ETH Price: $2,603.99 (+2.32%)

Transaction Decoder

Block:
19739225 at Apr-26-2024 11:26:47 AM +UTC
Transaction Fee:
0.000518162558156496 ETH $1.35
Gas Used:
67,716 Gas / 7.651995956 Gwei

Emitted Events:

153 PortalToken.Transfer( from=[Sender] 0x91bde5f7c2b0238feb45cb9d0fef895a640152a7, to=[Receiver] PortalStaking, value=200000000000000000000 )
154 PortalStaking.Stake( user=[Sender] 0x91bde5f7c2b0238feb45cb9d0fef895a640152a7, amount=200000000000000000000, totalStaked=200000000000000000000 )

Account State Difference:

  Address   Before After State Difference Code
0x1Bbe973B...EfE001Fed
0x91bDE5f7...a640152a7
0.225703214136568137 Eth
Nonce: 4
0.225185051578411641 Eth
Nonce: 5
0.000518162558156496
(beaverbuild)
5.215364080895551066 Eth5.215397938895551066 Eth0.000033858
0xFbCA0B0d...23C74a524

Execution Trace

PortalStaking.deposit( amount=200000000000000000000 )
  • PortalToken.transferFrom( from=0x91bDE5f7c2b0238fEB45cb9d0FEf895a640152a7, to=0xFbCA0B0d2c8b7c965c8F3aB460C9f3a23C74a524, amount=200000000000000000000 ) => ( True )
    File 1 of 2: PortalStaking
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.20;
    import {Ownable2Step} from "@openzeppelin/contracts/access/Ownable2Step.sol";
    import {SafeERC20, IERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
    interface PortalStakingEvents {
        /// @notice Emitted when a user stakes tokens
        event Stake(address indexed user, uint256 amount, uint256 totalStaked);
        /// @notice Emitted when a user unstakes tokens
        event Unstake(address indexed user, uint256 amount, uint256 totalRemainingStaked);
    }
    /**
     * @title PortalStaking
     * @dev A staking contract that allows users to stake tokens and earn rewards.
     *  • Staking Smart Contract on Ethereum
     *  • Standard of token: ERC-20
     *  • 7 day cool-down period after each stake (no withdrawal during this time).
     *  • Pull Based.
     *  • Ability to withdraw non-project tokens from the staking contract
     *  • Staking Contract can be used by other Contracts and UI
     */
    contract PortalStaking is Ownable2Step, PortalStakingEvents {
        using SafeERC20 for IERC20;
        /**
         * @dev Staker is a struct that represents a staker in the contract. It contains the following fields:
         * • amount: the number of tokens staked by the user
         * • lastDeposit: the timestamp of the last deposit made by the user
         */
        struct Staker {
            uint96 amount; // totalSupply = 1e9 ether = 90 bits
            uint64 lastDepositTime;
        }
        /**
         * @dev token is an instance of IERC20 token that users will be staking.
         */
        IERC20 public immutable token;
        /**
         * @dev Required totalSupply of token, confirmed in constructor().
         */
        uint256 private constant TOTAL_SUPPLY = 1e9 ether;
        /**
         * @dev Minimum duration between a call to withdraw() and the last call to
         * deposit().
         */
        uint256 private constant MIN_STAKING_PERIOD = 7 days;
        /**
         * @notice Total staked via `deposit()`, which may differ from `balanceOf(this)`.
         * @dev See `accountForExcessBalance()`.
         */
        uint256 public totalStaked;
        /**
         * @dev `stakers` is a mapping from an address (Ethereum account) to a `Staker` struct.
         * This mapping is public, so its getter function - `stakers(address) -> (uint, uint)`
         * can get staker details for any address.
         * It represents the set of all addresses that currently have an active stake.
         */
        mapping(address => Staker) public stakers;
        // Errors
        error TokensLockedUntil(address user, uint256 unlockTime);
        error InvalidAmount(uint256);
        error DepositNotSufficient(address user, uint256 staked, uint256 amount);
        error InsufficientExcessBalance(uint256 excess, uint256 amount);
        error InvalidAddressPassed();
        /**
         * @dev The constructor sets the `token` state variable to the provided `_token` parameter as well as the owner.
         * @param _token is the address of the already deployed token contract (of IERC20 interface)
         * @param owner is the address of the owner of the staking contract
         */
        constructor(IERC20 _token, address owner) {
            token = _token;
            assert(_token.totalSupply() == TOTAL_SUPPLY);
            assert(TOTAL_SUPPLY < type(uint96).max); // avoids the need for SafeCast when packing
            _transferOwnership(owner);
        }
        /**
         * @dev Reverts on 0 or greater than total supply (1e9 ether). Any amount
         * that passes this test can fit in a uint96.
         */
        modifier requireValidAmount(uint256 amount) {
            if (amount == 0 || amount > TOTAL_SUPPLY) {
                revert InvalidAmount(amount);
            }
            _;
        }
        /**
         * @notice Deposit (stake) tokens.
         *
         * @param amount Number of tokens to stake.
         */
        function deposit(uint256 amount) external requireValidAmount(amount) {
            address account = msg.sender;
            Staker storage $ = stakers[account];
            // NO CHECKS
            // EFFECTS
            // If total were to overflow 96 bits then the transfer would also have failed.
            // Use a stack variable to avoid another SLOAD when emitting the event.
            uint96 total = $.amount + uint96(amount); // guaranteed by requireValidAmount()
            $.amount = total;
            $.lastDepositTime = uint64(block.timestamp);
            totalStaked += amount;
            // INTERACTIONS
            token.safeTransferFrom(account, address(this), amount);
            emit Stake(account, amount, total);
        }
        /**
         * @notice Withdraw (unstake) tokens.
         * @param amount Number of tokens to unstake.
         */
        function withdraw(uint256 amount) external requireValidAmount(amount) {
            address account = msg.sender;
            Staker storage $ = stakers[account];
            // CHECKS
            if (block.timestamp - $.lastDepositTime < MIN_STAKING_PERIOD) {
                revert TokensLockedUntil(account, $.lastDepositTime + MIN_STAKING_PERIOD);
            }
            uint96 staked = $.amount;
            if (staked < amount) {
                revert DepositNotSufficient(account, staked, amount);
            }
            // EFFECTS
            staked -= uint96(amount);
            $.amount = staked;
            totalStaked -= amount;
            // INTERACTIONS
            token.safeTransfer(account, amount);
            emit Unstake(account, amount, staked);
        }
        /**
         * @notice If someone sends tokens to this contract (instead of calling `deposit()`) they won't be accounted for.
         * This function allows the owner to assign said tokens based on an inspection of transaction history. While
         * introducing a level of trust, it's better than having the tokens permanently locked, and proving a log history
         * would be over-engineering.
         * @param assignTo The address that will have its balance increase.
