ETH Price: $1,819.84 (+0.45%)

Transaction Decoder

Block:
22131215 at Mar-26-2025 12:55:35 PM +UTC
Transaction Fee:
0.00014442127941885 ETH $0.26
Gas Used:
122,955 Gas / 1.17458647 Gwei

Emitted Events:

297 HoneyComb.Transfer( from=0xdb29d2348cc5d72b1cef999e8d0c75d08368fd01, to=[Sender] 0xa09efbc5c0c5b5ee00376d90c244781af0aea0f7, tokenId=443 )
298 ERC1967Proxy.0x1d5e12b51dee5e4d34434576c3fb99714a85f57b0fd546ada4b0bddd736d12b2( 0x1d5e12b51dee5e4d34434576c3fb99714a85f57b0fd546ada4b0bddd736d12b2, ea8e90484d1490d2ceb3e7723a4b094b82de39c8e3495e3ff174a3fea7483f33, 00000000000000000001bb00db29d2348cc5d72b1cef999e8d0c75d08368fd01, 0000000001c9f1ddf78c4000cb0477d1af5b8b05795d89d59f4667b59eae9244 )

Account State Difference:

  Address   Before After State Difference Code
(Titan Builder)
20.778976688444537763 Eth20.779038165944537763 Eth0.0000614775
0xA09EfBc5...Af0AEa0F7
0.214389701462889448 Eth
Nonce: 94
0.085345280183470598 Eth
Nonce: 95
0.12904442127941885
0xb2ecfE4E...e2410CEA5
(Blur.io: Marketplace 3)
0xCB0477d1...59eAE9244
0xdb29D234...08368FD01 0.365384488205401331 Eth0.494284488205401331 Eth0.1289

Execution Trace

ETH 0.1289 ERC1967Proxy.70bce2d6( )
  • ETH 0.1289 BlurExchangeV2.takeAskSingle( )
    • Null: 0x000...001.4ceded02( )
    • Null: 0x000...001.5b7d94fe( )
    • Delegate.transfer( taker=0xA09EfBc5c0c5b5eE00376D90C244781Af0AEa0F7, orderType=0, transfers=, length=1 ) => ( successful=[true] )
      • HoneyComb.safeTransferFrom( from=0xdb29D2348cC5D72B1CEF999E8d0C75D08368FD01, to=0xA09EfBc5c0c5b5eE00376D90C244781Af0AEa0F7, tokenId=443 )
      • ETH 0.1289 0xdb29d2348cc5d72b1cef999e8d0c75d08368fd01.CALL( )
        File 1 of 4: ERC1967Proxy
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (proxy/ERC1967/ERC1967Proxy.sol)
        pragma solidity 0.8.17;
        import "lib/openzeppelin-contracts/contracts/proxy/Proxy.sol";
        import "lib/openzeppelin-contracts/contracts/proxy/ERC1967/ERC1967Upgrade.sol";
        /**
         * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
         * implementation address that can be changed. This address is stored in storage in the location specified by
         * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
         * implementation behind the proxy.
         */
        contract ERC1967Proxy is Proxy, ERC1967Upgrade {
            /**
             * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
             *
             * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
             * function call, and allows initializating the storage of the proxy like a Solidity constructor.
             */
            constructor(address _logic, bytes memory _data) payable {
                assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1));
                _upgradeToAndCall(_logic, _data, false);
            }
            /**
             * @dev Returns the current implementation address.
             */
            function _implementation() internal view virtual override returns (address impl) {
                return ERC1967Upgrade._getImplementation();
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.6.0) (proxy/Proxy.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
         * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
         * be specified by overriding the virtual {_implementation} function.
         *
         * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
         * different contract through the {_delegate} function.
         *
         * The success and return data of the delegated call will be returned back to the caller of the proxy.
         */
        abstract contract Proxy {
            /**
             * @dev Delegates the current call to `implementation`.
             *
             * This function does not return to its internal call site, it will return directly to the external caller.
             */
            function _delegate(address implementation) internal virtual {
                assembly {
                    // Copy msg.data. We take full control of memory in this inline assembly
                    // block because it will not return to Solidity code. We overwrite the
                    // Solidity scratch pad at memory position 0.
                    calldatacopy(0, 0, calldatasize())
                    // Call the implementation.
                    // out and outsize are 0 because we don't know the size yet.
                    let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                    // Copy the returned data.
                    returndatacopy(0, 0, returndatasize())
                    switch result
                    // delegatecall returns 0 on error.
                    case 0 {
                        revert(0, returndatasize())
                    }
                    default {
                        return(0, returndatasize())
                    }
                }
            }
            /**
             * @dev This is a virtual function that should be overridden so it returns the address to which the fallback function
             * and {_fallback} should delegate.
             */
            function _implementation() internal view virtual returns (address);
            /**
             * @dev Delegates the current call to the address returned by `_implementation()`.
             *
             * This function does not return to its internal call site, it will return directly to the external caller.
             */
            function _fallback() internal virtual {
                _beforeFallback();
                _delegate(_implementation());
            }
            /**
             * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
             * function in the contract matches the call data.
             */
            fallback() external payable virtual {
                _fallback();
            }
            /**
             * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
             * is empty.
             */
            receive() external payable virtual {
                _fallback();
            }
            /**
             * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
             * call, or as part of the Solidity `fallback` or `receive` functions.
             *
             * If overridden should call `super._beforeFallback()`.
             */
            function _beforeFallback() internal virtual {}
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.3) (proxy/ERC1967/ERC1967Upgrade.sol)
        pragma solidity ^0.8.2;
        import "../beacon/IBeacon.sol";
        import "../../interfaces/IERC1967.sol";
        import "../../interfaces/draft-IERC1822.sol";
        import "../../utils/Address.sol";
        import "../../utils/StorageSlot.sol";
        /**
         * @dev This abstract contract provides getters and event emitting update functions for
         * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
         *
         * _Available since v4.1._
         */
        abstract contract ERC1967Upgrade is IERC1967 {
            // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
            bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
            /**
             * @dev Storage slot with the address of the current implementation.
             * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
             * validated in the constructor.
             */
            bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
            /**
             * @dev Returns the current implementation address.
             */
            function _getImplementation() internal view returns (address) {
                return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
            }
            /**
             * @dev Stores a new address in the EIP1967 implementation slot.
             */
            function _setImplementation(address newImplementation) private {
                require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
            }
            /**
             * @dev Perform implementation upgrade
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeTo(address newImplementation) internal {
                _setImplementation(newImplementation);
                emit Upgraded(newImplementation);
            }
            /**
             * @dev Perform implementation upgrade with additional setup call.
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {
                _upgradeTo(newImplementation);
                if (data.length > 0 || forceCall) {
                    Address.functionDelegateCall(newImplementation, data);
                }
            }
            /**
             * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeToAndCallUUPS(address newImplementation, bytes memory data, bool forceCall) internal {
                // Upgrades from old implementations will perform a rollback test. This test requires the new
                // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
                // this special case will break upgrade paths from old UUPS implementation to new ones.
                if (StorageSlot.getBooleanSlot(_ROLLBACK_SLOT).value) {
                    _setImplementation(newImplementation);
                } else {
                    try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                        require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
                    } catch {
                        revert("ERC1967Upgrade: new implementation is not UUPS");
                    }
                    _upgradeToAndCall(newImplementation, data, forceCall);
                }
            }
            /**
             * @dev Storage slot with the admin of the contract.
             * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
             * validated in the constructor.
             */
            bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
            /**
             * @dev Returns the current admin.
             */
            function _getAdmin() internal view returns (address) {
                return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
            }
            /**
             * @dev Stores a new address in the EIP1967 admin slot.
             */
            function _setAdmin(address newAdmin) private {
                require(newAdmin != address(0), "ERC1967: new admin is the zero address");
                StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
            }
            /**
             * @dev Changes the admin of the proxy.
             *
             * Emits an {AdminChanged} event.
             */
            function _changeAdmin(address newAdmin) internal {
                emit AdminChanged(_getAdmin(), newAdmin);
                _setAdmin(newAdmin);
            }
            /**
             * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
             * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
             */
            bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
            /**
             * @dev Returns the current beacon.
             */
            function _getBeacon() internal view returns (address) {
                return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
            }
            /**
             * @dev Stores a new beacon in the EIP1967 beacon slot.
             */
            function _setBeacon(address newBeacon) private {
                require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract");
                require(
                    Address.isContract(IBeacon(newBeacon).implementation()),
                    "ERC1967: beacon implementation is not a contract"
                );
                StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;
            }
            /**
             * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
             * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
             *
             * Emits a {BeaconUpgraded} event.
             */
            function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal {
                _setBeacon(newBeacon);
                emit BeaconUpgraded(newBeacon);
                if (data.length > 0 || forceCall) {
                    Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev This is the interface that {BeaconProxy} expects of its beacon.
         */
        interface IBeacon {
            /**
             * @dev Must return an address that can be used as a delegate call target.
             *
             * {BeaconProxy} will check that this address is a contract.
             */
            function implementation() external view returns (address);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /**
         * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
         *
         * _Available since v4.8.3._
         */
        interface IERC1967 {
            /**
             * @dev Emitted when the implementation is upgraded.
             */
            event Upgraded(address indexed implementation);
            /**
             * @dev Emitted when the admin account has changed.
             */
            event AdminChanged(address previousAdmin, address newAdmin);
            /**
             * @dev Emitted when the beacon is changed.
             */
            event BeaconUpgraded(address indexed beacon);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
         * proxy whose upgrades are fully controlled by the current implementation.
         */
        interface IERC1822Proxiable {
            /**
             * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
             * address.
             *
             * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
             * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
             * function revert if invoked through a proxy.
             */
            function proxiableUUID() external view returns (bytes32);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
        pragma solidity ^0.8.1;
        /**
         * @dev Collection of functions related to the address type
         */
        library Address {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             *
             * Furthermore, `isContract` will also return true if the target contract within
             * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
             * which only has an effect at the end of a transaction.
             * ====
             *
             * [IMPORTANT]
             * ====
             * You shouldn't rely on `isContract` to protect against flash loan attacks!
             *
             * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
             * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
             * constructor.
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize/address.code.length, which returns 0
                // for contracts in construction, since the code is only stored at the end
                // of the constructor execution.
                return account.code.length > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                (bool success, ) = recipient.call{value: amount}("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionDelegateCall(target, data, "Address: low-level delegate call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
             * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
             *
             * _Available since v4.8._
             */
            function verifyCallResultFromTarget(
                address target,
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                if (success) {
                    if (returndata.length == 0) {
                        // only check isContract if the call was successful and the return data is empty
                        // otherwise we already know that it was a contract
                        require(isContract(target), "Address: call to non-contract");
                    }
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            /**
             * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
             * revert reason or using the provided one.
             *
             * _Available since v4.3._
             */
            function verifyCallResult(
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal pure returns (bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            function _revert(bytes memory returndata, string memory errorMessage) private pure {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    /// @solidity memory-safe-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol)
        // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
        pragma solidity ^0.8.0;
        /**
         * @dev Library for reading and writing primitive types to specific storage slots.
         *
         * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
         * This library helps with reading and writing to such slots without the need for inline assembly.
         *
         * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
         *
         * Example usage to set ERC1967 implementation slot:
         * ```solidity
         * contract ERC1967 {
         *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
         *
         *     function _getImplementation() internal view returns (address) {
         *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
         *     }
         *
         *     function _setImplementation(address newImplementation) internal {
         *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
         *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
         *     }
         * }
         * ```
         *
         * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
         * _Available since v4.9 for `string`, `bytes`._
         */
        library StorageSlot {
            struct AddressSlot {
                address value;
            }
            struct BooleanSlot {
                bool value;
            }
            struct Bytes32Slot {
                bytes32 value;
            }
            struct Uint256Slot {
                uint256 value;
            }
            struct StringSlot {
                string value;
            }
            struct BytesSlot {
                bytes value;
            }
            /**
             * @dev Returns an `AddressSlot` with member `value` located at `slot`.
             */
            function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
             */
            function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
             */
            function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
             */
            function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `StringSlot` with member `value` located at `slot`.
             */
            function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
             */
            function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := store.slot
                }
            }
            /**
             * @dev Returns an `BytesSlot` with member `value` located at `slot`.
             */
            function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
             */
            function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := store.slot
                }
            }
        }
        

        File 2 of 4: HoneyComb
        // SPDX-License-Identifier: MIT
        // ERC721A Contracts v4.2.3
        // Creator: Chiru Labs
        pragma solidity ^0.8.4;
        import './IERC721A.sol';
        /**
         * @dev Interface of ERC721 token receiver.
         */
        interface ERC721A__IERC721Receiver {
            function onERC721Received(
                address operator,
                address from,
                uint256 tokenId,
                bytes calldata data
            ) external returns (bytes4);
        }
        /**
         * @title ERC721A
         *
         * @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721)
         * Non-Fungible Token Standard, including the Metadata extension.
         * Optimized for lower gas during batch mints.
         *
         * Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...)
         * starting from `_startTokenId()`.
         *
         * Assumptions:
         *
         * - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply.
         * - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256).
         */
        contract ERC721A is IERC721A {
            // Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364).
            struct TokenApprovalRef {
                address value;
            }
            // =============================================================
            //                           CONSTANTS
            // =============================================================
            // Mask of an entry in packed address data.
            uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1;
            // The bit position of `numberMinted` in packed address data.
            uint256 private constant _BITPOS_NUMBER_MINTED = 64;
            // The bit position of `numberBurned` in packed address data.
            uint256 private constant _BITPOS_NUMBER_BURNED = 128;
            // The bit position of `aux` in packed address data.
            uint256 private constant _BITPOS_AUX = 192;
            // Mask of all 256 bits in packed address data except the 64 bits for `aux`.
            uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1;
            // The bit position of `startTimestamp` in packed ownership.
            uint256 private constant _BITPOS_START_TIMESTAMP = 160;
            // The bit mask of the `burned` bit in packed ownership.
            uint256 private constant _BITMASK_BURNED = 1 << 224;
            // The bit position of the `nextInitialized` bit in packed ownership.
            uint256 private constant _BITPOS_NEXT_INITIALIZED = 225;
            // The bit mask of the `nextInitialized` bit in packed ownership.
            uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225;
            // The bit position of `extraData` in packed ownership.
            uint256 private constant _BITPOS_EXTRA_DATA = 232;
            // Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`.
            uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1;
            // The mask of the lower 160 bits for addresses.
            uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;
            // The maximum `quantity` that can be minted with {_mintERC2309}.
            // This limit is to prevent overflows on the address data entries.
            // For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309}
            // is required to cause an overflow, which is unrealistic.
            uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000;
            // The `Transfer` event signature is given by:
            // `keccak256(bytes("Transfer(address,address,uint256)"))`.
            bytes32 private constant _TRANSFER_EVENT_SIGNATURE =
                0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;
            // =============================================================
            //                            STORAGE
            // =============================================================
            // The next token ID to be minted.
            uint256 private _currentIndex;
            // The number of tokens burned.
            uint256 private _burnCounter;
            // Token name
            string private _name;
            // Token symbol
            string private _symbol;
            // Mapping from token ID to ownership details
            // An empty struct value does not necessarily mean the token is unowned.
            // See {_packedOwnershipOf} implementation for details.
            //
            // Bits Layout:
            // - [0..159]   `addr`
            // - [160..223] `startTimestamp`
            // - [224]      `burned`
            // - [225]      `nextInitialized`
            // - [232..255] `extraData`
            mapping(uint256 => uint256) private _packedOwnerships;
            // Mapping owner address to address data.
            //
            // Bits Layout:
            // - [0..63]    `balance`
            // - [64..127]  `numberMinted`
            // - [128..191] `numberBurned`
            // - [192..255] `aux`
            mapping(address => uint256) private _packedAddressData;
            // Mapping from token ID to approved address.
            mapping(uint256 => TokenApprovalRef) private _tokenApprovals;
            // Mapping from owner to operator approvals
            mapping(address => mapping(address => bool)) private _operatorApprovals;
            // =============================================================
            //                          CONSTRUCTOR
            // =============================================================
            constructor(string memory name_, string memory symbol_) {
                _name = name_;
                _symbol = symbol_;
                _currentIndex = _startTokenId();
            }
            // =============================================================
            //                   TOKEN COUNTING OPERATIONS
            // =============================================================
            /**
             * @dev Returns the starting token ID.
             * To change the starting token ID, please override this function.
             */
            function _startTokenId() internal view virtual returns (uint256) {
                return 0;
            }
            /**
             * @dev Returns the next token ID to be minted.
             */
            function _nextTokenId() internal view virtual returns (uint256) {
                return _currentIndex;
            }
            /**
             * @dev Returns the total number of tokens in existence.
             * Burned tokens will reduce the count.
             * To get the total number of tokens minted, please see {_totalMinted}.
             */
            function totalSupply() public view virtual override returns (uint256) {
                // Counter underflow is impossible as _burnCounter cannot be incremented
                // more than `_currentIndex - _startTokenId()` times.
                unchecked {
                    return _currentIndex - _burnCounter - _startTokenId();
                }
            }
            /**
             * @dev Returns the total amount of tokens minted in the contract.
             */
            function _totalMinted() internal view virtual returns (uint256) {
                // Counter underflow is impossible as `_currentIndex` does not decrement,
                // and it is initialized to `_startTokenId()`.
                unchecked {
                    return _currentIndex - _startTokenId();
                }
            }
            /**
             * @dev Returns the total number of tokens burned.
             */
            function _totalBurned() internal view virtual returns (uint256) {
                return _burnCounter;
            }
            // =============================================================
            //                    ADDRESS DATA OPERATIONS
            // =============================================================
            /**
             * @dev Returns the number of tokens in `owner`'s account.
             */
            function balanceOf(address owner) public view virtual override returns (uint256) {
                if (owner == address(0)) revert BalanceQueryForZeroAddress();
                return _packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY;
            }
            /**
             * Returns the number of tokens minted by `owner`.
             */
            function _numberMinted(address owner) internal view returns (uint256) {
                return (_packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY;
            }
            /**
             * Returns the number of tokens burned by or on behalf of `owner`.
             */
            function _numberBurned(address owner) internal view returns (uint256) {
                return (_packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY;
            }
            /**
             * Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
             */
            function _getAux(address owner) internal view returns (uint64) {
                return uint64(_packedAddressData[owner] >> _BITPOS_AUX);
            }
            /**
             * Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
             * If there are multiple variables, please pack them into a uint64.
             */
            function _setAux(address owner, uint64 aux) internal virtual {
                uint256 packed = _packedAddressData[owner];
                uint256 auxCasted;
                // Cast `aux` with assembly to avoid redundant masking.
                assembly {
                    auxCasted := aux
                }
                packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX);
                _packedAddressData[owner] = packed;
            }
            // =============================================================
            //                            IERC165
            // =============================================================
            /**
             * @dev Returns true if this contract implements the interface defined by
             * `interfaceId`. See the corresponding
             * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
             * to learn more about how these ids are created.
             *
             * This function call must use less than 30000 gas.
             */
            function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
                // The interface IDs are constants representing the first 4 bytes
                // of the XOR of all function selectors in the interface.
                // See: [ERC165](https://eips.ethereum.org/EIPS/eip-165)
                // (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`)
                return
                    interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165.
                    interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721.
                    interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata.
            }
            // =============================================================
            //                        IERC721Metadata
            // =============================================================
            /**
             * @dev Returns the token collection name.
             */
            function name() public view virtual override returns (string memory) {
                return _name;
            }
            /**
             * @dev Returns the token collection symbol.
             */
            function symbol() public view virtual override returns (string memory) {
                return _symbol;
            }
            /**
             * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
             */
            function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
                if (!_exists(tokenId)) revert URIQueryForNonexistentToken();
                string memory baseURI = _baseURI();
                return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : '';
            }
            /**
             * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
             * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
             * by default, it can be overridden in child contracts.
             */
            function _baseURI() internal view virtual returns (string memory) {
                return '';
            }
            // =============================================================
            //                     OWNERSHIPS OPERATIONS
            // =============================================================
            /**
             * @dev Returns the owner of the `tokenId` token.
             *
             * Requirements:
             *
             * - `tokenId` must exist.
             */
            function ownerOf(uint256 tokenId) public view virtual override returns (address) {
                return address(uint160(_packedOwnershipOf(tokenId)));
            }
            /**
             * @dev Gas spent here starts off proportional to the maximum mint batch size.
             * It gradually moves to O(1) as tokens get transferred around over time.
             */
            function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) {
                return _unpackedOwnership(_packedOwnershipOf(tokenId));
            }
            /**
             * @dev Returns the unpacked `TokenOwnership` struct at `index`.
             */
            function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) {
                return _unpackedOwnership(_packedOwnerships[index]);
            }
            /**
             * @dev Initializes the ownership slot minted at `index` for efficiency purposes.
             */
            function _initializeOwnershipAt(uint256 index) internal virtual {
                if (_packedOwnerships[index] == 0) {
                    _packedOwnerships[index] = _packedOwnershipOf(index);
                }
            }
            /**
             * Returns the packed ownership data of `tokenId`.
             */
            function _packedOwnershipOf(uint256 tokenId) private view returns (uint256) {
                uint256 curr = tokenId;
                unchecked {
                    if (_startTokenId() <= curr)
                        if (curr < _currentIndex) {
                            uint256 packed = _packedOwnerships[curr];
                            // If not burned.
                            if (packed & _BITMASK_BURNED == 0) {
                                // Invariant:
                                // There will always be an initialized ownership slot
                                // (i.e. `ownership.addr != address(0) && ownership.burned == false`)
                                // before an unintialized ownership slot
                                // (i.e. `ownership.addr == address(0) && ownership.burned == false`)
                                // Hence, `curr` will not underflow.
                                //
                                // We can directly compare the packed value.
                                // If the address is zero, packed will be zero.
                                while (packed == 0) {
                                    packed = _packedOwnerships[--curr];
                                }
                                return packed;
                            }
                        }
                }
                revert OwnerQueryForNonexistentToken();
            }
            /**
             * @dev Returns the unpacked `TokenOwnership` struct from `packed`.
             */
            function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) {
                ownership.addr = address(uint160(packed));
                ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP);
                ownership.burned = packed & _BITMASK_BURNED != 0;
                ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA);
            }
            /**
             * @dev Packs ownership data into a single uint256.
             */
            function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) {
                assembly {
                    // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
                    owner := and(owner, _BITMASK_ADDRESS)
                    // `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`.
                    result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags))
                }
            }
            /**
             * @dev Returns the `nextInitialized` flag set if `quantity` equals 1.
             */
            function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) {
                // For branchless setting of the `nextInitialized` flag.
                assembly {
                    // `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`.
                    result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1))
                }
            }
            // =============================================================
            //                      APPROVAL OPERATIONS
            // =============================================================
            /**
             * @dev Gives permission to `to` to transfer `tokenId` token to another account.
             * The approval is cleared when the token is transferred.
             *
             * Only a single account can be approved at a time, so approving the
             * zero address clears previous approvals.
             *
             * Requirements:
             *
             * - The caller must own the token or be an approved operator.
             * - `tokenId` must exist.
             *
             * Emits an {Approval} event.
             */
            function approve(address to, uint256 tokenId) public payable virtual override {
                address owner = ownerOf(tokenId);
                if (_msgSenderERC721A() != owner)
                    if (!isApprovedForAll(owner, _msgSenderERC721A())) {
                        revert ApprovalCallerNotOwnerNorApproved();
                    }
                _tokenApprovals[tokenId].value = to;
                emit Approval(owner, to, tokenId);
            }
            /**
             * @dev Returns the account approved for `tokenId` token.
             *
             * Requirements:
             *
             * - `tokenId` must exist.
             */
            function getApproved(uint256 tokenId) public view virtual override returns (address) {
                if (!_exists(tokenId)) revert ApprovalQueryForNonexistentToken();
                return _tokenApprovals[tokenId].value;
            }
            /**
             * @dev Approve or remove `operator` as an operator for the caller.
             * Operators can call {transferFrom} or {safeTransferFrom}
             * for any token owned by the caller.
             *
             * Requirements:
             *
             * - The `operator` cannot be the caller.
             *
             * Emits an {ApprovalForAll} event.
             */
            function setApprovalForAll(address operator, bool approved) public virtual override {
                _operatorApprovals[_msgSenderERC721A()][operator] = approved;
                emit ApprovalForAll(_msgSenderERC721A(), operator, approved);
            }
            /**
             * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
             *
             * See {setApprovalForAll}.
             */
            function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
                return _operatorApprovals[owner][operator];
            }
            /**
             * @dev Returns whether `tokenId` exists.
             *
             * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
             *
             * Tokens start existing when they are minted. See {_mint}.
             */
            function _exists(uint256 tokenId) internal view virtual returns (bool) {
                return
                    _startTokenId() <= tokenId &&
                    tokenId < _currentIndex && // If within bounds,
                    _packedOwnerships[tokenId] & _BITMASK_BURNED == 0; // and not burned.
            }
            /**
             * @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`.
             */
            function _isSenderApprovedOrOwner(
                address approvedAddress,
                address owner,
                address msgSender
            ) private pure returns (bool result) {
                assembly {
                    // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
                    owner := and(owner, _BITMASK_ADDRESS)
                    // Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean.
                    msgSender := and(msgSender, _BITMASK_ADDRESS)
                    // `msgSender == owner || msgSender == approvedAddress`.
                    result := or(eq(msgSender, owner), eq(msgSender, approvedAddress))
                }
            }
            /**
             * @dev Returns the storage slot and value for the approved address of `tokenId`.
             */
            function _getApprovedSlotAndAddress(uint256 tokenId)
                private
                view
                returns (uint256 approvedAddressSlot, address approvedAddress)
            {
                TokenApprovalRef storage tokenApproval = _tokenApprovals[tokenId];
                // The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`.
                assembly {
                    approvedAddressSlot := tokenApproval.slot
                    approvedAddress := sload(approvedAddressSlot)
                }
            }
            // =============================================================
            //                      TRANSFER OPERATIONS
            // =============================================================
            /**
             * @dev Transfers `tokenId` from `from` to `to`.
             *
             * Requirements:
             *
             * - `from` cannot be the zero address.
             * - `to` cannot be the zero address.
             * - `tokenId` token must be owned by `from`.
             * - If the caller is not `from`, it must be approved to move this token
             * by either {approve} or {setApprovalForAll}.
             *
             * Emits a {Transfer} event.
             */
            function transferFrom(
                address from,
                address to,
                uint256 tokenId
            ) public payable virtual override {
                uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
                if (address(uint160(prevOwnershipPacked)) != from) revert TransferFromIncorrectOwner();
                (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
                // The nested ifs save around 20+ gas over a compound boolean condition.
                if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
                    if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved();
                if (to == address(0)) revert TransferToZeroAddress();
                _beforeTokenTransfers(from, to, tokenId, 1);
                // Clear approvals from the previous owner.
                assembly {
                    if approvedAddress {
                        // This is equivalent to `delete _tokenApprovals[tokenId]`.
                        sstore(approvedAddressSlot, 0)
                    }
                }
                // Underflow of the sender's balance is impossible because we check for
                // ownership above and the recipient's balance can't realistically overflow.
                // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
                unchecked {
                    // We can directly increment and decrement the balances.
                    --_packedAddressData[from]; // Updates: `balance -= 1`.
                    ++_packedAddressData[to]; // Updates: `balance += 1`.
                    // Updates:
                    // - `address` to the next owner.
                    // - `startTimestamp` to the timestamp of transfering.
                    // - `burned` to `false`.
                    // - `nextInitialized` to `true`.
                    _packedOwnerships[tokenId] = _packOwnershipData(
                        to,
                        _BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked)
                    );
                    // If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
                    if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
                        uint256 nextTokenId = tokenId + 1;
                        // If the next slot's address is zero and not burned (i.e. packed value is zero).
                        if (_packedOwnerships[nextTokenId] == 0) {
                            // If the next slot is within bounds.
                            if (nextTokenId != _currentIndex) {
                                // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
                                _packedOwnerships[nextTokenId] = prevOwnershipPacked;
                            }
                        }
                    }
                }
                emit Transfer(from, to, tokenId);
                _afterTokenTransfers(from, to, tokenId, 1);
            }
            /**
             * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
             */
            function safeTransferFrom(
                address from,
                address to,
                uint256 tokenId
            ) public payable virtual override {
                safeTransferFrom(from, to, tokenId, '');
            }
            /**
             * @dev Safely transfers `tokenId` token from `from` to `to`.
             *
             * Requirements:
             *
             * - `from` cannot be the zero address.
             * - `to` cannot be the zero address.
             * - `tokenId` token must exist and be owned by `from`.
             * - If the caller is not `from`, it must be approved to move this token
             * by either {approve} or {setApprovalForAll}.
             * - If `to` refers to a smart contract, it must implement
             * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
             *
             * Emits a {Transfer} event.
             */
            function safeTransferFrom(
                address from,
                address to,
                uint256 tokenId,
                bytes memory _data
            ) public payable virtual override {
                transferFrom(from, to, tokenId);
                if (to.code.length != 0)
                    if (!_checkContractOnERC721Received(from, to, tokenId, _data)) {
                        revert TransferToNonERC721ReceiverImplementer();
                    }
            }
            /**
             * @dev Hook that is called before a set of serially-ordered token IDs
             * are about to be transferred. This includes minting.
             * And also called before burning one token.
             *
             * `startTokenId` - the first token ID to be transferred.
             * `quantity` - the amount to be transferred.
             *
             * Calling conditions:
             *
             * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
             * transferred to `to`.
             * - When `from` is zero, `tokenId` will be minted for `to`.
             * - When `to` is zero, `tokenId` will be burned by `from`.
             * - `from` and `to` are never both zero.
             */
            function _beforeTokenTransfers(
                address from,
                address to,
                uint256 startTokenId,
                uint256 quantity
            ) internal virtual {}
            /**
             * @dev Hook that is called after a set of serially-ordered token IDs
             * have been transferred. This includes minting.
             * And also called after one token has been burned.
             *
             * `startTokenId` - the first token ID to be transferred.
             * `quantity` - the amount to be transferred.
             *
             * Calling conditions:
             *
             * - When `from` and `to` are both non-zero, `from`'s `tokenId` has been
             * transferred to `to`.
             * - When `from` is zero, `tokenId` has been minted for `to`.
             * - When `to` is zero, `tokenId` has been burned by `from`.
             * - `from` and `to` are never both zero.
             */
            function _afterTokenTransfers(
                address from,
                address to,
                uint256 startTokenId,
                uint256 quantity
            ) internal virtual {}
            /**
             * @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract.
             *
             * `from` - Previous owner of the given token ID.
             * `to` - Target address that will receive the token.
             * `tokenId` - Token ID to be transferred.
             * `_data` - Optional data to send along with the call.
             *
             * Returns whether the call correctly returned the expected magic value.
             */
            function _checkContractOnERC721Received(
                address from,
                address to,
                uint256 tokenId,
                bytes memory _data
            ) private returns (bool) {
                try ERC721A__IERC721Receiver(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns (
                    bytes4 retval
                ) {
                    return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector;
                } catch (bytes memory reason) {
                    if (reason.length == 0) {
                        revert TransferToNonERC721ReceiverImplementer();
                    } else {
                        assembly {
                            revert(add(32, reason), mload(reason))
                        }
                    }
                }
            }
            // =============================================================
            //                        MINT OPERATIONS
            // =============================================================
            /**
             * @dev Mints `quantity` tokens and transfers them to `to`.
             *
             * Requirements:
             *
             * - `to` cannot be the zero address.
             * - `quantity` must be greater than 0.
             *
             * Emits a {Transfer} event for each mint.
             */
            function _mint(address to, uint256 quantity) internal virtual {
                uint256 startTokenId = _currentIndex;
                if (quantity == 0) revert MintZeroQuantity();
                _beforeTokenTransfers(address(0), to, startTokenId, quantity);
                // Overflows are incredibly unrealistic.
                // `balance` and `numberMinted` have a maximum limit of 2**64.
                // `tokenId` has a maximum limit of 2**256.
                unchecked {
                    // Updates:
                    // - `balance += quantity`.
                    // - `numberMinted += quantity`.
                    //
                    // We can directly add to the `balance` and `numberMinted`.
                    _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
                    // Updates:
                    // - `address` to the owner.
                    // - `startTimestamp` to the timestamp of minting.
                    // - `burned` to `false`.
                    // - `nextInitialized` to `quantity == 1`.
                    _packedOwnerships[startTokenId] = _packOwnershipData(
                        to,
                        _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
                    );
                    uint256 toMasked;
                    uint256 end = startTokenId + quantity;
                    // Use assembly to loop and emit the `Transfer` event for gas savings.
                    // The duplicated `log4` removes an extra check and reduces stack juggling.
                    // The assembly, together with the surrounding Solidity code, have been
                    // delicately arranged to nudge the compiler into producing optimized opcodes.
                    assembly {
                        // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
                        toMasked := and(to, _BITMASK_ADDRESS)
                        // Emit the `Transfer` event.
                        log4(
                            0, // Start of data (0, since no data).
                            0, // End of data (0, since no data).
                            _TRANSFER_EVENT_SIGNATURE, // Signature.
                            0, // `address(0)`.
                            toMasked, // `to`.
                            startTokenId // `tokenId`.
                        )
                        // The `iszero(eq(,))` check ensures that large values of `quantity`
                        // that overflows uint256 will make the loop run out of gas.
                        // The compiler will optimize the `iszero` away for performance.
                        for {
                            let tokenId := add(startTokenId, 1)
                        } iszero(eq(tokenId, end)) {
                            tokenId := add(tokenId, 1)
                        } {
                            // Emit the `Transfer` event. Similar to above.
                            log4(0, 0, _TRANSFER_EVENT_SIGNATURE, 0, toMasked, tokenId)
                        }
                    }
                    if (toMasked == 0) revert MintToZeroAddress();
                    _currentIndex = end;
                }
                _afterTokenTransfers(address(0), to, startTokenId, quantity);
            }
            /**
             * @dev Mints `quantity` tokens and transfers them to `to`.
             *
             * This function is intended for efficient minting only during contract creation.
             *
             * It emits only one {ConsecutiveTransfer} as defined in
             * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309),
             * instead of a sequence of {Transfer} event(s).
             *
             * Calling this function outside of contract creation WILL make your contract
             * non-compliant with the ERC721 standard.
             * For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309
             * {ConsecutiveTransfer} event is only permissible during contract creation.
             *
             * Requirements:
             *
             * - `to` cannot be the zero address.
             * - `quantity` must be greater than 0.
             *
             * Emits a {ConsecutiveTransfer} event.
             */
            function _mintERC2309(address to, uint256 quantity) internal virtual {
                uint256 startTokenId = _currentIndex;
                if (to == address(0)) revert MintToZeroAddress();
                if (quantity == 0) revert MintZeroQuantity();
                if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) revert MintERC2309QuantityExceedsLimit();
                _beforeTokenTransfers(address(0), to, startTokenId, quantity);
                // Overflows are unrealistic due to the above check for `quantity` to be below the limit.
                unchecked {
                    // Updates:
                    // - `balance += quantity`.
                    // - `numberMinted += quantity`.
                    //
                    // We can directly add to the `balance` and `numberMinted`.
                    _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
                    // Updates:
                    // - `address` to the owner.
                    // - `startTimestamp` to the timestamp of minting.
                    // - `burned` to `false`.
                    // - `nextInitialized` to `quantity == 1`.
                    _packedOwnerships[startTokenId] = _packOwnershipData(
                        to,
                        _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
                    );
                    emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to);
                    _currentIndex = startTokenId + quantity;
                }
                _afterTokenTransfers(address(0), to, startTokenId, quantity);
            }
            /**
             * @dev Safely mints `quantity` tokens and transfers them to `to`.
             *
             * Requirements:
             *
             * - If `to` refers to a smart contract, it must implement
             * {IERC721Receiver-onERC721Received}, which is called for each safe transfer.
             * - `quantity` must be greater than 0.
             *
             * See {_mint}.
             *
             * Emits a {Transfer} event for each mint.
             */
            function _safeMint(
                address to,
                uint256 quantity,
                bytes memory _data
            ) internal virtual {
                _mint(to, quantity);
                unchecked {
                    if (to.code.length != 0) {
                        uint256 end = _currentIndex;
                        uint256 index = end - quantity;
                        do {
                            if (!_checkContractOnERC721Received(address(0), to, index++, _data)) {
                                revert TransferToNonERC721ReceiverImplementer();
                            }
                        } while (index < end);
                        // Reentrancy protection.
                        if (_currentIndex != end) revert();
                    }
                }
            }
            /**
             * @dev Equivalent to `_safeMint(to, quantity, '')`.
             */
            function _safeMint(address to, uint256 quantity) internal virtual {
                _safeMint(to, quantity, '');
            }
            // =============================================================
            //                        BURN OPERATIONS
            // =============================================================
            /**
             * @dev Equivalent to `_burn(tokenId, false)`.
             */
            function _burn(uint256 tokenId) internal virtual {
                _burn(tokenId, false);
            }
            /**
             * @dev Destroys `tokenId`.
             * The approval is cleared when the token is burned.
             *
             * Requirements:
             *
             * - `tokenId` must exist.
             *
             * Emits a {Transfer} event.
             */
            function _burn(uint256 tokenId, bool approvalCheck) internal virtual {
                uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
                address from = address(uint160(prevOwnershipPacked));
                (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
                if (approvalCheck) {
                    // The nested ifs save around 20+ gas over a compound boolean condition.
                    if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
                        if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved();
                }
                _beforeTokenTransfers(from, address(0), tokenId, 1);
                // Clear approvals from the previous owner.
                assembly {
                    if approvedAddress {
                        // This is equivalent to `delete _tokenApprovals[tokenId]`.
                        sstore(approvedAddressSlot, 0)
                    }
                }
                // Underflow of the sender's balance is impossible because we check for
                // ownership above and the recipient's balance can't realistically overflow.
                // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
                unchecked {
                    // Updates:
                    // - `balance -= 1`.
                    // - `numberBurned += 1`.
                    //
                    // We can directly decrement the balance, and increment the number burned.
                    // This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`.
                    _packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1;
                    // Updates:
                    // - `address` to the last owner.
                    // - `startTimestamp` to the timestamp of burning.
                    // - `burned` to `true`.
                    // - `nextInitialized` to `true`.
                    _packedOwnerships[tokenId] = _packOwnershipData(
                        from,
                        (_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked)
                    );
                    // If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
                    if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
                        uint256 nextTokenId = tokenId + 1;
                        // If the next slot's address is zero and not burned (i.e. packed value is zero).
                        if (_packedOwnerships[nextTokenId] == 0) {
                            // If the next slot is within bounds.
                            if (nextTokenId != _currentIndex) {
                                // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
                                _packedOwnerships[nextTokenId] = prevOwnershipPacked;
                            }
                        }
                    }
                }
                emit Transfer(from, address(0), tokenId);
                _afterTokenTransfers(from, address(0), tokenId, 1);
                // Overflow not possible, as _burnCounter cannot be exceed _currentIndex times.
                unchecked {
                    _burnCounter++;
                }
            }
            // =============================================================
            //                     EXTRA DATA OPERATIONS
            // =============================================================
            /**
             * @dev Directly sets the extra data for the ownership data `index`.
             */
            function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual {
                uint256 packed = _packedOwnerships[index];
                if (packed == 0) revert OwnershipNotInitializedForExtraData();
                uint256 extraDataCasted;
                // Cast `extraData` with assembly to avoid redundant masking.
                assembly {
                    extraDataCasted := extraData
                }
                packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA);
                _packedOwnerships[index] = packed;
            }
            /**
             * @dev Called during each token transfer to set the 24bit `extraData` field.
             * Intended to be overridden by the cosumer contract.
             *
             * `previousExtraData` - the value of `extraData` before transfer.
             *
             * Calling conditions:
             *
             * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
             * transferred to `to`.
             * - When `from` is zero, `tokenId` will be minted for `to`.
             * - When `to` is zero, `tokenId` will be burned by `from`.
             * - `from` and `to` are never both zero.
             */
            function _extraData(
                address from,
                address to,
                uint24 previousExtraData
            ) internal view virtual returns (uint24) {}
            /**
             * @dev Returns the next extra data for the packed ownership data.
             * The returned result is shifted into position.
             */
            function _nextExtraData(
                address from,
                address to,
                uint256 prevOwnershipPacked
            ) private view returns (uint256) {
                uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA);
                return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA;
            }
            // =============================================================
            //                       OTHER OPERATIONS
            // =============================================================
            /**
             * @dev Returns the message sender (defaults to `msg.sender`).
             *
             * If you are writing GSN compatible contracts, you need to override this function.
             */
            function _msgSenderERC721A() internal view virtual returns (address) {
                return msg.sender;
            }
            /**
             * @dev Converts a uint256 to its ASCII string decimal representation.
             */
            function _toString(uint256 value) internal pure virtual returns (string memory str) {
                assembly {
                    // The maximum value of a uint256 contains 78 digits (1 byte per digit), but
                    // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
                    // We will need 1 word for the trailing zeros padding, 1 word for the length,
                    // and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0.
                    let m := add(mload(0x40), 0xa0)
                    // Update the free memory pointer to allocate.
                    mstore(0x40, m)
                    // Assign the `str` to the end.
                    str := sub(m, 0x20)
                    // Zeroize the slot after the string.
                    mstore(str, 0)
                    // Cache the end of the memory to calculate the length later.
                    let end := str
                    // We write the string from rightmost digit to leftmost digit.
                    // The following is essentially a do-while loop that also handles the zero case.
                    // prettier-ignore
                    for { let temp := value } 1 {} {
                        str := sub(str, 1)
                        // Write the character to the pointer.
                        // The ASCII index of the '0' character is 48.
                        mstore8(str, add(48, mod(temp, 10)))
                        // Keep dividing `temp` until zero.
                        temp := div(temp, 10)
                        // prettier-ignore
                        if iszero(temp) { break }
                    }
                    let length := sub(end, str)
                    // Move the pointer 32 bytes leftwards to make room for the length.
                    str := sub(str, 0x20)
                    // Store the length.
                    mstore(str, length)
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // ERC721A Contracts v4.2.3
        // Creator: Chiru Labs
        pragma solidity ^0.8.4;
        /**
         * @dev Interface of ERC721A.
         */
        interface IERC721A {
            /**
             * The caller must own the token or be an approved operator.
             */
            error ApprovalCallerNotOwnerNorApproved();
            /**
             * The token does not exist.
             */
            error ApprovalQueryForNonexistentToken();
            /**
             * Cannot query the balance for the zero address.
             */
            error BalanceQueryForZeroAddress();
            /**
             * Cannot mint to the zero address.
             */
            error MintToZeroAddress();
            /**
             * The quantity of tokens minted must be more than zero.
             */
            error MintZeroQuantity();
            /**
             * The token does not exist.
             */
            error OwnerQueryForNonexistentToken();
            /**
             * The caller must own the token or be an approved operator.
             */
            error TransferCallerNotOwnerNorApproved();
            /**
             * The token must be owned by `from`.
             */
            error TransferFromIncorrectOwner();
            /**
             * Cannot safely transfer to a contract that does not implement the
             * ERC721Receiver interface.
             */
            error TransferToNonERC721ReceiverImplementer();
            /**
             * Cannot transfer to the zero address.
             */
            error TransferToZeroAddress();
            /**
             * The token does not exist.
             */
            error URIQueryForNonexistentToken();
            /**
             * The `quantity` minted with ERC2309 exceeds the safety limit.
             */
            error MintERC2309QuantityExceedsLimit();
            /**
             * The `extraData` cannot be set on an unintialized ownership slot.
             */
            error OwnershipNotInitializedForExtraData();
            // =============================================================
            //                            STRUCTS
            // =============================================================
            struct TokenOwnership {
                // The address of the owner.
                address addr;
                // Stores the start time of ownership with minimal overhead for tokenomics.
                uint64 startTimestamp;
                // Whether the token has been burned.
                bool burned;
                // Arbitrary data similar to `startTimestamp` that can be set via {_extraData}.
                uint24 extraData;
            }
            // =============================================================
            //                         TOKEN COUNTERS
            // =============================================================
            /**
             * @dev Returns the total number of tokens in existence.
             * Burned tokens will reduce the count.
             * To get the total number of tokens minted, please see {_totalMinted}.
             */
            function totalSupply() external view returns (uint256);
            // =============================================================
            //                            IERC165
            // =============================================================
            /**
             * @dev Returns true if this contract implements the interface defined by
             * `interfaceId`. See the corresponding
             * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
             * to learn more about how these ids are created.
             *
             * This function call must use less than 30000 gas.
             */
            function supportsInterface(bytes4 interfaceId) external view returns (bool);
            // =============================================================
            //                            IERC721
            // =============================================================
            /**
             * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
             */
            event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
            /**
             * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
             */
            event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
            /**
             * @dev Emitted when `owner` enables or disables
             * (`approved`) `operator` to manage all of its assets.
             */
            event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
            /**
             * @dev Returns the number of tokens in `owner`'s account.
             */
            function balanceOf(address owner) external view returns (uint256 balance);
            /**
             * @dev Returns the owner of the `tokenId` token.
             *
             * Requirements:
             *
             * - `tokenId` must exist.
             */
            function ownerOf(uint256 tokenId) external view returns (address owner);
            /**
             * @dev Safely transfers `tokenId` token from `from` to `to`,
             * checking first that contract recipients are aware of the ERC721 protocol
             * to prevent tokens from being forever locked.
             *
             * Requirements:
             *
             * - `from` cannot be the zero address.
             * - `to` cannot be the zero address.
             * - `tokenId` token must exist and be owned by `from`.
             * - If the caller is not `from`, it must be have been allowed to move
             * this token by either {approve} or {setApprovalForAll}.
             * - If `to` refers to a smart contract, it must implement
             * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
             *
             * Emits a {Transfer} event.
             */
            function safeTransferFrom(
                address from,
                address to,
                uint256 tokenId,
                bytes calldata data
            ) external payable;
            /**
             * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
             */
            function safeTransferFrom(
                address from,
                address to,
                uint256 tokenId
            ) external payable;
            /**
             * @dev Transfers `tokenId` from `from` to `to`.
             *
             * WARNING: Usage of this method is discouraged, use {safeTransferFrom}
             * whenever possible.
             *
             * Requirements:
             *
             * - `from` cannot be the zero address.
             * - `to` cannot be the zero address.
             * - `tokenId` token must be owned by `from`.
             * - If the caller is not `from`, it must be approved to move this token
             * by either {approve} or {setApprovalForAll}.
             *
             * Emits a {Transfer} event.
             */
            function transferFrom(
                address from,
                address to,
                uint256 tokenId
            ) external payable;
            /**
             * @dev Gives permission to `to` to transfer `tokenId` token to another account.
             * The approval is cleared when the token is transferred.
             *
             * Only a single account can be approved at a time, so approving the
             * zero address clears previous approvals.
             *
             * Requirements:
             *
             * - The caller must own the token or be an approved operator.
             * - `tokenId` must exist.
             *
             * Emits an {Approval} event.
             */
            function approve(address to, uint256 tokenId) external payable;
            /**
             * @dev Approve or remove `operator` as an operator for the caller.
             * Operators can call {transferFrom} or {safeTransferFrom}
             * for any token owned by the caller.
             *
             * Requirements:
             *
             * - The `operator` cannot be the caller.
             *
             * Emits an {ApprovalForAll} event.
             */
            function setApprovalForAll(address operator, bool _approved) external;
            /**
             * @dev Returns the account approved for `tokenId` token.
             *
             * Requirements:
             *
             * - `tokenId` must exist.
             */
            function getApproved(uint256 tokenId) external view returns (address operator);
            /**
             * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
             *
             * See {setApprovalForAll}.
             */
            function isApprovedForAll(address owner, address operator) external view returns (bool);
            // =============================================================
            //                        IERC721Metadata
            // =============================================================
            /**
             * @dev Returns the token collection name.
             */
            function name() external view returns (string memory);
            /**
             * @dev Returns the token collection symbol.
             */
            function symbol() external view returns (string memory);
            /**
             * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
             */
            function tokenURI(uint256 tokenId) external view returns (string memory);
            // =============================================================
            //                           IERC2309
            // =============================================================
            /**
             * @dev Emitted when tokens in `fromTokenId` to `toTokenId`
             * (inclusive) is transferred from `from` to `to`, as defined in the
             * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard.
             *
             * See {_mintERC2309} for more details.
             */
            event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to);
        }
        // SPDX-License-Identifier: MIT
        // ERC721A Contracts v4.2.3
        // Creator: Chiru Labs
        pragma solidity ^0.8.4;
        import './IERC721AQueryable.sol';
        import '../ERC721A.sol';
        /**
         * @title ERC721AQueryable.
         *
         * @dev ERC721A subclass with convenience query functions.
         */
        abstract contract ERC721AQueryable is ERC721A, IERC721AQueryable {
            /**
             * @dev Returns the `TokenOwnership` struct at `tokenId` without reverting.
             *
             * If the `tokenId` is out of bounds:
             *
             * - `addr = address(0)`
             * - `startTimestamp = 0`
             * - `burned = false`
             * - `extraData = 0`
             *
             * If the `tokenId` is burned:
             *
             * - `addr = <Address of owner before token was burned>`
             * - `startTimestamp = <Timestamp when token was burned>`
             * - `burned = true`
             * - `extraData = <Extra data when token was burned>`
             *
             * Otherwise:
             *
             * - `addr = <Address of owner>`
             * - `startTimestamp = <Timestamp of start of ownership>`
             * - `burned = false`
             * - `extraData = <Extra data at start of ownership>`
             */
            function explicitOwnershipOf(uint256 tokenId) public view virtual override returns (TokenOwnership memory) {
                TokenOwnership memory ownership;
                if (tokenId < _startTokenId() || tokenId >= _nextTokenId()) {
                    return ownership;
                }
                ownership = _ownershipAt(tokenId);
                if (ownership.burned) {
                    return ownership;
                }
                return _ownershipOf(tokenId);
            }
            /**
             * @dev Returns an array of `TokenOwnership` structs at `tokenIds` in order.
             * See {ERC721AQueryable-explicitOwnershipOf}
             */
            function explicitOwnershipsOf(uint256[] calldata tokenIds)
                external
                view
                virtual
                override
                returns (TokenOwnership[] memory)
            {
                unchecked {
                    uint256 tokenIdsLength = tokenIds.length;
                    TokenOwnership[] memory ownerships = new TokenOwnership[](tokenIdsLength);
                    for (uint256 i; i != tokenIdsLength; ++i) {
                        ownerships[i] = explicitOwnershipOf(tokenIds[i]);
                    }
                    return ownerships;
                }
            }
            /**
             * @dev Returns an array of token IDs owned by `owner`,
             * in the range [`start`, `stop`)
             * (i.e. `start <= tokenId < stop`).
             *
             * This function allows for tokens to be queried if the collection
             * grows too big for a single call of {ERC721AQueryable-tokensOfOwner}.
             *
             * Requirements:
             *
             * - `start < stop`
             */
            function tokensOfOwnerIn(
                address owner,
                uint256 start,
                uint256 stop
            ) external view virtual override returns (uint256[] memory) {
                unchecked {
                    if (start >= stop) revert InvalidQueryRange();
                    uint256 tokenIdsIdx;
                    uint256 stopLimit = _nextTokenId();
                    // Set `start = max(start, _startTokenId())`.
                    if (start < _startTokenId()) {
                        start = _startTokenId();
                    }
                    // Set `stop = min(stop, stopLimit)`.
                    if (stop > stopLimit) {
                        stop = stopLimit;
                    }
                    uint256 tokenIdsMaxLength = balanceOf(owner);
                    // Set `tokenIdsMaxLength = min(balanceOf(owner), stop - start)`,
                    // to cater for cases where `balanceOf(owner)` is too big.
                    if (start < stop) {
                        uint256 rangeLength = stop - start;
                        if (rangeLength < tokenIdsMaxLength) {
                            tokenIdsMaxLength = rangeLength;
                        }
                    } else {
                        tokenIdsMaxLength = 0;
                    }
                    uint256[] memory tokenIds = new uint256[](tokenIdsMaxLength);
                    if (tokenIdsMaxLength == 0) {
                        return tokenIds;
                    }
                    // We need to call `explicitOwnershipOf(start)`,
                    // because the slot at `start` may not be initialized.
                    TokenOwnership memory ownership = explicitOwnershipOf(start);
                    address currOwnershipAddr;
                    // If the starting slot exists (i.e. not burned), initialize `currOwnershipAddr`.
                    // `ownership.address` will not be zero, as `start` is clamped to the valid token ID range.
                    if (!ownership.burned) {
                        currOwnershipAddr = ownership.addr;
                    }
                    for (uint256 i = start; i != stop && tokenIdsIdx != tokenIdsMaxLength; ++i) {
                        ownership = _ownershipAt(i);
                        if (ownership.burned) {
                            continue;
                        }
                        if (ownership.addr != address(0)) {
                            currOwnershipAddr = ownership.addr;
                        }
                        if (currOwnershipAddr == owner) {
                            tokenIds[tokenIdsIdx++] = i;
                        }
                    }
                    // Downsize the array to fit.
                    assembly {
                        mstore(tokenIds, tokenIdsIdx)
                    }
                    return tokenIds;
                }
            }
            /**
             * @dev Returns an array of token IDs owned by `owner`.
             *
             * This function scans the ownership mapping and is O(`totalSupply`) in complexity.
             * It is meant to be called off-chain.
             *
             * See {ERC721AQueryable-tokensOfOwnerIn} for splitting the scan into
             * multiple smaller scans if the collection is large enough to cause
             * an out-of-gas error (10K collections should be fine).
