Transaction Hash:
Block:
22019342 at Mar-10-2025 10:06:11 PM +UTC
Transaction Fee:
0.000229820974150284 ETH
$0.44
Gas Used:
34,452 Gas / 6.670758567 Gwei
Emitted Events:
33 |
MLTToken.Transfer( from=[Sender] 0x9642b23ed1e01df1092b92641051881a322f5d4e, to=0x17ae7649DB068e56602d410472fACB2e00471194, value=5076000000000000000000 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x05995648...E1a434Cc6 | |||||
0x1f9090aa...8e676c326
Miner
| 5.04099616031922552 Eth | 5.04117057177444858 Eth | 0.00017441145522306 | ||
0x9642b23E...a322F5D4E | (MEXC 16) |
568.58998907601843133 Eth
Nonce: 1001442
|
568.589759255044281046 Eth
Nonce: 1001443
| 0.000229820974150284 |
Execution Trace
MLTToken.transfer( to=0x17ae7649DB068e56602d410472fACB2e00471194, amount=5076000000000000000000 ) => ( True )
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; import "./IERC20.sol"; import "./extensions/IERC20Metadata.sol"; import "../../utils/Context.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * The default value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless this function is * overridden; * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. * - the caller must have allowance for ``from``'s tokens of at least * `amount`. */ function transferFrom( address from, address to, uint256 amount ) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, allowance(owner, spender) + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = allowance(owner, spender); require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. */ function _transfer( address from, address to, uint256 amount ) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by // decrementing then incrementing. _balances[to] += amount; } emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; unchecked { // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above. _balances[account] += amount; } emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; // Overflow not possible: amount <= accountBalance <= totalSupply. _totalSupply -= amount; } emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Updates `owner` s allowance for `spender` based on spent `amount`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance( address owner, address spender, uint256 amount ) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner, spender, currentAllowance - amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual {} } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol) pragma solidity ^0.8.0; /** * @dev These functions deal with verification of Merkle Tree proofs. * * The tree and the proofs can be generated using our * https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. * You will find a quickstart guide in the readme. * * WARNING: You should avoid using leaf values that are 64 bytes long prior to * hashing, or use a hash function other than keccak256 for hashing leaves. * This is because the concatenation of a sorted pair of internal nodes in * the merkle tree could be reinterpreted as a leaf value. * OpenZeppelin's JavaScript library generates merkle trees that are safe * against this attack out of the box. */ library MerkleProof { /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. */ function verify( bytes32[] memory proof, bytes32 root, bytes32 leaf ) internal pure returns (bool) { return processProof(proof, leaf) == root; } /** * @dev Calldata version of {verify} * * _Available since v4.7._ */ function verifyCalldata( bytes32[] calldata proof, bytes32 root, bytes32 leaf ) internal pure returns (bool) { return processProofCalldata(proof, leaf) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leafs & pre-images are assumed to be sorted. * * _Available since v4.4._ */ function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Calldata version of {processProof} * * _Available since v4.7._ */ function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function multiProofVerify( bytes32[] memory proof, bool[] memory proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProof(proof, proofFlags, leaves) == root; } /** * @dev