         * @param amount The amount by which to increase the balance. Reverts if this is greater than the difference betwen
         * this contract's balance and `totalStaked`.
         */
        function accountForExcessBalance(address assignTo, uint256 amount) external onlyOwner requireValidAmount(amount) {
            if (assignTo == address(0)) {
                revert InvalidAddressPassed();
            }
            
            uint256 excess = token.balanceOf(address(this)) - totalStaked;
            if (excess < amount) {
                revert InsufficientExcessBalance(excess, amount);
            }
            Staker storage $ = stakers[assignTo];
            uint96 total = $.amount + uint96(amount);
            $.amount = total;
            totalStaked += amount;
            emit Stake(assignTo, amount, total);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable2Step.sol)
    pragma solidity ^0.8.0;
    import "./Ownable.sol";
    /**
     * @dev Contract module which provides access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership} and {acceptOwnership}.
     *
     * This module is used through inheritance. It will make available all functions
     * from parent (Ownable).
     */
    abstract contract Ownable2Step is Ownable {
        address private _pendingOwner;
        event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
        /**
         * @dev Returns the address of the pending owner.
         */
        function pendingOwner() public view virtual returns (address) {
            return _pendingOwner;
        }
        /**
         * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual override onlyOwner {
            _pendingOwner = newOwner;
            emit OwnershipTransferStarted(owner(), newOwner);
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual override {
            delete _pendingOwner;
            super._transferOwnership(newOwner);
        }
        /**
         * @dev The new owner accepts the ownership transfer.
         */
        function acceptOwnership() public virtual {
            address sender = _msgSender();
            require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner");
            _transferOwnership(sender);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
    pragma solidity ^0.8.0;
    import "../IERC20.sol";
    import "../extensions/IERC20Permit.sol";
    import "../../../utils/Address.sol";
    /**
     * @title SafeERC20
     * @dev Wrappers around ERC20 operations that throw on failure (when the token
     * contract returns false). Tokens that return no value (and instead revert or
     * throw on failure) are also supported, non-reverting calls are assumed to be
     * successful.
     * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
     * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
     */
    library SafeERC20 {
        using Address for address;
        /**
         * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
         * non-reverting calls are assumed to be successful.
         */
        function safeTransfer(IERC20 token, address to, uint256 value) internal {
            _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
        }
        /**
         * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
         * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
         */
        function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
            _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
        }
        /**
         * @dev Deprecated. This function has issues similar to the ones found in
         * {IERC20-approve}, and its usage is discouraged.
         *
         * Whenever possible, use {safeIncreaseAllowance} and
         * {safeDecreaseAllowance} instead.
         */
        function safeApprove(IERC20 token, address spender, uint256 value) internal {
            // safeApprove should only be called when setting an initial allowance,
            // or when resetting it to zero. To increase and decrease it, use
            // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
            require(
                (value == 0) || (token.allowance(address(this), spender) == 0),
                "SafeERC20: approve from non-zero to non-zero allowance"
            );
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
        }
        /**
         * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
         * non-reverting calls are assumed to be successful.
         */
        function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
            uint256 oldAllowance = token.allowance(address(this), spender);
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
        }
        /**
         * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
         * non-reverting calls are assumed to be successful.
         */
        function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
            unchecked {
                uint256 oldAllowance = token.allowance(address(this), spender);
                require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
            }
        }
        /**
         * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
         * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
         * to be set to zero before setting it to a non-zero value, such as USDT.
         */
        function forceApprove(IERC20 token, address spender, uint256 value) internal {
            bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
            if (!_callOptionalReturnBool(token, approvalCall)) {
                _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
                _callOptionalReturn(token, approvalCall);
            }
        }
        /**
         * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
         * Revert on invalid signature.
         */
        function safePermit(
            IERC20Permit token,
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) internal {
            uint256 nonceBefore = token.nonces(owner);
            token.permit(owner, spender, value, deadline, v, r, s);
            uint256 nonceAfter = token.nonces(owner);
            require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
        }
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         */
        function _callOptionalReturn(IERC20 token, bytes memory data) private {
            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
            // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
            // the target address contains contract code and also asserts for success in the low-level call.
            bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
            require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         *
         * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
         */
        function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
            // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
            // and not revert is the subcall reverts.
            (bool success, bytes memory returndata) = address(token).call(data);
            return
                success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
    pragma solidity ^0.8.0;
    import "../utils/Context.sol";
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor() {
            _transferOwnership(_msgSender());
        }
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            require(owner() == _msgSender(), "Ownable: caller is not the owner");
        }
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby disabling any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            _transferOwnership(newOwner);
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Moves `amount` tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 amount) external returns (bool);
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
        /**
         * @dev Moves `amount` tokens from `from` to `to` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address from, address to, uint256 amount) external returns (bool);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
     * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
     *
     * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
     * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
     * need to send a transaction, and thus is not required to hold Ether at all.
     */
    interface IERC20Permit {
        /**
         * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
         * given ``owner``'s signed approval.
         *
         * IMPORTANT: The same issues {IERC20-approve} has related to transaction
         * ordering also apply here.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `deadline` must be a timestamp in the future.
         * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
         * over the EIP712-formatted function arguments.
         * - the signature must use ``owner``'s current nonce (see {nonces}).
         *
         * For more information on the signature format, see the
         * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
         * section].
         */
        function permit(
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) external;
        /**
         * @dev Returns the current nonce for `owner`. This value must be
         * included whenever a signature is generated for {permit}.
         *
         * Every successful call to {permit} increases ``owner``'s nonce by one. This
         * prevents a signature from being used multiple times.
         */
        function nonces(address owner) external view returns (uint256);
        /**
         * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
         */
        // solhint-disable-next-line func-name-mixedcase
        function DOMAIN_SEPARATOR() external view returns (bytes32);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
    pragma solidity ^0.8.1;
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         *
         * Furthermore, `isContract` will also return true if the target contract within
         * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
         * which only has an effect at the end of a transaction.
         * ====
         *
         * [IMPORTANT]
         * ====
         * You shouldn't rely on `isContract` to protect against flash loan attacks!
         *
         * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
         * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
         * constructor.
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize/address.code.length, which returns 0
            // for contracts in construction, since the code is only stored at the end
            // of the constructor execution.
            return account.code.length > 0;
        }
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
            (bool success, ) = recipient.call{value: amount}("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, "Address: low-level call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
         * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
         *
         * _Available since v4.8._
         */
        function verifyCallResultFromTarget(
            address target,
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            if (success) {
                if (returndata.length == 0) {
                    // only check isContract if the call was successful and the return data is empty
                    // otherwise we already know that it was a contract
                    require(isContract(target), "Address: call to non-contract");
                }
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        /**
         * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
         * revert reason or using the provided one.
