Transaction Hash:
Block:
18357223 at Oct-15-2023 05:19:35 PM +UTC
Transaction Fee:
0.001033337874913596 ETH
$2.47
Gas Used:
176,463 Gas / 5.855833092 Gwei
Emitted Events:
171 |
L1ChugSplashProxy.0x35d79ab81f2b2017e19afb5c5571778877782d7a8786f5907f93b0f4702f4f23( 0x35d79ab81f2b2017e19afb5c5571778877782d7a8786f5907f93b0f4702f4f23, 0x0000000000000000000000003a23f943181408eac424116af7b7790c94cb97a5, 0x000000000000000000000000427364a323e9c4707f5e37e9ea81ba07540ed6bd, 000000000000000000000000000000000000000000000000003226cc6e9d5d13, 0000000000000000000000000000000000000000000000000000000000000040, 0000000000000000000000000000000000000000000000000000000000000000 )
|
172 |
L1ChugSplashProxy.0x2849b43074093a05396b6f2a937dee8565b15a48a7b3d4bffb732a5017380af5( 0x2849b43074093a05396b6f2a937dee8565b15a48a7b3d4bffb732a5017380af5, 0x0000000000000000000000003a23f943181408eac424116af7b7790c94cb97a5, 0x000000000000000000000000427364a323e9c4707f5e37e9ea81ba07540ed6bd, 000000000000000000000000000000000000000000000000003226cc6e9d5d13, 0000000000000000000000000000000000000000000000000000000000000040, 0000000000000000000000000000000000000000000000000000000000000000 )
|
173 |
Proxy.0xb3813568d9991fc951961fcb4c784893574240a28925604d09fc577c55bb7c32( 0xb3813568d9991fc951961fcb4c784893574240a28925604d09fc577c55bb7c32, 0x000000000000000000000000977f82a600a1414e583f7f13623f1ac5d58b1c0b, 0x0000000000000000000000004200000000000000000000000000000000000007, 0x0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000020, 00000000000000000000000000000000000000000000000000000000000001ed, 000000000000000000000000000000000000000000000000003226cc6e9d5d13, 000000000000000000000000000000000000000000000000003226cc6e9d5d13, 00000000000551a000d764ad0b00010000000000000000000000000000000000, 0000000000000000000001fbcc0000000000000000000000003154cf16ccdb4c, 6d922629664174b904d80f2c3500000000000000000000000042000000000000, 0000000000000000000000001000000000000000000000000000000000000000, 0000000000003226cc6e9d5d1300000000000000000000000000000000000000, 0000000000000000000000ea6000000000000000000000000000000000000000, 000000000000000000000000c000000000000000000000000000000000000000, 000000000000000000000000a41635f5fd0000000000000000000000003a23f9, 43181408eac424116af7b7790c94cb97a5000000000000000000000000427364, a323e9c4707f5e37e9ea81ba07540ed6bd000000000000000000000000000000, 000000000000000000003226cc6e9d5d13000000000000000000000000000000, 0000000000000000000000000000000080000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000 )
|
174 |
ResolvedDelegateProxy.0xcb0f7ffd78f9aee47a248fae8db181db6eee833039123e026dcbff529522e52a( 0xcb0f7ffd78f9aee47a248fae8db181db6eee833039123e026dcbff529522e52a, 0x0000000000000000000000004200000000000000000000000000000000000010, 0000000000000000000000003154cf16ccdb4c6d922629664174b904d80f2c35, 0000000000000000000000000000000000000000000000000000000000000080, 000100000000000000000000000000000000000000000000000000000001fbcc, 000000000000000000000000000000000000000000000000000000000000ea60, 00000000000000000000000000000000000000000000000000000000000000a4, 1635f5fd0000000000000000000000003a23f943181408eac424116af7b7790c, 94cb97a5000000000000000000000000427364a323e9c4707f5e37e9ea81ba07, 540ed6bd000000000000000000000000000000000000000000000000003226cc, 6e9d5d1300000000000000000000000000000000000000000000000000000000, 0000008000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000 )
|
175 |
ResolvedDelegateProxy.0x8ebb2ec2465bdb2a06a66fc37a0963af8a2a6a1479d81d56fdb8cbb98096d546( 0x8ebb2ec2465bdb2a06a66fc37a0963af8a2a6a1479d81d56fdb8cbb98096d546, 0x0000000000000000000000003154cf16ccdb4c6d922629664174b904d80f2c35, 000000000000000000000000000000000000000000000000003226cc6e9d5d13 )
|
176 |
SocketGateway.0x74594da9e31ee4068e17809037db37db496702bf7d8d63afe6f97949277d1609( 0x74594da9e31ee4068e17809037db37db496702bf7d8d63afe6f97949277d1609, 000000000000000000000000000000000000000000000000003226cc6e9d5d13, 000000000000000000000000eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 0000000000000000000000000000000000000000000000000000000000002105, 86c029f16460117b4488dbcebd1ea3d4f22aee8859770297bc010a8caaa1b116, 000000000000000000000000427364a323e9c4707f5e37e9ea81ba07540ed6bd, 000000000000000000000000427364a323e9c4707f5e37e9ea81ba07540ed6bd, 00000000000000000000000000000000000000000000000000000000000008f1 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x427364A3...7540Ed6BD |
0.016004401838545963 Eth
Nonce: 36
|
0.000854655657108956 Eth
Nonce: 37
| 0.015149746181437007 | ||
0x49048044...fAF74E97e | (Base: Base Portal) | 169,257.083395156010825163 Eth | 169,257.097511564317348574 Eth | 0.014116408306523411 | |
0x5124fcC2...3F38f1C34
Miner
| (Faith Builder) | 6.315241054123021892 Eth | 6.315258700423021892 Eth | 0.0000176463 | |
0x866E82a6...5d58b0Afa |
Execution Trace
ETH 0.014116408306523411
SocketGateway.0000018b( )
ETH 0.014116408306523411
0x92416cea3b1ecc4fe8e4a3298893d67b3724d594.a24ef789( )
ETH 0.014116408306523411
L1ChugSplashProxy.9a2ac6d5( )
-
ProxyAdmin.STATICCALL( )
ETH 0.014116408306523411
L1StandardBridge.depositETHTo( _to=0x427364A323e9c4707F5E37e9EA81bA07540Ed6BD, _minGasLimit=60000, _extraData=0x )
ETH 0.014116408306523411
ResolvedDelegateProxy.3dbb202b( )
-
AddressManager.getAddress( _name=OVM_L1CrossDomainMessenger ) => ( 0x81C4Bd600793EBd1C0323604E1F455fE50A951F8 )
ETH 0.014116408306523411
L1CrossDomainMessenger.sendMessage( _target=0x4200000000000000000000000000000000000010, _message=0x1635F5FD0000000000000000000000003A23F943181408EAC424116AF7B7790C94CB97A5000000000000000000000000427364A323E9C4707F5E37E9EA81BA07540ED6BD000000000000000000000000000000000000000000000000003226CC6E9D5D1300000000000000000000000000000000000000000000000000000000000000800000000000000000000000000000000000000000000000000000000000000000, _minGasLimit=60000 )
- ETH 0.014116408306523411
Proxy.e9e05c42( )
- ETH 0.014116408306523411
-
-
File 1 of 8: SocketGateway
File 2 of 8: L1ChugSplashProxy
File 3 of 8: Proxy
File 4 of 8: ResolvedDelegateProxy
File 5 of 8: ProxyAdmin
File 6 of 8: L1StandardBridge
File 7 of 8: AddressManager
File 8 of 8: L1CrossDomainMessenger
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol) /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol) /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it. abstract contract ERC20 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); /*////////////////////////////////////////////////////////////// METADATA STORAGE //////////////////////////////////////////////////////////////*/ string public name; string public symbol; uint8 public immutable decimals; /*////////////////////////////////////////////////////////////// ERC20 STORAGE //////////////////////////////////////////////////////////////*/ uint256 public totalSupply; mapping(address => uint256) public balanceOf; mapping(address => mapping(address => uint256)) public allowance; /*////////////////////////////////////////////////////////////// EIP-2612 STORAGE //////////////////////////////////////////////////////////////*/ uint256 internal immutable INITIAL_CHAIN_ID; bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR; mapping(address => uint256) public nonces; /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor( string memory _name, string memory _symbol, uint8 _decimals ) { name = _name; symbol = _symbol; decimals = _decimals; INITIAL_CHAIN_ID = block.chainid; INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator(); } /*////////////////////////////////////////////////////////////// ERC20 LOGIC //////////////////////////////////////////////////////////////*/ function approve(address spender, uint256 amount) public virtual returns (bool) { allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } function transfer(address to, uint256 amount) public virtual returns (bool) { balanceOf[msg.sender] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(msg.sender, to, amount); return true; } function transferFrom( address from, address to, uint256 amount ) public virtual returns (bool) { uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals. if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount; balanceOf[from] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(from, to, amount); return true; } /*////////////////////////////////////////////////////////////// EIP-2612 LOGIC //////////////////////////////////////////////////////////////*/ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED"); // Unchecked because the only math done is incrementing // the owner's nonce which cannot realistically overflow. unchecked { address recoveredAddress = ecrecover( keccak256( abi.encodePacked( "\\x19\\x01", DOMAIN_SEPARATOR(), keccak256( abi.encode( keccak256( "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)" ), owner, spender, value, nonces[owner]++, deadline ) ) ) ), v, r, s ); require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER"); allowance[recoveredAddress][spender] = value; } emit Approval(owner, spender, value); } function DOMAIN_SEPARATOR() public view virtual returns (bytes32) { return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator(); } function computeDomainSeparator() internal view virtual returns (bytes32) { return keccak256( abi.encode( keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"), keccak256(bytes(name)), keccak256("1"), block.chainid, address(this) ) ); } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint(address to, uint256 amount) internal virtual { totalSupply += amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(address(0), to, amount); } function _burn(address from, uint256 amount) internal virtual { balanceOf[from] -= amount; // Cannot underflow because a user's balance // will never be larger than the total supply. unchecked { totalSupply -= amount; } emit Transfer(from, address(0), amount); } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; import {ERC20} from "../tokens/ERC20.sol"; /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol) /// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer. /// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller. library SafeTransferLib { /*////////////////////////////////////////////////////////////// ETH OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferETH(address to, uint256 amount) internal { bool success; /// @solidity memory-safe-assembly assembly { // Transfer the ETH and store if it succeeded or not. success := call(gas(), to, amount, 0, 0, 0, 0) } require(success, "ETH_TRANSFER_FAILED"); } /*////////////////////////////////////////////////////////////// ERC20 OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferFrom( ERC20 token, address from, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), from) // Append the "from" argument. mstore(add(freeMemoryPointer, 36), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 100, 0, 32) ) } require(success, "TRANSFER_FROM_FAILED"); } function safeTransfer( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "TRANSFER_FAILED"); } function safeApprove( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "APPROVE_FAILED"); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "./interfaces/across.sol"; import "../BridgeImplBase.sol"; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {ACROSS} from "../../static/RouteIdentifiers.sol"; /** * @title Across-Route Implementation * @notice Route implementation with functions to bridge ERC20 and Native via Across-Bridge * Called via SocketGateway if the routeId in the request maps to the routeId of AcrossImplementation * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract AcrossImpl is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable AcrossIdentifier = ACROSS; /// @notice Function-selector for ERC20-token bridging on Across-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable ACROSS_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(uint256,uint256,bytes32,address,address,uint32,uint64)" ) ); /// @notice Function-selector for Native bridging on Across-Route /// @dev This function selector is to be used while buidling transaction-data to bridge Native tokens bytes4 public immutable ACROSS_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeNativeTo(uint256,uint256,bytes32,address,uint32,uint64)" ) ); bytes4 public immutable ACROSS_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(uint256,address,uint32,uint64,bytes32))" ) ); /// @notice spokePool Contract instance used to deposit ERC20 and Native on to Across-Bridge /// @dev contract instance is to be initialized in the constructor using the spokePoolAddress passed as constructor argument SpokePool public immutable spokePool; address public immutable spokePoolAddress; /// @notice address of WETH token to be initialised in constructor address public immutable WETH; /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct AcrossBridgeDataNoToken { uint256 toChainId; address receiverAddress; uint32 quoteTimestamp; uint64 relayerFeePct; bytes32 metadata; } struct AcrossBridgeData { uint256 toChainId; address receiverAddress; address token; uint32 quoteTimestamp; uint64 relayerFeePct; bytes32 metadata; } /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase /// @dev ensure spokepool, weth-address are set properly for the chainId in which the contract is being deployed constructor( address _spokePool, address _wethAddress, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { spokePool = SpokePool(_spokePool); spokePoolAddress = _spokePool; WETH = _wethAddress; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in AcrossBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for AcrossBridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { AcrossBridgeData memory acrossBridgeData = abi.decode( bridgeData, (AcrossBridgeData) ); if (acrossBridgeData.token == NATIVE_TOKEN_ADDRESS) { spokePool.deposit{value: amount}( acrossBridgeData.receiverAddress, WETH, amount, acrossBridgeData.toChainId, acrossBridgeData.relayerFeePct, acrossBridgeData.quoteTimestamp ); } else { spokePool.deposit( acrossBridgeData.receiverAddress, acrossBridgeData.token, amount, acrossBridgeData.toChainId, acrossBridgeData.relayerFeePct, acrossBridgeData.quoteTimestamp ); } emit SocketBridge( amount, acrossBridgeData.token, acrossBridgeData.toChainId, AcrossIdentifier, msg.sender, acrossBridgeData.receiverAddress, acrossBridgeData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in AcrossBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param acrossBridgeData encoded data for AcrossBridge */ function swapAndBridge( uint32 swapId, bytes calldata swapData, AcrossBridgeDataNoToken calldata acrossBridgeData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { spokePool.deposit{value: bridgeAmount}( acrossBridgeData.receiverAddress, WETH, bridgeAmount, acrossBridgeData.toChainId, acrossBridgeData.relayerFeePct, acrossBridgeData.quoteTimestamp ); } else { spokePool.deposit( acrossBridgeData.receiverAddress, token, bridgeAmount, acrossBridgeData.toChainId, acrossBridgeData.relayerFeePct, acrossBridgeData.quoteTimestamp ); } emit SocketBridge( bridgeAmount, token, acrossBridgeData.toChainId, AcrossIdentifier, msg.sender, acrossBridgeData.receiverAddress, acrossBridgeData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Across-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount being bridged * @param toChainId destination ChainId * @param receiverAddress address of receiver of bridged tokens * @param token address of token being bridged * @param quoteTimestamp timestamp for quote and this is to be used by Across-Bridge contract * @param relayerFeePct feePct that will be relayed by the Bridge to the relayer */ function bridgeERC20To( uint256 amount, uint256 toChainId, bytes32 metadata, address receiverAddress, address token, uint32 quoteTimestamp, uint64 relayerFeePct ) external payable { ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); spokePool.deposit( receiverAddress, address(token), amount, toChainId, relayerFeePct, quoteTimestamp ); emit SocketBridge( amount, token, toChainId, AcrossIdentifier, msg.sender, receiverAddress, metadata ); } /** * @notice function to handle Native bridging to receipent via Across-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount being bridged * @param toChainId destination ChainId * @param receiverAddress address of receiver of bridged tokens * @param quoteTimestamp timestamp for quote and this is to be used by Across-Bridge contract * @param relayerFeePct feePct that will be relayed by the Bridge to the relayer */ function bridgeNativeTo( uint256 amount, uint256 toChainId, bytes32 metadata, address receiverAddress, uint32 quoteTimestamp, uint64 relayerFeePct ) external payable { spokePool.deposit{value: amount}( receiverAddress, WETH, amount, toChainId, relayerFeePct, quoteTimestamp ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, toChainId, AcrossIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; /// @notice interface with functions to interact with SpokePool contract of Across-Bridge interface SpokePool { /************************************** * DEPOSITOR FUNCTIONS * **************************************/ /** * @notice Called by user to bridge funds from origin to destination chain. Depositor will effectively lock * tokens in this contract and receive a destination token on the destination chain. The origin => destination * token mapping is stored on the L1 HubPool. * @notice The caller must first approve this contract to spend amount of originToken. * @notice The originToken => destinationChainId must be enabled. * @notice This method is payable because the caller is able to deposit native token if the originToken is * wrappedNativeToken and this function will handle wrapping the native token to wrappedNativeToken. * @param recipient Address to receive funds at on destination chain. * @param originToken Token to lock into this contract to initiate deposit. * @param amount Amount of tokens to deposit. Will be amount of tokens to receive less fees. * @param destinationChainId Denotes network where user will receive funds from SpokePool by a relayer. * @param relayerFeePct % of deposit amount taken out to incentivize a fast relayer. * @param quoteTimestamp Timestamp used by relayers to compute this deposit's realizedLPFeePct which is paid * to LP pool on HubPool. */ function deposit( address recipient, address originToken, uint256 amount, uint256 destinationChainId, uint64 relayerFeePct, uint32 quoteTimestamp ) external payable; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {BridgeImplBase} from "../../BridgeImplBase.sol"; import {ANYSWAP} from "../../../static/RouteIdentifiers.sol"; /** * @title Anyswap-V4-Route L1 Implementation * @notice Route implementation with functions to bridge ERC20 via Anyswap-Bridge * Called via SocketGateway if the routeId in the request maps to the routeId of AnyswapImplementation * This is the L1 implementation, so this is used when transferring from l1 to supported l1s or L1. * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ /// @notice Interface to interact with AnyswapV4-Router Implementation interface AnyswapV4Router { function anySwapOutUnderlying( address token, address to, uint256 amount, uint256 toChainID ) external; } contract AnyswapImplL1 is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable AnyswapIdentifier = ANYSWAP; /// @notice Function-selector for ERC20-token bridging on Anyswap-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable ANYSWAP_L1_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(uint256,uint256,bytes32,address,address,address)" ) ); bytes4 public immutable ANYSWAP_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(uint256,address,address,bytes32))" ) ); /// @notice AnSwapV4Router Contract instance used to deposit ERC20 on to Anyswap-Bridge /// @dev contract instance is to be initialized in the constructor using the router-address passed as constructor argument AnyswapV4Router public immutable router; /** * @notice Constructor sets the router address and socketGateway address. * @dev anyswap 4 router is immutable. so no setter function required. */ constructor( address _router, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { router = AnyswapV4Router(_router); } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct AnyswapBridgeDataNoToken { /// @notice destination ChainId uint256 toChainId; /// @notice address of receiver of bridged tokens address receiverAddress; /// @notice address of wrapperToken, WrappedVersion of the token being bridged address wrapperTokenAddress; /// @notice socket offchain created hash bytes32 metadata; } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct AnyswapBridgeData { /// @notice destination ChainId uint256 toChainId; /// @notice address of receiver of bridged tokens address receiverAddress; /// @notice address of wrapperToken, WrappedVersion of the token being bridged address wrapperTokenAddress; /// @notice address of token being bridged address token; /// @notice socket offchain created hash bytes32 metadata; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in AnyswapBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for AnyswapBridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { AnyswapBridgeData memory anyswapBridgeData = abi.decode( bridgeData, (AnyswapBridgeData) ); ERC20(anyswapBridgeData.token).safeApprove(address(router), amount); router.anySwapOutUnderlying( anyswapBridgeData.wrapperTokenAddress, anyswapBridgeData.receiverAddress, amount, anyswapBridgeData.toChainId ); emit SocketBridge( amount, anyswapBridgeData.token, anyswapBridgeData.toChainId, AnyswapIdentifier, msg.sender, anyswapBridgeData.receiverAddress, anyswapBridgeData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in AnyswapBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param anyswapBridgeData encoded data for AnyswapBridge */ function swapAndBridge( uint32 swapId, bytes calldata swapData, AnyswapBridgeDataNoToken calldata anyswapBridgeData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); ERC20(token).safeApprove(address(router), bridgeAmount); router.anySwapOutUnderlying( anyswapBridgeData.wrapperTokenAddress, anyswapBridgeData.receiverAddress, bridgeAmount, anyswapBridgeData.toChainId ); emit SocketBridge( bridgeAmount, token, anyswapBridgeData.toChainId, AnyswapIdentifier, msg.sender, anyswapBridgeData.receiverAddress, anyswapBridgeData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Anyswap-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount being bridged * @param toChainId destination ChainId * @param receiverAddress address of receiver of bridged tokens * @param token address of token being bridged * @param wrapperTokenAddress address of wrapperToken, WrappedVersion of the token being bridged */ function bridgeERC20To( uint256 amount, uint256 toChainId, bytes32 metadata, address receiverAddress, address token, address wrapperTokenAddress ) external payable { ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); tokenInstance.safeApprove(address(router), amount); router.anySwapOutUnderlying( wrapperTokenAddress, receiverAddress, amount, toChainId ); emit SocketBridge( amount, token, toChainId, AnyswapIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {BridgeImplBase} from "../../BridgeImplBase.sol"; import {ANYSWAP} from "../../../static/RouteIdentifiers.sol"; /** * @title Anyswap-V4-Route L1 Implementation * @notice Route implementation with functions to bridge ERC20 via Anyswap-Bridge * Called via SocketGateway if the routeId in the request maps to the routeId of AnyswapImplementation * This is the L2 implementation, so this is used when transferring from l2. * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ interface AnyswapV4Router { function anySwapOutUnderlying( address token, address to, uint256 amount, uint256 toChainID ) external; } contract AnyswapL2Impl is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable AnyswapIdentifier = ANYSWAP; /// @notice Function-selector for ERC20-token bridging on Anyswap-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable ANYSWAP_L2_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(uint256,uint256,bytes32,address,address,address)" ) ); bytes4 public immutable ANYSWAP_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(uint256,address,address,bytes32))" ) ); // polygon router multichain router v4 AnyswapV4Router public immutable router; /** * @notice Constructor sets the router address and socketGateway address. * @dev anyswap v4 router is immutable. so no setter function required. */ constructor( address _router, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { router = AnyswapV4Router(_router); } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct AnyswapBridgeDataNoToken { /// @notice destination ChainId uint256 toChainId; /// @notice address of receiver of bridged tokens address receiverAddress; /// @notice address of wrapperToken, WrappedVersion of the token being bridged address wrapperTokenAddress; /// @notice socket offchain created hash bytes32 metadata; } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct AnyswapBridgeData { /// @notice destination ChainId uint256 toChainId; /// @notice address of receiver of bridged tokens address receiverAddress; /// @notice address of wrapperToken, WrappedVersion of the token being bridged address wrapperTokenAddress; /// @notice address of token being bridged address token; /// @notice socket offchain created hash bytes32 metadata; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in AnyswapBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for AnyswapBridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { AnyswapBridgeData memory anyswapBridgeData = abi.decode( bridgeData, (AnyswapBridgeData) ); ERC20(anyswapBridgeData.token).safeApprove(address(router), amount); router.anySwapOutUnderlying( anyswapBridgeData.wrapperTokenAddress, anyswapBridgeData.receiverAddress, amount, anyswapBridgeData.toChainId ); emit SocketBridge( amount, anyswapBridgeData.token, anyswapBridgeData.toChainId, AnyswapIdentifier, msg.sender, anyswapBridgeData.receiverAddress, anyswapBridgeData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in AnyswapBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param anyswapBridgeData encoded data for AnyswapBridge */ function swapAndBridge( uint32 swapId, bytes calldata swapData, AnyswapBridgeDataNoToken calldata anyswapBridgeData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); ERC20(token).safeApprove(address(router), bridgeAmount); router.anySwapOutUnderlying( anyswapBridgeData.wrapperTokenAddress, anyswapBridgeData.receiverAddress, bridgeAmount, anyswapBridgeData.toChainId ); emit SocketBridge( bridgeAmount, token, anyswapBridgeData.toChainId, AnyswapIdentifier, msg.sender, anyswapBridgeData.receiverAddress, anyswapBridgeData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Anyswap-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount being bridged * @param toChainId destination ChainId * @param receiverAddress address of receiver of bridged tokens * @param token address of token being bridged * @param wrapperTokenAddress address of wrapperToken, WrappedVersion of the token being bridged */ function bridgeERC20To( uint256 amount, uint256 toChainId, bytes32 metadata, address receiverAddress, address token, address wrapperTokenAddress ) external payable { ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); tokenInstance.safeApprove(address(router), amount); router.anySwapOutUnderlying( wrapperTokenAddress, receiverAddress, amount, toChainId ); emit SocketBridge( amount, token, toChainId, AnyswapIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: Apache-2.0 /* * Copyright 2021, Offchain Labs, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity >=0.8.0; /** * @title L1gatewayRouter for native-arbitrum */ interface L1GatewayRouter { /** * @notice outbound function to bridge ERC20 via NativeArbitrum-Bridge * @param _token address of token being bridged via GatewayRouter * @param _to recipient of the token on arbitrum chain * @param _amount amount of ERC20 token being bridged * @param _maxGas a depositParameter for bridging the token * @param _gasPriceBid a depositParameter for bridging the token * @param _data a depositParameter for bridging the token * @return calldata returns the output of transactioncall made on gatewayRouter */ function outboundTransfer( address _token, address _to, uint256 _amount, uint256 _maxGas, uint256 _gasPriceBid, bytes calldata _data ) external payable returns (bytes calldata); } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {L1GatewayRouter} from "../interfaces/arbitrum.sol"; import {BridgeImplBase} from "../../BridgeImplBase.sol"; import {NATIVE_ARBITRUM} from "../../../static/RouteIdentifiers.sol"; /** * @title Native Arbitrum-Route Implementation * @notice Route implementation with functions to bridge ERC20 via NativeArbitrum-Bridge * @notice Called via SocketGateway if the routeId in the request maps to the routeId of NativeArbitrum-Implementation * @notice This is used when transferring from ethereum chain to arbitrum via their native bridge. * @notice Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * @notice RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract NativeArbitrumImpl is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable NativeArbitrumIdentifier = NATIVE_ARBITRUM; uint256 public constant DESTINATION_CHAIN_ID = 42161; /// @notice Function-selector for ERC20-token bridging on NativeArbitrum /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable NATIVE_ARBITRUM_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(uint256,uint256,uint256,uint256,bytes32,address,address,address,bytes)" ) ); bytes4 public immutable NATIVE_ARBITRUM_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(uint256,uint256,uint256,address,address,bytes32,bytes))" ) ); /// @notice router address of NativeArbitrum Bridge /// @notice GatewayRouter looks up ERC20Token's gateway, and finding that it's Standard ERC20 gateway (the L1ERC20Gateway contract). address public immutable router; /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase /// @dev ensure router-address are set properly for the chainId in which the contract is being deployed constructor( address _router, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { router = _router; } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct NativeArbitrumBridgeDataNoToken { uint256 value; /// @notice maxGas is a depositParameter derived from erc20Bridger of nativeArbitrum uint256 maxGas; /// @notice gasPriceBid is a depositParameter derived from erc20Bridger of nativeArbitrum uint256 gasPriceBid; /// @notice address of receiver of bridged tokens address receiverAddress; /// @notice address of Gateway which handles the token bridging for the token /// @notice gatewayAddress is unique for each token address gatewayAddress; /// @notice socket offchain created hash bytes32 metadata; /// @notice data is a depositParameter derived from erc20Bridger of nativeArbitrum bytes data; } struct NativeArbitrumBridgeData { uint256 value; /// @notice maxGas is a depositParameter derived from erc20Bridger of nativeArbitrum uint256 maxGas; /// @notice gasPriceBid is a depositParameter derived from erc20Bridger of nativeArbitrum uint256 gasPriceBid; /// @notice address of receiver of bridged tokens address receiverAddress; /// @notice address of Gateway which handles the token bridging for the token /// @notice gatewayAddress is unique for each token address gatewayAddress; /// @notice address of token being bridged address token; /// @notice socket offchain created hash bytes32 metadata; /// @notice data is a depositParameter derived from erc20Bridger of nativeArbitrum bytes data; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in NativeArbitrumBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for NativeArbitrumBridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { NativeArbitrumBridgeData memory nativeArbitrumBridgeData = abi.decode( bridgeData, (NativeArbitrumBridgeData) ); ERC20(nativeArbitrumBridgeData.token).safeApprove( nativeArbitrumBridgeData.gatewayAddress, amount ); L1GatewayRouter(router).outboundTransfer{ value: nativeArbitrumBridgeData.value }( nativeArbitrumBridgeData.token, nativeArbitrumBridgeData.receiverAddress, amount, nativeArbitrumBridgeData.maxGas, nativeArbitrumBridgeData.gasPriceBid, nativeArbitrumBridgeData.data ); emit SocketBridge( amount, nativeArbitrumBridgeData.token, DESTINATION_CHAIN_ID, NativeArbitrumIdentifier, msg.sender, nativeArbitrumBridgeData.receiverAddress, nativeArbitrumBridgeData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in NativeArbitrumBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param nativeArbitrumBridgeData encoded data for NativeArbitrumBridge */ function swapAndBridge( uint32 swapId, bytes calldata swapData, NativeArbitrumBridgeDataNoToken calldata nativeArbitrumBridgeData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); ERC20(token).safeApprove( nativeArbitrumBridgeData.gatewayAddress, bridgeAmount ); L1GatewayRouter(router).outboundTransfer{ value: nativeArbitrumBridgeData.value }( token, nativeArbitrumBridgeData.receiverAddress, bridgeAmount, nativeArbitrumBridgeData.maxGas, nativeArbitrumBridgeData.gasPriceBid, nativeArbitrumBridgeData.data ); emit SocketBridge( bridgeAmount, token, DESTINATION_CHAIN_ID, NativeArbitrumIdentifier, msg.sender, nativeArbitrumBridgeData.receiverAddress, nativeArbitrumBridgeData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via NativeArbitrum-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount being bridged * @param value value * @param maxGas maxGas is a depositParameter derived from erc20Bridger of nativeArbitrum * @param gasPriceBid gasPriceBid is a depositParameter derived from erc20Bridger of nativeArbitrum * @param receiverAddress address of receiver of bridged tokens * @param token address of token being bridged * @param gatewayAddress address of Gateway which handles the token bridging for the token, gatewayAddress is unique for each token * @param data data is a depositParameter derived from erc20Bridger of nativeArbitrum */ function bridgeERC20To( uint256 amount, uint256 value, uint256 maxGas, uint256 gasPriceBid, bytes32 metadata, address receiverAddress, address token, address gatewayAddress, bytes memory data ) external payable { ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); tokenInstance.safeApprove(gatewayAddress, amount); L1GatewayRouter(router).outboundTransfer{value: value}( token, receiverAddress, amount, maxGas, gasPriceBid, data ); emit SocketBridge( amount, token, DESTINATION_CHAIN_ID, NativeArbitrumIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {ISocketGateway} from "../interfaces/ISocketGateway.sol"; import {ISocketRoute} from "../interfaces/ISocketRoute.sol"; import {OnlySocketGatewayOwner, OnlySocketDeployer} from "../errors/SocketErrors.sol"; /** * @title Abstract Implementation Contract. * @notice All Bridge Implementation will follow this interface. */ abstract contract BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; /// @notice Address used to identify if it is a native token transfer or not address public immutable NATIVE_TOKEN_ADDRESS = address(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE); /// @notice immutable variable to store the socketGateway address address public immutable socketGateway; /// @notice immutable variable to store the socketGateway address address public immutable socketDeployFactory; /// @notice immutable variable with instance of SocketRoute to access route functions ISocketRoute public immutable socketRoute; /// @notice FunctionSelector used to delegatecall from swap to the function of bridge router implementation bytes4 public immutable BRIDGE_AFTER_SWAP_SELECTOR = bytes4(keccak256("bridgeAfterSwap(uint256,bytes)")); /**************************************** * EVENTS * ****************************************/ event SocketBridge( uint256 amount, address token, uint256 toChainId, bytes32 bridgeName, address sender, address receiver, bytes32 metadata ); /** * @notice Construct the base for all BridgeImplementations. * @param _socketGateway Socketgateway address, an immutable variable to set. * @param _socketDeployFactory Socket Deploy Factory address, an immutable variable to set. */ constructor(address _socketGateway, address _socketDeployFactory) { socketGateway = _socketGateway; socketDeployFactory = _socketDeployFactory; socketRoute = ISocketRoute(_socketGateway); } /**************************************** * MODIFIERS * ****************************************/ /// @notice Implementing contract needs to make use of the modifier where restricted access is to be used modifier isSocketGatewayOwner() { if (msg.sender != ISocketGateway(socketGateway).owner()) { revert OnlySocketGatewayOwner(); } _; } /// @notice Implementing contract needs to make use of the modifier where restricted access is to be used modifier isSocketDeployFactory() { if (msg.sender != socketDeployFactory) { revert OnlySocketDeployer(); } _; } /**************************************** * RESTRICTED FUNCTIONS * ****************************************/ /** * @notice function to rescue the ERC20 tokens in the bridge Implementation contract * @notice this is a function restricted to Owner of SocketGateway only * @param token address of ERC20 token being rescued * @param userAddress receipient address to which ERC20 tokens will be rescued to * @param amount amount of ERC20 tokens being rescued */ function rescueFunds( address token, address userAddress, uint256 amount ) external isSocketGatewayOwner { ERC20(token).safeTransfer(userAddress, amount); } /** * @notice function to rescue the native-balance in the bridge Implementation contract * @notice this is a function restricted to Owner of SocketGateway only * @param userAddress receipient address to which native-balance will be rescued to * @param amount amount of native balance tokens being rescued */ function rescueEther( address payable userAddress, uint256 amount ) external isSocketGatewayOwner { userAddress.transfer(amount); } function killme() external isSocketDeployFactory { selfdestruct(payable(msg.sender)); } /****************************** * VIRTUAL FUNCTIONS * *****************************/ /** * @notice function to bridge which is succeeding the swap function * @notice this function is to be used only when bridging as a succeeding step * @notice All bridge implementation contracts must implement this function * @notice bridge-implementations will have a bridge specific struct with properties used in bridging * @param bridgeData encoded value of properties in the bridgeData Struct */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable virtual; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "../../libraries/Pb.sol"; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import "./interfaces/cbridge.sol"; import "./interfaces/ICelerStorageWrapper.sol"; import {TransferIdExists, InvalidCelerRefund, CelerAlreadyRefunded, CelerRefundNotReady} from "../../errors/SocketErrors.sol"; import {BridgeImplBase} from "../BridgeImplBase.sol"; import {CBRIDGE} from "../../static/RouteIdentifiers.sol"; /** * @title Celer-Route Implementation * @notice Route implementation with functions to bridge ERC20 and Native via Celer-Bridge * Called via SocketGateway if the routeId in the request maps to the routeId of CelerImplementation * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract CelerImpl is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable CBridgeIdentifier = CBRIDGE; /// @notice Utility to perform operation on Buffer using Pb for Pb.Buffer; /// @notice Function-selector for ERC20-token bridging on Celer-Route /// @dev This function selector is to be used while building transaction-data to bridge ERC20 tokens bytes4 public immutable CELER_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(address,address,uint256,bytes32,uint64,uint64,uint32)" ) ); /// @notice Function-selector for Native bridging on Celer-Route /// @dev This function selector is to be used while building transaction-data to bridge Native tokens bytes4 public immutable CELER_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeNativeTo(address,uint256,bytes32,uint64,uint64,uint32)" ) ); bytes4 public immutable CELER_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(address,uint64,uint32,uint64,bytes32))" ) ); /// @notice router Contract instance used to deposit ERC20 and Native on to Celer-Bridge /// @dev contract instance is to be initialized in the constructor using the routerAddress passed as constructor argument ICBridge public immutable router; /// @notice celerStorageWrapper Contract instance used to store the transferId generated during ERC20 and Native bridge on to Celer-Bridge /// @dev contract instance is to be initialized in the constructor using the celerStorageWrapperAddress passed as constructor argument ICelerStorageWrapper public immutable celerStorageWrapper; /// @notice WETH token address address public immutable weth; /// @notice chainId used during generation of transferId generated while bridging ERC20 and Native on to Celer-Bridge /// @dev this is to be initialised in the constructor uint64 public immutable chainId; struct WithdrawMsg { uint64 chainid; // tag: 1 uint64 seqnum; // tag: 2 address receiver; // tag: 3 address token; // tag: 4 uint256 amount; // tag: 5 bytes32 refid; // tag: 6 } /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase /// @dev ensure routerAddress, weth-address, celerStorageWrapperAddress are set properly for the chainId in which the contract is being deployed constructor( address _routerAddress, address _weth, address _celerStorageWrapperAddress, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { router = ICBridge(_routerAddress); celerStorageWrapper = ICelerStorageWrapper(_celerStorageWrapperAddress); weth = _weth; chainId = uint64(block.chainid); } // Function to receive Ether. msg.data must be empty receive() external payable {} /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct CelerBridgeDataNoToken { address receiverAddress; uint64 toChainId; uint32 maxSlippage; uint64 nonce; bytes32 metadata; } struct CelerBridgeData { address token; address receiverAddress; uint64 toChainId; uint32 maxSlippage; uint64 nonce; bytes32 metadata; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in CelerBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for CelerBridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { CelerBridgeData memory celerBridgeData = abi.decode( bridgeData, (CelerBridgeData) ); if (celerBridgeData.token == NATIVE_TOKEN_ADDRESS) { // transferId is generated using the request-params and nonce of the account // transferId should be unique for each request and this is used while handling refund from celerBridge bytes32 transferId = keccak256( abi.encodePacked( address(this), celerBridgeData.receiverAddress, weth, amount, celerBridgeData.toChainId, celerBridgeData.nonce, chainId ) ); // transferId is stored in CelerStorageWrapper with in a mapping where key is transferId and value is the msg-sender celerStorageWrapper.setAddressForTransferId(transferId, msg.sender); router.sendNative{value: amount}( celerBridgeData.receiverAddress, amount, celerBridgeData.toChainId, celerBridgeData.nonce, celerBridgeData.maxSlippage ); } else { // transferId is generated using the request-params and nonce of the account // transferId should be unique for each request and this is used while handling refund from celerBridge bytes32 transferId = keccak256( abi.encodePacked( address(this), celerBridgeData.receiverAddress, celerBridgeData.token, amount, celerBridgeData.toChainId, celerBridgeData.nonce, chainId ) ); // transferId is stored in CelerStorageWrapper with in a mapping where key is transferId and value is the msg-sender celerStorageWrapper.setAddressForTransferId(transferId, msg.sender); router.send( celerBridgeData.receiverAddress, celerBridgeData.token, amount, celerBridgeData.toChainId, celerBridgeData.nonce, celerBridgeData.maxSlippage ); } emit SocketBridge( amount, celerBridgeData.token, celerBridgeData.toChainId, CBridgeIdentifier, msg.sender, celerBridgeData.receiverAddress, celerBridgeData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in CelerBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param celerBridgeData encoded data for CelerBridgeData */ function swapAndBridge( uint32 swapId, bytes calldata swapData, CelerBridgeDataNoToken calldata celerBridgeData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { // transferId is generated using the request-params and nonce of the account // transferId should be unique for each request and this is used while handling refund from celerBridge bytes32 transferId = keccak256( abi.encodePacked( address(this), celerBridgeData.receiverAddress, weth, bridgeAmount, celerBridgeData.toChainId, celerBridgeData.nonce, chainId ) ); // transferId is stored in CelerStorageWrapper with in a mapping where key is transferId and value is the msg-sender celerStorageWrapper.setAddressForTransferId(transferId, msg.sender); router.sendNative{value: bridgeAmount}( celerBridgeData.receiverAddress, bridgeAmount, celerBridgeData.toChainId, celerBridgeData.nonce, celerBridgeData.maxSlippage ); } else { // transferId is generated using the request-params and nonce of the account // transferId should be unique for each request and this is used while handling refund from celerBridge bytes32 transferId = keccak256( abi.encodePacked( address(this), celerBridgeData.receiverAddress, token, bridgeAmount, celerBridgeData.toChainId, celerBridgeData.nonce, chainId ) ); // transferId is stored in CelerStorageWrapper with in a mapping where key is transferId and value is the msg-sender celerStorageWrapper.setAddressForTransferId(transferId, msg.sender); router.send( celerBridgeData.receiverAddress, token, bridgeAmount, celerBridgeData.toChainId, celerBridgeData.nonce, celerBridgeData.maxSlippage ); } emit SocketBridge( bridgeAmount, token, celerBridgeData.toChainId, CBridgeIdentifier, msg.sender, celerBridgeData.receiverAddress, celerBridgeData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Celer-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress address of recipient * @param token address of token being bridged * @param amount amount of token for bridging * @param toChainId destination ChainId * @param nonce nonce of the sender-account address * @param maxSlippage maximum Slippage for the bridging */ function bridgeERC20To( address receiverAddress, address token, uint256 amount, bytes32 metadata, uint64 toChainId, uint64 nonce, uint32 maxSlippage ) external payable { /// @notice transferId is generated using the request-params and nonce of the account /// @notice transferId should be unique for each request and this is used while handling refund from celerBridge bytes32 transferId = keccak256( abi.encodePacked( address(this), receiverAddress, token, amount, toChainId, nonce, chainId ) ); /// @notice stored in the CelerStorageWrapper contract celerStorageWrapper.setAddressForTransferId(transferId, msg.sender); ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); router.send( receiverAddress, token, amount, toChainId, nonce, maxSlippage ); emit SocketBridge( amount, token, toChainId, CBridgeIdentifier, msg.sender, receiverAddress, metadata ); } /** * @notice function to handle Native bridging to receipent via Celer-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress address of recipient * @param amount amount of token for bridging * @param toChainId destination ChainId * @param nonce nonce of the sender-account address * @param maxSlippage maximum Slippage for the bridging */ function bridgeNativeTo( address receiverAddress, uint256 amount, bytes32 metadata, uint64 toChainId, uint64 nonce, uint32 maxSlippage ) external payable { bytes32 transferId = keccak256( abi.encodePacked( address(this), receiverAddress, weth, amount, toChainId, nonce, chainId ) ); celerStorageWrapper.setAddressForTransferId(transferId, msg.sender); router.sendNative{value: amount}( receiverAddress, amount, toChainId, nonce, maxSlippage ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, toChainId, CBridgeIdentifier, msg.sender, receiverAddress, metadata ); } /** * @notice function to handle refund from CelerBridge-Router * @param _request request data generated offchain using the celer-SDK * @param _sigs generated offchain using the celer-SDK * @param _signers generated offchain using the celer-SDK * @param _powers generated offchain using the celer-SDK */ function refundCelerUser( bytes calldata _request, bytes[] calldata _sigs, address[] calldata _signers, uint256[] calldata _powers ) external payable { WithdrawMsg memory request = decWithdrawMsg(_request); bytes32 transferId = keccak256( abi.encodePacked( request.chainid, request.seqnum, request.receiver, request.token, request.amount ) ); uint256 _initialNativeBalance = address(this).balance; uint256 _initialTokenBalance = ERC20(request.token).balanceOf( address(this) ); if (!router.withdraws(transferId)) { router.withdraw(_request, _sigs, _signers, _powers); } if (request.receiver != socketGateway) { revert InvalidCelerRefund(); } address _receiver = celerStorageWrapper.getAddressFromTransferId( request.refid ); celerStorageWrapper.deleteTransferId(request.refid); if (_receiver == address(0)) { revert CelerAlreadyRefunded(); } uint256 _nativeBalanceAfter = address(this).balance; uint256 _tokenBalanceAfter = ERC20(request.token).balanceOf( address(this) ); if (_nativeBalanceAfter > _initialNativeBalance) { if ((_nativeBalanceAfter - _initialNativeBalance) != request.amount) revert CelerRefundNotReady(); payable(_receiver).transfer(request.amount); return; } if (_tokenBalanceAfter > _initialTokenBalance) { if ((_tokenBalanceAfter - _initialTokenBalance) != request.amount) revert CelerRefundNotReady(); ERC20(request.token).safeTransfer(_receiver, request.amount); return; } revert CelerRefundNotReady(); } function decWithdrawMsg( bytes memory raw ) internal pure returns (WithdrawMsg memory m) { Pb.Buffer memory buf = Pb.fromBytes(raw); uint256 tag; Pb.WireType wire; while (buf.hasMore()) { (tag, wire) = buf.decKey(); if (false) {} // solidity has no switch/case else if (tag == 1) { m.chainid = uint64(buf.decVarint()); } else if (tag == 2) { m.seqnum = uint64(buf.decVarint()); } else if (tag == 3) { m.receiver = Pb._address(buf.decBytes()); } else if (tag == 4) { m.token = Pb._address(buf.decBytes()); } else if (tag == 5) { m.amount = Pb._uint256(buf.decBytes()); } else if (tag == 6) { m.refid = Pb._bytes32(buf.decBytes()); } else { buf.skipValue(wire); } // skip value of unknown tag } } // end decoder WithdrawMsg } // SPDX-License-Identifier: Apache-2.0 pragma solidity >=0.8.0; import {OnlySocketGateway, TransferIdExists, TransferIdDoesnotExist} from "../../errors/SocketErrors.sol"; /** * @title CelerStorageWrapper * @notice handle storageMappings used while bridging ERC20 and native on CelerBridge * @dev all functions ehich mutate the storage are restricted to Owner of SocketGateway * @author Socket dot tech. */ contract CelerStorageWrapper { /// @notice Socketgateway-address to be set in the constructor of CelerStorageWrapper address public immutable socketGateway; /// @notice mapping to store the transferId generated during bridging on Celer to message-sender mapping(bytes32 => address) private transferIdMapping; /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase constructor(address _socketGateway) { socketGateway = _socketGateway; } /** * @notice function to store the transferId and message-sender of a bridging activity * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in CelerBridgeData struct * @param transferId transferId generated during the bridging of ERC20 or native on CelerBridge * @param transferIdAddress message sender who is making the bridging on CelerBridge */ function setAddressForTransferId( bytes32 transferId, address transferIdAddress ) external { if (msg.sender != socketGateway) { revert OnlySocketGateway(); } if (transferIdMapping[transferId] != address(0)) { revert TransferIdExists(); } transferIdMapping[transferId] = transferIdAddress; } /** * @notice function to delete the transferId when the celer bridge processes a refund. * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in CelerBridgeData struct * @param transferId transferId generated during the bridging of ERC20 or native on CelerBridge */ function deleteTransferId(bytes32 transferId) external { if (msg.sender != socketGateway) { revert OnlySocketGateway(); } if (transferIdMapping[transferId] == address(0)) { revert TransferIdDoesnotExist(); } delete transferIdMapping[transferId]; } /** * @notice function to lookup the address mapped to the transferId * @param transferId transferId generated during the bridging of ERC20 or native on CelerBridge * @return address of account mapped to transferId */ function getAddressFromTransferId( bytes32 transferId ) external view returns (address) { return transferIdMapping[transferId]; } } // SPDX-License-Identifier: Apache-2.0 pragma solidity >=0.8.0; interface ICBridge { function send( address _receiver, address _token, uint256 _amount, uint64 _dstChinId, uint64 _nonce, uint32 _maxSlippage ) external; function sendNative( address _receiver, uint256 _amount, uint64 _dstChinId, uint64 _nonce, uint32 _maxSlippage ) external payable; function withdraws(bytes32 withdrawId) external view returns (bool); function withdraw( bytes calldata _wdmsg, bytes[] calldata _sigs, address[] calldata _signers, uint256[] calldata _powers ) external; } // SPDX-License-Identifier: Apache-2.0 pragma solidity >=0.8.0; /** * @title Celer-StorageWrapper interface * @notice Interface to handle storageMappings used while bridging ERC20 and native on CelerBridge * @dev all functions ehich mutate the storage are restricted to Owner of SocketGateway * @author Socket dot tech. */ interface ICelerStorageWrapper { /** * @notice function to store the transferId and message-sender of a bridging activity * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in CelerBridgeData struct * @param transferId transferId generated during the bridging of ERC20 or native on CelerBridge * @param transferIdAddress message sender who is making the bridging on CelerBridge */ function setAddressForTransferId( bytes32 transferId, address transferIdAddress ) external; /** * @notice function to store the transferId and message-sender of a bridging activity * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in CelerBridgeData struct * @param transferId transferId generated during the bridging of ERC20 or native on CelerBridge */ function deleteTransferId(bytes32 transferId) external; /** * @notice function to lookup the address mapped to the transferId * @param transferId transferId generated during the bridging of ERC20 or native on CelerBridge * @return address of account mapped to transferId */ function getAddressFromTransferId( bytes32 transferId ) external view returns (address); } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; /** * @title HopAMM * @notice Interface to handle the token bridging to L2 chains. */ interface HopAMM { /** * @notice To send funds L2->L1 or L2->L2, call the swapAndSend on the L2 AMM Wrapper contract * @param chainId chainId of the L2 contract * @param recipient receiver address * @param amount amount is the amount the user wants to send plus the Bonder fee * @param bonderFee fees * @param amountOutMin minimum amount * @param deadline deadline for bridging * @param destinationAmountOutMin minimum amount expected to be bridged on L2 * @param destinationDeadline destination time before which token is to be bridged on L2 */ function swapAndSend( uint256 chainId, address recipient, uint256 amount, uint256 bonderFee, uint256 amountOutMin, uint256 deadline, uint256 destinationAmountOutMin, uint256 destinationDeadline ) external payable; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /** * @title L1Bridge Hop Interface * @notice L1 Hop Bridge, Used to transfer from L1 to L2s. */ interface IHopL1Bridge { /** * @notice `amountOutMin` and `deadline` should be 0 when no swap is intended at the destination. * @notice `amount` is the total amount the user wants to send including the relayer fee * @dev Send tokens to a supported layer-2 to mint hToken and optionally swap the hToken in the * AMM at the destination. * @param chainId The chainId of the destination chain * @param recipient The address receiving funds at the destination * @param amount The amount being sent * @param amountOutMin The minimum amount received after attempting to swap in the destination * AMM market. 0 if no swap is intended. * @param deadline The deadline for swapping in the destination AMM market. 0 if no * swap is intended. * @param relayer The address of the relayer at the destination. * @param relayerFee The amount distributed to the relayer at the destination. This is subtracted from the `amount`. */ function sendToL2( uint256 chainId, address recipient, uint256 amount, uint256 amountOutMin, uint256 deadline, address relayer, uint256 relayerFee ) external payable; } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import "../interfaces/IHopL1Bridge.sol"; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {BridgeImplBase} from "../../BridgeImplBase.sol"; import {HOP} from "../../../static/RouteIdentifiers.sol"; /** * @title Hop-L1 Route Implementation * @notice Route implementation with functions to bridge ERC20 and Native via Hop-Bridge from L1 to Supported L2s * Called via SocketGateway if the routeId in the request maps to the routeId of HopImplementation * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract HopImplL1 is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable HopIdentifier = HOP; /// @notice Function-selector for ERC20-token bridging on Hop-L1-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable HOP_L1_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(address,address,address,address,uint256,uint256,uint256,uint256,(uint256,bytes32))" ) ); /// @notice Function-selector for Native bridging on Hop-L1-Route /// @dev This function selector is to be used while building transaction-data to bridge Native tokens bytes4 public immutable HOP_L1_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeNativeTo(address,address,address,uint256,uint256,uint256,uint256,uint256,bytes32)" ) ); bytes4 public immutable HOP_L1_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(address,address,address,uint256,uint256,uint256,uint256,bytes32))" ) ); /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase constructor( address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) {} /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct HopDataNoToken { // The address receiving funds at the destination address receiverAddress; // address of the Hop-L1-Bridge to handle bridging the tokens address l1bridgeAddr; // relayerFee The amount distributed to the relayer at the destination. This is subtracted from the `_amount`. address relayer; // The chainId of the destination chain uint256 toChainId; // The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. uint256 amountOutMin; // The amount distributed to the relayer at the destination. This is subtracted from the `amount`. uint256 relayerFee; // The deadline for swapping in the destination AMM market. 0 if no swap is intended. uint256 deadline; // socket offchain created hash bytes32 metadata; } struct HopData { /// @notice address of token being bridged address token; // The address receiving funds at the destination address receiverAddress; // address of the Hop-L1-Bridge to handle bridging the tokens address l1bridgeAddr; // relayerFee The amount distributed to the relayer at the destination. This is subtracted from the `_amount`. address relayer; // The chainId of the destination chain uint256 toChainId; // The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. uint256 amountOutMin; // The amount distributed to the relayer at the destination. This is subtracted from the `amount`. uint256 relayerFee; // The deadline for swapping in the destination AMM market. 