Transaction Hash:
Block:
21167507 at Nov-11-2024 10:44:35 PM +UTC
Transaction Fee:
0.00354407350511292 ETH
$9.41
Gas Used:
96,519 Gas / 36.71892068 Gwei
Emitted Events:
195 |
WeightedIndex.Transfer( from=[Sender] 0xb51e7366d8485d51255a6a93a6ebecc509eb9aca, to=[Receiver] WeightedIndex, value=168949764170653713338539 )
|
196 |
WeightedIndex.Transfer( from=[Receiver] WeightedIndex, to=0x0000000000000000000000000000000000000000, value=167784010797876202716503 )
|
197 |
WeightedIndex.Transfer( from=[Receiver] WeightedIndex, to=0x0000000000000000000000000000000000000000, value=233150674555502124407 )
|
198 |
NPC.Transfer( from=[Receiver] WeightedIndex, to=[Sender] 0xb51e7366d8485d51255a6a93a6ebecc509eb9aca, value=173525585847050266052172 )
|
199 |
WeightedIndex.Debond( wallet=[Sender] 0xb51e7366d8485d51255a6a93a6ebecc509eb9aca, amountDebonded=168949764170653713338539 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x8eD97a63...dc05408F6 | |||||
0x95222290...5CC4BAfe5
Miner
| (beaverbuild) | 17.934464352231008025 Eth | 17.934670323777008025 Eth | 0.000205971546 | |
0x995cFfF6...146ba4517 | |||||
0xB51E7366...509EB9ACa |
0.450182239893323675 Eth
Nonce: 102
|
0.446638166388210755 Eth
Nonce: 103
| 0.00354407350511292 |
Execution Trace
WeightedIndex.debond( _amount=168949764170653713338539, [0x8eD97a637A790Be1feff5e888d43629dc05408F6], [100] )

File 1 of 2: WeightedIndex
File 2 of 2: NPC
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol) pragma solidity ^0.8.0; interface IERC5267 { /** * @dev MAY be emitted to signal that the domain could have changed. */ event EIP712DomainChanged(); /** * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712 * signature. */ function eip712Domain() external view returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; import "./IERC20.sol"; import "./extensions/IERC20Metadata.sol"; import "../../utils/Context.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. * - the caller must have allowance for ``from``'s tokens of at least * `amount`. */ function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, allowance(owner, spender) + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = allowance(owner, spender); require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. */ function _transfer(address from, address to, uint256 amount) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by // decrementing then incrementing. _balances[to] += amount; } emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; unchecked { // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above. _balances[account] += amount; } emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; // Overflow not possible: amount <= accountBalance <= totalSupply. _totalSupply -= amount; } emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Updates `owner` s allowance for `spender` based on spent `amount`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 amount) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner, spender, currentAllowance - amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {} } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/ERC20Permit.sol) pragma solidity ^0.8.0; import "./IERC20Permit.sol"; import "../ERC20.sol"; import "../../../utils/cryptography/ECDSA.sol"; import "../../../utils/cryptography/EIP712.sol"; import "../../../utils/Counters.sol"; /** * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * _Available since v3.4._ */ abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 { using Counters for Counters.Counter; mapping(address => Counters.Counter) private _nonces; // solhint-disable-next-line var-name-mixedcase bytes32 private constant _PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); /** * @dev In previous versions `_PERMIT_TYPEHASH` was declared as `immutable`. * However, to ensure consistency with the upgradeable transpiler, we will continue * to reserve a slot. * @custom:oz-renamed-from _PERMIT_TYPEHASH */ // solhint-disable-next-line var-name-mixedcase bytes32 private _PERMIT_TYPEHASH_DEPRECATED_SLOT; /** * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`. * * It's a good idea to use the same `name` that is defined as the ERC20 token name. */ constructor(string memory name) EIP712(name, "1") {} /** * @inheritdoc IERC20Permit */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual override { require(block.timestamp <= deadline, "ERC20Permit: expired deadline"); bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline)); bytes32 hash = _hashTypedDataV4(structHash); address signer = ECDSA.recover(hash, v, r, s); require(signer == owner, "ERC20Permit: invalid signature"); _approve(owner, spender, value); } /** * @inheritdoc IERC20Permit */ function nonces(address owner) public view virtual override returns (uint256) { return _nonces[owner].current(); } /** * @inheritdoc IERC20Permit */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view override returns (bytes32) { return _domainSeparatorV4(); } /** * @dev "Consume a nonce": return the current value and increment. * * _Available since v4.1._ */ function _useNonce(address owner) internal virtual returns (uint256 current) { Counters.Counter storage nonce = _nonces[owner]; current = nonce.current(); nonce.increment(); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * ==== Security Considerations * * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be * considered as an intention to spend the allowance in any specific way. The second is that because permits have * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be * generally recommended is: * * ```solidity * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public { * try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {} * doThing(..., value); * } * * function doThing(..., uint256 value) public { * token.safeTransferFrom(msg.sender, address(this), value); * ... * } * ``` * * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also * {SafeERC20-safeTransferFrom}). * * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so * contracts should have entry points that don't rely on permit. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. * * CAUTION: See Security Considerations above. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value)); } /** * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value)); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0)); _callOptionalReturn(token, approvalCall); } } /** * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`. * Revert on invalid signature. */ function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token)); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Counters.sol) pragma solidity ^0.8.0; /** * @title Counters * @author Matt Condon (@shrugs) * @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number * of elements in a mapping, issuing ERC721 ids, or counting request ids. * * Include with `using Counters for Counters.Counter;` */ library Counters { struct Counter { // This variable should never be directly accessed by users of the library: interactions must be restricted to // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add // this feature: see https://github.com/ethereum/solidity/issues/4637 uint256 _value; // default: 0 } function current(Counter storage counter) internal view returns (uint256) { return counter._value; } function increment(Counter storage counter) internal { unchecked { counter._value += 1; } } function decrement(Counter storage counter) internal { uint256 value = counter._value; require(value > 0, "Counter: decrement overflow"); unchecked { counter._value = value - 1; } } function reset(Counter storage counter) internal { counter._value = 0; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) { // 32 is the length in bytes of hash, // enforced by the type signature above /// @solidity memory-safe-assembly assembly { mstore(0x00, "\\x19Ethereum Signed Message:\ 32") mstore(0x1c, hash) message := keccak256(0x00, 0x3c) } } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\ ", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, "\\x19\\x01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) data := keccak256(ptr, 0x42) } } /** * @dev Returns an Ethereum Signed Data with intended validator, created from a * `validator` and `data` according to the version 0 of EIP-191. * * See {recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\\x19\\x00", validator, data)); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol) pragma solidity ^0.8.8; import "./ECDSA.sol"; import "../ShortStrings.sol"; import "../../interfaces/IERC5267.