Transaction Hash:
Block:
7643720 at Apr-26-2019 03:07:33 PM +UTC
Transaction Fee:
0.00032211 ETH
$0.82
Gas Used:
35,790 Gas / 9 Gwei
Emitted Events:
45 |
FairHouse.Payment( beneficiary=0x2d2875d6123939cda63cd10ff4177da6d835c2d2, amount=0 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x2D2875D6...6D835c2d2 | 0.083239388 Eth | 0.083239388000000001 Eth | 0.000000000000000001 | ||
0x5A0b54D5...D3E029c4c
Miner
| (Spark Pool) | 3,142.753281730603919463 Eth | 3,142.753603840603919463 Eth | 0.00032211 | |
0x998D7B33...630978307 |
0.408457104 Eth
Nonce: 38223
|
0.408134994 Eth
Nonce: 38224
| 0.00032211 | ||
0x9F91b5Aa...84d291F05 | 52.427131648630664186 Eth | 52.427131648630664185 Eth | 0.000000000000000001 |
Execution Trace
FairHouse.settleBet( reveal=107493166995178847280492282540350333718472211769915679189022053556831120496810, blockHash=48A11088FFC87876D07C129FB3D425943F8583A57BA5D1865EB2FF23E6C4C682 )
- ETH 0.000000000000000001
0x2d2875d6123939cda63cd10ff4177da6d835c2d2.CALL( )
settleBet[FairHouse (ln:316)]
add[FairHouse (ln:323)]
blockhash[FairHouse (ln:324)]
settleBetCommon[FairHouse (ln:327)]
mod[FairHouse (ln:378)]
sub[FairHouse (ln:403)]
mod[FairHouse (ln:409)]
div[FairHouse (ln:409)]
JackpotPayment[FairHouse (ln:420)]
settleToRecommender[FairHouse (ln:424)]
div[FairHouse (ln:467)]
mul[FairHouse (ln:467)]
div[FairHouse (ln:472)]
mul[FairHouse (ln:472)]
sendRecommendFunds[FairHouse (ln:475)]
send[FairHouse (ln:565)]
RecommendPayment[FairHouse (ln:566)]
FailedPayment[FairHouse (ln:568)]
sendFunds[FairHouse (ln:427)]
send[FairHouse (ln:557)]
Payment[FairHouse (ln:558)]
FailedPayment[FairHouse (ln:560)]
add[FairHouse (ln:427)]
add[FairHouse (ln:427)]
pragma solidity ^0.4.24; // * fairhouse.io - Fair and transparent entertainment games. Version 1. // // * Ethereum smart contract. // // * Uses hybrid commit-reveal + block hash random number generation that is immune // to tampering by players, house and miners. Apart from being fully transparent, // this also allows arbitrarily high bets. // contract FairHouse { using SafeMath for uint256; using NameFilter for string; /// *** Constants section // Each bet is deducted 1% in favour of the house, but no less than some minimum. // The lower bound is dictated by gas costs of the settleBet transaction, providing // headroom for up to 10 Gwei prices. uint constant HOUSE_EDGE_PERCENT = 1; uint constant HOUSE_EDGE_MINIMUM_AMOUNT = 0.0003 ether; // If there is a recommendation, // each bet is deducted from the house 50% to the recommender, // but the house no less than HOUSE_EDGE_MINIMUM_AMOUNT. uint constant RECOMMENDER_PERCENT = 50; // Bets lower than this amount do not participate in jackpot rolls (and are // not deducted JACKPOT_FEE). uint constant MIN_JACKPOT_BET = 0.1 ether; // Chance to win jackpot (currently 0.1%) and fee deducted into jackpot fund. uint constant JACKPOT_MODULO = 1000; uint constant JACKPOT_FEE = 0.001 ether; // There is minimum and maximum bets. uint constant MIN_BET = 0.01 ether; uint constant MAX_AMOUNT = 300000 ether; // Modulo is a number of equiprobable outcomes in a game: // - 2 for coin flip // - 6 for dice // - 6*6 = 36 for double dice // - 100 for etheroll // - 37 for roulette // etc. // It's called so because 256-bit entropy is treated like a huge integer and // the remainder of its division by modulo is considered bet outcome. uint constant MAX_MODULO = 100; // For modulos below this threshold rolls are checked against a bit mask, // thus allowing betting on any combination of outcomes. For example, given // modulo 6 for dice, 101000 mask (base-2, big endian) means betting on // 4 and 6; for games with modulos higher than threshold (Etheroll), a simple // limit is used, allowing betting on any outcome in [0, N) range. // // The specific value is dictated by the fact that 256-bit intermediate // multiplication result allows implementing population count efficiently // for numbers that are up to 42 bits, and 40 is the highest multiple of // eight below 42. uint constant