         *
         * _Available since v4.3._
         */
        function verifyCallResult(
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal pure returns (bytes memory) {
            if (success) {
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        function _revert(bytes memory returndata, string memory errorMessage) private pure {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    

    File 2 of 2: PortalToken
    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.20;
    import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
    import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
    import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import {ERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";
    import {ERC20Pausable} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Pausable.sol";
    import {ERC20Burnable} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
    /**
     * @title PortalToken
     * @dev Extension of ERC20 functionalities with permit, pausable, and burnable features.
     */
    contract PortalToken is ERC20,Ownable, ERC20Permit, ERC20Burnable, ERC20Pausable {
        
        /// @notice Struct to hold initial deposits for vesting
        struct InitialDeposits {
            address addr;
            uint256 amount;
        }
        /// @notice State variable
        bool public permitEnabled;
        address public proxy;
        /// @notice Emitted when permit functionality is enabled or disabled
        event PermitEnabled(bool isEnabled);
        /// @notice Emitted when proxy address is set or updated
        event ProxyAddressSet(address proxy);
        /// @notice Custom error for handling permit functionality
        error PermitDisabled();
        /**
         * @notice Constructor to initialize the contract with initial deposits
         * @param name Name of the token
         * @param symbol Symbol of the token
         * @param treasury Address of the treasury
         * @param owner Address of the owner
         * @param vestingDeposits Array of initial deposits for vesting (potential address duplication is mitigated by the deployment scripts)
         */
        constructor(
            string memory name,
            string memory symbol,
            address treasury,
            address owner,
            InitialDeposits[] memory vestingDeposits
        )
            ERC20(name, symbol)
            ERC20Permit(name)
        {
            permitEnabled = true;
            uint256 totalAmountToMint = 1e9 ether;
            uint256 totalMinted;
            
            for (uint256 i = 0; i < vestingDeposits.length; i++) {
                totalMinted += vestingDeposits[i].amount;
                _mint(vestingDeposits[i].addr, vestingDeposits[i].amount);
            }
            _mint(treasury, totalAmountToMint - totalMinted);
            transferOwnership(owner);
        }
        /**
         * @notice Function to get circulating supply based on the proxy contract balance.
         * If proxy address is not set, it will return the total supply.
         * @dev Proxy contract is being used for X-chain functionality. If tokens are transferred to the proxy contract,
         * they are considered as burned on a given chain.
         * @return uint256 Circulating supply
         */
        function totalSupply() public view virtual override returns (uint256) {
            if (proxy == address(0)) {
                return super.totalSupply();
            }
            return super.totalSupply() - balanceOf(proxy);
        }
        /**
         * @notice Function to handle permit functionality with conditional custom check
         * @dev Reffer to ERC-20 Permit extension for more details
        */
        function permit(
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        )
            public
            virtual
            override(ERC20Permit)
        {
            if (!permitEnabled) {
                revert PermitDisabled();
            }
            super.permit(owner, spender, value, deadline, v, r, s);
        }
        /**
         * @notice Function to handle pausing/unpausing of token transfers. Can only be called by the owner.
         * @dev Reffer to ERC-20 Pausable extension for more details
         * @param shouldPause Boolean to indicate whether to pause or unpause the token
        */
        function pause(bool shouldPause) external onlyOwner {
            if (shouldPause) {
                _pause();
            } else {
                _unpause();
            }
        }
        /**
         * @notice Function to enable or disable permit functionality
         * @dev Enabled by default
         * @param isEnabled Boolean to indicate whether to enable or disable the permit functionality
        */
        function disablePermit(bool isEnabled) external onlyOwner {
            permitEnabled = isEnabled;
            emit PermitEnabled(isEnabled);
        }
        /**
         * @notice Function to set the proxy address (X-chain functionality)
         * @param _proxy Address of the proxy contract
        */
        function setProxyAddress(address _proxy) external onlyOwner {
            proxy = _proxy;
            emit ProxyAddressSet(_proxy);
        }
        /**
         * @dev Hook that is called before any transfer of tokens. This includes minting and burning.
        */
        function _beforeTokenTransfer(
            address from,
            address to,
            uint256 amount
        )
            internal
            override(ERC20, ERC20Pausable)
        {
            super._beforeTokenTransfer(from, to, amount);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
    pragma solidity ^0.8.0;
    import "../utils/Context.sol";
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor() {
            _transferOwnership(_msgSender());
        }
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            require(owner() == _msgSender(), "Ownable: caller is not the owner");
        }
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby disabling any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            _transferOwnership(newOwner);
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)
    pragma solidity ^0.8.0;
    import "./IERC20.sol";
    import "./extensions/IERC20Metadata.sol";
    import "../../utils/Context.sol";
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     * For a generic mechanism see {ERC20PresetMinterPauser}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * The default value of {decimals} is 18. To change this, you should override
     * this function so it returns a different value.
     *
     * We have followed general OpenZeppelin Contracts guidelines: functions revert
     * instead returning `false` on failure. This behavior is nonetheless
     * conventional and does not conflict with the expectations of ERC20
     * applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See {IERC20-approve}.
     */
    contract ERC20 is Context, IERC20, IERC20Metadata {
        mapping(address => uint256) private _balances;
        mapping(address => mapping(address => uint256)) private _allowances;
        uint256 private _totalSupply;
        string private _name;
        string private _symbol;
        /**
         * @dev Sets the values for {name} and {symbol}.
         *
         * All two of these values are immutable: they can only be set once during
         * construction.
         */
        constructor(string memory name_, string memory symbol_) {
            _name = name_;
            _symbol = symbol_;
        }
        /**
         * @dev Returns the name of the token.
         */
        function name() public view virtual override returns (string memory) {
            return _name;
        }
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view virtual override returns (string memory) {
            return _symbol;
        }
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5.05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the default value returned by this function, unless
         * it's overridden.
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view virtual override returns (uint8) {
            return 18;
        }
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view virtual override returns (uint256) {
            return _totalSupply;
        }
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view virtual override returns (uint256) {
            return _balances[account];
        }
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address to, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _transfer(owner, to, amount);
            return true;
        }
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view virtual override returns (uint256) {
            return _allowances[owner][spender];
        }
        /**
         * @dev See {IERC20-approve}.
         *
         * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
         * `transferFrom`. This is semantically equivalent to an infinite approval.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, amount);
            return true;
        }
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20}.
         *
         * NOTE: Does not update the allowance if the current allowance
         * is the maximum `uint256`.
         *
         * Requirements:
         *
         * - `from` and `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         * - the caller must have allowance for ``from``'s tokens of at least
         * `amount`.
         */
        function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
            address spender = _msgSender();
            _spendAllowance(from, spender, amount);
            _transfer(from, to, amount);
            return true;
        }
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, allowance(owner, spender) + addedValue);
            return true;
        }
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
            address owner = _msgSender();
            uint256 currentAllowance = allowance(owner, spender);
            require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
            unchecked {
                _approve(owner, spender, currentAllowance - subtractedValue);
            }
            return true;
        }
        /**
         * @dev Moves `amount` of tokens from `from` to `to`.