             */
            function tokensOfOwner(address owner) external view virtual override returns (uint256[] memory) {
                unchecked {
                    uint256 tokenIdsIdx;
                    address currOwnershipAddr;
                    uint256 tokenIdsLength = balanceOf(owner);
                    uint256[] memory tokenIds = new uint256[](tokenIdsLength);
                    TokenOwnership memory ownership;
                    for (uint256 i = _startTokenId(); tokenIdsIdx != tokenIdsLength; ++i) {
                        ownership = _ownershipAt(i);
                        if (ownership.burned) {
                            continue;
                        }
                        if (ownership.addr != address(0)) {
                            currOwnershipAddr = ownership.addr;
                        }
                        if (currOwnershipAddr == owner) {
                            tokenIds[tokenIdsIdx++] = i;
                        }
                    }
                    return tokenIds;
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // ERC721A Contracts v4.2.3
        // Creator: Chiru Labs
        pragma solidity ^0.8.4;
        import '../IERC721A.sol';
        /**
         * @dev Interface of ERC721AQueryable.
         */
        interface IERC721AQueryable is IERC721A {
            /**
             * Invalid query range (`start` >= `stop`).
             */
            error InvalidQueryRange();
            /**
             * @dev Returns the `TokenOwnership` struct at `tokenId` without reverting.
             *
             * If the `tokenId` is out of bounds:
             *
             * - `addr = address(0)`
             * - `startTimestamp = 0`
             * - `burned = false`
             * - `extraData = 0`
             *
             * If the `tokenId` is burned:
             *
             * - `addr = <Address of owner before token was burned>`
             * - `startTimestamp = <Timestamp when token was burned>`
             * - `burned = true`
             * - `extraData = <Extra data when token was burned>`
             *
             * Otherwise:
             *
             * - `addr = <Address of owner>`
             * - `startTimestamp = <Timestamp of start of ownership>`
             * - `burned = false`
             * - `extraData = <Extra data at start of ownership>`
             */
            function explicitOwnershipOf(uint256 tokenId) external view returns (TokenOwnership memory);
            /**
             * @dev Returns an array of `TokenOwnership` structs at `tokenIds` in order.
             * See {ERC721AQueryable-explicitOwnershipOf}
             */
            function explicitOwnershipsOf(uint256[] memory tokenIds) external view returns (TokenOwnership[] memory);
            /**
             * @dev Returns an array of token IDs owned by `owner`,
             * in the range [`start`, `stop`)
             * (i.e. `start <= tokenId < stop`).
             *
             * This function allows for tokens to be queried if the collection
             * grows too big for a single call of {ERC721AQueryable-tokensOfOwner}.
             *
             * Requirements:
             *
             * - `start < stop`
             */
            function tokensOfOwnerIn(
                address owner,
                uint256 start,
                uint256 stop
            ) external view returns (uint256[] memory);
            /**
             * @dev Returns an array of token IDs owned by `owner`.
             *
             * This function scans the ownership mapping and is O(`totalSupply`) in complexity.
             * It is meant to be called off-chain.
             *
             * See {ERC721AQueryable-tokensOfOwnerIn} for splitting the scan into
             * multiple smaller scans if the collection is large enough to cause
             * an out-of-gas error (10K collections should be fine).
             */
            function tokensOfOwner(address owner) external view returns (uint256[] memory);
        }
        //SPDX-License-Identifier: CC0
        pragma solidity ^0.8.0;
        import "@openzeppelin/contracts/access/Ownable.sol";
        /*
        Opensea only allows EOAs to make changes to collections,
        which makes it impossible to use multisigs to secure these NFT contracts
        since when you want to make changes you need to transfer ownership to an EOA, who can rug.
        This contract establishes a second owner that can change the EOA owner,
        this way a multisig can give ownership to an EOA and later claim it back.
        */
        abstract contract MultisigOwnable is Ownable {
            address public realOwner;
            constructor() {
                realOwner = msg.sender;
            }
            modifier onlyRealOwner() {
                require(realOwner == msg.sender, "MultisigOwnable: caller is not the real owner");
                _;
            }
            function transferRealOwnership(address newRealOwner) public onlyRealOwner {
                realOwner = newRealOwner;
            }
            function transferLowerOwnership(address newOwner) public onlyRealOwner {
                _transferOwnership(newOwner);
            }
        }// SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.0) (access/AccessControl.sol)
        pragma solidity ^0.8.0;
        import "./IAccessControl.sol";
        import "../utils/Context.sol";
        import "../utils/Strings.sol";
        import "../utils/introspection/ERC165.sol";
        /**
         * @dev Contract module that allows children to implement role-based access
         * control mechanisms. This is a lightweight version that doesn't allow enumerating role
         * members except through off-chain means by accessing the contract event logs. Some
         * applications may benefit from on-chain enumerability, for those cases see
         * {AccessControlEnumerable}.
         *
         * Roles are referred to by their `bytes32` identifier. These should be exposed
         * in the external API and be unique. The best way to achieve this is by
         * using `public constant` hash digests:
         *
         * ```
         * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
         * ```
         *
         * Roles can be used to represent a set of permissions. To restrict access to a
         * function call, use {hasRole}:
         *
         * ```
         * function foo() public {
         *     require(hasRole(MY_ROLE, msg.sender));
         *     ...
         * }
         * ```
         *
         * Roles can be granted and revoked dynamically via the {grantRole} and
         * {revokeRole} functions. Each role has an associated admin role, and only
         * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
         *
         * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
         * that only accounts with this role will be able to grant or revoke other
         * roles. More complex role relationships can be created by using
         * {_setRoleAdmin}.
         *
         * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
         * grant and revoke this role. Extra precautions should be taken to secure
         * accounts that have been granted it.
         */
        abstract contract AccessControl is Context, IAccessControl, ERC165 {
            struct RoleData {
                mapping(address => bool) members;
                bytes32 adminRole;
            }
            mapping(bytes32 => RoleData) private _roles;
            bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
            /**
             * @dev Modifier that checks that an account has a specific role. Reverts
             * with a standardized message including the required role.
             *
             * The format of the revert reason is given by the following regular expression:
             *
             *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
             *
             * _Available since v4.1._
             */
            modifier onlyRole(bytes32 role) {
                _checkRole(role);
                _;
            }
            /**
             * @dev See {IERC165-supportsInterface}.
             */
            function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
                return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
            }
            /**
             * @dev Returns `true` if `account` has been granted `role`.
             */
            function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
                return _roles[role].members[account];
            }
            /**
             * @dev Revert with a standard message if `_msgSender()` is missing `role`.
             * Overriding this function changes the behavior of the {onlyRole} modifier.
             *
             * Format of the revert message is described in {_checkRole}.
             *
             * _Available since v4.6._
             */
            function _checkRole(bytes32 role) internal view virtual {
                _checkRole(role, _msgSender());
            }
            /**
             * @dev Revert with a standard message if `account` is missing `role`.
             *
             * The format of the revert reason is given by the following regular expression:
             *
             *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
             */
            function _checkRole(bytes32 role, address account) internal view virtual {
                if (!hasRole(role, account)) {
                    revert(
                        string(
                            abi.encodePacked(
                                "AccessControl: account ",
                                Strings.toHexString(account),
                                " is missing role ",
                                Strings.toHexString(uint256(role), 32)
                            )
                        )
                    );
                }
            }
            /**
             * @dev Returns the admin role that controls `role`. See {grantRole} and
             * {revokeRole}.
             *
             * To change a role's admin, use {_setRoleAdmin}.
             */
            function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
                return _roles[role].adminRole;
            }
            /**
             * @dev Grants `role` to `account`.
             *
             * If `account` had not been already granted `role`, emits a {RoleGranted}
             * event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             *
             * May emit a {RoleGranted} event.
             */
            function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
                _grantRole(role, account);
            }
            /**
             * @dev Revokes `role` from `account`.
             *
             * If `account` had been granted `role`, emits a {RoleRevoked} event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             *
             * May emit a {RoleRevoked} event.
             */
            function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
                _revokeRole(role, account);
            }
            /**
             * @dev Revokes `role` from the calling account.
             *
             * Roles are often managed via {grantRole} and {revokeRole}: this function's
             * purpose is to provide a mechanism for accounts to lose their privileges
             * if they are compromised (such as when a trusted device is misplaced).
             *
             * If the calling account had been revoked `role`, emits a {RoleRevoked}
             * event.
             *
             * Requirements:
             *
             * - the caller must be `account`.
             *
             * May emit a {RoleRevoked} event.
             */
            function renounceRole(bytes32 role, address account) public virtual override {
                require(account == _msgSender(), "AccessControl: can only renounce roles for self");
                _revokeRole(role, account);
            }
            /**
             * @dev Grants `role` to `account`.
             *
             * If `account` had not been already granted `role`, emits a {RoleGranted}
             * event. Note that unlike {grantRole}, this function doesn't perform any
             * checks on the calling account.
             *
             * May emit a {RoleGranted} event.
             *
             * [WARNING]
             * ====
             * This function should only be called from the constructor when setting
             * up the initial roles for the system.
             *
             * Using this function in any other way is effectively circumventing the admin
             * system imposed by {AccessControl}.
             * ====
             *
             * NOTE: This function is deprecated in favor of {_grantRole}.
             */
            function _setupRole(bytes32 role, address account) internal virtual {
                _grantRole(role, account);
            }
            /**
             * @dev Sets `adminRole` as ``role``'s admin role.
             *
             * Emits a {RoleAdminChanged} event.
             */
            function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
                bytes32 previousAdminRole = getRoleAdmin(role);
                _roles[role].adminRole = adminRole;
                emit RoleAdminChanged(role, previousAdminRole, adminRole);
            }
            /**
             * @dev Grants `role` to `account`.
             *
             * Internal function without access restriction.
             *
             * May emit a {RoleGranted} event.
             */
            function _grantRole(bytes32 role, address account) internal virtual {
                if (!hasRole(role, account)) {
                    _roles[role].members[account] = true;
                    emit RoleGranted(role, account, _msgSender());
                }
            }
            /**
             * @dev Revokes `role` from `account`.
             *
             * Internal function without access restriction.
             *
             * May emit a {RoleRevoked} event.
             */
            function _revokeRole(bytes32 role, address account) internal virtual {
                if (hasRole(role, account)) {
                    _roles[role].members[account] = false;
                    emit RoleRevoked(role, account, _msgSender());
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev External interface of AccessControl declared to support ERC165 detection.
         */
        interface IAccessControl {
            /**
             * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
             *
             * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
             * {RoleAdminChanged} not being emitted signaling this.
             *
             * _Available since v3.1._
             */
            event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
            /**
             * @dev Emitted when `account` is granted `role`.
             *
             * `sender` is the account that originated the contract call, an admin role
             * bearer except when using {AccessControl-_setupRole}.
             */
            event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
            /**
             * @dev Emitted when `account` is revoked `role`.
             *
             * `sender` is the account that originated the contract call:
             *   - if using `revokeRole`, it is the admin role bearer
             *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
             */
            event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
            /**
             * @dev Returns `true` if `account` has been granted `role`.
             */
            function hasRole(bytes32 role, address account) external view returns (bool);
            /**
             * @dev Returns the admin role that controls `role`. See {grantRole} and
             * {revokeRole}.
             *
             * To change a role's admin, use {AccessControl-_setRoleAdmin}.
             */
            function getRoleAdmin(bytes32 role) external view returns (bytes32);
            /**
             * @dev Grants `role` to `account`.
             *
             * If `account` had not been already granted `role`, emits a {RoleGranted}
             * event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             */
            function grantRole(bytes32 role, address account) external;
            /**
             * @dev Revokes `role` from `account`.
             *
             * If `account` had been granted `role`, emits a {RoleRevoked} event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             */
            function revokeRole(bytes32 role, address account) external;
            /**
             * @dev Revokes `role` from the calling account.
             *
             * Roles are often managed via {grantRole} and {revokeRole}: this function's
             * purpose is to provide a mechanism for accounts to lose their privileges
             * if they are compromised (such as when a trusted device is misplaced).
             *
             * If the calling account had been granted `role`, emits a {RoleRevoked}
             * event.
             *
             * Requirements:
             *
             * - the caller must be `account`.
             */
            function renounceRole(bytes32 role, address account) external;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
        pragma solidity ^0.8.0;
        import "../utils/Context.sol";
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * By default, the owner account will be the one that deploys the contract. This
         * can later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        abstract contract Ownable is Context {
            address private _owner;
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Initializes the contract setting the deployer as the initial owner.
             */
            constructor() {
                _transferOwnership(_msgSender());
            }
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                _checkOwner();
                _;
            }
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view virtual returns (address) {
                return _owner;
            }
            /**
             * @dev Throws if the sender is not the owner.
             */
            function _checkOwner() internal view virtual {
                require(owner() == _msgSender(), "Ownable: caller is not the owner");
            }
            /**
             * @dev Leaves the contract without owner. It will not be possible to call
             * `onlyOwner` functions anymore. Can only be called by the current owner.
             *
             * NOTE: Renouncing ownership will leave the contract without an owner,
             * thereby removing any functionality that is only available to the owner.
             */
            function renounceOwnership() public virtual onlyOwner {
                _transferOwnership(address(0));
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                require(newOwner != address(0), "Ownable: new owner is the zero address");
                _transferOwnership(newOwner);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Internal function without access restriction.
             */
            function _transferOwnership(address newOwner) internal virtual {
                address oldOwner = _owner;
                _owner = newOwner;
                emit OwnershipTransferred(oldOwner, newOwner);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract Context {
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                return msg.data;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
        pragma solidity ^0.8.0;
        import "./math/Math.sol";
        /**
         * @dev String operations.
         */
        library Strings {
            bytes16 private constant _SYMBOLS = "0123456789abcdef";
            uint8 private constant _ADDRESS_LENGTH = 20;
            /**
             * @dev Converts a `uint256` to its ASCII `string` decimal representation.
             */
            function toString(uint256 value) internal pure returns (string memory) {
                unchecked {
                    uint256 length = Math.log10(value) + 1;
                    string memory buffer = new string(length);
                    uint256 ptr;
                    /// @solidity memory-safe-assembly
                    assembly {
                        ptr := add(buffer, add(32, length))
                    }
                    while (true) {
                        ptr--;
                        /// @solidity memory-safe-assembly
                        assembly {
                            mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                        }
                        value /= 10;
                        if (value == 0) break;
                    }
                    return buffer;
                }
            }
            /**
             * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
             */
            function toHexString(uint256 value) internal pure returns (string memory) {
                unchecked {
                    return toHexString(value, Math.log256(value) + 1);
                }
            }
            /**
             * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
             */
            function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
                bytes memory buffer = new bytes(2 * length + 2);
                buffer[0] = "0";
                buffer[1] = "x";
                for (uint256 i = 2 * length + 1; i > 1; --i) {
                    buffer[i] = _SYMBOLS[value & 0xf];
                    value >>= 4;
                }
                require(value == 0, "Strings: hex length insufficient");
                return string(buffer);
            }
            /**
             * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
             */
            function toHexString(address addr) internal pure returns (string memory) {
                return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
        pragma solidity ^0.8.0;
        import "./IERC165.sol";
        /**
         * @dev Implementation of the {IERC165} interface.
         *
         * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
         * for the additional interface id that will be supported. For example:
         *
         * ```solidity
         * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
         *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
         * }
         * ```
         *
         * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
         */
        abstract contract ERC165 is IERC165 {
            /**
             * @dev See {IERC165-supportsInterface}.
             */
            function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
                return interfaceId == type(IERC165).interfaceId;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Interface of the ERC165 standard, as defined in the
         * https://eips.ethereum.org/EIPS/eip-165[EIP].
         *
         * Implementers can declare support of contract interfaces, which can then be
         * queried by others ({ERC165Checker}).
         *
         * For an implementation, see {ERC165}.
         */
        interface IERC165 {
            /**
             * @dev Returns true if this contract implements the interface defined by
             * `interfaceId`. See the corresponding
             * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
             * to learn more about how these ids are created.
             *
             * This function call must use less than 30 000 gas.
             */
            function supportsInterface(bytes4 interfaceId) external view returns (bool);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Standard math utilities missing in the Solidity language.
         */
        library Math {
            enum Rounding {
                Down, // Toward negative infinity
                Up, // Toward infinity
                Zero // Toward zero
            }
            /**
             * @dev Returns the largest of two numbers.
             */
            function max(uint256 a, uint256 b) internal pure returns (uint256) {
                return a > b ? a : b;
            }
            /**
             * @dev Returns the smallest of two numbers.
             */
            function min(uint256 a, uint256 b) internal pure returns (uint256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two numbers. The result is rounded towards
             * zero.
             */
            function average(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b) / 2 can overflow.
                return (a & b) + (a ^ b) / 2;
            }
            /**
             * @dev Returns the ceiling of the division of two numbers.
             *
             * This differs from standard division with `/` in that it rounds up instead
             * of rounding down.
             */
            function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b - 1) / b can overflow on addition, so we distribute.
                return a == 0 ? 0 : (a - 1) / b + 1;
            }
            /**
             * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
             * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
             * with further edits by Uniswap Labs also under MIT license.
             */
            function mulDiv(
                uint256 x,
                uint256 y,
                uint256 denominator
            ) internal pure returns (uint256 result) {
                unchecked {
                    // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                    // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                    // variables such that product = prod1 * 2^256 + prod0.
                    uint256 prod0; // Least significant 256 bits of the product
                    uint256 prod1; // Most significant 256 bits of the product
                    assembly {
                        let mm := mulmod(x, y, not(0))
                        prod0 := mul(x, y)
                        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                    }
                    // Handle non-overflow cases, 256 by 256 division.
                    if (prod1 == 0) {
                        return prod0 / denominator;
                    }
                    // Make sure the result is less than 2^256. Also prevents denominator == 0.
                    require(denominator > prod1);
                    ///////////////////////////////////////////////
                    // 512 by 256 division.
                    ///////////////////////////////////////////////
                    // Make division exact by subtracting the remainder from [prod1 prod0].
                    uint256 remainder;
                    assembly {
                        // Compute remainder using mulmod.
                        remainder := mulmod(x, y, denominator)
                        // Subtract 256 bit number from 512 bit number.
                        prod1 := sub(prod1, gt(remainder, prod0))
                        prod0 := sub(prod0, remainder)
                    }
                    // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                    // See https://cs.stackexchange.com/q/138556/92363.
                    // Does not overflow because the denominator cannot be zero at this stage in the function.
                    uint256 twos = denominator & (~denominator + 1);
                    assembly {
                        // Divide denominator by twos.
                        denominator := div(denominator, twos)
                        // Divide [prod1 prod0] by twos.
                        prod0 := div(prod0, twos)
                        // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                        twos := add(div(sub(0, twos), twos), 1)
                    }
                    // Shift in bits from prod1 into prod0.
                    prod0 |= prod1 * twos;
                    // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                    // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                    // four bits. That is, denominator * inv = 1 mod 2^4.
                    uint256 inverse = (3 * denominator) ^ 2;
                    // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                    // in modular arithmetic, doubling the correct bits in each step.
                    inverse *= 2 - denominator * inverse; // inverse mod 2^8
                    inverse *= 2 - denominator * inverse; // inverse mod 2^16
                    inverse *= 2 - denominator * inverse; // inverse mod 2^32
                    inverse *= 2 - denominator * inverse; // inverse mod 2^64
                    inverse *= 2 - denominator * inverse; // inverse mod 2^128
                    inverse *= 2 - denominator * inverse; // inverse mod 2^256
                    // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                    // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                    // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                    // is no longer required.
                    result = prod0 * inverse;
                    return result;
                }
            }
            /**
             * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
             */
            function mulDiv(
                uint256 x,
                uint256 y,
                uint256 denominator,
                Rounding rounding
            ) internal pure returns (uint256) {
                uint256 result = mulDiv(x, y, denominator);
                if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                    result += 1;
                }
                return result;
            }
            /**
             * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
             *
             * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
             */
            function sqrt(uint256 a) internal pure returns (uint256) {
                if (a == 0) {
                    return 0;
                }
                // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                //
                // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
                //
                // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
                // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
                // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
                //
                // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
                uint256 result = 1 << (log2(a) >> 1);
                // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                // into the expected uint128 result.
                unchecked {
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    return min(result, a / result);
                }
            }
            /**
             * @notice Calculates sqrt(a), following the selected rounding direction.
             */
            function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = sqrt(a);
                    return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
                }
            }
            /**
             * @dev Return the log in base 2, rounded down, of a positive value.
             * Returns 0 if given 0.
             */
            function log2(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                unchecked {
                    if (value >> 128 > 0) {
                        value >>= 128;
                        result += 128;
                    }
                    if (value >> 64 > 0) {
                        value >>= 64;
                        result += 64;
                    }
                    if (value >> 32 > 0) {
                        value >>= 32;
                        result += 32;
                    }
                    if (value >> 16 > 0) {
                        value >>= 16;
                        result += 16;
                    }
                    if (value >> 8 > 0) {
                        value >>= 8;
                        result += 8;
                    }
                    if (value >> 4 > 0) {
                        value >>= 4;
                        result += 4;
                    }
                    if (value >> 2 > 0) {
                        value >>= 2;
                        result += 2;
                    }
                    if (value >> 1 > 0) {
                        result += 1;
                    }
                }
                return result;
            }
            /**
             * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log2(value);
                    return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
                }
            }
            /**
             * @dev Return the log in base 10, rounded down, of a positive value.
             * Returns 0 if given 0.
             */
            function log10(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                unchecked {
                    if (value >= 10**64) {
                        value /= 10**64;
                        result += 64;
                    }
                    if (value >= 10**32) {
                        value /= 10**32;
                        result += 32;
                    }
                    if (value >= 10**16) {
                        value /= 10**16;
                        result += 16;
                    }
                    if (value >= 10**8) {
                        value /= 10**8;
                        result += 8;
                    }
                    if (value >= 10**4) {
                        value /= 10**4;
                        result += 4;
                    }
                    if (value >= 10**2) {
                        value /= 10**2;
                        result += 2;
                    }
                    if (value >= 10**1) {
                        result += 1;
                    }
                }
                return result;
            }
            /**
             * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log10(value);
                    return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
                }
            }
            /**
             * @dev Return the log in base 256, rounded down, of a positive value.
             * Returns 0 if given 0.
             *
             * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
             */
            function log256(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                unchecked {
                    if (value >> 128 > 0) {
                        value >>= 128;
                        result += 16;
                    }
                    if (value >> 64 > 0) {
                        value >>= 64;
                        result += 8;
                    }
                    if (value >> 32 > 0) {
                        value >>= 32;
                        result += 4;
                    }
                    if (value >> 16 > 0) {
                        value >>= 16;
                        result += 2;
                    }
                    if (value >> 8 > 0) {
                        result += 1;
                    }
                }
                return result;
            }
            /**
             * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log256(value);
                    return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
                }
            }
        }
        // SPDX-License-Identifier: AGPL-3.0-only
        pragma solidity >=0.8.0;
        /// @notice Simple single owner authorization mixin.
        /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/auth/Owned.sol)
        abstract contract Owned {
            /*//////////////////////////////////////////////////////////////
                                         EVENTS
            //////////////////////////////////////////////////////////////*/
            event OwnershipTransferred(address indexed user, address indexed newOwner);
            /*//////////////////////////////////////////////////////////////
                                    OWNERSHIP STORAGE
            //////////////////////////////////////////////////////////////*/
            address public owner;
            modifier onlyOwner() virtual {
                require(msg.sender == owner, "UNAUTHORIZED");
                _;
            }
            /*//////////////////////////////////////////////////////////////
                                       CONSTRUCTOR
            //////////////////////////////////////////////////////////////*/
            constructor(address _owner) {
                owner = _owner;
                emit OwnershipTransferred(address(0), _owner);
            }
            /*//////////////////////////////////////////////////////////////
                                     OWNERSHIP LOGIC
            //////////////////////////////////////////////////////////////*/
            function transferOwnership(address newOwner) public virtual onlyOwner {
                owner = newOwner;
                emit OwnershipTransferred(msg.sender, newOwner);
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.8.0;
        /// @notice Efficient library for creating string representations of integers.
        /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol)
        /// @author Modified from Solady (https://github.com/Vectorized/solady/blob/main/src/utils/LibString.sol)
        library LibString {
            function toString(int256 value) internal pure returns (string memory str) {
                if (value >= 0) return toString(uint256(value));
                unchecked {
                    str = toString(uint256(-value));
                    /// @solidity memory-safe-assembly
                    assembly {
                        // Note: This is only safe because we over-allocate memory
                        // and write the string from right to left in toString(uint256),
                        // and thus can be sure that sub(str, 1) is an unused memory location.
                        let length := mload(str) // Load the string length.
                        // Put the - character at the start of the string contents.
                        mstore(str, 45) // 45 is the ASCII code for the - character.
                        str := sub(str, 1) // Move back the string pointer by a byte.
                        mstore(str, add(length, 1)) // Update the string length.
                    }
                }
            }
            function toString(uint256 value) internal pure returns (string memory str) {
                /// @solidity memory-safe-assembly
                assembly {
                    // The maximum value of a uint256 contains 78 digits (1 byte per digit), but we allocate 160 bytes
                    // to keep the free memory pointer word aligned. We'll need 1 word for the length, 1 word for the
                    // trailing zeros padding, and 3 other words for a max of 78 digits. In total: 5 * 32 = 160 bytes.
                    let newFreeMemoryPointer := add(mload(0x40), 160)
                    // Update the free memory pointer to avoid overriding our string.
                    mstore(0x40, newFreeMemoryPointer)
                    // Assign str to the end of the zone of newly allocated memory.
                    str := sub(newFreeMemoryPointer, 32)
                    // Clean the last word of memory it may not be overwritten.
                    mstore(str, 0)
                    // Cache the end of the memory to calculate the length later.
                    let end := str
                    // We write the string from rightmost digit to leftmost digit.
                    // The following is essentially a do-while loop that also handles the zero case.
                    // prettier-ignore
                    for { let temp := value } 1 {} {
                        // Move the pointer 1 byte to the left.
                        str := sub(str, 1)
                        // Write the character to the pointer.
                        // The ASCII index of the '0' character is 48.
                        mstore8(str, add(48, mod(temp, 10)))
                        // Keep dividing temp until zero.
                        temp := div(temp, 10)
                         // prettier-ignore
                        if iszero(temp) { break }
                    }
                    // Compute and cache the final total length of the string.
                    let length := sub(end, str)
                    // Move the pointer 32 bytes leftwards to make room for the length.
                    str := sub(str, 32)
                    // Store the string's length at the start of memory allocated for our string.
                    mstore(str, length)
                }
            }
        }
        // SPDX-License-Identifier: UNLICENSED
        pragma solidity ^0.8.17;
        library Constants {
            // External permissions
            bytes32 public constant GAME_ADMIN = "GAME_ADMIN";
            bytes32 public constant BEEKEEPER = "BEEKEEPER";
            bytes32 public constant JANI = "JANI";
            // Contract instances
            bytes32 public constant GAME_INSTANCE = "GAME_INSTANCE";
            bytes32 public constant BEAR_POUCH = "BEAR_POUCH";
            bytes32 public constant GATEKEEPER = "GATEKEEPER";
            bytes32 public constant GATE = "GATE";
            // Special honeycomb permissions
            bytes32 public constant MINTER = "MINTER";
            bytes32 public constant BURNER = "BURNER";
        }
        // SPDX-License-Identifier: UNLICENSED
        pragma solidity ^0.8.17;
        import "@openzeppelin/contracts/access/AccessControl.sol";
        import {Constants} from "./GameLib.sol";
        /// @title GameRegistry
        /// @notice Central repository that tracks games and permissions.