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible, * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding * they need in their contracts using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain * separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the * separator from the immutable values, which is cheaper than accessing a cached version in cold storage. * * _Available since v3.4._ * * @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment */ abstract contract EIP712 is IERC5267 { using ShortStrings for *; bytes32 private constant _TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to // invalidate the cached domain separator if the chain id changes. bytes32 private immutable _cachedDomainSeparator; uint256 private immutable _cachedChainId; address private immutable _cachedThis; bytes32 private immutable _hashedName; bytes32 private immutable _hashedVersion; ShortString private immutable _name; ShortString private immutable _version; string private _nameFallback; string private _versionFallback; /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { _name = name.toShortStringWithFallback(_nameFallback); _version = version.toShortStringWithFallback(_versionFallback); _hashedName = keccak256(bytes(name)); _hashedVersion = keccak256(bytes(version)); _cachedChainId = block.chainid; _cachedDomainSeparator = _buildDomainSeparator(); _cachedThis = address(this); } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { if (address(this) == _cachedThis && block.chainid == _cachedChainId) { return _cachedDomainSeparator; } else { return _buildDomainSeparator(); } } function _buildDomainSeparator() private view returns (bytes32) { return keccak256(abi.encode(_TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash); } /** * @dev See {EIP-5267}. * * _Available since v4.9._ */ function eip712Domain() public view virtual override returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ) { return ( hex"0f", // 01111 _name.toStringWithFallback(_nameFallback), _version.toStringWithFallback(_versionFallback), block.chainid, address(this), bytes32(0), new uint256[](0) ); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/ShortStrings.sol) pragma solidity ^0.8.8; import "./StorageSlot.sol"; // | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | // | length | 0x BB | type ShortString is bytes32; /** * @dev This library provides functions to convert short memory strings * into a `ShortString` type that can be used as an immutable variable. * * Strings of arbitrary length can be optimized using this library if * they are short enough (up to 31 bytes) by packing them with their * length (1 byte) in a single EVM word (32 bytes). Additionally, a * fallback mechanism can be used for every other case. * * Usage example: * * ```solidity * contract Named { * using ShortStrings for *; * * ShortString private immutable _name; * string private _nameFallback; * * constructor(string memory contractName) { * _name = contractName.toShortStringWithFallback(_nameFallback); * } * * function name() external view returns (string memory) { * return _name.toStringWithFallback(_nameFallback); * } * } * ``` */ library ShortStrings { // Used as an identifier for strings longer than 31 bytes. bytes32 private constant _FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF; error StringTooLong(string str); error InvalidShortString(); /** * @dev Encode a string of at most 31 chars into a `ShortString`. * * This will trigger a `StringTooLong` error is the input string is too long. */ function toShortString(string memory str) internal pure returns (ShortString) { bytes memory bstr = bytes(str); if (bstr.length > 31) { revert StringTooLong(str); } return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length)); } /** * @dev Decode a `ShortString` back to a "normal" string. */ function toString(ShortString sstr) internal pure returns (string memory) { uint256 len = byteLength(sstr); // using `new string(len)` would work locally but is not memory safe. string memory str = new string(32); /// @solidity memory-safe-assembly assembly { mstore(str, len) mstore(add(str, 0x20), sstr) } return str; } /** * @dev Return the length of a `ShortString`. */ function byteLength(ShortString sstr) internal pure returns (uint256) { uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF; if (result > 31) { revert InvalidShortString(); } return result; } /** * @dev Encode a string into a `ShortString`, or write it to storage if it is too long. */ function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) { if (bytes(value).length < 32) { return toShortString(value); } else { StorageSlot.getStringSlot(store).value = value; return ShortString.wrap(_FALLBACK_SENTINEL); } } /** * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}. */ function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) { if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) { return toString(value); } else { return store; } } /** * @dev Return the length of a string that was encoded to `ShortString` or written to storage using {setWithFallback}. * * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of * actual characters as the UTF-8 encoding of a single character can span over multiple bytes. */ function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) { if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) { return byteLength(value); } else { return bytes(store).length; } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.0; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ```solidity * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._ * _Available since v4.9 for `string`, `bytes`._ */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } /** * @dev Returns an `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; import "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toString(int256 value) internal pure returns (string memory) { return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return keccak256(bytes(a)) == keccak256(bytes(b)); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.4.0; /// @title FixedPoint96 /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format) /// @dev Used in SqrtPriceMath.sol library FixedPoint96 { uint8 internal constant RESOLUTION = 96; uint256 internal constant Q96 = 0x1000000000000000000000000; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Immutable state /// @notice Functions that return immutable state of the router interface IPeripheryImmutableState { /// @return Returns the address of the Uniswap V3 factory function factory() external view returns (address); /// @return Returns the address of WETH9 function WETH9() external view returns (address); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import '@openzeppelin/contracts/access/Ownable.sol'; import '@openzeppelin/contracts/token/ERC20/ERC20.sol'; import '@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol'; import '@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol'; import '@uniswap/v3-periphery/contracts/interfaces/IPeripheryImmutableState.sol'; import './interfaces/ICamelotRouter.sol'; import './interfaces/IDecentralizedIndex.sol'; import './interfaces/IDexAdapter.sol'; import './interfaces/IFlashLoanRecipient.sol'; import './interfaces/IProtocolFeeRouter.sol'; import './interfaces/IRewardsWhitelister.sol'; import './interfaces/ITokenRewards.sol'; import './interfaces/IUniswapV2Router02.sol'; import './StakingPoolToken.sol'; abstract contract DecentralizedIndex is IDecentralizedIndex, ERC20, ERC20Permit { using SafeERC20 for IERC20; uint16 constant DEN = 10000; uint8 constant SWAP_DELAY = 20; // seconds address constant DAI = 0x6B175474E89094C44Da98b954EedeAC495271d0F; IProtocolFeeRouter constant PROTOCOL_FEE_ROUTER = IProtocolFeeRouter(0x7d544DD34ABbE24C8832db27820Ff53C151e949b); IRewardsWhitelister constant REWARDS_WHITELIST = IRewardsWhitelister(0xEc0Eb48d2D638f241c1a7F109e38ef2901E9450F); IV3TwapUtilities constant V3_TWAP_UTILS = IV3TwapUtilities(0x024ff47D552cB222b265D68C7aeB26E586D5229D); uint256 public immutable override FLASH_FEE_AMOUNT_DAI; // 10 DAI address public immutable override PAIRED_LP_TOKEN; IDexAdapter public immutable DEX_HANDLER; address immutable