MAX_MASK_MODULO = 40; // This is a check on bet mask overflow. uint constant MAX_BET_MASK = 2 ** MAX_MASK_MODULO; // EVM BLOCKHASH opcode can query no further than 256 blocks into the // past. Given that settleBet uses block hash of placeBet as one of // complementary entropy sources, we cannot process bets older than this // threshold. On rare occasions fairhouse.io croupier may fail to invoke // settleBet in this timespan due to technical issues or extreme Ethereum // congestion; such bets can be refunded via invoking refundBet. uint constant BET_EXPIRATION_BLOCKS = 250; // Some deliberately invalid address to initialize the secret signer with. // Forces maintainers to invoke setSecretSigner before processing any bets. address constant DUMMY_ADDRESS = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE; // Standard contract ownership transfer. address public owner; address private nextOwner; // Adjustable max bet profit. Used to cap bets against dynamic odds. uint public maxProfit; // The address corresponding to a private key used to sign placeBet commits. address public secretSigner; // Accumulated jackpot fund. uint public jackpotSize; // Funds that are locked in potentially winning bets. Prevents contract from // committing to bets it cannot pay out. uint public lockedInBets; // A structure representing a single bet. struct Bet { // Wager amount in wei. uint amount; // Modulo of a game. uint8 modulo; // Number of winning outcomes, used to compute winning payment (* modulo/rollUnder), // and used instead of mask for games with modulo > MAX_MASK_MODULO. uint8 rollUnder; // Block number of placeBet tx. uint placeBlockNumber; // Bit mask representing winning bet outcomes (see MAX_MASK_MODULO comment). uint40 mask; // Address of a gambler, used to pay out winning bets. address gambler; } // Mapping from commits to all currently active & processed bets. mapping (uint => Bet) bets; // Croupier account. address public croupier; // Price to register a name uint constant REGISTRATION_FEE = 0.05 ether; // Total number of players uint playerId = 0; struct Player { address addr; bytes32 name; uint recPid; } mapping (address => uint256) pidXaddr; mapping (bytes32 => uint256) pidXname; mapping (uint256 => Player) playerXpid; // Events that are issued to make statistic recovery easier. event FailedPayment(address indexed beneficiary, uint amount); event Payment(address indexed beneficiary, uint amount); event RecommendPayment(address indexed beneficiary, uint amount); event JackpotPayment(address indexed beneficiary, uint amount); event OnRegisterName(uint indexed pid, bytes32 indexed pname, address indexed paddr, uint recPid, bytes32 recPname, address recPaddr, uint amountPaid, bool isNewPlayer, uint timeStamp); // This event is emitted in placeBet to record commit in the logs. event Commit(uint commit); // Constructor. Deliberately does not take any parameters. constructor () public { owner = msg.sender; secretSigner = DUMMY_ADDRESS; croupier = DUMMY_ADDRESS; } // Standard modifier on methods invokable only by contract owner. modifier onlyOwner { require (msg.sender == owner, "OnlyOwner methods called by non-owner."); _; } // Standard modifier on methods invokable only by contract owner. modifier onlyCroupier { require (msg.sender == croupier, "OnlyCroupier methods called by non-croupier."); _; } // Standard contract ownership transfer implementation, function approveNextOwner(address _nextOwner) external onlyOwner { require (_nextOwner != owner, "Cannot approve current owner."); nextOwner = _nextOwner; } function acceptNextOwner() external { require (msg.sender == nextOwner, "Can only accept preapproved new owner."); owner = nextOwner; } // Fallback function deliberately left empty. It's primary use case // is to top up the bank roll. function () public payable { } // See comment for "secretSigner" variable. function setSecretSigner(address newSecretSigner) external onlyOwner { secretSigner = newSecretSigner; } // Change the croupier address. function