0 if no swap is intended. uint256 deadline; // socket offchain created hash bytes32 metadata; } struct HopERC20Data { uint256 deadline; bytes32 metadata; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in HopBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for Hop-L1-Bridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { HopData memory hopData = abi.decode(bridgeData, (HopData)); if (hopData.token == NATIVE_TOKEN_ADDRESS) { IHopL1Bridge(hopData.l1bridgeAddr).sendToL2{value: amount}( hopData.toChainId, hopData.receiverAddress, amount, hopData.amountOutMin, hopData.deadline, hopData.relayer, hopData.relayerFee ); } else { ERC20(hopData.token).safeApprove(hopData.l1bridgeAddr, amount); // perform bridging IHopL1Bridge(hopData.l1bridgeAddr).sendToL2( hopData.toChainId, hopData.receiverAddress, amount, hopData.amountOutMin, hopData.deadline, hopData.relayer, hopData.relayerFee ); } emit SocketBridge( amount, hopData.token, hopData.toChainId, HopIdentifier, msg.sender, hopData.receiverAddress, hopData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in HopBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param hopData encoded data for HopData */ function swapAndBridge( uint32 swapId, bytes calldata swapData, HopDataNoToken calldata hopData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { IHopL1Bridge(hopData.l1bridgeAddr).sendToL2{value: bridgeAmount}( hopData.toChainId, hopData.receiverAddress, bridgeAmount, hopData.amountOutMin, hopData.deadline, hopData.relayer, hopData.relayerFee ); } else { ERC20(token).safeApprove(hopData.l1bridgeAddr, bridgeAmount); // perform bridging IHopL1Bridge(hopData.l1bridgeAddr).sendToL2( hopData.toChainId, hopData.receiverAddress, bridgeAmount, hopData.amountOutMin, hopData.deadline, hopData.relayer, hopData.relayerFee ); } emit SocketBridge( bridgeAmount, token, hopData.toChainId, HopIdentifier, msg.sender, hopData.receiverAddress, hopData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Hop-L1-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress The address receiving funds at the destination * @param token token being bridged * @param l1bridgeAddr address of the Hop-L1-Bridge to handle bridging the tokens * @param relayer The amount distributed to the relayer at the destination. This is subtracted from the `_amount`. * @param toChainId The chainId of the destination chain * @param amount The amount being sent * @param amountOutMin The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. * @param relayerFee The amount distributed to the relayer at the destination. This is subtracted from the `amount`. * @param hopData extra data needed to build the tx */ function bridgeERC20To( address receiverAddress, address token, address l1bridgeAddr, address relayer, uint256 toChainId, uint256 amount, uint256 amountOutMin, uint256 relayerFee, HopERC20Data calldata hopData ) external payable { ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); tokenInstance.safeApprove(l1bridgeAddr, amount); // perform bridging IHopL1Bridge(l1bridgeAddr).sendToL2( toChainId, receiverAddress, amount, amountOutMin, hopData.deadline, relayer, relayerFee ); emit SocketBridge( amount, token, toChainId, HopIdentifier, msg.sender, receiverAddress, hopData.metadata ); } /** * @notice function to handle Native bridging to receipent via Hop-L1-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress The address receiving funds at the destination * @param l1bridgeAddr address of the Hop-L1-Bridge to handle bridging the tokens * @param relayer The amount distributed to the relayer at the destination. This is subtracted from the `_amount`. * @param toChainId The chainId of the destination chain * @param amount The amount being sent * @param amountOutMin The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. * @param relayerFee The amount distributed to the relayer at the destination. This is subtracted from the `amount`. * @param deadline The deadline for swapping in the destination AMM market. 0 if no swap is intended. */ function bridgeNativeTo( address receiverAddress, address l1bridgeAddr, address relayer, uint256 toChainId, uint256 amount, uint256 amountOutMin, uint256 relayerFee, uint256 deadline, bytes32 metadata ) external payable { IHopL1Bridge(l1bridgeAddr).sendToL2{value: amount}( toChainId, receiverAddress, amount, amountOutMin, deadline, relayer, relayerFee ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, toChainId, HopIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "../interfaces/amm.sol"; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {BridgeImplBase} from "../../BridgeImplBase.sol"; import {HOP} from "../../../static/RouteIdentifiers.sol"; /** * @title Hop-L2 Route Implementation * @notice This is the L2 implementation, so this is used when transferring from l2 to supported l2s * Called via SocketGateway if the routeId in the request maps to the routeId of HopL2-Implementation * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract HopImplL2 is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable HopIdentifier = HOP; /// @notice Function-selector for ERC20-token bridging on Hop-L2-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable HOP_L2_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(address,address,address,uint256,uint256,(uint256,uint256,uint256,uint256,uint256,bytes32))" ) ); /// @notice Function-selector for Native bridging on Hop-L2-Route /// @dev This function selector is to be used while building transaction-data to bridge Native tokens bytes4 public immutable HOP_L2_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeNativeTo(address,address,uint256,uint256,uint256,uint256,uint256,uint256,uint256,bytes32)" ) ); bytes4 public immutable HOP_L2_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(address,address,uint256,uint256,uint256,uint256,uint256,uint256,bytes32))" ) ); /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase constructor( address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) {} /// @notice Struct to be used as a input parameter for Bridging tokens via Hop-L2-route /// @dev while building transactionData,values should be set in this sequence of properties in this struct struct HopBridgeRequestData { // fees passed to relayer uint256 bonderFee; // The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. uint256 amountOutMin; // The deadline for swapping in the destination AMM market. 0 if no swap is intended. uint256 deadline; // Minimum amount expected to be received or bridged to destination uint256 amountOutMinDestination; // deadline for bridging to destination uint256 deadlineDestination; // socket offchain created hash bytes32 metadata; } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct HopBridgeDataNoToken { // The address receiving funds at the destination address receiverAddress; // AMM address of Hop on L2 address hopAMM; // The chainId of the destination chain uint256 toChainId; // fees passed to relayer uint256 bonderFee; // The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. uint256 amountOutMin; // The deadline for swapping in the destination AMM market. 0 if no swap is intended. uint256 deadline; // Minimum amount expected to be received or bridged to destination uint256 amountOutMinDestination; // deadline for bridging to destination uint256 deadlineDestination; // socket offchain created hash bytes32 metadata; } struct HopBridgeData { /// @notice address of token being bridged address token; // The address receiving funds at the destination address receiverAddress; // AMM address of Hop on L2 address hopAMM; // The chainId of the destination chain uint256 toChainId; // fees passed to relayer uint256 bonderFee; // The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. uint256 amountOutMin; // The deadline for swapping in the destination AMM market. 0 if no swap is intended. uint256 deadline; // Minimum amount expected to be received or bridged to destination uint256 amountOutMinDestination; // deadline for bridging to destination uint256 deadlineDestination; // socket offchain created hash bytes32 metadata; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in HopBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for Hop-L2-Bridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { HopBridgeData memory hopData = abi.decode(bridgeData, (HopBridgeData)); if (hopData.token == NATIVE_TOKEN_ADDRESS) { HopAMM(hopData.hopAMM).swapAndSend{value: amount}( hopData.toChainId, hopData.receiverAddress, amount, hopData.bonderFee, hopData.amountOutMin, hopData.deadline, hopData.amountOutMinDestination, hopData.deadlineDestination ); } else { // perform bridging HopAMM(hopData.hopAMM).swapAndSend( hopData.toChainId, hopData.receiverAddress, amount, hopData.bonderFee, hopData.amountOutMin, hopData.deadline, hopData.amountOutMinDestination, hopData.deadlineDestination ); } emit SocketBridge( amount, hopData.token, hopData.toChainId, HopIdentifier, msg.sender, hopData.receiverAddress, hopData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in HopBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param hopData encoded data for HopData */ function swapAndBridge( uint32 swapId, bytes calldata swapData, HopBridgeDataNoToken calldata hopData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { HopAMM(hopData.hopAMM).swapAndSend{value: bridgeAmount}( hopData.toChainId, hopData.receiverAddress, bridgeAmount, hopData.bonderFee, hopData.amountOutMin, hopData.deadline, hopData.amountOutMinDestination, hopData.deadlineDestination ); } else { // perform bridging HopAMM(hopData.hopAMM).swapAndSend( hopData.toChainId, hopData.receiverAddress, bridgeAmount, hopData.bonderFee, hopData.amountOutMin, hopData.deadline, hopData.amountOutMinDestination, hopData.deadlineDestination ); } emit SocketBridge( bridgeAmount, token, hopData.toChainId, HopIdentifier, msg.sender, hopData.receiverAddress, hopData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Hop-L2-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress The address receiving funds at the destination * @param token token being bridged * @param hopAMM AMM address of Hop on L2 * @param amount The amount being bridged * @param toChainId The chainId of the destination chain * @param hopBridgeRequestData extraData for Bridging across Hop-L2 */ function bridgeERC20To( address receiverAddress, address token, address hopAMM, uint256 amount, uint256 toChainId, HopBridgeRequestData calldata hopBridgeRequestData ) external payable { ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); HopAMM(hopAMM).swapAndSend( toChainId, receiverAddress, amount, hopBridgeRequestData.bonderFee, hopBridgeRequestData.amountOutMin, hopBridgeRequestData.deadline, hopBridgeRequestData.amountOutMinDestination, hopBridgeRequestData.deadlineDestination ); emit SocketBridge( amount, token, toChainId, HopIdentifier, msg.sender, receiverAddress, hopBridgeRequestData.metadata ); } /** * @notice function to handle Native bridging to receipent via Hop-L2-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress The address receiving funds at the destination * @param hopAMM AMM address of Hop on L2 * @param amount The amount being bridged * @param toChainId The chainId of the destination chain * @param bonderFee fees passed to relayer * @param amountOutMin The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. * @param deadline The deadline for swapping in the destination AMM market. 0 if no swap is intended. * @param amountOutMinDestination Minimum amount expected to be received or bridged to destination * @param deadlineDestination deadline for bridging to destination */ function bridgeNativeTo( address receiverAddress, address hopAMM, uint256 amount, uint256 toChainId, uint256 bonderFee, uint256 amountOutMin, uint256 deadline, uint256 amountOutMinDestination, uint256 deadlineDestination, bytes32 metadata ) external payable { // token address might not be indication thats why passed through extraData // perform bridging HopAMM(hopAMM).swapAndSend{value: amount}( toChainId, receiverAddress, amount, bonderFee, amountOutMin, deadline, amountOutMinDestination, deadlineDestination ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, toChainId, HopIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "./interfaces/hyphen.sol"; import "../BridgeImplBase.sol"; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {HYPHEN} from "../../static/RouteIdentifiers.sol"; /** * @title Hyphen-Route Implementation * @notice Route implementation with functions to bridge ERC20 and Native via Hyphen-Bridge * Called via SocketGateway if the routeId in the request maps to the routeId of HyphenImplementation * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract HyphenImpl is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable HyphenIdentifier = HYPHEN; /// @notice Function-selector for ERC20-token bridging on Hyphen-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable HYPHEN_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256("bridgeERC20To(uint256,bytes32,address,address,uint256)") ); /// @notice Function-selector for Native bridging on Hyphen-Route /// @dev This function selector is to be used while buidling transaction-data to bridge Native tokens bytes4 public immutable HYPHEN_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4(keccak256("bridgeNativeTo(uint256,bytes32,address,uint256)")); bytes4 public immutable HYPHEN_SWAP_BRIDGE_SELECTOR = bytes4( keccak256("swapAndBridge(uint32,bytes,(address,uint256,bytes32))") ); /// @notice liquidityPoolManager - liquidityPool Manager of Hyphen used to bridge ERC20 and native /// @dev this is to be initialized in constructor with a valid deployed address of hyphen-liquidityPoolManager HyphenLiquidityPoolManager public immutable liquidityPoolManager; /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase /// @dev ensure liquidityPoolManager-address are set properly for the chainId in which the contract is being deployed constructor( address _liquidityPoolManager, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { liquidityPoolManager = HyphenLiquidityPoolManager( _liquidityPoolManager ); } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct HyphenData { /// @notice address of token being bridged address token; /// @notice address of receiver address receiverAddress; /// @notice chainId of destination uint256 toChainId; /// @notice socket offchain created hash bytes32 metadata; } struct HyphenDataNoToken { /// @notice address of receiver address receiverAddress; /// @notice chainId of destination uint256 toChainId; /// @notice chainId of destination bytes32 metadata; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in HyphenBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for HyphenBridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { HyphenData memory hyphenData = abi.decode(bridgeData, (HyphenData)); if (hyphenData.token == NATIVE_TOKEN_ADDRESS) { liquidityPoolManager.depositNative{value: amount}( hyphenData.receiverAddress, hyphenData.toChainId, "SOCKET" ); } else { ERC20(hyphenData.token).safeApprove( address(liquidityPoolManager), amount ); liquidityPoolManager.depositErc20( hyphenData.toChainId, hyphenData.token, hyphenData.receiverAddress, amount, "SOCKET" ); } emit SocketBridge( amount, hyphenData.token, hyphenData.toChainId, HyphenIdentifier, msg.sender, hyphenData.receiverAddress, hyphenData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in HyphenBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param hyphenData encoded data for hyphenData */ function swapAndBridge( uint32 swapId, bytes calldata swapData, HyphenDataNoToken calldata hyphenData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { liquidityPoolManager.depositNative{value: bridgeAmount}( hyphenData.receiverAddress, hyphenData.toChainId, "SOCKET" ); } else { ERC20(token).safeApprove( address(liquidityPoolManager), bridgeAmount ); liquidityPoolManager.depositErc20( hyphenData.toChainId, token, hyphenData.receiverAddress, bridgeAmount, "SOCKET" ); } emit SocketBridge( bridgeAmount, token, hyphenData.toChainId, HyphenIdentifier, msg.sender, hyphenData.receiverAddress, hyphenData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Hyphen-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount to be sent * @param receiverAddress address of the token to bridged to the destination chain. * @param token address of token being bridged * @param toChainId chainId of destination */ function bridgeERC20To( uint256 amount, bytes32 metadata, address receiverAddress, address token, uint256 toChainId ) external payable { ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); tokenInstance.safeApprove(address(liquidityPoolManager), amount); liquidityPoolManager.depositErc20( toChainId, token, receiverAddress, amount, "SOCKET" ); emit SocketBridge( amount, token, toChainId, HyphenIdentifier, msg.sender, receiverAddress, metadata ); } /** * @notice function to handle Native bridging to receipent via Hyphen-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount to be sent * @param receiverAddress address of the token to bridged to the destination chain. * @param toChainId chainId of destination */ function bridgeNativeTo( uint256 amount, bytes32 metadata, address receiverAddress, uint256 toChainId ) external payable { liquidityPoolManager.depositNative{value: amount}( receiverAddress, toChainId, "SOCKET" ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, toChainId, HyphenIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: Apache-2.0 pragma solidity >=0.8.0; /** * @title HyphenLiquidityPoolManager * @notice interface with functions to bridge ERC20 and Native via Hyphen-Bridge * @author Socket dot tech. */ interface HyphenLiquidityPoolManager { /** * @dev Function used to deposit tokens into pool to initiate a cross chain token transfer. * @param toChainId Chain id where funds needs to be transfered * @param tokenAddress ERC20 Token address that needs to be transfered * @param receiver Address on toChainId where tokens needs to be transfered * @param amount Amount of token being transfered */ function depositErc20( uint256 toChainId, address tokenAddress, address receiver, uint256 amount, string calldata tag ) external; /** * @dev Function used to deposit native token into pool to initiate a cross chain token transfer. * @param receiver Address on toChainId where tokens needs to be transfered * @param toChainId Chain id where funds needs to be transfered */ function depositNative( address receiver, uint256 toChainId, string calldata tag ) external payable; } // SPDX-License-Identifier: Apache-2.0 pragma solidity >=0.8.0; interface L1StandardBridge { /** * @dev Performs the logic for deposits by storing the ETH and informing the L2 ETH Gateway of * the deposit. * @param _to Account to give the deposit to on L2. * @param _l2Gas Gas limit required to complete the deposit on L2. * @param _data Optional data to forward to L2. This data is provided * solely as a convenience for external contracts. Aside from enforcing a maximum * length, these contracts provide no guarantees about its content. */ function depositETHTo( address _to, uint32 _l2Gas, bytes calldata _data ) external payable; /** * @dev deposit an amount of ERC20 to a recipient's balance on L2. * @param _l1Token Address of the L1 ERC20 we are depositing * @param _l2Token Address of the L1 respective L2 ERC20 * @param _to L2 address to credit the withdrawal to. * @param _amount Amount of the ERC20 to deposit. * @param _l2Gas Gas limit required to complete the deposit on L2. * @param _data Optional data to forward to L2. This data is provided * solely as a convenience for external contracts. Aside from enforcing a maximum * length, these contracts provide no guarantees about its content. */ function depositERC20To( address _l1Token, address _l2Token, address _to, uint256 _amount, uint32 _l2Gas, bytes calldata _data ) external; } interface OldL1TokenGateway { /** * @dev Transfer SNX to L2 First, moves the SNX into the deposit escrow * * @param _to Account to give the deposit to on L2 * @param _amount Amount of the ERC20 to deposit. */ function depositTo(address _to, uint256 _amount) external; /** * @dev Transfer SNX to L2 First, moves the SNX into the deposit escrow * * @param currencyKey currencyKey for the SynthToken * @param destination Account to give the deposit to on L2 * @param amount Amount of the ERC20 to deposit. */ function initiateSynthTransfer( bytes32 currencyKey, address destination, uint256 amount ) external; } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import "../interfaces/optimism.sol"; import {BridgeImplBase} from "../../BridgeImplBase.sol"; import {UnsupportedInterfaceId} from "../../../errors/SocketErrors.sol"; import {NATIVE_OPTIMISM} from "../../../static/RouteIdentifiers.sol"; /** * @title NativeOptimism-Route Implementation * @notice Route implementation with functions to bridge ERC20 and Native via NativeOptimism-Bridge * Tokens are bridged from Ethereum to Optimism Chain. * Called via SocketGateway if the routeId in the request maps to the routeId of NativeOptimism-Implementation * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract NativeOptimismImpl is BridgeImplBase { using SafeTransferLib for ERC20; bytes32 public immutable NativeOptimismIdentifier = NATIVE_OPTIMISM; uint256 public constant DESTINATION_CHAIN_ID = 10; /// @notice Function-selector for ERC20-token bridging on Native-Optimism-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable NATIVE_OPTIMISM_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(address,address,address,uint32,(bytes32,bytes32),uint256,uint256,address,bytes)" ) ); /// @notice Function-selector for Native bridging on Native-Optimism-Route /// @dev This function selector is to be used while buidling transaction-data to bridge Native balance bytes4 public immutable NATIVE_OPTIMISM_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeNativeTo(address,address,uint32,uint256,bytes32,bytes)" ) ); bytes4 public immutable NATIVE_OPTIMISM_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(uint256,bytes32,bytes32,address,address,uint32,address,bytes))" ) ); /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase constructor( address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) {} /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct OptimismBridgeDataNoToken { // interfaceId to be set offchain which is used to select one of the 3 kinds of bridging (standard bridge / old standard / synthetic) uint256 interfaceId; // currencyKey of the token beingBridged bytes32 currencyKey; // socket offchain created hash bytes32 metadata; // address of receiver of bridged tokens address receiverAddress; /** * OptimismBridge that Performs the logic for deposits by informing the L2 Deposited Token * contract of the deposit and calling a handler to lock the L1 funds. (e.g. transferFrom) */ address customBridgeAddress; // Gas limit required to complete the deposit on L2. uint32 l2Gas; // Address of the L1 respective L2 ERC20 address l2Token; // additional data , for ll contracts this will be 0x data or empty data bytes data; } struct OptimismBridgeData { // interfaceId to be set offchain which is used to select one of the 3 kinds of bridging (standard bridge / old standard / synthetic) uint256 interfaceId; // currencyKey of the token beingBridged bytes32 currencyKey; // socket offchain created hash bytes32 metadata; // address of receiver of bridged tokens address receiverAddress; /** * OptimismBridge that Performs the logic for deposits by informing the L2 Deposited Token * contract of the deposit and calling a handler to lock the L1 funds. (e.g. transferFrom) */ address customBridgeAddress; /// @notice address of token being bridged address token; // Gas limit required to complete the deposit on L2. uint32 l2Gas; // Address of the L1 respective L2 ERC20 address l2Token; // additional data , for ll contracts this will be 0x data or empty data bytes data; } struct OptimismERC20Data { bytes32 currencyKey; bytes32 metadata; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in OptimismBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for Optimism-Bridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { OptimismBridgeData memory optimismBridgeData = abi.decode( bridgeData, (OptimismBridgeData) ); emit SocketBridge( amount, optimismBridgeData.token, DESTINATION_CHAIN_ID, NativeOptimismIdentifier, msg.sender, optimismBridgeData.receiverAddress, optimismBridgeData.metadata ); if (optimismBridgeData.token == NATIVE_TOKEN_ADDRESS) { L1StandardBridge(optimismBridgeData.customBridgeAddress) .depositETHTo{value: amount}( optimismBridgeData.receiverAddress, optimismBridgeData.l2Gas, optimismBridgeData.data ); } else { if (optimismBridgeData.interfaceId == 0) { revert UnsupportedInterfaceId(); } ERC20(optimismBridgeData.token).safeApprove( optimismBridgeData.customBridgeAddress, amount ); if (optimismBridgeData.interfaceId == 1) { // deposit into standard bridge L1StandardBridge(optimismBridgeData.customBridgeAddress) .depositERC20To( optimismBridgeData.token, optimismBridgeData.l2Token, optimismBridgeData.receiverAddress, amount, optimismBridgeData.l2Gas, optimismBridgeData.data ); return; } // Deposit Using Old Standard - iOVM_L1TokenGateway(Example - SNX Token) if (optimismBridgeData.interfaceId == 2) { OldL1TokenGateway(optimismBridgeData.customBridgeAddress) .depositTo(optimismBridgeData.receiverAddress, amount); return; } if (optimismBridgeData.interfaceId == 3) { OldL1TokenGateway(optimismBridgeData.customBridgeAddress) .initiateSynthTransfer( optimismBridgeData.currencyKey, optimismBridgeData.receiverAddress, amount ); return; } } } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in OptimismBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param optimismBridgeData encoded data for OptimismBridgeData */ function swapAndBridge( uint32 swapId, bytes calldata swapData, OptimismBridgeDataNoToken calldata optimismBridgeData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); emit SocketBridge( bridgeAmount, token, DESTINATION_CHAIN_ID, NativeOptimismIdentifier, msg.sender, optimismBridgeData.receiverAddress, optimismBridgeData.metadata ); if (token == NATIVE_TOKEN_ADDRESS) { L1StandardBridge(optimismBridgeData.customBridgeAddress) .depositETHTo{value: bridgeAmount}( optimismBridgeData.receiverAddress, optimismBridgeData.l2Gas, optimismBridgeData.data ); } else { if (optimismBridgeData.interfaceId == 0) { revert UnsupportedInterfaceId(); } ERC20(token).safeApprove( optimismBridgeData.customBridgeAddress, bridgeAmount ); if (optimismBridgeData.interfaceId == 1) { // deposit into standard bridge L1StandardBridge(optimismBridgeData.customBridgeAddress) .depositERC20To( token, optimismBridgeData.l2Token, optimismBridgeData.receiverAddress, bridgeAmount, optimismBridgeData.l2Gas, optimismBridgeData.data ); return; } // Deposit Using Old Standard - iOVM_L1TokenGateway(Example - SNX Token) if (optimismBridgeData.interfaceId == 2) { OldL1TokenGateway(optimismBridgeData.customBridgeAddress) .depositTo( optimismBridgeData.receiverAddress, bridgeAmount ); return; } if (optimismBridgeData.interfaceId == 3) { OldL1TokenGateway(optimismBridgeData.customBridgeAddress) .initiateSynthTransfer( optimismBridgeData.currencyKey, optimismBridgeData.receiverAddress, bridgeAmount ); return; } } } /** * @notice function to handle ERC20 bridging to receipent via NativeOptimism-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param token address of token being bridged * @param receiverAddress address of receiver of bridged tokens * @param customBridgeAddress OptimismBridge that Performs the logic for deposits by informing the L2 Deposited Token * contract of the deposit and calling a handler to lock the L1 funds. (e.g. transferFrom) * @param l2Gas Gas limit required to complete the deposit on L2. * @param optimismData extra data needed for optimism bridge * @param amount amount being bridged * @param interfaceId interfaceId to be set offchain which is used to select one of the 3 kinds of bridging (standard bridge / old standard / synthetic) * @param l2Token Address of the L1 respective L2 ERC20 * @param data additional data , for ll contracts this will be 0x data or empty data */ function bridgeERC20To( address token, address receiverAddress, address customBridgeAddress, uint32 l2Gas, OptimismERC20Data calldata optimismData, uint256 amount, uint256 interfaceId, address l2Token, bytes calldata data ) external payable { if (interfaceId == 0) { revert UnsupportedInterfaceId(); } ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); tokenInstance.safeApprove(customBridgeAddress, amount); emit SocketBridge( amount, token, DESTINATION_CHAIN_ID, NativeOptimismIdentifier, msg.sender, receiverAddress, optimismData.metadata ); if (interfaceId == 1) { // deposit into standard bridge L1StandardBridge(customBridgeAddress).depositERC20To( token, l2Token, receiverAddress, amount, l2Gas, data ); return; } // Deposit Using Old Standard - iOVM_L1TokenGateway(Example - SNX Token) if (interfaceId == 2) { OldL1TokenGateway(customBridgeAddress).depositTo( receiverAddress, amount ); return; } if (interfaceId == 3) { OldL1TokenGateway(customBridgeAddress).initiateSynthTransfer( optimismData.currencyKey, receiverAddress, amount ); return; } } /** * @notice function to handle native balance bridging to receipent via NativeOptimism-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress address of receiver of bridged tokens * @param customBridgeAddress OptimismBridge that Performs the logic for deposits by informing the L2 Deposited Token * contract of the deposit and calling a handler to lock the L1 funds. (e.g. transferFrom) * @param l2Gas Gas limit required to complete the deposit on L2. * @param amount amount being bridged * @param data additional data , for ll contracts this will be 0x data or empty data */ function bridgeNativeTo( address receiverAddress, address customBridgeAddress, uint32 l2Gas, uint256 amount, bytes32 metadata, bytes calldata data ) external payable { L1StandardBridge(customBridgeAddress).depositETHTo{value: amount}( receiverAddress, l2Gas, data ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, DESTINATION_CHAIN_ID, NativeOptimismIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; /** * @title RootChain Manager Interface for Polygon Bridge. */ interface IRootChainManager { /** * @notice Move ether from root to child chain, accepts ether transfer * Keep in mind this ether cannot be used to pay gas on child chain * Use Matic tokens deposited using plasma mechanism for that * @param user address of account that should receive WETH on child chain */ function depositEtherFor(address user) external payable; /** * @notice Move tokens from root to child chain * @dev This mechanism supports arbitrary tokens as long as its predicate has been registered and the token is mapped * @param sender address of account that should receive this deposit on child chain * @param token address of token that is being deposited * @param extraData bytes data that is sent to predicate and child token contracts to handle deposit */ function depositFor( address sender, address token, bytes memory extraData ) external; } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import "./interfaces/polygon.sol"; import {BridgeImplBase} from "../BridgeImplBase.sol"; import {NATIVE_POLYGON} from "../../static/RouteIdentifiers.sol"; /** * @title NativePolygon-Route Implementation * @notice This is the L1 implementation, so this is used when transferring from ethereum to polygon via their native bridge. * @author Socket dot tech. */ contract NativePolygonImpl is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable NativePolyonIdentifier = NATIVE_POLYGON; /// @notice destination-chain-Id for this router is always arbitrum uint256 public constant DESTINATION_CHAIN_ID = 137; /// @notice Function-selector for ERC20-token bridging on NativePolygon-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable NATIVE_POLYGON_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4(keccak256("bridgeERC20To(uint256,bytes32,address,address)")); /// @notice Function-selector for Native bridging on NativePolygon-Route /// @dev This function selector is to be used while buidling transaction-data to bridge Native tokens bytes4 public immutable NATIVE_POLYGON_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4(keccak256("bridgeNativeTo(uint256,bytes32,address)")); bytes4 public immutable NATIVE_POLYGON_SWAP_BRIDGE_SELECTOR = bytes4(keccak256("swapAndBridge(uint32,address,bytes32,bytes)")); /// @notice root chain manager proxy on the ethereum chain /// @dev to be initialised in the constructor IRootChainManager public immutable rootChainManagerProxy; /// @notice ERC20 Predicate proxy on the ethereum chain /// @dev to be initialised in the constructor address public immutable erc20PredicateProxy; /** * // @notice We set all the required addresses in the constructor while deploying the contract. * // These will be constant addresses. * // @dev Please use the Proxy addresses and not the implementation addresses while setting these * // @param _rootChainManagerProxy address of the root chain manager proxy on the ethereum chain * // @param _erc20PredicateProxy address of the ERC20 Predicate proxy on the ethereum chain. * // @param _socketGateway address of the socketGateway contract that calls this contract */ constructor( address _rootChainManagerProxy, address _erc20PredicateProxy, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { rootChainManagerProxy = IRootChainManager(_rootChainManagerProxy); erc20PredicateProxy = _erc20PredicateProxy; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in NativePolygon-BridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for NativePolygon-Bridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { (address token, address receiverAddress, bytes32 metadata) = abi.decode( bridgeData, (address, address, bytes32) ); if (token == NATIVE_TOKEN_ADDRESS) { IRootChainManager(rootChainManagerProxy).depositEtherFor{ value: amount }(receiverAddress); } else { ERC20(token).safeApprove(erc20PredicateProxy, amount); // deposit into rootchain manager IRootChainManager(rootChainManagerProxy).depositFor( receiverAddress, token, abi.encodePacked(amount) ); } emit SocketBridge( amount, token, DESTINATION_CHAIN_ID, NativePolyonIdentifier, msg.sender, receiverAddress, metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in NativePolygon-BridgeData struct * @param swapId routeId for the swapImpl * @param receiverAddress address of the receiver * @param swapData encoded data for swap */ function swapAndBridge( uint32 swapId, address receiverAddress, bytes32 metadata, bytes calldata swapData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { IRootChainManager(rootChainManagerProxy).depositEtherFor{ value: bridgeAmount }(receiverAddress); } else { ERC20(token).safeApprove(erc20PredicateProxy, bridgeAmount); // deposit into rootchain manager IRootChainManager(rootChainManagerProxy).depositFor( receiverAddress, token, abi.encodePacked(bridgeAmount) ); } emit SocketBridge( bridgeAmount, token, DESTINATION_CHAIN_ID, NativePolyonIdentifier, msg.sender, receiverAddress, metadata ); } /** * @notice function to handle ERC20 bridging to receipent via NativePolygon-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount of tokens being bridged * @param receiverAddress recipient address * @param token address of token being bridged */ function bridgeERC20To( uint256 amount, bytes32 metadata, address receiverAddress, address token ) external payable { ERC20 tokenInstance = ERC20(token); // set allowance for erc20 predicate tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); tokenInstance.safeApprove(erc20PredicateProxy, amount); // deposit into rootchain manager rootChainManagerProxy.depositFor( receiverAddress, token, abi.encodePacked(amount) ); emit SocketBridge( amount, token, DESTINATION_CHAIN_ID, NativePolyonIdentifier, msg.sender, receiverAddress, metadata ); } /** * @notice function to handle Native bridging to receipent via NativePolygon-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount of tokens being bridged * @param receiverAddress recipient address */ function bridgeNativeTo( uint256 amount, bytes32 metadata, address receiverAddress ) external payable { rootChainManagerProxy.depositEtherFor{value: amount}(receiverAddress); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, DESTINATION_CHAIN_ID, NativePolyonIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: Apache-2.0 pragma solidity >=0.8.0; /// @notice interface with functions to interact with Refuel contract interface IRefuel { /** * @notice function to deposit nativeToken to Destination-address on destinationChain * @param destinationChainId chainId of the Destination chain * @param _to recipient address */ function depositNativeToken( uint256 destinationChainId, address _to ) external payable; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "./interfaces/refuel.sol"; import "../BridgeImplBase.sol"; import {REFUEL} from "../../static/RouteIdentifiers.sol"; /** * @title Refuel-Route Implementation * @notice Route implementation with functions to bridge Native via Refuel-Bridge * Called via SocketGateway if the routeId in the request maps to the routeId of RefuelImplementation * @author Socket dot tech. */ contract RefuelBridgeImpl is BridgeImplBase { bytes32 public immutable RefuelIdentifier = REFUEL; /// @notice refuelBridge-Contract address used to deposit Native on Refuel-Bridge address public immutable refuelBridge; /// @notice Function-selector for Native bridging via Refuel-Bridge /// @dev This function selector is to be used while buidling transaction-data to bridge Native tokens bytes4 public immutable REFUEL_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4(keccak256("bridgeNativeTo(uint256,address,uint256,bytes32)")); bytes4 public immutable REFUEL_NATIVE_SWAP_BRIDGE_SELECTOR = bytes4( keccak256("swapAndBridge(uint32,address,uint256,bytes32,bytes)") ); /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase /// @dev ensure _refuelBridge are set properly for the chainId in which the contract is being deployed constructor( address _refuelBridge, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { refuelBridge = _refuelBridge; } // Function to receive Ether. msg.data must be empty receive() external payable {} /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct RefuelBridgeData { address receiverAddress; uint256 toChainId; bytes32 metadata; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in RefuelBridgeData struct * @param amount amount of tokens being bridged. this must be only native * @param bridgeData encoded data for RefuelBridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { RefuelBridgeData memory refuelBridgeData = abi.decode( bridgeData, (RefuelBridgeData) ); IRefuel(refuelBridge).depositNativeToken{value: amount}( refuelBridgeData.toChainId, refuelBridgeData.receiverAddress ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, refuelBridgeData.toChainId, RefuelIdentifier, msg.sender, refuelBridgeData.receiverAddress, refuelBridgeData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in RefuelBridgeData struct * @param swapId routeId for the swapImpl * @param receiverAddress receiverAddress * @param toChainId toChainId * @param swapData encoded data for swap */ function swapAndBridge( uint32 swapId, address receiverAddress, uint256 toChainId, bytes32 metadata, bytes calldata swapData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, ) = abi.decode(result, (uint256, address)); IRefuel(refuelBridge).depositNativeToken{value: bridgeAmount}( toChainId, receiverAddress ); emit SocketBridge( bridgeAmount, NATIVE_TOKEN_ADDRESS, toChainId, RefuelIdentifier, msg.sender, receiverAddress, metadata ); } /** * @notice function to handle Native bridging to receipent via Refuel-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount of native being refuelled to destination chain * @param receiverAddress recipient address of the refuelled native * @param toChainId destinationChainId */ function bridgeNativeTo( uint256 amount, address receiverAddress, uint256 toChainId, bytes32 metadata ) external payable { IRefuel(refuelBridge).depositNativeToken{value: amount}( toChainId, receiverAddress ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, toChainId, RefuelIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: GPL-3.0-only pragma solidity >=0.8.0; /** * @title IBridgeStargate Interface Contract. * @notice Interface used by Stargate-L1 and L2 Router implementations * @dev router and routerETH addresses will be distinct for L1 and L2 */ interface IBridgeStargate { // @notice Struct to hold the additional-data for bridging ERC20 token struct lzTxObj { // gas limit to bridge the token in Stargate to destinationChain uint256 dstGasForCall; // destination nativeAmount, this is always set as 0 uint256 dstNativeAmount; // destination nativeAddress, this is always set as 0x bytes dstNativeAddr; } /// @notice function in stargate bridge which is used to bridge ERC20 tokens to recipient on destinationChain function swap( uint16 _dstChainId, uint256 _srcPoolId, uint256 _dstPoolId, address payable _refundAddress, uint256 _amountLD, uint256 _minAmountLD, lzTxObj memory _lzTxParams, bytes calldata _to, bytes calldata _payload ) external payable; /// @notice function in stargate bridge which is used to bridge native tokens to recipient on destinationChain function swapETH( uint16 _dstChainId, // destination Stargate chainId address payable _refundAddress, // refund additional messageFee to this address bytes calldata _toAddress, // the receiver of the destination ETH uint256 _amountLD, // the amount, in Local Decimals, to be swapped uint256 _minAmountLD // the minimum amount accepted out on destination ) external payable; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import "../interfaces/stargate.sol"; import {BridgeImplBase} from "../../BridgeImplBase.sol"; import {STARGATE} from "../../../static/RouteIdentifiers.sol"; /** * @title Stargate-L1-Route Implementation * @notice Route implementation with functions to bridge ERC20 and Native via Stargate-L1-Bridge * Called via SocketGateway if the routeId in the request maps to the routeId of Stargate-L1-Implementation * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract StargateImplL1 is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable StargateIdentifier = STARGATE; /// @notice Function-selector for ERC20-token bridging on Stargate-L1-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable STARGATE_L1_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(address,address,address,uint256,uint256,(uint256,uint256,uint256,uint256,bytes32,bytes,uint16))" ) ); /// @notice Function-selector for Native bridging on Stargate-L1-Route /// @dev This function selector is to be used while buidling transaction-data to bridge Native tokens bytes4 public immutable STARGATE_L1_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeNativeTo(address,address,uint16,uint256,uint256,uint256,bytes32)" ) ); bytes4 public immutable STARGATE_L1_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(address,address,uint16,uint256,uint256,uint256,uint256,uint256,uint256,bytes32,bytes))" ) ); /// @notice Stargate Router to bridge ERC20 tokens IBridgeStargate public immutable router; /// @notice Stargate Router to bridge native tokens IBridgeStargate public immutable routerETH; /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase /// @dev ensure router, routerEth are set properly for the chainId in which the contract is being deployed constructor( address _router, address _routerEth, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { router = IBridgeStargate(_router); routerETH = IBridgeStargate(_routerEth); } struct StargateBridgeExtraData { uint256 srcPoolId; uint256 dstPoolId; uint256 destinationGasLimit; uint256 minReceivedAmt; bytes32 metadata; bytes destinationPayload; uint16 stargateDstChainId; // stargate defines chain id in its way } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct StargateBridgeDataNoToken { address receiverAddress; address senderAddress; uint16 stargateDstChainId; // stargate defines chain id in its way uint256 value; // a unique identifier that is uses to dedup transfers // this value is the a timestamp sent from frontend, but in theory can be any unique number uint256 srcPoolId; uint256 dstPoolId; uint256 minReceivedAmt; // defines the slippage, the min qty you would accept on the destination uint256 optionalValue; uint256 destinationGasLimit; bytes32 metadata; bytes destinationPayload; } struct StargateBridgeData { address token; address receiverAddress; address senderAddress; uint16 stargateDstChainId; // stargate defines chain id in its way uint256 value; // a unique identifier that is uses to dedup transfers // this value is the a timestamp sent from frontend, but in theory can be any unique number uint256 srcPoolId; uint256 dstPoolId; uint256 minReceivedAmt; // defines the slippage, the min qty you would accept on the destination uint256 optionalValue; uint256 destinationGasLimit; bytes32 metadata; bytes destinationPayload; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in Stargate-BridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for Stargate-L1-Bridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { StargateBridgeData memory stargateBridgeData = abi.decode( bridgeData, (StargateBridgeData) ); if (stargateBridgeData.token == NATIVE_TOKEN_ADDRESS) { // perform bridging routerETH.swapETH{value: amount + stargateBridgeData.optionalValue}( stargateBridgeData.stargateDstChainId, payable(stargateBridgeData.senderAddress), abi.encodePacked(stargateBridgeData.receiverAddress), amount, stargateBridgeData.minReceivedAmt ); } else { ERC20(stargateBridgeData.token).safeApprove( address(router), amount ); { router.swap{value: stargateBridgeData.value}( stargateBridgeData.stargateDstChainId, stargateBridgeData.srcPoolId, stargateBridgeData.dstPoolId, payable(stargateBridgeData.senderAddress), // default to refund to main contract amount, stargateBridgeData.minReceivedAmt, IBridgeStargate.lzTxObj( stargateBridgeData.destinationGasLimit, 0, // zero amount since this is a ERC20 bridging "0x" //empty data since this is for only ERC20 ), abi.encodePacked(stargateBridgeData.receiverAddress), stargateBridgeData.destinationPayload ); } } emit SocketBridge( amount, stargateBridgeData.token, stargateBridgeData.stargateDstChainId, StargateIdentifier, msg.sender, stargateBridgeData.receiverAddress, stargateBridgeData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in Stargate-BridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param stargateBridgeData encoded data for StargateBridgeData */ function swapAndBridge( uint32 swapId, bytes calldata swapData, StargateBridgeDataNoToken calldata stargateBridgeData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { // perform bridging routerETH.swapETH{ value: bridgeAmount + stargateBridgeData.optionalValue }( stargateBridgeData.stargateDstChainId, payable(stargateBridgeData.senderAddress), abi.encodePacked(stargateBridgeData.receiverAddress), bridgeAmount, stargateBridgeData.minReceivedAmt ); } else { ERC20(token).safeApprove(address(router), bridgeAmount); { router.swap{value: stargateBridgeData.value}( stargateBridgeData.stargateDstChainId, stargateBridgeData.srcPoolId, stargateBridgeData.dstPoolId, payable(stargateBridgeData.senderAddress), // default to refund to main contract bridgeAmount, stargateBridgeData.minReceivedAmt, IBridgeStargate.lzTxObj( stargateBridgeData.destinationGasLimit, 0, // zero amount since this is a ERC20 bridging "0x" //empty data since this is for only ERC20 ), abi.encodePacked(stargateBridgeData.receiverAddress), stargateBridgeData.destinationPayload ); } } emit SocketBridge( bridgeAmount, token, stargateBridgeData.stargateDstChainId, StargateIdentifier, msg.sender, stargateBridgeData.receiverAddress, stargateBridgeData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Stargate-L1-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param token address of token being bridged * @param senderAddress address of sender * @param receiverAddress address of recipient * @param amount amount of token being bridge * @param value value * @param stargateBridgeExtraData stargate bridge extradata */ function bridgeERC20To( address token, address senderAddress, address receiverAddress, uint256 amount, uint256 value, StargateBridgeExtraData calldata stargateBridgeExtraData ) external payable { ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); tokenInstance.safeApprove(address(router), amount); { router.swap{value: value}( stargateBridgeExtraData.stargateDstChainId, stargateBridgeExtraData.srcPoolId, stargateBridgeExtraData.dstPoolId, payable(senderAddress), // default to refund to main contract amount, stargateBridgeExtraData.minReceivedAmt, IBridgeStargate.lzTxObj( stargateBridgeExtraData.destinationGasLimit, 0, // zero amount since this is a ERC20 bridging "0x" //empty data since this is for only ERC20 ), abi.encodePacked(receiverAddress), stargateBridgeExtraData.destinationPayload ); } emit SocketBridge( amount, token, stargateBridgeExtraData.stargateDstChainId, StargateIdentifier, msg.sender, receiverAddress, stargateBridgeExtraData.metadata ); } /** * @notice function to handle Native bridging to receipent via Stargate-L1-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress address of receipient * @param senderAddress address of sender * @param stargateDstChainId stargate defines chain id in its way * @param amount amount of token being bridge * @param minReceivedAmt defines the slippage, the min qty you would accept on the destination * @param optionalValue optionalValue Native amount */ function bridgeNativeTo( address receiverAddress, address senderAddress, uint16 stargateDstChainId, uint256 amount, uint256 minReceivedAmt, uint256 optionalValue, bytes32 metadata ) external payable { // perform bridging routerETH.swapETH{value: amount + optionalValue}( stargateDstChainId, payable(senderAddress), abi.encodePacked(receiverAddress), amount, minReceivedAmt ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, stargateDstChainId, StargateIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import "../interfaces/stargate.sol"; import "../../../errors/SocketErrors.sol"; import {BridgeImplBase} from "../../BridgeImplBase.sol"; import {STARGATE} from "../../../static/RouteIdentifiers.sol"; /** * @title Stargate-L2-Route Implementation * @notice Route implementation with functions to bridge ERC20 and Native via Stargate-L2-Bridge * Called via SocketGateway if the routeId in the request maps to the routeId of Stargate-L2-Implementation * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract StargateImplL2 is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable StargateIdentifier = STARGATE; /// @notice Function-selector for ERC20-token bridging on Stargate-L2-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable STARGATE_L2_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(address,address,address,uint256,uint256,uint256,(uint256,uint256,uint256,uint256,bytes32,bytes,uint16))" ) ); bytes4 public immutable STARGATE_L1_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(address,address,uint16,uint256,uint256,uint256,uint256,uint256,uint256,bytes32,bytes))" ) ); /// @notice Function-selector for Native bridging on Stargate-L2-Route /// @dev This function selector is to be used while buidling transaction-data to bridge Native tokens bytes4 public immutable STARGATE_L2_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeNativeTo(address,address,uint16,uint256,uint256,uint256,bytes32)" ) ); /// @notice Stargate Router to bridge ERC20 tokens IBridgeStargate public immutable router; /// @notice Stargate Router to bridge native tokens IBridgeStargate public immutable routerETH; /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase /// @dev ensure router, routerEth are set properly for the chainId in which the contract is being deployed constructor( address _router, address _routerEth, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { router = IBridgeStargate(_router); routerETH = IBridgeStargate(_routerEth); } /// @notice Struct to be used as a input parameter for Bridging tokens via Stargate-L2-route /// @dev while building transactionData,values should be set in this sequence of properties in this struct struct StargateBridgeExtraData { uint256 srcPoolId; uint256 dstPoolId; uint256 destinationGasLimit; uint256 minReceivedAmt; bytes32 metadata; bytes destinationPayload; uint16 stargateDstChainId; // stargate defines chain id in its way } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct StargateBridgeDataNoToken { address receiverAddress; address senderAddress; uint16 stargateDstChainId; // stargate defines chain id in its way uint256 value; // a unique identifier that is uses to dedup transfers // this value is the a timestamp sent from frontend, but in theory can be any unique number uint256 srcPoolId; uint256 dstPoolId; uint256 minReceivedAmt; // defines the slippage, the min qty you would accept on the destination uint256 optionalValue; uint256 destinationGasLimit; bytes32 metadata; bytes destinationPayload; } struct StargateBridgeData { address token; address receiverAddress; address senderAddress; uint16 stargateDstChainId; // stargate defines chain id in its way uint256 value; // a unique identifier that is uses to dedup transfers // this value is the a timestamp sent from frontend, but in theory can be any unique number uint256 srcPoolId; uint256 dstPoolId; uint256 minReceivedAmt; // defines the slippage, the min qty you would accept on the destination uint256 optionalValue; uint256 destinationGasLimit; bytes32 metadata; bytes destinationPayload; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in Stargate-BridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for Stargate-L1-Bridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { StargateBridgeData memory stargateBridgeData = abi.decode( bridgeData, (StargateBridgeData) ); if (stargateBridgeData.token == NATIVE_TOKEN_ADDRESS) { // perform bridging routerETH.swapETH{value: amount + stargateBridgeData.optionalValue}( stargateBridgeData.stargateDstChainId, payable(stargateBridgeData.senderAddress), abi.encodePacked(stargateBridgeData.receiverAddress), amount, stargateBridgeData.minReceivedAmt ); } else { ERC20(stargateBridgeData.token).safeApprove( address(router), amount ); { router.swap{value: stargateBridgeData.value}( stargateBridgeData.stargateDstChainId, stargateBridgeData.srcPoolId, stargateBridgeData.dstPoolId, payable(stargateBridgeData.senderAddress), // default to refund to main contract amount, stargateBridgeData.minReceivedAmt, IBridgeStargate.lzTxObj( stargateBridgeData.destinationGasLimit, 0, // zero amount since this is a ERC20 bridging "0x" //empty data since this is for only ERC20 ), abi.encodePacked(stargateBridgeData.receiverAddress), stargateBridgeData.destinationPayload ); } } emit SocketBridge( amount, stargateBridgeData.token, stargateBridgeData.stargateDstChainId, StargateIdentifier, msg.sender, stargateBridgeData.receiverAddress, stargateBridgeData.metadata ); } /** * @notice function to bridge tokens after swapping. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in Stargate-BridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param stargateBridgeData encoded data for StargateBridgeData */ function swapAndBridge( uint32 swapId, bytes calldata swapData, StargateBridgeDataNoToken calldata stargateBridgeData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { routerETH.swapETH{ value: bridgeAmount + stargateBridgeData.optionalValue }( stargateBridgeData.stargateDstChainId, payable(stargateBridgeData.senderAddress), abi.encodePacked(stargateBridgeData.receiverAddress), bridgeAmount, stargateBridgeData.minReceivedAmt ); } else { ERC20(token).safeApprove(address(router), bridgeAmount); { router.swap{value: stargateBridgeData.value}( stargateBridgeData.stargateDstChainId, stargateBridgeData.srcPoolId, stargateBridgeData.dstPoolId, payable(stargateBridgeData.senderAddress), // default to refund to main contract bridgeAmount, stargateBridgeData.minReceivedAmt, IBridgeStargate.lzTxObj( stargateBridgeData.destinationGasLimit, 0, "0x" ), abi.encodePacked(stargateBridgeData.receiverAddress), stargateBridgeData.destinationPayload ); } } emit SocketBridge( bridgeAmount, token, stargateBridgeData.stargateDstChainId, StargateIdentifier, msg.sender, stargateBridgeData.receiverAddress, stargateBridgeData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Stargate-L1-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param token address of token being bridged * @param senderAddress address of sender * @param receiverAddress address of recipient * @param amount amount of token being bridge * @param value value * @param optionalValue optionalValue * @param stargateBridgeExtraData stargate bridge extradata */ function bridgeERC20To( address token, address senderAddress, address receiverAddress, uint256 amount, uint256 value, uint256 optionalValue, StargateBridgeExtraData calldata stargateBridgeExtraData ) external payable { // token address might not be indication thats why passed through extraData if (token == NATIVE_TOKEN_ADDRESS) { // perform bridging routerETH.swapETH{value: amount + optionalValue}( stargateBridgeExtraData.stargateDstChainId, payable(senderAddress), abi.encodePacked(receiverAddress), amount, stargateBridgeExtraData.minReceivedAmt ); } else { ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); tokenInstance.safeApprove(address(router), amount); { router.swap{value: value}( stargateBridgeExtraData.stargateDstChainId, stargateBridgeExtraData.srcPoolId, stargateBridgeExtraData.dstPoolId, payable(senderAddress), // default to refund to main contract amount, stargateBridgeExtraData.minReceivedAmt, IBridgeStargate.lzTxObj( stargateBridgeExtraData.destinationGasLimit, 0, // zero amount since this is a ERC20 bridging "0x" //empty data since this is for only ERC20 ), abi.encodePacked(receiverAddress), stargateBridgeExtraData.destinationPayload ); } } emit SocketBridge( amount, token, stargateBridgeExtraData.stargateDstChainId, StargateIdentifier, msg.sender, receiverAddress, stargateBridgeExtraData.metadata ); } function bridgeNativeTo( address receiverAddress, address senderAddress, uint16 stargateDstChainId, uint256 amount, uint256 minReceivedAmt, uint256 optionalValue, bytes32 metadata ) external payable { // perform bridging routerETH.swapETH{value: amount + optionalValue}( stargateDstChainId, payable(senderAddress), abi.encodePacked(receiverAddress), amount, minReceivedAmt ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, stargateDstChainId, StargateIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {ISocketRequest} from "../interfaces/ISocketRequest.sol"; import {ISocketRoute} from "../interfaces/ISocketRoute.sol"; /// @title BaseController Controller /// @notice Base contract for all controller contracts abstract contract BaseController { /// @notice Address used to identify if it is a native token transfer or not address public immutable NATIVE_TOKEN_ADDRESS = address(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE); /// @notice Address used to identify if it is a Zero address address public immutable NULL_ADDRESS = address(0); /// @notice FunctionSelector used to delegatecall from swap to the function of bridge router implementation bytes4 public immutable BRIDGE_AFTER_SWAP_SELECTOR = bytes4(keccak256("bridgeAfterSwap(uint256,bytes)")); /// @notice immutable variable to store the socketGateway address address public immutable socketGatewayAddress; /// @notice immutable variable with instance of SocketRoute to access route functions ISocketRoute public immutable socketRoute; /** * @notice Construct the base for all controllers. * @param _socketGatewayAddress Socketgateway address, an immutable variable to set. * @notice initialize the immutable variables of SocketRoute, SocketGateway */ constructor(address _socketGatewayAddress) { socketGatewayAddress = _socketGatewayAddress; socketRoute = ISocketRoute(_socketGatewayAddress); } /** * @notice Construct the base for all BridgeImplementations. * @param routeId routeId mapped to the routrImplementation * @param data transactionData generated with arguments of bridgeRequest (offchain or by caller) * @return returns the bytes response of the route execution (bridging, refuel or swap executions) */ function _executeRoute( uint32 routeId, bytes memory data ) internal returns (bytes memory) { (bool success, bytes memory result) = socketRoute .getRoute(routeId) .delegatecall(data); if (!success) { assembly { revert(add(result, 32), mload(result)) } } return result; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {BaseController} from "./BaseController.sol"; import {ISocketRequest} from "../interfaces/ISocketRequest.sol"; /** * @title FeesTaker-Controller Implementation * @notice Controller with composed actions to deduct-fees followed by Refuel, Swap and Bridge * to be executed Sequentially and this is atomic * @author Socket dot tech. */ contract FeesTakerController is BaseController { using SafeTransferLib for ERC20; /// @notice event emitted upon fee-deduction to fees-taker address event SocketFeesDeducted( uint256 fees, address feesToken, address feesTaker ); /// @notice Function-selector to invoke deduct-fees and swap token /// @dev This function selector is to be used while building transaction-data bytes4 public immutable FEES_TAKER_SWAP_FUNCTION_SELECTOR = bytes4( keccak256("takeFeesAndSwap((address,address,uint256,uint32,bytes))") ); /// @notice Function-selector to invoke deduct-fees and bridge token /// @dev This function selector is to be used while building transaction-data bytes4 public immutable FEES_TAKER_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "takeFeesAndBridge((address,address,uint256,uint32,bytes))" ) ); /// @notice Function-selector to invoke deduct-fees and bridge multiple tokens /// @dev This function selector is to be used while building transaction-data bytes4 public immutable FEES_TAKER_MULTI_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "takeFeesAndMultiBridge((address,address,uint256,uint32[],bytes[]))" ) ); /// @notice Function-selector to invoke deduct-fees followed by swapping of a token and bridging the swapped bridge /// @dev This function selector is to be used while building transaction-data bytes4 public immutable FEES_TAKER_SWAP_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "takeFeeAndSwapAndBridge((address,address,uint256,uint32,bytes,uint32,bytes))" ) ); /// @notice Function-selector to invoke deduct-fees refuel /// @notice followed by swapping of a token and bridging the swapped bridge /// @dev This function selector is to be used while building transaction-data bytes4 public immutable FEES_TAKER_REFUEL_SWAP_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "takeFeeAndRefuelAndSwapAndBridge((address,address,uint256,uint32,bytes,uint32,bytes,uint32,bytes))" ) ); /// @notice socketGatewayAddress to be initialised via storage variable BaseController constructor( address _socketGatewayAddress ) BaseController(_socketGatewayAddress) {} /** * @notice function to deduct-fees to fees-taker address on source-chain and swap token * @dev ensure correct function selector is used to generate transaction-data for bridgeRequest * @param ftsRequest feesTakerSwapRequest object generated either off-chain or the calling contract using * the function-selector FEES_TAKER_SWAP_FUNCTION_SELECTOR * @return output bytes from the swap operation (last operation in the composed actions) */ function takeFeesAndSwap( ISocketRequest.FeesTakerSwapRequest calldata ftsRequest ) external payable returns (bytes memory) { if (ftsRequest.feesToken == NATIVE_TOKEN_ADDRESS) { //transfer the native amount to the feeTakerAddress payable(ftsRequest.feesTakerAddress).transfer( ftsRequest.feesAmount ); } else { //transfer feesAmount to feesTakerAddress ERC20(ftsRequest.feesToken).safeTransferFrom( msg.sender, ftsRequest.feesTakerAddress, ftsRequest.feesAmount ); } emit SocketFeesDeducted( ftsRequest.feesAmount, ftsRequest.feesTakerAddress, ftsRequest.feesToken ); //call bridge function (executeRoute for the swapRequestData) return _executeRoute(ftsRequest.routeId, ftsRequest.swapRequestData); } /** * @notice function to deduct-fees to fees-taker address on source-chain and bridge amount to destinationChain * @dev ensure correct function selector is used to generate transaction-data for bridgeRequest * @param ftbRequest feesTakerBridgeRequest object generated either off-chain or the calling contract using * the function-selector FEES_TAKER_BRIDGE_FUNCTION_SELECTOR * @return output bytes from the bridge operation (last operation in the composed actions) */ function takeFeesAndBridge( ISocketRequest.FeesTakerBridgeRequest calldata ftbRequest ) external payable returns (bytes memory) { if (ftbRequest.feesToken == NATIVE_TOKEN_ADDRESS) { //transfer the native amount to the feeTakerAddress payable(ftbRequest.feesTakerAddress).transfer( ftbRequest.feesAmount ); } else { //transfer feesAmount to feesTakerAddress ERC20(ftbRequest.feesToken).safeTransferFrom( msg.sender, ftbRequest.feesTakerAddress, ftbRequest.feesAmount ); } emit SocketFeesDeducted( ftbRequest.feesAmount, ftbRequest.feesTakerAddress, ftbRequest.feesToken ); //call bridge function (executeRoute for the bridgeData) return _executeRoute(ftbRequest.routeId, ftbRequest.bridgeRequestData); } /** * @notice function to deduct-fees to fees-taker address on source-chain and bridge amount to destinationChain * @notice multiple bridge-requests are to be generated and sequence and number of routeIds should match with the bridgeData array * @dev ensure correct function selector is used to generate transaction-data for bridgeRequest * @param ftmbRequest feesTakerMultiBridgeRequest object generated either off-chain or the calling contract using * the function-selector FEES_TAKER_MULTI_BRIDGE_FUNCTION_SELECTOR */ function takeFeesAndMultiBridge( ISocketRequest.FeesTakerMultiBridgeRequest calldata ftmbRequest ) external payable { if (ftmbRequest.feesToken == NATIVE_TOKEN_ADDRESS) { //transfer the native amount to the feeTakerAddress payable(ftmbRequest.feesTakerAddress).transfer( ftmbRequest.feesAmount ); } else { //transfer feesAmount to feesTakerAddress ERC20(ftmbRequest.feesToken).safeTransferFrom( msg.sender, ftmbRequest.feesTakerAddress, ftmbRequest.feesAmount ); } emit SocketFeesDeducted( ftmbRequest.feesAmount, ftmbRequest.feesTakerAddress, ftmbRequest.feesToken ); // multiple bridge-requests are to be generated and sequence and number of routeIds should match with the bridgeData array for ( uint256 index = 0; index < ftmbRequest.bridgeRouteIds.length; ++index ) { //call bridge function (executeRoute for the bridgeData) _executeRoute( ftmbRequest.bridgeRouteIds[index], ftmbRequest.bridgeRequestDataItems[index] ); } } /** * @notice function to deduct-fees to fees-taker address on source-chain followed by swap the amount on sourceChain followed by * bridging the swapped amount to destinationChain * @dev while generating implData for swap and bridgeRequests, ensure correct function selector is used * bridge action corresponds to the bridgeAfterSwap function of the bridgeImplementation * @param fsbRequest feesTakerSwapBridgeRequest object generated either off-chain or the calling contract using * the function-selector FEES_TAKER_SWAP_BRIDGE_FUNCTION_SELECTOR */ function takeFeeAndSwapAndBridge( ISocketRequest.FeesTakerSwapBridgeRequest calldata fsbRequest ) external payable returns (bytes memory) { if (fsbRequest.feesToken == NATIVE_TOKEN_ADDRESS) { //transfer the native amount to the feeTakerAddress payable(fsbRequest.feesTakerAddress).transfer( fsbRequest.feesAmount ); } else { //transfer feesAmount to feesTakerAddress ERC20(fsbRequest.feesToken).safeTransferFrom( msg.sender, fsbRequest.feesTakerAddress, fsbRequest.feesAmount ); } emit SocketFeesDeducted( fsbRequest.feesAmount, fsbRequest.feesTakerAddress, fsbRequest.feesToken ); // execute swap operation bytes memory swapResponseData = _executeRoute( fsbRequest.swapRouteId, fsbRequest.swapData ); uint256 swapAmount = abi.decode(swapResponseData, (uint256)); // swapped amount is to be bridged to the recipient on destinationChain bytes memory bridgeImpldata = abi.encodeWithSelector( BRIDGE_AFTER_SWAP_SELECTOR, swapAmount, fsbRequest.bridgeData ); // execute bridge operation and return the byte-data from response of bridge operation return _executeRoute(fsbRequest.bridgeRouteId, bridgeImpldata); } /** * @notice function to deduct-fees to fees-taker address on source-chain followed by refuel followed by * swap the amount on sourceChain followed by bridging the swapped amount to destinationChain * @dev while generating implData for refuel, swap and bridge Requests, ensure correct function selector is used * bridge action corresponds to the bridgeAfterSwap function of the bridgeImplementation * @param frsbRequest feesTakerRefuelSwapBridgeRequest object generated either off-chain or the calling contract using * the function-selector FEES_TAKER_REFUEL_SWAP_BRIDGE_FUNCTION_SELECTOR */ function takeFeeAndRefuelAndSwapAndBridge( ISocketRequest.FeesTakerRefuelSwapBridgeRequest calldata frsbRequest ) external payable returns (bytes memory) { if (frsbRequest.feesToken == NATIVE_TOKEN_ADDRESS) { //transfer the native amount to the feeTakerAddress payable(frsbRequest.feesTakerAddress).transfer( frsbRequest.feesAmount ); } else { //transfer feesAmount to feesTakerAddress ERC20(frsbRequest.feesToken).safeTransferFrom( msg.sender, frsbRequest.feesTakerAddress, frsbRequest.feesAmount ); } emit SocketFeesDeducted( frsbRequest.feesAmount, frsbRequest.feesTakerAddress, frsbRequest.feesToken ); // refuel is also done via bridge execution via refuelRouteImplementation identified by refuelRouteId _executeRoute(frsbRequest.refuelRouteId, frsbRequest.refuelData); // execute swap operation bytes memory swapResponseData = _executeRoute( frsbRequest.swapRouteId, frsbRequest.swapData ); uint256 swapAmount = abi.decode(swapResponseData, (uint256)); // swapped amount is to be bridged to the recipient on destinationChain bytes memory bridgeImpldata = abi.encodeWithSelector( BRIDGE_AFTER_SWAP_SELECTOR, swapAmount, frsbRequest.bridgeData ); // execute bridge operation and return the byte-data from response of bridge operation return _executeRoute(frsbRequest.bridgeRouteId, bridgeImpldata); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {ISocketRequest} from "../interfaces/ISocketRequest.sol"; import {ISocketRoute} from "../interfaces/ISocketRoute.sol"; import {BaseController} from "./BaseController.sol"; /** * @title RefuelSwapAndBridge Controller Implementation * @notice Controller with composed actions for Refuel,Swap and Bridge to be executed Sequentially and this is atomic * @author Socket dot tech. */ contract RefuelSwapAndBridgeController is BaseController { /// @notice Function-selector to invoke refuel-swap-bridge function /// @dev This function selector is to be used while buidling transaction-data bytes4 public immutable REFUEL_SWAP_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "refuelAndSwapAndBridge((uint32,bytes,uint32,bytes,uint32,bytes))" ) ); /// @notice socketGatewayAddress to be initialised via storage variable BaseController constructor( address _socketGatewayAddress ) BaseController(_socketGatewayAddress) {} /** * @notice function to handle refuel followed by Swap and Bridge actions * @notice This method is payable because the caller is doing token transfer and briding operation * @param rsbRequest Request with data to execute refuel followed by swap and bridge * @return output data from bridging operation */ function refuelAndSwapAndBridge( ISocketRequest.RefuelSwapBridgeRequest calldata rsbRequest ) public payable returns (bytes memory) { _executeRoute(rsbRequest.refuelRouteId, rsbRequest.refuelData); // refuel is also a bridging activity via refuel-route-implementation bytes memory swapResponseData = _executeRoute( rsbRequest.swapRouteId, rsbRequest.swapData ); uint256 swapAmount = abi.decode(swapResponseData, (uint256)); //sequence of arguments for implData: amount, token, data // Bridging the swapAmount received in the preceeding step bytes memory bridgeImpldata = abi.encodeWithSelector( BRIDGE_AFTER_SWAP_SELECTOR, swapAmount, rsbRequest.bridgeData ); return _executeRoute(rsbRequest.bridgeRouteId, bridgeImpldata); } } //SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {ISocketGateway} from "../interfaces/ISocketGateway.sol"; import {OnlySocketGatewayOwner} from "../errors/SocketErrors.sol"; contract DisabledSocketRoute { using SafeTransferLib for ERC20; /// @notice immutable variable to store the socketGateway address address public immutable socketGateway; error RouteDisabled(); /** * @notice Construct the base for all BridgeImplementations. * @param _socketGateway Socketgateway address, an immutable variable to set. */ constructor(address _socketGateway) { socketGateway = _socketGateway; } /// @notice Implementing contract needs to make use of the modifier where restricted access is to be used modifier isSocketGatewayOwner() { if (msg.sender != ISocketGateway(socketGateway).owner()) { revert OnlySocketGatewayOwner(); } _; } /** * @notice function to rescue the ERC20 tokens in the bridge Implementation contract * @notice this is a function restricted to Owner of SocketGateway only * @param token address of ERC20 token being rescued * @param userAddress receipient address to which ERC20 tokens will be rescued to * @param amount amount of ERC20 tokens being rescued */ function rescueFunds( address token, address userAddress, uint256 amount ) external isSocketGatewayOwner { ERC20(token).safeTransfer(userAddress, amount); } /** * @notice function to rescue the native-balance in the bridge Implementation contract * @notice this is a function restricted to Owner of SocketGateway only * @param userAddress receipient address to which native-balance will be rescued to * @param amount amount of native balance tokens being rescued */ function rescueEther( address payable userAddress, uint256 amount ) external isSocketGatewayOwner { userAddress.transfer(amount); } /** * @notice Handle route function calls gracefully. */ fallback() external payable { revert RouteDisabled(); } /** * @notice Support receiving ether to handle refunds etc. */ receive() external payable {} } //SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "../utils/Ownable.sol"; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {ISocketBridgeBase} from "../interfaces/ISocketBridgeBase.sol"; /** * @dev In the constructor, set up the initialization code for socket * contracts as well as the keccak256 hash of the given initialization code. * that will be used to deploy any transient contracts, which will deploy any * socket contracts that require the use of a constructor. * * Socket contract initialization code (29 bytes): * * 0x5860208158601c335a63aaf10f428752fa158151803b80938091923cf3 * * Description: * * pc|op|name | [stack] | <memory> * * ** set the first stack item to zero - used later ** * 00 58 getpc [0] <> * * ** set second stack item to 32, length of word returned from staticcall ** * 01 60 push1 * 02 20 outsize [0, 32] <> * * ** set third stack item to 0, position of word returned from staticcall ** * 03 81 dup2 [0, 32, 0] <> * * ** set fourth stack item to 4, length of selector given to staticcall ** * 04 58 getpc [0, 32, 0, 4] <> * * ** set fifth stack item to 28, position of selector given to staticcall ** * 05 60 push1 * 06 1c inpos [0, 32, 0, 4, 28] <> * * ** set the sixth stack item to msg.sender, target address for staticcall ** * 07 33 caller [0, 32, 0, 4, 28, caller] <> * * ** set the seventh stack item to msg.gas, gas to forward for staticcall ** * 08 5a gas [0, 32, 0, 4, 28, caller, gas] <> * * ** set the eighth stack item to selector, "what" to store via mstore ** * 09 63 push4 * 10 aaf10f42 selector [0, 32, 0, 4, 28, caller, gas, 0xaaf10f42] <> * * ** set the ninth stack item to 0, "where" to store via mstore *** * 11 87 dup8 [0, 32, 0, 4, 28, caller, gas, 0xaaf10f42, 0] <> * * ** call mstore, consume 8 and 9 from the stack, place selector in memory ** * 12 52 mstore [0, 32, 0, 4, 0, caller, gas] <0xaaf10f42> * * ** call staticcall, consume items 2 through 7, place address in memory ** * 13 fa staticcall [0, 1 (if successful)] <address> * * ** flip success bit in second stack item to set to 0 ** * 14 15 iszero [0, 0] <address> * * ** push a third 0 to the stack, position of address in memory ** * 15 81 dup2 [0, 0, 0] <address> * * ** place address from position in memory onto third stack item ** * 16 51 mload [0, 0, address] <> * * ** place address to fourth stack item for extcodesize to consume ** * 17 80 dup1 [0, 0, address, address] <> * * ** get extcodesize on fourth stack item for extcodecopy ** * 18 3b extcodesize [0, 0, address, size] <> * * ** dup and swap size for use by return at end of init code ** * 19 80 dup1 [0, 0, address, size, size] <> * 20 93 swap4 [size, 0, address, size, 0] <> * * ** push code position 0 to stack and reorder stack items for extcodecopy ** * 21 80 dup1 [size, 0, address, size, 0, 0] <> * 22 91 swap2 [size, 0, address, 0, 0, size] <> * 23 92 swap3 [size, 0, size, 0, 0, address] <> * * ** call extcodecopy, consume four items, clone runtime code to memory ** * 24 3c extcodecopy [size, 0] <code> * * ** return to deploy final code in memory ** * 25 f3 return [] *deployed!* */ contract SocketDeployFactory is Ownable { using SafeTransferLib for ERC20; address public immutable disabledRouteAddress; mapping(address => address) _implementations; mapping(uint256 => bool) isDisabled; mapping(uint256 => bool) isRouteDeployed; mapping(address => bool) canDisableRoute; event Deployed(address _addr); event DisabledRoute(address _addr); event Destroyed(address _addr); error ContractAlreadyDeployed(); error NothingToDestroy(); error AlreadyDisabled(); error CannotBeDisabled(); error OnlyDisabler(); constructor(address _owner, address disabledRoute) Ownable(_owner) { disabledRouteAddress = disabledRoute; canDisableRoute[_owner] = true; } modifier onlyDisabler() { if (!canDisableRoute[msg.sender]) { revert OnlyDisabler(); } _; } function addDisablerAddress(address disabler) external onlyOwner { canDisableRoute[disabler] = true; } function removeDisablerAddress(address disabler) external onlyOwner { canDisableRoute[disabler] = false; } /** * @notice Deploys a route contract at predetermined location * @notice Caller must first deploy the route contract at another location and pass its address as implementation. * @param routeId route identifier * @param implementationContract address of deployed route contract. Its byte code will be copied to predetermined location. */ function deploy( uint256 routeId, address implementationContract ) external onlyOwner returns (address) { // assign the initialization code for the socket contract. bytes memory initCode = ( hex"5860208158601c335a63aaf10f428752fa158151803b80938091923cf3" ); // determine the address of the socket contract. address routeContractAddress = _getContractAddress(routeId); if (isRouteDeployed[routeId]) { revert ContractAlreadyDeployed(); } isRouteDeployed[routeId] = true; //first we deploy the code we want to deploy on a separate address // store the implementation to be retrieved by the socket contract. _implementations[routeContractAddress] = implementationContract; address addr; assembly { let encoded_data := add(0x20, initCode) // load initialization code. let encoded_size := mload(initCode) // load init code's length. addr := create2(0, encoded_data, encoded_size, routeId) // routeId is used as salt } require( addr == routeContractAddress, "Failed to deploy the new socket contract." ); emit Deployed(addr); return addr; } /** * @notice Destroy the route deployed at a location. * @param routeId route identifier to be destroyed. */ function destroy(uint256 routeId) external onlyDisabler { // determine the address of the socket contract. _destroy(routeId); } /** * @notice Deploy a disabled contract at destroyed route to handle it gracefully. * @param routeId route identifier to be disabled. */ function disableRoute( uint256 routeId ) external onlyDisabler returns (address) { return _disableRoute(routeId); } /** * @notice Destroy a list of routeIds * @param routeIds array of routeIds to be destroyed. */ function multiDestroy(uint256[] calldata routeIds) external onlyDisabler { for (uint32 index = 0; index < routeIds.length; ) { _destroy(routeIds[index]); unchecked { ++index; } } } /** * @notice Deploy a disabled contract at list of routeIds. * @param routeIds array of routeIds to be disabled. */ function multiDisableRoute( uint256[] calldata routeIds ) external onlyDisabler { for (uint32 index = 0; index < routeIds.length; ) { _disableRoute(routeIds[index]); unchecked { ++index; } } } /** * @dev External view function for calculating a socket contract address * given a particular routeId. */ function getContractAddress( uint256 routeId ) external view returns (address) { // determine the address of the socket contract. return _getContractAddress(routeId); } //those two functions are getting called by the socket Contract function getImplementation() external view returns (address implementation) { return _implementations[msg.sender]; } function _disableRoute(uint256 routeId) internal returns (address) { // assign the initialization code for the socket contract. bytes memory initCode = ( hex"5860208158601c335a63aaf10f428752fa158151803b80938091923cf3" ); // determine the address of the socket contract. address routeContractAddress = _getContractAddress(routeId); if (!isRouteDeployed[routeId]) { revert CannotBeDisabled(); } if (isDisabled[routeId]) { revert AlreadyDisabled(); } isDisabled[routeId] = true; //first we deploy the code we want to deploy on a separate address // store the implementation to be retrieved by the socket contract. _implementations[routeContractAddress] = disabledRouteAddress; address addr; assembly { let encoded_data := add(0x20, initCode) // load initialization code. let encoded_size := mload(initCode) // load init code's length. addr := create2(0, encoded_data, encoded_size, routeId) // routeId is used as salt. } require( addr == routeContractAddress, "Failed to deploy the new socket contract." ); emit Deployed(addr); return addr; } function _destroy(uint256 routeId) internal { // determine the address of the socket contract. address routeContractAddress = _getContractAddress(routeId); if (!isRouteDeployed[routeId]) { revert NothingToDestroy(); } ISocketBridgeBase(routeContractAddress).killme(); emit Destroyed(routeContractAddress); } /** * @dev Internal view function for calculating a socket contract address * given a particular routeId. */ function _getContractAddress( uint256 routeId ) internal view returns (address) { // determine the address of the socket contract. bytes memory initCode = ( hex"5860208158601c335a63aaf10f428752fa158151803b80938091923cf3" ); return address( uint160( // downcast to match the address type. uint256( // convert to uint to truncate upper digits. keccak256( // compute the CREATE2 hash using 4 inputs. abi.encodePacked( // pack all inputs to the hash together. hex"ff", // start with 0xff to distinguish from RLP. address(this), // this contract will be the caller. routeId, // the routeId is used as salt. keccak256(abi.encodePacked(initCode)) // the init code hash. ) ) ) ) ); } /** * @notice Rescues the ERC20 token to an address this is a restricted function to be called by only socketGatewayOwner * @dev as this is a restricted to socketGatewayOwner, ensure the userAddress is a known address * @param token address of the ERC20 token being rescued * @param userAddress address to which ERC20 is to be rescued * @param amount amount of ERC20 tokens being rescued */ function rescueFunds( address token, address userAddress, uint256 amount ) external onlyOwner { ERC20(token).safeTransfer(userAddress, amount); } /** * @notice Rescues the native balance to an address this is a restricted function to be called by only socketGatewayOwner * @dev as this is a restricted to socketGatewayOwner, ensure the userAddress is a known address * @param userAddress address to which native-balance is to be rescued * @param amount amount of native-balance being rescued */ function rescueEther( address payable userAddress, uint256 amount ) external onlyOwner { userAddress.transfer(amount); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; error CelerRefundNotReady(); error OnlySocketDeployer(); error OnlySocketGatewayOwner(); error OnlySocketGateway(); error OnlyOwner(); error OnlyNominee(); error TransferIdExists(); error TransferIdDoesnotExist(); error Address0Provided(); error SwapFailed(); error UnsupportedInterfaceId(); error InvalidCelerRefund(); error CelerAlreadyRefunded(); error IncorrectBridgeRatios(); error ZeroAddressNotAllowed(); error ArrayLengthMismatch(); // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; interface ISocketBridgeBase { function killme() external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /** * @title ISocketController * @notice Interface for SocketController functions. * @dev functions can be added here for invocation from external contracts or off-chain * only restriction is that this should have functions to manage controllers * @author Socket dot tech. */ interface ISocketController { /** * @notice Add controller to the socketGateway This is a restricted function to be called by only socketGatewayOwner * @dev ensure controllerAddress is a verified controller implementation address * @param _controllerAddress The address of controller implementation contract deployed * @return Id of the controller added to the controllers-mapping in socketGateway storage */ function addController( address _controllerAddress ) external returns (uint32); /** * @notice disable controller by setting ZeroAddress to the entry in controllers-mapping identified by controllerId as key. This is a restricted function to be called by only socketGatewayOwner * @param _controllerId The Id of controller-implementation in the controllers mapping */ function disableController(uint32 _controllerId) external; /** * @notice Get controllerImplementation address mapped to the controllerId * @param _controllerId controllerId is the key in the mapping for controllers * @return controller-implementation address */ function getController(uint32 _controllerId) external returns (address); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /** * @title ISocketGateway * @notice Interface for SocketGateway functions. * @dev functions can be added here for invocation from external contracts or off-chain * @author Socket dot tech. */ interface ISocketGateway { /** * @notice Request-struct for controllerRequests * @dev ensure the value for data is generated using the function-selectors defined in the controllerImplementation contracts */ struct SocketControllerRequest { // controllerId is the id mapped to the controllerAddress uint32 controllerId; // transactionImplData generated off-chain or by caller using function-selector of the controllerContract bytes data; } // @notice view to get owner-address function owner() external view returns (address); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /** * @title ISocketRoute * @notice Interface with Request DataStructures to invoke controller functions. * @author Socket dot tech. */ interface ISocketRequest { struct SwapMultiBridgeRequest { uint32 swapRouteId; bytes swapImplData; uint32[] bridgeRouteIds; bytes[] bridgeImplDataItems; uint256[] bridgeRatios; bytes[] eventDataItems; } // Datastructure for Refuel-Swap-Bridge function struct RefuelSwapBridgeRequest { uint32 refuelRouteId; bytes refuelData; uint32 swapRouteId; bytes swapData; uint32 bridgeRouteId; bytes bridgeData; } // Datastructure for DeductFees-Swap function struct FeesTakerSwapRequest { address feesTakerAddress; address feesToken; uint256 feesAmount; uint32 routeId; bytes swapRequestData; } // Datastructure for DeductFees-Bridge function struct FeesTakerBridgeRequest { address feesTakerAddress; address feesToken; uint256 feesAmount; uint32 routeId; bytes bridgeRequestData; } // Datastructure for DeductFees-MultiBridge function struct FeesTakerMultiBridgeRequest { address feesTakerAddress; address feesToken; uint256 feesAmount; uint32[] bridgeRouteIds; bytes[] bridgeRequestDataItems; } // Datastructure for DeductFees-Swap-Bridge function struct FeesTakerSwapBridgeRequest { address feesTakerAddress; address feesToken; uint256 feesAmount; uint32 swapRouteId; bytes swapData; uint32 bridgeRouteId; bytes bridgeData; } // Datastructure for DeductFees-Refuel-Swap-Bridge function struct FeesTakerRefuelSwapBridgeRequest { address feesTakerAddress; address feesToken; uint256 feesAmount; uint32 refuelRouteId; bytes refuelData; uint32 swapRouteId; bytes swapData; uint32 bridgeRouteId; bytes bridgeData; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /** * @title ISocketRoute * @notice Interface for routeManagement functions in SocketGateway. * @author Socket dot tech. */ interface ISocketRoute { /** * @notice Add route to the socketGateway This is a restricted function to be called by only socketGatewayOwner * @dev ensure routeAddress is a verified bridge or middleware implementation address * @param routeAddress The address of bridge or middleware implementation contract deployed * @return Id of the route added to the routes-mapping in socketGateway storage */ function addRoute(address routeAddress) external returns (uint256); /** * @notice disable a route by setting ZeroAddress to the entry in routes-mapping identified by routeId as key. This is a restricted function to be called by only socketGatewayOwner * @param routeId The Id of route-implementation in the routes mapping */ function disableRoute(uint32 routeId) external; /** * @notice Get routeImplementation address mapped to the routeId * @param routeId routeId is the key in the mapping for routes * @return route-implementation address */ function getRoute(uint32 routeId) external view returns (address); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; // Functions taken out from https://github.com/GNSPS/solidity-bytes-utils/blob/master/contracts/BytesLib.sol library LibBytes { // solhint-disable no-inline-assembly // LibBytes specific errors error SliceOverflow(); error SliceOutOfBounds(); error AddressOutOfBounds(); error UintOutOfBounds(); // ------------------------- function concat( bytes memory _preBytes, bytes memory _postBytes ) internal pure returns (bytes memory) { bytes memory tempBytes; assembly { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // Store the length of the first bytes array at the beginning of // the memory for tempBytes. let length := mload(_preBytes) mstore(tempBytes, length) // Maintain a memory counter for the current write location in the // temp bytes array by adding the 32 bytes for the array length to // the starting location. let mc := add(tempBytes, 0x20) // Stop copying when the memory counter reaches the length of the // first bytes array. let end := add(mc, length) for { // Initialize a copy counter to the start of the _preBytes data, // 32 bytes into its memory. let cc := add(_preBytes, 0x20) } lt(mc, end) { // Increase both counters by 32 bytes each iteration. mc := add(mc, 0x20) cc := add(cc, 0x20) } { // Write the _preBytes data into the tempBytes memory 32 bytes // at a time. mstore(mc, mload(cc)) } // Add the length of _postBytes to the current length of tempBytes // and store it as the new length in the first 32 bytes of the // tempBytes memory. length := mload(_postBytes) mstore(tempBytes, add(length, mload(tempBytes))) // Move the memory counter back from a multiple of 0x20 to the // actual end of the _preBytes data. mc := end // Stop copying when the memory counter reaches the new combined // length of the arrays. end := add(mc, length) for { let cc := add(_postBytes, 0x20) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } // Update the free-memory pointer by padding our last write location // to 32 bytes: add 31 bytes to the end of tempBytes to move to the // next 32 byte block, then round down to the nearest multiple of // 32. If the sum of the length of the two arrays is zero then add // one before rounding down to leave a blank 32 bytes (the length block with 0). mstore( 0x40, and( add(add(end, iszero(add(length, mload(_preBytes)))), 31), not(31) // Round down to the nearest 32 bytes. ) ) } return tempBytes; } function slice( bytes memory _bytes, uint256 _start, uint256 _length ) internal pure returns (bytes memory) { if (_length + 31 < _length) { revert SliceOverflow(); } if (_bytes.length < _start + _length) { revert SliceOutOfBounds(); } bytes memory tempBytes; assembly { switch iszero(_length) case 0 { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // The first word of the slice result is potentially a partial // word read from the original array. To read it, we calculate // the length of that partial word and start copying that many // bytes into the array. The first word we copy will start with // data we don't care about, but the last `lengthmod` bytes will // land at the beginning of the contents of the new array. When // we're done copying, we overwrite the full first word with // the actual length of the slice. let lengthmod := and(_length, 31) // The multiplication in the next line is necessary // because when slicing multiples of 32 bytes (lengthmod == 0) // the following copy loop was copying the origin's length // and then ending prematurely not copying everything it should. let mc := add( add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)) ) let end := add(mc, _length) for { // The multiplication in the next line has the same exact purpose // as the one above. let cc := add( add( add(_bytes, lengthmod), mul(0x20, iszero(lengthmod)) ), _start ) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } mstore(tempBytes, _length) //update free-memory pointer //allocating the array padded to 32 bytes like the compiler does now mstore(0x40, and(add(mc, 31), not(31))) } //if we want a zero-length slice let's just return a zero-length array default { tempBytes := mload(0x40) //zero out the 32 bytes slice we are about to return //we need to do it because Solidity does not garbage collect mstore(tempBytes, 0) mstore(0x40, add(tempBytes, 0x20)) } } return tempBytes; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "./LibBytes.sol"; /// @title LibUtil library /// @notice library with helper functions to operate on bytes-data and addresses /// @author socket dot tech library LibUtil { /// @notice LibBytes library to handle operations on bytes using LibBytes for bytes; /// @notice function to extract revertMessage from bytes data /// @dev use the revertMessage and then further revert with a custom revert and message /// @param _res bytes data received from the transaction call function getRevertMsg( bytes memory _res ) internal pure returns (string memory) { // If the _res length is less than 68, then the transaction failed silently (without a revert message) if (_res.length < 68) { return "Transaction reverted silently"; } bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes return abi.decode(revertData, (string)); // All that remains is the revert string } } // SPDX-License-Identifier: GPL-3.0-only pragma solidity ^0.8.4; // runtime proto sol library library Pb { enum WireType { Varint, Fixed64, LengthDelim, StartGroup, EndGroup, Fixed32 } struct Buffer { uint256 idx; // the start index of next read. when idx=b.length, we're done bytes b; // hold serialized proto msg, readonly } // create a new in-memory Buffer object from raw msg bytes function fromBytes( bytes memory raw ) internal pure returns (Buffer memory buf) { buf.b = raw; buf.idx = 0; } // whether there are unread bytes function hasMore(Buffer memory buf) internal pure returns (bool) { return buf.idx < buf.b.length; } // decode current field number and wiretype function decKey( Buffer memory buf ) internal pure returns (uint256 tag, WireType wiretype) { uint256 v = decVarint(buf); tag = v / 8; wiretype = WireType(v & 7); } // read varint from current buf idx, move buf.idx to next read, return the int value function decVarint(Buffer memory buf) internal pure returns (uint256 v) { bytes10 tmp; // proto int is at most 10 bytes (7 bits can be used per byte) bytes memory bb = buf.b; // get buf.b mem addr to use in assembly v = buf.idx; // use v to save one additional uint variable assembly { tmp := mload(add(add(bb, 32), v)) // load 10 bytes from buf.b[buf.idx] to tmp } uint256 b; // store current byte content v = 0; // reset to 0 for return value for (uint256 i = 0; i < 10; i++) { assembly { b := byte(i, tmp) // don't use tmp[i] because it does bound check and costs extra } v |= (b & 0x7F) << (i * 7); if (b & 0x80 == 0) { buf.idx += i + 1; return v; } } revert(); // i=10, invalid varint stream } // read length delimited field and return bytes function decBytes( Buffer memory buf ) internal pure returns (bytes memory b) { uint256 len = decVarint(buf); uint256 end = buf.idx + len; require(end <= buf.b.length); // avoid overflow b = new bytes(len); bytes memory bufB = buf.b; // get buf.b mem addr to use in assembly uint256 bStart; uint256 bufBStart = buf.idx; assembly { bStart := add(b, 32) bufBStart := add(add(bufB, 32), bufBStart) } for (uint256 i = 0; i < len; i += 32) { assembly { mstore(add(bStart, i), mload(add(bufBStart, i))) } } buf.idx = end; } // move idx pass current value field, to beginning of next tag or msg end function skipValue(Buffer memory buf, WireType wire) internal pure { if (wire == WireType.Varint) { decVarint(buf); } else if (wire == WireType.LengthDelim) { uint256 len = decVarint(buf); buf.idx += len; // skip len bytes value data require(buf.idx <= buf.b.length); // avoid overflow } else { revert(); } // unsupported wiretype } function _uint256(bytes memory b) internal pure returns (uint256 v) { require(b.length <= 32); // b's length must be smaller than or equal to 32 assembly { v := mload(add(b, 32)) } // load all 32bytes to v v = v >> (8 * (32 - b.length)); // only first b.length is valid } function _address(bytes memory b) internal pure returns (address v) { v = _addressPayable(b); } function _addressPayable( bytes memory b ) internal pure returns (address payable v) { require(b.length == 20); //load 32bytes then shift right 12 bytes assembly { v := div(mload(add(b, 32)), 0x1000000000000000000000000) } } function _bytes32(bytes memory b) internal pure returns (bytes32 v) { require(b.length == 32); assembly { v := mload(add(b, 32)) } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; pragma experimental ABIEncoderV2; import "./utils/Ownable.sol"; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {LibUtil} from "./libraries/LibUtil.sol"; import "./libraries/LibBytes.sol"; import {ISocketRoute} from "./interfaces/ISocketRoute.sol"; import {ISocketRequest} from "./interfaces/ISocketRequest.sol"; import {ISocketGateway} from "./interfaces/ISocketGateway.sol"; import {IncorrectBridgeRatios, ZeroAddressNotAllowed, ArrayLengthMismatch} from "./errors/SocketErrors.sol"; /// @title SocketGatewayContract /// @notice Socketgateway is a contract with entrypoint functions for all interactions with socket liquidity layer /// @author Socket Team contract SocketGatewayTemplate is Ownable { using LibBytes for bytes; using LibBytes for bytes4; using SafeTransferLib for ERC20; /// @notice FunctionSelector used to delegatecall from swap to the function of bridge router implementation bytes4 public immutable BRIDGE_AFTER_SWAP_SELECTOR = bytes4(keccak256("bridgeAfterSwap(uint256,bytes)")); /// @notice storage variable to keep track of total number of routes registered in socketgateway uint32 public routesCount = 385; /// @notice storage variable to keep track of total number of controllers registered in socketgateway uint32 public controllerCount; address public immutable disabledRouteAddress; uint256 public constant CENT_PERCENT = 100e18; /// @notice storage mapping for route implementation addresses mapping(uint32 => address) public routes; /// storage mapping for controller implemenation addresses mapping(uint32 => address) public controllers; // Events -------------------------------------------------------------------------------------------------------> /// @notice Event emitted when a router is added to socketgateway event NewRouteAdded(uint32 indexed routeId, address indexed route); /// @notice Event emitted when a route is disabled event RouteDisabled(uint32 indexed routeId); /// @notice Event emitted when ownership transfer is requested by socket-gateway-owner event OwnershipTransferRequested( address indexed _from, address indexed _to ); /// @notice Event emitted when a controller is added to socketgateway event ControllerAdded( uint32 indexed controllerId, address indexed controllerAddress ); /// @notice Event emitted when a controller is disabled event ControllerDisabled(uint32 indexed controllerId); constructor(address _owner, address _disabledRoute) Ownable(_owner) { disabledRouteAddress = _disabledRoute; } // Able to receive ether // solhint-disable-next-line no-empty-blocks receive() external payable {} /******************************************* * EXTERNAL AND PUBLIC FUNCTIONS * *******************************************/ /** * @notice executes functions in the routes identified using routeId and functionSelectorData * @notice The caller must first approve this contract to spend amount of ERC20-Token being bridged/swapped * @dev ensure the data in routeData to be built using the function-selector defined as a * constant in the route implementation contract * @param routeId route identifier * @param routeData functionSelectorData generated using the function-selector defined in the route Implementation */ function executeRoute( uint32 routeId, bytes calldata routeData ) external payable returns (bytes memory) { (bool success, bytes memory result) = addressAt(routeId).delegatecall( routeData ); if (!success) { assembly { revert(add(result, 32), mload(result)) } } return result; } /** * @notice swaps a token on sourceChain and split it across multiple bridge-recipients * @notice The caller must first approve this contract to spend amount of ERC20-Token being swapped * @dev ensure the swap-data and bridge-data is generated using the function-selector defined as a constant in the implementation address * @param swapMultiBridgeRequest request */ function swapAndMultiBridge( ISocketRequest.SwapMultiBridgeRequest calldata swapMultiBridgeRequest ) external payable { uint256 requestLength = swapMultiBridgeRequest.bridgeRouteIds.length; if ( requestLength != swapMultiBridgeRequest.bridgeImplDataItems.length ) { revert ArrayLengthMismatch(); } uint256 ratioAggregate; for (uint256 index = 0; index < requestLength; ) { ratioAggregate += swapMultiBridgeRequest.bridgeRatios[index]; } if (ratioAggregate != CENT_PERCENT) { revert IncorrectBridgeRatios(); } (bool swapSuccess, bytes memory swapResult) = addressAt( swapMultiBridgeRequest.swapRouteId ).delegatecall(swapMultiBridgeRequest.swapImplData); if (!swapSuccess) { assembly { revert(add(swapResult, 32), mload(swapResult)) } } uint256 amountReceivedFromSwap = abi.decode(swapResult, (uint256)); uint256 bridgedAmount; for (uint256 index = 0; index < requestLength; ) { uint256 bridgingAmount; // if it is the last bridge request, bridge the remaining amount if (index == requestLength - 1) { bridgingAmount = amountReceivedFromSwap - bridgedAmount; } else { // bridging amount is the multiplication of bridgeRatio and amountReceivedFromSwap bridgingAmount = (amountReceivedFromSwap * swapMultiBridgeRequest.bridgeRatios[index]) / (CENT_PERCENT); } // update the bridged amount, this would be used for computation for last bridgeRequest bridgedAmount += bridgingAmount; bytes memory bridgeImpldata = abi.encodeWithSelector( BRIDGE_AFTER_SWAP_SELECTOR, bridgingAmount, swapMultiBridgeRequest.bridgeImplDataItems[index] ); (bool bridgeSuccess, bytes memory bridgeResult) = addressAt( swapMultiBridgeRequest.bridgeRouteIds[index] ).delegatecall(bridgeImpldata); if (!bridgeSuccess) { assembly { revert(add(bridgeResult, 32), mload(bridgeResult)) } } unchecked { ++index; } } } /** * @notice sequentially executes functions in the routes identified using routeId and functionSelectorData * @notice The caller must first approve this contract to spend amount of ERC20-Token being bridged/swapped * @dev ensure the data in each dataItem to be built using the function-selector defined as a * constant in the route implementation contract * @param routeIds a list of route identifiers * @param dataItems a list of functionSelectorData generated using the function-selector defined in the route Implementation */ function executeRoutes( uint32[] calldata routeIds, bytes[] calldata dataItems ) external payable { uint256 routeIdslength = routeIds.length; if (routeIdslength != dataItems.length) revert ArrayLengthMismatch(); for (uint256 index = 0; index < routeIdslength; ) { (bool success, bytes memory result) = addressAt(routeIds[index]) .delegatecall(dataItems[index]); if (!success) { assembly { revert(add(result, 32), mload(result)) } } unchecked { ++index; } } } /** * @notice execute a controller function identified using the controllerId in the request * @notice The caller must first approve this contract to spend amount of ERC20-Token being bridged/swapped * @dev ensure the data in request to be built using the function-selector defined as a * constant in the controller implementation contract * @param socketControllerRequest socketControllerRequest with controllerId to identify the * controllerAddress and byteData constructed using functionSelector * of the function being invoked * @return bytes data received from the call delegated to controller */ function executeController( ISocketGateway.SocketControllerRequest calldata socketControllerRequest ) external payable returns (bytes memory) { (bool success, bytes memory result) = controllers[ socketControllerRequest.controllerId ].delegatecall(socketControllerRequest.data); if (!success) { assembly { revert(add(result, 32), mload(result)) } } return result; } /** * @notice sequentially executes all controller requests * @notice The caller must first approve this contract to spend amount of ERC20-Token being bridged/swapped * @dev ensure the data in each controller-request to be built using the function-selector defined as a * constant in the controller implementation contract * @param controllerRequests a list of socketControllerRequest * Each controllerRequest contains controllerId to identify the controllerAddress and * byteData constructed using functionSelector of the function being invoked */ function executeControllers( ISocketGateway.SocketControllerRequest[] calldata controllerRequests ) external payable { for (uint32 index = 0; index < controllerRequests.length; ) { (bool success, bytes memory result) = controllers[ controllerRequests[index].controllerId ].delegatecall(controllerRequests[index].data); if (!success) { assembly { revert(add(result, 32), mload(result)) } } unchecked { ++index; } } } /************************************** * ADMIN FUNCTIONS * **************************************/ /** * @notice Add route to the socketGateway This is a restricted function to be called by only socketGatewayOwner * @dev ensure routeAddress is a verified bridge or middleware implementation address * @param routeAddress The address of bridge or middleware implementation contract deployed * @return Id of the route added to the routes-mapping in socketGateway storage */ function addRoute( address routeAddress ) external onlyOwner returns (uint32) { uint32 routeId = routesCount; routes[routeId] = routeAddress; routesCount += 1; emit NewRouteAdded(routeId, routeAddress); return routeId; } /** * @notice Give Infinite or 0 approval to bridgeRoute for the tokenAddress This is a restricted function to be called by only socketGatewayOwner */ function setApprovalForRouters( address[] memory routeAddresses, address[] memory tokenAddresses, bool isMax ) external onlyOwner { for (uint32 index = 0; index < routeAddresses.length; ) { ERC20(tokenAddresses[index]).approve( routeAddresses[index], isMax ? type(uint256).max : 0 ); unchecked { ++index; } } } /** * @notice Add controller to the socketGateway This is a restricted function to be called by only socketGatewayOwner * @dev ensure controllerAddress is a verified controller implementation address * @param controllerAddress The address of controller implementation contract deployed * @return Id of the controller added to the controllers-mapping in socketGateway storage */ function addController( address controllerAddress ) external onlyOwner returns (uint32) { uint32 controllerId = controllerCount; controllers[controllerId] = controllerAddress; controllerCount += 1; emit ControllerAdded(controllerId, controllerAddress); return controllerId; } /** * @notice disable controller by setting ZeroAddress to the entry in controllers-mapping identified by controllerId as key. This is a restricted function to be called by only socketGatewayOwner * @param controllerId The Id of controller-implementation in the controllers mapping */ function disableController(uint32 controllerId) public onlyOwner { controllers[controllerId] = disabledRouteAddress; emit ControllerDisabled(controllerId); } /** * @notice disable a route by setting ZeroAddress to the entry in routes-mapping identified by routeId as key. This is a restricted function to be called by only socketGatewayOwner * @param routeId The Id of route-implementation in the routes mapping */ function disableRoute(uint32 routeId) external onlyOwner { routes[routeId] = disabledRouteAddress; emit RouteDisabled(routeId); } /******************************************* * RESTRICTED RESCUE FUNCTIONS * *******************************************/ /** * @notice Rescues the ERC20 token to an address this is a restricted function to be called by only socketGatewayOwner * @dev as this is a restricted to socketGatewayOwner, ensure the userAddress is a known address * @param token address of the ERC20 token being rescued * @param userAddress address to which ERC20 is to be rescued * @param amount amount of ERC20 tokens being rescued */ function rescueFunds( address token, address userAddress, uint256 amount ) external onlyOwner { ERC20(token).safeTransfer(userAddress, amount); } /** * @notice Rescues the native balance to an address this is a restricted function to be called by only socketGatewayOwner * @dev as this is a restricted to socketGatewayOwner, ensure the userAddress is a known address * @param userAddress address to which native-balance is to be rescued * @param amount amount of native-balance being rescued */ function rescueEther( address payable userAddress, uint256 amount ) external onlyOwner { userAddress.transfer(amount); } /******************************************* * VIEW FUNCTIONS * *******************************************/ /** * @notice Get routeImplementation address mapped to the routeId * @param routeId routeId is the key in the mapping for routes * @return route-implementation address */ function getRoute(uint32 routeId) public view returns (address) { return addressAt(routeId); } /** * @notice Get controllerImplementation address mapped to the controllerId * @param controllerId controllerId is the key in the mapping for controllers * @return controller-implementation address */ function getController(uint32 controllerId) public view returns (address) { return controllers[controllerId]; } function addressAt(uint32 routeId) public view returns (address) { if (routeId < 385) { if (routeId < 257) { if (routeId < 129) { if (routeId < 65) { if (routeId < 33) { if (routeId < 17) { if (routeId < 9) { if (routeId < 5) { if (routeId < 3) { if (routeId == 1) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 3) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 7) { if (routeId == 5) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 7) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 13) { if (routeId < 11) { if (routeId == 9) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 11) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 15) { if (routeId == 13) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 15) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 25) { if (routeId < 21) { if (routeId < 19) { if (routeId == 17) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 19) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 23) { if (routeId == 21) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 23) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 29) { if (routeId < 27) { if (routeId == 25) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 27) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 31) { if (routeId == 29) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 31) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } else { if (routeId < 49) { if (routeId < 41) { if (routeId < 37) { if (routeId < 35) { if (routeId == 33) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 35) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 39) { if (routeId == 37) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 39) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 45) { if (routeId < 43) { if (routeId == 41) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 43) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 47) { if (routeId == 45) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 47) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 57) { if (routeId < 53) { if (routeId < 51) { if (routeId == 49) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 51) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 55) { if (routeId == 53) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 55) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 61) { if (routeId < 59) { if (routeId == 57) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 59) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 63) { if (routeId == 61) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 63) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } } else { if (routeId < 97) { if (routeId < 81) { if (routeId < 73) { if (routeId < 69) { if (routeId < 67) { if (routeId == 65) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 67) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 71) { if (routeId == 69) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 71) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 77) { if (routeId < 75) { if (routeId == 73) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 75) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 79) { if (routeId == 77) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 79) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 89) { if (routeId < 85) { if (routeId < 83) { if (routeId == 81) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 83) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 87) { if (routeId == 85) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 87) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 93) { if (routeId < 91) { if (routeId == 89) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 91) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 95) { if (routeId == 93) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 95) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } else { if (routeId < 113) { if (routeId < 105) { if (routeId < 101) { if (routeId < 99) { if (routeId == 97) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 99) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 103) { if (routeId == 101) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 103) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 109) { if (routeId < 107) { if (routeId == 105) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 107) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 111) { if (routeId == 109) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 111) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 121) { if (routeId < 117) { if (routeId < 115) { if (routeId == 113) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 115) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 119) { if (routeId == 117) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 119) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 125) { if (routeId < 123) { if (routeId == 121) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 123) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 127) { if (routeId == 125) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 127) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } } } else { if (routeId < 193) { if (routeId < 161) { if (routeId < 145) { if (routeId < 137) { if (routeId < 133) { if (routeId < 131) { if (routeId == 129) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 131) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 135) { if (routeId == 133) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 135) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 141) { if (routeId < 139) { if (routeId == 137) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 139) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 143) { if (routeId == 141) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 143) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 153) { if (routeId < 149) { if (routeId < 147) { if (routeId == 145) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 147) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 151) { if (routeId == 149) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 151) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 157) { if (routeId < 155) { if (routeId == 153) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 155) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 159) { if (routeId == 157) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 159) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } else { if (routeId < 177) { if (routeId < 169) { if (routeId < 165) { if (routeId < 163) { if (routeId == 161) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 163) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 167) { if (routeId == 165) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 167) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 173) { if (routeId < 171) { if (routeId == 169) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 171) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 175) { if (routeId == 173) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 175) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 185) { if (routeId < 181) { if (routeId < 179) { if (routeId == 177) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 179) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 183) { if (routeId == 181) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 183) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 189) { if (routeId < 187) { if (routeId == 185) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 187) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 191) { if (routeId == 189) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 191) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } } else { if (routeId < 225) { if (routeId < 209) { if (routeId < 201) { if (routeId < 197) { if (routeId < 195) { if (routeId == 193) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 195) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 199) { if (routeId == 197) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 199) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 205) { if (routeId < 203) { if (routeId == 201) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 203) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 207) { if (routeId == 205) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 207) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 217) { if (routeId < 213) { if (routeId < 211) { if (routeId == 209) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 211) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 215) { if (routeId == 213) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 215) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 221) { if (routeId < 219) { if (routeId == 217) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 219) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 223) { if (routeId == 221) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 223) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } else { if (routeId < 241) { if (routeId < 233) { if (routeId < 229) { if (routeId < 227) { if (routeId == 225) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 227) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 231) { if (routeId == 229) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 231) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 237) { if (routeId < 235) { if (routeId == 233) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 235) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 239) { if (routeId == 237) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 239) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 249) { if (routeId < 245) { if (routeId < 243) { if (routeId == 241) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 243) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 247) { if (routeId == 245) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 247) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 253) { if (routeId < 251) { if (routeId == 249) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 251) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 255) { if (routeId == 253) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 255) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } } } } else { if (routeId < 321) { if (routeId < 289) { if (routeId < 273) { if (routeId < 265) { if (routeId < 261) { if (routeId < 259) { if (routeId == 257) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 259) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 263) { if (routeId == 261) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 263) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 269) { if (routeId < 267) { if (routeId == 265) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 267) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 271) { if (routeId == 269) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 271) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 281) { if (routeId < 277) { if (routeId < 275) { if (routeId == 273) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 275) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 279) { if (routeId == 277) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 279) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 285) { if (routeId < 283) { if (routeId == 281) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 283) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 287) { if (routeId == 285) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 287) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } else { if (routeId < 305) { if (routeId < 297) { if (routeId < 293) { if (routeId < 291) { if (routeId == 289) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 291) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 295) { if (routeId == 293) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 295) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 301) { if (routeId < 299) { if (routeId == 297) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 299) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 303) { if (routeId == 301) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 303) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 313) { if (routeId < 309) { if (routeId < 307) { if (routeId == 305) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 307) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 311) { if (routeId == 309) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 311) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 317) { if (routeId < 315) { if (routeId == 313) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 315) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 319) { if (routeId == 317) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 319) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } } else { if (routeId < 353) { if (routeId < 337) { if (routeId < 329) { if (routeId < 325) { if (routeId < 323) { if (routeId == 321) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 323) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 327) { if (routeId == 325) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 327) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 333) { if (routeId < 331) { if (routeId == 329) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 331) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 335) { if (routeId == 333) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 335) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 345) { if (routeId < 341) { if (routeId < 339) { if (routeId == 337) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 339) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 343) { if (routeId == 341) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 343) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 349) { if (routeId < 347) { if (routeId == 345) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 347) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 351) { if (routeId == 349) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 351) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } else { if (routeId < 369) { if (routeId < 361) { if (routeId < 357) { if (routeId < 355) { if (routeId == 353) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 355) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 359) { if (routeId == 357) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 359) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 365) { if (routeId < 363) { if (routeId == 361) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 363) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 367) { if (routeId == 365) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 367) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 377) { if (routeId < 373) { if (routeId < 371) { if (routeId == 369) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 371) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 375) { if (routeId == 373) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 375) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 381) { if (routeId < 379) { if (routeId == 377) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 379) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 383) { if (routeId == 381) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 383) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } } } } if (routes[routeId] == address(0)) revert ZeroAddressNotAllowed(); return routes[routeId]; } /// @notice fallback function to handle swap, bridge execution /// @dev ensure routeId is converted to bytes4 and sent as msg.sig in the transaction fallback() external payable { address routeAddress = addressAt(uint32(msg.sig)); bytes memory result; assembly { // copy function selector and any arguments calldatacopy(0, 4, sub(calldatasize(), 4)) // execute function call using the facet result := delegatecall( gas(), routeAddress, 0, sub(calldatasize(), 4), 0, 0 ) // get any return value returndatacopy(0, 0, returndatasize()) // return any return value or error back to the caller switch result case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; pragma experimental ABIEncoderV2; import "./utils/Ownable.sol"; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {LibUtil} from "./libraries/LibUtil.sol"; import "./libraries/LibBytes.sol"; import {ISocketRoute} from "./interfaces/ISocketRoute.sol"; import {ISocketRequest} from "./interfaces/ISocketRequest.sol"; import {ISocketGateway} from "./interfaces/ISocketGateway.sol"; import {IncorrectBridgeRatios, ZeroAddressNotAllowed, ArrayLengthMismatch} from "./errors/SocketErrors.sol"; /// @title SocketGatewayContract /// @notice Socketgateway is a contract with entrypoint functions for all interactions with socket liquidity layer /// @author Socket Team contract SocketGateway is Ownable { using LibBytes for bytes; using LibBytes for bytes4; using SafeTransferLib for ERC20; /// @notice FunctionSelector used to delegatecall from swap to the function of bridge router implementation bytes4 public immutable BRIDGE_AFTER_SWAP_SELECTOR = bytes4(keccak256("bridgeAfterSwap(uint256,bytes)")); /// @notice storage variable to keep track of total number of routes registered in socketgateway uint32 public routesCount = 385; /// @notice storage variable to keep track of total number of controllers registered in socketgateway uint32 public controllerCount; address public immutable disabledRouteAddress; uint256 public constant CENT_PERCENT = 100e18; /// @notice storage mapping for route implementation addresses mapping(uint32 => address) public routes; /// storage mapping for controller implemenation addresses mapping(uint32 => address) public controllers; // Events -------------------------------------------------------------------------------------------------------> /// @notice Event emitted when a router is added to socketgateway event NewRouteAdded(uint32 indexed routeId, address indexed route); /// @notice Event emitted when a route is disabled event RouteDisabled(uint32 indexed routeId); /// @notice Event emitted when ownership transfer is requested by socket-gateway-owner event OwnershipTransferRequested( address indexed _from, address indexed _to ); /// @notice Event emitted when a controller is added to socketgateway event ControllerAdded( uint32 indexed controllerId, address indexed controllerAddress ); /// @notice Event emitted when a controller is disabled event ControllerDisabled(uint32 indexed controllerId); constructor(address _owner, address _disabledRoute) Ownable(_owner) { disabledRouteAddress = _disabledRoute; } // Able to receive ether // solhint-disable-next-line no-empty-blocks receive() external payable {} /******************************************* * EXTERNAL AND PUBLIC FUNCTIONS * *******************************************/ /** * @notice executes functions in the routes identified using routeId and functionSelectorData * @notice The caller must first approve this contract to spend amount of ERC20-Token being bridged/swapped * @dev ensure the data in routeData to be built using the function-selector defined as a * constant in the route implementation contract * @param routeId route identifier * @param routeData functionSelectorData generated using the function-selector defined in the route Implementation */ function executeRoute( uint32 routeId, bytes calldata routeData ) external payable returns (bytes memory) { (bool success, bytes memory result) = addressAt(routeId).delegatecall( routeData ); if (!success) { assembly { revert(add(result, 32), mload(result)) } } return result; } /** * @notice swaps a token on sourceChain and split it across multiple bridge-recipients * @notice The caller must first approve this contract to spend amount of ERC20-Token being swapped * @dev ensure the swap-data and bridge-data is generated using the function-selector defined as a constant in the implementation address * @param swapMultiBridgeRequest request */ function swapAndMultiBridge( ISocketRequest.SwapMultiBridgeRequest calldata swapMultiBridgeRequest ) external payable { uint256 requestLength = swapMultiBridgeRequest.bridgeRouteIds.length; if ( requestLength != swapMultiBridgeRequest.bridgeImplDataItems.length ) { revert ArrayLengthMismatch(); } uint256 ratioAggregate; for (uint256 index = 0; index < requestLength; ) { ratioAggregate += swapMultiBridgeRequest.bridgeRatios[index]; } if (ratioAggregate != CENT_PERCENT) { revert IncorrectBridgeRatios(); } (bool swapSuccess, bytes memory swapResult) = addressAt( swapMultiBridgeRequest.swapRouteId ).delegatecall(swapMultiBridgeRequest.swapImplData); if (!swapSuccess) { assembly { revert(add(swapResult, 32), mload(swapResult)) } } uint256 amountReceivedFromSwap = abi.decode(swapResult, (uint256)); uint256 bridgedAmount; for (uint256 index = 0; index < requestLength; ) { uint256 bridgingAmount; // if it is the last bridge request, bridge the remaining amount if (index == requestLength - 1) { bridgingAmount = amountReceivedFromSwap - bridgedAmount; } else { // bridging amount is the multiplication of bridgeRatio and amountReceivedFromSwap bridgingAmount = (amountReceivedFromSwap * swapMultiBridgeRequest.bridgeRatios[index]) / (CENT_PERCENT); } // update the bridged amount, this would be used for computation for last bridgeRequest bridgedAmount += bridgingAmount; bytes memory bridgeImpldata = abi.encodeWithSelector( BRIDGE_AFTER_SWAP_SELECTOR, bridgingAmount, swapMultiBridgeRequest.bridgeImplDataItems[index] ); (bool bridgeSuccess, bytes memory bridgeResult) = addressAt( swapMultiBridgeRequest.bridgeRouteIds[index] ).delegatecall(bridgeImpldata); if (!bridgeSuccess) { assembly { revert(add(bridgeResult, 32), mload(bridgeResult)) } } unchecked { ++index; } } } /** * @notice sequentially executes functions in the routes identified using routeId and functionSelectorData * @notice The caller must first approve this contract to spend amount of ERC20-Token being bridged/swapped * @dev ensure the data in each dataItem to be built using the function-selector defined as a * constant in the route implementation contract * @param routeIds a list of route identifiers * @param dataItems a list of functionSelectorData generated using the function-selector defined in the route Implementation */ function executeRoutes( uint32[] calldata routeIds, bytes[] calldata dataItems ) external payable { uint256 routeIdslength = routeIds.length; if (routeIdslength != dataItems.length) revert ArrayLengthMismatch(); for (uint256 index = 0; index < routeIdslength; ) { (bool success, bytes memory result) = addressAt(routeIds[index]) .delegatecall(dataItems[index]); if (!success) { assembly { revert(add(result, 32), mload(result)) } } unchecked { ++index; } } } /** * @notice execute a controller function identified using the controllerId in the request * @notice The caller must first approve this contract to spend amount of ERC20-Token being bridged/swapped * @dev ensure the data in request to be built using the function-selector defined as a * constant in the controller implementation contract * @param socketControllerRequest socketControllerRequest with controllerId to identify the * controllerAddress and byteData constructed using functionSelector * of the function being invoked * @return bytes data received from the call delegated to controller */ function executeController( ISocketGateway.SocketControllerRequest calldata socketControllerRequest ) external payable returns (bytes memory) { (bool success, bytes memory result) = controllers[ socketControllerRequest.controllerId ].delegatecall(socketControllerRequest.data); if (!success) { assembly { revert(add(result, 32), mload(result)) } } return result; } /** * @notice sequentially executes all controller requests * @notice The caller must first approve this contract to spend amount of ERC20-Token being bridged/swapped * @dev ensure the data in each controller-request to be built using the function-selector defined as a * constant in the controller implementation contract * @param controllerRequests a list of socketControllerRequest * Each controllerRequest contains controllerId to identify the controllerAddress and * byteData constructed using functionSelector of the function being invoked */ function executeControllers( ISocketGateway.SocketControllerRequest[] calldata controllerRequests ) external payable { for (uint32 index = 0; index < controllerRequests.length; ) { (bool success, bytes memory result) = controllers[ controllerRequests[index].controllerId ].delegatecall(controllerRequests[index].data); if (!success) { assembly { revert(add(result, 32), mload(result)) } } unchecked { ++index; } } } /************************************** * ADMIN FUNCTIONS * **************************************/ /** * @notice Add route to the socketGateway This is a restricted function to be called by only socketGatewayOwner * @dev ensure routeAddress is a verified bridge or middleware implementation address * @param routeAddress The address of bridge or middleware implementation contract deployed * @return Id of the route added to the routes-mapping in socketGateway storage */ function addRoute( address routeAddress ) external onlyOwner returns (uint32) { uint32 routeId = routesCount; routes[routeId] = routeAddress; routesCount += 1; emit NewRouteAdded(routeId, routeAddress); return routeId; } /** * @notice Give Infinite or 0 approval to bridgeRoute for the tokenAddress This is a restricted function to be called by only socketGatewayOwner */ function setApprovalForRouters( address[] memory routeAddresses, address[] memory tokenAddresses, bool isMax ) external onlyOwner { for (uint32 index = 0; index < routeAddresses.length; ) { ERC20(tokenAddresses[index]).approve( routeAddresses[index], isMax ? type(uint256).max : 0 ); unchecked { ++index; } } } /** * @notice Add controller to the socketGateway This is a restricted function to be called by only socketGatewayOwner * @dev ensure controllerAddress is a verified controller implementation address * @param controllerAddress The address of controller implementation contract deployed * @return Id of the controller added to the controllers-mapping in socketGateway storage */ function addController( address controllerAddress ) external onlyOwner returns (uint32) { uint32 controllerId = controllerCount; controllers[controllerId] = controllerAddress; controllerCount += 1; emit ControllerAdded(controllerId, controllerAddress); return controllerId; } /** * @notice disable controller by setting ZeroAddress to the entry in controllers-mapping identified by controllerId as key. This is a restricted function to be called by only socketGatewayOwner * @param controllerId The Id of controller-implementation in the controllers mapping */ function disableController(uint32 controllerId) public onlyOwner { controllers[controllerId] = disabledRouteAddress; emit ControllerDisabled(controllerId); } /** * @notice disable a route by setting ZeroAddress to the entry in routes-mapping identified by routeId as key. This is a restricted function to be called by only socketGatewayOwner * @param routeId The Id of route-implementation in the routes mapping */ function disableRoute(uint32 routeId) external onlyOwner { routes[routeId] = disabledRouteAddress; emit RouteDisabled(routeId); } /******************************************* * RESTRICTED RESCUE FUNCTIONS * *******************************************/ /** * @notice Rescues the ERC20 token to an address this is a restricted function to be called by only socketGatewayOwner * @dev as this is a restricted to socketGatewayOwner, ensure the userAddress is a known address * @param token address of the ERC20 token being rescued * @param userAddress address to which ERC20 is to be rescued * @param amount amount of ERC20 tokens being rescued */ function rescueFunds( address token, address userAddress, uint256 amount ) external onlyOwner { ERC20(token).safeTransfer(userAddress, amount); } /** * @notice Rescues the native balance to an address this is a restricted function to be called by only socketGatewayOwner * @dev as this is a restricted to socketGatewayOwner, ensure the userAddress is a known address * @param userAddress address to which native-balance is to be rescued * @param amount amount of native-balance being rescued */ function rescueEther( address payable userAddress, uint256 amount ) external onlyOwner { userAddress.transfer(amount); } /******************************************* * VIEW FUNCTIONS * *******************************************/ /** * @notice Get routeImplementation address mapped to the routeId * @param routeId routeId is the key in the mapping for routes * @return route-implementation address */ function getRoute(uint32 routeId) public view returns (address) { return addressAt(routeId); } /** * @notice Get controllerImplementation address mapped to the controllerId * @param controllerId controllerId is the key in the mapping for controllers * @return controller-implementation address */ function getController(uint32 controllerId) public view returns (address) { return controllers[controllerId]; } function addressAt(uint32 routeId) public view returns (address) { if (routeId < 385) { if (routeId < 257) { if (routeId < 129) { if (routeId < 65) { if (routeId < 33) { if (routeId < 17) { if (routeId < 9) { if (routeId < 5) { if (routeId < 3) { if (routeId == 1) { return 0x8cd6BaCDAe46B449E2e5B34e348A4eD459c84D50; } else { return 0x31524750Cd865fF6A3540f232754Fb974c18585C; } } else { if (routeId == 3) { return 0xEd9b37342BeC8f3a2D7b000732ec87498aA6EC6a; } else { return 0xE8704Ef6211F8988Ccbb11badC89841808d66890; } } } else { if (routeId < 7) { if (routeId == 5) { return 0x9aFF58C460a461578C433e11C4108D1c4cF77761; } else { return 0x2D1733886cFd465B0B99F1492F40847495f334C5; } } else { if (routeId == 7) { return 0x715497Be4D130F04B8442F0A1F7a9312D4e54FC4; } else { return 0x90C8a40c38E633B5B0e0d0585b9F7FA05462CaaF; } } } } else { if (routeId < 13) { if (routeId < 11) { if (routeId == 9) { return 0xa402b70FCfF3F4a8422B93Ef58E895021eAdE4F6; } else { return 0xc1B718522E15CD42C4Ac385a929fc2B51f5B892e; } } else { if (routeId == 11) { return 0xa97bf2f7c26C43c010c349F52f5eA5dC49B2DD38; } else { return 0x969423d71b62C81d2f28d707364c9Dc4a0764c53; } } } else { if (routeId < 15) { if (routeId == 13) { return 0xF86729934C083fbEc8C796068A1fC60701Ea1207; } else { return 0xD7cC2571F5823caCA26A42690D2BE7803DD5393f; } } else { if (routeId == 15) { return 0x7c8837a279bbbf7d8B93413763176de9F65d5bB9; } else { return 0x13b81C27B588C07D04458ed7dDbdbD26D1e39bcc; } } } } } else { if (routeId < 25) { if (routeId < 21) { if (routeId < 19) { if (routeId == 17) { return 0x52560Ac678aFA1345D15474287d16Dc1eA3F78aE; } else { return 0x1E31e376551459667cd7643440c1b21CE69065A0; } } else { if (routeId == 19) { return 0xc57D822CB3288e7b97EF8f8af0EcdcD1B783529B; } else { return 0x2197A1D9Af24b4d6a64Bff95B4c29Fcd3Ff28C30; } } } else { if (routeId < 23) { if (routeId == 21) { return 0xE3700feAa5100041Bf6b7AdBA1f72f647809Fd00; } else { return 0xc02E8a0Fdabf0EeFCEA025163d90B5621E2b9948; } } else { if (routeId == 23) { return 0xF5144235E2926cAb3c69b30113254Fa632f72d62; } else { return 0xBa3F92313B00A1f7Bc53b2c24EB195c8b2F57682; } } } } else { if (routeId < 29) { if (routeId < 27) { if (routeId == 25) { return 0x77a6856fe1fFA5bEB55A1d2ED86E27C7c482CB76; } else { return 0x4826Ff4e01E44b1FCEFBfb38cd96687Eb7786b44; } } else { if (routeId == 27) { return 0x55FF3f5493cf5e80E76DEA7E327b9Cd8440Af646; } else { return 0xF430Db544bE9770503BE4aa51997aA19bBd5BA4f; } } } else { if (routeId < 31) { if (routeId == 29) { return 0x0f166446ce1484EE3B0663E7E67DF10F5D240115; } else { return 0x6365095D92537f242Db5EdFDd572745E72aC33d9; } } else { if (routeId == 31) { return 0x5c7BC93f06ce3eAe75ADf55E10e23d2c1dE5Bc65; } else { return 0xe46383bAD90d7A08197ccF08972e9DCdccCE9BA4; } } } } } } else { if (routeId < 49) { if (routeId < 41) { if (routeId < 37) { if (routeId < 35) { if (routeId == 33) { return 0xf0f21710c071E3B728bdc4654c3c0b873aAaa308; } else { return 0x63Bc9ed3AcAAeB0332531C9fB03b0a2352E9Ff25; } } else { if (routeId == 35) { return 0xd1CE808625CB4007a1708824AE82CdB0ece57De9; } else { return 0x57BbB148112f4ba224841c3FE018884171004661; } } } else { if (routeId < 39) { if (routeId == 37) { return 0x037f7d6933036F34DFabd40Ff8e4D789069f92e3; } else { return 0xeF978c280915CfF3Dca4EDfa8932469e40ADA1e1; } } else { if (routeId == 39) { return 0x92ee9e071B13f7ecFD62B7DED404A16CBc223CD3; } else { return 0x94Ae539c186e41ed762271338Edf140414D1E442; } } } } else { if (routeId < 45) { if (routeId < 43) { if (routeId == 41) { return 0x30A64BBe4DdBD43dA2368EFd1eB2d80C10d84DAb; } else { return 0x3aEABf81c1Dc4c1b73d5B2a95410f126426FB596; } } else { if (routeId == 43) { return 0x25b08aB3D0C8ea4cC9d967b79688C6D98f3f563a; } else { return 0xea40cB15C9A3BBd27af6474483886F7c0c9AE406; } } } else { if (routeId < 47) { if (routeId == 45) { return 0x9580113Cc04e5a0a03359686304EF3A80b936Dd3; } else { return 0xD211c826d568957F3b66a3F4d9c5f68cCc66E619; } } else { if (routeId == 47) { return 0xCEE24D0635c4C56315d133b031984d4A6f509476; } else { return 0x3922e6B987983229798e7A20095EC372744d4D4c; } } } } } else { if (routeId < 57) { if (routeId < 53) { if (routeId < 51) { if (routeId == 49) { return 0x2d92D03413d296e1F31450479349757187F2a2b7; } else { return 0x0fe5308eE90FC78F45c89dB6053eA859097860CA; } } else { if (routeId == 51) { return 0x08Ba68e067C0505bAF0C1311E0cFB2B1B59b969c; } else { return 0x9bee5DdDF75C24897374f92A534B7A6f24e97f4a; } } } else { if (routeId < 55) { if (routeId == 53) { return 0x1FC5A90B232208704B930c1edf82FFC6ACc02734; } else { return 0x5b1B0417cb44c761C2a23ee435d011F0214b3C85; } } else { if (routeId == 55) { return 0x9d70cDaCA12A738C283020760f449D7816D592ec; } else { return 0x95a23b9CB830EcCFDDD5dF56A4ec665e3381Fa12; } } } } else { if (routeId < 61) { if (routeId < 59) { if (routeId == 57) { return 0x483a957Cf1251c20e096C35c8399721D1200A3Fc; } else { return 0xb4AD39Cb293b0Ec7FEDa743442769A7FF04987CD; } } else { if (routeId == 59) { return 0x4C543AD78c1590D81BAe09Fc5B6Df4132A2461d0; } else { return 0x471d5E5195c563902781734cfe1FF3981F8B6c86; } } } else { if (routeId < 63) { if (routeId == 61) { return 0x1B12a54B5E606D95B8B8D123c9Cb09221Ee37584; } else { return 0xE4127cC550baC433646a7D998775a84daC16c7f3; } } else { if (routeId == 63) { return 0xecb1b55AB12E7dd788D585c6C5cD61B5F87be836; } else { return 0xf91ef487C5A1579f70601b6D347e19756092eEBf; } } } } } } } else { if (routeId < 97) { if (routeId < 81) { if (routeId < 73) { if (routeId < 69) { if (routeId < 67) { if (routeId == 65) { return 0x34a16a7e9BADEEFD4f056310cbE0b1423Fa1b760; } else { return 0x60E10E80c7680f429dBbC232830BEcd3D623c4CF; } } else { if (routeId == 67) { return 0x66465285B8D65362A1d86CE00fE2bE949Fd6debF; } else { return 0x5aB231B7e1A3A74a48f67Ab7bde5Cdd4267022E0; } } } else { if (routeId < 71) { if (routeId == 69) { return 0x3A1C3633eE79d43366F5c67802a746aFD6b162Ba; } else { return 0x0C4BfCbA8dC3C811437521a80E81e41DAF479039; } } else { if (routeId == 71) { return 0x6caf25d2e139C5431a1FA526EAf8d73ff2e6252C; } else { return 0x74ad21e09FDa68638CE14A3009A79B6D16574257; } } } } else { if (routeId < 77) { if (routeId < 75) { if (routeId == 73) { return 0xD4923A61008894b99cc1CD3407eF9524f02aA0Ca; } else { return 0x6F159b5EB823BD415886b9271aA2A723a00a1987; } } else { if (routeId == 75) { return 0x742a8aA42E7bfB4554dE30f4Fb07FFb6f2068863; } else { return 0x4AE9702d3360400E47B446e76DE063ACAb930101; } } } else { if (routeId < 79) { if (routeId == 77) { return 0x0E19a0a44ddA7dAD854ec5Cc867d16869c4E80F4; } else { return 0xE021A51968f25148F726E326C88d2556c5647557; } } else { if (routeId == 79) { return 0x64287BDDDaeF4d94E4599a3D882bed29E6Ada4B6; } else { return 0xcBB57Fd2e19cc7e9D444d5b4325A2F1047d0C73f; } } } } } else { if (routeId < 89) { if (routeId < 85) { if (routeId < 83) { if (routeId == 81) { return 0x373DE80DF7D82cFF6D76F29581b360C56331e957; } else { return 0x0466356E131AD61596a51F86BAd1C03A328960D8; } } else { if (routeId == 83) { return 0x01726B960992f1b74311b248E2a922fC707d43A6; } else { return 0x2E21bdf9A4509b89795BCE7E132f248a75814CEc; } } } else { if (routeId < 87) { if (routeId == 85) { return 0x769512b23aEfF842379091d3B6E4B5456F631D42; } else { return 0xe7eD9be946a74Ec19325D39C6EEb57887ccB2B0D; } } else { if (routeId == 87) { return 0xc4D01Ec357c2b511d10c15e6b6974380F0E62e67; } else { return 0x5bC49CC9dD77bECF2fd3A3C55611e84E69AFa3AE; } } } } else { if (routeId < 93) { if (routeId < 91) { if (routeId == 89) { return 0x48bcD879954fA14e7DbdAeb56F79C1e9DDcb69ec; } else { return 0xE929bDde21b462572FcAA4de6F49B9D3246688D0; } } else { if (routeId == 91) { return 0x85Aae300438222f0e3A9Bc870267a5633A9438bd; } else { return 0x51f72E1096a81C55cd142d66d39B688C657f9Be8; } } } else { if (routeId < 95) { if (routeId == 93) { return 0x3A8a05BF68ac54B01E6C0f492abF97465F3d15f9; } else { return 0x145aA67133F0c2C36b9771e92e0B7655f0D59040; } } else { if (routeId == 95) { return 0xa030315d7DB11F9892758C9e7092D841e0ADC618; } else { return 0xdF1f8d81a3734bdDdEfaC6Ca1596E081e57c3044; } } } } } } else { if (routeId < 113) { if (routeId < 105) { if (routeId < 101) { if (routeId < 99) { if (routeId == 97) { return 0xFF2833123B58aa05d04D7fb99f5FB768B2b435F8; } else { return 0xc8f09c1fD751C570233765f71b0e280d74e6e743; } } else { if (routeId == 99) { return 0x3026DA6Ceca2E5A57A05153653D9212FFAaA49d8; } else { return 0xdE68Ee703dE0D11f67B0cE5891cB4a903de6D160; } } } else { if (routeId < 103) { if (routeId == 101) { return 0xE23a7730e81FB4E87A6D0bd9f63EE77ac86C3DA4; } else { return 0x8b1DBe04aD76a7d8bC079cACd3ED4D99B897F4a0; } } else { if (routeId == 103) { return 0xBB227240FA459b69C6889B2b8cb1BE76F118061f; } else { return 0xC062b9b3f0dB28BB8afAfcD4d075729344114ffe; } } } } else { if (routeId < 109) { if (routeId < 107) { if (routeId == 105) { return 0x553188Aa45f5FDB83EC4Ca485982F8fC082480D1; } else { return 0x0109d83D746EaCb6d4014953D9E12d6ca85e330b; } } else { if (routeId == 107) { return 0x45B1bEd29812F5bf6711074ACD180B2aeB783AD9; } else { return 0xdA06eC8c19aea31D77F60299678Cba40E743e1aD; } } } else { if (routeId < 111) { if (routeId == 109) { return 0x3cC5235c97d975a9b4FD4501B3446c981ea3D855; } else { return 0xa1827267d6Bd989Ff38580aE3d9deff6Acf19163; } } else { if (routeId == 111) { return 0x3663CAA0433A3D4171b3581Cf2410702840A735A; } else { return 0x7575D0a7614F655BA77C74a72a43bbd4fA6246a3; } } } } } else { if (routeId < 121) { if (routeId < 117) { if (routeId < 115) { if (routeId == 113) { return 0x2516Defc18bc07089c5dAFf5eafD7B0EF64611E2; } else { return 0xfec5FF08E20fbc107a97Af2D38BD0025b84ee233; } } else { if (routeId == 115) { return 0x0FB5763a87242B25243e23D73f55945fE787523A; } else { return 0xe4C00db89678dBf8391f430C578Ca857Dd98aDE1; } } } else { if (routeId < 119) { if (routeId == 117) { return 0x8F2A22061F9F35E64f14523dC1A5f8159e6a21B7; } else { return 0x18e4b838ae966917E20E9c9c5Ad359cDD38303bB; } } else { if (routeId == 119) { return 0x61ACb1d3Dcb3e3429832A164Cc0fC9849fb75A4a; } else { return 0x7681e3c8e7A41DCA55C257cc0d1Ae757f5530E65; } } } } else { if (routeId < 125) { if (routeId < 123) { if (routeId == 121) { return 0x806a2AB9748C3D1DB976550890E3f528B7E8Faec; } else { return 0xBDb8A5DD52C2c239fbC31E9d43B763B0197028FF; } } else { if (routeId == 123) { return 0x474EC9203706010B9978D6bD0b105D36755e4848; } else { return 0x8dfd0D829b303F2239212E591a0F92a32880f36E; } } } else { if (routeId < 127) { if (routeId == 125) { return 0xad4BcE9745860B1adD6F1Bd34a916f050E4c82C2; } else { return 0xBC701115b9fe14bC8CC5934cdC92517173e308C4; } } else { if (routeId == 127) { return 0x0D1918d786Db8546a11aDeD475C98370E06f255E; } else { return 0xee44f57cD6936DB55B99163f3Df367B01EdA785a; } } } } } } } } else { if (routeId < 193) { if (routeId < 161) { if (routeId < 145) { if (routeId < 137) { if (routeId < 133) { if (routeId < 131) { if (routeId == 129) { return 0x63044521fe5a1e488D7eD419cD0e35b7C24F2aa7; } else { return 0x410085E73BD85e90d97b84A68C125aDB9F91f85b; } } else { if (routeId == 131) { return 0x7913fe97E07C7A397Ec274Ab1d4E2622C88EC5D1; } else { return 0x977f9fE93c064DCf54157406DaABC3a722e8184C; } } } else { if (routeId < 135) { if (routeId == 133) { return 0xCD2236468722057cFbbABad2db3DEA9c20d5B01B; } else { return 0x17c7287A491cf5Ff81E2678cF2BfAE4333F6108c; } } else { if (routeId == 135) { return 0x354D9a5Dbf96c71B79a265F03B595C6Fdc04dadd; } else { return 0xb4e409EB8e775eeFEb0344f9eee884cc7ed21c69; } } } } else { if (routeId < 141) { if (routeId < 139) { if (routeId == 137) { return 0xa1a3c4670Ad69D9be4ab2D39D1231FEC2a63b519; } else { return 0x4589A22199870729C1be5CD62EE93BeD858113E6; } } else { if (routeId == 139) { return 0x8E7b864dB26Bd6C798C38d4Ba36EbA0d6602cF11; } else { return 0xA2D17C7260a4CB7b9854e89Fc367E80E87872a2d; } } } else { if (routeId < 143) { if (routeId == 141) { return 0xC7F0EDf0A1288627b0432304918A75e9084CBD46; } else { return 0xE4B4EF1f9A4aBFEdB371fA7a6143993B15d4df25; } } else { if (routeId == 143) { return 0xfe3D84A2Ef306FEBb5452441C9BDBb6521666F6A; } else { return 0x8A12B6C64121920110aE58F7cd67DfEc21c6a4C3; } } } } } else { if (routeId < 153) { if (routeId < 149) { if (routeId < 147) { if (routeId == 145) { return 0x76c4d9aFC4717a2BAac4e5f26CccF02351f7a3DA; } else { return 0xd4719BA550E397aeAcca1Ad2201c1ba69024FAAf; } } else { if (routeId == 147) { return 0x9646126Ce025224d1682C227d915a386efc0A1Fb; } else { return 0x4DD8Af2E3F2044842f0247920Bc4BABb636915ea; } } } else { if (routeId < 151) { if (routeId == 149) { return 0x8e8a327183Af0cf8C2ece9F0ed547C42A160D409; } else { return 0x9D49614CaE1C685C71678CA6d8CDF7584bfd0740; } } else { if (routeId == 151) { return 0x5a00ef257394cbc31828d48655E3d39e9c11c93d; } else { return 0xC9a2751b38d3dDD161A41Ca0135C5C6c09EC1d56; } } } } else { if (routeId < 157) { if (routeId < 155) { if (routeId == 153) { return 0x7e1c261640a525C94Ca4f8c25b48CF754DD83590; } else { return 0x409Fe24ba6F6BD5aF31C1aAf8059b986A3158233; } } else { if (routeId == 155) { return 0x704Cf5BFDADc0f55fDBb53B6ed8B582E018A72A2; } else { return 0x3982bF65d7d6E77E3b6661cd6F6468c247512737; } } } else { if (routeId < 159) { if (routeId == 157) { return 0x3982b9f26FFD67a13Ee371e2C0a9Da338BA70E7f; } else { return 0x6D834AB385900c1f49055D098e90264077FbC4f2; } } else { if (routeId == 159) { return 0x11FE5F70779A094B7166B391e1Fb73d422eF4e4d; } else { return 0xD347e4E47280d21F13B73D89c6d16f867D50DD13; } } } } } } else { if (routeId < 177) { if (routeId < 169) { if (routeId < 165) { if (routeId < 163) { if (routeId == 161) { return 0xb6035eDD53DDA28d8B69b4ae9836E40C80306CD7; } else { return 0x54c884e6f5C7CcfeCA990396c520C858c922b6CA; } } else { if (routeId == 163) { return 0x5eA93E240b083d686558Ed607BC013d88057cE46; } else { return 0x4C7131eE812De685cBe4e2cCb033d46ecD46612E; } } } else { if (routeId < 167) { if (routeId == 165) { return 0xc1a5Be9F0c33D8483801D702111068669f81fF91; } else { return 0x9E5fAb91455Be5E5b2C05967E73F456c8118B1Fc; } } else { if (routeId == 167) { return 0x3d9A05927223E0DC2F382831770405885e22F0d8; } else { return 0x6303A011fB6063f5B1681cb5a9938EA278dc6128; } } } } else { if (routeId < 173) { if (routeId < 171) { if (routeId == 169) { return 0xe9c60795c90C66797e4c8E97511eA07CdAda32bE; } else { return 0xD56cC98e69A1e13815818b466a8aA6163d84234A; } } else { if (routeId == 171) { return 0x47EbB9D36a6e40895316cD894E4860D774E2c531; } else { return 0xA5EB293629410065d14a7B1663A67829b0618292; } } } else { if (routeId < 175) { if (routeId == 173) { return 0x1b3B4C8146F939cE00899db8B3ddeF0062b7E023; } else { return 0x257Bbc11653625EbfB6A8587eF4f4FBe49828EB3; } } else { if (routeId == 175) { return 0x44cc979C01b5bB1eAC21301E73C37200dFD06F59; } else { return 0x2972fDF43352225D82754C0174Ff853819D1ef2A; } } } } } else { if (routeId < 185) { if (routeId < 181) { if (routeId < 179) { if (routeId == 177) { return 0x3e54144f032648A04D62d79f7B4b93FF3aC2333b; } else { return 0x444016102dB8adbE73C3B6703a1ea7F2f75A510D; } } else { if (routeId == 179) { return 0xac079143f98a6eb744Fde34541ebF243DF5B5dED; } else { return 0xAe9010767Fb112d29d35CEdfba2b372Ad7A308d3; } } } else { if (routeId < 183) { if (routeId == 181) { return 0xfE0BCcF9cCC2265D5fB3450743f17DfE57aE1e56; } else { return 0x04ED8C0545716119437a45386B1d691C63234C7D; } } else { if (routeId == 183) { return 0x636c14013e531A286Bc4C848da34585f0bB73d59; } else { return 0x2Fa67fc7ECC5cAA01C653d3BFeA98ecc5db9C42A; } } } } else { if (routeId < 189) { if (routeId < 187) { if (routeId == 185) { return 0x23e9a0FC180818aA872D2079a985217017E97bd9; } else { return 0x79A95c3Ef81b3ae64ee03A9D5f73e570495F164E; } } else { if (routeId == 187) { return 0xa7EA0E88F04a84ba0ad1E396cb07Fa3fDAD7dF6D; } else { return 0xd23cA1278a2B01a3C0Ca1a00d104b11c1Ebe6f42; } } } else { if (routeId < 191) { if (routeId == 189) { return 0x707bc4a9FA2E349AED5df4e9f5440C15aA9D14Bd; } else { return 0x7E290F2dd539Ac6CE58d8B4C2B944931a1fD3612; } } else { if (routeId == 191) { return 0x707AA5503088Ce06Ba450B6470A506122eA5c8eF; } else { return 0xFbB3f7BF680deeb149f4E7BC30eA3DDfa68F3C3f; } } } } } } } else { if (routeId < 225) { if (routeId < 209) { if (routeId < 201) { if (routeId < 197) { if (routeId < 195) { if (routeId == 193) { return 0xDE74aD8cCC3dbF14992f49Cf24f36855912f4934; } else { return 0x409BA83df7777F070b2B50a10a41DE2468d2a3B3; } } else { if (routeId == 195) { return 0x5CB7Be90A5DD7CfDa54e87626e254FE8C18255B4; } else { return 0x0A684fE12BC64fb72B59d0771a566F49BC090356; } } } else { if (routeId < 199) { if (routeId == 197) { return 0xDf30048d91F8FA2bCfC54952B92bFA8e161D3360; } else { return 0x050825Fff032a547C47061CF0696FDB0f65AEa5D; } } else { if (routeId == 199) { return 0xd55e671dAC1f03d366d8535073ada5DB2Aab1Ea2; } else { return 0x9470C704A9616c8Cd41c595Fcd2181B6fe2183C2; } } } } else { if (routeId < 205) { if (routeId < 203) { if (routeId == 201) { return 0x2D9ffD275181F5865d5e11CbB4ced1521C4dF9f1; } else { return 0x816d28Dec10ec95DF5334f884dE85cA6215918d8; } } else { if (routeId == 203) { return 0xd1f87267c4A43835E666dd69Df077e578A3b6299; } else { return 0x39E89Bde9DACbe5468C025dE371FbDa12bDeBAB1; } } } else { if (routeId < 207) { if (routeId == 205) { return 0x7b40A3207956ecad6686E61EfcaC48912FcD0658; } else { return 0x090cF10D793B1Efba9c7D76115878814B663859A; } } else { if (routeId == 207) { return 0x312A59c06E41327878F2063eD0e9c282C1DA3AfC; } else { return 0x4F1188f46236DD6B5de11Ebf2a9fF08716E7DeB6; } } } } } else { if (routeId < 217) { if (routeId < 213) { if (routeId < 211) { if (routeId == 209) { return 0x0A6F9a3f4fA49909bBfb4339cbE12B42F53BbBeD; } else { return 0x01d13d7aCaCbB955B81935c80ffF31e14BdFa71f; } } else { if (routeId == 211) { return 0x691a14Fa6C7360422EC56dF5876f84d4eDD7f00A; } else { return 0x97Aad18d886d181a9c726B3B6aE15a0A69F5aF73; } } } else { if (routeId < 215) { if (routeId == 213) { return 0x2917241371D2099049Fa29432DC46735baEC33b4; } else { return 0x5F20F20F7890c2e383E29D4147C9695A371165f5; } } else { if (routeId == 215) { return 0xeC0a60e639958335662C5219A320cCEbb56C6077; } else { return 0x96d63CF5062975C09845d17ec672E10255866053; } } } } else { if (routeId < 221) { if (routeId < 219) { if (routeId == 217) { return 0xFF57429e57D383939CAB50f09ABBfB63C0e6c9AD; } else { return 0x18E393A7c8578fb1e235C242076E50013cDdD0d7; } } else { if (routeId == 219) { return 0xE7E5238AF5d61f52E9B4ACC025F713d1C0216507; } else { return 0x428401D4d0F25A2EE1DA4d5366cB96Ded425D9bD; } } } else { if (routeId < 223) { if (routeId == 221) { return 0x42E5733551ff1Ee5B48Aa9fc2B61Af9b58C812E6; } else { return 0x64Df9c7A0551B056d860Bc2419Ca4c1EF75320bE; } } else { if (routeId == 223) { return 0x46006925506145611bBf0263243D8627dAf26B0F; } else { return 0x8D64BE884314662804eAaB884531f5C50F4d500c; } } } } } } else { if (routeId < 241) { if (routeId < 233) { if (routeId < 229) { if (routeId < 227) { if (routeId == 225) { return 0x157a62D92D07B5ce221A5429645a03bBaCE85373; } else { return 0xaF037D33e1F1F2F87309B425fe8a9d895Ef3722B; } } else { if (routeId == 227) { return 0x921D1154E494A2f7218a37ad7B17701f94b4B40e; } else { return 0xF282b4555186d8Dea51B8b3F947E1E0568d09bc4; } } } else { if (routeId < 231) { if (routeId == 229) { return 0xa794E2E1869765a4600b3DFd8a4ebcF16350f6B6; } else { return 0xFEFb048e20c5652F7940A49B1980E0125Ec4D358; } } else { if (routeId == 231) { return 0x220104b641971e9b25612a8F001bf48AbB23f1cF; } else { return 0xcB9D373Bb54A501B35dd3be5bF4Ba43cA31F7035; } } } } else { if (routeId < 237) { if (routeId < 235) { if (routeId == 233) { return 0x37D627F56e3FF36aC316372109ea82E03ac97DAc; } else { return 0x4E81355FfB4A271B4EA59ff78da2b61c7833161f; } } else { if (routeId == 235) { return 0xADd8D65cAF6Cc9ad73127B49E16eA7ac29d91e87; } else { return 0x630F9b95626487dfEAe3C97A44DB6C59cF35d996; } } } else { if (routeId < 239) { if (routeId == 237) { return 0x78CE2BC8238B679680A67FCB98C5A60E4ec17b2D; } else { return 0xA38D776028eD1310b9A6b086f67F788201762E21; } } else { if (routeId == 239) { return 0x7Bb5178827B76B86753Ed62a0d662c72cEcb1bD3; } else { return 0x4faC26f61C76eC5c3D43b43eDfAFF0736Ae0e3da; } } } } } else { if (routeId < 249) { if (routeId < 245) { if (routeId < 243) { if (routeId == 241) { return 0x791Bb49bfFA7129D6889FDB27744422Ac4571A85; } else { return 0x26766fFEbb5fa564777913A6f101dF019AB32afa; } } else { if (routeId == 243) { return 0x05e98E5e95b4ECBbbAf3258c3999Cc81ed8048Be; } else { return 0xC5c4621e52f1D6A1825A5ed4F95855401a3D9C6b; } } } else { if (routeId < 247) { if (routeId == 245) { return 0xfcb15f909BA7FC7Ea083503Fb4c1020203c107EB; } else { return 0xbD27603279d969c74f2486ad14E71080829DFd38; } } else { if (routeId == 247) { return 0xff2f756BcEcC1A55BFc09a30cc5F64720458cFCB; } else { return 0x3bfB968FEbC12F4e8420B2d016EfcE1E615f7246; } } } } else { if (routeId < 253) { if (routeId < 251) { if (routeId == 249) { return 0x982EE9Ffe23051A2ec945ed676D864fa8345222b; } else { return 0xe101899100785E74767d454FFF0131277BaD48d9; } } else { if (routeId == 251) { return 0x4F730C0c6b3B5B7d06ca511379f4Aa5BfB2E9525; } else { return 0x5499c36b365795e4e0Ef671aF6C2ce26D7c78265; } } } else { if (routeId < 255) { if (routeId == 253) { return 0x8AF51F7237Fc8fB2fc3E700488a94a0aC6Ad8b5a; } else { return 0xda8716df61213c0b143F2849785FB85928084857; } } else { if (routeId == 255) { return 0xF040Cf9b1ebD11Bf28e04e80740DF3DDe717e4f5; } else { return 0xB87ba32f759D14023C7520366B844dF7f0F036C2; } } } } } } } } } else { if (routeId < 321) { if (routeId < 289) { if (routeId < 273) { if (routeId < 265) { if (routeId < 261) { if (routeId < 259) { if (routeId == 257) { return 0x0Edde681b8478F0c3194f468EdD2dB5e75c65CDD; } else { return 0x59C70900Fca06eE2aCE1BDd5A8D0Af0cc3BBA720; } } else { if (routeId == 259) { return 0x8041F0f180D17dD07087199632c45E17AeB0BAd5; } else { return 0x4fB4727064BA595995DD516b63b5921Df9B93aC6; } } } else { if (routeId < 263) { if (routeId == 261) { return 0x86e98b594565857eD098864F560915C0dAfd6Ea1; } else { return 0x70f8818E8B698EFfeCd86A513a4c87c0c380Bef6; } } else { if (routeId == 263) { return 0x78Ed227c8A897A21Da2875a752142dd80d865158; } else { return 0xd02A30BB5C3a8C51d2751A029a6fcfDE2Af9fbc6; } } } } else { if (routeId < 269) { if (routeId < 267) { if (routeId == 265) { return 0x0F00d5c5acb24e975e2a56730609f7F40aa763b8; } else { return 0xC3e2091edc2D3D9D98ba09269138b617B536834A; } } else { if (routeId == 267) { return 0xa6FbaF7F30867C9633908998ea8C3da28920E75C; } else { return 0xE6dDdcD41E2bBe8122AE32Ac29B8fbAB79CD21d9; } } } else { if (routeId < 271) { if (routeId == 269) { return 0x537aa8c1Ef6a8Eaf039dd6e1Eb67694a48195cE4; } else { return 0x96ABAC485fd2D0B03CF4a10df8BD58b8dED28300; } } else { if (routeId == 271) { return 0xda8e7D46d04Bd4F62705Cd80355BDB6d441DafFD; } else { return 0xbE50018E7a5c67E2e5f5414393e971CC96F293f2; } } } } } else { if (routeId < 281) { if (routeId < 277) { if (routeId < 275) { if (routeId == 273) { return 0xa1b3907D6CB542a4cbe2eE441EfFAA909FAb62C3; } else { return 0x6d08ee8511C0237a515013aC389e7B3968Cb1753; } } else { if (routeId == 275) { return 0x22faa5B5Fe43eAdbB52745e35a5cdA8bD5F96bbA; } else { return 0x7a673eB74D79e4868D689E7852abB5f93Ec2fD4b; } } } else { if (routeId < 279) { if (routeId == 277) { return 0x0b8531F8AFD4190b76F3e10deCaDb84c98b4d419; } else { return 0x78eABC743A93583DeE403D6b84795490e652216B; } } else { if (routeId == 279) { return 0x3A95D907b2a7a8604B59BccA08585F58Afe0Aa64; } else { return 0xf4271f0C8c9Af0F06A80b8832fa820ccE64FAda8; } } } } else { if (routeId < 285) { if (routeId < 283) { if (routeId == 281) { return 0x74b2DF841245C3748c0d31542e1335659a25C33b; } else { return 0xdFC99Fd0Ad7D16f30f295a5EEFcE029E04d0fa65; } } else { if (routeId == 283) { return 0xE992416b6aC1144eD8148a9632973257839027F6; } else { return 0x54ce55ba954E981BB1fd9399054B35Ce1f2C0816; } } } else { if (routeId < 287) { if (routeId == 285) { return 0xD4AB52f9e7E5B315Bd7471920baD04F405Ab1c38; } else { return 0x3670C990994d12837e95eE127fE2f06FD3E2104B; } } else { if (routeId == 287) { return 0xDcf190B09C47E4f551E30BBb79969c3FdEA1e992; } else { return 0xa65057B967B59677237e57Ab815B209744b9bc40; } } } } } } else { if (routeId < 305) { if (routeId < 297) { if (routeId < 293) { if (routeId < 291) { if (routeId == 289) { return 0x6Efc86B40573e4C7F28659B13327D55ae955C483; } else { return 0x06BcC25CF8e0E72316F53631b3aA7134E9f73Ae0; } } else { if (routeId == 291) { return 0x710b6414E1D53882b1FCD3A168aD5Ccd435fc6D0; } else { return 0x5Ebb2C3d78c4e9818074559e7BaE7FCc99781DC1; } } } else { if (routeId < 295) { if (routeId == 293) { return 0xAf0a409c3AEe0bD08015cfb29D89E90b6e89A88F; } else { return 0x522559d8b99773C693B80cE06DF559036295Ce44; } } else { if (routeId == 295) { return 0xB65290A5Bae838aaa7825c9ECEC68041841a1B64; } else { return 0x801b8F2068edd5Bcb659E6BDa0c425909043C420; } } } } else { if (routeId < 301) { if (routeId < 299) { if (routeId == 297) { return 0x29b5F00515d093627E0B7bd0b5c8E84F6b4cDb87; } else { return 0x652839Ae74683cbF9f1293F1019D938F87464D3E; } } else { if (routeId == 299) { return 0x5Bc95dCebDDE9B79F2b6DC76121BC7936eF8D666; } else { return 0x90db359CEA62E53051158Ab5F99811C0a07Fe686; } } } else { if (routeId < 303) { if (routeId == 301) { return 0x2c3625EedadbDcDbB5330eb0d17b3C39ff269807; } else { return 0xC3f0324471b5c9d415acD625b8d8694a4e48e001; } } else { if (routeId == 303) { return 0x8C60e7E05fa0FfB6F720233736f245134685799d; } else { return 0x98fAF2c09aa4EBb995ad0B56152993E7291a500e; } } } } } else { if (routeId < 313) { if (routeId < 309) { if (routeId < 307) { if (routeId == 305) { return 0x802c1063a861414dFAEc16bacb81429FC0d40D6e; } else { return 0x11C4AeFCC0dC156f64195f6513CB1Fb3Be0Ae056; } } else { if (routeId == 307) { return 0xEff1F3258214E31B6B4F640b4389d55715C3Be2B; } else { return 0x47e379Abe8DDFEA4289aBa01235EFF7E93758fd7; } } } else { if (routeId < 311) { if (routeId == 309) { return 0x3CC26384c3eA31dDc8D9789e8872CeA6F20cD3ff; } else { return 0xEdd9EFa6c69108FAA4611097d643E20Ba0Ed1634; } } else { if (routeId == 311) { return 0xCb93525CA5f3D371F74F3D112bC19526740717B8; } else { return 0x7071E0124EB4438137e60dF1b8DD8Af1BfB362cF; } } } } else { if (routeId < 317) { if (routeId < 315) { if (routeId == 313) { return 0x4691096EB0b78C8F4b4A8091E5B66b18e1835c10; } else { return 0x8d953c9b2d1C2137CF95992079f3A77fCd793272; } } else { if (routeId == 315) { return 0xbdCc2A3Bf6e3Ba49ff86595e6b2b8D70d8368c92; } else { return 0x95E6948aB38c61b2D294E8Bd896BCc4cCC0713cf; } } } else { if (routeId < 319) { if (routeId == 317) { return 0x607b27C881fFEE4Cb95B1c5862FaE7224ccd0b4A; } else { return 0x09D28aFA166e566A2Ee1cB834ea8e78C7E627eD2; } } else { if (routeId == 319) { return 0x9c01449b38bDF0B263818401044Fb1401B29fDfA; } else { return 0x1F7723599bbB658c051F8A39bE2688388d22ceD6; } } } } } } } else { if (routeId < 353) { if (routeId < 337) { if (routeId < 329) { if (routeId < 325) { if (routeId < 323) { if (routeId == 321) { return 0x52B71603f7b8A5d15B4482e965a0619aa3210194; } else { return 0x01c0f072CB210406653752FecFA70B42dA9173a2; } } else { if (routeId == 323) { return 0x3021142f021E943e57fc1886cAF58D06147D09A6; } else { return 0xe6f2AF38e76AB09Db59225d97d3E770942D3D842; } } } else { if (routeId < 327) { if (routeId == 325) { return 0x06a25554e5135F08b9e2eD1DEC1fc3CEd52e0B48; } else { return 0x71d75e670EE3511C8290C705E0620126B710BF8D; } } else { if (routeId == 327) { return 0x8b9cE142b80FeA7c932952EC533694b1DF9B3c54; } else { return 0xd7Be24f32f39231116B3fDc483C2A12E1521f73B; } } } } else { if (routeId < 333) { if (routeId < 331) { if (routeId == 329) { return 0xb40cafBC4797d4Ff64087E087F6D2e661f954CbE; } else { return 0xBdDCe7771EfEe81893e838f62204A4c76D72757e; } } else { if (routeId == 331) { return 0x5d3D299EA7Fd4F39AcDb336E26631Dfee41F9287; } else { return 0x6BfEE09E1Fc0684e0826A9A0dC1352a14B136FAC; } } } else { if (routeId < 335) { if (routeId == 333) { return 0xd0001bB8E2Cb661436093f96458a4358B5156E3c; } else { return 0x1867c6485CfD1eD448988368A22bfB17a7747293; } } else { if (routeId == 335) { return 0x8997EF9F95dF24aB67703AB6C262aABfeEBE33bD; } else { return 0x1e39E9E601922deD91BCFc8F78836302133465e2; } } } } } else { if (routeId < 345) { if (routeId < 341) { if (routeId < 339) { if (routeId == 337) { return 0x8A8ec6CeacFf502a782216774E5AF3421562C6ff; } else { return 0x3B8FC561df5415c8DC01e97Ee6E38435A8F9C40A; } } else { if (routeId == 339) { return 0xD5d5f5B37E67c43ceA663aEDADFFc3a93a2065B0; } else { return 0xCC8F55EC43B4f25013CE1946FBB740c43Be5B96D; } } } else { if (routeId < 343) { if (routeId == 341) { return 0x18f586E816eEeDbb57B8011239150367561B58Fb; } else { return 0xd0CD802B19c1a52501cb2f07d656e3Cd7B0Ce124; } } else { if (routeId == 343) { return 0xe0AeD899b39C6e4f2d83e4913a1e9e0cf6368abE; } else { return 0x0606e1b6c0f1A398C38825DCcc4678a7Cbc2737c; } } } } else { if (routeId < 349) { if (routeId < 347) { if (routeId == 345) { return 0x2d188e85b27d18EF80f16686EA1593ABF7Ed2A63; } else { return 0x64412292fA4A135a3300E24366E99ff59Db2eAc1; } } else { if (routeId == 347) { return 0x38b74c173f3733E8b90aAEf0e98B89791266149F; } else { return 0x36DAA49A79aaEF4E7a217A11530D3cCD84414124; } } } else { if (routeId < 351) { if (routeId == 349) { return 0x10f088FE2C88F90270E4449c46c8B1b232511d58; } else { return 0x4FeDbd25B58586838ABD17D10272697dF1dC3087; } } else { if (routeId == 351) { return 0x685278209248CB058E5cEe93e37f274A80Faf6eb; } else { return 0xDd9F8F1eeC3955f78168e2Fb2d1e808fa8A8f15b; } } } } } } else { if (routeId < 369) { if (routeId < 361) { if (routeId < 357) { if (routeId < 355) { if (routeId == 353) { return 0x7392aEeFD5825aaC28817031dEEBbFaAA20983D9; } else { return 0x0Cc182555E00767D6FB8AD161A10d0C04C476d91; } } else { if (routeId == 355) { return 0x90E52837d56715c79FD592E8D58bFD20365798b2; } else { return 0x6F4451DE14049B6770ad5BF4013118529e68A40C; } } } else { if (routeId < 359) { if (routeId == 357) { return 0x89B97ef2aFAb9ed9c7f0FDb095d02E6840b52d9c; } else { return 0x92A5cC5C42d94d3e23aeB1214fFf43Db2B97759E; } } else { if (routeId == 359) { return 0x63ddc52F135A1dcBA831EAaC11C63849F018b739; } else { return 0x692A691533B571C2c54C1D7F8043A204b3d8120E; } } } } else { if (routeId < 365) { if (routeId < 363) { if (routeId == 361) { return 0x97c7492CF083969F61C6f302d45c8270391b921c; } else { return 0xDeFD2B8643553dAd19548eB14fd94A57F4B9e543; } } else { if (routeId == 363) { return 0x30645C04205cA3f670B67b02F971B088930ACB8C; } else { return 0xA6f80ed2d607Cd67aEB4109B64A0BEcc4D7d03CF; } } } else { if (routeId < 367) { if (routeId == 365) { return 0xBbbbC6c276eB3F7E674f2D39301509236001c42f; } else { return 0xC20E77d349FB40CE88eB01824e2873ad9f681f3C; } } else { if (routeId == 367) { return 0x5fCfD9a962De19294467C358C1FA55082285960b; } else { return 0x4D87BD6a0E4E5cc6332923cb3E85fC71b287F58A; } } } } } else { if (routeId < 377) { if (routeId < 373) { if (routeId < 371) { if (routeId == 369) { return 0x3AA5B757cd6Dde98214E56D57Dde7fcF0F7aB04E; } else { return 0xe28eFCE7192e11a2297f44059113C1fD6967b2d4; } } else { if (routeId == 371) { return 0x3251cAE10a1Cf246e0808D76ACC26F7B5edA0eE5; } else { return 0xbA2091cc9357Cf4c4F25D64F30d1b4Ba3A5a174B; } } } else { if (routeId < 375) { if (routeId == 373) { return 0x49c8e1Da9693692096F63C82D11b52d738566d55; } else { return 0xA0731615aB5FFF451031E9551367A4F7dB27b39c; } } else { if (routeId == 375) { return 0xFb214541888671AE1403CecC1D59763a12fc1609; } else { return 0x1D6bCB17642E2336405df73dF22F07688cAec020; } } } } else { if (routeId < 381) { if (routeId < 379) { if (routeId == 377) { return 0xfC9c0C7bfe187120fF7f4E21446161794A617a9e; } else { return 0xBa5bF37678EeE2dAB17AEf9D898153258252250E; } } else { if (routeId == 379) { return 0x7c55690bd2C9961576A32c02f8EB29ed36415Ec7; } else { return 0xcA40073E868E8Bc611aEc8Fe741D17E68Fe422f6; } } } else { if (routeId < 383) { if (routeId == 381) { return 0x31641bAFb87E9A58f78835050a7BE56921986339; } else { return 0xA54766424f6dA74b45EbCc5Bf0Bd1D74D2CCcaAB; } } else { if (routeId == 383) { return 0xc7bBa57F8C179EDDBaa62117ddA360e28f3F8252; } else { return 0x5e663ED97ea77d393B8858C90d0683bF180E0ffd; } } } } } } } } } if (routes[routeId] == address(0)) revert ZeroAddressNotAllowed(); return routes[routeId]; } /// @notice fallback function to handle swap, bridge execution /// @dev ensure routeId is converted to bytes4 and sent as msg.sig in the transaction fallback() external payable { address routeAddress = addressAt(uint32(msg.sig)); bytes memory result; assembly { // copy function selector and any arguments calldatacopy(0, 4, sub(calldatasize(), 4)) // execute function call using the facet result := delegatecall( gas(), routeAddress, 0, sub(calldatasize(), 4), 0, 0 ) // get any return value returndatacopy(0, 0, returndatasize()) // return any return value or error back to the caller switch result case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; bytes32 constant ACROSS = keccak256("Across"); bytes32 constant ANYSWAP = keccak256("Anyswap"); bytes32 constant CBRIDGE = keccak256("CBridge"); bytes32 constant HOP = keccak256("Hop"); bytes32 constant HYPHEN = keccak256("Hyphen"); bytes32 constant NATIVE_OPTIMISM = keccak256("NativeOptimism"); bytes32 constant NATIVE_ARBITRUM = keccak256("NativeArbitrum"); bytes32 constant NATIVE_POLYGON = keccak256("NativePolygon"); bytes32 constant REFUEL = keccak256("Refuel"); bytes32 constant STARGATE = keccak256("Stargate"); bytes32 constant ONEINCH = keccak256("OneInch"); bytes32 constant ZEROX = keccak256("Zerox"); bytes32 constant RAINBOW = keccak256("Rainbow"); // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import "../SwapImplBase.sol"; import {SwapFailed} from "../../errors/SocketErrors.sol"; import {ONEINCH} from "../../static/RouteIdentifiers.sol"; /** * @title OneInch-Swap-Route Implementation * @notice Route implementation with functions to swap tokens via OneInch-Swap * Called via SocketGateway if the routeId in the request maps to the routeId of OneInchImplementation * @author Socket dot tech. */ contract OneInchImpl is SwapImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable OneInchIdentifier = ONEINCH; /// @notice address of OneInchAggregator to swap the tokens on Chain address public immutable ONEINCH_AGGREGATOR; /// @notice socketGatewayAddress to be initialised via storage variable SwapImplBase /// @dev ensure _oneinchAggregator are set properly for the chainId in which the contract is being deployed constructor( address _oneinchAggregator, address _socketGateway, address _socketDeployFactory ) SwapImplBase(_socketGateway, _socketDeployFactory) { ONEINCH_AGGREGATOR = _oneinchAggregator; } /** * @notice function to swap tokens on the chain and transfer to receiver address * via OneInch-Middleware-Aggregator * @param fromToken token to be swapped * @param toToken token to which fromToken has to be swapped * @param amount amount of fromToken being swapped * @param receiverAddress address of toToken recipient * @param swapExtraData encoded value of properties in the swapData Struct * @return swapped amount (in toToken Address) */ function performAction( address fromToken, address toToken, uint256 amount, address receiverAddress, bytes calldata swapExtraData ) external payable override returns (uint256) { uint256 returnAmount; if (fromToken != NATIVE_TOKEN_ADDRESS) { ERC20 token = ERC20(fromToken); token.safeTransferFrom(msg.sender, socketGateway, amount); token.safeApprove(ONEINCH_AGGREGATOR, amount); { // additional data is generated in off-chain using the OneInch API which takes in // fromTokenAddress, toTokenAddress, amount, fromAddress, slippage, destReceiver, disableEstimate (bool success, bytes memory result) = ONEINCH_AGGREGATOR.call( swapExtraData ); token.safeApprove(ONEINCH_AGGREGATOR, 0); if (!success) { revert SwapFailed(); } returnAmount = abi.decode(result, (uint256)); } } else { // additional data is generated in off-chain using the OneInch API which takes in // fromTokenAddress, toTokenAddress, amount, fromAddress, slippage, destReceiver, disableEstimate (bool success, bytes memory result) = ONEINCH_AGGREGATOR.call{ value: amount }(swapExtraData); if (!success) { revert SwapFailed(); } returnAmount = abi.decode(result, (uint256)); } emit SocketSwapTokens( fromToken, toToken, returnAmount, amount, OneInchIdentifier, receiverAddress ); return returnAmount; } /** * @notice function to swapWithIn SocketGateway - swaps tokens on the chain to socketGateway as recipient * via OneInch-Middleware-Aggregator * @param fromToken token to be swapped * @param toToken token to which fromToken has to be swapped * @param amount amount of fromToken being swapped * @param swapExtraData encoded value of properties in the swapData Struct * @return swapped amount (in toToken Address) */ function performActionWithIn( address fromToken, address toToken, uint256 amount, bytes calldata swapExtraData ) external payable override returns (uint256, address) { uint256 returnAmount; if (fromToken != NATIVE_TOKEN_ADDRESS) { ERC20 token = ERC20(fromToken); token.safeTransferFrom(msg.sender, socketGateway, amount); token.safeApprove(ONEINCH_AGGREGATOR, amount); { // additional data is generated in off-chain using the OneInch API which takes in // fromTokenAddress, toTokenAddress, amount, fromAddress, slippage, destReceiver, disableEstimate (bool success, bytes memory result) = ONEINCH_AGGREGATOR.call( swapExtraData ); token.safeApprove(ONEINCH_AGGREGATOR, 0); if (!success) { revert SwapFailed(); } returnAmount = abi.decode(result, (uint256)); } } else { // additional data is generated in off-chain using the OneInch API which takes in // fromTokenAddress, toTokenAddress, amount, fromAddress, slippage, destReceiver, disableEstimate (bool success, bytes memory result) = ONEINCH_AGGREGATOR.call{ value: amount }(swapExtraData); if (!success) { revert SwapFailed(); } returnAmount = abi.decode(result, (uint256)); } emit SocketSwapTokens( fromToken, toToken, returnAmount, amount, OneInchIdentifier, socketGateway ); return (returnAmount, toToken); } } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import "../SwapImplBase.sol"; import {Address0Provided, SwapFailed} from "../../errors/SocketErrors.sol"; import {RAINBOW} from "../../static/RouteIdentifiers.sol"; /** * @title Rainbow-Swap-Route Implementation * @notice Route implementation with functions to swap tokens via Rainbow-Swap * Called via SocketGateway if the routeId in the request maps to the routeId of RainbowImplementation * @author Socket dot tech. */ contract RainbowSwapImpl is SwapImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable RainbowIdentifier = RAINBOW; /// @notice unique name to identify the router, used to emit event upon successful bridging bytes32 public immutable NAME = keccak256("Rainbow-Router"); /// @notice address of rainbow-swap-aggregator to swap the tokens on Chain address payable public immutable rainbowSwapAggregator; /// @notice socketGatewayAddress to be initialised via storage variable SwapImplBase /// @notice rainbow swap aggregator contract is payable to allow ethereum swaps /// @dev ensure _rainbowSwapAggregator are set properly for the chainId in which the contract is being deployed constructor( address _rainbowSwapAggregator, address _socketGateway, address _socketDeployFactory ) SwapImplBase(_socketGateway, _socketDeployFactory) { rainbowSwapAggregator = payable(_rainbowSwapAggregator); } receive() external payable {} fallback() external payable {} /** * @notice function to swap tokens on the chain and transfer to receiver address * @notice This method is payable because the caller is doing token transfer and swap operation * @param fromToken address of token being Swapped * @param toToken address of token that recipient will receive after swap * @param amount amount of fromToken being swapped * @param receiverAddress recipient-address * @param swapExtraData additional Data to perform Swap via Rainbow-Aggregator * @return swapped amount (in toToken Address) */ function performAction( address fromToken, address toToken, uint256 amount, address receiverAddress, bytes calldata swapExtraData ) external payable override returns (uint256) { if (fromToken == address(0)) { revert Address0Provided(); } bytes memory swapCallData = abi.decode(swapExtraData, (bytes)); uint256 _initialBalanceTokenOut; uint256 _finalBalanceTokenOut; ERC20 toTokenERC20 = ERC20(toToken); if (toToken != NATIVE_TOKEN_ADDRESS) { _initialBalanceTokenOut = toTokenERC20.balanceOf(socketGateway); } else { _initialBalanceTokenOut = address(this).balance; } if (fromToken != NATIVE_TOKEN_ADDRESS) { ERC20 token = ERC20(fromToken); token.safeTransferFrom(msg.sender, socketGateway, amount); token.safeApprove(rainbowSwapAggregator, amount); // solhint-disable-next-line (bool success, ) = rainbowSwapAggregator.call(swapCallData); if (!success) { revert SwapFailed(); } token.safeApprove(rainbowSwapAggregator, 0); } else { (bool success, ) = rainbowSwapAggregator.call{value: amount}( swapCallData ); if (!success) { revert SwapFailed(); } } if (toToken != NATIVE_TOKEN_ADDRESS) { _finalBalanceTokenOut = toTokenERC20.balanceOf(socketGateway); } else { _finalBalanceTokenOut = address(this).balance; } uint256 returnAmount = _finalBalanceTokenOut - _initialBalanceTokenOut; if (toToken == NATIVE_TOKEN_ADDRESS) { payable(receiverAddress).transfer(returnAmount); } else { toTokenERC20.transfer(receiverAddress, returnAmount); } emit SocketSwapTokens( fromToken, toToken, returnAmount, amount, RainbowIdentifier, receiverAddress ); return returnAmount; } /** * @notice function to swapWithIn SocketGateway - swaps tokens on the chain to socketGateway as recipient * @param fromToken token to be swapped * @param toToken token to which fromToken has to be swapped * @param amount amount of fromToken being swapped * @param swapExtraData encoded value of properties in the swapData Struct * @return swapped amount (in toToken Address) */ function performActionWithIn( address fromToken, address toToken, uint256 amount, bytes calldata swapExtraData ) external payable override returns (uint256, address) { if (fromToken == address(0)) { revert Address0Provided(); } bytes memory swapCallData = abi.decode(swapExtraData, (bytes)); uint256 _initialBalanceTokenOut; uint256 _finalBalanceTokenOut; ERC20 toTokenERC20 = ERC20(toToken); if (toToken != NATIVE_TOKEN_ADDRESS) { _initialBalanceTokenOut = toTokenERC20.balanceOf(socketGateway); } else { _initialBalanceTokenOut = address(this).balance; } if (fromToken != NATIVE_TOKEN_ADDRESS) { ERC20 token = ERC20(fromToken); token.safeTransferFrom(msg.sender, socketGateway, amount); token.safeApprove(rainbowSwapAggregator, amount); // solhint-disable-next-line (bool success, ) = rainbowSwapAggregator.call(swapCallData); if (!success) { revert SwapFailed(); } token.safeApprove(rainbowSwapAggregator, 0); } else { (bool success, ) = rainbowSwapAggregator.call{value: amount}( swapCallData ); if (!success) { revert SwapFailed(); } } if (toToken != NATIVE_TOKEN_ADDRESS) { _finalBalanceTokenOut = toTokenERC20.balanceOf(socketGateway); } else { _finalBalanceTokenOut = address(this).balance; } uint256 returnAmount = _finalBalanceTokenOut - _initialBalanceTokenOut; emit