V2_ROUTER; address immutable V3_ROUTER; address immutable WETH; address V2_POOL; IndexType public immutable override indexType; uint256 public immutable override created; address public immutable override lpRewardsToken; address public override lpStakingPool; Config public config; Fees public fees; IndexAssetInfo[] public indexTokens; mapping(address => bool) _isTokenInIndex; mapping(address => uint8) _fundTokenIdx; mapping(address => bool) _blacklist; uint64 _partnerFirstWrapped; uint64 _lastSwap; uint8 _swapping; uint8 _swapAndFeeOn = 1; uint8 _unlocked = 1; bool _initialized; event FlashLoan( address indexed executor, address indexed recipient, address token, uint256 amount ); modifier lock() { require(_unlocked == 1, 'L'); _unlocked = 0; _; _unlocked = 1; } modifier onlyPartner() { require(_msgSender() == config.partner, 'P'); _; } modifier noSwapOrFee() { _swapAndFeeOn = 0; _; _swapAndFeeOn = 1; } constructor( string memory _name, string memory _symbol, IndexType _idxType, Config memory _config, Fees memory _fees, address _pairedLpToken, address _lpRewardsToken, address _dexHandler, bool _stakeRestriction ) ERC20(_name, _symbol) ERC20Permit(_name) { require(_fees.buy <= (uint256(DEN) * 20) / 100); require(_fees.sell <= (uint256(DEN) * 20) / 100); require(_fees.burn <= (uint256(DEN) * 70) / 100); require(_fees.bond <= (uint256(DEN) * 99) / 100); require(_fees.debond <= (uint256(DEN) * 99) / 100); require(_fees.partner <= (uint256(DEN) * 5) / 100); indexType = _idxType; created = block.timestamp; fees = _fees; config = _config; lpRewardsToken = _lpRewardsToken; DEX_HANDLER = IDexAdapter(_dexHandler); address _v2Router = DEX_HANDLER.V2_ROUTER(); V2_ROUTER = _v2Router; V3_ROUTER = DEX_HANDLER.V3_ROUTER(); address _finalPairedLpToken = _pairedLpToken == address(0) ? DAI : _pairedLpToken; PAIRED_LP_TOKEN = _finalPairedLpToken; FLASH_FEE_AMOUNT_DAI = 10 * 10 ** IERC20Metadata(DAI).decimals(); // 10 DAI lpStakingPool = address( new StakingPoolToken( string.concat('Staked ', _name), string.concat('s', _symbol), _finalPairedLpToken, lpRewardsToken, _stakeRestriction ? _msgSender() : address(0), PROTOCOL_FEE_ROUTER, REWARDS_WHITELIST, DEX_HANDLER, V3_TWAP_UTILS ) ); if (!DEX_HANDLER.ASYNC_INITIALIZE()) { _initialize(); } WETH = IUniswapV2Router02(_v2Router).WETH(); emit Create(address(this), _msgSender()); } function initialize() external { _initialize(); } function _initialize() internal { require(!_initialized, 'O'); _initialized = true; address _v2Pool = DEX_HANDLER.getV2Pool(address(this), PAIRED_LP_TOKEN); if (_v2Pool == address(0)) { _v2Pool = DEX_HANDLER.createV2Pool(address(this), PAIRED_LP_TOKEN); } StakingPoolToken(lpStakingPool).setStakingToken(_v2Pool); StakingPoolToken(lpStakingPool).renounceOwnership(); V2_POOL = _v2Pool; emit Initialize(_msgSender(), _v2Pool); } function _transfer( address _from, address _to, uint256 _amount ) internal virtual override { require(!_blacklist[_to], 'BK'); bool _buy = _from == V2_POOL && _to != V2_ROUTER; bool _sell = _to == V2_POOL; uint256 _fee; if (_swapping == 0 && _swapAndFeeOn == 1) { if (_from != V2_POOL) { _processPreSwapFeesAndSwap(); } if (_buy && fees.buy > 0) { _fee = (_amount * fees.buy) / DEN; super._transfer(_from, address(this), _fee); } if (_sell && fees.sell > 0) { _fee = (_amount * fees.sell) / DEN; super._transfer(_from, address(this), _fee); } if (!_buy && !_sell && config.hasTransferTax) { _fee = _amount / 10000; // 0.01% _fee = _fee == 0 && _amount > 0 ? 1 : _fee; super._transfer(_from, address(this), _fee); } } _processBurnFee(_fee); super._transfer(_from, _to, _amount - _fee); } function _processPreSwapFeesAndSwap() internal { bool _passesSwapDelay = block.timestamp > _lastSwap + SWAP_DELAY; if (!_passesSwapDelay) { return; } uint256 _bal = balanceOf(address(this)); if (_bal == 0) { return; } uint256 _lpBal = balanceOf(V2_POOL); uint256 _min = block.chainid == 1 ? _lpBal / 1000 : _lpBal / 4000; // 0.1%/0.025% LP bal uint256 _max = _lpBal / 100; // 1% if (_bal >= _min && _lpBal > 0) { _swapping = 1; _lastSwap = uint64(block.timestamp); uint256 _totalAmt = _bal > _max ? _max : _bal; uint256 _partnerAmt; if ( fees.partner > 0 && config.partner != address(0) && !_blacklist[config.partner] ) { _partnerAmt = (_totalAmt * fees.partner) / DEN; super._transfer(address(this), config.partner, _partnerAmt); } _feeSwap(_totalAmt - _partnerAmt); _swapping = 0; } } function _processBurnFee(uint256 _amtToProcess) internal { if (_amtToProcess == 0 || fees.burn == 0) { return; } _burn(address(this), (_amtToProcess * fees.burn) / DEN); } function _feeSwap(uint256 _amount) internal { _approve(address(this), address(DEX_HANDLER), _amount); address _rewards = StakingPoolToken(lpStakingPool).poolRewards(); uint256 _pairedLpBalBefore = IERC20(PAIRED_LP_TOKEN).balanceOf(_rewards); DEX_HANDLER.swapV2Single( address(this), PAIRED_LP_TOKEN, _amount, 0, _rewards ); if (PAIRED_LP_TOKEN == lpRewardsToken) { uint256 _newPairedLpTkns = IERC20(PAIRED_LP_TOKEN).balanceOf(_rewards) - _pairedLpBalBefore; if (_newPairedLpTkns > 0) { ITokenRewards(_rewards).depositRewardsNoTransfer( PAIRED_LP_TOKEN, _newPairedLpTkns ); } } else if (IERC20(PAIRED_LP_TOKEN).balanceOf(_rewards) > 0) { ITokenRewards(_rewards).depositFromPairedLpToken(0, 0); } } function _transferFromAndValidate( IERC20 _token, address _sender, uint256 _amount ) internal { uint256 _balanceBefore = _token.balanceOf(address(this)); _token.safeTransferFrom(_sender, address(this), _amount); require(_token.balanceOf(address(this)) >= _balanceBefore + _amount, 'TV'); } function _bond() internal { require(_initialized, 'I'); if (_partnerFirstWrapped == 0 && _msgSender() == config.partner) { _partnerFirstWrapped = uint64(block.timestamp); } } function _canWrapFeeFree(address _wrapper) internal view returns (bool) { return _isFirstIn() || (_wrapper == config.partner && _partnerFirstWrapped == 0 && block.timestamp <= created + 7 days); } function _isFirstIn() internal view returns (bool) { return totalSupply() == 0; } function _isLastOut(uint256 _debondAmount) internal view returns (bool) { return _debondAmount >= (totalSupply() * 98) / 100; } function processPreSwapFeesAndSwap() external override { require(_msgSender() == StakingPoolToken(lpStakingPool).poolRewards(), 'R'); _processPreSwapFeesAndSwap(); } function partner() external view override returns (address) { return config.partner; } function BOND_FEE() external view override returns (uint16) { return fees.bond; } function DEBOND_FEE() external view override returns (uint16) { return fees.debond; } function isAsset(address _token) public view override returns (bool) { return _isTokenInIndex[_token]; } function getAllAssets() external view override returns (IndexAssetInfo[] memory) { return indexTokens; } function burn(uint256 _amount) external lock { _burn(_msgSender(), _amount); } function manualProcessFee(uint256 _slip) external { _transfer(address(this), address(this), 0); address _rewards = StakingPoolToken(lpStakingPool).poolRewards(); ITokenRewards(_rewards).depositFromPairedLpToken( 0, _slip > 50 ? 50 : _slip // 5% max ); } function addLiquidityV2( uint256 _idxLPTokens, uint256 _pairedLPTokens, uint256 _slippage, // 100 == 10%, 1000 == 100% uint256 _deadline ) external override lock noSwapOrFee returns (uint256) { uint256 _idxTokensBefore = balanceOf(address(this)); uint256 _pairedBefore = IERC20(PAIRED_LP_TOKEN).balanceOf(address(this)); super._transfer(_msgSender(), address(this), _idxLPTokens); _approve(address(this), V2_ROUTER, _idxLPTokens); IERC20(PAIRED_LP_TOKEN).safeTransferFrom( _msgSender(), address(this), _pairedLPTokens ); IERC20(PAIRED_LP_TOKEN).safeIncreaseAllowance(V2_ROUTER, _pairedLPTokens); (, , uint256 _liquidity) = IUniswapV2Router02(V2_ROUTER).addLiquidity( address(this), PAIRED_LP_TOKEN, _idxLPTokens, _pairedLPTokens, (_idxLPTokens * (1000 - _slippage)) / 1000, (_pairedLPTokens * (1000 - _slippage)) / 1000, _msgSender(), _deadline ); IERC20(PAIRED_LP_TOKEN).safeApprove(V2_ROUTER, 0); // check & refund excess tokens from LPing if (balanceOf(address(this)) > _idxTokensBefore) { super._transfer( address(this), _msgSender(), balanceOf(address(this)) - _idxTokensBefore ); } if (IERC20(PAIRED_LP_TOKEN).balanceOf(address(this)) > _pairedBefore) { IERC20(PAIRED_LP_TOKEN).safeTransfer( _msgSender(), IERC20(PAIRED_LP_TOKEN).balanceOf(address(this)) - _pairedBefore ); } emit