setCroupier(address newCroupier) external onlyOwner { croupier = newCroupier; } // Change max bet reward. Setting this to zero effectively disables betting. function setMaxProfit(uint _maxProfit) public onlyOwner { require (_maxProfit < MAX_AMOUNT, "maxProfit should be a sane number."); maxProfit = _maxProfit; } // This function is used to bump up the jackpot fund. Cannot be used to lower it. function increaseJackpot(uint increaseAmount) external onlyOwner { require (increaseAmount <= address(this).balance, "Increase amount larger than balance."); require (jackpotSize.add(lockedInBets).add(increaseAmount) <= address(this).balance, "Not enough funds."); jackpotSize = jackpotSize.add(increaseAmount); } // Funds withdrawal to cover costs of fairhouse.io operation. function withdrawFunds(address beneficiary, uint withdrawAmount) external onlyOwner { require (withdrawAmount <= address(this).balance, "Increase amount larger than balance."); require (jackpotSize.add(lockedInBets).add(withdrawAmount) <= address(this).balance, "Not enough funds."); sendFunds(beneficiary, withdrawAmount, withdrawAmount); } // Contract may be destroyed only when there are no ongoing bets, // either settled or refunded. All funds are transferred to contract owner. function kill() external onlyOwner { require (lockedInBets == 0, "All bets should be processed (settled or refunded) before self-destruct."); selfdestruct(owner); } /// *** Betting logic // Bet states: // amount == 0 && gambler == 0 - 'clean' (can place a bet) // amount != 0 && gambler != 0 - 'active' (can be settled or refunded) // amount == 0 && gambler != 0 - 'processed' (can clean storage) // // NOTE: Storage cleaning is not implemented in this contract version; it will be added // with the next upgrade to prevent polluting Ethereum state with expired bets. // Bet placing transaction - issued by the player. // betMask - bet outcomes bit mask for modulo <= MAX_MASK_MODULO, // [0, betMask) for larger modulos. // modulo - game modulo. // commitLastBlock - number of the maximum block where "commit" is still considered valid. // commit - Keccak256 hash of some secret "reveal" random number, to be supplied // by the fairhouse.io croupier bot in the settleBet transaction. Supplying // "commit" ensures that "reveal" cannot be changed behind the scenes // after placeBet have been mined. // recCode - recommendation code. Record only the first recommendation relationship. // r, s - components of ECDSA signature of (commitLastBlock, commit). v is // guaranteed to always equal 27. // // Commit, being essentially random 256-bit number, is used as a unique bet identifier in // the 'bets' mapping. // // Commits are signed with a block limit to ensure that they are used at most once - otherwise // it would be possible for a miner to place a bet with a known commit/reveal pair and tamper // with the blockhash. Croupier guarantees that commitLastBlock will always be not greater than // placeBet block number plus BET_EXPIRATION_BLOCKS. See whitepaper for details. function placeBet(uint betMask, uint modulo, uint commitLastBlock, uint commit, bytes32 recCode, bytes32 r, bytes32 s) external payable { // Check that the bet is in 'clean' state. Bet storage bet = bets[commit]; require (bet.gambler == address(0), "Bet should be in a 'clean' state."); // Validate input data ranges. require (modulo > 1 && modulo <= MAX_MODULO, "Modulo should be within range."); require (msg.value >= MIN_BET && msg.value <= MAX_AMOUNT, "Amount should be within range."); require (betMask > 0 && betMask < MAX_BET_MASK, "Mask should be within range."); // Check that commit is valid - it has not expired and its signature is valid. require (block.number <= commitLastBlock && commitLastBlock <= block.number.add(BET_EXPIRATION_BLOCKS), "Commit has expired."); // bytes32 signatureHash = keccak256(abi.encodePacked(uint40(commitLastBlock), commit)); // require (secretSigner == ecrecover(signatureHash, 27, r, s), "ECDSA signature is not valid."); require (secretSigner == ecrecover(keccak256(abi.encodePacked(uint40(commitLastBlock), commit)), 27, r, s), "ECDSA signature is not valid."); uint rollUnder; //uint mask; if (modulo <= MAX_MASK_MODULO) { // Small modulo games specify bet outcomes via bit mask. // rollUnder is a number of 1 bits in this mask (population count). // This magic looking formula is an efficient way to compute population // count on EVM for numbers below 2**40. rollUnder = ((betMask.mul(POPCNT_MULT)) & POPCNT_MASK).mod(POPCNT_MODULO); //mask = betMask; bet.mask = uint40(betMask); } else { // Larger modulos specify the right edge of half-open interval of // winning bet outcomes. require (betMask > 0 && betMask <= modulo, "High modulo range, betMask larger than modulo."); rollUnder = betMask; } // Winning amount and jackpot increase. uint possibleWinAmount; uint jackpotFee; (possibleWinAmount, jackpotFee) = getDiceWinAmount(msg.value, modulo, rollUnder); // Enforce max profit limit. require (possibleWinAmount <= msg.value.add(maxProfit), "maxProfit limit violation."); // Lock funds. lockedInBets = lockedInBets.add(possibleWinAmount); jackpotSize = jackpotSize.add(jackpotFee); // Check whether contract has enough funds to process this bet. require (jackpotSize.add(lockedInBets) <= address(this).balance, "Cannot afford to lose this bet."); // Record commit in logs. emit Commit(commit); // Store bet parameters on blockchain. bet.amount = msg.value; bet.modulo = uint8(modulo); bet.rollUnder = uint8(rollUnder); bet.placeBlockNumber = block.number; //bet.mask = uint40(mask); bet.gambler = msg.sender; // Binding recommendation relationship placeBetBindCore(msg.sender, recCode); } // This is the method used to settle 99% of bets. To process a bet with a specific // "commit", settleBet should supply a "reveal" number that would Keccak256-hash to // "commit". "blockHash" is the block hash of placeBet block as seen by croupier; it // is additionally asserted to prevent changing the bet outcomes on Ethereum reorgs. function settleBet(uint reveal, bytes32 blockHash) external onlyCroupier { uint commit = uint(keccak256(abi.encodePacked(reveal))); Bet storage bet = bets[commit]; // Check that bet has not expired yet (see comment to BET_EXPIRATION_BLOCKS). require (block.number > bet.placeBlockNumber, "settleBet in the same block as placeBet, or before."); require (block.number <= bet.placeBlockNumber.add(BET_EXPIRATION_BLOCKS), "Blockhash can't be queried by EVM."); require (blockhash(bet.placeBlockNumber) == blockHash); // Settle bet using reveal and blockHash as entropy sources. settleBetCommon(bet, reveal, blockHash); } // This method is used to settle a bet that was mined into an uncle block. At this // point the player was shown some bet outcome, but the blockhash at placeBet height // is different because of Ethereum chain reorg. We supply a full merkle proof of the // placeBet transaction receipt to provide untamperable evidence that uncle block hash // indeed was present on-chain at some point. function settleBetUncleMerkleProof(uint reveal, uint canonicalBlockNumber) external onlyCroupier { // "commit" for bet settlement can only be obtained by hashing a "reveal". uint commit = uint(keccak256(abi.encodePacked(reveal))); Bet storage bet = bets[commit]; // Check that canonical block hash can still be verified. require (block.number <= canonicalBlockNumber.add(BET_EXPIRATION_BLOCKS), "Blockhash can't be queried by EVM."); // Verify placeBet receipt. requireCorrectReceipt(4 + 32 + 32 + 4); // Reconstruct canonical & uncle block hashes from a receipt merkle proof, verify them. bytes32 canonicalHash; bytes32 uncleHash; (canonicalHash, uncleHash) = verifyMerkleProof(commit, 4 + 32 + 32); require (blockhash(canonicalBlockNumber) == canonicalHash); // Settle bet using reveal and uncleHash as entropy sources. settleBetCommon(bet, reveal, uncleHash); } // Common settlement code for settleBet & settleBetUncleMerkleProof. function settleBetCommon(Bet storage bet, uint reveal, bytes32 entropyBlockHash) private { // Fetch