SocketSwapTokens( fromToken, toToken, returnAmount, amount, RainbowIdentifier, socketGateway ); return (returnAmount, toToken); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {ISocketGateway} from "../interfaces/ISocketGateway.sol"; import {OnlySocketGatewayOwner, OnlySocketDeployer} from "../errors/SocketErrors.sol"; /** * @title Abstract Implementation Contract. * @notice All Swap Implementation will follow this interface. * @author Socket dot tech. */ abstract contract SwapImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; /// @notice Address used to identify if it is a native token transfer or not address public immutable NATIVE_TOKEN_ADDRESS = address(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE); /// @notice immutable variable to store the socketGateway address address public immutable socketGateway; /// @notice immutable variable to store the socketGateway address address public immutable socketDeployFactory; /// @notice FunctionSelector used to delegatecall to the performAction function of swap-router-implementation bytes4 public immutable SWAP_FUNCTION_SELECTOR = bytes4( keccak256("performAction(address,address,uint256,address,bytes)") ); /// @notice FunctionSelector used to delegatecall to the performActionWithIn function of swap-router-implementation bytes4 public immutable SWAP_WITHIN_FUNCTION_SELECTOR = bytes4(keccak256("performActionWithIn(address,address,uint256,bytes)")); /**************************************** * EVENTS * ****************************************/ event SocketSwapTokens( address fromToken, address toToken, uint256 buyAmount, uint256 sellAmount, bytes32 routeName, address receiver ); /** * @notice Construct the base for all SwapImplementations. * @param _socketGateway Socketgateway address, an immutable variable to set. */ constructor(address _socketGateway, address _socketDeployFactory) { socketGateway = _socketGateway; socketDeployFactory = _socketDeployFactory; } /**************************************** * MODIFIERS * ****************************************/ /// @notice Implementing contract needs to make use of the modifier where restricted access is to be used modifier isSocketGatewayOwner() { if (msg.sender != ISocketGateway(socketGateway).owner()) { revert OnlySocketGatewayOwner(); } _; } /// @notice Implementing contract needs to make use of the modifier where restricted access is to be used modifier isSocketDeployFactory() { if (msg.sender != socketDeployFactory) { revert OnlySocketDeployer(); } _; } /**************************************** * RESTRICTED FUNCTIONS * ****************************************/ /** * @notice function to rescue the ERC20 tokens in the Swap-Implementation contract * @notice this is a function restricted to Owner of SocketGateway only * @param token address of ERC20 token being rescued * @param userAddress receipient address to which ERC20 tokens will be rescued to * @param amount amount of ERC20 tokens being rescued */ function rescueFunds( address token, address userAddress, uint256 amount ) external isSocketGatewayOwner { ERC20(token).safeTransfer(userAddress, amount); } /** * @notice function to rescue the native-balance in the Swap-Implementation contract * @notice this is a function restricted to Owner of SocketGateway only * @param userAddress receipient address to which native-balance will be rescued to * @param amount amount of native balance tokens being rescued */ function rescueEther( address payable userAddress, uint256 amount ) external isSocketGatewayOwner { userAddress.transfer(amount); } function killme() external isSocketDeployFactory { selfdestruct(payable(msg.sender)); } /****************************** * VIRTUAL FUNCTIONS * *****************************/ /** * @notice function to swap tokens on the chain * All swap implementation contracts must implement this function * @param fromToken token to be swapped * @param toToken token to which fromToken has to be swapped * @param amount amount of fromToken being swapped * @param receiverAddress recipient address of toToken * @param data encoded value of properties in the swapData Struct */ function performAction( address fromToken, address toToken, uint256 amount, address receiverAddress, bytes memory data ) external payable virtual returns (uint256); /** * @notice function to swapWith - swaps tokens on the chain to socketGateway as recipient * All swap implementation contracts must implement this function * @param fromToken token to be swapped * @param toToken token to which fromToken has to be swapped * @param amount amount of fromToken being swapped * @param swapExtraData encoded value of properties in the swapData Struct */ function performActionWithIn( address fromToken, address toToken, uint256 amount, bytes memory swapExtraData ) external payable virtual returns (uint256, address); } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import "../SwapImplBase.sol"; import {Address0Provided, SwapFailed} from "../../errors/SocketErrors.sol"; import {ZEROX} from "../../static/RouteIdentifiers.sol"; /** * @title ZeroX-Swap-Route Implementation * @notice Route implementation with functions to swap tokens via ZeroX-Swap * Called via SocketGateway if the routeId in the request maps to the routeId of ZeroX-Swap-Implementation * @author Socket dot tech. */ contract ZeroXSwapImpl is SwapImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable ZeroXIdentifier = ZEROX; /// @notice unique name to identify the router, used to emit event upon successful bridging bytes32 public immutable NAME = keccak256("Zerox-Router"); /// @notice address of ZeroX-Exchange-Proxy to swap the tokens on Chain address payable public immutable zeroXExchangeProxy; /// @notice socketGatewayAddress to be initialised via storage variable SwapImplBase /// @notice ZeroXExchangeProxy contract is payable to allow ethereum swaps /// @dev ensure _zeroXExchangeProxy are set properly for the chainId in which the contract is being deployed constructor( address _zeroXExchangeProxy, address _socketGateway, address _socketDeployFactory ) SwapImplBase(_socketGateway, _socketDeployFactory) { zeroXExchangeProxy = payable(_zeroXExchangeProxy); } receive() external payable {} fallback() external payable {} /** * @notice function to swap tokens on the chain and transfer to receiver address * @dev This is called only when there is a request for a swap. * @param fromToken token to be swapped * @param toToken token to which fromToken is to be swapped * @param amount amount to be swapped * @param receiverAddress address of toToken recipient * @param swapExtraData data required for zeroX Exchange to get the swap done */ function performAction( address fromToken, address toToken, uint256 amount, address receiverAddress, bytes calldata swapExtraData ) external payable override returns (uint256) { if (fromToken == address(0)) { revert Address0Provided(); } bytes memory swapCallData = abi.decode(swapExtraData, (bytes)); uint256 _initialBalanceTokenOut; uint256 _finalBalanceTokenOut; ERC20 erc20ToToken = ERC20(toToken); if (toToken != NATIVE_TOKEN_ADDRESS) { _initialBalanceTokenOut = erc20ToToken.balanceOf(address(this)); } else { _initialBalanceTokenOut = address(this).balance; } if (fromToken != NATIVE_TOKEN_ADDRESS) { ERC20 token = ERC20(fromToken); token.safeTransferFrom(msg.sender, address(this), amount); token.safeApprove(zeroXExchangeProxy, amount); // solhint-disable-next-line (bool success, ) = zeroXExchangeProxy.call(swapCallData); if (!success) { revert SwapFailed(); } token.safeApprove(zeroXExchangeProxy, 0); } else { (bool success, ) = zeroXExchangeProxy.call{value: amount}( swapCallData ); if (!success) { revert SwapFailed(); } } if (toToken != NATIVE_TOKEN_ADDRESS) { _finalBalanceTokenOut = erc20ToToken.balanceOf(address(this)); } else { _finalBalanceTokenOut = address(this).balance; } uint256 returnAmount = _finalBalanceTokenOut - _initialBalanceTokenOut; if (toToken == NATIVE_TOKEN_ADDRESS) { payable(receiverAddress).transfer(returnAmount); } else { erc20ToToken.transfer(receiverAddress, returnAmount); } emit SocketSwapTokens( fromToken, toToken, returnAmount, amount, ZeroXIdentifier, receiverAddress ); return returnAmount; } /** * @notice function to swapWithIn SocketGateway - swaps tokens on the chain to socketGateway as recipient * @param fromToken token to be swapped * @param toToken token to which fromToken has to be swapped * @param amount amount of fromToken being swapped * @param swapExtraData encoded value of properties in the swapData Struct * @return swapped amount (in toToken Address) */ function performActionWithIn( address fromToken, address toToken, uint256 amount, bytes calldata swapExtraData ) external payable override returns (uint256, address) { if (fromToken == address(0)) { revert Address0Provided(); } bytes memory swapCallData = abi.decode(swapExtraData, (bytes)); uint256 _initialBalanceTokenOut; uint256 _finalBalanceTokenOut; ERC20 erc20ToToken = ERC20(toToken); if (toToken != NATIVE_TOKEN_ADDRESS) { _initialBalanceTokenOut = erc20ToToken.balanceOf(address(this)); } else { _initialBalanceTokenOut = address(this).balance; } if (fromToken != NATIVE_TOKEN_ADDRESS) { ERC20 token = ERC20(fromToken); token.safeTransferFrom(msg.sender, address(this), amount); token.safeApprove(zeroXExchangeProxy, amount); // solhint-disable-next-line (bool success, ) = zeroXExchangeProxy.call(swapCallData); if (!success) { revert SwapFailed(); } token.safeApprove(zeroXExchangeProxy, 0); } else { (bool success, ) = zeroXExchangeProxy.call{value: amount}( swapCallData ); if (!success) { revert SwapFailed(); } } if (toToken != NATIVE_TOKEN_ADDRESS) { _finalBalanceTokenOut = erc20ToToken.balanceOf(address(this)); } else { _finalBalanceTokenOut = address(this).balance; } uint256 returnAmount = _finalBalanceTokenOut - _initialBalanceTokenOut; emit SocketSwapTokens( fromToken, toToken, returnAmount, amount, ZeroXIdentifier, socketGateway ); return (returnAmount, toToken); } } // SPDX-License-Identifier: GPL-3.0-only pragma solidity ^0.8.4; import {OnlyOwner, OnlyNominee} from "../errors/SocketErrors.sol"; abstract contract Ownable { address private _owner; address private _nominee; event OwnerNominated(address indexed nominee); event OwnerClaimed(address indexed claimer); constructor(address owner_) { _claimOwner(owner_); } modifier onlyOwner() { if (msg.sender != _owner) { revert OnlyOwner(); } _; } function owner() public view returns (address) { return _owner; } function nominee() public view returns (address) { return _nominee; } function nominateOwner(address nominee_) external { if (msg.sender != _owner) { revert OnlyOwner(); } _nominee = nominee_; emit OwnerNominated(_nominee); } function claimOwner() external { if (msg.sender != _nominee) { revert OnlyNominee(); } _claimOwner(msg.sender); } function _claimOwner(address claimer_) internal { _owner = claimer_; _nominee = address(0); emit OwnerClaimed(claimer_); } }
File 2 of 8: L1ChugSplashProxy
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; /** * @title IL1ChugSplashDeployer */ interface IL1ChugSplashDeployer { function isUpgrading() external view returns (bool); } /** * @custom:legacy * @title L1ChugSplashProxy * @notice Basic ChugSplash proxy contract for L1. Very close to being a normal proxy but has added * functions `setCode` and `setStorage` for changing the code or storage of the contract. * * Note for future developers: do NOT make anything in this contract 'public' unless you * know what you're doing. Anything public can potentially have a function signature that * conflicts with a signature attached to the implementation contract. Public functions * SHOULD always have the `proxyCallIfNotOwner` modifier unless there's some *really* good * reason not to have that modifier. And there almost certainly is not a good reason to not * have that modifier. Beware! */ contract L1ChugSplashProxy { /** * @notice "Magic" prefix. When prepended to some arbitrary bytecode and used to create a * contract, the appended bytecode will be deployed as given. */ bytes13 internal constant DEPLOY_CODE_PREFIX = 0x600D380380600D6000396000f3; /** * @notice bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1) */ bytes32 internal constant IMPLEMENTATION_KEY = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @notice bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1) */ bytes32 internal constant OWNER_KEY = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @notice Blocks a function from being called when the parent signals that the system should * be paused via an isUpgrading function. */ modifier onlyWhenNotPaused() { address owner = _getOwner(); // We do a low-level call because there's no guarantee that the owner actually *is* an // L1ChugSplashDeployer contract and Solidity will throw errors if we do a normal call and // it turns out that it isn't the right type of contract. (bool success, bytes memory returndata) = owner.staticcall( abi.encodeWithSelector(IL1ChugSplashDeployer.isUpgrading.selector) ); // If the call was unsuccessful then we assume that there's no "isUpgrading" method and we // can just continue as normal. We also expect that the return value is exactly 32 bytes // long. If this isn't the case then we can safely ignore the result. if (success && returndata.length == 32) { // Although the expected value is a *boolean*, it's safer to decode as a uint256 in the // case that the isUpgrading function returned something other than 0 or 1. But we only // really care about the case where this value is 0 (= false). uint256 ret = abi.decode(returndata, (uint256)); require(ret == 0, "L1ChugSplashProxy: system is currently being upgraded"); } _; } /** * @notice Makes a proxy call instead of triggering the given function when the caller is * either the owner or the zero address. Caller can only ever be the zero address if * this function is being called off-chain via eth_call, which is totally fine and can * be convenient for client-side tooling. Avoids situations where the proxy and * implementation share a sighash and the proxy function ends up being called instead * of the implementation one. * * Note: msg.sender == address(0) can ONLY be triggered off-chain via eth_call. If * there's a way for someone to send a transaction with msg.sender == address(0) in any * real context then we have much bigger problems. Primary reason to include this * additional allowed sender is because the owner address can be changed dynamically * and we do not want clients to have to keep track of the current owner in order to * make an eth_call that doesn't trigger the proxied contract. */ // slither-disable-next-line incorrect-modifier modifier proxyCallIfNotOwner() { if (msg.sender == _getOwner() || msg.sender == address(0)) { _; } else { // This WILL halt the call frame on completion. _doProxyCall(); } } /** * @param _owner Address of the initial contract owner. */ constructor(address _owner) { _setOwner(_owner); } // slither-disable-next-line locked-ether receive() external payable { // Proxy call by default. _doProxyCall(); } // slither-disable-next-line locked-ether fallback() external payable { // Proxy call by default. _doProxyCall(); } /** * @notice Sets the code that should be running behind this proxy. * * Note: This scheme is a bit different from the standard proxy scheme where one would * typically deploy the code separately and then set the implementation address. We're * doing it this way because it gives us a lot more freedom on the client side. Can * only be triggered by the contract owner. * * @param _code New contract code to run inside this contract. */ function setCode(bytes memory _code) external proxyCallIfNotOwner { // Get the code hash of the current implementation. address implementation = _getImplementation(); // If the code hash matches the new implementation then we return early. if (keccak256(_code) == _getAccountCodeHash(implementation)) { return; } // Create the deploycode by appending the magic prefix. bytes memory deploycode = abi.encodePacked(DEPLOY_CODE_PREFIX, _code); // Deploy the code and set the new implementation address. address newImplementation; assembly { newImplementation := create(0x0, add(deploycode, 0x20), mload(deploycode)) } // Check that the code was actually deployed correctly. I'm not sure if you can ever // actually fail this check. Should only happen if the contract creation from above runs // out of gas but this parent execution thread does NOT run out of gas. Seems like we // should be doing this check anyway though. require( _getAccountCodeHash(newImplementation) == keccak256(_code), "L1ChugSplashProxy: code was not correctly deployed" ); _setImplementation(newImplementation); } /** * @notice Modifies some storage slot within the proxy contract. Gives us a lot of power to * perform upgrades in a more transparent way. Only callable by the owner. * * @param _key Storage key to modify. * @param _value New value for the storage key. */ function setStorage(bytes32 _key, bytes32 _value) external proxyCallIfNotOwner { assembly { sstore(_key, _value) } } /** * @notice Changes the owner of the proxy contract. Only callable by the owner. * * @param _owner New owner of the proxy contract. */ function setOwner(address _owner) external proxyCallIfNotOwner { _setOwner(_owner); } /** * @notice Queries the owner of the proxy contract. Can only be called by the owner OR by * making an eth_call and setting the "from" address to address(0). * * @return Owner address. */ function getOwner() external proxyCallIfNotOwner returns (address) { return _getOwner(); } /** * @notice Queries the implementation address. Can only be called by the owner OR by making an * eth_call and setting the "from" address to address(0). * * @return Implementation address. */ function getImplementation() external proxyCallIfNotOwner returns (address) { return _getImplementation(); } /** * @notice Sets the implementation address. * * @param _implementation New implementation address. */ function _setImplementation(address _implementation) internal { assembly { sstore(IMPLEMENTATION_KEY, _implementation) } } /** * @notice Changes the owner of the proxy contract. * * @param _owner New owner of the proxy contract. */ function _setOwner(address _owner) internal { assembly { sstore(OWNER_KEY, _owner) } } /** * @notice Performs the proxy call via a delegatecall. */ function _doProxyCall() internal onlyWhenNotPaused { address implementation = _getImplementation(); require(implementation != address(0), "L1ChugSplashProxy: implementation is not set yet"); assembly { // Copy calldata into memory at 0x0....calldatasize. calldatacopy(0x0, 0x0, calldatasize()) // Perform the delegatecall, make sure to pass all available gas. let success := delegatecall(gas(), implementation, 0x0, calldatasize(), 0x0, 0x0) // Copy returndata into memory at 0x0....returndatasize. Note that this *will* // overwrite the calldata that we just copied into memory but that doesn't really // matter because we'll be returning in a second anyway. returndatacopy(0x0, 0x0, returndatasize()) // Success == 0 means a revert. We'll revert too and pass the data up. if iszero(success) { revert(0x0, returndatasize()) } // Otherwise we'll just return and pass the data up. return(0x0, returndatasize()) } } /** * @notice Queries the implementation address. * * @return Implementation address. */ function _getImplementation() internal view returns (address) { address implementation; assembly { implementation := sload(IMPLEMENTATION_KEY) } return implementation; } /** * @notice Queries the owner of the proxy contract. * * @return Owner address. */ function _getOwner() internal view returns (address) { address owner; assembly { owner := sload(OWNER_KEY) } return owner; } /** * @notice Gets the code hash for a given account. * * @param _account Address of the account to get a code hash for. * * @return Code hash for the account. */ function _getAccountCodeHash(address _account) internal view returns (bytes32) { bytes32 codeHash; assembly { codeHash := extcodehash(_account) } return codeHash; } }
File 3 of 8: Proxy
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; /** * @title Proxy * @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or * if the caller is address(0), meaning that the call originated from an off-chain * simulation. */ contract Proxy { /** * @notice The storage slot that holds the address of the implementation. * bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1) */ bytes32 internal constant IMPLEMENTATION_KEY = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @notice The storage slot that holds the address of the owner. * bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1) */ bytes32 internal constant OWNER_KEY = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @notice An event that is emitted each time the implementation is changed. This event is part * of the EIP-1967 specification. * * @param implementation The address of the implementation contract */ event Upgraded(address indexed implementation); /** * @notice An event that is emitted each time the owner is upgraded. This event is part of the * EIP-1967 specification. * * @param previousAdmin The previous owner of the contract * @param newAdmin The new owner of the contract */ event AdminChanged(address previousAdmin, address newAdmin); /** * @notice A modifier that reverts if not called by the owner or by address(0) to allow * eth_call to interact with this proxy without needing to use low-level storage * inspection. We assume that nobody is able to trigger calls from address(0) during * normal EVM execution. */ modifier proxyCallIfNotAdmin() { if (msg.sender == _getAdmin() || msg.sender == address(0)) { _; } else { // This WILL halt the call frame on completion. _doProxyCall(); } } /** * @notice Sets the initial admin during contract deployment. Admin address is stored at the * EIP-1967 admin storage slot so that accidental storage collision with the * implementation is not possible. * * @param _admin Address of the initial contract admin. Admin as the ability to access the * transparent proxy interface. */ constructor(address _admin) { _changeAdmin(_admin); } // slither-disable-next-line locked-ether receive() external payable { // Proxy call by default. _doProxyCall(); } // slither-disable-next-line locked-ether fallback() external payable { // Proxy call by default. _doProxyCall(); } /** * @notice Set the implementation contract address. The code at the given address will execute * when this contract is called. * * @param _implementation Address of the implementation contract. */ function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin { _setImplementation(_implementation); } /** * @notice Set the implementation and call a function in a single transaction. Useful to ensure * atomic execution of initialization-based upgrades. * * @param _implementation Address of the implementation contract. * @param _data Calldata to delegatecall the new implementation with. */ function upgradeToAndCall(address _implementation, bytes calldata _data) public payable virtual proxyCallIfNotAdmin returns (bytes memory) { _setImplementation(_implementation); (bool success, bytes memory returndata) = _implementation.delegatecall(_data); require(success, "Proxy: delegatecall to new implementation contract failed"); return returndata; } /** * @notice Changes the owner of the proxy contract. Only callable by the owner. * * @param _admin New owner of the proxy contract. */ function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin { _changeAdmin(_admin); } /** * @notice Gets the owner of the proxy contract. * * @return Owner address. */ function admin() public virtual proxyCallIfNotAdmin returns (address) { return _getAdmin(); } /** * @notice Queries the implementation address. * * @return Implementation address. */ function implementation() public virtual proxyCallIfNotAdmin returns (address) { return _getImplementation(); } /** * @notice Sets the implementation address. * * @param _implementation New implementation address. */ function _setImplementation(address _implementation) internal { assembly { sstore(IMPLEMENTATION_KEY, _implementation) } emit Upgraded(_implementation); } /** * @notice Changes the owner of the proxy contract. * * @param _admin New owner of the proxy contract. */ function _changeAdmin(address _admin) internal { address previous = _getAdmin(); assembly { sstore(OWNER_KEY, _admin) } emit AdminChanged(previous, _admin); } /** * @notice Performs the proxy call via a delegatecall. */ function _doProxyCall() internal { address impl = _getImplementation(); require(impl != address(0), "Proxy: implementation not initialized"); assembly { // Copy calldata into memory at 0x0....calldatasize. calldatacopy(0x0, 0x0, calldatasize()) // Perform the delegatecall, make sure to pass all available gas. let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0) // Copy returndata into memory at 0x0....returndatasize. Note that this *will* // overwrite the calldata that we just copied into memory but that doesn't really // matter because we'll be returning in a second anyway. returndatacopy(0x0, 0x0, returndatasize()) // Success == 0 means a revert. We'll revert too and pass the data up. if iszero(success) { revert(0x0, returndatasize()) } // Otherwise we'll just return and pass the data up. return(0x0, returndatasize()) } } /** * @notice Queries the implementation address. * * @return Implementation address. */ function _getImplementation() internal view returns (address) { address impl; assembly { impl := sload(IMPLEMENTATION_KEY) } return impl; } /** * @notice Queries the owner of the proxy contract. * * @return Owner address. */ function _getAdmin() internal view returns (address) { address owner; assembly { owner := sload(OWNER_KEY) } return owner; } }
File 4 of 8: ResolvedDelegateProxy
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { AddressManager } from "./AddressManager.sol"; /** * @custom:legacy * @title ResolvedDelegateProxy * @notice ResolvedDelegateProxy is a legacy proxy contract that makes use of the AddressManager to * resolve the implementation address. We're maintaining this contract for backwards * compatibility so we can manage all legacy proxies where necessary. */ contract ResolvedDelegateProxy { /** * @notice Mapping used to store the implementation name that corresponds to this contract. A * mapping was originally used as a way to bypass the same issue normally solved by * storing the implementation address in a specific storage slot that does not conflict * with any other storage slot. Generally NOT a safe solution but works as long as the * implementation does not also keep a mapping in the first storage slot. */ mapping(address => string) private implementationName; /** * @notice Mapping used to store the address of the AddressManager contract where the * implementation address will be resolved from. Same concept here as with the above * mapping. Also generally unsafe but fine if the implementation doesn't keep a mapping * in the second storage slot. */ mapping(address => AddressManager) private addressManager; /** * @param _addressManager Address of the AddressManager. * @param _implementationName implementationName of the contract to proxy to. */ constructor(AddressManager _addressManager, string memory _implementationName) { addressManager[address(this)] = _addressManager; implementationName[address(this)] = _implementationName; } /** * @notice Fallback, performs a delegatecall to the resolved implementation address. */ // solhint-disable-next-line no-complex-fallback fallback() external payable { address target = addressManager[address(this)].getAddress( (implementationName[address(this)]) ); require(target != address(0), "ResolvedDelegateProxy: target address must be initialized"); // slither-disable-next-line controlled-delegatecall (bool success, bytes memory returndata) = target.delegatecall(msg.data); if (success == true) { assembly { return(add(returndata, 0x20), mload(returndata)) } } else { assembly { revert(add(returndata, 0x20), mload(returndata)) } } } } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol"; /** * @custom:legacy * @title AddressManager * @notice AddressManager is a legacy contract that was used in the old version of the Optimism * system to manage a registry of string names to addresses. We now use a more standard * proxy system instead, but this contract is still necessary for backwards compatibility * with several older contracts. */ contract AddressManager is Ownable { /** * @notice Mapping of the hashes of string names to addresses. */ mapping(bytes32 => address) private addresses; /** * @notice Emitted when an address is modified in the registry. * * @param name String name being set in the registry. * @param newAddress Address set for the given name. * @param oldAddress Address that was previously set for the given name. */ event AddressSet(string indexed name, address newAddress, address oldAddress); /** * @notice Changes the address associated with a particular name. * * @param _name String name to associate an address with. * @param _address Address to associate with the name. */ function setAddress(string memory _name, address _address) external onlyOwner { bytes32 nameHash = _getNameHash(_name); address oldAddress = addresses[nameHash]; addresses[nameHash] = _address; emit AddressSet(_name, _address, oldAddress); } /** * @notice Retrieves the address associated with a given name. * * @param _name Name to retrieve an address for. * * @return Address associated with the given name. */ function getAddress(string memory _name) external view returns (address) { return addresses[_getNameHash(_name)]; } /** * @notice Computes the hash of a name. * * @param _name Name to compute a hash for. * * @return Hash of the given name. */ function _getNameHash(string memory _name) internal pure returns (bytes32) { return keccak256(abi.encodePacked(_name)); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
File 5 of 8: ProxyAdmin
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol"; import { Proxy } from "./Proxy.sol"; import { AddressManager } from "../legacy/AddressManager.sol"; import { L1ChugSplashProxy } from "../legacy/L1ChugSplashProxy.sol"; /** * @title IStaticERC1967Proxy * @notice IStaticERC1967Proxy is a static version of the ERC1967 proxy interface. */ interface IStaticERC1967Proxy { function implementation() external view returns (address); function admin() external view returns (address); } /** * @title IStaticL1ChugSplashProxy * @notice IStaticL1ChugSplashProxy is a static version of the ChugSplash proxy interface. */ interface IStaticL1ChugSplashProxy { function getImplementation() external view returns (address); function getOwner() external view returns (address); } /** * @title ProxyAdmin * @notice This is an auxiliary contract meant to be assigned as the admin of an ERC1967 Proxy, * based on the OpenZeppelin implementation. It has backwards compatibility logic to work * with the various types of proxies that have been deployed by Optimism in the past. */ contract ProxyAdmin is Ownable { /** * @notice The proxy types that the ProxyAdmin can manage. * * @custom:value ERC1967 Represents an ERC1967 compliant transparent proxy interface. * @custom:value CHUGSPLASH Represents the Chugsplash proxy interface (legacy). * @custom:value RESOLVED Represents the ResolvedDelegate proxy (legacy). */ enum ProxyType { ERC1967, CHUGSPLASH, RESOLVED } /** * @notice A mapping of proxy types, used for backwards compatibility. */ mapping(address => ProxyType) public proxyType; /** * @notice A reverse mapping of addresses to names held in the AddressManager. This must be * manually kept up to date with changes in the AddressManager for this contract * to be able to work as an admin for the ResolvedDelegateProxy type. */ mapping(address => string) public implementationName; /** * @notice The address of the address manager, this is required to manage the * ResolvedDelegateProxy type. */ AddressManager public addressManager; /** * @notice A legacy upgrading indicator used by the old Chugsplash Proxy. */ bool internal upgrading; /** * @param _owner Address of the initial owner of this contract. */ constructor(address _owner) Ownable() { _transferOwnership(_owner); } /** * @notice Sets the proxy type for a given address. Only required for non-standard (legacy) * proxy types. * * @param _address Address of the proxy. * @param _type Type of the proxy. */ function setProxyType(address _address, ProxyType _type) external onlyOwner { proxyType[_address] = _type; } /** * @notice Sets the implementation name for a given address. Only required for * ResolvedDelegateProxy type proxies that have an implementation name. * * @param _address Address of the ResolvedDelegateProxy. * @param _name Name of the implementation for the proxy. */ function setImplementationName(address _address, string memory _name) external onlyOwner { implementationName[_address] = _name; } /** * @notice Set the address of the AddressManager. This is required to manage legacy * ResolvedDelegateProxy type proxy contracts. * * @param _address Address of the AddressManager. */ function setAddressManager(AddressManager _address) external onlyOwner { addressManager = _address; } /** * @custom:legacy * @notice Set an address in the address manager. Since only the owner of the AddressManager * can directly modify addresses and the ProxyAdmin will own the AddressManager, this * gives the owner of the ProxyAdmin the ability to modify addresses directly. * * @param _name Name to set within the AddressManager. * @param _address Address to attach to the given name. */ function setAddress(string memory _name, address _address) external onlyOwner { addressManager.setAddress(_name, _address); } /** * @custom:legacy * @notice Set the upgrading status for the Chugsplash proxy type. * * @param _upgrading Whether or not the system is upgrading. */ function setUpgrading(bool _upgrading) external onlyOwner { upgrading = _upgrading; } /** * @custom:legacy * @notice Legacy function used to tell ChugSplashProxy contracts if an upgrade is happening. * * @return Whether or not there is an upgrade going on. May not actually tell you whether an * upgrade is going on, since we don't currently plan to use this variable for anything * other than a legacy indicator to fix a UX bug in the ChugSplash proxy. */ function isUpgrading() external view returns (bool) { return upgrading; } /** * @notice Returns the implementation of the given proxy address. * * @param _proxy Address of the proxy to get the implementation of. * * @return Address of the implementation of the proxy. */ function getProxyImplementation(address _proxy) external view returns (address) { ProxyType ptype = proxyType[_proxy]; if (ptype == ProxyType.ERC1967) { return IStaticERC1967Proxy(_proxy).implementation(); } else if (ptype == ProxyType.CHUGSPLASH) { return IStaticL1ChugSplashProxy(_proxy).getImplementation(); } else if (ptype == ProxyType.RESOLVED) { return addressManager.getAddress(implementationName[_proxy]); } else { revert("ProxyAdmin: unknown proxy type"); } } /** * @notice Returns the admin of the given proxy address. * * @param _proxy Address of the proxy to get the admin of. * * @return Address of the admin of the proxy. */ function getProxyAdmin(address payable _proxy) external view returns (address) { ProxyType ptype = proxyType[_proxy]; if (ptype == ProxyType.ERC1967) { return IStaticERC1967Proxy(_proxy).admin(); } else if (ptype == ProxyType.CHUGSPLASH) { return IStaticL1ChugSplashProxy(_proxy).getOwner(); } else if (ptype == ProxyType.RESOLVED) { return addressManager.owner(); } else { revert("ProxyAdmin: unknown proxy type"); } } /** * @notice Updates the admin of the given proxy address. * * @param _proxy Address of the proxy to update. * @param _newAdmin Address of the new proxy admin. */ function changeProxyAdmin(address payable _proxy, address _newAdmin) external onlyOwner { ProxyType ptype = proxyType[_proxy]; if (ptype == ProxyType.ERC1967) { Proxy(_proxy).changeAdmin(_newAdmin); } else if (ptype == ProxyType.CHUGSPLASH) { L1ChugSplashProxy(_proxy).setOwner(_newAdmin); } else if (ptype == ProxyType.RESOLVED) { addressManager.transferOwnership(_newAdmin); } else { revert("ProxyAdmin: unknown proxy type"); } } /** * @notice Changes a proxy's implementation contract. * * @param _proxy Address of the proxy to upgrade. * @param _implementation Address of the new implementation address. */ function upgrade(address payable _proxy, address _implementation) public onlyOwner { ProxyType ptype = proxyType[_proxy]; if (ptype == ProxyType.ERC1967) { Proxy(_proxy).upgradeTo(_implementation); } else if (ptype == ProxyType.CHUGSPLASH) { L1ChugSplashProxy(_proxy).setStorage( // bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1) 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc, bytes32(uint256(uint160(_implementation))) ); } else if (ptype == ProxyType.RESOLVED) { string memory name = implementationName[_proxy]; addressManager.setAddress(name, _implementation); } else { // It should not be possible to retrieve a ProxyType value which is not matched by // one of the previous conditions. assert(false); } } /** * @notice Changes a proxy's implementation contract and delegatecalls the new implementation * with some given data. Useful for atomic upgrade-and-initialize calls. * * @param _proxy Address of the proxy to upgrade. * @param _implementation Address of the new implementation address. * @param _data Data to trigger the new implementation with. */ function upgradeAndCall( address payable _proxy, address _implementation, bytes memory _data ) external payable onlyOwner { ProxyType ptype = proxyType[_proxy]; if (ptype == ProxyType.ERC1967) { Proxy(_proxy).upgradeToAndCall{ value: msg.value }(_implementation, _data); } else { // reverts if proxy type is unknown upgrade(_proxy, _implementation); (bool success, ) = _proxy.call{ value: msg.value }(_data); require(success, "ProxyAdmin: call to proxy after upgrade failed"); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; /** * @title Proxy * @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or * if the caller is address(0), meaning that the call originated from an off-chain * simulation. */ contract Proxy { /** * @notice The storage slot that holds the address of the implementation. * bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1) */ bytes32 internal constant IMPLEMENTATION_KEY = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @notice The storage slot that holds the address of the owner. * bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1) */ bytes32 internal constant OWNER_KEY = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @notice An event that is emitted each time the implementation is changed. This event is part * of the EIP-1967 specification. * * @param implementation The address of the implementation contract */ event Upgraded(address indexed implementation); /** * @notice An event that is emitted each time the owner is upgraded. This event is part of the * EIP-1967 specification. * * @param previousAdmin The previous owner of the contract * @param newAdmin The new owner of the contract */ event AdminChanged(address previousAdmin, address newAdmin); /** * @notice A modifier that reverts if not called by the owner or by address(0) to allow * eth_call to interact with this proxy without needing to use low-level storage * inspection. We assume that nobody is able to trigger calls from address(0) during * normal EVM execution. */ modifier proxyCallIfNotAdmin() { if (msg.sender == _getAdmin() || msg.sender == address(0)) { _; } else { // This WILL halt the call frame on completion. _doProxyCall(); } } /** * @notice Sets the initial admin during contract deployment. Admin address is stored at the * EIP-1967 admin storage slot so that accidental storage collision with the * implementation is not possible. * * @param _admin Address of the initial contract admin. Admin as the ability to access the * transparent proxy interface. */ constructor(address _admin) { _changeAdmin(_admin); } // slither-disable-next-line locked-ether receive() external payable { // Proxy call by default. _doProxyCall(); } // slither-disable-next-line locked-ether fallback() external payable { // Proxy call by default. _doProxyCall(); } /** * @notice Set the implementation contract address. The code at the given address will execute * when this contract is called. * * @param _implementation Address of the implementation contract. */ function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin { _setImplementation(_implementation); } /** * @notice Set the implementation and call a function in a single transaction. Useful to ensure * atomic execution of initialization-based upgrades. * * @param _implementation Address of the implementation contract. * @param _data Calldata to delegatecall the new implementation with. */ function upgradeToAndCall(address _implementation, bytes calldata _data) public payable virtual proxyCallIfNotAdmin returns (bytes memory) { _setImplementation(_implementation); (bool success, bytes memory returndata) = _implementation.delegatecall(_data); require(success, "Proxy: delegatecall to new implementation contract failed"); return returndata; } /** * @notice Changes the owner of the proxy contract. Only callable by the owner. * * @param _admin New owner of the proxy contract. */ function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin { _changeAdmin(_admin); } /** * @notice Gets the owner of the proxy contract. * * @return Owner address. */ function admin() public virtual proxyCallIfNotAdmin returns (address) { return _getAdmin(); } /** * @notice Queries the implementation address. * * @return Implementation address. */ function implementation() public virtual proxyCallIfNotAdmin returns (address) { return _getImplementation(); } /** * @notice Sets the implementation address. * * @param _implementation New implementation address. */ function _setImplementation(address _implementation) internal { assembly { sstore(IMPLEMENTATION_KEY, _implementation) } emit Upgraded(_implementation); } /** * @notice Changes the owner of the proxy contract. * * @param _admin New owner of the proxy contract. */ function _changeAdmin(address _admin) internal { address previous = _getAdmin(); assembly { sstore(OWNER_KEY, _admin) } emit AdminChanged(previous, _admin); } /** * @notice Performs the proxy call via a delegatecall. */ function _doProxyCall() internal { address impl = _getImplementation(); require(impl != address(0), "Proxy: implementation not initialized"); assembly { // Copy calldata into memory at 0x0....calldatasize. calldatacopy(0x0, 0x0, calldatasize()) // Perform the delegatecall, make sure to pass all available gas. let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0) // Copy returndata into memory at 0x0....returndatasize. Note that this *will* // overwrite the calldata that we just copied into memory but that doesn't really // matter because we'll be returning in a second anyway. returndatacopy(0x0, 0x0, returndatasize()) // Success == 0 means a revert. We'll revert too and pass the data up. if iszero(success) { revert(0x0, returndatasize()) } // Otherwise we'll just return and pass the data up. return(0x0, returndatasize()) } } /** * @notice Queries the implementation address. * * @return Implementation address. */ function _getImplementation() internal view returns (address) { address impl; assembly { impl := sload(IMPLEMENTATION_KEY) } return impl; } /** * @notice Queries the owner of the proxy contract. * * @return Owner address. */ function _getAdmin() internal view returns (address) { address owner; assembly { owner := sload(OWNER_KEY) } return owner; } } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol"; /** * @custom:legacy * @title AddressManager * @notice AddressManager is a legacy contract that was used in the old version of the Optimism * system to manage a registry of string names to addresses. We now use a more standard * proxy system instead, but this contract is still necessary for backwards compatibility * with several older contracts. */ contract AddressManager is Ownable { /** * @notice Mapping of the hashes of string names to addresses. */ mapping(bytes32 => address) private addresses; /** * @notice Emitted when an address is modified in the registry. * * @param name String name being set in the registry. * @param newAddress Address set for the given name. * @param oldAddress Address that was previously set for the given name. */ event AddressSet(string indexed name, address newAddress, address oldAddress); /** * @notice Changes the address associated with a particular name. * * @param _name String name to associate an address with. * @param _address Address to associate with the name. */ function setAddress(string memory _name, address _address) external onlyOwner { bytes32 nameHash = _getNameHash(_name); address oldAddress = addresses[nameHash]; addresses[nameHash] = _address; emit AddressSet(_name, _address, oldAddress); } /** * @notice Retrieves the address associated with a given name. * * @param _name Name to retrieve an address for. * * @return Address associated with the given name. */ function getAddress(string memory _name) external view returns (address) { return addresses[_getNameHash(_name)]; } /** * @notice Computes the hash of a name. * * @param _name Name to compute a hash for. * * @return Hash of the given name. */ function _getNameHash(string memory _name) internal pure returns (bytes32) { return keccak256(abi.encodePacked(_name)); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; /** * @title IL1ChugSplashDeployer */ interface IL1ChugSplashDeployer { function isUpgrading() external view returns (bool); } /** * @custom:legacy * @title L1ChugSplashProxy * @notice Basic ChugSplash proxy contract for L1. Very close to being a normal proxy but has added * functions `setCode` and `setStorage` for changing the code or storage of the contract. * * Note for future developers: do NOT make anything in this contract 'public' unless you * know what you're doing. Anything public can potentially have a function signature that * conflicts with a signature attached to the implementation contract. Public functions * SHOULD always have the `proxyCallIfNotOwner` modifier unless there's some *really* good * reason not to have that modifier. And there almost certainly is not a good reason to not * have that modifier. Beware! */ contract L1ChugSplashProxy { /** * @notice "Magic" prefix. When prepended to some arbitrary bytecode and used to create a * contract, the appended bytecode will be deployed as given. */ bytes13 internal constant DEPLOY_CODE_PREFIX = 0x600D380380600D6000396000f3; /** * @notice bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1) */ bytes32 internal constant IMPLEMENTATION_KEY = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @notice bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1) */ bytes32 internal constant OWNER_KEY = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @notice Blocks a function from being called when the parent signals that the system should * be paused via an isUpgrading function. */ modifier onlyWhenNotPaused() { address owner = _getOwner(); // We do a low-level call because there's no guarantee that the owner actually *is* an // L1ChugSplashDeployer contract and Solidity will throw errors if we do a normal call and // it turns out that it isn't the right type of contract. (bool success, bytes memory returndata) = owner.staticcall( abi.encodeWithSelector(IL1ChugSplashDeployer.isUpgrading.selector) ); // If the call was unsuccessful then we assume that there's no "isUpgrading" method and we // can just continue as normal. We also expect that the return value is exactly 32 bytes // long. If this isn't the case then we can safely ignore the result. if (success && returndata.length == 32) { // Although the expected value is a *boolean*, it's safer to decode as a uint256 in the // case that the isUpgrading function returned something other than 0 or 1. But we only // really care about the case where this value is 0 (= false). uint256 ret = abi.decode(returndata, (uint256)); require(ret == 0, "L1ChugSplashProxy: system is currently being upgraded"); } _; } /** * @notice Makes a proxy call instead of triggering the given function when the caller is * either the owner or the zero address. Caller can only ever be the zero address if * this function is being called off-chain via eth_call, which is totally fine and can * be convenient for client-side tooling. Avoids situations where the proxy and * implementation share a sighash and the proxy function ends up being called instead * of the implementation one. * * Note: msg.sender == address(0) can ONLY be triggered off-chain via eth_call. If * there's a way for someone to send a transaction with msg.sender == address(0) in any * real context then we have much bigger problems. Primary reason to include this * additional allowed sender is because the owner address can be changed dynamically * and we do not want clients to have to keep track of the current owner in order to * make an eth_call that doesn't trigger the proxied contract. */ // slither-disable-next-line incorrect-modifier modifier proxyCallIfNotOwner() { if (msg.sender == _getOwner() || msg.sender == address(0)) { _; } else { // This WILL halt the call frame on completion. _doProxyCall(); } } /** * @param _owner Address of the initial contract owner. */ constructor(address _owner) { _setOwner(_owner); } // slither-disable-next-line locked-ether receive() external payable { // Proxy call by default. _doProxyCall(); } // slither-disable-next-line locked-ether fallback() external payable { // Proxy call by default. _doProxyCall(); } /** * @notice Sets the code that should be running behind this proxy. * * Note: This scheme is a bit different from the standard proxy scheme where one would * typically deploy the code separately and then set the implementation address. We're * doing it this way because it gives us a lot more freedom on the client side. Can * only be triggered by the contract owner. * * @param _code New contract code to run inside this contract. */ function setCode(bytes memory _code) external proxyCallIfNotOwner { // Get the code hash of the current implementation. address implementation = _getImplementation(); // If the code hash matches the new implementation then we return early. if (keccak256(_code) == _getAccountCodeHash(implementation)) { return; } // Create the deploycode by appending the magic prefix. bytes memory deploycode = abi.encodePacked(DEPLOY_CODE_PREFIX, _code); // Deploy the code and set the new implementation address. address newImplementation; assembly { newImplementation := create(0x0, add(deploycode, 0x20), mload(deploycode)) } // Check that the code was actually deployed correctly. I'm not sure if you can ever // actually fail this check. Should only happen if the contract creation from above runs // out of gas but this parent execution thread does NOT run out of gas. Seems like we // should be doing this check anyway though. require( _getAccountCodeHash(newImplementation) == keccak256(_code), "L1ChugSplashProxy: code was not correctly deployed" ); _setImplementation(newImplementation); } /** * @notice Modifies some storage slot within the proxy contract. Gives us a lot of power to * perform upgrades in a more transparent way. Only callable by the owner. * * @param _key Storage key to modify. * @param _value New value for the storage key. */ function setStorage(bytes32 _key, bytes32 _value) external proxyCallIfNotOwner { assembly { sstore(_key, _value) } } /** * @notice Changes the owner of the proxy contract. Only callable by the owner. * * @param _owner New owner of the proxy contract. */ function setOwner(address _owner) external proxyCallIfNotOwner { _setOwner(_owner); } /** * @notice Queries the owner of the proxy contract. Can only be called by the owner OR by * making an eth_call and setting the "from" address to address(0). * * @return Owner address. */ function getOwner() external proxyCallIfNotOwner returns (address) { return _getOwner(); } /** * @notice Queries the implementation address. Can only be called by the owner OR by making an * eth_call and setting the "from" address to address(0). * * @return Implementation address. */ function getImplementation() external proxyCallIfNotOwner returns (address) { return _getImplementation(); } /** * @notice Sets the implementation address. * * @param _implementation New implementation address. */ function _setImplementation(address _implementation) internal { assembly { sstore(IMPLEMENTATION_KEY, _implementation) } } /** * @notice Changes the owner of the proxy contract. * * @param _owner New owner of the proxy contract. */ function _setOwner(address _owner) internal { assembly { sstore(OWNER_KEY, _owner) } } /** * @notice Performs the proxy call via a delegatecall. */ function _doProxyCall() internal onlyWhenNotPaused { address implementation = _getImplementation(); require(implementation != address(0), "L1ChugSplashProxy: implementation is not set yet"); assembly { // Copy calldata into memory at 0x0....calldatasize. calldatacopy(0x0, 0x0, calldatasize()) // Perform the delegatecall, make sure to pass all available gas. let success := delegatecall(gas(), implementation, 0x0, calldatasize(), 0x0, 0x0) // Copy returndata into memory at 0x0....returndatasize. Note that this *will* // overwrite the calldata that we just copied into memory but that doesn't really // matter because we'll be returning in a second anyway. returndatacopy(0x0, 0x0, returndatasize()) // Success == 0 means a revert. We'll revert too and pass the data up. if iszero(success) { revert(0x0, returndatasize()) } // Otherwise we'll just return and pass the data up. return(0x0, returndatasize()) } } /** * @notice Queries the implementation address. * * @return Implementation address. */ function _getImplementation() internal view returns (address) { address implementation; assembly { implementation := sload(IMPLEMENTATION_KEY) } return implementation; } /** * @notice Queries the owner of the proxy contract. * * @return Owner address. */ function _getOwner() internal view returns (address) { address owner; assembly { owner := sload(OWNER_KEY) } return owner; } /** * @notice Gets the code hash for a given account. * * @param _account Address of the account to get a code hash for. * * @return Code hash for the account. */ function _getAccountCodeHash(address _account) internal view returns (bytes32) { bytes32 codeHash; assembly { codeHash := extcodehash(_account) } return codeHash; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
File 6 of 8: L1StandardBridge