AddLiquidity(_msgSender(), _idxLPTokens, _pairedLPTokens); return _liquidity; } function removeLiquidityV2( uint256 _lpTokens, uint256 _minIdxTokens, // 0 == 100% slippage uint256 _minPairedLpToken, // 0 == 100% slippage uint256 _deadline ) external override lock noSwapOrFee { _lpTokens = _lpTokens == 0 ? IERC20(V2_POOL).balanceOf(_msgSender()) : _lpTokens; require(_lpTokens > 0, 'LT'); IERC20(V2_POOL).safeTransferFrom(_msgSender(), address(this), _lpTokens); IERC20(V2_POOL).safeIncreaseAllowance(V2_ROUTER, _lpTokens); IUniswapV2Router02(V2_ROUTER).removeLiquidity( address(this), PAIRED_LP_TOKEN, _lpTokens, _minIdxTokens, _minPairedLpToken, _msgSender(), _deadline ); emit RemoveLiquidity(_msgSender(), _lpTokens); } function flash( address _recipient, address _token, uint256 _amount, bytes calldata _data ) external override lock { require(_isTokenInIndex[_token], 'X'); address _rewards = StakingPoolToken(lpStakingPool).poolRewards(); address _feeRecipient = lpRewardsToken == DAI ? address(this) : PAIRED_LP_TOKEN == DAI ? _rewards : Ownable(address(V3_TWAP_UTILS)).owner(); IERC20(DAI).safeTransferFrom( _msgSender(), _feeRecipient, FLASH_FEE_AMOUNT_DAI ); if (lpRewardsToken == DAI) { IERC20(DAI).safeIncreaseAllowance(_rewards, FLASH_FEE_AMOUNT_DAI); ITokenRewards(_rewards).depositRewards(DAI, FLASH_FEE_AMOUNT_DAI); } uint256 _balance = IERC20(_token).balanceOf(address(this)); IERC20(_token).safeTransfer(_recipient, _amount); IFlashLoanRecipient(_recipient).callback(_data); require(IERC20(_token).balanceOf(address(this)) >= _balance, 'FA'); emit FlashLoan(_msgSender(), _recipient, _token, _amount); } function setPartner(address _partner) external onlyPartner { config.partner = _partner; emit SetPartner(_msgSender(), _partner); } function setPartnerFee(uint16 _fee) external onlyPartner { require(_fee < fees.partner, 'L'); fees.partner = _fee; emit SetPartnerFee(_msgSender(), _fee); } function rescueERC20(address _token) external lock { // cannot withdraw tokens/assets that belong to the index require(!isAsset(_token) && _token != address(this), 'U'); IERC20(_token).safeTransfer( Ownable(address(V3_TWAP_UTILS)).owner(), IERC20(_token).balanceOf(address(this)) ); } function rescueETH() external lock { require(address(this).balance > 0, 'E'); (bool _sent, ) = Ownable(address(V3_TWAP_UTILS)).owner().call{ value: address(this).balance }(''); require(_sent, 'S'); } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.2; interface ICamelotRouter { function factory() external view returns (address); function swapExactTokensForTokensSupportingFeeOnTransferTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, address referrer, uint deadline ) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import '@openzeppelin/contracts/token/ERC20/IERC20.sol'; interface IDecentralizedIndex is IERC20 { enum IndexType { WEIGHTED, UNWEIGHTED } struct Config { address partner; bool hasTransferTax; bool blacklistTKNpTKNPoolV2; } // all fees: 1 == 0.01%, 10 == 0.1%, 100 == 1% struct Fees { uint16 burn; uint16 bond; uint16 debond; uint16 buy; uint16 sell; uint16 partner; } struct IndexAssetInfo { address token; uint256 weighting; uint256 basePriceUSDX96; address c1; // arbitrary contract/address field we can use for an index uint256 q1; // arbitrary quantity/number field we can use for an index } event Create(address indexed newIdx, address indexed wallet); event Initialize(address indexed wallet, address v2Pool); event Bond( address indexed wallet, address indexed token, uint256 amountTokensBonded, uint256 amountTokensMinted ); event Debond(address indexed wallet, uint256 amountDebonded); event AddLiquidity( address indexed wallet, uint256 amountTokens, uint256 amountDAI ); event RemoveLiquidity(address indexed wallet, uint256 amountLiquidity); event SetPartner(address indexed wallet, address newPartner); event SetPartnerFee(address indexed wallet, uint16 newFee); function BOND_FEE() external view returns (uint16); function DEBOND_FEE() external view returns (uint16); function FLASH_FEE_AMOUNT_DAI() external view returns (uint256); function PAIRED_LP_TOKEN() external view returns (address); function indexType() external view returns (IndexType); function created() external view returns (uint256); function lpStakingPool() external view returns (address); function lpRewardsToken() external view returns (address); function partner() external view returns (address); function getIdxPriceUSDX96() external view returns (uint256, uint256); function isAsset(address token) external view returns (bool); function getAllAssets() external view returns (IndexAssetInfo[] memory); function getInitialAmount( address sToken, uint256 sAmount, address tToken ) external view returns (uint256); function getTokenPriceUSDX96(address token) external view returns (uint256); function processPreSwapFeesAndSwap() external; function bond(address token, uint256 amount, uint256 amountMintMin) external; function debond( uint256 amount, address[] memory token, uint8[] memory percentage ) external; function addLiquidityV2( uint256 idxTokens, uint256 daiTokens, uint256 slippage, uint256 deadline ) external returns (uint256); function removeLiquidityV2( uint256 lpTokens, uint256 minTokens, uint256 minDAI, uint256 deadline ) external; function flash( address recipient, address token, uint256 amount, bytes calldata data ) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.19; interface IDexAdapter { function ASYNC_INITIALIZE() external view returns (bool); function V2_ROUTER() external view returns (address); function V3_ROUTER() external view returns (address); function getV3Pool( address _token0, address _token1, uint24 _poolFee ) external view returns (address _pool); function getV2Pool( address _token0, address _token1 ) external view returns (address _pool); function createV2Pool( address _token0, address _token1 ) external returns (address _pool); function swapV2Single( address _tokenIn, address _tokenOut, uint256 _amountIn, uint256 _amountOutMin, address _recipient ) external returns (uint256 _amountOut); function swapV3Single( address _tokenIn, address _tokenOut, uint24 _fee, uint256 _amountIn, uint256 _amountOutMin, address _recipient ) external returns (uint256 _amountOut); function addLiquidity( address tokenA, address tokenB, uint256 amountADesired, uint256 amountBDesired, uint256 amountAMin, uint256 amountBMin, address to, uint256 deadline ) external; function removeLiquidity( address tokenA, address tokenB, uint256 liquidity, uint256 amountAMin, uint256 amountBMin, address to, uint256 deadline ) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.19; interface IFlashLoanRecipient { function callback(bytes calldata data) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import '@openzeppelin/contracts/token/ERC20/IERC20.sol'; interface IPEAS is IERC20 { event Burn(address indexed user, uint256 amount); function burn(uint256 amount) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import './IProtocolFees.sol'; interface IProtocolFeeRouter { function protocolFees() external view returns (IProtocolFees); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.19; interface IProtocolFees { event SetYieldAdmin(uint256 newFee); event SetYieldBurn(uint256 newFee); function DEN() external view returns (uint256); function yieldAdmin() external view returns (uint256); function yieldBurn() external view returns (uint256); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.19; interface IRewardsWhitelister { function whitelist(address token) external view returns (bool); function getFullWhitelist() external view returns (address[] memory); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.19; interface IStakingPoolToken { event Stake(address indexed executor, address indexed user, uint256 amount); event Unstake(address indexed user, uint256 amount); function indexFund() external view returns (address); function stakingToken() external view returns (address); function poolRewards() external view returns (address); function stakeUserRestriction() external view returns (address); function stake(address user, uint256 amount) external; function unstake(uint256 amount) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.19; interface ITokenRewards { event AddShares(address indexed wallet, uint256 amount); event RemoveShares(address indexed wallet, uint256 amount); event ClaimReward(address indexed wallet); event DistributeReward( address