bet parameters into local variables (to save gas). uint amount = bet.amount; uint modulo = bet.modulo; uint rollUnder = bet.rollUnder; address gambler = bet.gambler; // Check that bet is in 'active' state. require (amount != 0, "Bet should be in an 'active' state"); // Move bet into 'processed' state already. bet.amount = 0; // The RNG - combine "reveal" and blockhash of placeBet using Keccak256. Miners // are not aware of "reveal" and cannot deduce it from "commit" (as Keccak256 // preimage is intractable), and house is unable to alter the "reveal" after // placeBet have been mined (as Keccak256 collision finding is also intractable). bytes32 entropy = keccak256(abi.encodePacked(reveal, entropyBlockHash)); // Do a roll by taking a modulo of entropy. Compute winning amount. uint dice = uint(entropy).mod(modulo); uint diceWinAmount; uint _jackpotFee; (diceWinAmount, _jackpotFee) = getDiceWinAmount(amount, modulo, rollUnder); uint diceWin = 0; uint jackpotWin = 0; // Determine dice outcome. if (modulo <= MAX_MASK_MODULO) { // For small modulo games, check the outcome against a bit mask. if ((2 ** dice) & bet.mask != 0) { diceWin = diceWinAmount; } } else { // For larger modulos, check inclusion into half-open interval. if (dice < rollUnder) { diceWin = diceWinAmount; } } // Unlock the bet amount, regardless of the outcome. lockedInBets = lockedInBets.sub(diceWinAmount); // Roll for a jackpot (if eligible). if (amount >= MIN_JACKPOT_BET) { // The second modulo, statistically independent from the "main" dice roll. // Effectively you are playing two games at once! uint jackpotRng = (uint(entropy).div(modulo)).mod(JACKPOT_MODULO); // Bingo! if (jackpotRng == 0) { jackpotWin = jackpotSize; jackpotSize = 0; } } // Log jackpot win. if (jackpotWin > 0) { emit JackpotPayment(gambler, jackpotWin); } // Settle to recommender settleToRecommender(gambler, amount); // Send the funds to gambler. sendFunds(gambler, diceWin.add(jackpotWin) == 0 ? 1 wei : diceWin.add(jackpotWin), diceWin); } // Refund transaction - return the bet amount of a roll that was not processed in a // due timeframe. Processing such blocks is not possible due to EVM limitations (see // BET_EXPIRATION_BLOCKS comment above for details). In case you ever find yourself // in a situation like this, just contact the fairhouse.io support, however nothing // precludes you from invoking this method yourself. function refundBet(uint commit) external { // Check that bet is in 'active' state. Bet storage bet = bets[commit]; uint amount = bet.amount; require (amount != 0, "Bet should be in an 'active' state"); // Check that bet has already expired. require (block.number > bet.placeBlockNumber.add(BET_EXPIRATION_BLOCKS), "Blockhash can't be queried by EVM."); // Move bet into 'processed' state, release funds. bet.amount = 0; uint diceWinAmount; uint jackpotFee; (diceWinAmount, jackpotFee) = getDiceWinAmount(amount, bet.modulo, bet.rollUnder); lockedInBets = lockedInBets.sub(diceWinAmount); jackpotSize = jackpotSize.sub(jackpotFee); // Send the refund. sendFunds(bet.gambler, amount, amount); } // Settle to recommender function settleToRecommender(address gambler, uint amount) private { // fetch player id uint pid = pidXaddr[gambler]; Player storage _gambler = playerXpid[pid]; if (_gambler.recPid > 0) { Player storage _recommender = playerXpid[_gambler.recPid]; // uint houseEdge = amount.mul(HOUSE_EDGE_PERCENT).div(100); // If it is too small, it will not be distributed if (houseEdge > HOUSE_EDGE_MINIMUM_AMOUNT) { uint recFee = houseEdge.mul(RECOMMENDER_PERCENT).div(100); // Send the funds to recommender. sendRecommendFunds(_recommender.addr, recFee); } } } // Register a name, get recommended code function registerName(string nameStr, bytes32 recCode) external payable returns(bool, uint256) { // Make sure name fees paid require (msg.value >= REGISTRATION_FEE, "You have to pay the name fee"); // Filter name + condition checks bytes32 name = NameFilter.nameFilter(nameStr); require(pidXname[name] == 0, "Sorry that