        /// @dev All game contracts should use extend `GameRegistryConsumer` to have consistent permissioning
        contract GameRegistry is AccessControl {
            struct Game {
                bool enabled;
            }
            uint256[] public stageTimes;
            constructor() {
                _setupRole(DEFAULT_ADMIN_ROLE, msg.sender);
                _setupRole(Constants.GAME_ADMIN, msg.sender);
                // Initial 4 stages
                stageTimes.push(0 hours);
                stageTimes.push(24 hours);
                stageTimes.push(48 hours);
                stageTimes.push(72 hours);
            }
            mapping(address => Game) public games;
            function registerGame(address game_) external onlyRole(Constants.GAME_ADMIN) {
                _grantRole(Constants.GAME_INSTANCE, game_);
                games[game_] = Game(true);
            }
            function startGame(address game_) external onlyRole(Constants.GAME_ADMIN) {
                _grantRole(Constants.MINTER, game_);
            }
            function stopGame(address game_) external onlyRole(Constants.GAME_ADMIN) {
                _revokeRole(Constants.MINTER, game_);
                games[game_].enabled = false;
            }
            /**
             * Gettors
             */
            function getStageTimes() external view returns (uint256[] memory) {
                return stageTimes;
            }
            /**
             * Bear Pouch setters (helper functions)
             * Can check roles directly since this is an access control
             */
            function setJani(address jani_) external onlyRole(Constants.GAME_ADMIN) {
                _grantRole(Constants.JANI, jani_);
            }
            function setBeekeeper(address beeKeeper_) external onlyRole(Constants.GAME_ADMIN) {
                _grantRole(Constants.JANI, beeKeeper_);
            }
            function setStageTimes(uint24[] calldata _stageTimes) external onlyRole(Constants.GAME_ADMIN) {
                stageTimes = _stageTimes;
            }
        }
        abstract contract GameRegistryConsumer {
            GameRegistry public gameRegistry;
            error GameRegistry_NoPermissions(string role, address user);
            error GameRegistry_StageOutOfBounds(uint8 index);
            modifier onlyRole(bytes32 role_) {
                if (!gameRegistry.hasRole(role_, msg.sender)) {
                    revert GameRegistry_NoPermissions(string(abi.encodePacked(role_)), msg.sender);
                }
                _;
            }
            constructor(address gameRegistry_) {
                gameRegistry = GameRegistry(gameRegistry_);
            }
            function _isEnabled(address game_) internal view returns (bool enabled) {
                enabled = gameRegistry.games(game_);
            }
            /// @dev the last stageTime is generalMint
            function _getStages() internal view returns (uint256[] memory) {
                return gameRegistry.getStageTimes();
            }
            /// @dev just a helper function. For access to all stages you should use _getStages()
            function _getStage(uint8 stageIndex) internal view returns (uint256) {
                uint256[] memory stageTimes = gameRegistry.getStageTimes();
                if (stageIndex >= stageTimes.length) revert GameRegistry_StageOutOfBounds(stageIndex);
                return stageTimes[stageIndex];
            }
            function _hasRole(bytes32 role_) internal view returns (bool) {
                return gameRegistry.hasRole(role_, msg.sender);
            }
        }
        // SPDX-License-Identifier: UNLICENSED
        pragma solidity ^0.8.17;
        import "solmate/auth/Owned.sol";
        import "dual-ownership-nft/MultisigOwnable.sol";
        import "solmate/utils/LibString.sol";
        import {ERC721AQueryable, ERC721A, IERC721A} from "ERC721A/extensions/ERC721AQueryable.sol";
        import {IHoneyComb} from "./IHoneyComb.sol";
        import {GameRegistryConsumer} from "./GameRegistry.sol";
        import {Constants} from "./GameLib.sol";
        contract HoneyComb is IHoneyComb, GameRegistryConsumer, ERC721AQueryable, MultisigOwnable {
            using LibString for uint256;
            constructor(address gameRegistry_) ERC721A("Honey Comb", "HONEYCOMB") GameRegistryConsumer(gameRegistry_) {}
            // metadata URI
            string public _baseTokenURI = "https://www.0xhoneyjar.xyz/";
            bool public isGenerated; // once the token is generated we can append individual tokenIDs
            function _baseURI() internal view override returns (string memory) {
                return _baseTokenURI;
            }
            function setBaseURI(string calldata baseURI) external onlyRealOwner {
                _baseTokenURI = baseURI;
            }
            function setGenerated(bool generated_) external onlyRealOwner {
                isGenerated = generated_;
            }
            /// @notice Token URI will be a generic URI at first.
            /// @notice When isGnerated is set to true, it will concat the baseURI & tokenID
            function tokenURI(uint256 tokenId) public view override(IERC721A, ERC721A) returns (string memory) {
                if (!_exists(tokenId)) revert URIQueryForNonexistentToken();
                string memory baseURI = _baseURI();
                return isGenerated ? string.concat(baseURI, _toString(tokenId)) : baseURI;
            }
            /// @notice create honeycomb for an address.
            /// @dev only callable by the MINTER role
            function mint(address to) public onlyRole(Constants.MINTER) returns (uint256) {
                _mint(to, 1);
                return _nextTokenId() - 1; // To get the latest mintID
            }
            function nextTokenId() public view returns (uint256) {
                return _nextTokenId();
            }
            /// @notice mint multiple.
            /// @dev only callable by the MINTER role
            function batchMint(address to, uint256 amount) external onlyRole(Constants.MINTER) {
                _mint(to, amount);
            }
            /// @notice burn the honeycomb tokens. Nothing will have the burn role upon initialization
            /// @notice This will be used for future game-mechanics
            /// @dev only callable by the BURNER role
            function burn(uint256 _id) external override onlyRole(Constants.BURNER) {
                _burn(_id, true);
            }
        }
        // SPDX-License-Identifier: UNLICENSED
        pragma solidity ^0.8.17;
        import "ERC721A/extensions/IERC721AQueryable.sol";
        interface IHoneyComb is IERC721AQueryable {
            function mint(address to) external returns (uint256);
            function batchMint(address to, uint256 amount) external;
            function burn(uint256 _id) external;
            function nextTokenId() external view returns (uint256);
        }
        

        File 3 of 4: BlurExchangeV2
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import { Ownable2StepUpgradeable } from "lib/openzeppelin-contracts-upgradeable/contracts/access/Ownable2StepUpgradeable.sol";
        import { UUPSUpgradeable } from "lib/openzeppelin-contracts-upgradeable/contracts/proxy/utils/UUPSUpgradeable.sol";
        import { Executor } from "./Executor.sol";
        import "./lib/Constants.sol";
        import {
            TakeAsk,
            TakeBid,
            TakeAskSingle,
            TakeBidSingle,
            Order,
            Exchange,
            Fees,
            FeeRate,
            AssetType,
            OrderType,
            Transfer,
            FungibleTransfers,
            StateUpdate,
            AtomicExecution,
            Cancel,
            Listing
        } from "./lib/Structs.sol";
        import { IBlurExchangeV2 } from "./interfaces/IBlurExchangeV2.sol";
        import { ReentrancyGuardUpgradeable } from "./lib/ReentrancyGuardUpgradeable.sol";
        contract BlurExchangeV2 is
            IBlurExchangeV2,
            Ownable2StepUpgradeable,
            UUPSUpgradeable,
            ReentrancyGuardUpgradeable,
            Executor
        {
            address public governor;
            // required by the OZ UUPS module
            function _authorizeUpgrade(address) internal override onlyOwner {}
            constructor(address delegate, address pool, address proxy) Executor(delegate, pool, proxy) {
                _disableInitializers();
            }
            function initialize() external initializer {
                __UUPSUpgradeable_init();
                __Ownable_init();
                __Reentrancy_init();
                verifyDomain();
            }
            modifier onlyGovernor() {
                if (msg.sender != governor) {
                    revert Unauthorized();
                }
                _;
            }
            /**
             * @notice Governor only function to set the protocol fee rate and recipient
             * @param recipient Protocol fee recipient
             * @param rate Protocol fee rate
             */
            function setProtocolFee(address recipient, uint16 rate) external onlyGovernor {
                if (rate > _MAX_PROTOCOL_FEE_RATE) {
                    revert ProtocolFeeTooHigh();
                }
                protocolFee = FeeRate(recipient, rate);
                emit NewProtocolFee(recipient, rate);
            }
            /**
             * @notice Admin only function to set the governor of the exchange
             * @param _governor Address of governor to set
             */
            function setGovernor(address _governor) external onlyOwner {
                governor = _governor;
                emit NewGovernor(_governor);
            }
            /**
             * @notice Admin only function to grant or revoke the approval of an oracle
             * @param oracle Address to set approval of
             * @param approved If the oracle should be approved or not
             */
            function setOracle(address oracle, bool approved) external onlyOwner {
                if (approved) {
                    oracles[oracle] = 1;
                } else {
                    oracles[oracle] = 0;
                }
                emit SetOracle(oracle, approved);
            }
            /**
             * @notice Admin only function to set the block range
             * @param _blockRange Block range that oracle signatures are valid for
             */
            function setBlockRange(uint256 _blockRange) external onlyOwner {
                blockRange = _blockRange;
                emit NewBlockRange(_blockRange);
            }
            /**
             * @notice Cancel listings by recording their fulfillment
             * @param cancels List of cancels to execute
             */
            function cancelTrades(Cancel[] memory cancels) external {
                uint256 cancelsLength = cancels.length;
                for (uint256 i; i < cancelsLength; ) {
                    Cancel memory cancel = cancels[i];
                    amountTaken[msg.sender][cancel.hash][cancel.index] += cancel.amount;
                    emit CancelTrade(msg.sender, cancel.hash, cancel.index, cancel.amount);
                    unchecked {
                        ++i;
                    }
                }
            }
            /**
             * @notice Cancels all orders by incrementing caller nonce
             */
            function incrementNonce() external {
                emit NonceIncremented(msg.sender, ++nonces[msg.sender]);
            }
            /*//////////////////////////////////////////////////////////////
                                  EXECUTION WRAPPERS
            //////////////////////////////////////////////////////////////*/
            /**
             * @notice Wrapper of _takeAsk that verifies an oracle signature of the calldata before executing
             * @param inputs Inputs for _takeAsk
             * @param oracleSignature Oracle signature of inputs
             */
            function takeAsk(
                TakeAsk memory inputs,
                bytes calldata oracleSignature
            )
                public
                payable
                nonReentrant
                verifyOracleSignature(_hashCalldata(msg.sender), oracleSignature)
            {
                _takeAsk(
                    inputs.orders,
                    inputs.exchanges,
                    inputs.takerFee,
                    inputs.signatures,
                    inputs.tokenRecipient
                );
            }
            /**
             * @notice Wrapper of _takeBid that verifies an oracle signature of the calldata before executing
             * @param inputs Inputs for _takeBid
             * @param oracleSignature Oracle signature of inputs
             */
            function takeBid(
                TakeBid memory inputs,
                bytes calldata oracleSignature
            ) public verifyOracleSignature(_hashCalldata(msg.sender), oracleSignature) {
                _takeBid(inputs.orders, inputs.exchanges, inputs.takerFee, inputs.signatures);
            }
            /**
             * @notice Wrapper of _takeAskSingle that verifies an oracle signature of the calldata before executing
             * @param inputs Inputs for _takeAskSingle
             * @param oracleSignature Oracle signature of inputs
             */
            function takeAskSingle(
                TakeAskSingle memory inputs,
                bytes calldata oracleSignature
            )
                public
                payable
                nonReentrant
                verifyOracleSignature(_hashCalldata(msg.sender), oracleSignature)
            {
                _takeAskSingle(
                    inputs.order,
                    inputs.exchange,
                    inputs.takerFee,
                    inputs.signature,
                    inputs.tokenRecipient
                );
            }
            /**
             * @notice Wrapper of _takeBidSingle that verifies an oracle signature of the calldata before executing
             * @param inputs Inputs for _takeBidSingle
             * @param oracleSignature Oracle signature of inputs
             */
            function takeBidSingle(
                TakeBidSingle memory inputs,
                bytes calldata oracleSignature
            ) external verifyOracleSignature(_hashCalldata(msg.sender), oracleSignature) {
                _takeBidSingle(inputs.order, inputs.exchange, inputs.takerFee, inputs.signature);
            }
            /*//////////////////////////////////////////////////////////////
                                EXECUTION POOL WRAPPERS
            //////////////////////////////////////////////////////////////*/
            /**
             * @notice Wrapper of takeAskSingle that withdraws ETH from the caller's pool balance prior to executing
             * @param inputs Inputs for takeAskSingle
             * @param oracleSignature Oracle signature of inputs
             * @param amountToWithdraw Amount of ETH to withdraw from the pool
             */
            function takeAskSinglePool(
                TakeAskSingle memory inputs,
                bytes calldata oracleSignature,
                uint256 amountToWithdraw
            ) external payable {
                _withdrawFromPool(msg.sender, amountToWithdraw);
                takeAskSingle(inputs, oracleSignature);
            }
            /**
             * @notice Wrapper of takeAsk that withdraws ETH from the caller's pool balance prior to executing
             * @param inputs Inputs for takeAsk
             * @param oracleSignature Oracle signature of inputs
             * @param amountToWithdraw Amount of ETH to withdraw from the pool
             */
            function takeAskPool(
                TakeAsk memory inputs,
                bytes calldata oracleSignature,
                uint256 amountToWithdraw
            ) external payable {
                _withdrawFromPool(msg.sender, amountToWithdraw);
                takeAsk(inputs, oracleSignature);
            }
            /*//////////////////////////////////////////////////////////////
                                  EXECUTION FUNCTIONS
            //////////////////////////////////////////////////////////////*/
            /**
             * @notice Take a single ask
             * @param order Order of listing to fulfill
             * @param exchange Exchange struct indicating the listing to take and the parameters to match it with
             * @param takerFee Taker fee to be taken
             * @param signature Order signature
             * @param tokenRecipient Address to receive the token transfer
             */
            function _takeAskSingle(
                Order memory order,
                Exchange memory exchange,
                FeeRate memory takerFee,
                bytes memory signature,
                address tokenRecipient
            ) internal {
                Fees memory fees = Fees(protocolFee, takerFee);
                Listing memory listing = exchange.listing;
                uint256 takerAmount = exchange.taker.amount;
                /* Validate the order and listing, revert if not. */
                if (!_validateOrderAndListing(order, OrderType.ASK, exchange, signature, fees)) {
                    revert InvalidOrder();
                }
                /* Create single execution batch and insert the transfer. */
                bytes memory executionBatch = _initializeSingleExecution(
                    order,
                    OrderType.ASK,
                    listing.tokenId,
                    takerAmount,
                    tokenRecipient
                );
                /* Set the fulfillment of the order. */
                unchecked {
                    amountTaken[order.trader][bytes32(order.salt)][listing.index] += takerAmount;
                }
                /* Execute the token transfers, revert if not successful. */
                {
                    bool[] memory successfulTransfers = _executeNonfungibleTransfers(executionBatch, 1);
                    if (!successfulTransfers[0]) {
                        revert TokenTransferFailed();
                    }
                }
                (
                    uint256 totalPrice,
                    uint256 protocolFeeAmount,
                    uint256 makerFeeAmount,
                    uint256 takerFeeAmount
                ) = _computeFees(listing.price, takerAmount, order.makerFee, fees);
                /* If there are insufficient funds to cover the price with the fees, revert. */
                unchecked {
                    if (address(this).balance < totalPrice + takerFeeAmount) {
                        revert InsufficientFunds();
                    }
                }
                /* Execute ETH transfers. */
                _transferETH(fees.protocolFee.recipient, protocolFeeAmount);
                _transferETH(fees.takerFee.recipient, takerFeeAmount);
                _transferETH(order.makerFee.recipient, makerFeeAmount);
                unchecked {
                    _transferETH(order.trader, totalPrice - makerFeeAmount - protocolFeeAmount);
                }
                _emitExecutionEvent(executionBatch, order, listing.index, totalPrice, fees, OrderType.ASK);
                /* Return dust. */
                _transferETH(msg.sender, address(this).balance);
            }
            /**
             * @notice Take a single bid
             * @param order Order of listing to fulfill
             * @param exchange Exchange struct indicating the listing to take and the parameters to match it with
             * @param takerFee Taker fee to be taken
             * @param signature Order signature
             */
            function _takeBidSingle(
                Order memory order,
                Exchange memory exchange,
                FeeRate memory takerFee,
                bytes memory signature
            ) internal {
                Fees memory fees = Fees(protocolFee, takerFee);
                Listing memory listing = exchange.listing;
                uint256 takerAmount = exchange.taker.amount;
                /* Validate the order and listing, revert if not. */
                if (!_validateOrderAndListing(order, OrderType.BID, exchange, signature, fees)) {
                    revert InvalidOrder();
                }
                /* Create single execution batch and insert the transfer. */
                bytes memory executionBatch = _initializeSingleExecution(
                    order,
                    OrderType.BID,
                    exchange.taker.tokenId,
                    takerAmount,
                    msg.sender
                );
                /* Execute the token transfers, revert if not successful. */
                {
                    bool[] memory successfulTransfers = _executeNonfungibleTransfers(executionBatch, 1);
                    if (!successfulTransfers[0]) {
                        revert TokenTransferFailed();
                    }
                }
                (
                    uint256 totalPrice,
                    uint256 protocolFeeAmount,
                    uint256 makerFeeAmount,
                    uint256 takerFeeAmount
                ) = _computeFees(listing.price, takerAmount, order.makerFee, fees);
                /* Execute pool transfers and set the fulfillment of the order. */
                address trader = order.trader;
                _transferPool(trader, order.makerFee.recipient, makerFeeAmount);
                _transferPool(trader, fees.takerFee.recipient, takerFeeAmount);
                _transferPool(trader, fees.protocolFee.recipient, protocolFeeAmount);
                unchecked {
                    _transferPool(trader, msg.sender, totalPrice - takerFeeAmount - protocolFeeAmount);
                    amountTaken[trader][bytes32(order.salt)][listing.index] += exchange.taker.amount;
                }
                _emitExecutionEvent(executionBatch, order, listing.index, totalPrice, fees, OrderType.BID);
            }
            /**
             * @notice Take multiple asks; efficiently verifying and executing the transfers in bulk
             * @param orders List of orders
             * @param exchanges List of exchanges indicating the listing to take and the parameters to match it with
             * @param takerFee Taker fee to be taken on each exchange
             * @param signatures Bytes array of order signatures
             * @param tokenRecipient Address to receive the tokens purchased
             */
            function _takeAsk(
                Order[] memory orders,
                Exchange[] memory exchanges,
                FeeRate memory takerFee,
                bytes memory signatures,
                address tokenRecipient
            ) internal {
                Fees memory fees = Fees(protocolFee, takerFee);
                /**
                 * Validate all the orders potentially used in the execution and
                 * initialize the arrays for pending fulfillments.
                 */
                (bool[] memory validOrders, uint256[][] memory pendingAmountTaken) = _validateOrders(
                    orders,
                    OrderType.ASK,
                    signatures,
                    fees
                );
                uint256 exchangesLength = exchanges.length;
                /* Initialize the execution batch structs. */
                (
                    bytes memory executionBatch,
                    FungibleTransfers memory fungibleTransfers
                ) = _initializeBatch(exchangesLength, OrderType.ASK, tokenRecipient);
                Order memory order;
                Exchange memory exchange;
                uint256 remainingETH = address(this).balance;
                for (uint256 i; i < exchangesLength; ) {
                    exchange = exchanges[i];
                    order = orders[exchange.index];
                    /* Check the listing and exchange is valid and its parent order has already been validated. */
                    if (
                        _validateListingFromBatch(
                            order,
                            OrderType.ASK,
                            exchange,
                            validOrders,
                            pendingAmountTaken
                        )
                    ) {
                        /* Insert the transfers into the batch. */
                        bool inserted;
                        (remainingETH, inserted) = _insertExecutionAsk(
                            executionBatch,
                            fungibleTransfers,
                            order,
                            exchange,
                            fees,
                            remainingETH
                        );
                        if (inserted) {
                            unchecked {
                                pendingAmountTaken[exchange.index][exchange.listing.index] += exchange
                                    .taker
                                    .amount;
                            }
                        }
                    }
                    unchecked {
                        ++i;
                    }
                }
                /* Execute all transfers. */
                _executeBatchTransfer(executionBatch, fungibleTransfers, fees, OrderType.ASK);
                /* Return dust. */
                _transferETH(msg.sender, address(this).balance);
            }
            /**
             * @notice Take multiple bids; efficiently verifying and executing the transfers in bulk
             * @param orders List of orders
             * @param exchanges List of exchanges indicating the listing to take and the parameters to match it with
             * @param takerFee Taker fee to be taken on each exchange
             * @param signatures Bytes array of order signatures
             */
            function _takeBid(
                Order[] memory orders,
                Exchange[] memory exchanges,
                FeeRate memory takerFee,
                bytes memory signatures
            ) internal {
                Fees memory fees = Fees(protocolFee, takerFee);
                /**
                 * Validate all the orders potentially used in the execution and
                 * initialize the arrays for pending fulfillments.
                 */
                (bool[] memory validOrders, uint256[][] memory pendingAmountTaken) = _validateOrders(
                    orders,
                    OrderType.BID,
                    signatures,
                    fees
                );
                uint256 exchangesLength = exchanges.length;
                /* Initialize the execution batch structs. */
                (
                    bytes memory executionBatch,
                    FungibleTransfers memory fungibleTransfers
                ) = _initializeBatch(exchangesLength, OrderType.BID, msg.sender);
                Order memory order;
                Exchange memory exchange;
                for (uint256 i; i < exchangesLength; ) {
                    exchange = exchanges[i];
                    order = orders[exchange.index];
                    /* Check the listing and exchange is valid and its parent order has already been validated. */
                    if (
                        _validateListingFromBatch(
                            order,
                            OrderType.BID,
                            exchange,
                            validOrders,
                            pendingAmountTaken
                        )
                    ) {
                        /* Insert the transfers into the batch. */
                        _insertExecutionBid(executionBatch, fungibleTransfers, order, exchange, fees);
                        /* Record the pending fulfillment. */
                        unchecked {
                            pendingAmountTaken[exchange.index][exchange.listing.index] += exchange
                                .taker
                                .amount;
                        }
                    }
                    unchecked {
                        ++i;
                    }
                }
                /* Execute all transfers. */
                _executeBatchTransfer(executionBatch, fungibleTransfers, fees, OrderType.BID);
            }
            /*//////////////////////////////////////////////////////////////
                                  EXECUTION HELPERS
            //////////////////////////////////////////////////////////////*/
            /**
             * @notice Initialize the ExecutionBatch and FungibleTransfers objects for bulk execution
             * @param exchangesLength Number of exchanges
             * @param orderType Order type
             * @param taker Order taker address
             */
            function _initializeBatch(
                uint256 exchangesLength,
                OrderType orderType,
                address taker
            )
                internal
                pure
                returns (bytes memory executionBatch, FungibleTransfers memory fungibleTransfers)
            {
                /* Initialize the batch. Constructing it manually in calldata packing allows for cheaper delegate execution. */
                uint256 arrayLength = Transfer_size * exchangesLength + One_word;
                uint256 executionBatchLength = ExecutionBatch_base_size + arrayLength;
                executionBatch = new bytes(executionBatchLength);
                assembly {
                    let calldataPointer := add(executionBatch, ExecutionBatch_calldata_offset)
                    mstore(add(calldataPointer, ExecutionBatch_taker_offset), taker)
                    mstore(add(calldataPointer, ExecutionBatch_orderType_offset), orderType)
                    mstore(add(calldataPointer, ExecutionBatch_transfers_pointer_offset), ExecutionBatch_transfers_offset) // set the transfers pointer
                    mstore(add(calldataPointer, ExecutionBatch_transfers_offset), exchangesLength) // set the length of the transfers array
                }
                /* Initialize the fungible transfers object. */
                AtomicExecution[] memory executions = new AtomicExecution[](exchangesLength);
                address[] memory feeRecipients = new address[](exchangesLength);
                address[] memory makers = new address[](exchangesLength);
                uint256[] memory makerTransfers = new uint256[](exchangesLength);
                uint256[] memory feeTransfers = new uint256[](exchangesLength);
                fungibleTransfers = FungibleTransfers({
                    totalProtocolFee: 0,
                    totalSellerTransfer: 0,
                    totalTakerFee: 0,
                    feeRecipientId: 0,
                    feeRecipients: feeRecipients,
                    makerId: 0,
                    makers: makers,
                    feeTransfers: feeTransfers,
                    makerTransfers: makerTransfers,
                    executions: executions
                });
            }
            /**
             * @notice Initialize the ExecutionBatch object for a single execution
             * @param order Order to take a Listing from
             * @param orderType Order type
             * @param tokenId Token id
             * @param amount ERC721/ERC1155 amount
             * @param taker Order taker address
             */
            function _initializeSingleExecution(
                Order memory order,
                OrderType orderType,
                uint256 tokenId,
                uint256 amount,
                address taker
            ) internal pure returns (bytes memory executionBatch) {
                /* Initialize the batch. Constructing it manually in calldata packing allows for cheaper delegate execution. */
                uint256 arrayLength = Transfer_size + One_word;
                uint256 executionBatchLength = ExecutionBatch_base_size + arrayLength;
                executionBatch = new bytes(executionBatchLength);
                assembly {
                    let calldataPointer := add(executionBatch, ExecutionBatch_calldata_offset)
                    mstore(add(calldataPointer, ExecutionBatch_taker_offset), taker)
                    mstore(add(calldataPointer, ExecutionBatch_orderType_offset), orderType)
                    mstore(add(calldataPointer, ExecutionBatch_transfers_pointer_offset), ExecutionBatch_transfers_offset) // set the transfers pointer
                    mstore(add(calldataPointer, ExecutionBatch_transfers_offset), 1) // set the length of the transfers array
                }
                /* Insert the transfer into the batch. */
                _insertNonfungibleTransfer(executionBatch, order, tokenId, amount);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.0) (access/Ownable2Step.sol)
        pragma solidity ^0.8.0;
        import "./OwnableUpgradeable.sol";
        import "../proxy/utils/Initializable.sol";
        /**
         * @dev Contract module which provides access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * By default, the owner account will be the one that deploys the contract. This
         * can later be changed with {transferOwnership} and {acceptOwnership}.
         *
         * This module is used through inheritance. It will make available all functions
         * from parent (Ownable).
         */
        abstract contract Ownable2StepUpgradeable is Initializable, OwnableUpgradeable {
            function __Ownable2Step_init() internal onlyInitializing {
                __Ownable_init_unchained();
            }
            function __Ownable2Step_init_unchained() internal onlyInitializing {
            }
            address private _pendingOwner;
            event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Returns the address of the pending owner.
             */
            function pendingOwner() public view virtual returns (address) {
                return _pendingOwner;
            }
            /**
             * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual override onlyOwner {
                _pendingOwner = newOwner;
                emit OwnershipTransferStarted(owner(), newOwner);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
             * Internal function without access restriction.