indexed wallet, address indexed token, uint256 amount ); event DepositRewards( address indexed wallet, address indexed token, uint256 amount ); function totalShares() external view returns (uint256); function totalStakers() external view returns (uint256); function rewardsToken() external view returns (address); function trackingToken() external view returns (address); function depositFromPairedLpToken( uint256 amount, uint256 slippageOverride ) external; function depositRewards(address token, uint256 amount) external; function depositRewardsNoTransfer(address token, uint256 amount) external; function claimReward(address wallet) external; function setShares( address wallet, uint256 amount, bool sharesRemoving ) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.19; interface IUniswapV2Pair { function token0() external view returns (address); function token1() external view returns (address); function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.19; interface IUniswapV2Router02 { function factory() external view returns (address); function WETH() external view returns (address); function addLiquidity( address tokenA, address tokenB, uint amountADesired, uint amountBDesired, uint amountAMin, uint amountBMin, address to, uint deadline ) external returns (uint amountA, uint amountB, uint liquidity); function removeLiquidity( address tokenA, address tokenB, uint liquidity, uint amountAMin, uint amountBMin, address to, uint deadline ) external returns (uint amountA, uint amountB); function swapETHForExactTokens( uint256 amountOut, address[] calldata path, address to, uint256 deadline ) external payable returns (uint256[] memory amounts); function swapExactTokensForTokensSupportingFeeOnTransferTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.19; interface IV3TwapUtilities { function getV3Pool( address v3Factory, address token0, address token1 ) external view returns (address); function getV3Pool( address v3Factory, address token0, address token1, uint24 poolFee ) external view returns (address); function getV3Pool( address v3Factory, address token0, address token1, int24 tickSpacing ) external view returns (address); function getPoolPriceUSDX96( address pricePool, address nativeStablePool, address WETH9 ) external view returns (uint256); function sqrtPriceX96FromPoolAndInterval( address pool ) external view returns (uint160); function priceX96FromSqrtPriceX96( uint160 sqrtPriceX96 ) external pure returns (uint256); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.19; // ---------------------------------------------------------------------------- // BokkyPooBah's DateTime Library v1.00 // // A gas-efficient Solidity date and time library // // https://github.com/bokkypoobah/BokkyPooBahsDateTimeLibrary // // Tested date range 1970/01/01 to 2345/12/31 // // Conventions: // Unit | Range | Notes // :-------- |:-------------:|:----- // timestamp | >= 0 | Unix timestamp, number of seconds since 1970/01/01 00:00:00 UTC // year | 1970 ... 2345 | // month | 1 ... 12 | // day | 1 ... 31 | // hour | 0 ... 23 | // minute | 0 ... 59 | // second | 0 ... 59 | // dayOfWeek | 1 ... 7 | 1 = Monday, ..., 7 = Sunday // // // Enjoy. (c) BokkyPooBah / Bok Consulting Pty Ltd 2018. // // GNU Lesser General Public License 3.0 // https://www.gnu.org/licenses/lgpl-3.0.en.html // ---------------------------------------------------------------------------- library BokkyPooBahsDateTimeLibrary { uint constant SECONDS_PER_DAY = 24 * 60 * 60; int constant OFFSET19700101 = 2440588; // ------------------------------------------------------------------------ // Calculate year/month/day from the number of days since 1970/01/01 using // the date conversion algorithm from // http://aa.usno.navy.mil/faq/docs/JD_Formula.php // and adding the offset 2440588 so that 1970/01/01 is day 0 // // int L = days + 68569 + offset // int N = 4 * L / 146097 // L = L - (146097 * N + 3) / 4 // year = 4000 * (L + 1) / 1461001 // L = L - 1461 * year / 4 + 31 // month = 80 * L / 2447 // dd = L - 2447 * month / 80 // L = month / 11 // month = month + 2 - 12 * L // year = 100 * (N - 49) + year + L // ------------------------------------------------------------------------ function _daysToDate( uint _days ) internal pure returns (uint year, uint month, uint day) { int __days = int(_days); int L = __days + 68569 + OFFSET19700101; int N = (4 * L) / 146097; L = L - (146097 * N + 3) / 4; int _year = (4000 * (L + 1)) / 1461001; L = L - (1461 * _year) / 4 + 31; int _month = (80 * L) / 2447; int _day = L - (2447 * _month) / 80; L = _month / 11; _month = _month + 2 - 12 * L; _year = 100 * (N - 49) + _year + L; year = uint(_year); month = uint(_month); day = uint(_day); } function timestampToDate( uint timestamp ) internal pure returns (uint year, uint month, uint day) { (year, month, day) = _daysToDate(timestamp / SECONDS_PER_DAY); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import '@openzeppelin/contracts/access/Ownable.sol'; import '@openzeppelin/contracts/token/ERC20/ERC20.sol'; import '@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol'; import './interfaces/IDexAdapter.sol'; import './interfaces/IRewardsWhitelister.sol'; import './interfaces/IProtocolFeeRouter.sol'; import './interfaces/IStakingPoolToken.sol'; import './TokenRewards.sol'; contract StakingPoolToken is IStakingPoolToken, ERC20, Ownable { using SafeERC20 for IERC20; address public immutable override indexFund; address public immutable override poolRewards; address public override stakeUserRestriction; address public override stakingToken; modifier onlyRestricted() { require(_msgSender() == stakeUserRestriction, 'R'); _; } constructor( string memory _name, string memory _symbol, address _pairedLpToken, address _rewardsToken, address _stakeUserRestriction, IProtocolFeeRouter _feeRouter, IRewardsWhitelister _rewardsWhitelist, IDexAdapter _dexHandler, IV3TwapUtilities _v3TwapUtilities ) ERC20(_name, _symbol) { indexFund = _msgSender(); stakeUserRestriction = _stakeUserRestriction; poolRewards = address( new TokenRewards( _feeRouter, _rewardsWhitelist, _dexHandler, _v3TwapUtilities, indexFund, _pairedLpToken, address(this), _rewardsToken ) ); } function stake(address _user, uint256 _amount) external override { require(stakingToken != address(0), 'I'); if (stakeUserRestriction != address(0)) { require(_user == stakeUserRestriction, 'U'); } _mint(_user, _amount); IERC20(stakingToken).safeTransferFrom(_msgSender(), address(this), _amount); emit Stake(_msgSender(), _user, _amount); } function unstake(uint256 _amount) external override { _burn(_msgSender(), _amount); IERC20(stakingToken).safeTransfer(_msgSender(), _amount); emit Unstake(_msgSender(), _amount); } function setStakingToken(address _stakingToken) external onlyOwner { require(stakingToken == address(0), 'S'); stakingToken = _stakingToken; } function removeStakeUserRestriction() external onlyRestricted { stakeUserRestriction = address(0); } function setStakeUserRestriction(address _user) external onlyRestricted { stakeUserRestriction = _user; } function _afterTokenTransfer( address _from, address _to, uint256 _amount ) internal override { if (_from != address(0) && _from != address(0xdead)) { TokenRewards(poolRewards).setShares(_from, _amount, true); } if (_to != address(0) && _to != address(0xdead)) { TokenRewards(poolRewards).setShares(_to, _amount, false); } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import '@openzeppelin/contracts/access/Ownable.sol'; import '@openzeppelin/contracts/token/ERC20/IERC20.sol'; import '@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol'; import '@openzeppelin/contracts/utils/Context.sol'; import '@uniswap/v3-core/contracts/libraries/FixedPoint96.sol'; import './interfaces/IDecentralizedIndex.sol'; import './interfaces/IDexAdapter.sol'; import './interfaces/IPEAS.sol'; import './interfaces/IRewardsWhitelister.sol'; import './interfaces/IProtocolFees.sol'; import './interfaces/IProtocolFeeRouter.sol'; import './interfaces/ITokenRewards.sol'; import './interfaces/IV3TwapUtilities.sol'; import './libraries/BokkyPooBahsDateTimeLibrary.sol'; contract TokenRewards is ITokenRewards, Context { using SafeERC20 for IERC20; uint256 constant PRECISION = 10 ** 36; uint24 constant REWARDS_POOL_FEE = 10000; // 1% address immutable INDEX_FUND; address immutable PAIRED_LP_TOKEN; IProtocolFeeRouter immutable PROTOCOL_FEE_ROUTER; IRewardsWhitelister