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Predeploys } from "../libraries/Predeploys.sol"; import { StandardBridge } from "../universal/StandardBridge.sol"; import { Semver } from "../universal/Semver.sol"; /** * @custom:proxied * @title L1StandardBridge * @notice The L1StandardBridge is responsible for transfering ETH and ERC20 tokens between L1 and * L2. In the case that an ERC20 token is native to L1, it will be escrowed within this * contract. If the ERC20 token is native to L2, it will be burnt. Before Bedrock, ETH was * stored within this contract. After Bedrock, ETH is instead stored inside the * OptimismPortal contract. * NOTE: this contract is not intended to support all variations of ERC20 tokens. Examples * of some token types that may not be properly supported by this contract include, but are * not limited to: tokens with transfer fees, rebasing tokens, and tokens with blocklists. */ contract L1StandardBridge is StandardBridge, Semver { /** * @custom:legacy * @notice Emitted whenever a deposit of ETH from L1 into L2 is initiated. * * @param from Address of the depositor. * @param to Address of the recipient on L2. * @param amount Amount of ETH deposited. * @param extraData Extra data attached to the deposit. */ event ETHDepositInitiated( address indexed from, address indexed to, uint256 amount, bytes extraData ); /** * @custom:legacy * @notice Emitted whenever a withdrawal of ETH from L2 to L1 is finalized. * * @param from Address of the withdrawer. * @param to Address of the recipient on L1. * @param amount Amount of ETH withdrawn. * @param extraData Extra data attached to the withdrawal. */ event ETHWithdrawalFinalized( address indexed from, address indexed to, uint256 amount, bytes extraData ); /** * @custom:legacy * @notice Emitted whenever an ERC20 deposit is initiated. * * @param l1Token Address of the token on L1. * @param l2Token Address of the corresponding token on L2. * @param from Address of the depositor. * @param to Address of the recipient on L2. * @param amount Amount of the ERC20 deposited. * @param extraData Extra data attached to the deposit. */ event ERC20DepositInitiated( address indexed l1Token, address indexed l2Token, address indexed from, address to, uint256 amount, bytes extraData ); /** * @custom:legacy * @notice Emitted whenever an ERC20 withdrawal is finalized. * * @param l1Token Address of the token on L1. * @param l2Token Address of the corresponding token on L2. * @param from Address of the withdrawer. * @param to Address of the recipient on L1. * @param amount Amount of the ERC20 withdrawn. * @param extraData Extra data attached to the withdrawal. */ event ERC20WithdrawalFinalized( address indexed l1Token, address indexed l2Token, address indexed from, address to, uint256 amount, bytes extraData ); /** * @custom:semver 1.1.0 * * @param _messenger Address of the L1CrossDomainMessenger. */ constructor(address payable _messenger) Semver(1, 1, 0) StandardBridge(_messenger, payable(Predeploys.L2_STANDARD_BRIDGE)) {} /** * @notice Allows EOAs to bridge ETH by sending directly to the bridge. */ receive() external payable override onlyEOA { _initiateETHDeposit(msg.sender, msg.sender, RECEIVE_DEFAULT_GAS_LIMIT, bytes("")); } /** * @custom:legacy * @notice Deposits some amount of ETH into the sender's account on L2. * * @param _minGasLimit Minimum gas limit for the deposit message on L2. * @param _extraData Optional data to forward to L2. Data supplied here will not be used to * execute any code on L2 and is only emitted as extra data for the * convenience of off-chain tooling. */ function depositETH(uint32 _minGasLimit, bytes calldata _extraData) external payable onlyEOA { _initiateETHDeposit(msg.sender, msg.sender, _minGasLimit, _extraData); } /** * @custom:legacy * @notice Deposits some amount of ETH into a target account on L2. * Note that if ETH is sent to a contract on L2 and the call fails, then that ETH will * be locked in the L2StandardBridge. ETH may be recoverable if the call can be * successfully replayed by increasing the amount of gas supplied to the call. If the * call will fail for any amount of gas, then the ETH will be locked permanently. * * @param _to Address of the recipient on L2. * @param _minGasLimit Minimum gas limit for the deposit message on L2. * @param _extraData Optional data to forward to L2. Data supplied here will not be used to * execute any code on L2 and is only emitted as extra data for the * convenience of off-chain tooling. */ function depositETHTo( address _to, uint32 _minGasLimit, bytes calldata _extraData ) external payable { _initiateETHDeposit(msg.sender, _to, _minGasLimit, _extraData); } /** * @custom:legacy * @notice Deposits some amount of ERC20 tokens into the sender's account on L2. * * @param _l1Token Address of the L1 token being deposited. * @param _l2Token Address of the corresponding token on L2. * @param _amount Amount of the ERC20 to deposit. * @param _minGasLimit Minimum gas limit for the deposit message on L2. * @param _extraData Optional data to forward to L2. Data supplied here will not be used to * execute any code on L2 and is only emitted as extra data for the * convenience of off-chain tooling. */ function depositERC20( address _l1Token, address _l2Token, uint256 _amount, uint32 _minGasLimit, bytes calldata _extraData ) external virtual onlyEOA { _initiateERC20Deposit( _l1Token, _l2Token, msg.sender, msg.sender, _amount, _minGasLimit, _extraData ); } /** * @custom:legacy * @notice Deposits some amount of ERC20 tokens into a target account on L2. * * @param _l1Token Address of the L1 token being deposited. * @param _l2Token Address of the corresponding token on L2. * @param _to Address of the recipient on L2. * @param _amount Amount of the ERC20 to deposit. * @param _minGasLimit Minimum gas limit for the deposit message on L2. * @param _extraData Optional data to forward to L2. Data supplied here will not be used to * execute any code on L2 and is only emitted as extra data for the * convenience of off-chain tooling. */ function depositERC20To( address _l1Token, address _l2Token, address _to, uint256 _amount, uint32 _minGasLimit, bytes calldata _extraData ) external virtual { _initiateERC20Deposit( _l1Token, _l2Token, msg.sender, _to, _amount, _minGasLimit, _extraData ); } /** * @custom:legacy * @notice Finalizes a withdrawal of ETH from L2. * * @param _from Address of the withdrawer on L2. * @param _to Address of the recipient on L1. * @param _amount Amount of ETH to withdraw. * @param _extraData Optional data forwarded from L2. */ function finalizeETHWithdrawal( address _from, address _to, uint256 _amount, bytes calldata _extraData ) external payable { finalizeBridgeETH(_from, _to, _amount, _extraData); } /** * @custom:legacy * @notice Finalizes a withdrawal of ERC20 tokens from L2. * * @param _l1Token Address of the token on L1. * @param _l2Token Address of the corresponding token on L2. * @param _from Address of the withdrawer on L2. * @param _to Address of the recipient on L1. * @param _amount Amount of the ERC20 to withdraw. * @param _extraData Optional data forwarded from L2. */ function finalizeERC20Withdrawal( address _l1Token, address _l2Token, address _from, address _to, uint256 _amount, bytes calldata _extraData ) external { finalizeBridgeERC20(_l1Token, _l2Token, _from, _to, _amount, _extraData); } /** * @custom:legacy * @notice Retrieves the access of the corresponding L2 bridge contract. * * @return Address of the corresponding L2 bridge contract. */ function l2TokenBridge() external view returns (address) { return address(OTHER_BRIDGE); } /** * @notice Internal function for initiating an ETH deposit. * * @param _from Address of the sender on L1. * @param _to Address of the recipient on L2. * @param _minGasLimit Minimum gas limit for the deposit message on L2. * @param _extraData Optional data to forward to L2. */ function _initiateETHDeposit( address _from, address _to, uint32 _minGasLimit, bytes memory _extraData ) internal { _initiateBridgeETH(_from, _to, msg.value, _minGasLimit, _extraData); } /** * @notice Internal function for initiating an ERC20 deposit. * * @param _l1Token Address of the L1 token being deposited. * @param _l2Token Address of the corresponding token on L2. * @param _from Address of the sender on L1. * @param _to Address of the recipient on L2. * @param _amount Amount of the ERC20 to deposit. * @param _minGasLimit Minimum gas limit for the deposit message on L2. * @param _extraData Optional data to forward to L2. */ function _initiateERC20Deposit( address _l1Token, address _l2Token, address _from, address _to, uint256 _amount, uint32 _minGasLimit, bytes memory _extraData ) internal { _initiateBridgeERC20(_l1Token, _l2Token, _from, _to, _amount, _minGasLimit, _extraData); } /** * @notice Emits the legacy ETHDepositInitiated event followed by the ETHBridgeInitiated event. * This is necessary for backwards compatibility with the legacy bridge. * * @inheritdoc StandardBridge */ function _emitETHBridgeInitiated( address _from, address _to, uint256 _amount, bytes memory _extraData ) internal override { emit ETHDepositInitiated(_from, _to, _amount, _extraData); super._emitETHBridgeInitiated(_from, _to, _amount, _extraData); } /** * @notice Emits the legacy ETHWithdrawalFinalized event followed by the ETHBridgeFinalized * event. This is necessary for backwards compatibility with the legacy bridge. * * @inheritdoc StandardBridge */ function _emitETHBridgeFinalized( address _from, address _to, uint256 _amount, bytes memory _extraData ) internal override { emit ETHWithdrawalFinalized(_from, _to, _amount, _extraData); super._emitETHBridgeFinalized(_from, _to, _amount, _extraData); } /** * @notice Emits the legacy ERC20DepositInitiated event followed by the ERC20BridgeInitiated * event. This is necessary for backwards compatibility with the legacy bridge. * * @inheritdoc StandardBridge */ function _emitERC20BridgeInitiated( address _localToken, address _remoteToken, address _from, address _to, uint256 _amount, bytes memory _extraData ) internal override { emit ERC20DepositInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData); super._emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData); } /** * @notice Emits the legacy ERC20WithdrawalFinalized event followed by the ERC20BridgeFinalized * event. This is necessary for backwards compatibility with the legacy bridge. * * @inheritdoc StandardBridge */ function _emitERC20BridgeFinalized( address _localToken, address _remoteToken, address _from, address _to, uint256 _amount, bytes memory _extraData ) internal override { emit ERC20WithdrawalFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData); super._emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @title Predeploys * @notice Contains constant addresses for contracts that are pre-deployed to the L2 system. */ library Predeploys { /** * @notice Address of the L2ToL1MessagePasser predeploy. */ address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016; /** * @notice Address of the L2CrossDomainMessenger predeploy. */ address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007; /** * @notice Address of the L2StandardBridge predeploy. */ address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010; /** * @notice Address of the L2ERC721Bridge predeploy. */ address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014; /** * @notice Address of the SequencerFeeWallet predeploy. */ address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011; /** * @notice Address of the OptimismMintableERC20Factory predeploy. */ address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012; /** * @notice Address of the OptimismMintableERC721Factory predeploy. */ address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017; /** * @notice Address of the L1Block predeploy. */ address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015; /** * @notice Address of the GasPriceOracle predeploy. Includes fee information * and helpers for computing the L1 portion of the transaction fee. */ address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F; /** * @custom:legacy * @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger * or access tx.origin (or msg.sender) in a L1 to L2 transaction instead. */ address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001; /** * @custom:legacy * @notice Address of the DeployerWhitelist predeploy. No longer active. */ address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002; /** * @custom:legacy * @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the * state trie as of the Bedrock upgrade. Contract has been locked and write functions * can no longer be accessed. */ address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000; /** * @custom:legacy * @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy * instead, which exposes more information about the L1 state. */ address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013; /** * @custom:legacy * @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated * L2ToL1MessagePasser contract instead. */ address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000; /** * @notice Address of the ProxyAdmin predeploy. */ address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018; /** * @notice Address of the BaseFeeVault predeploy. */ address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019; /** * @notice Address of the L1FeeVault predeploy. */ address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A; /** * @notice Address of the GovernanceToken predeploy. */ address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042; } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { ERC165Checker } from "@openzeppelin/contracts/utils/introspection/ERC165Checker.sol"; import { Address } from "@openzeppelin/contracts/utils/Address.sol"; import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import { SafeCall } from "../libraries/SafeCall.sol"; import { IOptimismMintableERC20, ILegacyMintableERC20 } from "./IOptimismMintableERC20.sol"; import { CrossDomainMessenger } from "./CrossDomainMessenger.sol"; import { OptimismMintableERC20 } from "./OptimismMintableERC20.sol"; /** * @custom:upgradeable * @title StandardBridge * @notice StandardBridge is a base contract for the L1 and L2 standard ERC20 bridges. It handles * the core bridging logic, including escrowing tokens that are native to the local chain * and minting/burning tokens that are native to the remote chain. */ abstract contract StandardBridge { using SafeERC20 for IERC20; /** * @notice The L2 gas limit set when eth is depoisited using the receive() function. */ uint32 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 200_000; /** * @notice Messenger contract on this domain. */ CrossDomainMessenger public immutable MESSENGER; /** * @notice Corresponding bridge on the other domain. */ StandardBridge public immutable OTHER_BRIDGE; /** * @custom:legacy * @custom:spacer messenger * @notice Spacer for backwards compatibility. */ address private spacer_0_0_20; /** * @custom:legacy * @custom:spacer l2TokenBridge * @notice Spacer for backwards compatibility. */ address private spacer_1_0_20; /** * @notice Mapping that stores deposits for a given pair of local and remote tokens. */ mapping(address => mapping(address => uint256)) public deposits; /** * @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades. * A gap size of 47 was chosen here, so that the first slot used in a child contract * would be a multiple of 50. */ uint256[47] private __gap; /** * @notice Emitted when an ETH bridge is initiated to the other chain. * * @param from Address of the sender. * @param to Address of the receiver. * @param amount Amount of ETH sent. * @param extraData Extra data sent with the transaction. */ event ETHBridgeInitiated( address indexed from, address indexed to, uint256 amount, bytes extraData ); /** * @notice Emitted when an ETH bridge is finalized on this chain. * * @param from Address of the sender. * @param to Address of the receiver. * @param amount Amount of ETH sent. * @param extraData Extra data sent with the transaction. */ event ETHBridgeFinalized( address indexed from, address indexed to, uint256 amount, bytes extraData ); /** * @notice Emitted when an ERC20 bridge is initiated to the other chain. * * @param localToken Address of the ERC20 on this chain. * @param remoteToken Address of the ERC20 on the remote chain. * @param from Address of the sender. * @param to Address of the receiver. * @param amount Amount of the ERC20 sent. * @param extraData Extra data sent with the transaction. */ event ERC20BridgeInitiated( address indexed localToken, address indexed remoteToken, address indexed from, address to, uint256 amount, bytes extraData ); /** * @notice Emitted when an ERC20 bridge is finalized on this chain. * * @param localToken Address of the ERC20 on this chain. * @param remoteToken Address of the ERC20 on the remote chain. * @param from Address of the sender. * @param to Address of the receiver. * @param amount Amount of the ERC20 sent. * @param extraData Extra data sent with the transaction. */ event ERC20BridgeFinalized( address indexed localToken, address indexed remoteToken, address indexed from, address to, uint256 amount, bytes extraData ); /** * @notice Only allow EOAs to call the functions. Note that this is not safe against contracts * calling code within their constructors, but also doesn't really matter since we're * just trying to prevent users accidentally depositing with smart contract wallets. */ modifier onlyEOA() { require( !Address.isContract(msg.sender), "StandardBridge: function can only be called from an EOA" ); _; } /** * @notice Ensures that the caller is a cross-chain message from the other bridge. */ modifier onlyOtherBridge() { require( msg.sender == address(MESSENGER) && MESSENGER.xDomainMessageSender() == address(OTHER_BRIDGE), "StandardBridge: function can only be called from the other bridge" ); _; } /** * @param _messenger Address of CrossDomainMessenger on this network. * @param _otherBridge Address of the other StandardBridge contract. */ constructor(address payable _messenger, address payable _otherBridge) { MESSENGER = CrossDomainMessenger(_messenger); OTHER_BRIDGE = StandardBridge(_otherBridge); } /** * @notice Allows EOAs to bridge ETH by sending directly to the bridge. * Must be implemented by contracts that inherit. */ receive() external payable virtual; /** * @custom:legacy * @notice Legacy getter for messenger contract. * * @return Messenger contract on this domain. */ function messenger() external view returns (CrossDomainMessenger) { return MESSENGER; } /** * @notice Sends ETH to the sender's address on the other chain. * * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function bridgeETH(uint32 _minGasLimit, bytes calldata _extraData) public payable onlyEOA { _initiateBridgeETH(msg.sender, msg.sender, msg.value, _minGasLimit, _extraData); } /** * @notice Sends ETH to a receiver's address on the other chain. Note that if ETH is sent to a * smart contract and the call fails, the ETH will be temporarily locked in the * StandardBridge on the other chain until the call is replayed. If the call cannot be * replayed with any amount of gas (call always reverts), then the ETH will be * permanently locked in the StandardBridge on the other chain. ETH will also * be locked if the receiver is the other bridge, because finalizeBridgeETH will revert * in that case. * * @param _to Address of the receiver. * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function bridgeETHTo( address _to, uint32 _minGasLimit, bytes calldata _extraData ) public payable { _initiateBridgeETH(msg.sender, _to, msg.value, _minGasLimit, _extraData); } /** * @notice Sends ERC20 tokens to the sender's address on the other chain. Note that if the * ERC20 token on the other chain does not recognize the local token as the correct * pair token, the ERC20 bridge will fail and the tokens will be returned to sender on * this chain. * * @param _localToken Address of the ERC20 on this chain. * @param _remoteToken Address of the corresponding token on the remote chain. * @param _amount Amount of local tokens to deposit. * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function bridgeERC20( address _localToken, address _remoteToken, uint256 _amount, uint32 _minGasLimit, bytes calldata _extraData ) public virtual onlyEOA { _initiateBridgeERC20( _localToken, _remoteToken, msg.sender, msg.sender, _amount, _minGasLimit, _extraData ); } /** * @notice Sends ERC20 tokens to a receiver's address on the other chain. Note that if the * ERC20 token on the other chain does not recognize the local token as the correct * pair token, the ERC20 bridge will fail and the tokens will be returned to sender on * this chain. * * @param _localToken Address of the ERC20 on this chain. * @param _remoteToken Address of the corresponding token on the remote chain. * @param _to Address of the receiver. * @param _amount Amount of local tokens to deposit. * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function bridgeERC20To( address _localToken, address _remoteToken, address _to, uint256 _amount, uint32 _minGasLimit, bytes calldata _extraData ) public virtual { _initiateBridgeERC20( _localToken, _remoteToken, msg.sender, _to, _amount, _minGasLimit, _extraData ); } /** * @notice Finalizes an ETH bridge on this chain. Can only be triggered by the other * StandardBridge contract on the remote chain. * * @param _from Address of the sender. * @param _to Address of the receiver. * @param _amount Amount of ETH being bridged. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function finalizeBridgeETH( address _from, address _to, uint256 _amount, bytes calldata _extraData ) public payable onlyOtherBridge { require(msg.value == _amount, "StandardBridge: amount sent does not match amount required"); require(_to != address(this), "StandardBridge: cannot send to self"); require(_to != address(MESSENGER), "StandardBridge: cannot send to messenger"); // Emit the correct events. By default this will be _amount, but child // contracts may override this function in order to emit legacy events as well. _emitETHBridgeFinalized(_from, _to, _amount, _extraData); bool success = SafeCall.call(_to, gasleft(), _amount, hex""); require(success, "StandardBridge: ETH transfer failed"); } /** * @notice Finalizes an ERC20 bridge on this chain. Can only be triggered by the other * StandardBridge contract on the remote chain. * * @param _localToken Address of the ERC20 on this chain. * @param _remoteToken Address of the corresponding token on the remote chain. * @param _from Address of the sender. * @param _to Address of the receiver. * @param _amount Amount of the ERC20 being bridged. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function finalizeBridgeERC20( address _localToken, address _remoteToken, address _from, address _to, uint256 _amount, bytes calldata _extraData ) public onlyOtherBridge { if (_isOptimismMintableERC20(_localToken)) { require( _isCorrectTokenPair(_localToken, _remoteToken), "StandardBridge: wrong remote token for Optimism Mintable ERC20 local token" ); OptimismMintableERC20(_localToken).mint(_to, _amount); } else { deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] - _amount; IERC20(_localToken).safeTransfer(_to, _amount); } // Emit the correct events. By default this will be ERC20BridgeFinalized, but child // contracts may override this function in order to emit legacy events as well. _emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData); } /** * @notice Initiates a bridge of ETH through the CrossDomainMessenger. * * @param _from Address of the sender. * @param _to Address of the receiver. * @param _amount Amount of ETH being bridged. * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function _initiateBridgeETH( address _from, address _to, uint256 _amount, uint32 _minGasLimit, bytes memory _extraData ) internal { require( msg.value == _amount, "StandardBridge: bridging ETH must include sufficient ETH value" ); // Emit the correct events. By default this will be _amount, but child // contracts may override this function in order to emit legacy events as well. _emitETHBridgeInitiated(_from, _to, _amount, _extraData); MESSENGER.sendMessage{ value: _amount }( address(OTHER_BRIDGE), abi.encodeWithSelector( this.finalizeBridgeETH.selector, _from, _to, _amount, _extraData ), _minGasLimit ); } /** * @notice Sends ERC20 tokens to a receiver's address on the other chain. * * @param _localToken Address of the ERC20 on this chain. * @param _remoteToken Address of the corresponding token on the remote chain. * @param _to Address of the receiver. * @param _amount Amount of local tokens to deposit. * @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. * @param _extraData Extra data to be sent with the transaction. Note that the recipient will * not be triggered with this data, but it will be emitted and can be used * to identify the transaction. */ function _initiateBridgeERC20( address _localToken, address _remoteToken, address _from, address _to, uint256 _amount, uint32 _minGasLimit, bytes memory _extraData ) internal { if (_isOptimismMintableERC20(_localToken)) { require( _isCorrectTokenPair(_localToken, _remoteToken), "StandardBridge: wrong remote token for Optimism Mintable ERC20 local token" ); OptimismMintableERC20(_localToken).burn(_from, _amount); } else { IERC20(_localToken).safeTransferFrom(_from, address(this), _amount); deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] + _amount; } // Emit the correct events. By default this will be ERC20BridgeInitiated, but child // contracts may override this function in order to emit legacy events as well. _emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData); MESSENGER.sendMessage( address(OTHER_BRIDGE), abi.encodeWithSelector( this.finalizeBridgeERC20.selector, // Because this call will be executed on the remote chain, we reverse the order of // the remote and local token addresses relative to their order in the // finalizeBridgeERC20 function. _remoteToken, _localToken, _from, _to, _amount, _extraData ), _minGasLimit ); } /** * @notice Checks if a given address is an OptimismMintableERC20. Not perfect, but good enough. * Just the way we like it. * * @param _token Address of the token to check. * * @return True if the token is an OptimismMintableERC20. */ function _isOptimismMintableERC20(address _token) internal view returns (bool) { return ERC165Checker.supportsInterface(_token, type(ILegacyMintableERC20).interfaceId) || ERC165Checker.supportsInterface(_token, type(IOptimismMintableERC20).interfaceId); } /** * @notice Checks if the "other token" is the correct pair token for the OptimismMintableERC20. * Calls can be saved in the future by combining this logic with * `_isOptimismMintableERC20`. * * @param _mintableToken OptimismMintableERC20 to check against. * @param _otherToken Pair token to check. * * @return True if the other token is the correct pair token for the OptimismMintableERC20. */ function _isCorrectTokenPair(address _mintableToken, address _otherToken) internal view returns (bool) { if ( ERC165Checker.supportsInterface(_mintableToken, type(ILegacyMintableERC20).interfaceId) ) { return _otherToken == ILegacyMintableERC20(_mintableToken).l1Token(); } else { return _otherToken == IOptimismMintableERC20(_mintableToken).remoteToken(); } } /** @notice Emits the ETHBridgeInitiated event and if necessary the appropriate legacy event * when an ETH bridge is finalized on this chain. * * @param _from Address of the sender. * @param _to Address of the receiver. * @param _amount Amount of ETH sent. * @param _extraData Extra data sent with the transaction. */ function _emitETHBridgeInitiated( address _from, address _to, uint256 _amount, bytes memory _extraData ) internal virtual { emit ETHBridgeInitiated(_from, _to, _amount, _extraData); } /** * @notice Emits the ETHBridgeFinalized and if necessary the appropriate legacy event when an * ETH bridge is finalized on this chain. * * @param _from Address of the sender. * @param _to Address of the receiver. * @param _amount Amount of ETH sent. * @param _extraData Extra data sent with the transaction. */ function _emitETHBridgeFinalized( address _from, address _to, uint256 _amount, bytes memory _extraData ) internal virtual { emit ETHBridgeFinalized(_from, _to, _amount, _extraData); } /** * @notice Emits the ERC20BridgeInitiated event and if necessary the appropriate legacy * event when an ERC20 bridge is initiated to the other chain. * * @param _localToken Address of the ERC20 on this chain. * @param _remoteToken Address of the ERC20 on the remote chain. * @param _from Address of the sender. * @param _to Address of the receiver. * @param _amount Amount of the ERC20 sent. * @param _extraData Extra data sent with the transaction. */ function _emitERC20BridgeInitiated( address _localToken, address _remoteToken, address _from, address _to, uint256 _amount, bytes memory _extraData ) internal virtual { emit ERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData); } /** * @notice Emits the ERC20BridgeFinalized event and if necessary the appropriate legacy * event when an ERC20 bridge is initiated to the other chain. * * @param _localToken Address of the ERC20 on this chain. * @param _remoteToken Address of the ERC20 on the remote chain. * @param _from Address of the sender. * @param _to Address of the receiver. * @param _amount Amount of the ERC20 sent. * @param _extraData Extra data sent with the transaction. */ function _emitERC20BridgeFinalized( address _localToken, address _remoteToken, address _from, address _to, uint256 _amount, bytes memory _extraData ) internal virtual { emit ERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Strings } from "@openzeppelin/contracts/utils/Strings.sol"; /** * @title Semver * @notice Semver is a simple contract for managing contract versions. */ contract Semver { /** * @notice Contract version number (major). */ uint256 private immutable MAJOR_VERSION; /** * @notice Contract version number (minor). */ uint256 private immutable MINOR_VERSION; /** * @notice Contract version number (patch). */ uint256 private immutable PATCH_VERSION; /** * @param _major Version number (major). * @param _minor Version number (minor). * @param _patch Version number (patch). */ constructor( uint256 _major, uint256 _minor, uint256 _patch ) { MAJOR_VERSION = _major; MINOR_VERSION = _minor; PATCH_VERSION = _patch; } /** * @notice Returns the full semver contract version. * * @return Semver contract version as a string. */ function version() public view returns (string memory) { return string( abi.encodePacked( Strings.toString(MAJOR_VERSION), ".", Strings.toString(MINOR_VERSION), ".", Strings.toString(PATCH_VERSION) ) ); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.2) (utils/introspection/ERC165Checker.sol) pragma solidity ^0.8.0; import "./IERC165.sol"; /** * @dev Library used to query support of an interface declared via {IERC165}. * * Note that these functions return the actual result of the query: they do not * `revert` if an interface is not supported. It is up to the caller to decide * what to do in these cases. */ library ERC165Checker { // As per the EIP-165 spec, no interface should ever match 0xffffffff bytes4 private constant _INTERFACE_ID_INVALID = 0xffffffff; /** * @dev Returns true if `account` supports the {IERC165} interface, */ function supportsERC165(address account) internal view returns (bool) { // Any contract that implements ERC165 must explicitly indicate support of // InterfaceId_ERC165 and explicitly indicate non-support of InterfaceId_Invalid return _supportsERC165Interface(account, type(IERC165).interfaceId) && !_supportsERC165Interface(account, _INTERFACE_ID_INVALID); } /** * @dev Returns true if `account` supports the interface defined by * `interfaceId`. Support for {IERC165} itself is queried automatically. * * See {IERC165-supportsInterface}. */ function supportsInterface(address account, bytes4 interfaceId) internal view returns (bool) { // query support of both ERC165 as per the spec and support of _interfaceId return supportsERC165(account) && _supportsERC165Interface(account, interfaceId); } /** * @dev Returns a boolean array where each value corresponds to the * interfaces passed in and whether they're supported or not. This allows * you to batch check interfaces for a contract where your expectation * is that some interfaces may not be supported. * * See {IERC165-supportsInterface}. * * _Available since v3.4._ */ function getSupportedInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool[] memory) { // an array of booleans corresponding to interfaceIds and whether they're supported or not bool[] memory interfaceIdsSupported = new bool[](interfaceIds.length); // query support of ERC165 itself if (supportsERC165(account)) { // query support of each interface in interfaceIds for (uint256 i = 0; i < interfaceIds.length; i++) { interfaceIdsSupported[i] = _supportsERC165Interface(account, interfaceIds[i]); } } return interfaceIdsSupported; } /** * @dev Returns true if `account` supports all the interfaces defined in * `interfaceIds`. Support for {IERC165} itself is queried automatically. * * Batch-querying can lead to gas savings by skipping repeated checks for * {IERC165} support. * * See {IERC165-supportsInterface}. */ function supportsAllInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool) { // query support of ERC165 itself if (!supportsERC165(account)) { return false; } // query support of each interface in _interfaceIds for (uint256 i = 0; i < interfaceIds.length; i++) { if (!_supportsERC165Interface(account, interfaceIds[i])) { return false; } } // all interfaces supported return true; } /** * @notice Query if a contract implements an interface, does not check ERC165 support * @param account The address of the contract to query for support of an interface * @param interfaceId The interface identifier, as specified in ERC-165 * @return true if the contract at account indicates support of the interface with * identifier interfaceId, false otherwise * @dev Assumes that account contains a contract that supports ERC165, otherwise * the behavior of this method is undefined. This precondition can be checked * with {supportsERC165}. * Interface identification is specified in ERC-165. */ function _supportsERC165Interface(address account, bytes4 interfaceId) private view returns (bool) { // prepare call bytes memory encodedParams = abi.encodeWithSelector(IERC165.supportsInterface.selector, interfaceId); // perform static call bool success; uint256 returnSize; uint256 returnValue; assembly { success := staticcall(30000, account, add(encodedParams, 0x20), mload(encodedParams), 0x00, 0x20) returnSize := returndatasize() returnValue := mload(0x00) } return success && returnSize >= 0x20 && returnValue > 0; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/draft-IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; /** * @title SafeCall * @notice Perform low level safe calls */ library SafeCall { /** * @notice Performs a low level call without copying any returndata. * @dev Passes no calldata to the call context. * * @param _target Address to call * @param _gas Amount of gas to pass to the call * @param _value Amount of value to pass to the call */ function send( address _target, uint256 _gas, uint256 _value ) internal returns (bool) { bool _success; assembly { _success := call( _gas, // gas _target, // recipient _value, // ether value 0, // inloc 0, // inlen 0, // outloc 0 // outlen ) } return _success; } /** * @notice Perform a low level call without copying any returndata * * @param _target Address to call * @param _gas Amount of gas to pass to the call * @param _value Amount of value to pass to the call * @param _calldata Calldata to pass to the call */ function call( address _target, uint256 _gas, uint256 _value, bytes memory _calldata ) internal returns (bool) { bool _success; assembly { _success := call( _gas, // gas _target, // recipient _value, // ether value add(_calldata, 32), // inloc mload(_calldata), // inlen 0, // outloc 0 // outlen ) } return _success; } /** * @notice Helper function to determine if there is sufficient gas remaining within the context * to guarantee that the minimum gas requirement for a call will be met as well as * optionally reserving a specified amount of gas for after the call has concluded. * @param _minGas The minimum amount of gas that may be passed to the target context. * @param _reservedGas Optional amount of gas to reserve for the caller after the execution * of the target context. * @return `true` if there is enough gas remaining to safely supply `_minGas` to the target * context as well as reserve `_reservedGas` for the caller after the execution of * the target context. * @dev !!!!! FOOTGUN ALERT !!!!! * 1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the * `CALL` opcode's `address_access_cost`, `positive_value_cost`, and * `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is * still possible to self-rekt by initiating a withdrawal with a minimum gas limit * that does not account for the `memory_expansion_cost` & `code_execution_cost` * factors of the dynamic cost of the `CALL` opcode. * 2.) This function should *directly* precede the external call if possible. There is an * added buffer to account for gas consumed between this check and the call, but it * is only 5,700 gas. * 3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call * frame may be passed to a subcontext, we need to ensure that the gas will not be * truncated. * 4.) Use wisely. This function is not a silver bullet. */ function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) { bool _hasMinGas; assembly { // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas) _hasMinGas := iszero( lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))) ) } return _hasMinGas; } /** * @notice Perform a low level call without copying any returndata. This function * will revert if the call cannot be performed with the specified minimum * gas. * * @param _target Address to call * @param _minGas The minimum amount of gas that may be passed to the call * @param _value Amount of value to pass to the call * @param _calldata Calldata to pass to the call */ function callWithMinGas( address _target, uint256 _minGas, uint256 _value, bytes memory _calldata ) internal returns (bool) { bool _success; bool _hasMinGas = hasMinGas(_minGas, 0); assembly { // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000 if iszero(_hasMinGas) { // Store the "Error(string)" selector in scratch space. mstore(0, 0x08c379a0) // Store the pointer to the string length in scratch space. mstore(32, 32) // Store the string. // // SAFETY: // - We pad the beginning of the string with two zero bytes as well as the // length (24) to ensure that we override the free memory pointer at offset // 0x40. This is necessary because the free memory pointer is likely to // be greater than 1 byte when this function is called, but it is incredibly // unlikely that it will be greater than 3 bytes. As for the data within // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset. // - It's fine to clobber the free memory pointer, we're reverting. mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173) // Revert with 'Error("SafeCall: Not enough gas")' revert(28, 100) } // The call will be supplied at least ((_minGas * 64) / 63) gas due to the // above assertion. This ensures that, in all circumstances (except for when the // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost` // factors of the dynamic cost of the `CALL` opcode), the call will receive at least // the minimum amount of gas specified. _success := call( gas(), // gas _target, // recipient _value, // ether value add(_calldata, 32), // inloc mload(_calldata), // inlen 0x00, // outloc 0x00 // outlen ) } return _success; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol"; /** * @title IOptimismMintableERC20 * @notice This interface is available on the OptimismMintableERC20 contract. We declare it as a * separate interface so that it can be used in custom implementations of * OptimismMintableERC20. */ interface IOptimismMintableERC20 is IERC165 { function remoteToken() external view returns (address); function bridge() external returns (address); function mint(address _to, uint256 _amount) external; function burn(address _from, uint256 _amount) external; } /** * @custom:legacy * @title ILegacyMintableERC20 * @notice This interface was available on the legacy L2StandardERC20 contract. It remains available * on the OptimismMintableERC20 contract for backwards compatibility. */ interface ILegacyMintableERC20 is IERC165 { function l1Token() external view returns (address); function mint(address _to, uint256 _amount) external; function burn(address _from, uint256 _amount) external; } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; import { SafeCall } from "../libraries/SafeCall.sol"; import { Hashing } from "../libraries/Hashing.sol"; import { Encoding } from "../libraries/Encoding.sol"; import { Constants } from "../libraries/Constants.sol"; /** * @custom:legacy * @title CrossDomainMessengerLegacySpacer0 * @notice Contract only exists to add a spacer to the CrossDomainMessenger where the * libAddressManager variable used to exist. Must be the first contract in the inheritance * tree of the CrossDomainMessenger. */ contract CrossDomainMessengerLegacySpacer0 { /** * @custom:legacy * @custom:spacer libAddressManager * @notice Spacer for backwards compatibility. */ address private spacer_0_0_20; } /** * @custom:legacy * @title CrossDomainMessengerLegacySpacer1 * @notice Contract only exists to add a spacer to the CrossDomainMessenger where the * PausableUpgradable and OwnableUpgradeable variables used to exist. Must be * the third contract in the inheritance tree of the CrossDomainMessenger. */ contract CrossDomainMessengerLegacySpacer1 { /** * @custom:legacy * @custom:spacer ContextUpgradable's __gap * @notice Spacer for backwards compatibility. Comes from OpenZeppelin * ContextUpgradable. * */ uint256[50] private spacer_1_0_1600; /** * @custom:legacy * @custom:spacer OwnableUpgradeable's _owner * @notice Spacer for backwards compatibility. * Come from OpenZeppelin OwnableUpgradeable. */ address private spacer_51_0_20; /** * @custom:legacy * @custom:spacer OwnableUpgradeable's __gap * @notice Spacer for backwards compatibility. Comes from OpenZeppelin * OwnableUpgradeable. */ uint256[49] private spacer_52_0_1568; /** * @custom:legacy * @custom:spacer PausableUpgradable's _paused * @notice Spacer for backwards compatibility. Comes from OpenZeppelin * PausableUpgradable. */ bool private spacer_101_0_1; /** * @custom:legacy * @custom:spacer PausableUpgradable's __gap * @notice Spacer for backwards compatibility. Comes from OpenZeppelin * PausableUpgradable. */ uint256[49] private spacer_102_0_1568; /** * @custom:legacy * @custom:spacer ReentrancyGuardUpgradeable's `_status` field. * @notice Spacer for backwards compatibility. */ uint256 private spacer_151_0_32; /** * @custom:legacy * @custom:spacer ReentrancyGuardUpgradeable's __gap * @notice Spacer for backwards compatibility. */ uint256[49] private spacer_152_0_1568; /** * @custom:legacy * @custom:spacer blockedMessages * @notice Spacer for backwards compatibility. */ mapping(bytes32 => bool) private spacer_201_0_32; /** * @custom:legacy * @custom:spacer relayedMessages * @notice Spacer for backwards compatibility. */ mapping(bytes32 => bool) private spacer_202_0_32; } /** * @custom:upgradeable * @title CrossDomainMessenger * @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2 * cross-chain messenger contracts. It's designed to be a universal interface that only * needs to be extended slightly to provide low-level message passing functionality on each * chain it's deployed on. Currently only designed for message passing between two paired * chains and does not support one-to-many interactions. * * Any changes to this contract MUST result in a semver bump for contracts that inherit it. */ abstract contract CrossDomainMessenger is CrossDomainMessengerLegacySpacer0, Initializable, CrossDomainMessengerLegacySpacer1 { /** * @notice Current message version identifier. */ uint16 public constant MESSAGE_VERSION = 1; /** * @notice Constant overhead added to the base gas for a message. */ uint64 public constant RELAY_CONSTANT_OVERHEAD = 200_000; /** * @notice Numerator for dynamic overhead added to the base gas for a message. */ uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 64; /** * @notice Denominator for dynamic overhead added to the base gas for a message. */ uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 63; /** * @notice Extra gas added to base gas for each byte of calldata in a message. */ uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16; /** * @notice Gas reserved for performing the external call in `relayMessage`. */ uint64 public constant RELAY_CALL_OVERHEAD = 40_000; /** * @notice Gas reserved for finalizing the execution of `relayMessage` after the safe call. */ uint64 public constant RELAY_RESERVED_GAS = 40_000; /** * @notice Gas reserved for the execution between the `hasMinGas` check and the external * call in `relayMessage`. */ uint64 public constant RELAY_GAS_CHECK_BUFFER = 5_000; /** * @notice Address of the paired CrossDomainMessenger contract on the other chain. */ address public immutable OTHER_MESSENGER; /** * @notice Mapping of message hashes to boolean receipt values. Note that a message will only * be present in this mapping if it has successfully been relayed on this chain, and * can therefore not be relayed again. */ mapping(bytes32 => bool) public successfulMessages; /** * @notice Address of the sender of the currently executing message on the other chain. If the * value of this variable is the default value (0x00000000...dead) then no message is * currently being executed. Use the xDomainMessageSender getter which will throw an * error if this is the case. */ address internal xDomainMsgSender; /** * @notice Nonce for the next message to be sent, without the message version applied. Use the * messageNonce getter which will insert the message version into the nonce to give you * the actual nonce to be used for the message. */ uint240 internal msgNonce; /** * @notice Mapping of message hashes to a boolean if and only if the message has failed to be * executed at least once. A message will not be present in this mapping if it * successfully executed on the first attempt. */ mapping(bytes32 => bool) public failedMessages; /** * @notice Reserve extra slots in the storage layout for future upgrades. * A gap size of 41 was chosen here, so that the first slot used in a child contract * would be a multiple of 50. */ uint256[42] private __gap; /** * @notice Emitted whenever a message is sent to the other chain. * * @param target Address of the recipient of the message. * @param sender Address of the sender of the message. * @param message Message to trigger the recipient address with. * @param messageNonce Unique nonce attached to the message. * @param gasLimit Minimum gas limit that the message can be executed with. */ event SentMessage( address indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit ); /** * @notice Additional event data to emit, required as of Bedrock. Cannot be merged with the * SentMessage event without breaking the ABI of this contract, this is good enough. * * @param sender Address of the sender of the message. * @param value ETH value sent along with the message to the recipient. */ event SentMessageExtension1(address indexed sender, uint256 value); /** * @notice Emitted whenever a message is successfully relayed on this chain. * * @param msgHash Hash of the message that was relayed. */ event RelayedMessage(bytes32 indexed msgHash); /** * @notice Emitted whenever a message fails to be relayed on this chain. * * @param msgHash Hash of the message that failed to be relayed. */ event FailedRelayedMessage(bytes32 indexed msgHash); /** * @param _otherMessenger Address of the messenger on the paired chain. */ constructor(address _otherMessenger) { OTHER_MESSENGER = _otherMessenger; } /** * @notice Sends a message to some target address on the other chain. Note that if the call * always reverts, then the message will be unrelayable, and any ETH sent will be * permanently locked. The same will occur if the target on the other chain is * considered unsafe (see the _isUnsafeTarget() function). * * @param _target Target contract or wallet address. * @param _message Message to trigger the target address with. * @param _minGasLimit Minimum gas limit that the message can be executed with. */ function sendMessage( address _target, bytes calldata _message, uint32 _minGasLimit ) external payable { // Triggers a message to the other messenger. Note that the amount of gas provided to the // message is the amount of gas requested by the user PLUS the base gas value. We want to // guarantee the property that the call to the target contract will always have at least // the minimum gas limit specified by the user. _sendMessage( OTHER_MESSENGER, baseGas(_message, _minGasLimit), msg.value, abi.encodeWithSelector( this.relayMessage.selector, messageNonce(), msg.sender, _target, msg.value, _minGasLimit, _message ) ); emit SentMessage(_target, msg.sender, _message, messageNonce(), _minGasLimit); emit SentMessageExtension1(msg.sender, msg.value); unchecked { ++msgNonce; } } /** * @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only * be executed via cross-chain call from the other messenger OR if the message was * already received once and is currently being replayed. * * @param _nonce Nonce of the message being relayed. * @param _sender Address of the user who sent the message. * @param _target Address that the message is targeted at. * @param _value ETH value to send with the message. * @param _minGasLimit Minimum amount of gas that the message can be executed with. * @param _message Message to send to the target. */ function relayMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _minGasLimit, bytes calldata _message ) external payable { (, uint16 version) = Encoding.decodeVersionedNonce(_nonce); require( version < 2, "CrossDomainMessenger: only version 0 or 1 messages are supported at this time" ); // If the message is version 0, then it's a migrated legacy withdrawal. We therefore need // to check that the legacy version of the message has not already been relayed. if (version == 0) { bytes32 oldHash = Hashing.hashCrossDomainMessageV0(_target, _sender, _message, _nonce); require( successfulMessages[oldHash] == false, "CrossDomainMessenger: legacy withdrawal already relayed" ); } // We use the v1 message hash as the unique identifier for the message because it commits // to the value and minimum gas limit of the message. bytes32 versionedHash = Hashing.hashCrossDomainMessageV1( _nonce, _sender, _target, _value, _minGasLimit, _message ); if (_isOtherMessenger()) { // These properties should always hold when the message is first submitted (as // opposed to being replayed). assert(msg.value == _value); assert(!failedMessages[versionedHash]); } else { require( msg.value == 0, "CrossDomainMessenger: value must be zero unless message is from a system address" ); require( failedMessages[versionedHash], "CrossDomainMessenger: message cannot be replayed" ); } require( _isUnsafeTarget(_target) == false, "CrossDomainMessenger: cannot send message to blocked system address" ); require( successfulMessages[versionedHash] == false, "CrossDomainMessenger: message has already been relayed" ); // If there is not enough gas left to perform the external call and finish the execution, // return early and assign the message to the failedMessages mapping. // We are asserting that we have enough gas to: // 1. Call the target contract (_minGasLimit + RELAY_CALL_OVERHEAD + RELAY_GAS_CHECK_BUFFER) // 1.a. The RELAY_CALL_OVERHEAD is included in `hasMinGas`. // 2. Finish the execution after the external call (RELAY_RESERVED_GAS). // // If `xDomainMsgSender` is not the default L2 sender, this function // is being re-entered. This marks the message as failed to allow it to be replayed. if ( !SafeCall.hasMinGas(_minGasLimit, RELAY_RESERVED_GAS + RELAY_GAS_CHECK_BUFFER) || xDomainMsgSender != Constants.DEFAULT_L2_SENDER ) { failedMessages[versionedHash] = true; emit FailedRelayedMessage(versionedHash); // Revert in this case if the transaction was triggered by the estimation address. This // should only be possible during gas estimation or we have bigger problems. Reverting // here will make the behavior of gas estimation change such that the gas limit // computed will be the amount required to relay the message, even if that amount is // greater than the minimum gas limit specified by the user. if (tx.origin == Constants.ESTIMATION_ADDRESS) { revert("CrossDomainMessenger: failed to relay message"); } return; } xDomainMsgSender = _sender; bool success = SafeCall.call(_target, gasleft() - RELAY_RESERVED_GAS, _value, _message); xDomainMsgSender = Constants.DEFAULT_L2_SENDER; if (success) { successfulMessages[versionedHash] = true; emit RelayedMessage(versionedHash); } else { failedMessages[versionedHash] = true; emit FailedRelayedMessage(versionedHash); // Revert in this case if the transaction was triggered by the estimation address. This // should only be possible during gas estimation or we have bigger problems. Reverting // here will make the behavior of gas estimation change such that the gas limit // computed will be the amount required to relay the message, even if that amount is // greater than the minimum gas limit specified by the user. if (tx.origin == Constants.ESTIMATION_ADDRESS) { revert("CrossDomainMessenger: failed to relay message"); } } } /** * @notice Retrieves the address of the contract or wallet that initiated the currently * executing message on the other chain. Will throw an error if there is no message * currently being executed. Allows the recipient of a call to see who triggered it. * * @return Address of the sender of the currently executing message on the other chain. */ function xDomainMessageSender() external view returns (address) { require( xDomainMsgSender != Constants.DEFAULT_L2_SENDER, "CrossDomainMessenger: xDomainMessageSender is not set" ); return xDomainMsgSender; } /** * @notice Retrieves the next message nonce. Message version will be added to the upper two * bytes of the message nonce. Message version allows us to treat messages as having * different structures. * * @return Nonce of the next message to be sent, with added message version. */ function messageNonce() public view returns (uint256) { return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION); } /** * @notice Computes the amount of gas required to guarantee that a given message will be * received on the other chain without running out of gas. Guaranteeing that a message * will not run out of gas is important because this ensures that a message can always * be replayed on the other chain if it fails to execute completely. * * @param _message Message to compute the amount of required gas for. * @param _minGasLimit Minimum desired gas limit when message goes to target. * * @return Amount of gas required to guarantee message receipt. */ function baseGas(bytes calldata _message, uint32 _minGasLimit) public pure returns (uint64) { return // Constant overhead RELAY_CONSTANT_OVERHEAD + // Calldata overhead (uint64(_message.length) * MIN_GAS_CALLDATA_OVERHEAD) + // Dynamic overhead (EIP-150) ((_minGasLimit * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) / MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR) + // Gas reserved for the worst-case cost of 3/5 of the `CALL` opcode's dynamic gas // factors. (Conservative) RELAY_CALL_OVERHEAD + // Relay reserved gas (to ensure execution of `relayMessage` completes after the // subcontext finishes executing) (Conservative) RELAY_RESERVED_GAS + // Gas reserved for the execution between the `hasMinGas` check and the `CALL` // opcode. (Conservative) RELAY_GAS_CHECK_BUFFER; } /** * @notice Intializer. */ // solhint-disable-next-line func-name-mixedcase function __CrossDomainMessenger_init() internal onlyInitializing { xDomainMsgSender = Constants.DEFAULT_L2_SENDER; } /** * @notice Sends a low-level message to the other messenger. Needs to be implemented by child * contracts because the logic for this depends on the network where the messenger is * being deployed. * * @param _to Recipient of the message on the other chain. * @param _gasLimit Minimum gas limit the message can be executed with. * @param _value Amount of ETH to send with the message. * @param _data Message data. */ function _sendMessage( address _to, uint64 _gasLimit, uint256 _value, bytes memory _data ) internal virtual; /** * @notice Checks whether the message is coming from the other messenger. Implemented by child * contracts because the logic for this depends on the network where the messenger is * being deployed. * * @return Whether the message is coming from the other messenger. */ function _isOtherMessenger() internal view virtual returns (bool); /** * @notice Checks whether a given call target is a system address that could cause the * messenger to peform an unsafe action. This is NOT a mechanism for blocking user * addresses. This is ONLY used to prevent the execution of messages to specific * system addresses that could cause security issues, e.g., having the * CrossDomainMessenger send messages to itself. * * @param _target Address of the contract to check. * * @return Whether or not the address is an unsafe system address. */ function _isUnsafeTarget(address _target) internal view virtual returns (bool); } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol"; import { ILegacyMintableERC20, IOptimismMintableERC20 } from "./IOptimismMintableERC20.sol"; import { Semver } from "../universal/Semver.sol"; /** * @title OptimismMintableERC20 * @notice OptimismMintableERC20 is a standard extension of the base ERC20 token contract designed * to allow the StandardBridge contracts to mint and burn tokens. This makes it possible to * use an OptimismMintablERC20 as the L2 representation of an L1 token, or vice-versa. * Designed to be backwards compatible with the older StandardL2ERC20 token which was only * meant for use on L2. */ contract OptimismMintableERC20 is IOptimismMintableERC20, ILegacyMintableERC20, ERC20, Semver { /** * @notice Address of the corresponding version of this token on the remote chain. */ address public immutable REMOTE_TOKEN; /** * @notice Address of the StandardBridge on this network. */ address public immutable BRIDGE; /** * @notice Emitted whenever tokens are minted for an account. * * @param account Address of the account tokens are being minted for. * @param amount Amount of tokens minted. */ event Mint(address indexed account, uint256 amount); /** * @notice Emitted whenever tokens are burned from an account. * * @param account Address of the account tokens are being burned from. * @param amount Amount of tokens burned. */ event Burn(address indexed account, uint256 amount); /** * @notice A modifier that only allows the bridge to call */ modifier onlyBridge() { require(msg.sender == BRIDGE, "OptimismMintableERC20: only bridge can mint and burn"); _; } /** * @custom:semver 1.0.0 * * @param _bridge Address of the L2 standard bridge. * @param _remoteToken Address of the corresponding L1 token. * @param _name ERC20 name. * @param _symbol ERC20 symbol. */ constructor( address _bridge, address _remoteToken, string memory _name, string memory _symbol ) ERC20(_name, _symbol) Semver(1, 0, 0) { REMOTE_TOKEN = _remoteToken; BRIDGE = _bridge; } /** * @notice Allows the StandardBridge on this network to mint tokens. * * @param _to Address to mint tokens to. * @param _amount Amount of tokens to mint. */ function mint(address _to, uint256 _amount) external virtual override(IOptimismMintableERC20, ILegacyMintableERC20) onlyBridge { _mint(_to, _amount); emit Mint(_to, _amount); } /** * @notice Allows the StandardBridge on this network to burn tokens. * * @param _from Address to burn tokens from. * @param _amount Amount of tokens to burn. */ function burn(address _from, uint256 _amount) external virtual override(IOptimismMintableERC20, ILegacyMintableERC20) onlyBridge { _burn(_from, _amount); emit Burn(_from, _amount); } /** * @notice ERC165 interface check function. * * @param _interfaceId Interface ID to check. * * @return Whether or not the interface is supported by this contract. */ function supportsInterface(bytes4 _interfaceId) external pure returns (bool) { bytes4 iface1 = type(IERC165).interfaceId; // Interface corresponding to the legacy L2StandardERC20. bytes4 iface2 = type(ILegacyMintableERC20).interfaceId; // Interface corresponding to the updated OptimismMintableERC20 (this contract). bytes4 iface3 = type(IOptimismMintableERC20).interfaceId; return _interfaceId == iface1 || _interfaceId == iface2 || _interfaceId == iface3; } /** * @custom:legacy * @notice Legacy getter for the remote token. Use REMOTE_TOKEN going forward. */ function l1Token() public view returns (address) { return REMOTE_TOKEN; } /** * @custom:legacy * @notice Legacy getter for the bridge. Use BRIDGE going forward. */ function l2Bridge() public view returns (address) { return BRIDGE; } /** * @custom:legacy * @notice Legacy getter for REMOTE_TOKEN. */ function remoteToken() public view returns (address) { return REMOTE_TOKEN; } /** * @custom:legacy * @notice Legacy getter for BRIDGE. */ function bridge() public view returns (address) { return BRIDGE; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Strings.sol) pragma solidity ^0.8.0; /** * @dev String operations. */ library Strings { bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { // Inspired by OraclizeAPI's implementation - MIT licence // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol if (value == 0) { return "0"; } uint256 temp = value; uint256 digits; while (temp != 0) { digits++; temp /= 10; } bytes memory buffer = new bytes(digits); while (value != 0) { digits -= 1; buffer[digits] = bytes1(uint8(48 + uint256(value % 10))); value /= 10; } return string(buffer); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { if (value == 0) { return "0x00"; } uint256 temp = value; uint256 length = 0; while (temp != 0) { length++; temp >>= 8; } return toHexString(value, length); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _HEX_SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original * initialization step. This is essential to configure modules that are added through upgrades and that require * initialization. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Types } from "./Types.sol"; import { Encoding } from "./Encoding.sol"; /** * @title Hashing * @notice Hashing handles Optimism's various different hashing schemes. */ library Hashing { /** * @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a * given deposit is sent to the L2 system. Useful for searching for a deposit in the L2 * system. * * @param _tx User deposit transaction to hash. * * @return Hash of the RLP encoded L2 deposit transaction. */ function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) { return keccak256(Encoding.encodeDepositTransaction(_tx)); } /** * @notice Computes the deposit transaction's "source hash", a value that guarantees the hash * of the L2 transaction that corresponds to a deposit is unique and is * deterministically generated from L1 transaction data. * * @param _l1BlockHash Hash of the L1 block where the deposit was included. * @param _logIndex The index of the log that created the deposit transaction. * * @return Hash of the deposit transaction's "source hash". */ function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) { bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex)); return keccak256(abi.encode(bytes32(0), depositId)); } /** * @notice Hashes the cross domain message based on the version that is encoded into the * message nonce. * * @param _nonce Message nonce with version encoded into the first two bytes. * @param _sender Address of the sender of the message. * @param _target Address of the target of the message. * @param _value ETH value to send to the target. * @param _gasLimit Gas limit to use for the message. * @param _data Data to send with the message. * * @return Hashed cross domain message. */ function hashCrossDomainMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes32) { (, uint16 version) = Encoding.decodeVersionedNonce(_nonce); if (version == 0) { return hashCrossDomainMessageV0(_target, _sender, _data, _nonce); } else if (version == 1) { return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data); } else { revert("Hashing: unknown cross domain message version"); } } /** * @notice Hashes a cross domain message based on the V0 (legacy) encoding. * * @param _target Address of the target of the message. * @param _sender Address of the sender of the message. * @param _data Data to send with the message. * @param _nonce Message nonce. * * @return Hashed cross domain message. */ function hashCrossDomainMessageV0( address _target, address _sender, bytes memory _data, uint256 _nonce ) internal pure returns (bytes32) { return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce)); } /** * @notice Hashes a cross domain message based on the V1 (current) encoding. * * @param _nonce Message nonce. * @param _sender Address of the sender of the message. * @param _target Address of the target of the message. * @param _value ETH value to send to the target. * @param _gasLimit Gas limit to use for the message. * @param _data Data to send with the message. * * @return Hashed cross domain message. */ function hashCrossDomainMessageV1( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes32) { return keccak256( Encoding.encodeCrossDomainMessageV1( _nonce, _sender, _target, _value, _gasLimit, _data ) ); } /** * @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract * * @param _tx Withdrawal transaction to hash. * * @return Hashed withdrawal transaction. */ function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) { return keccak256( abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data) ); } /** * @notice Hashes the various elements of an output root proof into an output root hash which * can be used to check if the proof is valid. * * @param _outputRootProof Output root proof which should hash to an output root. * * @return Hashed output root proof. */ function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) { return keccak256( abi.encode( _outputRootProof.version, _outputRootProof.stateRoot, _outputRootProof.messagePasserStorageRoot, _outputRootProof.latestBlockhash ) ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Types } from "./Types.sol"; import { Hashing } from "./Hashing.sol"; import { RLPWriter } from "./rlp/RLPWriter.sol"; /** * @title Encoding * @notice Encoding handles Optimism's various different encoding schemes. */ library Encoding { /** * @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent * to the L2 system. Useful for searching for a deposit in the L2 system. The * transaction is prefixed with 0x7e to identify its EIP-2718 type. * * @param _tx User deposit transaction to encode. * * @return RLP encoded L2 deposit transaction. */ function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) { bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex); bytes[] memory raw = new bytes[](8); raw[0] = RLPWriter.writeBytes(abi.encodePacked(source)); raw[1] = RLPWriter.writeAddress(_tx.from); raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to); raw[3] = RLPWriter.writeUint(_tx.mint); raw[4] = RLPWriter.writeUint(_tx.value); raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit)); raw[6] = RLPWriter.writeBool(false); raw[7] = RLPWriter.writeBytes(_tx.data); return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw)); } /** * @notice Encodes the cross domain message based on the version that is encoded into the * message nonce. * * @param _nonce Message nonce with version encoded into the first two bytes. * @param _sender Address of the sender of the message. * @param _target Address of the target of the message. * @param _value ETH value to send to the target. * @param _gasLimit Gas limit to use for the message. * @param _data Data to send with the message. * * @return Encoded cross domain message. */ function encodeCrossDomainMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes memory) { (, uint16 version) = decodeVersionedNonce(_nonce); if (version == 0) { return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce); } else if (version == 1) { return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data); } else { revert("Encoding: unknown cross domain message version"); } } /** * @notice Encodes a cross domain message based on the V0 (legacy) encoding. * * @param _target Address of the target of the message. * @param _sender Address of the sender of the message. * @param _data Data to send with the message. * @param _nonce Message nonce. * * @return Encoded cross domain message. */ function encodeCrossDomainMessageV0( address _target, address _sender, bytes memory _data, uint256 _nonce ) internal pure returns (bytes memory) { return abi.encodeWithSignature( "relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce ); } /** * @notice Encodes a cross domain message based on the V1 (current) encoding. * * @param _nonce Message nonce. * @param _sender Address of the sender of the message. * @param _target Address of the target of the message. * @param _value ETH value to send to the target. * @param _gasLimit Gas limit to use for the message. * @param _data Data to send with the message. * * @return Encoded cross domain message. */ function encodeCrossDomainMessageV1( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes memory) { return abi.encodeWithSignature( "relayMessage(uint256,address,address,uint256,uint256,bytes)", _nonce, _sender, _target, _value, _gasLimit, _data ); } /** * @notice Adds a version number into the first two bytes of a message nonce. * * @param _nonce Message nonce to encode into. * @param _version Version number to encode into the message nonce. * * @return Message nonce with version encoded into the first two bytes. */ function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) { uint256 nonce; assembly { nonce := or(shl(240, _version), _nonce) } return nonce; } /** * @notice Pulls the version out of a version-encoded nonce. * * @param _nonce Message nonce with version encoded into the first two bytes. * * @return Nonce without encoded version. * @return Version of the message. */ function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) { uint240 nonce; uint16 version; assembly { nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff) version := shr(240, _nonce) } return (nonce, version); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { ResourceMetering } from "../L1/ResourceMetering.sol"; /** * @title Constants * @notice Constants is a library for storing constants. Simple! Don't put everything in here, just * the stuff used in multiple contracts. Constants that only apply to a single contract * should be defined in that contract instead. */ library Constants { /** * @notice Special address to be used as the tx origin for gas estimation calls in the * OptimismPortal and CrossDomainMessenger calls. You only need to use this address if * the minimum gas limit specified by the user is not actually enough to execute the * given message and you're attempting to estimate the actual necessary gas limit. We * use address(1) because it's the ecrecover precompile and therefore guaranteed to * never have any code on any EVM chain. */ address internal constant ESTIMATION_ADDRESS = address(1); /** * @notice Value used for the L2 sender storage slot in both the OptimismPortal and the * CrossDomainMessenger contracts before an actual sender is set. This value is * non-zero to reduce the gas cost of message passing transactions. */ address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD; /** * @notice Returns the default values for the ResourceConfig. These are the recommended values * for a production network. */ function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) { ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({ maxResourceLimit: 20_000_000, elasticityMultiplier: 10, baseFeeMaxChangeDenominator: 8, minimumBaseFee: 1 gwei, systemTxMaxGas: 1_000_000, maximumBaseFee: type(uint128).max }); return config; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; import "./IERC20.sol"; import "./extensions/IERC20Metadata.sol"; import "../../utils/Context.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * The default value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless this function is * overridden; * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. * - the caller must have allowance for ``from``'s tokens of at least * `amount`. */ function transferFrom( address from, address to, uint256 amount ) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, allowance(owner, spender) + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = allowance(owner, spender); require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. */ function _transfer( address from, address to, uint256 amount ) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; } _balances[to] += amount; emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; _balances[account] += amount; emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; } _totalSupply -= amount; emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Updates `owner` s allowance for `spender` based on spent `amount`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance( address owner, address spender, uint256 amount ) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner, spender, currentAllowance - amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual {} } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @title Types * @notice Contains various types used throughout the Optimism contract system. */ library Types { /** * @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1 * timestamp that the output root is posted. This timestamp is used to verify that the * finalization period has passed since the output root was submitted. * * @custom:field outputRoot Hash of the L2 output. * @custom:field timestamp Timestamp of the L1 block that the output root was submitted in. * @custom:field l2BlockNumber L2 block number that the output corresponds to. */ struct OutputProposal { bytes32 outputRoot; uint128 timestamp; uint128 l2BlockNumber; } /** * @notice Struct representing the elements that are hashed together to generate an output root * which itself represents a snapshot of the L2 state. * * @custom:field version Version of the output root. * @custom:field stateRoot Root of the state trie at the block of this output. * @custom:field messagePasserStorageRoot Root of the message passer storage trie. * @custom:field latestBlockhash Hash of the block this output was generated from. */ struct OutputRootProof { bytes32 version; bytes32 stateRoot; bytes32 messagePasserStorageRoot; bytes32 latestBlockhash; } /** * @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end * user (as opposed to a system deposit transaction generated by the system). * * @custom:field from Address of the sender of the transaction. * @custom:field to Address of the recipient of the transaction. * @custom:field isCreation True if the transaction is a contract creation. * @custom:field value Value to send to the recipient. * @custom:field mint Amount of ETH to mint. * @custom:field gasLimit Gas limit of the transaction. * @custom:field data Data of the transaction. * @custom:field l1BlockHash Hash of the block the transaction was submitted in. * @custom:field logIndex Index of the log in the block the transaction was submitted in. */ struct UserDepositTransaction { address from; address to; bool isCreation; uint256 value; uint256 mint; uint64 gasLimit; bytes data; bytes32 l1BlockHash; uint256 logIndex; } /** * @notice Struct representing a withdrawal transaction. * * @custom:field nonce Nonce of the withdrawal transaction * @custom:field sender Address of the sender of the transaction. * @custom:field target Address of the recipient of the transaction. * @custom:field value Value to send to the recipient. * @custom:field gasLimit Gas limit of the transaction. * @custom:field data Data of the transaction. */ struct WithdrawalTransaction { uint256 nonce; address sender; address target; uint256 value; uint256 gasLimit; bytes data; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @custom:attribution https://github.com/bakaoh/solidity-rlp-encode * @title RLPWriter * @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's * RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor * modifications to improve legibility. */ library RLPWriter { /** * @notice RLP encodes a byte string. * * @param _in The byte string to encode. * * @return The RLP encoded string in bytes. */ function writeBytes(bytes memory _in) internal pure returns (bytes memory) { bytes memory encoded; if (_in.length == 1 && uint8(_in[0]) < 128) { encoded = _in; } else { encoded = abi.encodePacked(_writeLength(_in.length, 128), _in); } return encoded; } /** * @notice RLP encodes a list of RLP encoded byte byte strings. * * @param _in The list of RLP encoded byte strings. * * @return The RLP encoded list of items in bytes. */ function writeList(bytes[] memory _in) internal pure returns (bytes memory) { bytes memory list = _flatten(_in); return abi.encodePacked(_writeLength(list.length, 192), list); } /** * @notice RLP encodes a string. * * @param _in The string to encode. * * @return The RLP encoded string in bytes. */ function writeString(string memory _in) internal pure returns (bytes memory) { return writeBytes(bytes(_in)); } /** * @notice RLP encodes an address. * * @param _in The address to encode. * * @return The RLP encoded address in bytes. */ function writeAddress(address _in) internal pure returns (bytes memory) { return writeBytes(abi.encodePacked(_in)); } /** * @notice RLP encodes a uint. * * @param _in The uint256 to encode. * * @return The RLP encoded uint256 in bytes. */ function writeUint(uint256 _in) internal pure returns (bytes memory) { return writeBytes(_toBinary(_in)); } /** * @notice RLP encodes a bool. * * @param _in The bool to encode. * * @return The RLP encoded bool in bytes. */ function writeBool(bool _in) internal pure returns (bytes memory) { bytes memory encoded = new bytes(1); encoded[0] = (_in ? bytes1(0x01) : bytes1(0x80)); return encoded; } /** * @notice Encode the first byte and then the `len` in binary form if `length` is more than 55. * * @param _len The length of the string or the payload. * @param _offset 128 if item is string, 192 if item is list. * * @return RLP encoded bytes. */ function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory) { bytes memory encoded; if (_len < 56) { encoded = new bytes(1); encoded[0] = bytes1(uint8(_len) + uint8(_offset)); } else { uint256 lenLen; uint256 i = 1; while (_len / i != 0) { lenLen++; i *= 256; } encoded = new bytes(lenLen + 1); encoded[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55); for (i = 1; i <= lenLen; i++) { encoded[i] = bytes1(uint8((_len / (256**(lenLen - i))) % 256)); } } return encoded; } /** * @notice Encode integer in big endian binary form with no leading zeroes. * * @param _x The integer to encode. * * @return RLP encoded bytes. */ function _toBinary(uint256 _x) private pure returns (bytes memory) { bytes memory b = abi.encodePacked(_x); uint256 i = 0; for (; i < 32; i++) { if (b[i] != 0) { break; } } bytes memory res = new bytes(32 - i); for (uint256 j = 0; j < res.length; j++) { res[j] = b[i++]; } return res; } /** * @custom:attribution https://github.com/Arachnid/solidity-stringutils * @notice Copies a piece of memory to another location. * * @param _dest Destination location. * @param _src Source location. * @param _len Length of memory to copy. */ function _memcpy( uint256 _dest, uint256 _src, uint256 _len ) private pure { uint256 dest = _dest; uint256 src = _src; uint256 len = _len; for (; len >= 32; len -= 32) { assembly { mstore(dest, mload(src)) } dest += 32; src += 32; } uint256 mask; unchecked { mask = 256**(32 - len) - 1; } assembly { let srcpart := and(mload(src), not(mask)) let destpart := and(mload(dest), mask) mstore(dest, or(destpart, srcpart)) } } /** * @custom:attribution https://github.com/sammayo/solidity-rlp-encoder * @notice Flattens a list of byte strings into one byte string. * * @param _list List of byte strings to flatten. * * @return The flattened byte string. */ function _flatten(bytes[] memory _list) private pure returns (bytes memory) { if (_list.length == 0) { return new bytes(0); } uint256 len; uint256 i = 0; for (; i < _list.length; i++) { len += _list[i].length; } bytes memory flattened = new bytes(len); uint256 flattenedPtr; assembly { flattenedPtr := add(flattened, 0x20) } for (i = 0; i < _list.length; i++) { bytes memory item = _list[i]; uint256 listPtr; assembly { listPtr := add(item, 0x20) } _memcpy(flattenedPtr, listPtr, item.length); flattenedPtr += _list[i].length; } return flattened; } } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import { Math } from "@openzeppelin/contracts/utils/math/Math.sol"; import { Burn } from "../libraries/Burn.sol"; import { Arithmetic } from "../libraries/Arithmetic.sol"; /** * @custom:upgradeable * @title ResourceMetering * @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing * updates automatically based on current demand. */ abstract contract ResourceMetering is Initializable { /** * @notice Represents the various parameters that control the way in which resources are * metered. Corresponds to the EIP-1559 resource metering system. * * @custom:field prevBaseFee Base fee from the previous block(s). * @custom:field prevBoughtGas Amount of gas bought so far in the current block. * @custom:field prevBlockNum Last block number that the base fee was updated. */ struct ResourceParams { uint128 prevBaseFee; uint64 prevBoughtGas; uint64 prevBlockNum; } /** * @notice Represents the configuration for the EIP-1559 based curve for the deposit gas * market. These values should be set with care as it is possible to set them in * a way that breaks the deposit gas market. The target resource limit is defined as * maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a * single word. There is additional space for additions in the future. * * @custom:field maxResourceLimit Represents the maximum amount of deposit gas that * can be purchased per block. * @custom:field elasticityMultiplier Determines the target resource limit along with * the resource limit. * @custom:field baseFeeMaxChangeDenominator Determines max change on fee per block. * @custom:field minimumBaseFee The min deposit base fee, it is clamped to this * value. * @custom:field systemTxMaxGas The amount of gas supplied to the system * transaction. This should be set to the same number * that the op-node sets as the gas limit for the * system transaction. * @custom:field maximumBaseFee The max deposit base fee, it is clamped to this * value. */ struct ResourceConfig { uint32 maxResourceLimit; uint8 elasticityMultiplier; uint8 baseFeeMaxChangeDenominator; uint32 minimumBaseFee; uint32 systemTxMaxGas; uint128 maximumBaseFee; } /** * @notice EIP-1559 style gas parameters. */ ResourceParams public params; /** * @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades. */ uint256[48] private __gap; /** * @notice Meters access to a function based an amount of a requested resource. * * @param _amount Amount of the resource requested. */ modifier metered(uint64 _amount) { // Record initial gas amount so we can refund for it later. uint256 initialGas = gasleft(); // Run the underlying function. _; // Run the metering function. _metered(_amount, initialGas); } /** * @notice An internal function that holds all of the logic for metering a resource. * * @param _amount Amount of the resource requested. * @param _initialGas The amount of gas before any modifier execution. */ function _metered(uint64 _amount, uint256 _initialGas) internal { // Update block number and base fee if necessary. uint256 blockDiff = block.number - params.prevBlockNum; ResourceConfig memory config = _resourceConfig(); int256 targetResourceLimit = int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier)); if (blockDiff > 0) { // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate // at which deposits can be created and therefore limit the potential for deposits to // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes. int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit; int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta) / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator))); // Update base fee by adding the base fee delta and clamp the resulting value between // min and max. int256 newBaseFee = Arithmetic.clamp({ _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta, _min: int256(uint256(config.minimumBaseFee)), _max: int256(uint256(config.maximumBaseFee)) }); // If we skipped more than one block, we also need to account for every empty block. // Empty block means there was no demand for deposits in that block, so we should // reflect this lack of demand in the fee. if (blockDiff > 1) { // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator) // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value // between min and max. newBaseFee = Arithmetic.clamp({ _value: Arithmetic.cdexp({ _coefficient: newBaseFee, _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)), _exponent: int256(blockDiff - 1) }), _min: int256(uint256(config.minimumBaseFee)), _max: int256(uint256(config.maximumBaseFee)) }); } // Update new base fee, reset bought gas, and update block number. params.prevBaseFee = uint128(uint256(newBaseFee)); params.prevBoughtGas = 0; params.prevBlockNum = uint64(block.number); } // Make sure we can actually buy the resource amount requested by the user. params.prevBoughtGas += _amount; require( int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)), "ResourceMetering: cannot buy more gas than available gas limit" ); // Determine the amount of ETH to be paid. uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee); // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei // during any 1 day period in the last 5 years, so should be fine. uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei); // Give the user a refund based on the amount of gas they used to do all of the work up to // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts // effectively like a dynamic stipend (with a minimum value). uint256 usedGas = _initialGas - gasleft(); if (gasCost > usedGas) { Burn.gas(gasCost - usedGas); } } /** * @notice Virtual function that returns the resource config. Contracts that inherit this * contract must implement this function. * * @return ResourceConfig */ function _resourceConfig() internal virtual returns (ResourceConfig memory); /** * @notice Sets initial resource parameter values. This function must either be called by the * initializer function of an upgradeable child contract. */ // solhint-disable-next-line func-name-mixedcase function __ResourceMetering_init() internal onlyInitializing { params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) }); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/Address.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original * initialization step. This is essential to configure modules that are added through upgrades and that require * initialization. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`. // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`. // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a // good first aproximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1; uint256 x = a; if (x >> 128 > 0) { x >>= 128; result <<= 64; } if (x >> 64 > 0) { x >>= 64; result <<= 32; } if (x >> 32 > 0) { x >>= 32; result <<= 16; } if (x >> 16 > 0) { x >>= 16; result <<= 8; } if (x >> 8 > 0) { x >>= 8; result <<= 4; } if (x >> 4 > 0) { x >>= 4; result <<= 2; } if (x >> 2 > 0) { result <<= 1; } // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { uint256 result = sqrt(a); if (rounding == Rounding.Up && result * result < a) { result += 1; } return result; } } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; /** * @title Burn * @notice Utilities for burning stuff. */ library Burn { /** * Burns a given amount of ETH. * * @param _amount Amount of ETH to burn. */ function eth(uint256 _amount) internal { new Burner{ value: _amount }(); } /** * Burns a given amount of gas. * * @param _amount Amount of gas to burn. */ function gas(uint256 _amount) internal view { uint256 i = 0; uint256 initialGas = gasleft(); while (initialGas - gasleft() < _amount) { ++i; } } } /** * @title Burner * @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to * the contract from the circulating supply. Self-destructing is the only way to remove ETH * from the circulating supply. */ contract Burner { constructor() payable { selfdestruct(payable(address(this))); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol"; import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol"; /** * @title Arithmetic * @notice Even more math than before. */ library Arithmetic { /** * @notice Clamps a value between a minimum and maximum. * * @param _value The value to clamp. * @param _min The minimum value. * @param _max The maximum value. * * @return The clamped value. */ function clamp( int256 _value, int256 _min, int256 _max ) internal pure returns (int256) { return SignedMath.min(SignedMath.max(_value, _min), _max); } /** * @notice (c)oefficient (d)enominator (exp)onentiation function. * Returns the result of: c * (1 - 1/d)^exp. * * @param _coefficient Coefficient of the function. * @param _denominator Fractional denominator. * @param _exponent Power function exponent. * * @return Result of c * (1 - 1/d)^exp. */ function cdexp( int256 _coefficient, int256 _denominator, int256 _exponent ) internal pure returns (int256) { return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; /// @notice Arithmetic library with operations for fixed-point numbers. /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol) library FixedPointMathLib { /*////////////////////////////////////////////////////////////// SIMPLIFIED FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s. function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down. } function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up. } function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down. } function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up. } function powWad(int256 x, int256 y) internal pure returns (int256) { // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y) return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0. } function expWad(int256 x) internal pure returns (int256 r) { unchecked { // When the result is < 0.5 we return zero. This happens when // x <= floor(log(0.5e18) * 1e18) ~ -42e18 if (x <= -42139678854452767551) return 0; // When the result is > (2**255 - 1) / 1e18 we can not represent it as an // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135. if (x >= 135305999368893231589) revert("EXP_OVERFLOW"); // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96 // for more intermediate precision and a binary basis. This base conversion // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78. x = (x << 78) / 5**18; // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers // of two such that exp(x) = exp(x') * 2**k, where k is an integer. // Solving this gives k = round(x / log(2)) and x' = x - k * log(2). int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96; x = x - k * 54916777467707473351141471128; // k is in the range [-61, 195]. // Evaluate using a (6, 7)-term rational approximation. // p is made monic, we'll multiply by a scale factor later. int256 y = x + 1346386616545796478920950773328; y = ((y * x) >> 96) + 57155421227552351082224309758442; int256 p = y + x - 94201549194550492254356042504812; p = ((p * y) >> 96) + 28719021644029726153956944680412240; p = p * x + (4385272521454847904659076985693276 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. int256 q = x - 2855989394907223263936484059900; q = ((q * x) >> 96) + 50020603652535783019961831881945; q = ((q * x) >> 96) - 533845033583426703283633433725380; q = ((q * x) >> 96) + 3604857256930695427073651918091429; q = ((q * x) >> 96) - 14423608567350463180887372962807573; q = ((q * x) >> 96) + 26449188498355588339934803723976023; assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial won't have zeros in the domain as all its roots are complex. // No scaling is necessary because p is already 2**96 too large. r := sdiv(p, q) } // r should be in the range (0.09, 0.25) * 2**96. // We now need to multiply r by: // * the scale factor s = ~6.031367120. // * the 2**k factor from the range reduction. // * the 1e18 / 2**96 factor for base conversion. // We do this all at once, with an intermediate result in 2**213 // basis, so the final right shift is always by a positive amount. r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)); } } function lnWad(int256 x) internal pure returns (int256 r) { unchecked { require(x > 0, "UNDEFINED"); // We want to convert x from 10**18 fixed point to 2**96 fixed point. // We do this by multiplying by 2**96 / 10**18. But since // ln(x * C) = ln(x) + ln(C), we can simply do nothing here // and add ln(2**96 / 10**18) at the end. // Reduce range of x to (1, 2) * 2**96 // ln(2^k * x) = k * ln(2) + ln(x) int256 k = int256(log2(uint256(x))) - 96; x <<= uint256(159 - k); x = int256(uint256(x) >> 159); // Evaluate using a (8, 8)-term rational approximation. // p is made monic, we will multiply by a scale factor later. int256 p = x + 3273285459638523848632254066296; p = ((p * x) >> 96) + 24828157081833163892658089445524; p = ((p * x) >> 96) + 43456485725739037958740375743393; p = ((p * x) >> 96) - 11111509109440967052023855526967; p = ((p * x) >> 96) - 45023709667254063763336534515857; p = ((p * x) >> 96) - 14706773417378608786704636184526; p = p * x - (795164235651350426258249787498 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. // q is monic by convention. int256 q = x + 5573035233440673466300451813936; q = ((q * x) >> 96) + 71694874799317883764090561454958; q = ((q * x) >> 96) + 283447036172924575727196451306956; q = ((q * x) >> 96) + 401686690394027663651624208769553; q = ((q * x) >> 96) + 204048457590392012362485061816622; q = ((q * x) >> 96) + 31853899698501571402653359427138; q = ((q * x) >> 96) + 909429971244387300277376558375; assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial is known not to have zeros in the domain. // No scaling required because p is already 2**96 too large. r := sdiv(p, q) } // r is in the range (0, 0.125) * 2**96 // Finalization, we need to: // * multiply by the scale factor s = 5.549… // * add ln(2**96 / 10**18) // * add k * ln(2) // * multiply by 10**18 / 2**96 = 5**18 >> 78 // mul s * 5e18 * 2**96, base is now 5**18 * 2**192 r *= 1677202110996718588342820967067443963516166; // add ln(2) * k * 5e18 * 2**192 r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k; // add ln(2**96 / 10**18) * 5e18 * 2**192 r += 600920179829731861736702779321621459595472258049074101567377883020018308; // base conversion: mul 2**18 / 2**192 r >>= 174; } } /*////////////////////////////////////////////////////////////// LOW LEVEL FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ function mulDivDown( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y)) if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) { revert(0, 0) } // Divide z by the denominator. z := div(z, denominator) } } function mulDivUp( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y)) if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) { revert(0, 0) } // First, divide z - 1 by the denominator and add 1. // We allow z - 1 to underflow if z is 0, because we multiply the // end result by 0 if z is zero, ensuring we return 0 if z is zero. z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1)) } } function rpow( uint256 x, uint256 n, uint256 scalar ) internal pure returns (uint256 z) { assembly { switch x case 0 { switch n case 0 { // 0 ** 0 = 1 z := scalar } default { // 0 ** n = 0 z := 0 } } default { switch mod(n, 2) case 0 { // If n is even, store scalar in z for now. z := scalar } default { // If n is odd, store x in z for now. z := x } // Shifting right by 1 is like dividing by 2. let half := shr(1, scalar) for { // Shift n right by 1 before looping to halve it. n := shr(1, n) } n { // Shift n right by 1 each iteration to halve it. n := shr(1, n) } { // Revert immediately if x ** 2 would overflow. // Equivalent to iszero(eq(div(xx, x), x)) here. if shr(128, x) { revert(0, 0) } // Store x squared. let xx := mul(x, x) // Round to the nearest number. let xxRound := add(xx, half) // Revert if xx + half overflowed. if lt(xxRound, xx) { revert(0, 0) } // Set x to scaled xxRound. x := div(xxRound, scalar) // If n is even: if mod(n, 2) { // Compute z * x. let zx := mul(z, x) // If z * x overflowed: if iszero(eq(div(zx, x), z)) { // Revert if x is non-zero. if iszero(iszero(x)) { revert(0, 0) } } // Round to the nearest number. let zxRound := add(zx, half) // Revert if zx + half overflowed. if lt(zxRound, zx) { revert(0, 0) } // Return properly scaled zxRound. z := div(zxRound, scalar) } } } } } /*////////////////////////////////////////////////////////////// GENERAL NUMBER UTILITIES //////////////////////////////////////////////////////////////*/ function sqrt(uint256 x) internal pure returns (uint256 z) { assembly { let y := x // We start y at x, which will help us make our initial estimate. z := 181 // The "correct" value is 1, but this saves a multiplication later. // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically. // We check y >= 2^(k + 8) but shift right by k bits // each branch to ensure that if x >= 256, then y >= 256. if iszero(lt(y, 0x10000000000000000000000000000000000)) { y := shr(128, y) z := shl(64, z) } if iszero(lt(y, 0x1000000000000000000)) { y := shr(64, y) z := shl(32, z) } if iszero(lt(y, 0x10000000000)) { y := shr(32, y) z := shl(16, z) } if iszero(lt(y, 0x1000000)) { y := shr(16, y) z := shl(8, z) } // Goal was to get z*z*y within a small factor of x. More iterations could // get y in a tighter range. Currently, we will have y in [256, 256*2^16). // We ensured y >= 256 so that the relative difference between y and y+1 is small. // That's not possible if x < 256 but we can just verify those cases exhaustively. // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256. // Correctness can be checked exhaustively for x < 256, so we assume y >= 256. // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps. // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256. // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18. // There is no overflow risk here since y < 2^136 after the first branch above. z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181. // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough. z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) // If x+1 is a perfect square, the Babylonian method cycles between // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor. // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case. // If you don't care whether the floor or ceil square root is returned, you can remove this statement. z := sub(z, lt(div(x, z), z)) } } function log2(uint256 x) internal pure returns (uint256 r) { require(x > 0, "UNDEFINED"); assembly { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) r := or(r, shl(2, lt(0xf, shr(r, x)))) r := or(r, shl(1, lt(0x3, shr(r, x)))) r := or(r, lt(0x1, shr(r, x))) } } }
File 7 of 8: AddressManager
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol"; /** * @custom:legacy * @title AddressManager * @notice AddressManager is a legacy contract that was used in the old version of the Optimism * system to manage a registry of string names to addresses. We now use a more standard * proxy system instead, but this contract is still necessary for backwards compatibility * with several older contracts. */ contract AddressManager is Ownable { /** * @notice Mapping of the hashes of string names to addresses. */ mapping(bytes32 => address) private addresses; /** * @notice Emitted when an address is modified in the registry. * * @param name String name being set in the registry. * @param newAddress Address set for the given name. * @param oldAddress Address that was previously set for the given name. */ event AddressSet(string indexed name, address newAddress, address oldAddress); /** * @notice Changes the address associated with a particular name. * * @param _name String name to associate an address with. * @param _address Address to associate with the name. */ function setAddress(string memory _name, address _address) external onlyOwner { bytes32 nameHash = _getNameHash(_name); address oldAddress = addresses[nameHash]; addresses[nameHash] = _address; emit AddressSet(_name, _address, oldAddress); } /** * @notice Retrieves the address associated with a given name. * * @param _name Name to retrieve an address for. * * @return Address associated with the given name. */ function getAddress(string memory _name) external view returns (address) { return addresses[_getNameHash(_name)]; } /** * @notice Computes the hash of a name. * * @param _name Name to compute a hash for. * * @return Hash of the given name. */ function _getNameHash(string memory _name) internal pure returns (bytes32) { return keccak256(abi.encodePacked(_name)); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
File 8 of 8: L1CrossDomainMessenger
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Predeploys } from "../libraries/Predeploys.sol"; import { OptimismPortal } from "./OptimismPortal.sol"; import { CrossDomainMessenger } from "../universal/CrossDomainMessenger.sol"; import { Semver } from "../universal/Semver.sol"; /** * @custom:proxied * @title L1CrossDomainMessenger * @notice The L1CrossDomainMessenger is a message passing interface between L1 and L2 responsible * for sending and receiving data on the L1 side. Users are encouraged to use this * interface instead of interacting with lower-level contracts directly. */ contract L1CrossDomainMessenger is CrossDomainMessenger, Semver { /** * @notice Address of the OptimismPortal. */ OptimismPortal public immutable PORTAL; /** * @custom:semver 1.4.0 * * @param _portal Address of the OptimismPortal contract on this network. */ constructor(OptimismPortal _portal) Semver(1, 4, 0) CrossDomainMessenger(Predeploys.L2_CROSS_DOMAIN_MESSENGER) { PORTAL = _portal; initialize(); } /** * @notice Initializer. */ function initialize() public initializer { __CrossDomainMessenger_init(); } /** * @inheritdoc CrossDomainMessenger */ function _sendMessage( address _to, uint64 _gasLimit, uint256 _value, bytes memory _data ) internal override { PORTAL.depositTransaction{ value: _value }(_to, _value, _gasLimit, false, _data); } /** * @inheritdoc CrossDomainMessenger */ function _isOtherMessenger() internal view override returns (bool) { return msg.sender == address(PORTAL) && PORTAL.l2Sender() == OTHER_MESSENGER; } /** * @inheritdoc CrossDomainMessenger */ function _isUnsafeTarget(address _target) internal view override returns (bool) { return _target == address(this) || _target == address(PORTAL); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @title Predeploys * @notice Contains constant addresses for contracts that are pre-deployed to the L2 system. */ library Predeploys { /** * @notice Address of the L2ToL1MessagePasser predeploy. */ address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016; /** * @notice Address of the L2CrossDomainMessenger predeploy. */ address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007; /** * @notice Address of the L2StandardBridge predeploy. */ address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010; /** * @notice Address of the L2ERC721Bridge predeploy. */ address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014; /** * @notice Address of the SequencerFeeWallet predeploy. */ address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011; /** * @notice Address of the OptimismMintableERC20Factory predeploy. */ address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012; /** * @notice Address of the OptimismMintableERC721Factory predeploy. */ address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017; /** * @notice Address of the L1Block predeploy. */ address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015; /** * @notice Address of the GasPriceOracle predeploy. Includes fee information * and helpers for computing the L1 portion of the transaction fee. */ address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F; /** * @custom:legacy * @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger * or access tx.origin (or msg.sender) in a L1 to L2 transaction instead. */ address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001; /** * @custom:legacy * @notice Address of the DeployerWhitelist predeploy. No longer active. */ address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002; /** * @custom:legacy * @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the * state trie as of the Bedrock upgrade. Contract has been locked and write functions * can no longer be accessed. */ address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000; /** * @custom:legacy * @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy * instead, which exposes more information about the L1 state. */ address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013; /** * @custom:legacy * @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated * L2ToL1MessagePasser contract instead. */ address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000; /** * @notice Address of the ProxyAdmin predeploy. */ address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018; /** * @notice Address of the BaseFeeVault predeploy. */ address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019; /** * @notice Address of the L1FeeVault predeploy. */ address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A; /** * @notice Address of the GovernanceToken predeploy. */ address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042; } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import { SafeCall } from "../libraries/SafeCall.sol"; import { L2OutputOracle } from "./L2OutputOracle.sol"; import { SystemConfig } from "./SystemConfig.sol"; import { Constants } from "../libraries/Constants.sol"; import { Types } from "../libraries/Types.sol"; import { Hashing } from "../libraries/Hashing.sol"; import { SecureMerkleTrie } from "../libraries/trie/SecureMerkleTrie.sol"; import { AddressAliasHelper } from "../vendor/AddressAliasHelper.sol"; import { ResourceMetering } from "./ResourceMetering.sol"; import { Semver } from "../universal/Semver.sol"; /** * @custom:proxied * @title OptimismPortal * @notice The OptimismPortal is a low-level contract responsible for passing messages between L1 * and L2. Messages sent directly to the OptimismPortal have no form of replayability. * Users are encouraged to use the L1CrossDomainMessenger for a higher-level interface. */ contract OptimismPortal is Initializable, ResourceMetering, Semver { /** * @notice Represents a proven withdrawal. * * @custom:field outputRoot Root of the L2 output this was proven against. * @custom:field timestamp Timestamp at whcih the withdrawal was proven. * @custom:field l2OutputIndex Index of the output this was proven against. */ struct ProvenWithdrawal { bytes32 outputRoot; uint128 timestamp; uint128 l2OutputIndex; } /** * @notice Version of the deposit event. */ uint256 internal constant DEPOSIT_VERSION = 0; /** * @notice The L2 gas limit set when eth is deposited using the receive() function. */ uint64 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000; /** * @notice Address of the L2OutputOracle contract. */ L2OutputOracle public immutable L2_ORACLE; /** * @notice Address of the SystemConfig contract. */ SystemConfig public immutable SYSTEM_CONFIG; /** * @notice Address that has the ability to pause and unpause withdrawals. */ address public immutable GUARDIAN; /** * @notice Address of the L2 account which initiated a withdrawal in this transaction. If the * of this variable is the default L2 sender address, then we are NOT inside of a call * to finalizeWithdrawalTransaction. */ address public l2Sender; /** * @notice A list of withdrawal hashes which have been successfully finalized. */ mapping(bytes32 => bool) public finalizedWithdrawals; /** * @notice A mapping of withdrawal hashes to `ProvenWithdrawal` data. */ mapping(bytes32 => ProvenWithdrawal) public provenWithdrawals; /** * @notice Determines if cross domain messaging is paused. When set to true, * withdrawals are paused. This may be removed in the future. */ bool public paused; /** * @notice Emitted when a transaction is deposited from L1 to L2. The parameters of this event * are read by the rollup node and used to derive deposit transactions on L2. * * @param from Address that triggered the deposit transaction. * @param to Address that the deposit transaction is directed to. * @param version Version of this deposit transaction event. * @param opaqueData ABI encoded deposit data to be parsed off-chain. */ event TransactionDeposited( address indexed from, address indexed to, uint256 indexed version, bytes opaqueData ); /** * @notice Emitted when a withdrawal transaction is proven. * * @param withdrawalHash Hash of the withdrawal transaction. */ event WithdrawalProven( bytes32 indexed withdrawalHash, address indexed from, address indexed to ); /** * @notice Emitted when a withdrawal transaction is finalized. * * @param withdrawalHash Hash of the withdrawal transaction. * @param success Whether the withdrawal transaction was successful. */ event WithdrawalFinalized(bytes32 indexed withdrawalHash, bool success); /** * @notice Emitted when the pause is triggered. * * @param account Address of the account triggering the pause. */ event Paused(address account); /** * @notice Emitted when the pause is lifted. * * @param account Address of the account triggering the unpause. */ event Unpaused(address account); /** * @notice Reverts when paused. */ modifier whenNotPaused() { require(paused == false, "OptimismPortal: paused"); _; } /** * @custom:semver 1.7.0 * * @param _l2Oracle Address of the L2OutputOracle contract. * @param _guardian Address that can pause deposits and withdrawals. * @param _paused Sets the contract's pausability state. * @param _config Address of the SystemConfig contract. */ constructor( L2OutputOracle _l2Oracle, address _guardian, bool _paused, SystemConfig _config ) Semver(1, 7, 0) { L2_ORACLE = _l2Oracle; GUARDIAN = _guardian; SYSTEM_CONFIG = _config; initialize(_paused); } /** * @notice Initializer. */ function initialize(bool _paused) public initializer { l2Sender = Constants.DEFAULT_L2_SENDER; paused = _paused; __ResourceMetering_init(); } /** * @notice Pause deposits and withdrawals. */ function pause() external { require(msg.sender == GUARDIAN, "OptimismPortal: only guardian can pause"); paused = true; emit Paused(msg.sender); } /** * @notice Unpause deposits and withdrawals. */ function unpause() external { require(msg.sender == GUARDIAN, "OptimismPortal: only guardian can unpause"); paused = false; emit Unpaused(msg.sender); } /** * @notice Computes the minimum gas limit for a deposit. The minimum gas limit * linearly increases based on the size of the calldata. This is to prevent * users from creating L2 resource usage without paying for it. This function * can be used when interacting with the portal to ensure forwards compatibility. * */ function minimumGasLimit(uint64 _byteCount) public pure returns (uint64) { return _byteCount * 16 + 21000; } /** * @notice Accepts value so that users can send ETH directly to this contract and have the * funds be deposited to their address on L2. This is intended as a convenience * function for EOAs. Contracts should call the depositTransaction() function directly * otherwise any deposited funds will be lost due to address aliasing. */ // solhint-disable-next-line ordering receive() external payable { depositTransaction(msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, false, bytes("")); } /** * @notice Accepts ETH value without triggering a deposit to L2. This function mainly exists * for the sake of the migration between the legacy Optimism system and Bedrock. */ function donateETH() external payable { // Intentionally empty. } /** * @notice Getter for the resource config. Used internally by the ResourceMetering * contract. The SystemConfig is the source of truth for the resource config. * * @return ResourceMetering.ResourceConfig */ function _resourceConfig() internal view override returns (ResourceMetering.ResourceConfig memory) { return SYSTEM_CONFIG.resourceConfig(); } /** * @notice Proves a withdrawal transaction. * * @param _tx Withdrawal transaction to finalize. * @param _l2OutputIndex L2 output index to prove against. * @param _outputRootProof Inclusion proof of the L2ToL1MessagePasser contract's storage root. * @param _withdrawalProof Inclusion proof of the withdrawal in L2ToL1MessagePasser contract. */ function proveWithdrawalTransaction( Types.WithdrawalTransaction memory _tx, uint256 _l2OutputIndex, Types.OutputRootProof calldata _outputRootProof, bytes[] calldata _withdrawalProof ) external whenNotPaused { // Prevent users from creating a deposit transaction where this address is the message // sender on L2. Because this is checked here, we do not need to check again in // `finalizeWithdrawalTransaction`. require( _tx.target != address(this), "OptimismPortal: you cannot send messages to the portal contract" ); // Get the output root and load onto the stack to prevent multiple mloads. This will // revert if there is no output root for the given block number. bytes32 outputRoot = L2_ORACLE.getL2Output(_l2OutputIndex).outputRoot; // Verify that the output root can be generated with the elements in the proof. require( outputRoot == Hashing.hashOutputRootProof(_outputRootProof), "OptimismPortal: invalid output root proof" ); // Load the ProvenWithdrawal into memory, using the withdrawal hash as a unique identifier. bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx); ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash]; // We generally want to prevent users from proving the same withdrawal multiple times // because each successive proof will update the timestamp. A malicious user can take // advantage of this to prevent other users from finalizing their withdrawal. However, // since withdrawals are proven before an output root is finalized, we need to allow users // to re-prove their withdrawal only in the case that the output root for their specified // output index has been updated. require( provenWithdrawal.timestamp == 0 || L2_ORACLE.getL2Output(provenWithdrawal.l2OutputIndex).outputRoot != provenWithdrawal.outputRoot, "OptimismPortal: withdrawal hash has already been proven" ); // Compute the storage slot of the withdrawal hash in the L2ToL1MessagePasser contract. // Refer to the Solidity documentation for more information on how storage layouts are // computed for mappings. bytes32 storageKey = keccak256( abi.encode( withdrawalHash, uint256(0) // The withdrawals mapping is at the first slot in the layout. ) ); // Verify that the hash of this withdrawal was stored in the L2toL1MessagePasser contract // on L2. If this is true, under the assumption that the SecureMerkleTrie does not have // bugs, then we know that this withdrawal was actually triggered on L2 and can therefore // be relayed on L1. require( SecureMerkleTrie.verifyInclusionProof( abi.encode(storageKey), hex"01", _withdrawalProof, _outputRootProof.messagePasserStorageRoot ), "OptimismPortal: invalid withdrawal inclusion proof" ); // Designate the withdrawalHash as proven by storing the `outputRoot`, `timestamp`, and // `l2BlockNumber` in the `provenWithdrawals` mapping. A `withdrawalHash` can only be // proven once unless it is submitted again with a different outputRoot. provenWithdrawals[withdrawalHash] = ProvenWithdrawal({ outputRoot: outputRoot, timestamp: uint128(block.timestamp), l2OutputIndex: uint128(_l2OutputIndex) }); // Emit a `WithdrawalProven` event. emit WithdrawalProven(withdrawalHash, _tx.sender, _tx.target); } /** * @notice Finalizes a withdrawal transaction. * * @param _tx Withdrawal transaction to finalize. */ function finalizeWithdrawalTransaction(Types.WithdrawalTransaction memory _tx) external whenNotPaused { // Make sure that the l2Sender has not yet been set. The l2Sender is set to a value other // than the default value when a withdrawal transaction is being finalized. This check is // a defacto reentrancy guard. require( l2Sender == Constants.DEFAULT_L2_SENDER, "OptimismPortal: can only trigger one withdrawal per transaction" ); // Grab the proven withdrawal from the `provenWithdrawals` map. bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx); ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash]; // A withdrawal can only be finalized if it has been proven. We know that a withdrawal has // been proven at least once when its timestamp is non-zero. Unproven withdrawals will have // a timestamp of zero. require( provenWithdrawal.timestamp != 0, "OptimismPortal: withdrawal has not been proven yet" ); // As a sanity check, we make sure that the proven withdrawal's timestamp is greater than // starting timestamp inside the L2OutputOracle. Not strictly necessary but extra layer of // safety against weird bugs in the proving step. require( provenWithdrawal.timestamp >= L2_ORACLE.startingTimestamp(), "OptimismPortal: withdrawal timestamp less than L2 Oracle starting timestamp" ); // A proven withdrawal must wait at least the finalization period before it can be // finalized. This waiting period can elapse in parallel with the waiting period for the // output the withdrawal was proven against. In effect, this means that the minimum // withdrawal time is proposal submission time + finalization period. require( _isFinalizationPeriodElapsed(provenWithdrawal.timestamp), "OptimismPortal: proven withdrawal finalization period has not elapsed" ); // Grab the OutputProposal from the L2OutputOracle, will revert if the output that // corresponds to the given index has not been proposed yet. Types.OutputProposal memory proposal = L2_ORACLE.getL2Output( provenWithdrawal.l2OutputIndex ); // Check that the output root that was used to prove the withdrawal is the same as the // current output root for the given output index. An output root may change if it is // deleted by the challenger address and then re-proposed. require( proposal.outputRoot == provenWithdrawal.outputRoot, "OptimismPortal: output root proven is not the same as current output root" ); // Check that the output proposal has also been finalized. require( _isFinalizationPeriodElapsed(proposal.timestamp), "OptimismPortal: output proposal finalization period has not elapsed" ); // Check that this withdrawal has not already been finalized, this is replay protection. require( finalizedWithdrawals[withdrawalHash] == false, "OptimismPortal: withdrawal has already been finalized" ); // Mark the withdrawal as finalized so it can't be replayed. finalizedWithdrawals[withdrawalHash] = true; // Set the l2Sender so contracts know who triggered this withdrawal on L2. l2Sender = _tx.sender; // Trigger the call to the target contract. We use a custom low level method // SafeCall.callWithMinGas to ensure two key properties // 1. Target contracts cannot force this call to run out of gas by returning a very large // amount of data (and this is OK because we don't care about the returndata here). // 2. The amount of gas provided to the execution context of the target is at least the // gas limit specified by the user. If there is not enough gas in the current context // to accomplish this, `callWithMinGas` will revert. bool success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, _tx.value, _tx.data); // Reset the l2Sender back to the default value. l2Sender = Constants.DEFAULT_L2_SENDER; // All withdrawals are immediately finalized. Replayability can // be achieved through contracts built on top of this contract emit WithdrawalFinalized(withdrawalHash, success); // Reverting here is useful for determining the exact gas cost to successfully execute the // sub call to the target contract if the minimum gas limit specified by the user would not // be sufficient to execute the sub call. if (success == false && tx.origin == Constants.ESTIMATION_ADDRESS) { revert("OptimismPortal: withdrawal failed"); } } /** * @notice Accepts deposits of ETH and data, and emits a TransactionDeposited event for use in * deriving deposit transactions. Note that if a deposit is made by a contract, its * address will be aliased when retrieved using `tx.origin` or `msg.sender`. Consider * using the CrossDomainMessenger contracts for a simpler developer experience. * * @param _to Target address on L2. * @param _value ETH value to send to the recipient. * @param _gasLimit Minimum L2 gas limit (can be greater than or equal to this value). * @param _isCreation Whether or not the transaction is a contract creation. * @param _data Data to trigger the recipient with. */ function depositTransaction( address _to, uint256 _value, uint64 _gasLimit, bool _isCreation, bytes memory _data ) public payable metered(_gasLimit) { // Just to be safe, make sure that people specify address(0) as the target when doing // contract creations. if (_isCreation) { require( _to == address(0), "OptimismPortal: must send to address(0) when creating a contract" ); } // Prevent depositing transactions that have too small of a gas limit. Users should pay // more for more resource usage. require( _gasLimit >= minimumGasLimit(uint64(_data.length)), "OptimismPortal: gas limit too small" ); // Prevent the creation of deposit transactions that have too much calldata. This gives an // upper limit on the size of unsafe blocks over the p2p network. 