             */
            function _transferOwnership(address newOwner) internal virtual override {
                delete _pendingOwner;
                super._transferOwnership(newOwner);
            }
            /**
             * @dev The new owner accepts the ownership transfer.
             */
            function acceptOwnership() external {
                address sender = _msgSender();
                require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner");
                _transferOwnership(sender);
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[49] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.0) (proxy/utils/UUPSUpgradeable.sol)
        pragma solidity ^0.8.0;
        import "../../interfaces/draft-IERC1822Upgradeable.sol";
        import "../ERC1967/ERC1967UpgradeUpgradeable.sol";
        import "./Initializable.sol";
        /**
         * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
         * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
         *
         * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
         * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
         * `UUPSUpgradeable` with a custom implementation of upgrades.
         *
         * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
         *
         * _Available since v4.1._
         */
        abstract contract UUPSUpgradeable is Initializable, IERC1822ProxiableUpgradeable, ERC1967UpgradeUpgradeable {
            function __UUPSUpgradeable_init() internal onlyInitializing {
            }
            function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
            }
            /// @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
            address private immutable __self = address(this);
            /**
             * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
             * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case
             * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
             * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
             * fail.
             */
            modifier onlyProxy() {
                require(address(this) != __self, "Function must be called through delegatecall");
                require(_getImplementation() == __self, "Function must be called through active proxy");
                _;
            }
            /**
             * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
             * callable on the implementing contract but not through proxies.
             */
            modifier notDelegated() {
                require(address(this) == __self, "UUPSUpgradeable: must not be called through delegatecall");
                _;
            }
            /**
             * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the
             * implementation. It is used to validate the implementation's compatibility when performing an upgrade.
             *
             * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
             * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
             * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
             */
            function proxiableUUID() external view virtual override notDelegated returns (bytes32) {
                return _IMPLEMENTATION_SLOT;
            }
            /**
             * @dev Upgrade the implementation of the proxy to `newImplementation`.
             *
             * Calls {_authorizeUpgrade}.
             *
             * Emits an {Upgraded} event.
             */
            function upgradeTo(address newImplementation) external virtual onlyProxy {
                _authorizeUpgrade(newImplementation);
                _upgradeToAndCallUUPS(newImplementation, new bytes(0), false);
            }
            /**
             * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
             * encoded in `data`.
             *
             * Calls {_authorizeUpgrade}.
             *
             * Emits an {Upgraded} event.
             */
            function upgradeToAndCall(address newImplementation, bytes memory data) external payable virtual onlyProxy {
                _authorizeUpgrade(newImplementation);
                _upgradeToAndCallUUPS(newImplementation, data, true);
            }
            /**
             * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
             * {upgradeTo} and {upgradeToAndCall}.
             *
             * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
             *
             * ```solidity
             * function _authorizeUpgrade(address) internal override onlyOwner {}
             * ```
             */
            function _authorizeUpgrade(address newImplementation) internal virtual;
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import { Validation } from "./Validation.sol";
        import "./lib/Constants.sol";
        import {
            Order,
            Exchange,
            FungibleTransfers,
            StateUpdate,
            AtomicExecution,
            AssetType,
            Fees,
            FeeRate,
            Listing,
            Taker,
            Transfer,
            OrderType
        } from "./lib/Structs.sol";
        import { IDelegate } from "./interfaces/IDelegate.sol";
        import { IExecutor } from "./interfaces/IExecutor.sol";
        abstract contract Executor is IExecutor, Validation {
            address private immutable _DELEGATE;
            address private immutable _POOL;
            constructor(address delegate, address pool, address proxy) Validation(proxy) {
                _DELEGATE = delegate;
                _POOL = pool;
            }
            receive() external payable {
                if (msg.sender != _POOL) {
                    revert Unauthorized();
                }
            }
            /**
             * @notice Insert a validated ask listing into the batch if there's sufficient ETH to fulfill
             * @param executionBatch Execution batch
             * @param fungibleTransfers Fungible transfers
             * @param order Order of the listing to insert
             * @param exchange Exchange containing the listing to insert
             * @param fees Protocol and taker fees
             * @param remainingETH Available ETH remaining
             * @return Available ETH remaining after insertion; if the listing was inserted in the batch
             */
            function _insertExecutionAsk(
                bytes memory executionBatch,
                FungibleTransfers memory fungibleTransfers,
                Order memory order,
                Exchange memory exchange,
                Fees memory fees,
                uint256 remainingETH
            ) internal pure returns (uint256, bool) {
                uint256 takerAmount = exchange.taker.amount;
                (
                    uint256 totalPrice,
                    uint256 protocolFeeAmount,
                    uint256 makerFeeAmount,
                    uint256 takerFeeAmount
                ) = _computeFees(exchange.listing.price, takerAmount, order.makerFee, fees);
                /* Only insert the executions if there are sufficient funds to execute. */
                if (remainingETH >= totalPrice + takerFeeAmount) {
                    unchecked {
                        remainingETH = remainingETH - totalPrice - takerFeeAmount;
                    }
                    _setAddresses(fungibleTransfers, order);
                    uint256 index = _insertNonfungibleTransfer(
                        executionBatch,
                        order,
                        exchange.listing.tokenId,
                        takerAmount
                    );
                    _insertFungibleTransfers(
                        fungibleTransfers,
                        takerAmount,
                        exchange.listing,
                        bytes32(order.salt),
                        index,
                        totalPrice,
                        protocolFeeAmount,
                        makerFeeAmount,
                        takerFeeAmount,
                        true
                    );
                    return (remainingETH, true);
                } else {
                    return (remainingETH, false);
                }
            }
            /**
             * @notice Insert a validated bid listing into the batch
             * @param executionBatch Execution batch
             * @param fungibleTransfers Fungible transfers
             * @param order Order of the listing to insert
             * @param exchange Exchange containing listing to insert
             * @param fees Protocol and taker fees
             */
            function _insertExecutionBid(
                bytes memory executionBatch,
                FungibleTransfers memory fungibleTransfers,
                Order memory order,
                Exchange memory exchange,
                Fees memory fees
            ) internal pure {
                uint256 takerAmount = exchange.taker.amount;
                (
                    uint256 totalPrice,
                    uint256 protocolFeeAmount,
                    uint256 makerFeeAmount,
                    uint256 takerFeeAmount
                ) = _computeFees(exchange.listing.price, takerAmount, order.makerFee, fees);
                _setAddresses(fungibleTransfers, order);
                uint256 index = _insertNonfungibleTransfer(
                    executionBatch,
                    order,
                    exchange.taker.tokenId,
                    takerAmount
                );
                _insertFungibleTransfers(
                    fungibleTransfers,
                    takerAmount,
                    exchange.listing,
                    bytes32(order.salt),
                    index,
                    totalPrice,
                    protocolFeeAmount,
                    makerFeeAmount,
                    takerFeeAmount,
                    false
                );
            }
            /**
             * @notice Insert the nonfungible transfer into the batch
             * @param executionBatch Execution batch
             * @param order Order
             * @param tokenId Token id
             * @param amount Number of token units
             * @return transferIndex Index of the transfer
             */
            function _insertNonfungibleTransfer(
                bytes memory executionBatch,
                Order memory order,
                uint256 tokenId,
                uint256 amount
            ) internal pure returns (uint256 transferIndex) {
                assembly {
                    let calldataPointer := add(executionBatch, ExecutionBatch_calldata_offset)
                    transferIndex := mload(add(calldataPointer, ExecutionBatch_length_offset))
                    let transfersOffset := mload(add(calldataPointer, ExecutionBatch_transfers_pointer_offset))
                    let transferPointer := add(
                        add(calldataPointer, add(transfersOffset, One_word)),
                        mul(transferIndex, Transfer_size)
                    )
                    mstore(
                        add(transferPointer, Transfer_trader_offset),
                        mload(add(order, Order_trader_offset))
                    ) // set the trader
                    mstore(add(transferPointer, Transfer_id_offset), tokenId) // set the token id
                    mstore(
                        add(transferPointer, Transfer_collection_offset),
                        mload(add(order, Order_collection_offset))
                    ) // set the collection
                    mstore(
                        add(transferPointer, Transfer_assetType_offset),
                        mload(add(order, Order_assetType_offset))
                    ) // set the asset type
                    mstore(add(calldataPointer, ExecutionBatch_length_offset), add(transferIndex, 1)) // increment the batch length
                    if eq(mload(add(order, Order_assetType_offset)), AssetType_ERC1155) {
                        mstore(add(transferPointer, Transfer_amount_offset), amount) // set the amount (don't need to set for ERC721's)
                    }
                }
            }
            /**
             * @notice Insert the fungible transfers that need to be executed atomically
             * @param fungibleTransfers Fungible transfers struct
             * @param takerAmount Amount of the listing being taken
             * @param listing Listing to execute
             * @param orderHash Order hash
             * @param index Execution index
             * @param totalPrice Total price of the purchased tokens
             * @param protocolFeeAmount Computed protocol fee
             * @param makerFeeAmount Computed maker fee
             * @param takerFeeAmount Computed taker fee
             * @param makerIsSeller Is the order maker the seller
             */
            function _insertFungibleTransfers(
                FungibleTransfers memory fungibleTransfers,
                uint256 takerAmount,
                Listing memory listing,
                bytes32 orderHash,
                uint256 index,
                uint256 totalPrice,
                uint256 protocolFeeAmount,
                uint256 makerFeeAmount,
                uint256 takerFeeAmount,
                bool makerIsSeller
            ) internal pure {
                uint256 makerId = fungibleTransfers.makerId;
                fungibleTransfers.executions[index].makerId = makerId;
                fungibleTransfers.executions[index].makerFeeRecipientId = fungibleTransfers.feeRecipientId;
                fungibleTransfers.executions[index].stateUpdate = StateUpdate({
                    trader: fungibleTransfers.makers[makerId],
                    hash: orderHash,
                    index: listing.index,
                    value: takerAmount,
                    maxAmount: listing.amount
                });
                if (makerIsSeller) {
                    unchecked {
                        fungibleTransfers.executions[index].sellerAmount =
                            totalPrice -
                            protocolFeeAmount -
                            makerFeeAmount;
                    }
                } else {
                    unchecked {
                        fungibleTransfers.executions[index].sellerAmount =
                            totalPrice -
                            protocolFeeAmount -
                            takerFeeAmount;
                    }
                }
                fungibleTransfers.executions[index].makerFeeAmount = makerFeeAmount;
                fungibleTransfers.executions[index].takerFeeAmount = takerFeeAmount;
                fungibleTransfers.executions[index].protocolFeeAmount = protocolFeeAmount;
            }
            /**
             * @notice Set the addresses of the maker fee recipient and order maker if different than currently being batched
             * @param fungibleTransfers Fungible transfers struct
             * @param order Parent order of listing being added to the batch
             */
            function _setAddresses(
                FungibleTransfers memory fungibleTransfers,
                Order memory order
            ) internal pure {
                address feeRecipient = order.makerFee.recipient;
                uint256 feeRecipientId = fungibleTransfers.feeRecipientId;
                address currentFeeRecipient = fungibleTransfers.feeRecipients[feeRecipientId];
                if (feeRecipient != currentFeeRecipient) {
                    if (currentFeeRecipient == address(0)) {
                        fungibleTransfers.feeRecipients[feeRecipientId] = feeRecipient;
                    } else {
                        unchecked {
                            fungibleTransfers.feeRecipients[++feeRecipientId] = feeRecipient;
                        }
                        fungibleTransfers.feeRecipientId = feeRecipientId;
                    }
                }
                address trader = order.trader;
                uint256 makerId = fungibleTransfers.makerId;
                address currentTrader = fungibleTransfers.makers[makerId];
                if (trader != currentTrader) {
                    if (currentTrader == address(0)) {
                        fungibleTransfers.makers[makerId] = trader;
                    } else {
                        unchecked {
                            fungibleTransfers.makers[++makerId] = trader;
                        }
                        fungibleTransfers.makerId = makerId;
                    }
                }
            }
            /**
             * @notice Compute all necessary fees to be taken
             * @param pricePerToken Price per token unit
             * @param takerAmount Number of token units taken (should only be greater than 1 for ERC1155)
             * @param fees Protocol and taker fee set by the transaction
             */
            function _computeFees(
                uint256 pricePerToken,
                uint256 takerAmount,
                FeeRate memory makerFee,
                Fees memory fees
            )
                internal
                pure
                returns (
                    uint256 totalPrice,
                    uint256 protocolFeeAmount,
                    uint256 makerFeeAmount,
                    uint256 takerFeeAmount
                )
            {
                totalPrice = pricePerToken * takerAmount;
                makerFeeAmount = (totalPrice * makerFee.rate) / _BASIS_POINTS;
                takerFeeAmount = (totalPrice * fees.takerFee.rate) / _BASIS_POINTS;
                protocolFeeAmount = (totalPrice * fees.protocolFee.rate) / _BASIS_POINTS;
            }
            /*//////////////////////////////////////////////////////////////
                                EXECUTION FUNCTIONS
            //////////////////////////////////////////////////////////////*/
            /**
             * @notice Execute the transfers by first attempting the nonfungible transfers, for the successful transfers sum the fungible transfers by the recipients and execute
             * @param executionBatch Execution batch struct
             * @param fungibleTransfers Fungible transfers struct
             * @param fees Protocol, maker, taker fees (note: makerFee will be inaccurate at this point in execution)
             * @param orderType Order type
             */
            function _executeBatchTransfer(
                bytes memory executionBatch,
                FungibleTransfers memory fungibleTransfers,
                Fees memory fees,
                OrderType orderType
            ) internal {
                uint256 batchLength;
                assembly {
                    let calldataPointer := add(executionBatch, ExecutionBatch_calldata_offset)
                    batchLength := mload(add(calldataPointer, ExecutionBatch_length_offset))
                }
                if (batchLength > 0) {
                    bool[] memory successfulTransfers = _executeNonfungibleTransfers(
                        executionBatch,
                        batchLength
                    );
                    uint256 transfersLength = successfulTransfers.length;
                    for (uint256 i; i < transfersLength; ) {
                        if (successfulTransfers[i]) {
                            AtomicExecution memory execution = fungibleTransfers.executions[i];
                            FeeRate memory makerFee;
                            uint256 price;
                            unchecked {
                                if (orderType == OrderType.ASK) {
                                    fungibleTransfers.makerTransfers[execution.makerId] += execution
                                        .sellerAmount; // amount that needs to be sent *to* the order maker
                                    price =
                                        execution.sellerAmount +
                                        execution.protocolFeeAmount +
                                        execution.makerFeeAmount;
                                } else {
                                    fungibleTransfers.makerTransfers[execution.makerId] +=
                                        execution.protocolFeeAmount +
                                        execution.makerFeeAmount +
                                        execution.takerFeeAmount +
                                        execution.sellerAmount; // amount that needs to be taken *from* the order maker
                                    price =
                                        execution.sellerAmount +
                                        execution.protocolFeeAmount +
                                        execution.takerFeeAmount;
                                }
                                fungibleTransfers.totalSellerTransfer += execution.sellerAmount; // only for bids
                                fungibleTransfers.totalProtocolFee += execution.protocolFeeAmount;
                                fungibleTransfers.totalTakerFee += execution.takerFeeAmount;
                                fungibleTransfers.feeTransfers[execution.makerFeeRecipientId] += execution
                                    .makerFeeAmount;
                                makerFee = FeeRate(
                                    fungibleTransfers.feeRecipients[execution.makerFeeRecipientId],
                                    uint16((execution.makerFeeAmount * _BASIS_POINTS) / price)
                                );
                            }
                            /* Commit state updates. */
                            StateUpdate memory stateUpdate = fungibleTransfers.executions[i].stateUpdate;
                            {
                                address trader = stateUpdate.trader;
                                bytes32 hash = stateUpdate.hash;
                                uint256 index = stateUpdate.index;
                                uint256 _amountTaken = amountTaken[trader][hash][index];
                                uint256 newAmountTaken = _amountTaken + stateUpdate.value;
                                /* Overfulfilled Listings should be caught prior to inserting into the batch, but this check prevents any misuse. */
                                if (newAmountTaken <= stateUpdate.maxAmount) {
                                    amountTaken[trader][hash][index] = newAmountTaken;
                                } else {
                                    revert OrderFulfilled();
                                }
                            }
                            _emitExecutionEventFromBatch(
                                executionBatch,
                                price,
                                makerFee,
                                fees,
                                stateUpdate,
                                orderType,
                                i
                            );
                        }
                        unchecked {
                            ++i;
                        }
                    }
                    if (orderType == OrderType.ASK) {
                        /* Transfer the payments to the sellers. */
                        uint256 makersLength = fungibleTransfers.makerId + 1;
                        for (uint256 i; i < makersLength; ) {
                            _transferETH(fungibleTransfers.makers[i], fungibleTransfers.makerTransfers[i]);
                            unchecked {
                                ++i;
                            }
                        }
                        /* Transfer the fees to the fee recipients. */
                        uint256 feesLength = fungibleTransfers.feeRecipientId + 1;
                        for (uint256 i; i < feesLength; ) {
                            _transferETH(
                                fungibleTransfers.feeRecipients[i],
                                fungibleTransfers.feeTransfers[i]
                            );
                            unchecked {
                                ++i;
                            }
                        }
                        /* Transfer the protocol fees. */
                        _transferETH(fees.protocolFee.recipient, fungibleTransfers.totalProtocolFee);
                        /* Transfer the taker fees. */
                        _transferETH(fees.takerFee.recipient, fungibleTransfers.totalTakerFee);
                    } else {
                        /* Take the pool funds from the buyers. */
                        uint256 makersLength = fungibleTransfers.makerId + 1;
                        for (uint256 i; i < makersLength; ) {
                            _transferPool(
                                fungibleTransfers.makers[i],
                                address(this),
                                fungibleTransfers.makerTransfers[i]
                            );
                            unchecked {
                                ++i;
                            }
                        }
                        /* Transfer the payment to the seller. */
                        _transferPool(address(this), msg.sender, fungibleTransfers.totalSellerTransfer);
                        /* Transfer the fees to the fee recipients. */
                        uint256 feesLength = fungibleTransfers.feeRecipientId + 1;
                        for (uint256 i; i < feesLength; ) {
                            _transferPool(
                                address(this),
                                fungibleTransfers.feeRecipients[i],
                                fungibleTransfers.feeTransfers[i]
                            );
                            unchecked {
                                ++i;
                            }
                        }
                        /* Transfer the protocol fees. */
                        _transferPool(
                            address(this),
                            fees.protocolFee.recipient,
                            fungibleTransfers.totalProtocolFee
                        );
                        /* Transfer the taker fees. */
                        _transferPool(
                            address(this),
                            fees.takerFee.recipient,
                            fungibleTransfers.totalTakerFee
                        );
                    }
                }
            }
            /**
             * @notice Attempt to execute a series of nonfungible transfers through the delegate; reverts will be skipped
             * @param executionBatch Execution batch struct
             * @param batchIndex Current available transfer slot in the batch
             * @return Array indicating which transfers were successful
             */
            function _executeNonfungibleTransfers(
                bytes memory executionBatch,
                uint256 batchIndex
            ) internal returns (bool[] memory) {
                address delegate = _DELEGATE;
                /* Initialize the memory space for the successful transfers array returned from the Delegate call. */
                uint256 successfulTransfersPointer;
                assembly {
                    successfulTransfersPointer := mload(Memory_pointer)
                    /* Need to shift the free memory pointer ahead one word to account for the array pointer returned from the call. */
                    mstore(Memory_pointer, add(successfulTransfersPointer, One_word))
                }
                bool[] memory successfulTransfers = new bool[](batchIndex);
                assembly {
                    let size := mload(executionBatch)
                    let selectorPointer := add(executionBatch, ExecutionBatch_selector_offset)
                    mstore(selectorPointer, shr(Bytes4_shift, Delegate_transfer_selector))
                    let success := call(
                        gas(),
                        delegate,
                        0,
                        add(selectorPointer, Delegate_transfer_calldata_offset),
                        sub(size, Delegate_transfer_calldata_offset),
                        successfulTransfersPointer,
                        add(0x40, mul(batchIndex, One_word))
                    )
                }
                return successfulTransfers;
            }
            /*//////////////////////////////////////////////////////////////
                                TRANSFER FUNCTIONS
            //////////////////////////////////////////////////////////////*/
            /**
             * @notice Transfer ETH
             * @param to Recipient address
             * @param amount Amount of ETH to send
             */
            function _transferETH(address to, uint256 amount) internal {
                if (amount > 0) {
                    bool success;
                    assembly {
                        success := call(gas(), to, amount, 0, 0, 0, 0)
                    }
                    if (!success) {
                        revert ETHTransferFailed();
                    }
                }
            }
            /**
             * @notice Transfer pool funds on behalf of a user
             * @param from Sender address
             * @param to Recipient address
             * @param amount Amount to send
             */
            function _transferPool(address from, address to, uint256 amount) internal {
                if (amount > 0) {
                    bool success;
                    address pool = _POOL;
                    assembly {
                        let x := mload(Memory_pointer)
                        mstore(x, ERC20_transferFrom_selector)
                        mstore(add(x, ERC20_transferFrom_from_offset), from)
                        mstore(add(x, ERC20_transferFrom_to_offset), to)
                        mstore(add(x, ERC20_transferFrom_amount_offset), amount)
                        success := call(gas(), pool, 0, x, ERC20_transferFrom_size, 0, 0)
                    }
                    if (!success) {
                        revert PoolTransferFailed();
                    }
                }
            }
            /**
             * @notice Deposit ETH to user's pool funds
             * @param to Recipient address
             * @param amount Amount of ETH to deposit
             */
            function _depositPool(address to, uint256 amount) internal {
                bool success;
                address pool = _POOL;
                assembly {
                    let x := mload(Memory_pointer)
                    mstore(x, Pool_deposit_selector)
                    mstore(add(x, Pool_deposit_user_offset), to)
                    success := call(gas(), pool, amount, x, Pool_deposit_size, 0, 0)
                }
                if (!success) {
                    revert PoolDepositFailed();
                }
            }
            /**
             * @notice Withdraw ETH from user's pool funds
             * @param from Address to withdraw from
             * @param amount Amount of ETH to withdraw
             */
            function _withdrawFromPool(address from, uint256 amount) internal {
                bool success;
                address pool = _POOL;
                assembly {
                    let x := mload(Memory_pointer)
                    mstore(x, Pool_withdrawFrom_selector)
                    mstore(add(x, Pool_withdrawFrom_from_offset), from)
                    mstore(add(x, Pool_withdrawFrom_to_offset), address())
                    mstore(add(x, Pool_withdrawFrom_amount_offset), amount)
                    success := call(gas(), pool, 0, x, Pool_withdrawFrom_size, 0, 0)
                }
                if (!success) {
                    revert PoolWithdrawFromFailed();
                }
            }
            /*//////////////////////////////////////////////////////////////
                                  EVENT EMITTERS
            //////////////////////////////////////////////////////////////*/
            /**
             * @notice Emit Execution event from a single execution
             * @param executionBatch Execution batch struct
             * @param price Price of the token purchased
             * @param fees Protocol, maker, and taker fees taken
             * @param stateUpdate Fulfillment to be recorded with a successful execution
             * @param orderType Order type
             * @param transferIndex Index of the transfer corresponding to the execution
             */
            function _emitExecutionEventFromBatch(
                bytes memory executionBatch,
                uint256 price,
                FeeRate memory makerFee,
                Fees memory fees,
                StateUpdate memory stateUpdate,
                OrderType orderType,
                uint256 transferIndex
            ) internal {
                Transfer memory transfer;
                assembly {
                    let calldataPointer := add(executionBatch, ExecutionBatch_calldata_offset)
                    let transfersOffset := mload(add(calldataPointer, ExecutionBatch_transfers_pointer_offset))
                    transfer := add(
                        add(calldataPointer, add(transfersOffset, One_word)),
                        mul(transferIndex, Transfer_size)
                    )
                }
                _emitOptimalExecutionEvent(
                    transfer,
                    stateUpdate.hash,
                    stateUpdate.index,
                    price,
                    makerFee,
                    fees,
                    orderType
                );
            }
            /**
             * @notice Emit the Execution event that minimizes the number of bytes in the log
             * @param transfer The nft transfer
             * @param orderHash Order hash
             * @param listingIndex Index of the listing being fulfilled within the order
             * @param price Price of the token purchased
             * @param makerFee Maker fees taken
             * @param fees Protocol, and taker fees taken
             * @param orderType Order type
             */
            function _emitOptimalExecutionEvent(
                Transfer memory transfer,
                bytes32 orderHash,
                uint256 listingIndex,
                uint256 price,
                FeeRate memory makerFee,
                Fees memory fees,
                OrderType orderType
            ) internal {
                if (
                    // see _insertNonfungibleTransfer; ERC721 transfers don't set the transfer amount,
                    // so we can assume the transfer amount and not check it
                    transfer.assetType == AssetType.ERC721 &&
                    fees.protocolFee.rate == 0 &&
                    transfer.id < 1 << (11 * 8) &&
                    listingIndex < 1 << (1 * 8) &&
                    price < 1 << (11 * 8)
                ) {
                    if (makerFee.rate == 0 && fees.takerFee.rate == 0) {
                        emit Execution721Packed(
                            orderHash,
                            packTokenIdListingIndexTrader(transfer.id, listingIndex, transfer.trader),
                            packTypePriceCollection(orderType, price, transfer.collection)
                        );
                        return;
                    } else if (makerFee.rate == 0) {
                        emit Execution721TakerFeePacked(
                            orderHash,
                            packTokenIdListingIndexTrader(transfer.id, listingIndex, transfer.trader),
                            packTypePriceCollection(orderType, price, transfer.collection),
                            packFee(fees.takerFee)
                        );
                        return;
                    } else if (fees.takerFee.rate == 0) {
                        emit Execution721MakerFeePacked(
                            orderHash,
                            packTokenIdListingIndexTrader(transfer.id, listingIndex, transfer.trader),
                            packTypePriceCollection(orderType, price, transfer.collection),
                            packFee(makerFee)
                        );
                        return;
                    }
                }
                emit Execution({
                    transfer: transfer,
                    orderHash: orderHash,
                    listingIndex: listingIndex,
                    price: price,
                    makerFee: makerFee,
                    fees: fees,
                    orderType: orderType
                });
            }
            /**
             * @notice Emit Execution event from a single execution
             * @param executionBatch Execution batch struct
             * @param order Order being fulfilled
             * @param listingIndex Index of the listing being fulfilled within the order
             * @param price Price of the token purchased
             * @param fees Protocol, and taker fees taken
             * @param orderType Order type
             */
            function _emitExecutionEvent(
                bytes memory executionBatch,
                Order memory order,
                uint256 listingIndex,
                uint256 price,
                Fees memory fees,
                OrderType orderType
            ) internal {
                Transfer memory transfer;
                assembly {
                    let calldataPointer := add(executionBatch, ExecutionBatch_calldata_offset)
                    let transfersOffset := mload(add(calldataPointer, ExecutionBatch_transfers_pointer_offset))
                    transfer := add(calldataPointer, add(transfersOffset, One_word))
                }
                _emitOptimalExecutionEvent(
                    transfer,
                    bytes32(order.salt),
                    listingIndex,
                    price,
                    order.makerFee,
                    fees,
                    orderType
                );
            }
            function packTokenIdListingIndexTrader(
                uint256 tokenId,
                uint256 listingIndex,
                address trader
            ) private pure returns (uint256) {
                return (tokenId << (21 * 8)) | (listingIndex << (20 * 8)) | uint160(trader);
            }
            function packTypePriceCollection(
                OrderType orderType,
                uint256 price,
                address collection
            ) private pure returns (uint256) {
                return (uint256(orderType) << (31 * 8)) | (price << (20 * 8)) | uint160(collection);
            }
            function packFee(FeeRate memory fee) private pure returns (uint256) {
                return (uint256(fee.rate) << (20 * 8)) | uint160(fee.recipient);
            }
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        uint256 constant Bytes1_shift = 0xf8;
        uint256 constant Bytes4_shift = 0xe0;