immutable REWARDS_WHITELISTER; IDexAdapter immutable DEX_HANDLER; IV3TwapUtilities immutable V3_TWAP_UTILS; struct Reward { uint256 excluded; uint256 realized; } address public immutable override trackingToken; address public immutable override rewardsToken; // main rewards token uint256 public override totalShares; uint256 public override totalStakers; mapping(address => uint256) public shares; // reward token => user => Reward mapping(address => mapping(address => Reward)) public rewards; uint256 _rewardsSwapSlippage = 20; // 2% // reward token => amount mapping(address => uint256) _rewardsPerShare; // reward token => amount mapping(address => uint256) public rewardsDistributed; // reward token => amount mapping(address => uint256) public rewardsDeposited; // reward token => month => amount mapping(address => mapping(uint256 => uint256)) public rewardsDepMonthly; // all deposited rewards tokens address[] _allRewardsTokens; mapping(address => bool) _depositedRewardsToken; constructor( IProtocolFeeRouter _feeRouter, IRewardsWhitelister _rewardsWhitelist, IDexAdapter _dexHandler, IV3TwapUtilities _v3TwapUtilities, address _indexFund, address _pairedLpToken, address _trackingToken, address _rewardsToken ) { PROTOCOL_FEE_ROUTER = _feeRouter; REWARDS_WHITELISTER = _rewardsWhitelist; DEX_HANDLER = _dexHandler; V3_TWAP_UTILS = _v3TwapUtilities; INDEX_FUND = _indexFund; PAIRED_LP_TOKEN = _pairedLpToken; trackingToken = _trackingToken; rewardsToken = _rewardsToken; } function setShares( address _wallet, uint256 _amount, bool _sharesRemoving ) external override { require(_msgSender() == trackingToken, 'UNAUTHORIZED'); _setShares(_wallet, _amount, _sharesRemoving); } function _setShares( address _wallet, uint256 _amount, bool _sharesRemoving ) internal { _processFeesIfApplicable(); if (_sharesRemoving) { _removeShares(_wallet, _amount); emit RemoveShares(_wallet, _amount); } else { _addShares(_wallet, _amount); emit AddShares(_wallet, _amount); } } function _addShares(address _wallet, uint256 _amount) internal { if (shares[_wallet] > 0) { _distributeReward(_wallet); } uint256 sharesBefore = shares[_wallet]; totalShares += _amount; shares[_wallet] += _amount; if (sharesBefore == 0 && shares[_wallet] > 0) { totalStakers++; } _resetExcluded(_wallet); } function _removeShares(address _wallet, uint256 _amount) internal { require(shares[_wallet] > 0 && _amount <= shares[_wallet], 'RE'); _distributeReward(_wallet); totalShares -= _amount; shares[_wallet] -= _amount; if (shares[_wallet] == 0) { totalStakers--; } _resetExcluded(_wallet); } function _processFeesIfApplicable() internal { IDecentralizedIndex(INDEX_FUND).processPreSwapFeesAndSwap(); } function depositFromPairedLpToken( uint256 _amountTknDepositing, uint256 _slippageOverride ) public override { require(PAIRED_LP_TOKEN != rewardsToken, 'R'); require(_slippageOverride <= 200, 'MS'); // 20% if (_amountTknDepositing > 0) { IERC20(PAIRED_LP_TOKEN).safeTransferFrom( _msgSender(), address(this), _amountTknDepositing ); } uint256 _amountTkn = IERC20(PAIRED_LP_TOKEN).balanceOf(address(this)); require(_amountTkn > 0, 'A'); uint256 _adminAmt = _getAdminFeeFromAmount(_amountTkn); _amountTkn -= _adminAmt; (address _token0, address _token1) = PAIRED_LP_TOKEN < rewardsToken ? (PAIRED_LP_TOKEN, rewardsToken) : (rewardsToken, PAIRED_LP_TOKEN); address _pool = DEX_HANDLER.getV3Pool(_token0, _token1, REWARDS_POOL_FEE); uint160 _rewardsSqrtPriceX96 = V3_TWAP_UTILS .sqrtPriceX96FromPoolAndInterval(_pool); uint256 _rewardsPriceX96 = V3_TWAP_UTILS.priceX96FromSqrtPriceX96( _rewardsSqrtPriceX96 ); uint256 _amountOut = _token0 == PAIRED_LP_TOKEN ? (_rewardsPriceX96 * _amountTkn) / FixedPoint96.Q96 : (_amountTkn * FixedPoint96.Q96) / _rewardsPriceX96; uint256 _slippage = _slippageOverride > 0 ? _slippageOverride : _rewardsSwapSlippage; _swapForRewards( _amountTkn, _amountOut, _slippage, _slippageOverride > 0, _adminAmt ); } function depositRewards(address _token, uint256 _amount) external override { _depositRewardsFromToken(_msgSender(), _token, _amount, true); } function depositRewardsNoTransfer( address _token, uint256 _amount ) external override { require(_msgSender() == INDEX_FUND, 'AUTH'); _depositRewardsFromToken(_msgSender(), _token, _amount, false); } function _depositRewardsFromToken( address _user, address _token, uint256 _amount, bool _shouldTransfer ) internal { require(_amount > 0, 'A'); require(_isValidRewardsToken(_token), 'V'); uint256 _finalAmt = _amount; if (_shouldTransfer) { uint256 _balBefore = IERC20(_token).balanceOf(address(this)); IERC20(_token).safeTransferFrom(_user, address(this), _finalAmt); _finalAmt = IERC20(_token).balanceOf(address(this)) - _balBefore; } uint256 _adminAmt = _getAdminFeeFromAmount(_finalAmt); if (_adminAmt > 0) { IERC20(_token).safeTransfer( Ownable(address(V3_TWAP_UTILS)).owner(), _adminAmt ); _finalAmt -= _adminAmt; } _depositRewards(_token, _finalAmt); } function _depositRewards(address _token, uint256 _amountTotal) internal { if (!_depositedRewardsToken[_token]) { _depositedRewardsToken[_token] = true; _allRewardsTokens.push(_token); } if (_amountTotal == 0) { return; } if (totalShares == 0) { require(_token == rewardsToken, 'R'); _burnRewards(_amountTotal); return; } uint256 _depositAmount = _amountTotal; if (_token == rewardsToken) { (, uint256 _yieldBurnFee) = _getYieldFees(); if (_yieldBurnFee > 0) { uint256 _burnAmount = (_amountTotal * _yieldBurnFee) / PROTOCOL_FEE_ROUTER.protocolFees().DEN(); if (_burnAmount > 0) { _burnRewards(_burnAmount); _depositAmount -= _burnAmount; } } } rewardsDeposited[_token] += _depositAmount; rewardsDepMonthly[_token][ beginningOfMonth(block.timestamp) ] += _depositAmount; _rewardsPerShare[_token] += (PRECISION * _depositAmount) / totalShares; emit DepositRewards(_msgSender(), _token, _depositAmount); } function _distributeReward(address _wallet) internal { if (shares[_wallet] == 0) { return; } for (uint256 _i; _i < _allRewardsTokens.length; _i++) { address _token = _allRewardsTokens[_i]; uint256 _amount = getUnpaid(_token, _wallet); rewards[_token][_wallet].realized += _amount; rewards[_token][_wallet].excluded = _cumulativeRewards( _token, shares[_wallet] ); if (_amount > 0) { rewardsDistributed[_token] += _amount; IERC20(_token).safeTransfer(_wallet, _amount); emit DistributeReward(_wallet, _token, _amount); } } } function _resetExcluded(address _wallet) internal { for (uint256 _i; _i < _allRewardsTokens.length; _i++) { address _token = _allRewardsTokens[_i]; rewards[_token][_wallet].excluded = _cumulativeRewards( _token, shares[_wallet] ); } } function _burnRewards(uint256 _burnAmount) internal { try IPEAS(rewardsToken).burn(_burnAmount) {} catch { IERC20(rewardsToken).safeTransfer(address(0xdead), _burnAmount); } } function _isValidRewardsToken(address _token) internal view returns (bool) { return _token == rewardsToken || REWARDS_WHITELISTER.whitelist(_token); } function _getAdminFeeFromAmount( uint256 _amount ) internal view returns (uint256) { (uint256 _yieldAdminFee, ) = _getYieldFees(); if (_yieldAdminFee == 0) { return 0; } return (_amount * _yieldAdminFee) / PROTOCOL_FEE_ROUTER.protocolFees().DEN(); } function _getYieldFees() internal view returns (uint256 _admin, uint256 _burn) { IProtocolFees _fees = PROTOCOL_FEE_ROUTER.protocolFees(); if (address(_fees) != address(0)) { _admin = _fees.yieldAdmin(); _burn = _fees.yieldBurn(); } } function _swapForRewards( uint256 _amountIn, uint256 _amountOut, uint256 _slippage, bool _isSlipOverride, uint256 _adminAmt ) internal { uint256 _balBefore = IERC20(rewardsToken).balanceOf(address(this)); IERC20(PAIRED_LP_TOKEN).safeIncreaseAllowance( address(DEX_HANDLER), _amountIn ); try DEX_HANDLER.swapV3Single( PAIRED_LP_TOKEN, rewardsToken, REWARDS_POOL_FEE, _amountIn, (_amountOut * (1000 - _slippage)) / 1000, address(this) ) { if (_adminAmt > 0) { IERC20(PAIRED_LP_TOKEN).safeTransfer( Ownable(address(V3_TWAP_UTILS)).owner(), _adminAmt ); } _rewardsSwapSlippage = 20; _depositRewards( rewardsToken, IERC20(rewardsToken).balanceOf(address(this)) - _balBefore ); } catch { if (!