         *
         * This internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         */
        function _transfer(address from, address to, uint256 amount) internal virtual {
            require(from != address(0), "ERC20: transfer from the zero address");
            require(to != address(0), "ERC20: transfer to the zero address");
            _beforeTokenTransfer(from, to, amount);
            uint256 fromBalance = _balances[from];
            require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
            unchecked {
                _balances[from] = fromBalance - amount;
                // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
                // decrementing then incrementing.
                _balances[to] += amount;
            }
            emit Transfer(from, to, amount);
            _afterTokenTransfer(from, to, amount);
        }
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: mint to the zero address");
            _beforeTokenTransfer(address(0), account, amount);
            _totalSupply += amount;
            unchecked {
                // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
                _balances[account] += amount;
            }
            emit Transfer(address(0), account, amount);
            _afterTokenTransfer(address(0), account, amount);
        }
        /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: burn from the zero address");
            _beforeTokenTransfer(account, address(0), amount);
            uint256 accountBalance = _balances[account];
            require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
            unchecked {
                _balances[account] = accountBalance - amount;
                // Overflow not possible: amount <= accountBalance <= totalSupply.
                _totalSupply -= amount;
            }
            emit Transfer(account, address(0), amount);
            _afterTokenTransfer(account, address(0), amount);
        }
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
         *
         * This internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(address owner, address spender, uint256 amount) internal virtual {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
            _allowances[owner][spender] = amount;
            emit Approval(owner, spender, amount);
        }
        /**
         * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
         *
         * Does not update the allowance amount in case of infinite allowance.
         * Revert if not enough allowance is available.
         *
         * Might emit an {Approval} event.
         */
        function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
            uint256 currentAllowance = allowance(owner, spender);
            if (currentAllowance != type(uint256).max) {
                require(currentAllowance >= amount, "ERC20: insufficient allowance");
                unchecked {
                    _approve(owner, spender, currentAllowance - amount);
                }
            }
        }
        /**
         * @dev Hook that is called before any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * will be transferred to `to`.
         * - when `from` is zero, `amount` tokens will be minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
        /**
         * @dev Hook that is called after any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * has been transferred to `to`.
         * - when `from` is zero, `amount` tokens have been minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Moves `amount` tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 amount) external returns (bool);
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
        /**
         * @dev Moves `amount` tokens from `from` to `to` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address from, address to, uint256 amount) external returns (bool);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/ERC20Permit.sol)
    pragma solidity ^0.8.0;
    import "./IERC20Permit.sol";
    import "../ERC20.sol";
    import "../../../utils/cryptography/ECDSA.sol";
    import "../../../utils/cryptography/EIP712.sol";
    import "../../../utils/Counters.sol";
    /**
     * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
     * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
     *
     * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
     * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
     * need to send a transaction, and thus is not required to hold Ether at all.
     *
     * _Available since v3.4._
     */
    abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 {
        using Counters for Counters.Counter;
        mapping(address => Counters.Counter) private _nonces;
        // solhint-disable-next-line var-name-mixedcase
        bytes32 private constant _PERMIT_TYPEHASH =
            keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
        /**
         * @dev In previous versions `_PERMIT_TYPEHASH` was declared as `immutable`.
         * However, to ensure consistency with the upgradeable transpiler, we will continue
         * to reserve a slot.
         * @custom:oz-renamed-from _PERMIT_TYPEHASH
         */
        // solhint-disable-next-line var-name-mixedcase
        bytes32 private _PERMIT_TYPEHASH_DEPRECATED_SLOT;
        /**
         * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
         *
         * It's a good idea to use the same `name` that is defined as the ERC20 token name.
         */
        constructor(string memory name) EIP712(name, "1") {}
        /**
         * @dev See {IERC20Permit-permit}.
         */
        function permit(
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) public virtual override {
            require(block.timestamp <= deadline, "ERC20Permit: expired deadline");
            bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));
            bytes32 hash = _hashTypedDataV4(structHash);
            address signer = ECDSA.recover(hash, v, r, s);
            require(signer == owner, "ERC20Permit: invalid signature");
            _approve(owner, spender, value);
        }
        /**
         * @dev See {IERC20Permit-nonces}.
         */
        function nonces(address owner) public view virtual override returns (uint256) {
            return _nonces[owner].current();
        }
        /**
         * @dev See {IERC20Permit-DOMAIN_SEPARATOR}.
         */
        // solhint-disable-next-line func-name-mixedcase
        function DOMAIN_SEPARATOR() external view override returns (bytes32) {
            return _domainSeparatorV4();
        }
        /**
         * @dev "Consume a nonce": return the current value and increment.
         *
         * _Available since v4.1._
         */
        function _useNonce(address owner) internal virtual returns (uint256 current) {
            Counters.Counter storage nonce = _nonces[owner];
            current = nonce.current();
            nonce.increment();
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/ERC20Pausable.sol)
    pragma solidity ^0.8.0;
    import "../ERC20.sol";
    import "../../../security/Pausable.sol";
    /**
     * @dev ERC20 token with pausable token transfers, minting and burning.
     *
     * Useful for scenarios such as preventing trades until the end of an evaluation
     * period, or having an emergency switch for freezing all token transfers in the
     * event of a large bug.
     *
     * IMPORTANT: This contract does not include public pause and unpause functions. In
     * addition to inheriting this contract, you must define both functions, invoking the
     * {Pausable-_pause} and {Pausable-_unpause} internal functions, with appropriate
     * access control, e.g. using {AccessControl} or {Ownable}. Not doing so will
     * make the contract unpausable.
     */
    abstract contract ERC20Pausable is ERC20, Pausable {
        /**
         * @dev See {ERC20-_beforeTokenTransfer}.
         *
         * Requirements:
         *
         * - the contract must not be paused.
         */
        function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual override {
            super._beforeTokenTransfer(from, to, amount);
            require(!paused(), "ERC20Pausable: token transfer while paused");
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/extensions/ERC20Burnable.sol)
    pragma solidity ^0.8.0;
    import "../ERC20.sol";
    import "../../../utils/Context.sol";
    /**
     * @dev Extension of {ERC20} that allows token holders to destroy both their own
     * tokens and those that they have an allowance for, in a way that can be
     * recognized off-chain (via event analysis).
     */
    abstract contract ERC20Burnable is Context, ERC20 {
        /**
         * @dev Destroys `amount` tokens from the caller.
         *
         * See {ERC20-_burn}.
         */
        function burn(uint256 amount) public virtual {
            _burn(_msgSender(), amount);
        }
        /**
         * @dev Destroys `amount` tokens from `account`, deducting from the caller's
         * allowance.
         *
         * See {ERC20-_burn} and {ERC20-allowance}.