Calldata version of {multiProofVerify} * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function multiProofVerifyCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProofCalldata(proof, proofFlags, leaves) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). * * _Available since v4.7._ */ function processMultiProof( bytes32[] memory proof, bool[] memory proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof"); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { return hashes[totalHashes - 1]; } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Calldata version of {processMultiProof}. * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function processMultiProofCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof"); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { return hashes[totalHashes - 1]; } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) { return a < b ? _efficientHash(a, b) : _efficientHash(b, a); } function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) { /// @solidity memory-safe-assembly assembly { mstore(0x00, a) mstore(0x20, b) value := keccak256(0x00, 0x40) } } } /// SPDX-License-Identifier: MIT pragma solidity 0.8.0; import '@openzeppelin/contracts/token/ERC20/ERC20.sol'; import '@openzeppelin/contracts/utils/cryptography/MerkleProof.sol'; contract MLTToken is ERC20 { \t/******** \t* INDEX * \t*********/ \t// 1. Type declarations. \t// 2. Constants and variables. \t// 3. Mappings. \t// 4. Modifiers. \t// 5. Events. \t// 6. Functions. \t/*********************** \t* 1. TYPE DECLARATIONS * \t************************/ \tstruct VestingData { \t\taddress beneficiary; \t\tuint256 amount; \t\tuint256 cliff; \t\tbytes32[] proof; \t} \tstruct Allocation { \t\tuint256 unlocking; \t\tuint256[] monthly; \t\tuint256[] months; \t\tuint256 cliff; \t} \t/***************************** \t* 2. CONSTANTS AND VARIABLES * \t******************************/ \tuint256 public VESTING_START_TIMESTAMP; \t/// @dev of URIs for all the Merkle trees added to the contract. \tstring[] public rootURIs; \t/************** \t* 3. MAPPINGS * \t***************/ \t/** \t * Mapping of URIs to IPFS storing the data of a vestingTree. \t * root => URI (IPFS) \t**/ \tmapping(bytes32 => string) public mapRootURIs; \t/** \t * @dev Record of user withdrawals by cliff. \t * leaf = keccak256(abi.encodePacked(beneficiary, amount, cliff)) \t * leaf => claimed \t**/ \tmapping(bytes32 => bool) public vestingClaimed; \t/** \t * @dev Total balance of vesting tree by root hash \t * Root hash => balance \t**/ \tmapping(bytes32 => uint256) public balanceByRootHash; \t/** \t * @dev Root hash record of valid vesting trees \t * Root hash => valid \t**/ \tmapping(bytes32 => bool) public rootWhitelist; \t/** \t * @dev Treasurer mapping. A treasurer is an address which has the possibility of generating \t * new TGE with the tokens that are assigned to it at the time of contract deployment. \t * address => isTreasurer \t**/ \tmapping(address => bool) private _treasurers; \t/*************** \t* 4. MODIFIERS * \t****************/ \t/** \t * @dev Throws if root no valid \t**/ \tmodifier validRoot(bytes32 _root) { \t\trequire(rootWhitelist[_root], "Root no valid"); \t\t_; \t} \t/************ \t* 5. EVENTS * \t*************/ \tevent AddedRoot(bytes32 indexed root); \tevent VestedTokenGrant(bytes32 indexed leafHash); \t/*************** \t* 6. FUNCTIONS * \t****************/ \t/** \t * @param name_ Name of ERC20 token \t * @param symbol_ Symbol of ERC20 token \t * @param supply_ Supply of ERC20 token \t * @param uriIPFS_ IPFS URI for the initial vesting tree data. \t * @param vestingTreeRoot_ Vesting tree root hash \t * @param vestingStartTimestamp_ Timestamp of vesting start as seconds since the Unix epoch \t * @param proofBalance_ Proof of total balance \t * @param treasurers_ Addresses of authorized treasurers \t **/ \tconstructor( \t\tstring memory name_, \t\tstring memory symbol_, \t\tuint256 supply_, \t\tstring memory uriIPFS_, \t\tbytes32 vestingTreeRoot_, \t\tuint256 