_isSlipOverride && _rewardsSwapSlippage < 200) { _rewardsSwapSlippage += 10; } IERC20(PAIRED_LP_TOKEN).safeDecreaseAllowance( address(DEX_HANDLER), _amountIn ); } } function beginningOfMonth(uint256 _timestamp) public pure returns (uint256) { (, , uint256 _dayOfMonth) = BokkyPooBahsDateTimeLibrary.timestampToDate( _timestamp ); return _timestamp - ((_dayOfMonth - 1) * 1 days) - (_timestamp % 1 days); } function claimReward(address _wallet) external override { _distributeReward(_wallet); emit ClaimReward(_wallet); } function getUnpaid( address _token, address _wallet ) public view returns (uint256) { if (shares[_wallet] == 0) { return 0; } uint256 earnedRewards = _cumulativeRewards(_token, shares[_wallet]); uint256 rewardsExcluded = rewards[_token][_wallet].excluded; if (earnedRewards <= rewardsExcluded) { return 0; } return earnedRewards - rewardsExcluded; } function _cumulativeRewards( address _token, uint256 _share ) internal view returns (uint256) { return (_share * _rewardsPerShare[_token]) / PRECISION; } } // https://peapods.finance // SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import '@uniswap/v3-core/contracts/libraries/FixedPoint96.sol'; import './interfaces/IUniswapV2Pair.sol'; import './interfaces/IV3TwapUtilities.sol'; import './DecentralizedIndex.sol'; contract WeightedIndex is DecentralizedIndex { using SafeERC20 for IERC20; uint256 _totalWeights; constructor( string memory _name, string memory _symbol, Config memory _config, Fees memory _fees, address[] memory _tokens, uint256[] memory _weights, address _pairedLpToken, address _lpRewardsToken, address _dexHandler, bool _stakeRestriction ) DecentralizedIndex( _name, _symbol, IndexType.WEIGHTED, _config, _fees, _pairedLpToken, _lpRewardsToken, _dexHandler, _stakeRestriction ) { require(_tokens.length == _weights.length, 'V'); uint256 _tl = _tokens.length; for (uint8 _i; _i < _tl; _i++) { require(!_isTokenInIndex[_tokens[_i]], 'D'); require(_weights[_i] > 0, 'W'); indexTokens.push( IndexAssetInfo({ token: _tokens[_i], basePriceUSDX96: 0, weighting: _weights[_i], c1: address(0), q1: 0 // amountsPerIdxTokenX96 }) ); _totalWeights += _weights[_i]; _fundTokenIdx[_tokens[_i]] = _i; _isTokenInIndex[_tokens[_i]] = true; if (_config.blacklistTKNpTKNPoolV2 && _tokens[_i] != _pairedLpToken) { address _blkPool = IDexAdapter(_dexHandler).createV2Pool( address(this), _tokens[_i] ); _blacklist[_blkPool] = true; } } // at idx == 0, need to find X in [1/X = tokenWeightAtIdx/totalWeights] // at idx > 0, need to find Y in (Y/X = tokenWeightAtIdx/totalWeights) uint256 _xX96 = (FixedPoint96.Q96 * _totalWeights) / _weights[0]; for (uint256 _i; _i < _tl; _i++) { indexTokens[_i].q1 = (_weights[_i] * _xX96 * 10 ** IERC20Metadata(_tokens[_i]).decimals()) / _totalWeights; } } function _getNativePriceUSDX96() internal view returns (uint256) { IUniswapV2Pair _nativeStablePool = IUniswapV2Pair( DEX_HANDLER.getV2Pool(DAI, WETH) ); address _token0 = _nativeStablePool.token0(); (uint8 _decimals0, uint8 _decimals1) = ( IERC20Metadata(_token0).decimals(), IERC20Metadata(_nativeStablePool.token1()).decimals() ); (uint112 _res0, uint112 _res1, ) = _nativeStablePool.getReserves(); return _token0 == DAI ? (FixedPoint96.Q96 * _res0 * 10 ** _decimals1) / _res1 / 10 ** _decimals0 : (FixedPoint96.Q96 * _res1 * 10 ** _decimals0) / _res0 / 10 ** _decimals1; } function _getTokenPriceUSDX96( address _token ) internal view returns (uint256) { if (_token == WETH) { return _getNativePriceUSDX96(); } IUniswapV2Pair _pool = IUniswapV2Pair(DEX_HANDLER.getV2Pool(_token, WETH)); address _token0 = _pool.token0(); uint8 _decimals0 = IERC20Metadata(_token0).decimals(); uint8 _decimals1 = IERC20Metadata(_pool.token1()).decimals(); (uint112 _res0, uint112 _res1, ) = _pool.getReserves(); uint256 _nativePriceUSDX96 = _getNativePriceUSDX96(); return _token0 == WETH ? (_nativePriceUSDX96 * _res0 * 10 ** _decimals1) / _res1 / 10 ** _decimals0 : (_nativePriceUSDX96 * _res1 * 10 ** _decimals0) / _res0 / 10 ** _decimals1; } function bond( address _token, uint256 _amount, uint256 _amountMintMin ) external override lock noSwapOrFee { require(_isTokenInIndex[_token], 'IT'); uint256 _tokenIdx = _fundTokenIdx[_token]; uint256 _tokenCurSupply = IERC20(_token).balanceOf(address(this)); bool _firstIn = _isFirstIn(); uint256 _tokenAmtSupplyRatioX96 = _firstIn ? FixedPoint96.Q96 : (_amount * FixedPoint96.Q96) / _tokenCurSupply; uint256 _tokensMinted; if (_firstIn) { _tokensMinted = (_amount * FixedPoint96.Q96 * 10 ** decimals()) / indexTokens[_tokenIdx].q1; } else { _tokensMinted = (totalSupply() * _tokenAmtSupplyRatioX96) / FixedPoint96.Q96; } uint256 _feeTokens = _canWrapFeeFree(_msgSender()) ? 0 : (_tokensMinted * fees.bond) / DEN; require(_tokensMinted - _feeTokens >= _amountMintMin, 'M'); _mint(_msgSender(), _tokensMinted - _feeTokens); if (_feeTokens > 0) { _mint(address(this), _feeTokens); _processBurnFee(_feeTokens); } uint256 _il = indexTokens.length; for (uint256 _i; _i < _il; _i++) { uint256 _transferAmt = _firstIn ? getInitialAmount(_token, _amount, indexTokens[_i].token) : (IERC20(indexTokens[_i].token).balanceOf(address(this)) * _tokenAmtSupplyRatioX96) / FixedPoint96.Q96; _transferFromAndValidate( IERC20(indexTokens[_i].token), _msgSender(), _transferAmt ); } _bond(); emit Bond(_msgSender(), _token, _amount, _tokensMinted); } function debond( uint256 _amount, address[] memory, uint8[] memory ) external override lock noSwapOrFee { uint256 _amountAfterFee = _isLastOut(_amount) ? _amount : (_amount * (DEN - fees.debond)) / DEN; uint256 _percAfterFeeX96 = (_amountAfterFee * FixedPoint96.Q96) / totalSupply(); super._transfer(_msgSender(), address(this), _amount); _burn(address(this), _amountAfterFee); _processBurnFee(_amount - _amountAfterFee); uint256 _il = indexTokens.length; for (uint256 _i; _i < _il; _i++) { uint256 _tokenSupply = IERC20(indexTokens[_i].token).balanceOf( address(this) ); uint256 _debondAmount = (_tokenSupply * _percAfterFeeX96) / FixedPoint96.Q96; if (_debondAmount > 0) { IERC20(indexTokens[_i].token).safeTransfer(_msgSender(), _debondAmount); } } // an arbitrage path of buy pTKN > debond > sell TKN does not trigger rewards // so let's trigger processing here at debond to keep things moving along _processPreSwapFeesAndSwap(); emit Debond(_msgSender(), _amount); } function getInitialAmount( address _sourceToken, uint256 _sourceAmount, address _targetToken ) public view override returns (uint256) { uint256 _sourceTokenIdx = _fundTokenIdx[_sourceToken]; uint256 _targetTokenIdx = _fundTokenIdx[_targetToken]; return (_sourceAmount * indexTokens[_targetTokenIdx].weighting * 10 ** IERC20Metadata(_targetToken).decimals()) / indexTokens[_sourceTokenIdx].weighting / 10 ** IERC20Metadata(_sourceToken).decimals(); } /// @notice This is used as a frontend helper but is NOT safe to be used as an oracle. function getTokenPriceUSDX96( address _token ) external view override returns (uint256) { return _getTokenPriceUSDX96(_token); } /// @notice This is used as a frontend helper but is NOT safe to be used as an oracle. function getIdxPriceUSDX96() external view override returns (uint256, uint256) { uint256 _priceX96; uint256 _X96_2 = 2 ** (96 / 2); uint256 _il = indexTokens.length; for (uint256 _i; _i < _il; _i++) { uint256 _tokenPriceUSDX96_2 = _getTokenPriceUSDX96( indexTokens[_i].token ) / _X96_2; _priceX96 += (_tokenPriceUSDX96_2 * indexTokens[_i].q1) / 10 ** IERC20Metadata(indexTokens[_i].token).decimals() / _X96_2; } return (0, _priceX96); } }
File 2 of 2: NPC