         *
         * Requirements:
         *
         * - the caller must have allowance for ``accounts``'s tokens of at least
         * `amount`.
         */
        function burnFrom(address account, uint256 amount) public virtual {
            _spendAllowance(account, _msgSender(), amount);
            _burn(account, amount);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
    pragma solidity ^0.8.0;
    import "../IERC20.sol";
    /**
     * @dev Interface for the optional metadata functions from the ERC20 standard.
     *
     * _Available since v4.1._
     */
    interface IERC20Metadata is IERC20 {
        /**
         * @dev Returns the name of the token.
         */
        function name() external view returns (string memory);
        /**
         * @dev Returns the symbol of the token.
         */
        function symbol() external view returns (string memory);
        /**
         * @dev Returns the decimals places of the token.
         */
        function decimals() external view returns (uint8);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
     * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
     *
     * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
     * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
     * need to send a transaction, and thus is not required to hold Ether at all.
     */
    interface IERC20Permit {
        /**
         * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
         * given ``owner``'s signed approval.
         *
         * IMPORTANT: The same issues {IERC20-approve} has related to transaction
         * ordering also apply here.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `deadline` must be a timestamp in the future.
         * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
         * over the EIP712-formatted function arguments.
         * - the signature must use ``owner``'s current nonce (see {nonces}).
         *
         * For more information on the signature format, see the
         * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
         * section].
         */
        function permit(
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) external;
        /**
         * @dev Returns the current nonce for `owner`. This value must be
         * included whenever a signature is generated for {permit}.
         *
         * Every successful call to {permit} increases ``owner``'s nonce by one. This
         * prevents a signature from being used multiple times.
         */
        function nonces(address owner) external view returns (uint256);
        /**
         * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
         */
        // solhint-disable-next-line func-name-mixedcase
        function DOMAIN_SEPARATOR() external view returns (bytes32);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)
    pragma solidity ^0.8.0;
    import "../Strings.sol";
    /**
     * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
     *
     * These functions can be used to verify that a message was signed by the holder
     * of the private keys of a given address.
     */
    library ECDSA {
        enum RecoverError {
            NoError,
            InvalidSignature,
            InvalidSignatureLength,
            InvalidSignatureS,
            InvalidSignatureV // Deprecated in v4.8
        }
        function _throwError(RecoverError error) private pure {
            if (error == RecoverError.NoError) {
                return; // no error: do nothing
            } else if (error == RecoverError.InvalidSignature) {
                revert("ECDSA: invalid signature");
            } else if (error == RecoverError.InvalidSignatureLength) {
                revert("ECDSA: invalid signature length");
            } else if (error == RecoverError.InvalidSignatureS) {
                revert("ECDSA: invalid signature 's' value");
            }
        }
        /**
         * @dev Returns the address that signed a hashed message (`hash`) with
         * `signature` or error string. This address can then be used for verification purposes.
         *
         * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
         * this function rejects them by requiring the `s` value to be in the lower
         * half order, and the `v` value to be either 27 or 28.
         *
         * IMPORTANT: `hash` _must_ be the result of a hash operation for the
         * verification to be secure: it is possible to craft signatures that
         * recover to arbitrary addresses for non-hashed data. A safe way to ensure
         * this is by receiving a hash of the original message (which may otherwise
         * be too long), and then calling {toEthSignedMessageHash} on it.
         *
         * Documentation for signature generation:
         * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
         * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
         *
         * _Available since v4.3._
         */
        function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
            if (signature.length == 65) {
                bytes32 r;
                bytes32 s;
                uint8 v;
                // ecrecover takes the signature parameters, and the only way to get them
                // currently is to use assembly.
                /// @solidity memory-safe-assembly
                assembly {
                    r := mload(add(signature, 0x20))
                    s := mload(add(signature, 0x40))
                    v := byte(0, mload(add(signature, 0x60)))
                }
                return tryRecover(hash, v, r, s);
            } else {
                return (address(0), RecoverError.InvalidSignatureLength);
            }
        }
        /**
         * @dev Returns the address that signed a hashed message (`hash`) with
         * `signature`. This address can then be used for verification purposes.
         *
         * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
         * this function rejects them by requiring the `s` value to be in the lower
         * half order, and the `v` value to be either 27 or 28.
         *
         * IMPORTANT: `hash` _must_ be the result of a hash operation for the
         * verification to be secure: it is possible to craft signatures that
         * recover to arbitrary addresses for non-hashed data. A safe way to ensure
         * this is by receiving a hash of the original message (which may otherwise
         * be too long), and then calling {toEthSignedMessageHash} on it.
         */
        function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
            (address recovered, RecoverError error) = tryRecover(hash, signature);
            _throwError(error);
            return recovered;
        }
        /**
         * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
         *
         * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
         *
         * _Available since v4.3._
         */
        function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
        /**
         * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
         *
         * _Available since v4.2._
         */
        function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
            (address recovered, RecoverError error) = tryRecover(hash, r, vs);
            _throwError(error);
            return recovered;
        }
        /**
         * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
         * `r` and `s` signature fields separately.
         *
         * _Available since v4.3._
         */
        function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
            // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
            // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
            // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
            // signatures from current libraries generate a unique signature with an s-value in the lower half order.
            //
            // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
            // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
            // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
            // these malleable signatures as well.
            if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
                return (address(0), RecoverError.InvalidSignatureS);
            }
            // If the signature is valid (and not malleable), return the signer address
            address signer = ecrecover(hash, v, r, s);
            if (signer == address(0)) {
                return (address(0), RecoverError.InvalidSignature);
            }
            return (signer, RecoverError.NoError);
        }
        /**
         * @dev Overload of {ECDSA-recover} that receives the `v`,
         * `r` and `s` signature fields separately.
         */
        function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
            (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
            _throwError(error);
            return recovered;
        }
        /**
         * @dev Returns an Ethereum Signed Message, created from a `hash`. This
         * produces hash corresponding to the one signed with the
         * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
         * JSON-RPC method as part of EIP-191.
         *
         * See {recover}.
         */
        function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
            // 32 is the length in bytes of hash,
            // enforced by the type signature above
            /// @solidity memory-safe-assembly
            assembly {
                mstore(0x00, "\\x19Ethereum Signed Message:\
    32")
                mstore(0x1c, hash)
                message := keccak256(0x00, 0x3c)
            }
        }
        /**
         * @dev Returns an Ethereum Signed Message, created from `s`. This
         * produces hash corresponding to the one signed with the
         * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
         * JSON-RPC method as part of EIP-191.
         *
         * See {recover}.
         */
        function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
            return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\
    ", Strings.toString(s.length), s));
        }
        /**
         * @dev Returns an Ethereum Signed Typed Data, created from a
         * `domainSeparator` and a `structHash`. This produces hash corresponding
         * to the one signed with the
         * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
         * JSON-RPC method as part of EIP-712.
         *
         * See {recover}.