        uint256 constant Bytes20_shift = 0x60;
        uint256 constant One_word = 0x20;
        uint256 constant Memory_pointer = 0x40;
        uint256 constant AssetType_ERC721 = 0;
        uint256 constant AssetType_ERC1155 = 1;
        uint256 constant OrderType_ASK = 0;
        uint256 constant OrderType_BID = 1;
        uint256 constant Pool_withdrawFrom_selector = 0x9555a94200000000000000000000000000000000000000000000000000000000;
        uint256 constant Pool_withdrawFrom_from_offset = 0x04;
        uint256 constant Pool_withdrawFrom_to_offset = 0x24;
        uint256 constant Pool_withdrawFrom_amount_offset = 0x44;
        uint256 constant Pool_withdrawFrom_size = 0x64;
        uint256 constant Pool_deposit_selector = 0xf340fa0100000000000000000000000000000000000000000000000000000000;
        uint256 constant Pool_deposit_user_offset = 0x04;
        uint256 constant Pool_deposit_size = 0x24;
        uint256 constant ERC20_transferFrom_selector = 0x23b872dd00000000000000000000000000000000000000000000000000000000;
        uint256 constant ERC721_safeTransferFrom_selector = 0x42842e0e00000000000000000000000000000000000000000000000000000000;
        uint256 constant ERC1155_safeTransferFrom_selector = 0xf242432a00000000000000000000000000000000000000000000000000000000;
        uint256 constant ERC20_transferFrom_size = 0x64;
        uint256 constant ERC721_safeTransferFrom_size = 0x64;
        uint256 constant ERC1155_safeTransferFrom_size = 0xc4;
        uint256 constant OracleSignatures_size = 0x59;
        uint256 constant OracleSignatures_s_offset = 0x20;
        uint256 constant OracleSignatures_v_offset = 0x40;
        uint256 constant OracleSignatures_blockNumber_offset = 0x41;
        uint256 constant OracleSignatures_oracle_offset = 0x45;
        uint256 constant Signatures_size = 0x41;
        uint256 constant Signatures_s_offset = 0x20;
        uint256 constant Signatures_v_offset = 0x40;
        uint256 constant ERC20_transferFrom_from_offset = 0x4;
        uint256 constant ERC20_transferFrom_to_offset = 0x24;
        uint256 constant ERC20_transferFrom_amount_offset = 0x44;
        uint256 constant ERC721_safeTransferFrom_from_offset = 0x4;
        uint256 constant ERC721_safeTransferFrom_to_offset = 0x24;
        uint256 constant ERC721_safeTransferFrom_id_offset = 0x44;
        uint256 constant ERC1155_safeTransferFrom_from_offset = 0x4;
        uint256 constant ERC1155_safeTransferFrom_to_offset = 0x24;
        uint256 constant ERC1155_safeTransferFrom_id_offset = 0x44;
        uint256 constant ERC1155_safeTransferFrom_amount_offset = 0x64;
        uint256 constant ERC1155_safeTransferFrom_data_pointer_offset = 0x84;
        uint256 constant ERC1155_safeTransferFrom_data_offset = 0xa4;
        uint256 constant Delegate_transfer_selector = 0xa1ccb98e00000000000000000000000000000000000000000000000000000000;
        uint256 constant Delegate_transfer_calldata_offset = 0x1c;
        uint256 constant Order_size = 0x100;
        uint256 constant Order_trader_offset = 0x00;
        uint256 constant Order_collection_offset = 0x20;
        uint256 constant Order_listingsRoot_offset = 0x40;
        uint256 constant Order_numberOfListings_offset = 0x60;
        uint256 constant Order_expirationTime_offset = 0x80;
        uint256 constant Order_assetType_offset = 0xa0;
        uint256 constant Order_makerFee_offset = 0xc0;
        uint256 constant Order_salt_offset = 0xe0;
        uint256 constant Exchange_size = 0x80;
        uint256 constant Exchange_askIndex_offset = 0x00;
        uint256 constant Exchange_proof_offset = 0x20;
        uint256 constant Exchange_maker_offset = 0x40;
        uint256 constant Exchange_taker_offset = 0x60;
        uint256 constant BidExchange_size = 0x80;
        uint256 constant BidExchange_askIndex_offset = 0x00;
        uint256 constant BidExchange_proof_offset = 0x20;
        uint256 constant BidExchange_maker_offset = 0x40;
        uint256 constant BidExchange_taker_offset = 0x60;
        uint256 constant Listing_size = 0x80;
        uint256 constant Listing_index_offset = 0x00;
        uint256 constant Listing_tokenId_offset = 0x20;
        uint256 constant Listing_amount_offset = 0x40;
        uint256 constant Listing_price_offset = 0x60;
        uint256 constant Taker_size = 0x40;
        uint256 constant Taker_tokenId_offset = 0x00;
        uint256 constant Taker_amount_offset = 0x20;
        uint256 constant StateUpdate_size = 0x80;
        uint256 constant StateUpdate_salt_offset = 0x20;
        uint256 constant StateUpdate_leaf_offset = 0x40;
        uint256 constant StateUpdate_value_offset = 0x60;
        uint256 constant Transfer_size = 0xa0;
        uint256 constant Transfer_trader_offset = 0x00;
        uint256 constant Transfer_id_offset = 0x20;
        uint256 constant Transfer_amount_offset = 0x40;
        uint256 constant Transfer_collection_offset = 0x60;
        uint256 constant Transfer_assetType_offset = 0x80;
        uint256 constant ExecutionBatch_selector_offset = 0x20;
        uint256 constant ExecutionBatch_calldata_offset = 0x40;
        uint256 constant ExecutionBatch_base_size = 0xa0; // size of the executionBatch without the flattened dynamic elements
        uint256 constant ExecutionBatch_taker_offset = 0x00;
        uint256 constant ExecutionBatch_orderType_offset = 0x20;
        uint256 constant ExecutionBatch_transfers_pointer_offset = 0x40;
        uint256 constant ExecutionBatch_length_offset = 0x60;
        uint256 constant ExecutionBatch_transfers_offset = 0x80;
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.17;
        struct TakeAsk {
            Order[] orders;
            Exchange[] exchanges;
            FeeRate takerFee;
            bytes signatures;
            address tokenRecipient;
        }
        struct TakeAskSingle {
            Order order;
            Exchange exchange;
            FeeRate takerFee;
            bytes signature;
            address tokenRecipient;
        }
        struct TakeBid {
            Order[] orders;
            Exchange[] exchanges;
            FeeRate takerFee;
            bytes signatures;
        }
        struct TakeBidSingle {
            Order order;
            Exchange exchange;
            FeeRate takerFee;
            bytes signature;
        }
        enum AssetType {
            ERC721,
            ERC1155
        }
        enum OrderType {
            ASK,
            BID
        }
        struct Exchange { // Size: 0x80
            uint256 index; // 0x00
            bytes32[] proof; // 0x20
            Listing listing; // 0x40
            Taker taker; // 0x60
        }
        struct Listing { // Size: 0x80
            uint256 index; // 0x00
            uint256 tokenId; // 0x20
            uint256 amount; // 0x40
            uint256 price; // 0x60
        }
        struct Taker { // Size: 0x40
            uint256 tokenId; // 0x00
            uint256 amount; // 0x20
        }
        struct Order { // Size: 0x100
            address trader; // 0x00
            address collection; // 0x20
            bytes32 listingsRoot; // 0x40
            uint256 numberOfListings; // 0x60
            uint256 expirationTime; // 0x80
            AssetType assetType; // 0xa0
            FeeRate makerFee; // 0xc0
            uint256 salt; // 0xe0
        }
        /*
        Reference only; struct is composed manually using calldata formatting in execution
        struct ExecutionBatch { // Size: 0x80
            address taker; // 0x00
            OrderType orderType; // 0x20
            Transfer[] transfers; // 0x40
            uint256 length; // 0x60
        }
        */
        struct Transfer { // Size: 0xa0
            address trader; // 0x00
            uint256 id; // 0x20
            uint256 amount; // 0x40
            address collection; // 0x60
            AssetType assetType; // 0x80
        }
        struct FungibleTransfers {
            uint256 totalProtocolFee;
            uint256 totalSellerTransfer;
            uint256 totalTakerFee;
            uint256 feeRecipientId;
            uint256 makerId;
            address[] feeRecipients;
            address[] makers;
            uint256[] makerTransfers;
            uint256[] feeTransfers;
            AtomicExecution[] executions;
        }
        struct AtomicExecution { // Size: 0xe0
            uint256 makerId; // 0x00
            uint256 sellerAmount; // 0x20
            uint256 makerFeeRecipientId; // 0x40
            uint256 makerFeeAmount; // 0x60
            uint256 takerFeeAmount; // 0x80
            uint256 protocolFeeAmount; // 0xa0
            StateUpdate stateUpdate; // 0xc0
        }
        struct StateUpdate { // Size: 0xa0
            address trader; // 0x00
            bytes32 hash; // 0x20
            uint256 index; // 0x40
            uint256 value; // 0x60
            uint256 maxAmount; // 0x80
        }
        struct Fees { // Size: 0x40
            FeeRate protocolFee; // 0x00
            FeeRate takerFee; // 0x20
        }
        struct FeeRate { // Size: 0x40
            address recipient; // 0x00
            uint16 rate; // 0x20
        }
        struct Cancel {
            bytes32 hash;
            uint256 index;
            uint256 amount;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import {
            TakeAsk,
            TakeBid,
            TakeAskSingle,
            TakeBidSingle,
            Order,
            Exchange,
            Fees,
            FeeRate,
            AssetType,
            OrderType,
            Transfer,
            FungibleTransfers,
            StateUpdate,
            Cancel,
            Listing
        } from "../lib/Structs.sol";
        interface IBlurExchangeV2 {
            error InsufficientFunds();
            error TokenTransferFailed();
            error InvalidOrder();
            error ProtocolFeeTooHigh();
            event NewProtocolFee(address indexed recipient, uint16 indexed rate);
            event NewGovernor(address indexed governor);
            event NewBlockRange(uint256 blockRange);
            event CancelTrade(address indexed user, bytes32 hash, uint256 index, uint256 amount);
            event NonceIncremented(address indexed user, uint256 newNonce);
            event SetOracle(address indexed user, bool approved);
            function initialize() external;
            function setProtocolFee(address recipient, uint16 rate) external;
            function setGovernor(address _governor) external;
            function setOracle(address oracle, bool approved) external;
            function setBlockRange(uint256 _blockRange) external;
            function cancelTrades(Cancel[] memory cancels) external;
            function incrementNonce() external;
            /*//////////////////////////////////////////////////////////////
                                  EXECUTION WRAPPERS
            //////////////////////////////////////////////////////////////*/
            function takeAsk(TakeAsk memory inputs, bytes calldata oracleSignature) external payable;
            function takeBid(TakeBid memory inputs, bytes calldata oracleSignature) external;
            function takeAskSingle(TakeAskSingle memory inputs, bytes calldata oracleSignature) external payable;
            function takeBidSingle(TakeBidSingle memory inputs, bytes calldata oracleSignature) external;
            /*//////////////////////////////////////////////////////////////
                                EXECUTION POOL WRAPPERS
            //////////////////////////////////////////////////////////////*/
            function takeAskSinglePool(
                TakeAskSingle memory inputs,
                bytes calldata oracleSignature,
                uint256 amountToWithdraw
            ) external payable;
            function takeAskPool(
                TakeAsk memory inputs,
                bytes calldata oracleSignature,
                uint256 amountToWithdraw
            ) external payable;
        }
        // SPDX-License-Identifier: AGPL-3.0-only
        pragma solidity 0.8.17;
        /// @notice Upgradeable gas optimized reentrancy protection for smart contracts.
        /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/ReentrancyGuard.sol)
        abstract contract ReentrancyGuardUpgradeable {
            uint256 private locked;
            function __Reentrancy_init() internal {
                locked = 1;
            }
            modifier nonReentrant() virtual {
                require(locked == 1, "REENTRANCY");
                locked = 2;
                _;
                locked = 1;
            }
            uint256[49] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
        pragma solidity ^0.8.0;
        import "../utils/ContextUpgradeable.sol";
        import "../proxy/utils/Initializable.sol";
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * By default, the owner account will be the one that deploys the contract. This
         * can later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
            address private _owner;
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Initializes the contract setting the deployer as the initial owner.
             */
            function __Ownable_init() internal onlyInitializing {
                __Ownable_init_unchained();
            }
            function __Ownable_init_unchained() internal onlyInitializing {
                _transferOwnership(_msgSender());
            }
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                _checkOwner();
                _;
            }
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view virtual returns (address) {
                return _owner;
            }
            /**
             * @dev Throws if the sender is not the owner.
             */
            function _checkOwner() internal view virtual {
                require(owner() == _msgSender(), "Ownable: caller is not the owner");
            }
            /**
             * @dev Leaves the contract without owner. It will not be possible to call
             * `onlyOwner` functions anymore. Can only be called by the current owner.
             *
             * NOTE: Renouncing ownership will leave the contract without an owner,
             * thereby removing any functionality that is only available to the owner.
             */
            function renounceOwnership() public virtual onlyOwner {
                _transferOwnership(address(0));
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                require(newOwner != address(0), "Ownable: new owner is the zero address");
                _transferOwnership(newOwner);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Internal function without access restriction.
             */
            function _transferOwnership(address newOwner) internal virtual {
                address oldOwner = _owner;
                _owner = newOwner;
                emit OwnershipTransferred(oldOwner, newOwner);
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[49] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.1) (proxy/utils/Initializable.sol)
        pragma solidity ^0.8.2;
        import "../../utils/AddressUpgradeable.sol";
        /**
         * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
         * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
         * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
         * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
         *
         * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
         * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
         * case an upgrade adds a module that needs to be initialized.
         *
         * For example:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * contract MyToken is ERC20Upgradeable {
         *     function initialize() initializer public {
         *         __ERC20_init("MyToken", "MTK");
         *     }
         * }
         * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
         *     function initializeV2() reinitializer(2) public {
         *         __ERC20Permit_init("MyToken");
         *     }
         * }
         * ```
         *
         * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
         * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
         *
         * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
         * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
         *
         * [CAUTION]
         * ====
         * Avoid leaving a contract uninitialized.
         *
         * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
         * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
         * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * /// @custom:oz-upgrades-unsafe-allow constructor
         * constructor() {
         *     _disableInitializers();
         * }
         * ```
         * ====
         */
        abstract contract Initializable {
            /**
             * @dev Indicates that the contract has been initialized.
             * @custom:oz-retyped-from bool
             */
            uint8 private _initialized;
            /**
             * @dev Indicates that the contract is in the process of being initialized.
             */
            bool private _initializing;
            /**
             * @dev Triggered when the contract has been initialized or reinitialized.
             */
            event Initialized(uint8 version);
            /**
             * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
             * `onlyInitializing` functions can be used to initialize parent contracts.
             *
             * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
             * constructor.
             *
             * Emits an {Initialized} event.
             */
            modifier initializer() {
                bool isTopLevelCall = !_initializing;
                require(
                    (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                    "Initializable: contract is already initialized"
                );
                _initialized = 1;
                if (isTopLevelCall) {
                    _initializing = true;
                }
                _;
                if (isTopLevelCall) {
                    _initializing = false;
                    emit Initialized(1);
                }
            }
            /**
             * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
             * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
             * used to initialize parent contracts.
             *
             * A reinitializer may be used after the original initialization step. This is essential to configure modules that
             * are added through upgrades and that require initialization.
             *
             * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
             * cannot be nested. If one is invoked in the context of another, execution will revert.
             *
             * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
             * a contract, executing them in the right order is up to the developer or operator.
             *
             * WARNING: setting the version to 255 will prevent any future reinitialization.
             *
             * Emits an {Initialized} event.
             */
            modifier reinitializer(uint8 version) {
                require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                _initialized = version;
                _initializing = true;
                _;
                _initializing = false;
                emit Initialized(version);
            }
            /**
             * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
             * {initializer} and {reinitializer} modifiers, directly or indirectly.
             */
            modifier onlyInitializing() {
                require(_initializing, "Initializable: contract is not initializing");
                _;
            }
            /**
             * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
             * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
             * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
             * through proxies.
             *
             * Emits an {Initialized} event the first time it is successfully executed.
             */
            function _disableInitializers() internal virtual {
                require(!_initializing, "Initializable: contract is initializing");
                if (_initialized < type(uint8).max) {
                    _initialized = type(uint8).max;
                    emit Initialized(type(uint8).max);
                }
            }
            /**
             * @dev Returns the highest version that has been initialized. See {reinitializer}.
             */
            function _getInitializedVersion() internal view returns (uint8) {
                return _initialized;
            }
            /**
             * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
             */
            function _isInitializing() internal view returns (bool) {
                return _initializing;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
        pragma solidity ^0.8.0;
        import "../proxy/utils/Initializable.sol";
        /**
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract ContextUpgradeable is Initializable {
            function __Context_init() internal onlyInitializing {
            }
            function __Context_init_unchained() internal onlyInitializing {
            }
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                return msg.data;
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
        pragma solidity ^0.8.1;
        /**
         * @dev Collection of functions related to the address type
         */
        library AddressUpgradeable {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             * ====
             *
             * [IMPORTANT]
             * ====
             * You shouldn't rely on `isContract` to protect against flash loan attacks!
             *
             * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
             * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
             * constructor.
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize/address.code.length, which returns 0
                // for contracts in construction, since the code is only stored at the end
                // of the constructor execution.
                return account.code.length > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                (bool success, ) = recipient.call{value: amount}("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
             * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
             *
             * _Available since v4.8._
             */
            function verifyCallResultFromTarget(
                address target,
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                if (success) {
                    if (returndata.length == 0) {
                        // only check isContract if the call was successful and the return data is empty
                        // otherwise we already know that it was a contract
                        require(isContract(target), "Address: call to non-contract");
                    }
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            /**
             * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
             * revert reason or using the provided one.
             *
             * _Available since v4.3._
             */
            function verifyCallResult(
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal pure returns (bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            function _revert(bytes memory returndata, string memory errorMessage) private pure {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    /// @solidity memory-safe-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
         * proxy whose upgrades are fully controlled by the current implementation.
         */
        interface IERC1822ProxiableUpgradeable {
            /**
             * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
             * address.
             *
             * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
             * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
             * function revert if invoked through a proxy.
             */
            function proxiableUUID() external view returns (bytes32);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.3) (proxy/ERC1967/ERC1967Upgrade.sol)
        pragma solidity ^0.8.2;
        import "../beacon/IBeaconUpgradeable.sol";
        import "../../interfaces/IERC1967Upgradeable.sol";
        import "../../interfaces/draft-IERC1822Upgradeable.sol";
        import "../../utils/AddressUpgradeable.sol";
        import "../../utils/StorageSlotUpgradeable.sol";
        import "../utils/Initializable.sol";
        /**
         * @dev This abstract contract provides getters and event emitting update functions for
         * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
         *
         * _Available since v4.1._
         *
         * @custom:oz-upgrades-unsafe-allow delegatecall
         */
        abstract contract ERC1967UpgradeUpgradeable is Initializable, IERC1967Upgradeable {
            function __ERC1967Upgrade_init() internal onlyInitializing {
            }
            function __ERC1967Upgrade_init_unchained() internal onlyInitializing {
            }
            // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
            bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
            /**
             * @dev Storage slot with the address of the current implementation.
             * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
             * validated in the constructor.
             */
            bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
            /**
             * @dev Returns the current implementation address.
             */
            function _getImplementation() internal view returns (address) {
                return StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value;
            }
            /**
             * @dev Stores a new address in the EIP1967 implementation slot.
             */
            function _setImplementation(address newImplementation) private {
                require(AddressUpgradeable.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
            }
            /**
             * @dev Perform implementation upgrade
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeTo(address newImplementation) internal {
                _setImplementation(newImplementation);
                emit Upgraded(newImplementation);
            }
            /**
             * @dev Perform implementation upgrade with additional setup call.
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeToAndCall(
                address newImplementation,
                bytes memory data,
                bool forceCall
            ) internal {
                _upgradeTo(newImplementation);
                if (data.length > 0 || forceCall) {
                    _functionDelegateCall(newImplementation, data);
                }
            }
            /**
             * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeToAndCallUUPS(
                address newImplementation,
                bytes memory data,
                bool forceCall
            ) internal {
                // Upgrades from old implementations will perform a rollback test. This test requires the new
                // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
                // this special case will break upgrade paths from old UUPS implementation to new ones.
                if (StorageSlotUpgradeable.getBooleanSlot(_ROLLBACK_SLOT).value) {
                    _setImplementation(newImplementation);
                } else {
                    try IERC1822ProxiableUpgradeable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                        require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
                    } catch {
                        revert("ERC1967Upgrade: new implementation is not UUPS");
                    }
                    _upgradeToAndCall(newImplementation, data, forceCall);
                }
            }
            /**
             * @dev Storage slot with the admin of the contract.
             * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
             * validated in the constructor.
             */
            bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
            /**
             * @dev Returns the current admin.
             */
            function _getAdmin() internal view returns (address) {
                return StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value;
            }
            /**
             * @dev Stores a new address in the EIP1967 admin slot.
             */
            function _setAdmin(address newAdmin) private {
                require(newAdmin != address(0), "ERC1967: new admin is the zero address");
                StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
            }
            /**
             * @dev Changes the admin of the proxy.
             *
             * Emits an {AdminChanged} event.
             */
            function _changeAdmin(address newAdmin) internal {
                emit AdminChanged(_getAdmin(), newAdmin);
                _setAdmin(newAdmin);
            }
            /**
             * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
             * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
             */
            bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
            /**
             * @dev Returns the current beacon.
             */
            function _getBeacon() internal view returns (address) {
                return StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value;
            }
            /**
             * @dev Stores a new beacon in the EIP1967 beacon slot.
             */
            function _setBeacon(address newBeacon) private {
                require(AddressUpgradeable.isContract(newBeacon), "ERC1967: new beacon is not a contract");
                require(
                    AddressUpgradeable.isContract(IBeaconUpgradeable(newBeacon).implementation()),
                    "ERC1967: beacon implementation is not a contract"
                );
                StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value = newBeacon;
            }
            /**
             * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
             * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
             *
             * Emits a {BeaconUpgraded} event.
             */
            function _upgradeBeaconToAndCall(
                address newBeacon,
                bytes memory data,
                bool forceCall
            ) internal {
                _setBeacon(newBeacon);
                emit BeaconUpgraded(newBeacon);
                if (data.length > 0 || forceCall) {
                    _functionDelegateCall(IBeaconUpgradeable(newBeacon).implementation(), data);
                }
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function _functionDelegateCall(address target, bytes memory data) private returns (bytes memory) {
                require(AddressUpgradeable.isContract(target), "Address: delegate call to non-contract");
                // solhint-disable-next-line avoid-low-level-calls
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return AddressUpgradeable.verifyCallResult(success, returndata, "Address: low-level delegate call failed");
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev This is the interface that {BeaconProxy} expects of its beacon.
         */
        interface IBeaconUpgradeable {
            /**
             * @dev Must return an address that can be used as a delegate call target.
             *
             * {BeaconProxy} will check that this address is a contract.
             */
            function implementation() external view returns (address);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.3) (interfaces/IERC1967.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
         *
         * _Available since v4.9._
         */
        interface IERC1967Upgradeable {
            /**
             * @dev Emitted when the implementation is upgraded.
             */
            event Upgraded(address indexed implementation);
            /**
             * @dev Emitted when the admin account has changed.
             */
            event AdminChanged(address previousAdmin, address newAdmin);
            /**
             * @dev Emitted when the beacon is changed.
             */
            event BeaconUpgraded(address indexed beacon);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Library for reading and writing primitive types to specific storage slots.
         *
         * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
         * This library helps with reading and writing to such slots without the need for inline assembly.
         *
         * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
         *
         * Example usage to set ERC1967 implementation slot:
         * ```
         * contract ERC1967 {
         *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
         *
         *     function _getImplementation() internal view returns (address) {
         *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
         *     }
         *
         *     function _setImplementation(address newImplementation) internal {
         *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
         *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
         *     }
         * }
         * ```
         *
         * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._
         */
        library StorageSlotUpgradeable {
            struct AddressSlot {
                address value;
            }
            struct BooleanSlot {
                bool value;
            }
            struct Bytes32Slot {
                bytes32 value;
            }
            struct Uint256Slot {
                uint256 value;
            }
            /**
             * @dev Returns an `AddressSlot` with member `value` located at `slot`.
             */
            function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
             */
            function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
             */
            function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
             */
            function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import { MerkleProof } from "lib/openzeppelin-contracts/contracts/utils/cryptography/MerkleProof.sol";
        import { Signatures } from "./Signatures.sol";
        import { AssetType, Order, Exchange, Listing, OrderType, FeeRate, Fees, Taker } from "./lib/Structs.sol";
        import { IValidation } from "./interfaces/IValidation.sol";
        abstract contract Validation is IValidation, Signatures {
            uint256 internal constant _BASIS_POINTS = 10_000;
            uint256 internal constant _MAX_PROTOCOL_FEE_RATE = 250;
            FeeRate public protocolFee;
            /* amountTaken[user][orderHash][listingIndex] */
            mapping(address => mapping(bytes32 => mapping(uint256 => uint256))) public amountTaken;
            constructor(address proxy) Signatures(proxy) {}
            /**
             * @notice Check if an order has expired
             * @param order Order to check liveness
             * @return Order is live
             */
            function _checkLiveness(Order memory order) private view returns (bool) {
                return (order.expirationTime > block.timestamp);
            }
            /**
             * @notice Check that the fees to be taken will not overflow the purchase price
             * @param makerFee Maker fee amount
             * @param fees Protocol and taker fee rates
             * @return Fees are valid
             */
            function _checkFee(FeeRate memory makerFee, Fees memory fees) private pure returns (bool) {
                return makerFee.rate + fees.takerFee.rate + fees.protocolFee.rate <= _BASIS_POINTS;
            }
            /**
             * @notice Validate a list of orders and prepare arrays for recording pending fulfillments
             * @param orders List of orders
             * @param orderType Order type for all orders
             * @param signatures Bytes array of the order signatures
             * @param fees Protocol and taker fee rates
             */
            function _validateOrders(
                Order[] memory orders,
                OrderType orderType,
                bytes memory signatures,
                Fees memory fees
            ) internal view returns (bool[] memory validOrders, uint256[][] memory pendingAmountTaken) {
                uint256 ordersLength = orders.length;
                validOrders = new bool[](ordersLength);
                pendingAmountTaken = new uint256[][](ordersLength);
                for (uint256 i; i < ordersLength; ) {
                    pendingAmountTaken[i] = new uint256[](orders[i].numberOfListings);
                    validOrders[i] = _validateOrder(orders[i], orderType, signatures, fees, i);
                    unchecked {
                        ++i;
                    }
                }
            }
            /**
             * @notice Validate an order
             * @param order Order to validate
             * @param orderType Order type
             * @param signatures Bytes array of order signatures
             * @param fees Protocol and taker fee rates
             * @param signatureIndex Index of the order signature
             * @return Validity of the order
             */
            function _validateOrder(
                Order memory order,
                OrderType orderType,
                bytes memory signatures,
                Fees memory fees,
                uint256 signatureIndex
            ) internal view returns (bool) {
                bytes32 orderHash = hashOrder(order, orderType);
                /* After hashing, the salt is no longer needed so we can store the order hash here. */
                order.salt = uint256(orderHash);
                return _verifyAuthorization(
                    order.trader,
                    orderHash,
                    signatures,
                    signatureIndex
                ) &&
                    _checkLiveness(order) &&
                    _checkFee(order.makerFee, fees);
            }
            /**
             * @notice Validate a listing (only valid if the order has be prevalidated)
             * @dev Validation can be manipulated by inputting the same order twice in the orders array,
             * which will effectively bypass the `pendingAmountTaken` check. There is a safety check at the
             * execution phase that will revert the transaction if this manipulation overdraws an order.