name already taken"); // Set up address address addr = msg.sender; // Set up our tx event data and determine if player is new or not bool isNewPlayer = determinePid(addr); // Fetch player id uint pid = pidXaddr[addr]; pidXname[name] = pid; playerXpid[pid].name = name; uint recPid; // Must be a new player if (isNewPlayer && recCode != "" && recCode != name) { // Get recommender ID from recommend code recPid = pidXname[recCode]; bindRecommender(pid, recPid); } Player storage recPlayer = playerXpid[recPid]; emit OnRegisterName(pid, name, addr, recPid, recPlayer.name, recPlayer.addr, msg.value, isNewPlayer, now); return(isNewPlayer, recPid); } function getRegisterName(address addr) external view returns(bytes32) { return (playerXpid[pidXaddr[addr]].name); } function placeBetBindCore(address addr, bytes32 recCode) private { bool isNewPlayer = determinePid(addr); // Must be a new player if (isNewPlayer && recCode != "") { // Fetch player id uint pid = pidXaddr[addr]; // recCode is not self if (recCode != playerXpid[pid].name) { // Manage affiliate residuals uint recPid = pidXname[recCode]; // Get recommender ID from recommend code bindRecommender(pid, recPid); } } } // Get the expected win amount after house edge is subtracted. function getDiceWinAmount(uint amount, uint modulo, uint rollUnder) private pure returns (uint winAmount, uint jackpotFee) { require (0 < rollUnder && rollUnder <= modulo, "Win probability out of range."); jackpotFee = amount >= MIN_JACKPOT_BET ? JACKPOT_FEE : 0; uint houseEdge = amount.mul(HOUSE_EDGE_PERCENT).div(100); if (houseEdge < HOUSE_EDGE_MINIMUM_AMOUNT) { houseEdge = HOUSE_EDGE_MINIMUM_AMOUNT; } require (houseEdge.add(jackpotFee) <= amount, "Bet doesn't even cover house edge."); winAmount = amount.sub(houseEdge).sub(jackpotFee).mul(modulo).div(rollUnder); } // Helper routine to process the payment. function sendFunds(address beneficiary, uint amount, uint successLogAmount) private { if (beneficiary.send(amount)) { emit Payment(beneficiary, successLogAmount); } else { emit FailedPayment(beneficiary, amount); } } function sendRecommendFunds(address beneficiary, uint amount) private { if (beneficiary.send(amount)) { emit RecommendPayment(beneficiary, amount); } else { emit FailedPayment(beneficiary, amount); } } function determinePid(address addr) private returns (bool) { if (pidXaddr[addr] == 0) { playerId++; pidXaddr[addr] = playerId; playerXpid[playerId].addr = addr; // set the new player bool to true return (true); } else { return (false); } } function bindRecommender(uint256 pid, uint256 recPid) private { // bind only once if (recPid != 0 && playerXpid[pid].recPid == 0 && playerXpid[pid].recPid != recPid) { playerXpid[pid].recPid = recPid; } } // This are some constants making O(1) population count in placeBet possible. // See whitepaper for intuition and proofs behind it. uint constant POPCNT_MULT = 0x0000000000002000000000100000000008000000000400000000020000000001; uint constant POPCNT_MASK = 0x0001041041041041041041041041041041041041041041041041041041041041; uint constant POPCNT_MODULO = 0x3F; // *** Merkle proofs. // This helpers are used to verify cryptographic proofs of placeBet inclusion into // uncle blocks. They are used to prevent bet outcome changing on Ethereum reorgs without // compromising the security of the smart contract. Proof data is appended to the input data // in a simple prefix length format and does not adhere to the ABI. // Invariants checked: // - receipt trie entry contains a (1) successful transaction (2) directed at this smart // contract (3) containing commit as a payload. // - receipt trie entry is a part of a valid merkle proof of a block header // - the block header is a part of uncle list of some block on canonical chain // The implementation is optimized for gas cost and relies on the specifics of Ethereum internal data structures. // Read the whitepaper for details. // Helper to verify a full merkle proof starting from some seedHash (usually commit). "offset" is the location of the proof // beginning in the calldata. function verifyMerkleProof(uint seedHash, uint offset) pure private returns (bytes32 blockHash, bytes32 uncleHash) { // (Safe) assumption - nobody will write into RAM during this method invocation. uint scratchBuf1; assembly { scratchBuf1 := mload(0x40) } uint uncleHeaderLength; uint blobLength; uint shift; uint hashSlot; // Verify merkle proofs up to uncle block header. Calldata layout is: // - 2 byte big-endian slice length // - 2 byte big-endian offset to the beginning of previous slice hash within the current slice (should be zeroed) // - followed by the current slice verbatim for (;; offset += blobLength) { assembly { blobLength := and(calldataload(sub(offset, 30)), 0xffff) } if (blobLength == 0) { // Zero slice length marks the end of uncle proof. break; } assembly { shift := and(calldataload(sub(offset, 28)), 0xffff) } require (shift + 32 <= blobLength, "Shift bounds check."); offset += 4; assembly { hashSlot := calldataload(add(offset, shift)) } require (hashSlot == 0, "Non-empty hash slot."); assembly { calldatacopy(scratchBuf1, offset, blobLength) mstore(add(scratchBuf1, shift), seedHash) seedHash := sha3(scratchBuf1, blobLength) uncleHeaderLength := blobLength } } // At this moment the uncle hash is known. uncleHash = bytes32(seedHash); // Construct the uncle list of a canonical block. uint scratchBuf2 = scratchBuf1 + uncleHeaderLength; uint unclesLength; assembly { unclesLength := and(calldataload(sub(offset, 28)), 0xffff) } uint unclesShift; assembly { unclesShift := and(calldataload(sub(offset, 26)), 0xffff) } require (unclesShift + uncleHeaderLength <= unclesLength, "Shift bounds check."); offset += 6; assembly { calldatacopy(scratchBuf2, offset, unclesLength) } memcpy(scratchBuf2 + unclesShift, scratchBuf1, uncleHeaderLength); assembly { seedHash := sha3(scratchBuf2, unclesLength) } offset += unclesLength; // Verify the canonical block header using the computed sha3Uncles. assembly { blobLength := and(calldataload(sub(offset, 30)), 0xffff) shift := and(calldataload(sub(offset, 28)), 0xffff) } require (shift + 32 <= blobLength, "Shift bounds check."); offset += 4; assembly { hashSlot := calldataload(add(offset, shift)) } require (hashSlot == 0, "Non-empty hash slot."); assembly { calldatacopy(scratchBuf1, offset, blobLength) mstore(add(scratchBuf1, shift), seedHash) // At this moment the canonical block hash is known. blockHash := sha3(scratchBuf1, blobLength) } } // Helper to check the placeBet receipt. "offset" is the location of the proof beginning in the calldata. // RLP layout: [triePath, str([status, cumGasUsed, bloomFilter, [[address, [topics], data]])] function requireCorrectReceipt(uint offset) view private { uint leafHeaderByte; assembly { leafHeaderByte := byte(0, calldataload(offset)) } require (leafHeaderByte >= 0xf7, "Receipt leaf longer than 55 bytes."); offset += leafHeaderByte - 0xf6; uint pathHeaderByte; assembly { pathHeaderByte := byte(0, calldataload(offset)) } if (pathHeaderByte <= 0x7f) { offset += 1; } else { require (pathHeaderByte >= 0x80 && pathHeaderByte <= 0xb7, "Path is an RLP string."); offset += pathHeaderByte - 0x7f; } uint receiptStringHeaderByte; assembly { receiptStringHeaderByte := byte(0, calldataload(offset)) } require (receiptStringHeaderByte == 0xb9, "Receipt string is always at least 256 bytes long, but less than 64k."); offset += 3; uint receiptHeaderByte; assembly { receiptHeaderByte := byte(0, calldataload(offset)) } require (receiptHeaderByte == 0xf9, "Receipt is always at least 256 bytes long, but less than 64k."); offset += 3; uint statusByte; assembly { statusByte := byte(0, calldataload(offset)) } require (statusByte == 0x1, "Status should be success."); offset += 1; uint cumGasHeaderByte; assembly { cumGasHeaderByte := byte(0, calldataload(offset)) } if (cumGasHeaderByte <= 0x7f) { offset += 1; } else { require (cumGasHeaderByte >= 0x80 && cumGasHeaderByte <= 0xb7, "Cumulative gas is an RLP string."); offset += cumGasHeaderByte - 0x7f; } uint