         */
        function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
            /// @solidity memory-safe-assembly
            assembly {
                let ptr := mload(0x40)
                mstore(ptr, "\\x19\\x01")
                mstore(add(ptr, 0x02), domainSeparator)
                mstore(add(ptr, 0x22), structHash)
                data := keccak256(ptr, 0x42)
            }
        }
        /**
         * @dev Returns an Ethereum Signed Data with intended validator, created from a
         * `validator` and `data` according to the version 0 of EIP-191.
         *
         * See {recover}.
         */
        function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
            return keccak256(abi.encodePacked("\\x19\\x00", validator, data));
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol)
    pragma solidity ^0.8.8;
    import "./ECDSA.sol";
    import "../ShortStrings.sol";
    import "../../interfaces/IERC5267.sol";
    /**
     * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
     *
     * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
     * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
     * they need in their contracts using a combination of `abi.encode` and `keccak256`.
     *
     * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
     * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
     * ({_hashTypedDataV4}).
     *
     * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
     * the chain id to protect against replay attacks on an eventual fork of the chain.
     *
     * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
     * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
     *
     * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
     * separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the
     * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
     *
     * _Available since v3.4._
     *
     * @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
     */
    abstract contract EIP712 is IERC5267 {
        using ShortStrings for *;
        bytes32 private constant _TYPE_HASH =
            keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
        // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
        // invalidate the cached domain separator if the chain id changes.
        bytes32 private immutable _cachedDomainSeparator;
        uint256 private immutable _cachedChainId;
        address private immutable _cachedThis;
        bytes32 private immutable _hashedName;
        bytes32 private immutable _hashedVersion;
        ShortString private immutable _name;
        ShortString private immutable _version;
        string private _nameFallback;
        string private _versionFallback;
        /**
         * @dev Initializes the domain separator and parameter caches.
         *
         * The meaning of `name` and `version` is specified in
         * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
         *
         * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
         * - `version`: the current major version of the signing domain.
         *
         * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
         * contract upgrade].
         */
        constructor(string memory name, string memory version) {
            _name = name.toShortStringWithFallback(_nameFallback);
            _version = version.toShortStringWithFallback(_versionFallback);
            _hashedName = keccak256(bytes(name));
            _hashedVersion = keccak256(bytes(version));
            _cachedChainId = block.chainid;
            _cachedDomainSeparator = _buildDomainSeparator();
            _cachedThis = address(this);
        }
        /**
         * @dev Returns the domain separator for the current chain.
         */
        function _domainSeparatorV4() internal view returns (bytes32) {
            if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
                return _cachedDomainSeparator;
            } else {
                return _buildDomainSeparator();
            }
        }
        function _buildDomainSeparator() private view returns (bytes32) {
            return keccak256(abi.encode(_TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
        }
        /**
         * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
         * function returns the hash of the fully encoded EIP712 message for this domain.
         *
         * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
         *
         * ```solidity
         * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
         *     keccak256("Mail(address to,string contents)"),
         *     mailTo,
         *     keccak256(bytes(mailContents))
         * )));
         * address signer = ECDSA.recover(digest, signature);
         * ```
         */
        function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
            return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
        }
        /**
         * @dev See {EIP-5267}.
         *
         * _Available since v4.9._
         */
        function eip712Domain()
            public
            view
            virtual
            override
            returns (
                bytes1 fields,
                string memory name,
                string memory version,
                uint256 chainId,
                address verifyingContract,
                bytes32 salt,
                uint256[] memory extensions
            )
        {
            return (
                hex"0f", // 01111
                _name.toStringWithFallback(_nameFallback),
                _version.toStringWithFallback(_versionFallback),
                block.chainid,
                address(this),
                bytes32(0),
                new uint256[](0)
            );
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)
    pragma solidity ^0.8.0;
    /**
     * @title Counters
     * @author Matt Condon (@shrugs)
     * @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
     * of elements in a mapping, issuing ERC721 ids, or counting request ids.
     *
     * Include with `using Counters for Counters.Counter;`
     */
    library Counters {
        struct Counter {
            // This variable should never be directly accessed by users of the library: interactions must be restricted to
            // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
            // this feature: see https://github.com/ethereum/solidity/issues/4637
            uint256 _value; // default: 0
        }
        function current(Counter storage counter) internal view returns (uint256) {
            return counter._value;
        }
        function increment(Counter storage counter) internal {
            unchecked {
                counter._value += 1;
            }
        }
        function decrement(Counter storage counter) internal {
            uint256 value = counter._value;
            require(value > 0, "Counter: decrement overflow");
            unchecked {
                counter._value = value - 1;
            }
        }
        function reset(Counter storage counter) internal {
            counter._value = 0;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)
    pragma solidity ^0.8.0;
    import "../utils/Context.sol";
    /**
     * @dev Contract module which allows children to implement an emergency stop
     * mechanism that can be triggered by an authorized account.
     *
     * This module is used through inheritance. It will make available the
     * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
     * the functions of your contract. Note that they will not be pausable by
     * simply including this module, only once the modifiers are put in place.
     */
    abstract contract Pausable is Context {
        /**
         * @dev Emitted when the pause is triggered by `account`.
         */
        event Paused(address account);
        /**
         * @dev Emitted when the pause is lifted by `account`.
         */
        event Unpaused(address account);
        bool private _paused;
        /**
         * @dev Initializes the contract in unpaused state.
         */
        constructor() {
            _paused = false;
        }
        /**
         * @dev Modifier to make a function callable only when the contract is not paused.
         *
         * Requirements:
         *
         * - The contract must not be paused.
         */
        modifier whenNotPaused() {
            _requireNotPaused();
            _;
        }
        /**
         * @dev Modifier to make a function callable only when the contract is paused.
         *
         * Requirements:
         *
         * - The contract must be paused.
         */
        modifier whenPaused() {
            _requirePaused();
            _;
        }
        /**
         * @dev Returns true if the contract is paused, and false otherwise.
         */
        function paused() public view virtual returns (bool) {
            return _paused;
        }
        /**
         * @dev Throws if the contract is paused.
         */
        function _requireNotPaused() internal view virtual {
            require(!paused(), "Pausable: paused");
        }
        /**
         * @dev Throws if the contract is not paused.
         */
        function _requirePaused() internal view virtual {
            require(paused(), "Pausable: not paused");
        }
        /**
         * @dev Triggers stopped state.
         *
         * Requirements:
         *
         * - The contract must not be paused.
         */
        function _pause() internal virtual whenNotPaused {
            _paused = true;
            emit Paused(_msgSender());
        }
        /**
         * @dev Returns to normal state.
         *
         * Requirements:
         *
         * - The contract must be paused.
         */
        function _unpause() internal virtual whenPaused {
            _paused = false;
            emit Unpaused(_msgSender());
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
    pragma solidity ^0.8.0;
    import "./math/Math.sol";
    import "./math/SignedMath.sol";
    /**
     * @dev String operations.
