-_burn}.
         */
        function burn(uint256 amount) public virtual {
            _burn(_msgSender(), amount);
        }
    
        /**
         * @dev Destroys `amount` tokens from `account`, deducting from the caller's
         * allowance.
         *
         * See {ERC20-_burn} and {ERC20-allowance}.
         *
         * Requirements:
         *
         * - the caller must have allowance for ``accounts``'s tokens of at least
         * `amount`.
         */
        function burnFrom(address account, uint256 amount) public virtual {
            uint256 decreasedAllowance = allowance(account, _msgSender()).sub(amount, "ERC20: burn amount exceeds allowance");
    
            _approve(account, _msgSender(), decreasedAllowance);
            _burn(account, amount);
        }
    }
    
    
    contract DNSToken is Context, Ownable, ERC20Snapshot, ERC20Burnable {
        using SafeMath for uint256;
        using Address for address;
    
        // Total Supply is 1 Billion
        uint256 constant TOTAL_SUPPLY   = 1000 * 1000 * 1000 ether;   
        uint256 constant MINE_PERCENT   = 55;                 // Proportion of miners: 55%
        uint256 constant FUND_PERCENT   = 15;                 // Proportion of foundation: 15%  
        uint256 constant TEAM_PERCENT   = 10;                 // Proportion of team: 10%
        uint256 constant RELEASE_TIMES  = 20;                 // Release times for foundation and team's tokens
        uint256 constant RELEASE_CYCLE  = 365.25 days / 4;    // Release cycle: 1 quarter
        
        // 1% Total supply for caculating
        uint256 constant TOTAL_SUPPLY_PERCENT   = TOTAL_SUPPLY / 100;
        // Amount of foundation releasing tokens Quarterly
        uint256 constant FUND_AMOUNT_QUARTER    = FUND_PERCENT * TOTAL_SUPPLY_PERCENT / RELEASE_TIMES;    
        // Amount of team releasing tokens Quarterly             
        uint256 constant TEAM_AMOUNT_QUARTER    = TEAM_PERCENT * TOTAL_SUPPLY_PERCENT / RELEASE_TIMES;            
    
        address private _fund_account;                        // Account of foundation used to release token 
        address private _team_account;                        // Account of team used to release token
        uint256 private _release_time;                        // Release time of next quater
        uint256 private _release_count;                       // Release count
        
        constructor() public ERC20("BitDNS", "DNS") {
            _release_count = 0;
            _release_time = block.timestamp.add(RELEASE_CYCLE);
            
            // Lock 80% in the contract, include the all tokens of miner, fundaction and team
            uint256 lock = MINE_PERCENT + FUND_PERCENT + TEAM_PERCENT;
            _mint(address(this), lock.mul(TOTAL_SUPPLY_PERCENT));
            _mint(msg.sender, (100 - lock).mul(TOTAL_SUPPLY_PERCENT));
        }
    
        /**
         * @notice Transfers tokens held by timelock to foundation and team quarterly.
         */
        function release() public onlyOwner {
            // solhint-disable-next-line not-rely-on-time
            require(block.timestamp >= _release_time, "DNSToken: current time is before next release time");
            require(_release_count < releaseMaxCount(), "DNSToken: release times reached max count");
            require(_fund_account != address(0), "DNSToken: fund account can't be a zero address");
            require(_team_account != address(0), "DNSToken: team account can't be a zero address");
    
            // transter
            address self = address(this);
            uint256 amount = balanceOf(self);
            require(amount > FUND_AMOUNT_QUARTER + TEAM_AMOUNT_QUARTER, "DNSToken: no enough tokens to release");
            _transfer(self, _fund_account, FUND_AMOUNT_QUARTER);
            _transfer(self, _team_account, TEAM_AMOUNT_QUARTER);
    
            // release completed, caculate for next quarter
            _release_count = _release_count.add(1);
            _release_time = block.timestamp.add(releaseCycle());
        }
    
        /**
         * @notice Get next release time.
         */
        function releaseTime() public view returns (uint256) {
            return _release_time;
        }
    
        /**
         * @notice Get Each release cycle with ms or 0.001s.
         */
        function releaseCycle() public pure returns (uint256) {
            return RELEASE_CYCLE;
        }
    
        /**
         * @notice Get maximum release count.
         */
        function releaseMaxCount() public pure returns (uint256) {
            return RELEASE_TIMES;
        }
    
        /**
         * @notice Get completed release count.
         */
        function releaseCount() public view returns (uint256) {
            return _release_count;
        }
    
        function setFundAccount(address fund_account) public onlyOwner {
            require(fund_account != address(0), "DNSToken: fund account can't be a zero address");
            _fund_account = fund_account;
        }
    
        function setTeamAccount(address team_account) public onlyOwner {
            require(team_account != address(0), "DNSToken: team account can't be a zero address");
            _team_account = team_account;
        }
    
        // Overrides
        function _transfer(address from, address to, uint256 amount) internal virtual override(ERC20, ERC20Snapshot) {
            super._transfer(from, to, amount);
        }
    
        function _mint(address account, uint256 amount) internal virtual override(ERC20, ERC20Snapshot) {
            super._mint(account, amount);
        }
    
        function _burn(address account, uint256 value) internal virtual override(ERC20, ERC20Snapshot) {
            super._burn(account, value);
        }
    }