             * @param order Order of the listing
             * @param orderType Order type
             * @param exchange Exchange containing the listing
             * @param validOrders List indicated which orders were validated
             * @param pendingAmountTaken Pending fulfillments from the current batch
             * @return validListing Validity of the listing
             */
            function _validateListingFromBatch(
                Order memory order,
                OrderType orderType,
                Exchange memory exchange,
                bool[] memory validOrders,
                uint256[][] memory pendingAmountTaken
            ) internal view returns (bool validListing) {
                Listing memory listing = exchange.listing;
                uint256 listingIndex = listing.index;
                uint256 amountTaken = amountTaken[order.trader][bytes32(order.salt)][listingIndex];
                uint256 pendingAmountTaken = pendingAmountTaken[exchange.index][listingIndex];
                uint256 takerAmount = exchange.taker.amount;
                unchecked {
                    validListing =
                        validOrders[exchange.index] &&
                        _validateListing(order, orderType, exchange) &&
                        pendingAmountTaken + takerAmount <= type(uint256).max - amountTaken &&
                        amountTaken + pendingAmountTaken + takerAmount <= listing.amount;
                }
            }
            /**
             * @notice Validate a listing and its proposed exchange
             * @param order Order of the listing
             * @param orderType Order type
             * @param exchange Exchange containing the listing
             * @return validListing Validity of the listing and its proposed exchange
             */
            function _validateListing(
                Order memory order,
                OrderType orderType,
                Exchange memory exchange
            ) private pure returns (bool validListing) {
                Listing memory listing = exchange.listing;
                validListing = MerkleProof.verify(exchange.proof, order.listingsRoot, hashListing(listing));
                Taker memory taker = exchange.taker;
                if (orderType == OrderType.ASK) {
                    if (order.assetType == AssetType.ERC721) {
                        validListing = validListing && taker.amount == 1 && listing.amount == 1;
                    }
                    validListing = validListing && listing.tokenId == taker.tokenId;
                } else {
                    if (order.assetType == AssetType.ERC721) {
                        validListing = validListing && taker.amount == 1;
                    } else {
                        validListing = validListing && listing.tokenId == taker.tokenId;
                    }
                }
            }
            /**
             * @notice Validate both the listing and it's parent order (only for single executions)
             * @param order Order of the listing
             * @param orderType Order type
             * @param exchange Exchange containing the listing
             * @param signature Order signature
             * @param fees Protocol and taker fee rates
             * @return Validity of the order and listing
             */
            function _validateOrderAndListing(
                Order memory order,
                OrderType orderType,
                Exchange memory exchange,
                bytes memory signature,
                Fees memory fees
            ) internal view returns (bool) {
                Listing memory listing = exchange.listing;
                uint256 listingIndex = listing.index;
                return
                    _validateOrder(order, orderType, signature, fees, 0) &&
                    _validateListing(order, orderType, exchange) &&
                    amountTaken[order.trader][bytes32(order.salt)][listingIndex] + exchange.taker.amount <=
                    listing.amount;
            }
            uint256[49] private __gap;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import { AssetType, OrderType, Transfer } from "../lib/Structs.sol";
        interface IDelegate {
            function transfer(
                address caller,
                OrderType orderType,
                Transfer[] calldata transfers,
                uint256 length
            ) external returns (bool[] memory successful);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import {
            Fees,
            FeeRate,
            Transfer,
            OrderType
        } from "../lib/Structs.sol";
        interface IExecutor {
            error ETHTransferFailed();
            error PoolTransferFailed();
            error PoolWithdrawFromFailed();
            error PoolDepositFailed();
            error OrderFulfilled();
            event Execution(
                Transfer transfer,
                bytes32 orderHash,
                uint256 listingIndex,
                uint256 price,
                FeeRate makerFee,
                Fees fees,
                OrderType orderType
            );
            event Execution721Packed(
                bytes32 orderHash,
                uint256 tokenIdListingIndexTrader,
                uint256 collectionPriceSide
            );
            event Execution721TakerFeePacked(
                bytes32 orderHash,
                uint256 tokenIdListingIndexTrader,
                uint256 collectionPriceSide,
                uint256 takerFeeRecipientRate
            );
            event Execution721MakerFeePacked(
                bytes32 orderHash,
                uint256 tokenIdListingIndexTrader,
                uint256 collectionPriceSide,
                uint256 makerFeeRecipientRate
            );
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev These functions deal with verification of Merkle Tree proofs.
         *
         * The tree and the proofs can be generated using our
         * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
         * You will find a quickstart guide in the readme.
         *
         * WARNING: You should avoid using leaf values that are 64 bytes long prior to
         * hashing, or use a hash function other than keccak256 for hashing leaves.
         * This is because the concatenation of a sorted pair of internal nodes in
         * the merkle tree could be reinterpreted as a leaf value.
         * OpenZeppelin's JavaScript library generates merkle trees that are safe
         * against this attack out of the box.
         */
        library MerkleProof {
            /**
             * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
             * defined by `root`. For this, a `proof` must be provided, containing
             * sibling hashes on the branch from the leaf to the root of the tree. Each
             * pair of leaves and each pair of pre-images are assumed to be sorted.
             */
            function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
                return processProof(proof, leaf) == root;
            }
            /**
             * @dev Calldata version of {verify}
             *
             * _Available since v4.7._
             */
            function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
                return processProofCalldata(proof, leaf) == root;
            }
            /**
             * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
             * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
             * hash matches the root of the tree. When processing the proof, the pairs
             * of leafs & pre-images are assumed to be sorted.
             *
             * _Available since v4.4._
             */
            function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
                bytes32 computedHash = leaf;
                for (uint256 i = 0; i < proof.length; i++) {
                    computedHash = _hashPair(computedHash, proof[i]);
                }
                return computedHash;
            }
            /**
             * @dev Calldata version of {processProof}
             *
             * _Available since v4.7._
             */
            function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
                bytes32 computedHash = leaf;
                for (uint256 i = 0; i < proof.length; i++) {
                    computedHash = _hashPair(computedHash, proof[i]);
                }
                return computedHash;
            }
            /**
             * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
             * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
             *
             * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
             *
             * _Available since v4.7._
             */
            function multiProofVerify(
                bytes32[] memory proof,
                bool[] memory proofFlags,
                bytes32 root,
                bytes32[] memory leaves
            ) internal pure returns (bool) {
                return processMultiProof(proof, proofFlags, leaves) == root;
            }
            /**
             * @dev Calldata version of {multiProofVerify}
             *
             * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
             *
             * _Available since v4.7._
             */
            function multiProofVerifyCalldata(
                bytes32[] calldata proof,
                bool[] calldata proofFlags,
                bytes32 root,
                bytes32[] memory leaves
            ) internal pure returns (bool) {
                return processMultiProofCalldata(proof, proofFlags, leaves) == root;
            }
            /**
             * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
             * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
             * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
             * respectively.
             *
             * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
             * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
             * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
             *
             * _Available since v4.7._
             */
            function processMultiProof(
                bytes32[] memory proof,
                bool[] memory proofFlags,
                bytes32[] memory leaves
            ) internal pure returns (bytes32 merkleRoot) {
                // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
                // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
                // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
                // the merkle tree.
                uint256 leavesLen = leaves.length;
                uint256 totalHashes = proofFlags.length;
                // Check proof validity.
                require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");
                // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
                // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
                bytes32[] memory hashes = new bytes32[](totalHashes);
                uint256 leafPos = 0;
                uint256 hashPos = 0;
                uint256 proofPos = 0;
                // At each step, we compute the next hash using two values:
                // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
                //   get the next hash.
                // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
                //   `proof` array.
                for (uint256 i = 0; i < totalHashes; i++) {
                    bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                    bytes32 b = proofFlags[i]
                        ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                        : proof[proofPos++];
                    hashes[i] = _hashPair(a, b);
                }
                if (totalHashes > 0) {
                    unchecked {
                        return hashes[totalHashes - 1];
                    }
                } else if (leavesLen > 0) {
                    return leaves[0];
                } else {
                    return proof[0];
                }
            }
            /**
             * @dev Calldata version of {processMultiProof}.
             *
             * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
             *
             * _Available since v4.7._
             */
            function processMultiProofCalldata(
                bytes32[] calldata proof,
                bool[] calldata proofFlags,
                bytes32[] memory leaves
            ) internal pure returns (bytes32 merkleRoot) {
                // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
                // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
                // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
                // the merkle tree.
                uint256 leavesLen = leaves.length;
                uint256 totalHashes = proofFlags.length;
                // Check proof validity.
                require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");
                // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
                // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
                bytes32[] memory hashes = new bytes32[](totalHashes);
                uint256 leafPos = 0;
                uint256 hashPos = 0;
                uint256 proofPos = 0;
                // At each step, we compute the next hash using two values:
                // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
                //   get the next hash.
                // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
                //   `proof` array.
                for (uint256 i = 0; i < totalHashes; i++) {
                    bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                    bytes32 b = proofFlags[i]
                        ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                        : proof[proofPos++];
                    hashes[i] = _hashPair(a, b);
                }
                if (totalHashes > 0) {
                    unchecked {
                        return hashes[totalHashes - 1];
                    }
                } else if (leavesLen > 0) {
                    return leaves[0];
                } else {
                    return proof[0];
                }
            }
            function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
                return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
            }
            function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
                /// @solidity memory-safe-assembly
                assembly {
                    mstore(0x00, a)
                    mstore(0x20, b)
                    value := keccak256(0x00, 0x40)
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import "./lib/Constants.sol";
        import {
            TakeAsk,
            TakeBid,
            TakeAskSingle,
            TakeBidSingle,
            FeeRate,
            Order,
            OrderType,
            AssetType,
            Listing
        } from "./lib/Structs.sol";
        import { ISignatures } from "./interfaces/ISignatures.sol";
        abstract contract Signatures is ISignatures {
            string private constant _NAME = "Blur Exchange";
            string private constant _VERSION = "1.0";
            bytes32 private immutable _FEE_RATE_TYPEHASH;
            bytes32 private immutable _ORDER_TYPEHASH;
            bytes32 private immutable _DOMAIN_SEPARATOR;
            mapping(address => uint256) public oracles;
            mapping(address => uint256) public nonces;
            uint256 public blockRange;
            constructor(address proxy) {
                (_FEE_RATE_TYPEHASH, _ORDER_TYPEHASH, _DOMAIN_SEPARATOR) = _createTypehashes(proxy);
            }
            /**
             * @notice Verify the domain separator produced during deployment of the implementation matches that of the proxy
             */
            function verifyDomain() public view {
                bytes32 eip712DomainTypehash = keccak256(
                    bytes.concat(
                        "EIP712Domain(",
                        "string name,",
                        "string version,",
                        "uint256 chainId,",
                        "address verifyingContract",
                        ")"
                    )
                );
                bytes32 domainSeparator = _hashDomain(
                    eip712DomainTypehash,
                    keccak256(bytes(_NAME)),
                    keccak256(bytes(_VERSION)),
                    address(this)
                );
                if (_DOMAIN_SEPARATOR != domainSeparator) {
                    revert InvalidDomain();
                }
            }
            /**
             * @notice Return version and domain separator
             */
            function information() external view returns (string memory version, bytes32 domainSeparator) {
                version = _VERSION;
                domainSeparator = _DOMAIN_SEPARATOR;
            }
            /**
             * @notice Create a hash of TakeAsk calldata with an approved caller
             * @param inputs TakeAsk inputs
             * @param _caller Address approved to execute the calldata
             * @return Calldata hash
             */
            function hashTakeAsk(TakeAsk memory inputs, address _caller) external pure returns (bytes32) {
                return _hashCalldata(_caller);
            }
            /**
             * @notice Create a hash of TakeBid calldata with an approved caller
             * @param inputs TakeBid inputs
             * @param _caller Address approved to execute the calldata
             * @return Calldata hash
             */
            function hashTakeBid(TakeBid memory inputs, address _caller) external pure returns (bytes32) {
                return _hashCalldata(_caller);
            }
            /**
             * @notice Create a hash of TakeAskSingle calldata with an approved caller
             * @param inputs TakeAskSingle inputs
             * @param _caller Address approved to execute the calldata
             * @return Calldata hash
             */
            function hashTakeAskSingle(
                TakeAskSingle memory inputs,
                address _caller
            ) external pure returns (bytes32) {
                return _hashCalldata(_caller);
            }
            /**
             * @notice Create a hash of TakeBidSingle calldata with an approved caller
             * @param inputs TakeBidSingle inputs
             * @param _caller Address approved to execute the calldata
             * @return Calldata hash
             */
            function hashTakeBidSingle(
                TakeBidSingle memory inputs,
                address _caller
            ) external pure returns (bytes32) {
                return _hashCalldata(_caller);
            }
            /**
             * @notice Create an EIP712 hash of an Order
             * @dev Includes two additional parameters not in the struct (orderType, nonce)
             * @param order Order to hash
             * @param orderType OrderType of the Order
             * @return Order EIP712 hash
             */
            function hashOrder(Order memory order, OrderType orderType) public view returns (bytes32) {
                return
                    keccak256(
                        abi.encode(
                            _ORDER_TYPEHASH,
                            order.trader,
                            order.collection,
                            order.listingsRoot,
                            order.numberOfListings,
                            order.expirationTime,
                            order.assetType,
                            _hashFeeRate(order.makerFee),
                            order.salt,
                            orderType,
                            nonces[order.trader]
                        )
                    );
            }
            /**
             * @notice Create a hash of a Listing struct
             * @param listing Listing to hash
             * @return Listing hash
             */
            function hashListing(Listing memory listing) public pure returns (bytes32) {
                return keccak256(abi.encode(listing.index, listing.tokenId, listing.amount, listing.price));
            }
            /**
             * @notice Create a hash of calldata with an approved caller
             * @param _caller Address approved to execute the calldata
             * @return hash Calldata hash
             */
            function _hashCalldata(address _caller) internal pure returns (bytes32 hash) {
                assembly {
                    let nextPointer := mload(0x40)
                    let size := add(sub(nextPointer, 0x80), 0x20)
                    mstore(nextPointer, _caller)
                    hash := keccak256(0x80, size)
                }
            }
            /**
             * @notice Create an EIP712 hash of a FeeRate struct
             * @param feeRate FeeRate to hash
             * @return FeeRate EIP712 hash
             */
            function _hashFeeRate(FeeRate memory feeRate) private view returns (bytes32) {
                return keccak256(abi.encode(_FEE_RATE_TYPEHASH, feeRate.recipient, feeRate.rate));
            }
            /**
             * @notice Create an EIP712 hash to sign
             * @param hash Primary EIP712 object hash
             * @return EIP712 hash
             */
            function _hashToSign(bytes32 hash) private view returns (bytes32) {
                return keccak256(bytes.concat(bytes2(0x1901), _DOMAIN_SEPARATOR, hash));
            }
            /**
             * @notice Generate all EIP712 Typehashes
             */
            function _createTypehashes(
                address proxy
            )
                private
                view
                returns (bytes32 feeRateTypehash, bytes32 orderTypehash, bytes32 domainSeparator)
            {
                bytes32 eip712DomainTypehash = keccak256(
                    bytes.concat(
                        "EIP712Domain(",
                        "string name,",
                        "string version,",
                        "uint256 chainId,",
                        "address verifyingContract",
                        ")"
                    )
                );
                bytes memory feeRateTypestring = "FeeRate(address recipient,uint16 rate)";
                orderTypehash = keccak256(
                    bytes.concat(
                        "Order(",
                        "address trader,",
                        "address collection,",
                        "bytes32 listingsRoot,",
                        "uint256 numberOfListings,",
                        "uint256 expirationTime,",
                        "uint8 assetType,",
                        "FeeRate makerFee,",
                        "uint256 salt,",
                        "uint8 orderType,",
                        "uint256 nonce",
                        ")",
                        feeRateTypestring
                    )
                );
                feeRateTypehash = keccak256(feeRateTypestring);
                domainSeparator = _hashDomain(
                    eip712DomainTypehash,
                    keccak256(bytes(_NAME)),
                    keccak256(bytes(_VERSION)),
                    proxy
                );
            }
            /**
             * @notice Create an EIP712 domain separator
             * @param eip712DomainTypehash Typehash of the EIP712Domain struct
             * @param nameHash Hash of the contract name
             * @param versionHash Hash of the version string
             * @param proxy Address of the proxy this implementation will be behind
             * @return EIP712Domain hash
             */
            function _hashDomain(
                bytes32 eip712DomainTypehash,
                bytes32 nameHash,
                bytes32 versionHash,
                address proxy
            ) private view returns (bytes32) {
                return
                    keccak256(
                        abi.encode(eip712DomainTypehash, nameHash, versionHash, block.chainid, proxy)
                    );
            }
            /**
             * @notice Verify EIP712 signature
             * @param signer Address of the alleged signer
             * @param hash EIP712 hash
             * @param signatures Packed bytes array of order signatures
             * @param index Index of the signature to verify
             * @return authorized Validity of the signature
             */
            function _verifyAuthorization(
                address signer,
                bytes32 hash,
                bytes memory signatures,
                uint256 index
            ) internal view returns (bool authorized) {
                bytes32 hashToSign = _hashToSign(hash);
                bytes32 r;
                bytes32 s;
                uint8 v;
                assembly {
                    let signatureOffset := add(add(signatures, One_word), mul(Signatures_size, index))
                    r := mload(signatureOffset)
                    s := mload(add(signatureOffset, Signatures_s_offset))
                    v := shr(Bytes1_shift, mload(add(signatureOffset, Signatures_v_offset)))
                }
                authorized = _verify(signer, hashToSign, v, r, s);
            }
            modifier verifyOracleSignature(bytes32 hash, bytes calldata oracleSignature) {
                bytes32 r;
                bytes32 s;
                uint8 v;
                uint32 blockNumber;
                address oracle;
                assembly {
                    let signatureOffset := oracleSignature.offset
                    r := calldataload(signatureOffset)
                    s := calldataload(add(signatureOffset, OracleSignatures_s_offset))
                    v := shr(Bytes1_shift, calldataload(add(signatureOffset, OracleSignatures_v_offset)))
                    blockNumber := shr(
                        Bytes4_shift,
                        calldataload(add(signatureOffset, OracleSignatures_blockNumber_offset))
                    )
                    oracle := shr(
                        Bytes20_shift,
                        calldataload(add(signatureOffset, OracleSignatures_oracle_offset))
                    )
                }
                if (blockNumber + blockRange < block.number) {
                    revert ExpiredOracleSignature();
                }
                if (oracles[oracle] == 0) {
                    revert UnauthorizedOracle();
                }
                if (!_verify(oracle, keccak256(abi.encodePacked(hash, blockNumber)), v, r, s)) {
                    revert InvalidOracleSignature();
                }
                _;
            }
            /**
             * @notice Verify signature of digest
             * @param signer Address of expected signer
             * @param digest Signature digest
             * @param v v parameter
             * @param r r parameter
             * @param s s parameter
             */
            function _verify(
                address signer,
                bytes32 digest,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) private pure returns (bool valid) {
                address recoveredSigner = ecrecover(digest, v, r, s);
                if (recoveredSigner != address(0) && recoveredSigner == signer) {
                    valid = true;
                }
            }
            uint256[47] private __gap;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import { FeeRate } from "../lib/Structs.sol";
        interface IValidation {
            function protocolFee() external view returns (address, uint16);
            function amountTaken(address user, bytes32 hash, uint256 listingIndex) external view returns (uint256);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import {
            TakeAsk,
            TakeBid,
            TakeAskSingle,
            TakeBidSingle,
            Order,
            OrderType,
            Listing
        } from "../lib/Structs.sol";
        interface ISignatures {
            error Unauthorized();
            error ExpiredOracleSignature();
            error UnauthorizedOracle();
            error InvalidOracleSignature();
            error InvalidDomain();
            function oracles(address oracle) external view returns (uint256);
            function nonces(address user) external view returns (uint256);
            function blockRange() external view returns (uint256);
            function verifyDomain() external view;
            function information() external view returns (string memory version, bytes32 domainSeparator);
            function hashListing(Listing memory listing) external pure returns (bytes32);
            function hashOrder(Order memory order, OrderType orderType) external view returns (bytes32);
            function hashTakeAsk(TakeAsk memory inputs, address _caller) external pure returns (bytes32);
            function hashTakeBid(TakeBid memory inputs, address _caller) external pure returns (bytes32);
            function hashTakeAskSingle(TakeAskSingle memory inputs, address _caller) external pure returns (bytes32);
            function hashTakeBidSingle(TakeBidSingle memory inputs, address _caller) external pure returns (bytes32);
        }
        

        File 4 of 4: Delegate
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import { ERC721 } from "lib/solmate/src/tokens/ERC721.sol";
        import { ERC1155 } from "lib/solmate/src/tokens/ERC1155.sol";
        import { ERC20 } from "lib/solmate/src/tokens/ERC20.sol";
        import "./lib/Constants.sol";
        import { AssetType, OrderType, Transfer } from "./lib/Structs.sol";
        contract Delegate {
            error Unauthorized();
            error InvalidLength();
            address private immutable _EXCHANGE;
            constructor(address exchange) {
                _EXCHANGE = exchange;
            }
            modifier onlyApproved() {
                if (msg.sender != _EXCHANGE) {
                    revert Unauthorized();
                }
                _;
            }
            function transfer(
                address taker,
                OrderType orderType,
                Transfer[] calldata transfers,
                uint256 length
            ) external onlyApproved returns (bool[] memory successful) {
                if (transfers.length < length) {
                    revert InvalidLength();
                }
                successful = new bool[](length);
                for (uint256 i; i < length; ) {
                    assembly {
                        let calldataPointer := mload(0x40)
                        let transfersPointer := add(transfers.offset, mul(Transfer_size, i))
                        let assetType := calldataload(add(transfersPointer, Transfer_assetType_offset))
                        switch assetType
                        case 0 {
                            // AssetType_ERC721
                            mstore(calldataPointer, ERC721_safeTransferFrom_selector)
                            switch orderType
                            case 0 {
                                // OrderType_ASK; taker is recipient
                                mstore(add(calldataPointer, ERC721_safeTransferFrom_to_offset), taker)
                                mstore(
                                    add(calldataPointer, ERC721_safeTransferFrom_from_offset),
                                    calldataload(add(transfersPointer, Transfer_trader_offset))
                                )
                            }
                            case 1 {
                                // OrderType_BID; taker is sender
                                mstore(add(calldataPointer, ERC721_safeTransferFrom_from_offset), taker)
                                mstore(
                                    add(calldataPointer, ERC721_safeTransferFrom_to_offset),
                                    calldataload(add(transfersPointer, Transfer_trader_offset))
                                )
                            }
                            default {
                                revert(0, 0)
                            }
                            mstore(
                                add(calldataPointer, ERC721_safeTransferFrom_id_offset),
                                calldataload(add(transfersPointer, Transfer_id_offset))
                            )
                            let collection := calldataload(
                                add(transfersPointer, Transfer_collection_offset)
                            )
                            let success := call(
                                gas(),
                                collection,
                                0,
                                calldataPointer,
                                ERC721_safeTransferFrom_size,
                                0,
                                0
                            )
                            mstore(add(add(successful, 0x20), mul(0x20, i)), success)
                        }
                        case 1 {
                            // AssetType_ERC1155
                            mstore(calldataPointer, ERC1155_safeTransferFrom_selector)
                            switch orderType
                            case 0 {
                                // OrderType_ASK; taker is recipient
                                mstore(
                                    add(calldataPointer, ERC1155_safeTransferFrom_from_offset),
                                    calldataload(
                                        add(
                                            transfersPointer,
                                            Transfer_trader_offset
                                        )
                                    )
                                )
                                mstore(add(calldataPointer, ERC1155_safeTransferFrom_to_offset), taker)
                            }
                            case 1 {
                                // OrderType_BID; taker is sender
                                mstore(
                                    add(calldataPointer, ERC1155_safeTransferFrom_to_offset),
                                    calldataload(
                                        add(
                                            transfersPointer,
                                            Transfer_trader_offset
                                        )
                                    )
                                )
                                mstore(add(calldataPointer, ERC1155_safeTransferFrom_from_offset), taker)
                            }
                            default {
                                revert(0, 0)
                            }
                            mstore(add(calldataPointer, ERC1155_safeTransferFrom_data_pointer_offset), 0xa0)
                            mstore(add(calldataPointer, ERC1155_safeTransferFrom_data_offset), 0)
                            mstore(
                                add(calldataPointer, ERC1155_safeTransferFrom_id_offset),
                                calldataload(
                                    add(transfersPointer, Transfer_id_offset)
                                )
                            )
                            mstore(
                                add(calldataPointer, ERC1155_safeTransferFrom_amount_offset),
                                calldataload(
                                    add(
                                        transfersPointer,
                                        Transfer_amount_offset
                                    )
                                )
                            )
                            let collection := calldataload(
                                add(
                                    transfersPointer,
                                    Transfer_collection_offset
                                )
                            )
                            let success := call(
                                gas(),
                                collection,
                                0,
                                calldataPointer,
                                ERC1155_safeTransferFrom_size,
                                0,
                                0
                            )
                            mstore(add(add(successful, 0x20), mul(0x20, i)), success)
                        }
                        default {
                            revert(0, 0)
                        }
                    }
                    unchecked {
                        ++i;
                    }
                }
            }
        }
        // SPDX-License-Identifier: AGPL-3.0-only
        pragma solidity >=0.8.0;
        /// @notice Modern, minimalist, and gas efficient ERC-721 implementation.