     */
    library Strings {
        bytes16 private constant _SYMBOLS = "0123456789abcdef";
        uint8 private constant _ADDRESS_LENGTH = 20;
        /**
         * @dev Converts a `uint256` to its ASCII `string` decimal representation.
         */
        function toString(uint256 value) internal pure returns (string memory) {
            unchecked {
                uint256 length = Math.log10(value) + 1;
                string memory buffer = new string(length);
                uint256 ptr;
                /// @solidity memory-safe-assembly
                assembly {
                    ptr := add(buffer, add(32, length))
                }
                while (true) {
                    ptr--;
                    /// @solidity memory-safe-assembly
                    assembly {
                        mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                    }
                    value /= 10;
                    if (value == 0) break;
                }
                return buffer;
            }
        }
        /**
         * @dev Converts a `int256` to its ASCII `string` decimal representation.
         */
        function toString(int256 value) internal pure returns (string memory) {
            return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
        }
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
         */
        function toHexString(uint256 value) internal pure returns (string memory) {
            unchecked {
                return toHexString(value, Math.log256(value) + 1);
            }
        }
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
         */
        function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
            bytes memory buffer = new bytes(2 * length + 2);
            buffer[0] = "0";
            buffer[1] = "x";
            for (uint256 i = 2 * length + 1; i > 1; --i) {
                buffer[i] = _SYMBOLS[value & 0xf];
                value >>= 4;
            }
            require(value == 0, "Strings: hex length insufficient");
            return string(buffer);
        }
        /**
         * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
         */
        function toHexString(address addr) internal pure returns (string memory) {
            return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
        }
        /**
         * @dev Returns true if the two strings are equal.
         */
        function equal(string memory a, string memory b) internal pure returns (bool) {
            return keccak256(bytes(a)) == keccak256(bytes(b));
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (utils/ShortStrings.sol)
    pragma solidity ^0.8.8;
    import "./StorageSlot.sol";
    // | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
    // | length  | 0x                                                              BB |
    type ShortString is bytes32;
    /**
     * @dev This library provides functions to convert short memory strings
     * into a `ShortString` type that can be used as an immutable variable.
     *
     * Strings of arbitrary length can be optimized using this library if
     * they are short enough (up to 31 bytes) by packing them with their
     * length (1 byte) in a single EVM word (32 bytes). Additionally, a
     * fallback mechanism can be used for every other case.
     *
     * Usage example:
     *
     * ```solidity
     * contract Named {
     *     using ShortStrings for *;
     *
     *     ShortString private immutable _name;
     *     string private _nameFallback;
     *
     *     constructor(string memory contractName) {
     *         _name = contractName.toShortStringWithFallback(_nameFallback);
     *     }
     *
     *     function name() external view returns (string memory) {
     *         return _name.toStringWithFallback(_nameFallback);
     *     }
     * }
     * ```
     */
    library ShortStrings {
        // Used as an identifier for strings longer than 31 bytes.
        bytes32 private constant _FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
        error StringTooLong(string str);
        error InvalidShortString();
        /**
         * @dev Encode a string of at most 31 chars into a `ShortString`.
         *
         * This will trigger a `StringTooLong` error is the input string is too long.
         */
        function toShortString(string memory str) internal pure returns (ShortString) {
            bytes memory bstr = bytes(str);
            if (bstr.length > 31) {
                revert StringTooLong(str);
            }
            return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
        }
        /**
         * @dev Decode a `ShortString` back to a "normal" string.
         */
        function toString(ShortString sstr) internal pure returns (string memory) {
            uint256 len = byteLength(sstr);
            // using `new string(len)` would work locally but is not memory safe.
            string memory str = new string(32);
            /// @solidity memory-safe-assembly
            assembly {
                mstore(str, len)
                mstore(add(str, 0x20), sstr)
            }
            return str;
        }
        /**
         * @dev Return the length of a `ShortString`.
         */
        function byteLength(ShortString sstr) internal pure returns (uint256) {
            uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
            if (result > 31) {
                revert InvalidShortString();
            }
            return result;
        }
        /**
         * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
         */
        function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
            if (bytes(value).length < 32) {
                return toShortString(value);
            } else {
                StorageSlot.getStringSlot(store).value = value;
                return ShortString.wrap(_FALLBACK_SENTINEL);
            }
        }
        /**
         * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
         */
        function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
            if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
                return toString(value);
            } else {
                return store;
            }
        }
        /**
         * @dev Return the length of a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
         *
         * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
         * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
         */
        function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
            if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
                return byteLength(value);
            } else {
                return bytes(store).length;
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol)
    pragma solidity ^0.8.0;
    interface IERC5267 {
        /**
         * @dev MAY be emitted to signal that the domain could have changed.
         */
        event EIP712DomainChanged();
        /**
         * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
         * signature.
         */
        function eip712Domain()
            external
            view
            returns (
                bytes1 fields,
                string memory name,
                string memory version,
                uint256 chainId,
                address verifyingContract,
                bytes32 salt,
                uint256[] memory extensions
            );
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Standard math utilities missing in the Solidity language.
     */
    library Math {
        enum Rounding {
            Down, // Toward negative infinity
            Up, // Toward infinity
            Zero // Toward zero
        }
        /**
         * @dev Returns the largest of two numbers.
         */
        function max(uint256 a, uint256 b) internal pure returns (uint256) {
            return a > b ? a : b;
        }
        /**
         * @dev Returns the smallest of two numbers.
         */
        function min(uint256 a, uint256 b) internal pure returns (uint256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two numbers. The result is rounded towards
         * zero.
         */
        function average(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b) / 2 can overflow.
            return (a & b) + (a ^ b) / 2;
        }
        /**
         * @dev Returns the ceiling of the division of two numbers.
         *
         * This differs from standard division with `/` in that it rounds up instead
         * of rounding down.
         */
        function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b - 1) / b can overflow on addition, so we distribute.
            return a == 0 ? 0 : (a - 1) / b + 1;
        }
        /**
         * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
         * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
         * with further edits by Uniswap Labs also under MIT license.
         */
        function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
            unchecked {
                // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                // variables such that product = prod1 * 2^256 + prod0.
                uint256 prod0; // Least significant 256 bits of the product
                uint256 prod1; // Most significant 256 bits of the product
                assembly {
                    let mm := mulmod(x, y, not(0))
                    prod0 := mul(x, y)
                    prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                }
                // Handle non-overflow cases, 256 by 256 division.
                if (prod1 == 0) {
                    // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                    // The surrounding unchecked block does not change this fact.
                    // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                    return prod0 / denominator;
                }
                // Make sure the result is less than 2^256. Also prevents denominator == 0.
                require(denominator > prod1, "Math: mulDiv overflow");
                ///////////////////////////////////////////////
                // 512 by 256 division.