// nonplayablecoin.xyz // File: @openzeppelin/contracts/utils/introspection/IERC165.sol // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } // File: @openzeppelin/contracts/utils/introspection/ERC165.sol // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol) pragma solidity ^0.8.0; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` * * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation. */ abstract contract ERC165 is IERC165 { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IERC165).interfaceId; } } // File: @openzeppelin/contracts/token/ERC1155/IERC1155Receiver.sol // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC1155/IERC1155Receiver.sol) pragma solidity ^0.8.0; /** * @dev _Available since v3.1._ */ interface IERC1155Receiver is IERC165 { /** * @dev Handles the receipt of a single ERC1155 token type. This function is * called at the end of a `safeTransferFrom` after the balance has been updated. * * NOTE: To accept the transfer, this must return * `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` * (i.e. 0xf23a6e61, or its own function selector). * * @param operator The address which initiated the transfer (i.e. msg.sender) * @param from The address which previously owned the token * @param id The ID of the token being transferred * @param value The amount of tokens being transferred * @param data Additional data with no specified format * @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed */ function onERC1155Received( address operator, address from, uint256 id, uint256 value, bytes calldata data ) external returns (bytes4); /** * @dev Handles the receipt of a multiple ERC1155 token types. This function * is called at the end of a `safeBatchTransferFrom` after the balances have * been updated. * * NOTE: To accept the transfer(s), this must return * `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` * (i.e. 0xbc197c81, or its own function selector). * * @param operator The address which initiated the batch transfer (i.e. msg.sender) * @param from The address which previously owned the token * @param ids An array containing ids of each token being transferred (order and length must match values array) * @param values An array containing amounts of each token being transferred (order and length must match ids array) * @param data Additional data with no specified format * @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed */ function onERC1155BatchReceived( address operator, address from, uint256[] calldata ids, uint256[] calldata values, bytes calldata data ) external returns (bytes4); } // File: @openzeppelin/contracts/token/ERC1155/utils/ERC1155Receiver.sol // OpenZeppelin Contracts v4.4.1 (token/ERC1155/utils/ERC1155Receiver.sol) pragma solidity ^0.8.0; /** * @dev _Available since v3.1._ */ abstract contract ERC1155Receiver is ERC165, IERC1155Receiver { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) { return interfaceId == type(IERC1155Receiver).interfaceId || super.supportsInterface(interfaceId); } } // File: @openzeppelin/contracts/token/ERC1155/utils/ERC1155Holder.sol // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC1155/utils/ERC1155Holder.sol) pragma solidity ^0.8.0; /** * Simple implementation of `ERC1155Receiver` that will allow a contract to hold ERC1155 tokens. * * IMPORTANT: When inheriting this contract, you must include a way to use the received tokens, otherwise they will be * stuck. * * @dev _Available since v3.1._ */ contract ERC1155Holder is ERC1155Receiver { function onERC1155Received( address, address, uint256, uint256, bytes memory ) public virtual override returns (bytes4) { return this.onERC1155Received.selector; } function onERC1155BatchReceived( address, address, uint256[] memory, uint256[] memory, bytes memory ) public virtual override returns (bytes4) { return this.onERC1155BatchReceived.selector; } } // File: @openzeppelin/contracts/token/ERC1155/IERC1155.sol // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC1155/IERC1155.sol) pragma solidity ^0.8.0; /** * @dev Required interface of an ERC1155 compliant contract, as defined in the * https://eips.ethereum.org/EIPS/eip-1155[EIP]. * * _Available since v3.1._ */ interface IERC1155 is IERC165 { /** * @dev Emitted when `value` tokens of token type `id` are transferred from `from` to `to` by `operator`. */ event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value); /** * @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all * transfers. */ event TransferBatch( address indexed operator, address indexed from, address indexed to, uint256[] ids, uint256[] values ); /** * @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to * `approved`. */ event ApprovalForAll(address indexed account, address indexed operator, bool approved); /** * @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI. * * If an {URI} event was emitted for `id`, the standard * https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value * returned by {IERC1155MetadataURI-uri}. */ event URI(string value, uint256 indexed id); /** * @dev Returns the amount of tokens of token type `id` owned by `account`. * * Requirements: * * - `account` cannot be the zero address. */ function balanceOf(address account, uint256 id) external view returns (uint256); /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}. * * Requirements: * * - `accounts` and `ids` must have the same length. */ function balanceOfBatch(address[] calldata accounts, uint256[] calldata ids) external view returns (uint256[] memory); /** * @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`, * * Emits an {ApprovalForAll} event. * * Requirements: * * - `operator` cannot be the caller. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns true if `operator` is approved to transfer ``account``'s tokens. * * See {setApprovalForAll}. */ function isApprovedForAll(address account, address operator) external view returns (bool); /** * @dev Transfers `amount` tokens of token type `id` from `from` to `to`. * * Emits a {TransferSingle} event. * * Requirements: * * - `to` cannot be the zero address. * - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}. * - `from` must have a balance of tokens of type `id` of at least `amount`. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the * acceptance magic value. */ function safeTransferFrom( address from, address to, uint256 id, uint256 amount, bytes calldata data ) external; /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}. * * Emits a {TransferBatch} event. * * Requirements: * * - `ids` and `amounts` must have the same length. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the * acceptance magic value. */ function safeBatchTransferFrom( address from, address to, uint256[] calldata ids, uint256[] calldata amounts, bytes calldata data ) external; } // File: @openzeppelin/contracts/utils/Context.sol // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } // File: @openzeppelin/contracts/access/Ownable.sol // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // File: @openzeppelin/contracts/token/ERC20/IERC20.sol // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); } // File: @openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); } // File: @openzeppelin/contracts/token/ERC20/ERC20.sol // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * The default value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless this function is * overridden; * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. * - the caller must have allowance for ``from``'s tokens of at least * `amount`. */ function transferFrom( address from, address to, uint256 amount ) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, allowance(owner, spender) + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = allowance(owner, spender); require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. */ function _transfer( address from, address to, uint256 amount ) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by // decrementing then incrementing. _balances[to] += amount; } emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; unchecked { // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above. _balances[account] += amount; } emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; // Overflow not possible: amount <= accountBalance <= totalSupply. _totalSupply -= amount; } emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Updates `owner` s allowance for `spender` based on spent `amount`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance( address owner, address spender, uint256 amount ) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner, spender, currentAllowance - amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual {} } // File: NPC.sol pragma solidity ^0.8.9; contract NPC is ERC20, ERC1155Holder, Ownable { IERC1155 public erc1155Contract; uint256 public erc1155TokenId; uint256 public tokenSupply = 8050126520; constructor(address _erc1155Contract, uint256 _tokenId) ERC20("Non-Playable Coin", "NPC") { erc1155Contract = IERC1155(_erc1155Contract); erc1155TokenId = _tokenId; _mint(address(this), tokenSupply * (10 ** 18)); } function Transform(uint256 amount) external { require(amount >= 1, "Amount must be greater than 1"); erc1155Contract.safeTransferFrom(msg.sender, address(this), erc1155TokenId, amount, ""); _transfer(address(this), msg.sender, amount * (10 ** 18)); } function Respawn(uint256 amount) external { require(amount >= 1, "Amount must be greater than 1"); _transfer(msg.sender, address(this), amount * (10 ** 18)); erc1155Contract.safeTransferFrom(address(this), msg.sender, erc1155TokenId, amount, ""); } }