bloomHeaderByte; assembly { bloomHeaderByte := byte(0, calldataload(offset)) } require (bloomHeaderByte == 0xb9, "Bloom filter is always 256 bytes long."); offset += 256 + 3; uint logsListHeaderByte; assembly { logsListHeaderByte := byte(0, calldataload(offset)) } require (logsListHeaderByte == 0xf8, "Logs list is less than 256 bytes long."); offset += 2; uint logEntryHeaderByte; assembly { logEntryHeaderByte := byte(0, calldataload(offset)) } require (logEntryHeaderByte == 0xf8, "Log entry is less than 256 bytes long."); offset += 2; uint addressHeaderByte; assembly { addressHeaderByte := byte(0, calldataload(offset)) } require (addressHeaderByte == 0x94, "Address is 20 bytes long."); uint logAddress; assembly { logAddress := and(calldataload(sub(offset, 11)), 0xffffffffffffffffffffffffffffffffffffffff) } require (logAddress == uint(address(this))); } // Memory copy. function memcpy(uint dest, uint src, uint len) pure private { // Full 32 byte words for(; len >= 32; len -= 32) { assembly { mstore(dest, mload(src)) } dest += 32; src += 32; } // Remaining bytes uint mask = 256 ** (32 - len) - 1; assembly { let srcpart := and(mload(src), not(mask)) let destpart := and(mload(dest), mask) mstore(dest, or(destpart, srcpart)) } } } /** * @title SafeMath * @dev Math operations with safety checks that revert on error */ library SafeMath { /** * @dev Multiplies two numbers, reverts on overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b); return c; } /** * @dev Integer division of two numbers truncating the quotient, reverts on division by zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0); // Solidity only automatically asserts when dividing by 0 uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Subtracts two numbers, reverts on overflow (i.e. if subtrahend is greater than minuend). */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a); uint256 c = a - b; return c; } /** * @dev Adds two numbers, reverts on overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a); return c; } /** * @dev Divides two numbers and returns the remainder (unsigned integer modulo), * reverts when dividing by zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0); return a % b; } } library NameFilter { /** * filters name strings * -converts uppercase to lower case. * -makes sure it does not start/end with a space * -cannot be only numbers * -cannot start with 0x * -restricts characters to A-Z, a-z, 0-9. * @return reprocessed string in bytes32 format */ function nameFilter(string _input) internal pure returns(bytes32) { bytes memory _temp = bytes(_input); uint256 _length = _temp.length; //sorry limited to 32 characters require (_length <= 32 && _length > 0, "string must be between 1 and 32 characters"); // make sure it doesnt start with or end with space require(_temp[0] != 0x20 && _temp[_length-1] != 0x20, "string cannot start or end with space"); // make sure first two characters are not 0x if (_temp[0] == 0x30) { require(_temp[1] != 0x78, "string cannot start with 0x"); require(_temp[1] != 0x58, "string cannot start with 0X"); } // create a bool to track if we have a non number character bool _hasNonNumber; // convert & check for (uint256 i = 0; i < _length; i++) { // if its uppercase A-Z if (_temp[i] > 0x40 && _temp[i] < 0x5b) { // convert to lower case a-z _temp[i] = byte(uint(_temp[i]) + 32); // we have a non number if (_hasNonNumber == false) _hasNonNumber = true; } else { require ( // require character is a lowercase a-z (_temp[i] > 0x60 && _temp[i] < 0x7b) || // or 0-9 (_temp[i] > 0x2f && _temp[i] < 0x3a), "string contains invalid characters" ); // make sure theres not 2x spaces in a row if (_temp[i] == 0x20) require( _temp[i+1] != 0x20, "string cannot contain consecutive spaces"); // see if we have a character other than a number if (_hasNonNumber == false && (_temp[i] < 0x30 || _temp[i] > 0x39)) _hasNonNumber = true; } } require(_hasNonNumber == true, "string cannot be only numbers"); bytes32 _ret; assembly { _ret := mload(add(_temp, 32)) } return (_ret); } }