                ///////////////////////////////////////////////
                // Make division exact by subtracting the remainder from [prod1 prod0].
                uint256 remainder;
                assembly {
                    // Compute remainder using mulmod.
                    remainder := mulmod(x, y, denominator)
                    // Subtract 256 bit number from 512 bit number.
                    prod1 := sub(prod1, gt(remainder, prod0))
                    prod0 := sub(prod0, remainder)
                }
                // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                // See https://cs.stackexchange.com/q/138556/92363.
                // Does not overflow because the denominator cannot be zero at this stage in the function.
                uint256 twos = denominator & (~denominator + 1);
                assembly {
                    // Divide denominator by twos.
                    denominator := div(denominator, twos)
                    // Divide [prod1 prod0] by twos.
                    prod0 := div(prod0, twos)
                    // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                    twos := add(div(sub(0, twos), twos), 1)
                }
                // Shift in bits from prod1 into prod0.
                prod0 |= prod1 * twos;
                // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                // four bits. That is, denominator * inv = 1 mod 2^4.
                uint256 inverse = (3 * denominator) ^ 2;
                // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                // in modular arithmetic, doubling the correct bits in each step.
                inverse *= 2 - denominator * inverse; // inverse mod 2^8
                inverse *= 2 - denominator * inverse; // inverse mod 2^16
                inverse *= 2 - denominator * inverse; // inverse mod 2^32
                inverse *= 2 - denominator * inverse; // inverse mod 2^64
                inverse *= 2 - denominator * inverse; // inverse mod 2^128
                inverse *= 2 - denominator * inverse; // inverse mod 2^256
                // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                // is no longer required.
                result = prod0 * inverse;
                return result;
            }
        }
        /**
         * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
         */
        function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
            uint256 result = mulDiv(x, y, denominator);
            if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                result += 1;
            }
            return result;
        }
        /**
         * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
         *
         * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
         */
        function sqrt(uint256 a) internal pure returns (uint256) {
            if (a == 0) {
                return 0;
            }
            // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
            //
            // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
            // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
            //
            // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
            // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
            // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
            //
            // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
            uint256 result = 1 << (log2(a) >> 1);
            // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
            // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
            // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
            // into the expected uint128 result.
            unchecked {
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                return min(result, a / result);
            }
        }
        /**
         * @notice Calculates sqrt(a), following the selected rounding direction.
         */
        function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = sqrt(a);
                return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 2, rounded down, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 128;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 64;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 32;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 16;
                }
                if (value >> 8 > 0) {
                    value >>= 8;
                    result += 8;
                }
                if (value >> 4 > 0) {
                    value >>= 4;
                    result += 4;
                }
                if (value >> 2 > 0) {
                    value >>= 2;
                    result += 2;
                }
                if (value >> 1 > 0) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log2(value);
                return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 10, rounded down, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >= 10 ** 64) {
                    value /= 10 ** 64;
                    result += 64;
                }
                if (value >= 10 ** 32) {
                    value /= 10 ** 32;
                    result += 32;
                }
                if (value >= 10 ** 16) {
                    value /= 10 ** 16;
                    result += 16;
                }
                if (value >= 10 ** 8) {
                    value /= 10 ** 8;
                    result += 8;
                }
                if (value >= 10 ** 4) {
                    value /= 10 ** 4;
                    result += 4;
                }
                if (value >= 10 ** 2) {
                    value /= 10 ** 2;
                    result += 2;
                }
                if (value >= 10 ** 1) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log10(value);
                return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 256, rounded down, of a positive value.
         * Returns 0 if given 0.
         *
         * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
         */
        function log256(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 16;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 8;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 4;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 2;
                }
                if (value >> 8 > 0) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log256(value);
                return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Standard signed math utilities missing in the Solidity language.
     */
    library SignedMath {
        /**
         * @dev Returns the largest of two signed numbers.
         */
        function max(int256 a, int256 b) internal pure returns (int256) {
            return a > b ? a : b;
        }
        /**
         * @dev Returns the smallest of two signed numbers.
         */
        function min(int256 a, int256 b) internal pure returns (int256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two signed numbers without overflow.
         * The result is rounded towards zero.
         */
        function average(int256 a, int256 b) internal pure returns (int256) {
            // Formula from the book "Hacker's Delight"
            int256 x = (a & b) + ((a ^ b) >> 1);
            return x + (int256(uint256(x) >> 255) & (a ^ b));
        }
        /**
         * @dev Returns the absolute unsigned value of a signed value.
         */
        function abs(int256 n) internal pure returns (uint256) {
            unchecked {
                // must be unchecked in order to support `n = type(int256).min`
                return uint256(n >= 0 ? n : -n);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
    // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
    pragma solidity ^0.8.0;
    /**
     * @dev Library for reading and writing primitive types to specific storage slots.
     *
     * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
     * This library helps with reading and writing to such slots without the need for inline assembly.
     *
     * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
     *
     * Example usage to set ERC1967 implementation slot:
     * ```solidity
     * contract ERC1967 {
     *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
     *
     *     function _getImplementation() internal view returns (address) {
     *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
     *     }
     *
     *     function _setImplementation(address newImplementation) internal {
     *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
     *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
     *     }
     * }
     * ```
     *
     * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
     * _Available since v4.9 for `string`, `bytes`._
     */
    library StorageSlot {
        struct AddressSlot {
            address value;
        }
        struct BooleanSlot {
            bool value;
        }
        struct Bytes32Slot {
            bytes32 value;
        }
        struct Uint256Slot {
            uint256 value;
        }
        struct StringSlot {
            string value;
        }
        struct BytesSlot {
            bytes value;
        }
        /**
         * @dev Returns an `AddressSlot` with member `value` located at `slot`.
         */
        function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
            /// @solidity memory-safe-assembly
            assembly {
                r.slot := slot
            }
        }
        /**
         * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
         */
        function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
            /// @solidity memory-safe-assembly
            assembly {
                r.slot := slot
            }
        }
        /**
         * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
         */
        function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
            /// @solidity memory-safe-assembly
            assembly {
                r.slot := slot
            }
        }
        /**
         * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
         */
        function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
            /// @solidity memory-safe-assembly
            assembly {
                r.slot := slot
            }
        }
        /**
         * @dev Returns an `StringSlot` with member `value` located at `slot`.
         */
        function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
            /// @solidity memory-safe-assembly
            assembly {
                r.slot := slot
            }
        }
        /**
         * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
         */
        function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
            /// @solidity memory-safe-assembly
            assembly {
                r.slot := store.slot
            }
        }
        /**
         * @dev Returns an `BytesSlot` with member `value` located at `slot`.
         */
        function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
            /// @solidity memory-safe-assembly
            assembly {
                r.slot := slot
            }
        }
        /**
         * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
         */
        function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
            /// @solidity memory-safe-assembly
            assembly {
                r.slot := store.slot
            }
        }
    }