        /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC721.sol)
        abstract contract ERC721 {
            /*//////////////////////////////////////////////////////////////
                                         EVENTS
            //////////////////////////////////////////////////////////////*/
            event Transfer(address indexed from, address indexed to, uint256 indexed id);
            event Approval(address indexed owner, address indexed spender, uint256 indexed id);
            event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
            /*//////////////////////////////////////////////////////////////
                                 METADATA STORAGE/LOGIC
            //////////////////////////////////////////////////////////////*/
            string public name;
            string public symbol;
            function tokenURI(uint256 id) public view virtual returns (string memory);
            /*//////////////////////////////////////////////////////////////
                              ERC721 BALANCE/OWNER STORAGE
            //////////////////////////////////////////////////////////////*/
            mapping(uint256 => address) internal _ownerOf;
            mapping(address => uint256) internal _balanceOf;
            function ownerOf(uint256 id) public view virtual returns (address owner) {
                require((owner = _ownerOf[id]) != address(0), "NOT_MINTED");
            }
            function balanceOf(address owner) public view virtual returns (uint256) {
                require(owner != address(0), "ZERO_ADDRESS");
                return _balanceOf[owner];
            }
            /*//////////////////////////////////////////////////////////////
                                 ERC721 APPROVAL STORAGE
            //////////////////////////////////////////////////////////////*/
            mapping(uint256 => address) public getApproved;
            mapping(address => mapping(address => bool)) public isApprovedForAll;
            /*//////////////////////////////////////////////////////////////
                                       CONSTRUCTOR
            //////////////////////////////////////////////////////////////*/
            constructor(string memory _name, string memory _symbol) {
                name = _name;
                symbol = _symbol;
            }
            /*//////////////////////////////////////////////////////////////
                                      ERC721 LOGIC
            //////////////////////////////////////////////////////////////*/
            function approve(address spender, uint256 id) public virtual {
                address owner = _ownerOf[id];
                require(msg.sender == owner || isApprovedForAll[owner][msg.sender], "NOT_AUTHORIZED");
                getApproved[id] = spender;
                emit Approval(owner, spender, id);
            }
            function setApprovalForAll(address operator, bool approved) public virtual {
                isApprovedForAll[msg.sender][operator] = approved;
                emit ApprovalForAll(msg.sender, operator, approved);
            }
            function transferFrom(
                address from,
                address to,
                uint256 id
            ) public virtual {
                require(from == _ownerOf[id], "WRONG_FROM");
                require(to != address(0), "INVALID_RECIPIENT");
                require(
                    msg.sender == from || isApprovedForAll[from][msg.sender] || msg.sender == getApproved[id],
                    "NOT_AUTHORIZED"
                );
                // Underflow of the sender's balance is impossible because we check for
                // ownership above and the recipient's balance can't realistically overflow.
                unchecked {
                    _balanceOf[from]--;
                    _balanceOf[to]++;
                }
                _ownerOf[id] = to;
                delete getApproved[id];
                emit Transfer(from, to, id);
            }
            function safeTransferFrom(
                address from,
                address to,
                uint256 id
            ) public virtual {
                transferFrom(from, to, id);
                require(
                    to.code.length == 0 ||
                        ERC721TokenReceiver(to).onERC721Received(msg.sender, from, id, "") ==
                        ERC721TokenReceiver.onERC721Received.selector,
                    "UNSAFE_RECIPIENT"
                );
            }
            function safeTransferFrom(
                address from,
                address to,
                uint256 id,
                bytes calldata data
            ) public virtual {
                transferFrom(from, to, id);
                require(
                    to.code.length == 0 ||
                        ERC721TokenReceiver(to).onERC721Received(msg.sender, from, id, data) ==
                        ERC721TokenReceiver.onERC721Received.selector,
                    "UNSAFE_RECIPIENT"
                );
            }
            /*//////////////////////////////////////////////////////////////
                                      ERC165 LOGIC
            //////////////////////////////////////////////////////////////*/
            function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
                return
                    interfaceId == 0x01ffc9a7 || // ERC165 Interface ID for ERC165
                    interfaceId == 0x80ac58cd || // ERC165 Interface ID for ERC721
                    interfaceId == 0x5b5e139f; // ERC165 Interface ID for ERC721Metadata
            }
            /*//////////////////////////////////////////////////////////////
                                INTERNAL MINT/BURN LOGIC
            //////////////////////////////////////////////////////////////*/
            function _mint(address to, uint256 id) internal virtual {
                require(to != address(0), "INVALID_RECIPIENT");
                require(_ownerOf[id] == address(0), "ALREADY_MINTED");
                // Counter overflow is incredibly unrealistic.
                unchecked {
                    _balanceOf[to]++;
                }
                _ownerOf[id] = to;
                emit Transfer(address(0), to, id);
            }
            function _burn(uint256 id) internal virtual {
                address owner = _ownerOf[id];
                require(owner != address(0), "NOT_MINTED");
                // Ownership check above ensures no underflow.
                unchecked {
                    _balanceOf[owner]--;
                }
                delete _ownerOf[id];
                delete getApproved[id];
                emit Transfer(owner, address(0), id);
            }
            /*//////////////////////////////////////////////////////////////
                                INTERNAL SAFE MINT LOGIC
            //////////////////////////////////////////////////////////////*/
            function _safeMint(address to, uint256 id) internal virtual {
                _mint(to, id);
                require(
                    to.code.length == 0 ||
                        ERC721TokenReceiver(to).onERC721Received(msg.sender, address(0), id, "") ==
                        ERC721TokenReceiver.onERC721Received.selector,
                    "UNSAFE_RECIPIENT"
                );
            }
            function _safeMint(
                address to,
                uint256 id,
                bytes memory data
            ) internal virtual {
                _mint(to, id);
                require(
                    to.code.length == 0 ||
                        ERC721TokenReceiver(to).onERC721Received(msg.sender, address(0), id, data) ==
                        ERC721TokenReceiver.onERC721Received.selector,
                    "UNSAFE_RECIPIENT"
                );
            }
        }
        /// @notice A generic interface for a contract which properly accepts ERC721 tokens.
        /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC721.sol)
        abstract contract ERC721TokenReceiver {
            function onERC721Received(
                address,
                address,
                uint256,
                bytes calldata
            ) external virtual returns (bytes4) {
                return ERC721TokenReceiver.onERC721Received.selector;
            }
        }
        // SPDX-License-Identifier: AGPL-3.0-only
        pragma solidity >=0.8.0;
        /// @notice Minimalist and gas efficient standard ERC1155 implementation.
        /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC1155.sol)
        abstract contract ERC1155 {
            /*//////////////////////////////////////////////////////////////
                                         EVENTS
            //////////////////////////////////////////////////////////////*/
            event TransferSingle(
                address indexed operator,
                address indexed from,
                address indexed to,
                uint256 id,
                uint256 amount
            );
            event TransferBatch(
                address indexed operator,
                address indexed from,
                address indexed to,
                uint256[] ids,
                uint256[] amounts
            );
            event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
            event URI(string value, uint256 indexed id);
            /*//////////////////////////////////////////////////////////////
                                     ERC1155 STORAGE
            //////////////////////////////////////////////////////////////*/
            mapping(address => mapping(uint256 => uint256)) public balanceOf;
            mapping(address => mapping(address => bool)) public isApprovedForAll;
            /*//////////////////////////////////////////////////////////////
                                     METADATA LOGIC
            //////////////////////////////////////////////////////////////*/
            function uri(uint256 id) public view virtual returns (string memory);
            /*//////////////////////////////////////////////////////////////
                                      ERC1155 LOGIC
            //////////////////////////////////////////////////////////////*/
            function setApprovalForAll(address operator, bool approved) public virtual {
                isApprovedForAll[msg.sender][operator] = approved;
                emit ApprovalForAll(msg.sender, operator, approved);
            }
            function safeTransferFrom(
                address from,
                address to,
                uint256 id,
                uint256 amount,
                bytes calldata data
            ) public virtual {
                require(msg.sender == from || isApprovedForAll[from][msg.sender], "NOT_AUTHORIZED");
                balanceOf[from][id] -= amount;
                balanceOf[to][id] += amount;
                emit TransferSingle(msg.sender, from, to, id, amount);
                require(
                    to.code.length == 0
                        ? to != address(0)
                        : ERC1155TokenReceiver(to).onERC1155Received(msg.sender, from, id, amount, data) ==
                            ERC1155TokenReceiver.onERC1155Received.selector,
                    "UNSAFE_RECIPIENT"
                );
            }
            function safeBatchTransferFrom(
                address from,
                address to,
                uint256[] calldata ids,
                uint256[] calldata amounts,
                bytes calldata data
            ) public virtual {
                require(ids.length == amounts.length, "LENGTH_MISMATCH");
                require(msg.sender == from || isApprovedForAll[from][msg.sender], "NOT_AUTHORIZED");
                // Storing these outside the loop saves ~15 gas per iteration.
                uint256 id;
                uint256 amount;
                for (uint256 i = 0; i < ids.length; ) {
                    id = ids[i];
                    amount = amounts[i];
                    balanceOf[from][id] -= amount;
                    balanceOf[to][id] += amount;
                    // An array can't have a total length
                    // larger than the max uint256 value.
                    unchecked {
                        ++i;
                    }
                }
                emit TransferBatch(msg.sender, from, to, ids, amounts);
                require(
                    to.code.length == 0
                        ? to != address(0)
                        : ERC1155TokenReceiver(to).onERC1155BatchReceived(msg.sender, from, ids, amounts, data) ==
                            ERC1155TokenReceiver.onERC1155BatchReceived.selector,
                    "UNSAFE_RECIPIENT"
                );
            }
            function balanceOfBatch(address[] calldata owners, uint256[] calldata ids)
                public
                view
                virtual
                returns (uint256[] memory balances)
            {
                require(owners.length == ids.length, "LENGTH_MISMATCH");
                balances = new uint256[](owners.length);
                // Unchecked because the only math done is incrementing
                // the array index counter which cannot possibly overflow.
                unchecked {
                    for (uint256 i = 0; i < owners.length; ++i) {
                        balances[i] = balanceOf[owners[i]][ids[i]];
                    }
                }
            }
            /*//////////////////////////////////////////////////////////////
                                      ERC165 LOGIC
            //////////////////////////////////////////////////////////////*/
            function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
                return
                    interfaceId == 0x01ffc9a7 || // ERC165 Interface ID for ERC165
                    interfaceId == 0xd9b67a26 || // ERC165 Interface ID for ERC1155
                    interfaceId == 0x0e89341c; // ERC165 Interface ID for ERC1155MetadataURI
            }
            /*//////////////////////////////////////////////////////////////
                                INTERNAL MINT/BURN LOGIC
            //////////////////////////////////////////////////////////////*/
            function _mint(
                address to,
                uint256 id,
                uint256 amount,
                bytes memory data
            ) internal virtual {
                balanceOf[to][id] += amount;
                emit TransferSingle(msg.sender, address(0), to, id, amount);
                require(
                    to.code.length == 0
                        ? to != address(0)
                        : ERC1155TokenReceiver(to).onERC1155Received(msg.sender, address(0), id, amount, data) ==
                            ERC1155TokenReceiver.onERC1155Received.selector,
                    "UNSAFE_RECIPIENT"
                );
            }
            function _batchMint(
                address to,
                uint256[] memory ids,
                uint256[] memory amounts,
                bytes memory data
            ) internal virtual {
                uint256 idsLength = ids.length; // Saves MLOADs.
                require(idsLength == amounts.length, "LENGTH_MISMATCH");
                for (uint256 i = 0; i < idsLength; ) {
                    balanceOf[to][ids[i]] += amounts[i];
                    // An array can't have a total length
                    // larger than the max uint256 value.
                    unchecked {
                        ++i;
                    }
                }
                emit TransferBatch(msg.sender, address(0), to, ids, amounts);
                require(
                    to.code.length == 0
                        ? to != address(0)
                        : ERC1155TokenReceiver(to).onERC1155BatchReceived(msg.sender, address(0), ids, amounts, data) ==
                            ERC1155TokenReceiver.onERC1155BatchReceived.selector,
                    "UNSAFE_RECIPIENT"
                );
            }
            function _batchBurn(
                address from,
                uint256[] memory ids,
                uint256[] memory amounts
            ) internal virtual {
                uint256 idsLength = ids.length; // Saves MLOADs.
                require(idsLength == amounts.length, "LENGTH_MISMATCH");
                for (uint256 i = 0; i < idsLength; ) {
                    balanceOf[from][ids[i]] -= amounts[i];
                    // An array can't have a total length
                    // larger than the max uint256 value.
                    unchecked {
                        ++i;
                    }
                }
                emit TransferBatch(msg.sender, from, address(0), ids, amounts);
            }
            function _burn(
                address from,
                uint256 id,
                uint256 amount
            ) internal virtual {
                balanceOf[from][id] -= amount;
                emit TransferSingle(msg.sender, from, address(0), id, amount);
            }
        }
        /// @notice A generic interface for a contract which properly accepts ERC1155 tokens.
        /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC1155.sol)
        abstract contract ERC1155TokenReceiver {
            function onERC1155Received(
                address,
                address,
                uint256,
                uint256,
                bytes calldata
            ) external virtual returns (bytes4) {
                return ERC1155TokenReceiver.onERC1155Received.selector;
            }
            function onERC1155BatchReceived(
                address,
                address,
                uint256[] calldata,
                uint256[] calldata,
                bytes calldata
            ) external virtual returns (bytes4) {
                return ERC1155TokenReceiver.onERC1155BatchReceived.selector;
            }
        }
        // SPDX-License-Identifier: AGPL-3.0-only
        pragma solidity >=0.8.0;
        /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
        /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
        /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
        /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
        abstract contract ERC20 {
            /*//////////////////////////////////////////////////////////////
                                         EVENTS
            //////////////////////////////////////////////////////////////*/
            event Transfer(address indexed from, address indexed to, uint256 amount);
            event Approval(address indexed owner, address indexed spender, uint256 amount);
            /*//////////////////////////////////////////////////////////////
                                    METADATA STORAGE
            //////////////////////////////////////////////////////////////*/
            string public name;
            string public symbol;
            uint8 public immutable decimals;
            /*//////////////////////////////////////////////////////////////
                                      ERC20 STORAGE
            //////////////////////////////////////////////////////////////*/
            uint256 public totalSupply;
            mapping(address => uint256) public balanceOf;
            mapping(address => mapping(address => uint256)) public allowance;
            /*//////////////////////////////////////////////////////////////
                                    EIP-2612 STORAGE
            //////////////////////////////////////////////////////////////*/
            uint256 internal immutable INITIAL_CHAIN_ID;
            bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;
            mapping(address => uint256) public nonces;
            /*//////////////////////////////////////////////////////////////
                                       CONSTRUCTOR
            //////////////////////////////////////////////////////////////*/
            constructor(
                string memory _name,
                string memory _symbol,
                uint8 _decimals
            ) {
                name = _name;
                symbol = _symbol;
                decimals = _decimals;
                INITIAL_CHAIN_ID = block.chainid;
                INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
            }
            /*//////////////////////////////////////////////////////////////
                                       ERC20 LOGIC
            //////////////////////////////////////////////////////////////*/
            function approve(address spender, uint256 amount) public virtual returns (bool) {
                allowance[msg.sender][spender] = amount;
                emit Approval(msg.sender, spender, amount);
                return true;
            }
            function transfer(address to, uint256 amount) public virtual returns (bool) {
                balanceOf[msg.sender] -= amount;
                // Cannot overflow because the sum of all user
                // balances can't exceed the max uint256 value.
                unchecked {
                    balanceOf[to] += amount;
                }
                emit Transfer(msg.sender, to, amount);
                return true;
            }
            function transferFrom(
                address from,
                address to,
                uint256 amount
            ) public virtual returns (bool) {
                uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.
                if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;
                balanceOf[from] -= amount;
                // Cannot overflow because the sum of all user
                // balances can't exceed the max uint256 value.
                unchecked {
                    balanceOf[to] += amount;
                }
                emit Transfer(from, to, amount);
                return true;
            }
            /*//////////////////////////////////////////////////////////////
                                     EIP-2612 LOGIC
            //////////////////////////////////////////////////////////////*/
            function permit(
                address owner,
                address spender,
                uint256 value,
                uint256 deadline,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) public virtual {
                require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");
                // Unchecked because the only math done is incrementing
                // the owner's nonce which cannot realistically overflow.
                unchecked {
                    address recoveredAddress = ecrecover(
                        keccak256(
                            abi.encodePacked(
                                "\\x19\\x01",
                                DOMAIN_SEPARATOR(),
                                keccak256(
                                    abi.encode(
                                        keccak256(
                                            "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                                        ),
                                        owner,
                                        spender,
                                        value,
                                        nonces[owner]++,
                                        deadline
                                    )
                                )
                            )
                        ),
                        v,
                        r,
                        s
                    );
                    require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");
                    allowance[recoveredAddress][spender] = value;
                }
                emit Approval(owner, spender, value);
            }
            function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
                return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
            }
            function computeDomainSeparator() internal view virtual returns (bytes32) {
                return
                    keccak256(
                        abi.encode(
                            keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                            keccak256(bytes(name)),
                            keccak256("1"),
                            block.chainid,
                            address(this)
                        )
                    );
            }
            /*//////////////////////////////////////////////////////////////
                                INTERNAL MINT/BURN LOGIC
            //////////////////////////////////////////////////////////////*/
            function _mint(address to, uint256 amount) internal virtual {
                totalSupply += amount;
                // Cannot overflow because the sum of all user
                // balances can't exceed the max uint256 value.
                unchecked {
                    balanceOf[to] += amount;
                }
                emit Transfer(address(0), to, amount);
            }
            function _burn(address from, uint256 amount) internal virtual {
                balanceOf[from] -= amount;
                // Cannot underflow because a user's balance
                // will never be larger than the total supply.
                unchecked {
                    totalSupply -= amount;
                }
                emit Transfer(from, address(0), amount);
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        uint256 constant Bytes1_shift = 0xf8;
        uint256 constant Bytes4_shift = 0xe0;
        uint256 constant Bytes20_shift = 0x60;
        uint256 constant One_word = 0x20;
        uint256 constant Memory_pointer = 0x40;
        uint256 constant AssetType_ERC721 = 0;
        uint256 constant AssetType_ERC1155 = 1;
        uint256 constant OrderType_ASK = 0;
        uint256 constant OrderType_BID = 1;
        uint256 constant Pool_withdrawFrom_selector = 0x9555a94200000000000000000000000000000000000000000000000000000000;
        uint256 constant Pool_withdrawFrom_from_offset = 0x04;
        uint256 constant Pool_withdrawFrom_to_offset = 0x24;
        uint256 constant Pool_withdrawFrom_amount_offset = 0x44;
        uint256 constant Pool_withdrawFrom_size = 0x64;
        uint256 constant Pool_deposit_selector = 0xf340fa0100000000000000000000000000000000000000000000000000000000;
        uint256 constant Pool_deposit_user_offset = 0x04;
        uint256 constant Pool_deposit_size = 0x24;
        uint256 constant ERC20_transferFrom_selector = 0x23b872dd00000000000000000000000000000000000000000000000000000000;
        uint256 constant ERC721_safeTransferFrom_selector = 0x42842e0e00000000000000000000000000000000000000000000000000000000;
        uint256 constant ERC1155_safeTransferFrom_selector = 0xf242432a00000000000000000000000000000000000000000000000000000000;
        uint256 constant ERC20_transferFrom_size = 0x64;
        uint256 constant ERC721_safeTransferFrom_size = 0x64;
        uint256 constant ERC1155_safeTransferFrom_size = 0xc4;
        uint256 constant OracleSignatures_size = 0x59;
        uint256 constant OracleSignatures_s_offset = 0x20;
        uint256 constant OracleSignatures_v_offset = 0x40;
        uint256 constant OracleSignatures_blockNumber_offset = 0x41;
        uint256 constant OracleSignatures_oracle_offset = 0x45;
        uint256 constant Signatures_size = 0x41;
        uint256 constant Signatures_s_offset = 0x20;
        uint256 constant Signatures_v_offset = 0x40;
        uint256 constant ERC20_transferFrom_from_offset = 0x4;
        uint256 constant ERC20_transferFrom_to_offset = 0x24;
        uint256 constant ERC20_transferFrom_amount_offset = 0x44;
        uint256 constant ERC721_safeTransferFrom_from_offset = 0x4;
        uint256 constant ERC721_safeTransferFrom_to_offset = 0x24;
        uint256 constant ERC721_safeTransferFrom_id_offset = 0x44;
        uint256 constant ERC1155_safeTransferFrom_from_offset = 0x4;
        uint256 constant ERC1155_safeTransferFrom_to_offset = 0x24;
        uint256 constant ERC1155_safeTransferFrom_id_offset = 0x44;
        uint256 constant ERC1155_safeTransferFrom_amount_offset = 0x64;
        uint256 constant ERC1155_safeTransferFrom_data_pointer_offset = 0x84;
        uint256 constant ERC1155_safeTransferFrom_data_offset = 0xa4;
        uint256 constant Delegate_transfer_selector = 0xa1ccb98e00000000000000000000000000000000000000000000000000000000;
        uint256 constant Delegate_transfer_calldata_offset = 0x1c;
        uint256 constant Order_size = 0x100;
        uint256 constant Order_trader_offset = 0x00;
        uint256 constant Order_collection_offset = 0x20;
        uint256 constant Order_listingsRoot_offset = 0x40;
        uint256 constant Order_numberOfListings_offset = 0x60;
        uint256 constant Order_expirationTime_offset = 0x80;
        uint256 constant Order_assetType_offset = 0xa0;
        uint256 constant Order_makerFee_offset = 0xc0;
        uint256 constant Order_salt_offset = 0xe0;
        uint256 constant Exchange_size = 0x80;
        uint256 constant Exchange_askIndex_offset = 0x00;
        uint256 constant Exchange_proof_offset = 0x20;
        uint256 constant Exchange_maker_offset = 0x40;
        uint256 constant Exchange_taker_offset = 0x60;
        uint256 constant BidExchange_size = 0x80;
        uint256 constant BidExchange_askIndex_offset = 0x00;
        uint256 constant BidExchange_proof_offset = 0x20;
        uint256 constant BidExchange_maker_offset = 0x40;
        uint256 constant BidExchange_taker_offset = 0x60;
        uint256 constant Listing_size = 0x80;
        uint256 constant Listing_index_offset = 0x00;
        uint256 constant Listing_tokenId_offset = 0x20;
        uint256 constant Listing_amount_offset = 0x40;
        uint256 constant Listing_price_offset = 0x60;
        uint256 constant Taker_size = 0x40;
        uint256 constant Taker_tokenId_offset = 0x00;
        uint256 constant Taker_amount_offset = 0x20;
        uint256 constant StateUpdate_size = 0x80;
        uint256 constant StateUpdate_salt_offset = 0x20;
        uint256 constant StateUpdate_leaf_offset = 0x40;
        uint256 constant StateUpdate_value_offset = 0x60;
        uint256 constant Transfer_size = 0xa0;
        uint256 constant Transfer_trader_offset = 0x00;
        uint256 constant Transfer_id_offset = 0x20;
        uint256 constant Transfer_amount_offset = 0x40;
        uint256 constant Transfer_collection_offset = 0x60;
        uint256 constant Transfer_assetType_offset = 0x80;
        uint256 constant ExecutionBatch_selector_offset = 0x20;
        uint256 constant ExecutionBatch_calldata_offset = 0x40;
        uint256 constant ExecutionBatch_base_size = 0xa0; // size of the executionBatch without the flattened dynamic elements
        uint256 constant ExecutionBatch_taker_offset = 0x00;
        uint256 constant ExecutionBatch_orderType_offset = 0x20;
        uint256 constant ExecutionBatch_transfers_pointer_offset = 0x40;
        uint256 constant ExecutionBatch_length_offset = 0x60;
        uint256 constant ExecutionBatch_transfers_offset = 0x80;
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.17;
        struct TakeAsk {
            Order[] orders;
            Exchange[] exchanges;
            FeeRate takerFee;
            bytes signatures;
            address tokenRecipient;
        }
        struct TakeAskSingle {
            Order order;
            Exchange exchange;
            FeeRate takerFee;
            bytes signature;
            address tokenRecipient;
        }
        struct TakeBid {
            Order[] orders;
            Exchange[] exchanges;
            FeeRate takerFee;
            bytes signatures;
        }
        struct TakeBidSingle {
            Order order;
            Exchange exchange;
            FeeRate takerFee;
            bytes signature;
        }
        enum AssetType {
            ERC721,
            ERC1155
        }
        enum OrderType {
            ASK,
            BID
        }
        struct Exchange { // Size: 0x80
            uint256 index; // 0x00
            bytes32[] proof; // 0x20
            Listing listing; // 0x40
            Taker taker; // 0x60
        }
        struct Listing { // Size: 0x80
            uint256 index; // 0x00
            uint256 tokenId; // 0x20
            uint256 amount; // 0x40
            uint256 price; // 0x60
        }
        struct Taker { // Size: 0x40
            uint256 tokenId; // 0x00
            uint256 amount; // 0x20
        }
        struct Order { // Size: 0x100
            address trader; // 0x00
            address collection; // 0x20
            bytes32 listingsRoot; // 0x40
            uint256 numberOfListings; // 0x60
            uint256 expirationTime; // 0x80
            AssetType assetType; // 0xa0
            FeeRate makerFee; // 0xc0
            uint256 salt; // 0xe0
        }
        /*
        Reference only; struct is composed manually using calldata formatting in execution
        struct ExecutionBatch { // Size: 0x80
            address taker; // 0x00
            OrderType orderType; // 0x20
            Transfer[] transfers; // 0x40
            uint256 length; // 0x60
        }
        */
        struct Transfer { // Size: 0xa0
            address trader; // 0x00
            uint256 id; // 0x20
            uint256 amount; // 0x40
            address collection; // 0x60
            AssetType assetType; // 0x80
        }
        struct FungibleTransfers {
            uint256 totalProtocolFee;
            uint256 totalSellerTransfer;
            uint256 totalTakerFee;
            uint256 feeRecipientId;
            uint256 makerId;
            address[] feeRecipients;
            address[] makers;
            uint256[] makerTransfers;
            uint256[] feeTransfers;
            AtomicExecution[] executions;
        }
        struct AtomicExecution { // Size: 0xe0
            uint256 makerId; // 0x00
            uint256 sellerAmount; // 0x20
            uint256 makerFeeRecipientId; // 0x40
            uint256 makerFeeAmount; // 0x60
            uint256 takerFeeAmount; // 0x80
            uint256 protocolFeeAmount; // 0xa0
            StateUpdate stateUpdate; // 0xc0
        }
        struct StateUpdate { // Size: 0xa0
            address trader; // 0x00
            bytes32 hash; // 0x20
            uint256 index; // 0x40
            uint256 value; // 0x60
            uint256 maxAmount; // 0x80
        }
        struct Fees { // Size: 0x40
            FeeRate protocolFee; // 0x00
            FeeRate takerFee; // 0x20
        }
        struct FeeRate { // Size: 0x40
            address recipient; // 0x00
            uint16 rate; // 0x20
        }
        struct Cancel {
            bytes32 hash;
            uint256 index;
            uint256 amount;
        }