vestingStartTimestamp_, \t\tbytes32[] memory proofBalance_, \t\taddress[] memory treasurers_ \t) ERC20(name_, symbol_) { \t\tuint256 supply = supply_ * uint256(10)**decimals(); \t\t/** \t\t * @dev \t\t * A validation of the supply registered in the merkle tree is made to verify that it \t\t * matches the supply that the contract will have and to ensure that sufficient funds \t\t * are available to comply with all the TGE assignments. \t\t**/ \t\trequire( \t\t\tMerkleProof.verify(proofBalance_, vestingTreeRoot_, keccak256(abi.encodePacked(supply))), \t\t\t'The total supply of the contract does not match that of the merketree' \t\t); \t\tfor(uint256 i = 0; i < treasurers_.length; i++) _treasurers[treasurers_[i]] = true; \t\trootWhitelist[vestingTreeRoot_] = true; \t\tbalanceByRootHash[vestingTreeRoot_] = supply; \t\tVESTING_START_TIMESTAMP = vestingStartTimestamp_; \t\temit AddedRoot(vestingTreeRoot_); \t\trootURIs.push(uriIPFS_); \t\tmapRootURIs[vestingTreeRoot_] = uriIPFS_; \t\t_mint(address(this), supply); \t} \t/** \t * @dev Verify if an address is a treasury address. \t * @param t_ Address of treasurer. \t**/ \tfunction isTreasurer(address t_) view public returns(bool) { \t\treturn _treasurers[t_]; \t} \t/** \t * @dev Verify the validity of merkle proof associated with an address. \t * @param beneficiary_ Address of beneficiary. \t * @param amount_ Amount vested tokens to be released. \t * @param cliff_ Lock delay for release. \t * @param root_ Merkle tree root. \t * @param proof_ Merkle proof. \t**/ \tfunction verifyProof( \t\taddress beneficiary_, \t\tuint256 amount_, \t\tuint256 cliff_, \t\tbytes32 root_, \t\tbytes32[] calldata proof_ \t) external view returns(bool) { \t\tif(!rootWhitelist[root_]) return false; \t\tbytes32 _leaf = keccak256(abi.encodePacked(beneficiary_, amount_, cliff_)); \t\treturn MerkleProof.verify(proof_, root_, _leaf); \t} \t/** \t * @dev Add a new merkle tree hash. Only addresses registered in the initial Merkle tree as \t * treasurers have the possibility of adding new Merkle trees, and they are only allowed to \t * add batches of users that belong to the same group (pool) and with the same allocation date. \t * @param root_ Merkle tree root of treasurer. \t * @param newRoot_ New merkle tree root. \t * @param amount_ Balance that is assigned to new merkle tree. \t * @param uriIPFS_ IPFS URI for the initial vesting tree data. \t * @param allocation_ treasurer allocation \t * @param balanceProof_ Merkle proof of balance. \t * @param initialAllocationProof_ Merkle proof initial allocation. \t * @param newAllocationProof_ Merkle proof new allocation. \t * @param allocationQuantityProof_ Merkle proof allocation quantity. \t * @param vestingSchedules_ Array of vestingData. \t**/ \tfunction addRoot( \t\tbytes32 root_, \t\tbytes32 newRoot_, \t\tuint256 amount_, \t\tstring memory uriIPFS_, \t\tAllocation memory allocation_, \t\tbytes32[] memory balanceProof_, \t\tbytes32[] memory initialAllocationProof_, \t\tbytes32[] memory newAllocationProof_, \t\tbytes32[] memory allocationQuantityProof_, \t\tVestingData[] calldata vestingSchedules_ \t) external validRoot(root_) { \t\trequire(isTreasurer(msg.sender), 'Caller is not a treasurer'); \t\trequire(MerkleProof.verify( \t\t\tallocationQuantityProof_, \t\t\tnewRoot_, \t\t\tkeccak256(abi.encodePacked('ALLOCATION_QUANTITY', uint256(1))) \t\t), 'The quantity of the allocation of the new Merkle tree is invalid'); \t\t/// @dev the allocation dates of the treasurer who is adding a new merkle tree must match \t\t// the one assigned in the original merkle tree \t\trequire( \t\t\tMerkleProof.verify( \t\t\t\tinitialAllocationProof_, \t\t\t\troot_, \t\t\t\tkeccak256(abi.encodePacked( \t\t\t\t\tmsg.sender, \t\t\t\t\tallocation_.unlocking, \t\t\t\t\tallocation_.monthly, \t\t\t\t\tallocation_.months, \t\t\t\t\tallocation_.cliff \t\t\t\t)) \t\t\t) \t\t\t&& \t\t\tMerkleProof.verify( \t\t\t\tnewAllocationProof_, \t\t\t\tnewRoot_, \t\t\t\tkeccak256(abi.encodePacked( \t\t\t\t\tmsg.sender, \t\t\t\t\tallocation_.unlocking, \t\t\t\t\tallocation_.monthly, \t\t\t\t\tallocation_.months, \t\t\t\t\tallocation_.cliff \t\t\t\t)) \t\t\t), \t\t\t'Allocation type of the new Merkle tree is invalid' \t\t); \t\trequire( \t\t\tMerkleProof.verify(balanceProof_, newRoot_, keccak256(abi.encodePacked(amount_))), \t\t\t'The supply sent does not match that of the merketree' \t\t); \t\tbytes32 r = root_; \t\tuint256 balance = 0; \t\tfor(uint256 i = 0; i < vestingSchedules_.length; i++) { \t\t\t( \t\t\t\taddress beneficiary, \t\t\t\tuint256 amount, \t\t\t\tuint256 cliff, \t\t\t\tbytes32[] calldata proof \t\t\t) = _splitVestingSchedule(vestingSchedules_[i]); \t\t\trequire(beneficiary == msg.sender, 'You cannot claim tokens from another user'); \t\t\tbytes32 leaf = keccak256(abi.encodePacked(beneficiary, amount, cliff)); \t\t\tif(!vestingClaimed[leaf]) { \t\t\t\trequire( \t\t\t\t\tMerkleProof.verify(proof, r, leaf), 'Invalid merkle proof' \t\t\t\t); \t\t\t\trequire(balanceByRootHash[r] >= amount, 'Supply is not enough to claim allocation'); \t\t\t\tvestingClaimed[leaf] = true; \t\t\t\tbalanceByRootHash[r] -= amount; \t\t\t\tbalance += amount; \t\t\t\temit VestedTokenGrant(leaf); \t\t\t} \t\t} \t\trequire(!rootWhitelist[newRoot_], 'Root hash already exists'); \t\trequire(amount_ == balance, 'Amount is different from balance'); \t\trootWhitelist[newRoot_] = true; \t\tbalanceByRootHash[newRoot_] = amount_; \t\trootURIs.push(uriIPFS_); \t\tmapRootURIs[newRoot_] = uriIPFS_; \t\temit AddedRoot(newRoot_); \t} \t/** \t * @dev Release vesting in batches \t * @param vestingSchedules_ Array of vesting schedule \t * @param root_ Merkle tree root \t**/ \tfunction batchReleaseVested(VestingData[] calldata vestingSchedules_, bytes32 root_) external { \t\tfor(uint256 i = 0; i < vestingSchedules_.length; i++) { \t\t\t( \t\t\t\taddress beneficiary, \t\t\t\tuint256 amount, \t\t\t\tuint256 cliff, \t\t\t\tbytes32[] calldata proof \t\t\t) = _splitVestingSchedule(vestingSchedules_[i]); \t\t\tbytes32 _leaf = keccak256(abi.encodePacked(beneficiary, amount, cliff)); \t\t\tif(!vestingClaimed[_leaf]) _releaseVested(beneficiary, amount, cliff, root_, proof); \t\t} \t} \t/** \t * @dev Release vesting associated with an address \t * @param _beneficiary Address of beneficiary \t * @param _amount Amount vested tokens to be released \t * @param _cliff Lock delay for release \t * @param _root Merkle tree root \t * @param _proof Merkle proof \t**/ \tfunction releaseVested( \t\taddress _beneficiary, \t\tuint256 _amount, \t\tuint256 _cliff, \t\tbytes32 _root, \t\tbytes32[] calldata _proof \t) external { \t\t_releaseVested(_beneficiary, _amount, _cliff, _root, _proof); \t} \t/** \t * @dev Release vesting associated with an address \t * @param beneficiary_ Address of beneficiary \t * @param amount_ Amount vested tokens to be released \t * @param cliff_ Lock delay for release \t * @param root_ Merkle tree root \t * @param proof_ Merkle proof \t**/ \tfunction _releaseVested( \t\taddress beneficiary_, \t\tuint256 amount_, \t\tuint256 cliff_, \t\tbytes32 root_, \t\tbytes32[] calldata proof_ \t) internal validRoot(root_) { \t\tbytes32 leaf = keccak256(abi.encodePacked(beneficiary_, amount_, cliff_)); \t\trequire( \t\t\tMerkleProof.verify(proof_, root_, leaf), 'Invalid merkle proof' \t\t); \t\trequire(!vestingClaimed[leaf], 'Tokens already claimed'); \t\trequire(balanceByRootHash[root_] >= amount_, 'Supply is not enough to claim allocation'); \t\trequire( \t\t\tblock.timestamp >= VESTING_START_TIMESTAMP + cliff_, \t\t\t"The release date has not yet arrived" \t\t); \t\trequire(!isTreasurer(beneficiary_), "Treasury addresses cannot claim tokens"); \t\tvestingClaimed[leaf] = true; \t\tbalanceByRootHash[root_] -= amount_; \t\t_transfer(address(this), beneficiary_, amount_); \t\temit VestedTokenGrant(leaf); \t} \tfunction _splitVestingSchedule(VestingData calldata _user) internal pure returns( \t\taddress beneficiary, \t\tuint256 amount, \t\tuint256 cliff, \t\tbytes32[] calldata proof \t) { \t\treturn (_user.beneficiary, _user.amount, _user.cliff, _user.proof); \t} }