120kb is chosen to ensure // that the transaction can fit into the p2p network policy of 128kb even though deposit // transactions are not gossipped over the p2p network. require(_data.length <= 120_000, "OptimismPortal: data too large"); // Transform the from-address to its alias if the caller is a contract. address from = msg.sender; if (msg.sender != tx.origin) { from = AddressAliasHelper.applyL1ToL2Alias(msg.sender); } // Compute the opaque data that will be emitted as part of the TransactionDeposited event. // We use opaque data so that we can update the TransactionDeposited event in the future // without breaking the current interface. bytes memory opaqueData = abi.encodePacked( msg.value, _value, _gasLimit, _isCreation, _data ); // Emit a TransactionDeposited event so that the rollup node can derive a deposit // transaction for this deposit. emit TransactionDeposited(from, _to, DEPOSIT_VERSION, opaqueData); } /** * @notice Determine if a given output is finalized. Reverts if the call to * L2_ORACLE.getL2Output reverts. Returns a boolean otherwise. * * @param _l2OutputIndex Index of the L2 output to check. * * @return Whether or not the output is finalized. */ function isOutputFinalized(uint256 _l2OutputIndex) external view returns (bool) { return _isFinalizationPeriodElapsed(L2_ORACLE.getL2Output(_l2OutputIndex).timestamp); } /** * @notice Determines whether the finalization period has elapsed w/r/t a given timestamp. * * @param _timestamp Timestamp to check. * * @return Whether or not the finalization period has elapsed. */ function _isFinalizationPeriodElapsed(uint256 _timestamp) internal view returns (bool) { return block.timestamp > _timestamp + L2_ORACLE.FINALIZATION_PERIOD_SECONDS(); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; import { SafeCall } from "../libraries/SafeCall.sol"; import { Hashing } from "../libraries/Hashing.sol"; import { Encoding } from "../libraries/Encoding.sol"; import { Constants } from "../libraries/Constants.sol"; /** * @custom:legacy * @title CrossDomainMessengerLegacySpacer0 * @notice Contract only exists to add a spacer to the CrossDomainMessenger where the * libAddressManager variable used to exist. Must be the first contract in the inheritance * tree of the CrossDomainMessenger. */ contract CrossDomainMessengerLegacySpacer0 { /** * @custom:legacy * @custom:spacer libAddressManager * @notice Spacer for backwards compatibility. */ address private spacer_0_0_20; } /** * @custom:legacy * @title CrossDomainMessengerLegacySpacer1 * @notice Contract only exists to add a spacer to the CrossDomainMessenger where the * PausableUpgradable and OwnableUpgradeable variables used to exist. Must be * the third contract in the inheritance tree of the CrossDomainMessenger. */ contract CrossDomainMessengerLegacySpacer1 { /** * @custom:legacy * @custom:spacer ContextUpgradable's __gap * @notice Spacer for backwards compatibility. Comes from OpenZeppelin * ContextUpgradable. * */ uint256[50] private spacer_1_0_1600; /** * @custom:legacy * @custom:spacer OwnableUpgradeable's _owner * @notice Spacer for backwards compatibility. * Come from OpenZeppelin OwnableUpgradeable. */ address private spacer_51_0_20; /** * @custom:legacy * @custom:spacer OwnableUpgradeable's __gap * @notice Spacer for backwards compatibility. Comes from OpenZeppelin * OwnableUpgradeable. */ uint256[49] private spacer_52_0_1568; /** * @custom:legacy * @custom:spacer PausableUpgradable's _paused * @notice Spacer for backwards compatibility. Comes from OpenZeppelin * PausableUpgradable. */ bool private spacer_101_0_1; /** * @custom:legacy * @custom:spacer PausableUpgradable's __gap * @notice Spacer for backwards compatibility. Comes from OpenZeppelin * PausableUpgradable. */ uint256[49] private spacer_102_0_1568; /** * @custom:legacy * @custom:spacer ReentrancyGuardUpgradeable's `_status` field. * @notice Spacer for backwards compatibility. */ uint256 private spacer_151_0_32; /** * @custom:legacy * @custom:spacer ReentrancyGuardUpgradeable's __gap * @notice Spacer for backwards compatibility. */ uint256[49] private spacer_152_0_1568; /** * @custom:legacy * @custom:spacer blockedMessages * @notice Spacer for backwards compatibility. */ mapping(bytes32 => bool) private spacer_201_0_32; /** * @custom:legacy * @custom:spacer relayedMessages * @notice Spacer for backwards compatibility. */ mapping(bytes32 => bool) private spacer_202_0_32; } /** * @custom:upgradeable * @title CrossDomainMessenger * @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2 * cross-chain messenger contracts. It's designed to be a universal interface that only * needs to be extended slightly to provide low-level message passing functionality on each * chain it's deployed on. Currently only designed for message passing between two paired * chains and does not support one-to-many interactions. * * Any changes to this contract MUST result in a semver bump for contracts that inherit it. */ abstract contract CrossDomainMessenger is CrossDomainMessengerLegacySpacer0, Initializable, CrossDomainMessengerLegacySpacer1 { /** * @notice Current message version identifier. */ uint16 public constant MESSAGE_VERSION = 1; /** * @notice Constant overhead added to the base gas for a message. */ uint64 public constant RELAY_CONSTANT_OVERHEAD = 200_000; /** * @notice Numerator for dynamic overhead added to the base gas for a message. */ uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 64; /** * @notice Denominator for dynamic overhead added to the base gas for a message. */ uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 63; /** * @notice Extra gas added to base gas for each byte of calldata in a message. */ uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16; /** * @notice Gas reserved for performing the external call in `relayMessage`. */ uint64 public constant RELAY_CALL_OVERHEAD = 40_000; /** * @notice Gas reserved for finalizing the execution of `relayMessage` after the safe call. */ uint64 public constant RELAY_RESERVED_GAS = 40_000; /** * @notice Gas reserved for the execution between the `hasMinGas` check and the external * call in `relayMessage`. */ uint64 public constant RELAY_GAS_CHECK_BUFFER = 5_000; /** * @notice Address of the paired CrossDomainMessenger contract on the other chain. */ address public immutable OTHER_MESSENGER; /** * @notice Mapping of message hashes to boolean receipt values. Note that a message will only * be present in this mapping if it has successfully been relayed on this chain, and * can therefore not be relayed again. */ mapping(bytes32 => bool) public successfulMessages; /** * @notice Address of the sender of the currently executing message on the other chain. If the * value of this variable is the default value (0x00000000...dead) then no message is * currently being executed. Use the xDomainMessageSender getter which will throw an * error if this is the case. */ address internal xDomainMsgSender; /** * @notice Nonce for the next message to be sent, without the message version applied. Use the * messageNonce getter which will insert the message version into the nonce to give you * the actual nonce to be used for the message. */ uint240 internal msgNonce; /** * @notice Mapping of message hashes to a boolean if and only if the message has failed to be * executed at least once. A message will not be present in this mapping if it * successfully executed on the first attempt. */ mapping(bytes32 => bool) public failedMessages; /** * @notice Reserve extra slots in the storage layout for future upgrades. * A gap size of 41 was chosen here, so that the first slot used in a child contract * would be a multiple of 50. */ uint256[42] private __gap; /** * @notice Emitted whenever a message is sent to the other chain. * * @param target Address of the recipient of the message. * @param sender Address of the sender of the message. * @param message Message to trigger the recipient address with. * @param messageNonce Unique nonce attached to the message. * @param gasLimit Minimum gas limit that the message can be executed with. */ event SentMessage( address indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit ); /** * @notice Additional event data to emit, required as of Bedrock. Cannot be merged with the * SentMessage event without breaking the ABI of this contract, this is good enough. * * @param sender Address of the sender of the message. * @param value ETH value sent along with the message to the recipient. */ event SentMessageExtension1(address indexed sender, uint256 value); /** * @notice Emitted whenever a message is successfully relayed on this chain. * * @param msgHash Hash of the message that was relayed. */ event RelayedMessage(bytes32 indexed msgHash); /** * @notice Emitted whenever a message fails to be relayed on this chain. * * @param msgHash Hash of the message that failed to be relayed. */ event FailedRelayedMessage(bytes32 indexed msgHash); /** * @param _otherMessenger Address of the messenger on the paired chain. */ constructor(address _otherMessenger) { OTHER_MESSENGER = _otherMessenger; } /** * @notice Sends a message to some target address on the other chain. Note that if the call * always reverts, then the message will be unrelayable, and any ETH sent will be * permanently locked. The same will occur if the target on the other chain is * considered unsafe (see the _isUnsafeTarget() function). * * @param _target Target contract or wallet address. * @param _message Message to trigger the target address with. * @param _minGasLimit Minimum gas limit that the message can be executed with. */ function sendMessage( address _target, bytes calldata _message, uint32 _minGasLimit ) external payable { // Triggers a message to the other messenger. Note that the amount of gas provided to the // message is the amount of gas requested by the user PLUS the base gas value. We want to // guarantee the property that the call to the target contract will always have at least // the minimum gas limit specified by the user. _sendMessage( OTHER_MESSENGER, baseGas(_message, _minGasLimit), msg.value, abi.encodeWithSelector( this.relayMessage.selector, messageNonce(), msg.sender, _target, msg.value, _minGasLimit, _message ) ); emit SentMessage(_target, msg.sender, _message, messageNonce(), _minGasLimit); emit SentMessageExtension1(msg.sender, msg.value); unchecked { ++msgNonce; } } /** * @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only * be executed via cross-chain call from the other messenger OR if the message was * already received once and is currently being replayed. * * @param _nonce Nonce of the message being relayed. * @param _sender Address of the user who sent the message. * @param _target Address that the message is targeted at. * @param _value ETH value to send with the message. * @param _minGasLimit Minimum amount of gas that the message can be executed with. * @param _message Message to send to the target. */ function relayMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _minGasLimit, bytes calldata _message ) external payable { (, uint16 version) = Encoding.decodeVersionedNonce(_nonce); require( version < 2, "CrossDomainMessenger: only version 0 or 1 messages are supported at this time" ); // If the message is version 0, then it's a migrated legacy withdrawal. We therefore need // to check that the legacy version of the message has not already been relayed. if (version == 0) { bytes32 oldHash = Hashing.hashCrossDomainMessageV0(_target, _sender, _message, _nonce); require( successfulMessages[oldHash] == false, "CrossDomainMessenger: legacy withdrawal already relayed" ); } // We use the v1 message hash as the unique identifier for the message because it commits // to the value and minimum gas limit of the message. bytes32 versionedHash = Hashing.hashCrossDomainMessageV1( _nonce, _sender, _target, _value, _minGasLimit, _message ); if (_isOtherMessenger()) { // These properties should always hold when the message is first submitted (as // opposed to being replayed). assert(msg.value == _value); assert(!failedMessages[versionedHash]); } else { require( msg.value == 0, "CrossDomainMessenger: value must be zero unless message is from a system address" ); require( failedMessages[versionedHash], "CrossDomainMessenger: message cannot be replayed" ); } require( _isUnsafeTarget(_target) == false, "CrossDomainMessenger: cannot send message to blocked system address" ); require( successfulMessages[versionedHash] == false, "CrossDomainMessenger: message has already been relayed" ); // If there is not enough gas left to perform the external call and finish the execution, // return early and assign the message to the failedMessages mapping. // We are asserting that we have enough gas to: // 1. Call the target contract (_minGasLimit + RELAY_CALL_OVERHEAD + RELAY_GAS_CHECK_BUFFER) // 1.a. The RELAY_CALL_OVERHEAD is included in `hasMinGas`. // 2. Finish the execution after the external call (RELAY_RESERVED_GAS). // // If `xDomainMsgSender` is not the default L2 sender, this function // is being re-entered. This marks the message as failed to allow it to be replayed. if ( !SafeCall.hasMinGas(_minGasLimit, RELAY_RESERVED_GAS + RELAY_GAS_CHECK_BUFFER) || xDomainMsgSender != Constants.DEFAULT_L2_SENDER ) { failedMessages[versionedHash] = true; emit FailedRelayedMessage(versionedHash); // Revert in this case if the transaction was triggered by the estimation address. This // should only be possible during gas estimation or we have bigger problems. Reverting // here will make the behavior of gas estimation change such that the gas limit // computed will be the amount required to relay the message, even if that amount is // greater than the minimum gas limit specified by the user. if (tx.origin == Constants.ESTIMATION_ADDRESS) { revert("CrossDomainMessenger: failed to relay message"); } return; } xDomainMsgSender = _sender; bool success = SafeCall.call(_target, gasleft() - RELAY_RESERVED_GAS, _value, _message); xDomainMsgSender = Constants.DEFAULT_L2_SENDER; if (success) { successfulMessages[versionedHash] = true; emit RelayedMessage(versionedHash); } else { failedMessages[versionedHash] = true; emit FailedRelayedMessage(versionedHash); // Revert in this case if the transaction was triggered by the estimation address. This // should only be possible during gas estimation or we have bigger problems. Reverting // here will make the behavior of gas estimation change such that the gas limit // computed will be the amount required to relay the message, even if that amount is // greater than the minimum gas limit specified by the user. if (tx.origin == Constants.ESTIMATION_ADDRESS) { revert("CrossDomainMessenger: failed to relay message"); } } } /** * @notice Retrieves the address of the contract or wallet that initiated the currently * executing message on the other chain. Will throw an error if there is no message * currently being executed. Allows the recipient of a call to see who triggered it. * * @return Address of the sender of the currently executing message on the other chain. */ function xDomainMessageSender() external view returns (address) { require( xDomainMsgSender != Constants.DEFAULT_L2_SENDER, "CrossDomainMessenger: xDomainMessageSender is not set" ); return xDomainMsgSender; } /** * @notice Retrieves the next message nonce. Message version will be added to the upper two * bytes of the message nonce. Message version allows us to treat messages as having * different structures. * * @return Nonce of the next message to be sent, with added message version. */ function messageNonce() public view returns (uint256) { return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION); } /** * @notice Computes the amount of gas required to guarantee that a given message will be * received on the other chain without running out of gas. Guaranteeing that a message * will not run out of gas is important because this ensures that a message can always * be replayed on the other chain if it fails to execute completely. * * @param _message Message to compute the amount of required gas for. * @param _minGasLimit Minimum desired gas limit when message goes to target. * * @return Amount of gas required to guarantee message receipt. */ function baseGas(bytes calldata _message, uint32 _minGasLimit) public pure returns (uint64) { return // Constant overhead RELAY_CONSTANT_OVERHEAD + // Calldata overhead (uint64(_message.length) * MIN_GAS_CALLDATA_OVERHEAD) + // Dynamic overhead (EIP-150) ((_minGasLimit * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) / MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR) + // Gas reserved for the worst-case cost of 3/5 of the `CALL` opcode's dynamic gas // factors. (Conservative) RELAY_CALL_OVERHEAD + // Relay reserved gas (to ensure execution of `relayMessage` completes after the // subcontext finishes executing) (Conservative) RELAY_RESERVED_GAS + // Gas reserved for the execution between the `hasMinGas` check and the `CALL` // opcode. (Conservative) RELAY_GAS_CHECK_BUFFER; } /** * @notice Intializer. */ // solhint-disable-next-line func-name-mixedcase function __CrossDomainMessenger_init() internal onlyInitializing { xDomainMsgSender = Constants.DEFAULT_L2_SENDER; } /** * @notice Sends a low-level message to the other messenger. Needs to be implemented by child * contracts because the logic for this depends on the network where the messenger is * being deployed. * * @param _to Recipient of the message on the other chain. * @param _gasLimit Minimum gas limit the message can be executed with. * @param _value Amount of ETH to send with the message. * @param _data Message data. */ function _sendMessage( address _to, uint64 _gasLimit, uint256 _value, bytes memory _data ) internal virtual; /** * @notice Checks whether the message is coming from the other messenger. Implemented by child * contracts because the logic for this depends on the network where the messenger is * being deployed. * * @return Whether the message is coming from the other messenger. */ function _isOtherMessenger() internal view virtual returns (bool); /** * @notice Checks whether a given call target is a system address that could cause the * messenger to peform an unsafe action. This is NOT a mechanism for blocking user * addresses. This is ONLY used to prevent the execution of messages to specific * system addresses that could cause security issues, e.g., having the * CrossDomainMessenger send messages to itself. * * @param _target Address of the contract to check. * * @return Whether or not the address is an unsafe system address. */ function _isUnsafeTarget(address _target) internal view virtual returns (bool); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Strings } from "@openzeppelin/contracts/utils/Strings.sol"; /** * @title Semver * @notice Semver is a simple contract for managing contract versions. */ contract Semver { /** * @notice Contract version number (major). */ uint256 private immutable MAJOR_VERSION; /** * @notice Contract version number (minor). */ uint256 private immutable MINOR_VERSION; /** * @notice Contract version number (patch). */ uint256 private immutable PATCH_VERSION; /** * @param _major Version number (major). * @param _minor Version number (minor). * @param _patch Version number (patch). */ constructor( uint256 _major, uint256 _minor, uint256 _patch ) { MAJOR_VERSION = _major; MINOR_VERSION = _minor; PATCH_VERSION = _patch; } /** * @notice Returns the full semver contract version. * * @return Semver contract version as a string. */ function version() public view returns (string memory) { return string( abi.encodePacked( Strings.toString(MAJOR_VERSION), ".", Strings.toString(MINOR_VERSION), ".", Strings.toString(PATCH_VERSION) ) ); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/Address.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original * initialization step. This is essential to configure modules that are added through upgrades and that require * initialization. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; /** * @title SafeCall * @notice Perform low level safe calls */ library SafeCall { /** * @notice Performs a low level call without copying any returndata. * @dev Passes no calldata to the call context. * * @param _target Address to call * @param _gas Amount of gas to pass to the call * @param _value Amount of value to pass to the call */ function send( address _target, uint256 _gas, uint256 _value ) internal returns (bool) { bool _success; assembly { _success := call( _gas, // gas _target, // recipient _value, // ether value 0, // inloc 0, // inlen 0, // outloc 0 // outlen ) } return _success; } /** * @notice Perform a low level call without copying any returndata * * @param _target Address to call * @param _gas Amount of gas to pass to the call * @param _value Amount of value to pass to the call * @param _calldata Calldata to pass to the call */ function call( address _target, uint256 _gas, uint256 _value, bytes memory _calldata ) internal returns (bool) { bool _success; assembly { _success := call( _gas, // gas _target, // recipient _value, // ether value add(_calldata, 32), // inloc mload(_calldata), // inlen 0, // outloc 0 // outlen ) } return _success; } /** * @notice Helper function to determine if there is sufficient gas remaining within the context * to guarantee that the minimum gas requirement for a call will be met as well as * optionally reserving a specified amount of gas for after the call has concluded. * @param _minGas The minimum amount of gas that may be passed to the target context. * @param _reservedGas Optional amount of gas to reserve for the caller after the execution * of the target context. * @return `true` if there is enough gas remaining to safely supply `_minGas` to the target * context as well as reserve `_reservedGas` for the caller after the execution of * the target context. * @dev !!!!! FOOTGUN ALERT !!!!! * 1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the * `CALL` opcode's `address_access_cost`, `positive_value_cost`, and * `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is * still possible to self-rekt by initiating a withdrawal with a minimum gas limit * that does not account for the `memory_expansion_cost` & `code_execution_cost` * factors of the dynamic cost of the `CALL` opcode. * 2.) This function should *directly* precede the external call if possible. There is an * added buffer to account for gas consumed between this check and the call, but it * is only 5,700 gas. * 3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call * frame may be passed to a subcontext, we need to ensure that the gas will not be * truncated. * 4.) Use wisely. This function is not a silver bullet. */ function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) { bool _hasMinGas; assembly { // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas) _hasMinGas := iszero( lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))) ) } return _hasMinGas; } /** * @notice Perform a low level call without copying any returndata. This function * will revert if the call cannot be performed with the specified minimum * gas. * * @param _target Address to call * @param _minGas The minimum amount of gas that may be passed to the call * @param _value Amount of value to pass to the call * @param _calldata Calldata to pass to the call */ function callWithMinGas( address _target, uint256 _minGas, uint256 _value, bytes memory _calldata ) internal returns (bool) { bool _success; bool _hasMinGas = hasMinGas(_minGas, 0); assembly { // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000 if iszero(_hasMinGas) { // Store the "Error(string)" selector in scratch space. mstore(0, 0x08c379a0) // Store the pointer to the string length in scratch space. mstore(32, 32) // Store the string. // // SAFETY: // - We pad the beginning of the string with two zero bytes as well as the // length (24) to ensure that we override the free memory pointer at offset // 0x40. This is necessary because the free memory pointer is likely to // be greater than 1 byte when this function is called, but it is incredibly // unlikely that it will be greater than 3 bytes. As for the data within // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset. // - It's fine to clobber the free memory pointer, we're reverting. mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173) // Revert with 'Error("SafeCall: Not enough gas")' revert(28, 100) } // The call will be supplied at least ((_minGas * 64) / 63) gas due to the // above assertion. This ensures that, in all circumstances (except for when the // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost` // factors of the dynamic cost of the `CALL` opcode), the call will receive at least // the minimum amount of gas specified. _success := call( gas(), // gas _target, // recipient _value, // ether value add(_calldata, 32), // inloc mload(_calldata), // inlen 0x00, // outloc 0x00 // outlen ) } return _success; } } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import { Semver } from "../universal/Semver.sol"; import { Types } from "../libraries/Types.sol"; /** * @custom:proxied * @title L2OutputOracle * @notice The L2OutputOracle contains an array of L2 state outputs, where each output is a * commitment to the state of the L2 chain. Other contracts like the OptimismPortal use * these outputs to verify information about the state of L2. */ contract L2OutputOracle is Initializable, Semver { /** * @notice The interval in L2 blocks at which checkpoints must be submitted. Although this is * immutable, it can safely be modified by upgrading the implementation contract. */ uint256 public immutable SUBMISSION_INTERVAL; /** * @notice The time between L2 blocks in seconds. Once set, this value MUST NOT be modified. */ uint256 public immutable L2_BLOCK_TIME; /** * @notice The address of the challenger. Can be updated via upgrade. */ address public immutable CHALLENGER; /** * @notice The address of the proposer. Can be updated via upgrade. */ address public immutable PROPOSER; /** * @notice Minimum time (in seconds) that must elapse before a withdrawal can be finalized. */ uint256 public immutable FINALIZATION_PERIOD_SECONDS; /** * @notice The number of the first L2 block recorded in this contract. */ uint256 public startingBlockNumber; /** * @notice The timestamp of the first L2 block recorded in this contract. */ uint256 public startingTimestamp; /** * @notice Array of L2 output proposals. */ Types.OutputProposal[] internal l2Outputs; /** * @notice Emitted when an output is proposed. * * @param outputRoot The output root. * @param l2OutputIndex The index of the output in the l2Outputs array. * @param l2BlockNumber The L2 block number of the output root. * @param l1Timestamp The L1 timestamp when proposed. */ event OutputProposed( bytes32 indexed outputRoot, uint256 indexed l2OutputIndex, uint256 indexed l2BlockNumber, uint256 l1Timestamp ); /** * @notice Emitted when outputs are deleted. * * @param prevNextOutputIndex Next L2 output index before the deletion. * @param newNextOutputIndex Next L2 output index after the deletion. */ event OutputsDeleted(uint256 indexed prevNextOutputIndex, uint256 indexed newNextOutputIndex); /** * @custom:semver 1.3.0 * * @param _submissionInterval Interval in blocks at which checkpoints must be submitted. * @param _l2BlockTime The time per L2 block, in seconds. * @param _startingBlockNumber The number of the first L2 block. * @param _startingTimestamp The timestamp of the first L2 block. * @param _proposer The address of the proposer. * @param _challenger The address of the challenger. */ constructor( uint256 _submissionInterval, uint256 _l2BlockTime, uint256 _startingBlockNumber, uint256 _startingTimestamp, address _proposer, address _challenger, uint256 _finalizationPeriodSeconds ) Semver(1, 3, 0) { require(_l2BlockTime > 0, "L2OutputOracle: L2 block time must be greater than 0"); require( _submissionInterval > 0, "L2OutputOracle: submission interval must be greater than 0" ); SUBMISSION_INTERVAL = _submissionInterval; L2_BLOCK_TIME = _l2BlockTime; PROPOSER = _proposer; CHALLENGER = _challenger; FINALIZATION_PERIOD_SECONDS = _finalizationPeriodSeconds; initialize(_startingBlockNumber, _startingTimestamp); } /** * @notice Initializer. * * @param _startingBlockNumber Block number for the first recoded L2 block. * @param _startingTimestamp Timestamp for the first recoded L2 block. */ function initialize(uint256 _startingBlockNumber, uint256 _startingTimestamp) public initializer { require( _startingTimestamp <= block.timestamp, "L2OutputOracle: starting L2 timestamp must be less than current time" ); startingTimestamp = _startingTimestamp; startingBlockNumber = _startingBlockNumber; } /** * @notice Deletes all output proposals after and including the proposal that corresponds to * the given output index. Only the challenger address can delete outputs. * * @param _l2OutputIndex Index of the first L2 output to be deleted. All outputs after this * output will also be deleted. */ // solhint-disable-next-line ordering function deleteL2Outputs(uint256 _l2OutputIndex) external { require( msg.sender == CHALLENGER, "L2OutputOracle: only the challenger address can delete outputs" ); // Make sure we're not *increasing* the length of the array. require( _l2OutputIndex < l2Outputs.length, "L2OutputOracle: cannot delete outputs after the latest output index" ); // Do not allow deleting any outputs that have already been finalized. require( block.timestamp - l2Outputs[_l2OutputIndex].timestamp < FINALIZATION_PERIOD_SECONDS, "L2OutputOracle: cannot delete outputs that have already been finalized" ); uint256 prevNextL2OutputIndex = nextOutputIndex(); // Use assembly to delete the array elements because Solidity doesn't allow it. assembly { sstore(l2Outputs.slot, _l2OutputIndex) } emit OutputsDeleted(prevNextL2OutputIndex, _l2OutputIndex); } /** * @notice Accepts an outputRoot and the timestamp of the corresponding L2 block. The timestamp * must be equal to the current value returned by `nextTimestamp()` in order to be * accepted. This function may only be called by the Proposer. * * @param _outputRoot The L2 output of the checkpoint block. * @param _l2BlockNumber The L2 block number that resulted in _outputRoot. * @param _l1BlockHash A block hash which must be included in the current chain. * @param _l1BlockNumber The block number with the specified block hash. */ function proposeL2Output( bytes32 _outputRoot, uint256 _l2BlockNumber, bytes32 _l1BlockHash, uint256 _l1BlockNumber ) external payable { require( msg.sender == PROPOSER, "L2OutputOracle: only the proposer address can propose new outputs" ); require( _l2BlockNumber == nextBlockNumber(), "L2OutputOracle: block number must be equal to next expected block number" ); require( computeL2Timestamp(_l2BlockNumber) < block.timestamp, "L2OutputOracle: cannot propose L2 output in the future" ); require( _outputRoot != bytes32(0), "L2OutputOracle: L2 output proposal cannot be the zero hash" ); if (_l1BlockHash != bytes32(0)) { // This check allows the proposer to propose an output based on a given L1 block, // without fear that it will be reorged out. // It will also revert if the blockheight provided is more than 256 blocks behind the // chain tip (as the hash will return as zero). This does open the door to a griefing // attack in which the proposer's submission is censored until the block is no longer // retrievable, if the proposer is experiencing this attack it can simply leave out the // blockhash value, and delay submission until it is confident that the L1 block is // finalized. require( blockhash(_l1BlockNumber) == _l1BlockHash, "L2OutputOracle: block hash does not match the hash at the expected height" ); } emit OutputProposed(_outputRoot, nextOutputIndex(), _l2BlockNumber, block.timestamp); l2Outputs.push( Types.OutputProposal({ outputRoot: _outputRoot, timestamp: uint128(block.timestamp), l2BlockNumber: uint128(_l2BlockNumber) }) ); } /** * @notice Returns an output by index. Exists because Solidity's array access will return a * tuple instead of a struct. * * @param _l2OutputIndex Index of the output to return. * * @return The output at the given index. */ function getL2Output(uint256 _l2OutputIndex) external view returns (Types.OutputProposal memory) { return l2Outputs[_l2OutputIndex]; } /** * @notice Returns the index of the L2 output that checkpoints a given L2 block number. Uses a * binary search to find the first output greater than or equal to the given block. * * @param _l2BlockNumber L2 block number to find a checkpoint for. * * @return Index of the first checkpoint that commits to the given L2 block number. */ function getL2OutputIndexAfter(uint256 _l2BlockNumber) public view returns (uint256) { // Make sure an output for this block number has actually been proposed. require( _l2BlockNumber <= latestBlockNumber(), "L2OutputOracle: cannot get output for a block that has not been proposed" ); // Make sure there's at least one output proposed. require( l2Outputs.length > 0, "L2OutputOracle: cannot get output as no outputs have been proposed yet" ); // Find the output via binary search, guaranteed to exist. uint256 lo = 0; uint256 hi = l2Outputs.length; while (lo < hi) { uint256 mid = (lo + hi) / 2; if (l2Outputs[mid].l2BlockNumber < _l2BlockNumber) { lo = mid + 1; } else { hi = mid; } } return lo; } /** * @notice Returns the L2 output proposal that checkpoints a given L2 block number. Uses a * binary search to find the first output greater than or equal to the given block. * * @param _l2BlockNumber L2 block number to find a checkpoint for. * * @return First checkpoint that commits to the given L2 block number. */ function getL2OutputAfter(uint256 _l2BlockNumber) external view returns (Types.OutputProposal memory) { return l2Outputs[getL2OutputIndexAfter(_l2BlockNumber)]; } /** * @notice Returns the number of outputs that have been proposed. Will revert if no outputs * have been proposed yet. * * @return The number of outputs that have been proposed. */ function latestOutputIndex() external view returns (uint256) { return l2Outputs.length - 1; } /** * @notice Returns the index of the next output to be proposed. * * @return The index of the next output to be proposed. */ function nextOutputIndex() public view returns (uint256) { return l2Outputs.length; } /** * @notice Returns the block number of the latest submitted L2 output proposal. If no proposals * been submitted yet then this function will return the starting block number. * * @return Latest submitted L2 block number. */ function latestBlockNumber() public view returns (uint256) { return l2Outputs.length == 0 ? startingBlockNumber : l2Outputs[l2Outputs.length - 1].l2BlockNumber; } /** * @notice Computes the block number of the next L2 block that needs to be checkpointed. * * @return Next L2 block number. */ function nextBlockNumber() public view returns (uint256) { return latestBlockNumber() + SUBMISSION_INTERVAL; } /** * @notice Returns the L2 timestamp corresponding to a given L2 block number. * * @param _l2BlockNumber The L2 block number of the target block. * * @return L2 timestamp of the given block. */ function computeL2Timestamp(uint256 _l2BlockNumber) public view returns (uint256) { return startingTimestamp + ((_l2BlockNumber - startingBlockNumber) * L2_BLOCK_TIME); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; import { Semver } from "../universal/Semver.sol"; import { ResourceMetering } from "./ResourceMetering.sol"; /** * @title SystemConfig * @notice The SystemConfig contract is used to manage configuration of an Optimism network. All * configuration is stored on L1 and picked up by L2 as part of the derviation of the L2 * chain. */ contract SystemConfig is OwnableUpgradeable, Semver { /** * @notice Enum representing different types of updates. * * @custom:value BATCHER Represents an update to the batcher hash. * @custom:value GAS_CONFIG Represents an update to txn fee config on L2. * @custom:value GAS_LIMIT Represents an update to gas limit on L2. * @custom:value UNSAFE_BLOCK_SIGNER Represents an update to the signer key for unsafe * block distrubution. */ enum UpdateType { BATCHER, GAS_CONFIG, GAS_LIMIT, UNSAFE_BLOCK_SIGNER } /** * @notice Version identifier, used for upgrades. */ uint256 public constant VERSION = 0; /** * @notice Storage slot that the unsafe block signer is stored at. Storing it at this * deterministic storage slot allows for decoupling the storage layout from the way * that `solc` lays out storage. The `op-node` uses a storage proof to fetch this value. */ bytes32 public constant UNSAFE_BLOCK_SIGNER_SLOT = keccak256("systemconfig.unsafeblocksigner"); /** * @notice Fixed L2 gas overhead. Used as part of the L2 fee calculation. */ uint256 public overhead; /** * @notice Dynamic L2 gas overhead. Used as part of the L2 fee calculation. */ uint256 public scalar; /** * @notice Identifier for the batcher. For version 1 of this configuration, this is represented * as an address left-padded with zeros to 32 bytes. */ bytes32 public batcherHash; /** * @notice L2 block gas limit. */ uint64 public gasLimit; /** * @notice The configuration for the deposit fee market. Used by the OptimismPortal * to meter the cost of buying L2 gas on L1. Set as internal and wrapped with a getter * so that the struct is returned instead of a tuple. */ ResourceMetering.ResourceConfig internal _resourceConfig; /** * @notice Emitted when configuration is updated * * @param version SystemConfig version. * @param updateType Type of update. * @param data Encoded update data. */ event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data); /** * @custom:semver 1.3.0 * * @param _owner Initial owner of the contract. * @param _overhead Initial overhead value. * @param _scalar Initial scalar value. * @param _batcherHash Initial batcher hash. * @param _gasLimit Initial gas limit. * @param _unsafeBlockSigner Initial unsafe block signer address. * @param _config Initial resource config. */ constructor( address _owner, uint256 _overhead, uint256 _scalar, bytes32 _batcherHash, uint64 _gasLimit, address _unsafeBlockSigner, ResourceMetering.ResourceConfig memory _config ) Semver(1, 3, 0) { initialize({ _owner: _owner, _overhead: _overhead, _scalar: _scalar, _batcherHash: _batcherHash, _gasLimit: _gasLimit, _unsafeBlockSigner: _unsafeBlockSigner, _config: _config }); } /** * @notice Initializer. The resource config must be set before the * require check. * * @param _owner Initial owner of the contract. * @param _overhead Initial overhead value. * @param _scalar Initial scalar value. * @param _batcherHash Initial batcher hash. * @param _gasLimit Initial gas limit. * @param _unsafeBlockSigner Initial unsafe block signer address. * @param _config Initial ResourceConfig. */ function initialize( address _owner, uint256 _overhead, uint256 _scalar, bytes32 _batcherHash, uint64 _gasLimit, address _unsafeBlockSigner, ResourceMetering.ResourceConfig memory _config ) public initializer { __Ownable_init(); transferOwnership(_owner); overhead = _overhead; scalar = _scalar; batcherHash = _batcherHash; gasLimit = _gasLimit; _setUnsafeBlockSigner(_unsafeBlockSigner); _setResourceConfig(_config); require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low"); } /** * @notice Returns the minimum L2 gas limit that can be safely set for the system to * operate. The L2 gas limit must be larger than or equal to the amount of * gas that is allocated for deposits per block plus the amount of gas that * is allocated for the system transaction. * This function is used to determine if changes to parameters are safe. * * @return uint64 */ function minimumGasLimit() public view returns (uint64) { return uint64(_resourceConfig.maxResourceLimit) + uint64(_resourceConfig.systemTxMaxGas); } /** * @notice High level getter for the unsafe block signer address. Unsafe blocks can be * propagated across the p2p network if they are signed by the key corresponding to * this address. * * @return Address of the unsafe block signer. */ // solhint-disable-next-line ordering function unsafeBlockSigner() external view returns (address) { address addr; bytes32 slot = UNSAFE_BLOCK_SIGNER_SLOT; assembly { addr := sload(slot) } return addr; } /** * @notice Updates the unsafe block signer address. * * @param _unsafeBlockSigner New unsafe block signer address. */ function setUnsafeBlockSigner(address _unsafeBlockSigner) external onlyOwner { _setUnsafeBlockSigner(_unsafeBlockSigner); bytes memory data = abi.encode(_unsafeBlockSigner); emit ConfigUpdate(VERSION, UpdateType.UNSAFE_BLOCK_SIGNER, data); } /** * @notice Updates the batcher hash. * * @param _batcherHash New batcher hash. */ function setBatcherHash(bytes32 _batcherHash) external onlyOwner { batcherHash = _batcherHash; bytes memory data = abi.encode(_batcherHash); emit ConfigUpdate(VERSION, UpdateType.BATCHER, data); } /** * @notice Updates gas config. * * @param _overhead New overhead value. * @param _scalar New scalar value. */ function setGasConfig(uint256 _overhead, uint256 _scalar) external onlyOwner { overhead = _overhead; scalar = _scalar; bytes memory data = abi.encode(_overhead, _scalar); emit ConfigUpdate(VERSION, UpdateType.GAS_CONFIG, data); } /** * @notice Updates the L2 gas limit. * * @param _gasLimit New gas limit. */ function setGasLimit(uint64 _gasLimit) external onlyOwner { require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low"); gasLimit = _gasLimit; bytes memory data = abi.encode(_gasLimit); emit ConfigUpdate(VERSION, UpdateType.GAS_LIMIT, data); } /** * @notice Low level setter for the unsafe block signer address. This function exists to * deduplicate code around storing the unsafeBlockSigner address in storage. * * @param _unsafeBlockSigner New unsafeBlockSigner value. */ function _setUnsafeBlockSigner(address _unsafeBlockSigner) internal { bytes32 slot = UNSAFE_BLOCK_SIGNER_SLOT; assembly { sstore(slot, _unsafeBlockSigner) } } /** * @notice A getter for the resource config. Ensures that the struct is * returned instead of a tuple. * * @return ResourceConfig */ function resourceConfig() external view returns (ResourceMetering.ResourceConfig memory) { return _resourceConfig; } /** * @notice An external setter for the resource config. In the future, this * method may emit an event that the `op-node` picks up for when the * resource config is changed. * * @param _config The new resource config values. */ function setResourceConfig(ResourceMetering.ResourceConfig memory _config) external onlyOwner { _setResourceConfig(_config); } /** * @notice An internal setter for the resource config. Ensures that the * config is sane before storing it by checking for invariants. * * @param _config The new resource config. */ function _setResourceConfig(ResourceMetering.ResourceConfig memory _config) internal { // Min base fee must be less than or equal to max base fee. require( _config.minimumBaseFee <= _config.maximumBaseFee, "SystemConfig: min base fee must be less than max base" ); // Base fee change denominator must be greater than 1. require( _config.baseFeeMaxChangeDenominator > 1, "SystemConfig: denominator must be larger than 1" ); // Max resource limit plus system tx gas must be less than or equal to the L2 gas limit. // The gas limit must be increased before these values can be increased. require( _config.maxResourceLimit + _config.systemTxMaxGas <= gasLimit, "SystemConfig: gas limit too low" ); // Elasticity multiplier must be greater than 0. require( _config.elasticityMultiplier > 0, "SystemConfig: elasticity multiplier cannot be 0" ); // No precision loss when computing target resource limit. require( ((_config.maxResourceLimit / _config.elasticityMultiplier) * _config.elasticityMultiplier) == _config.maxResourceLimit, "SystemConfig: precision loss with target resource limit" ); _resourceConfig = _config; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { ResourceMetering } from "../L1/ResourceMetering.sol"; /** * @title Constants * @notice Constants is a library for storing constants. Simple! Don't put everything in here, just * the stuff used in multiple contracts. Constants that only apply to a single contract * should be defined in that contract instead. */ library Constants { /** * @notice Special address to be used as the tx origin for gas estimation calls in the * OptimismPortal and CrossDomainMessenger calls. You only need to use this address if * the minimum gas limit specified by the user is not actually enough to execute the * given message and you're attempting to estimate the actual necessary gas limit. We * use address(1) because it's the ecrecover precompile and therefore guaranteed to * never have any code on any EVM chain. */ address internal constant ESTIMATION_ADDRESS = address(1); /** * @notice Value used for the L2 sender storage slot in both the OptimismPortal and the * CrossDomainMessenger contracts before an actual sender is set. This value is * non-zero to reduce the gas cost of message passing transactions. */ address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD; /** * @notice Returns the default values for the ResourceConfig. These are the recommended values * for a production network. */ function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) { ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({ maxResourceLimit: 20_000_000, elasticityMultiplier: 10, baseFeeMaxChangeDenominator: 8, minimumBaseFee: 1 gwei, systemTxMaxGas: 1_000_000, maximumBaseFee: type(uint128).max }); return config; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @title Types * @notice Contains various types used throughout the Optimism contract system. */ library Types { /** * @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1 * timestamp that the output root is posted. This timestamp is used to verify that the * finalization period has passed since the output root was submitted. * * @custom:field outputRoot Hash of the L2 output. * @custom:field timestamp Timestamp of the L1 block that the output root was submitted in. * @custom:field l2BlockNumber L2 block number that the output corresponds to. */ struct OutputProposal { bytes32 outputRoot; uint128 timestamp; uint128 l2BlockNumber; } /** * @notice Struct representing the elements that are hashed together to generate an output root * which itself represents a snapshot of the L2 state. * * @custom:field version Version of the output root. * @custom:field stateRoot Root of the state trie at the block of this output. * @custom:field messagePasserStorageRoot Root of the message passer storage trie. * @custom:field latestBlockhash Hash of the block this output was generated from. */ struct OutputRootProof { bytes32 version; bytes32 stateRoot; bytes32 messagePasserStorageRoot; bytes32 latestBlockhash; } /** * @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end * user (as opposed to a system deposit transaction generated by the system). * * @custom:field from Address of the sender of the transaction. * @custom:field to Address of the recipient of the transaction. * @custom:field isCreation True if the transaction is a contract creation. * @custom:field value Value to send to the recipient. * @custom:field mint Amount of ETH to mint. * @custom:field gasLimit Gas limit of the transaction. * @custom:field data Data of the transaction. * @custom:field l1BlockHash Hash of the block the transaction was submitted in. * @custom:field logIndex Index of the log in the block the transaction was submitted in. */ struct UserDepositTransaction { address from; address to; bool isCreation; uint256 value; uint256 mint; uint64 gasLimit; bytes data; bytes32 l1BlockHash; uint256 logIndex; } /** * @notice Struct representing a withdrawal transaction. * * @custom:field nonce Nonce of the withdrawal transaction * @custom:field sender Address of the sender of the transaction. * @custom:field target Address of the recipient of the transaction. * @custom:field value Value to send to the recipient. * @custom:field gasLimit Gas limit of the transaction. * @custom:field data Data of the transaction. */ struct WithdrawalTransaction { uint256 nonce; address sender; address target; uint256 value; uint256 gasLimit; bytes data; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Types } from "./Types.sol"; import { Encoding } from "./Encoding.sol"; /** * @title Hashing * @notice Hashing handles Optimism's various different hashing schemes. */ library Hashing { /** * @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a * given deposit is sent to the L2 system. Useful for searching for a deposit in the L2 * system. * * @param _tx User deposit transaction to hash. * * @return Hash of the RLP encoded L2 deposit transaction. */ function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) { return keccak256(Encoding.encodeDepositTransaction(_tx)); } /** * @notice Computes the deposit transaction's "source hash", a value that guarantees the hash * of the L2 transaction that corresponds to a deposit is unique and is * deterministically generated from L1 transaction data. * * @param _l1BlockHash Hash of the L1 block where the deposit was included. * @param _logIndex The index of the log that created the deposit transaction. * * @return Hash of the deposit transaction's "source hash". */ function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) { bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex)); return keccak256(abi.encode(bytes32(0), depositId)); } /** * @notice Hashes the cross domain message based on the version that is encoded into the * message nonce. * * @param _nonce Message nonce with version encoded into the first two bytes. * @param _sender Address of the sender of the message. * @param _target Address of the target of the message. * @param _value ETH value to send to the target. * @param _gasLimit Gas limit to use for the message. * @param _data Data to send with the message. * * @return Hashed cross domain message. */ function hashCrossDomainMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes32) { (, uint16 version) = Encoding.decodeVersionedNonce(_nonce); if (version == 0) { return hashCrossDomainMessageV0(_target, _sender, _data, _nonce); } else if (version == 1) { return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data); } else { revert("Hashing: unknown cross domain message version"); } } /** * @notice Hashes a cross domain message based on the V0 (legacy) encoding. * * @param _target Address of the target of the message. * @param _sender Address of the sender of the message. * @param _data Data to send with the message. * @param _nonce Message nonce. * * @return Hashed cross domain message. */ function hashCrossDomainMessageV0( address _target, address _sender, bytes memory _data, uint256 _nonce ) internal pure returns (bytes32) { return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce)); } /** * @notice Hashes a cross domain message based on the V1 (current) encoding. * * @param _nonce Message nonce. * @param _sender Address of the sender of the message. * @param _target Address of the target of the message. * @param _value ETH value to send to the target. * @param _gasLimit Gas limit to use for the message. * @param _data Data to send with the message. * * @return Hashed cross domain message. */ function hashCrossDomainMessageV1( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes32) { return keccak256( Encoding.encodeCrossDomainMessageV1( _nonce, _sender, _target, _value, _gasLimit, _data ) ); } /** * @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract * * @param _tx Withdrawal transaction to hash. * * @return Hashed withdrawal transaction. */ function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) { return keccak256( abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data) ); } /** * @notice Hashes the various elements of an output root proof into an output root hash which * can be used to check if the proof is valid. * * @param _outputRootProof Output root proof which should hash to an output root. * * @return Hashed output root proof. */ function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) { return keccak256( abi.encode( _outputRootProof.version, _outputRootProof.stateRoot, _outputRootProof.messagePasserStorageRoot, _outputRootProof.latestBlockhash ) ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /* Library Imports */ import { MerkleTrie } from "./MerkleTrie.sol"; /** * @title SecureMerkleTrie * @notice SecureMerkleTrie is a thin wrapper around the MerkleTrie library that hashes the input * keys. Ethereum's state trie hashes input keys before storing them. */ library SecureMerkleTrie { /** * @notice Verifies a proof that a given key/value pair is present in the Merkle trie. * * @param _key Key of the node to search for, as a hex string. * @param _value Value of the node to search for, as a hex string. * @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle * trees, this proof is executed top-down and consists of a list of RLP-encoded * nodes that make a path down to the target node. * @param _root Known root of the Merkle trie. Used to verify that the included proof is * correctly constructed. * * @return Whether or not the proof is valid. */ function verifyInclusionProof( bytes memory _key, bytes memory _value, bytes[] memory _proof, bytes32 _root ) internal pure returns (bool) { bytes memory key = _getSecureKey(_key); return MerkleTrie.verifyInclusionProof(key, _value, _proof, _root); } /** * @notice Retrieves the value associated with a given key. * * @param _key Key to search for, as hex bytes. * @param _proof Merkle trie inclusion proof for the key. * @param _root Known root of the Merkle trie. * * @return Value of the key if it exists. */ function get( bytes memory _key, bytes[] memory _proof, bytes32 _root ) internal pure returns (bytes memory) { bytes memory key = _getSecureKey(_key); return MerkleTrie.get(key, _proof, _root); } /** * @notice Computes the hashed version of the input key. * * @param _key Key to hash. * * @return Hashed version of the key. */ function _getSecureKey(bytes memory _key) private pure returns (bytes memory) { return abi.encodePacked(keccak256(_key)); } } // SPDX-License-Identifier: Apache-2.0 /* * Copyright 2019-2021, Offchain Labs, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity ^0.8.0; library AddressAliasHelper { uint160 constant offset = uint160(0x1111000000000000000000000000000000001111); /// @notice Utility function that converts the address in the L1 that submitted a tx to /// the inbox to the msg.sender viewed in the L2 /// @param l1Address the address in the L1 that triggered the tx to L2 /// @return l2Address L2 address as viewed in msg.sender function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) { unchecked { l2Address = address(uint160(l1Address) + offset); } } /// @notice Utility function that converts the msg.sender viewed in the L2 to the /// address in the L1 that submitted a tx to the inbox /// @param l2Address L2 address as viewed in msg.sender /// @return l1Address the address in the L1 that triggered the tx to L2 function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) { unchecked { l1Address = address(uint160(l2Address) - offset); } } } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import { Math } from "@openzeppelin/contracts/utils/math/Math.sol"; import { Burn } from "../libraries/Burn.sol"; import { Arithmetic } from "../libraries/Arithmetic.sol"; /** * @custom:upgradeable * @title ResourceMetering * @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing * updates automatically based on current demand. */ abstract contract ResourceMetering is Initializable { /** * @notice Represents the various parameters that control the way in which resources are * metered. Corresponds to the EIP-1559 resource metering system. * * @custom:field prevBaseFee Base fee from the previous block(s). * @custom:field prevBoughtGas Amount of gas bought so far in the current block. * @custom:field prevBlockNum Last block number that the base fee was updated. */ struct ResourceParams { uint128 prevBaseFee; uint64 prevBoughtGas; uint64 prevBlockNum; } /** * @notice Represents the configuration for the EIP-1559 based curve for the deposit gas * market. These values should be set with care as it is possible to set them in * a way that breaks the deposit gas market. The target resource limit is defined as * maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a * single word. There is additional space for additions in the future. * * @custom:field maxResourceLimit Represents the maximum amount of deposit gas that * can be purchased per block. * @custom:field elasticityMultiplier Determines the target resource limit along with * the resource limit. * @custom:field baseFeeMaxChangeDenominator Determines max change on fee per block. * @custom:field minimumBaseFee The min deposit base fee, it is clamped to this * value. * @custom:field systemTxMaxGas The amount of gas supplied to the system * transaction. This should be set to the same number * that the op-node sets as the gas limit for the * system transaction. * @custom:field maximumBaseFee The max deposit base fee, it is clamped to this * value. */ struct ResourceConfig { uint32 maxResourceLimit; uint8 elasticityMultiplier; uint8 baseFeeMaxChangeDenominator; uint32 minimumBaseFee; uint32 systemTxMaxGas; uint128 maximumBaseFee; } /** * @notice EIP-1559 style gas parameters. */ ResourceParams public params; /** * @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades. */ uint256[48] private __gap; /** * @notice Meters access to a function based an amount of a requested resource. * * @param _amount Amount of the resource requested. */ modifier metered(uint64 _amount) { // Record initial gas amount so we can refund for it later. uint256 initialGas = gasleft(); // Run the underlying function. _; // Run the metering function. _metered(_amount, initialGas); } /** * @notice An internal function that holds all of the logic for metering a resource. * * @param _amount Amount of the resource requested. * @param _initialGas The amount of gas before any modifier execution. */ function _metered(uint64 _amount, uint256 _initialGas) internal { // Update block number and base fee if necessary. uint256 blockDiff = block.number - params.prevBlockNum; ResourceConfig memory config = _resourceConfig(); int256 targetResourceLimit = int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier)); if (blockDiff > 0) { // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate // at which deposits can be created and therefore limit the potential for deposits to // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes. int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit; int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta) / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator))); // Update base fee by adding the base fee delta and clamp the resulting value between // min and max. int256 newBaseFee = Arithmetic.clamp({ _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta, _min: int256(uint256(config.minimumBaseFee)), _max: int256(uint256(config.maximumBaseFee)) }); // If we skipped more than one block, we also need to account for every empty block. // Empty block means there was no demand for deposits in that block, so we should // reflect this lack of demand in the fee. if (blockDiff > 1) { // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator) // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value // between min and max. newBaseFee = Arithmetic.clamp({ _value: Arithmetic.cdexp({ _coefficient: newBaseFee, _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)), _exponent: int256(blockDiff - 1) }), _min: int256(uint256(config.minimumBaseFee)), _max: int256(uint256(config.maximumBaseFee)) }); } // Update new base fee, reset bought gas, and update block number. params.prevBaseFee = uint128(uint256(newBaseFee)); params.prevBoughtGas = 0; params.prevBlockNum = uint64(block.number); } // Make sure we can actually buy the resource amount requested by the user. params.prevBoughtGas += _amount; require( int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)), "ResourceMetering: cannot buy more gas than available gas limit" ); // Determine the amount of ETH to be paid. uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee); // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei // during any 1 day period in the last 5 years, so should be fine. uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei); // Give the user a refund based on the amount of gas they used to do all of the work up to // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts // effectively like a dynamic stipend (with a minimum value). uint256 usedGas = _initialGas - gasleft(); if (gasCost > usedGas) { Burn.gas(gasCost - usedGas); } } /** * @notice Virtual function that returns the resource config. Contracts that inherit this * contract must implement this function. * * @return ResourceConfig */ function _resourceConfig() internal virtual returns (ResourceConfig memory); /** * @notice Sets initial resource parameter values. This function must either be called by the * initializer function of an upgradeable child contract. */ // solhint-disable-next-line func-name-mixedcase function __ResourceMetering_init() internal onlyInitializing { params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) }); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original * initialization step. This is essential to configure modules that are added through upgrades and that require * initialization. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Types } from "./Types.sol"; import { Hashing } from "./Hashing.sol"; import { RLPWriter } from "./rlp/RLPWriter.sol"; /** * @title Encoding * @notice Encoding handles Optimism's various different encoding schemes. */ library Encoding { /** * @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent * to the L2 system. Useful for searching for a deposit in the L2 system. The * transaction is prefixed with 0x7e to identify its EIP-2718 type. * * @param _tx User deposit transaction to encode. * * @return RLP encoded L2 deposit transaction. */ function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) { bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex); bytes[] memory raw = new bytes[](8); raw[0] = RLPWriter.writeBytes(abi.encodePacked(source)); raw[1] = RLPWriter.writeAddress(_tx.from); raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to); raw[3] = RLPWriter.writeUint(_tx.mint); raw[4] = RLPWriter.writeUint(_tx.value); raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit)); raw[6] = RLPWriter.writeBool(false); raw[7] = RLPWriter.writeBytes(_tx.data); return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw)); } /** * @notice Encodes the cross domain message based on the version that is encoded into the * message nonce. * * @param _nonce Message nonce with version encoded into the first two bytes. * @param _sender Address of the sender of the message. * @param _target Address of the target of the message. * @param _value ETH value to send to the target. * @param _gasLimit Gas limit to use for the message. * @param _data Data to send with the message. * * @return Encoded cross domain message. */ function encodeCrossDomainMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes memory) { (, uint16 version) = decodeVersionedNonce(_nonce); if (version == 0) { return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce); } else if (version == 1) { return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data); } else { revert("Encoding: unknown cross domain message version"); } } /** * @notice Encodes a cross domain message based on the V0 (legacy) encoding. * * @param _target Address of the target of the message. * @param _sender Address of the sender of the message. * @param _data Data to send with the message. * @param _nonce Message nonce. * * @return Encoded cross domain message. */ function encodeCrossDomainMessageV0( address _target, address _sender, bytes memory _data, uint256 _nonce ) internal pure returns (bytes memory) { return abi.encodeWithSignature( "relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce ); } /** * @notice Encodes a cross domain message based on the V1 (current) encoding. * * @param _nonce Message nonce. * @param _sender Address of the sender of the message. * @param _target Address of the target of the message. * @param _value ETH value to send to the target. * @param _gasLimit Gas limit to use for the message. * @param _data Data to send with the message. * * @return Encoded cross domain message. */ function encodeCrossDomainMessageV1( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes memory) { return abi.encodeWithSignature( "relayMessage(uint256,address,address,uint256,uint256,bytes)", _nonce, _sender, _target, _value, _gasLimit, _data ); } /** * @notice Adds a version number into the first two bytes of a message nonce. * * @param _nonce Message nonce to encode into. * @param _version Version number to encode into the message nonce. * * @return Message nonce with version encoded into the first two bytes. */ function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) { uint256 nonce; assembly { nonce := or(shl(240, _version), _nonce) } return nonce; } /** * @notice Pulls the version out of a version-encoded nonce. * * @param _nonce Message nonce with version encoded into the first two bytes. * * @return Nonce without encoded version. * @return Version of the message. */ function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) { uint240 nonce; uint16 version; assembly { nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff) version := shr(240, _nonce) } return (nonce, version); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Strings.sol) pragma solidity ^0.8.0; /** * @dev String operations. */ library Strings { bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { // Inspired by OraclizeAPI's implementation - MIT licence // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol if (value == 0) { return "0"; } uint256 temp = value; uint256 digits; while (temp != 0) { digits++; temp /= 10; } bytes memory buffer = new bytes(digits); while (value != 0) { digits -= 1; buffer[digits] = bytes1(uint8(48 + uint256(value % 10))); value /= 10; } return string(buffer); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { if (value == 0) { return "0x00"; } uint256 temp = value; uint256 length = 0; while (temp != 0) { length++; temp >>= 8; } return toHexString(value, length); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _HEX_SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal onlyInitializing { __Ownable_init_unchained(); } function __Ownable_init_unchained() internal onlyInitializing { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Bytes } from "../Bytes.sol"; import { RLPReader } from "../rlp/RLPReader.sol"; /** * @title MerkleTrie * @notice MerkleTrie is a small library for verifying standard Ethereum Merkle-Patricia trie * inclusion proofs. By default, this library assumes a hexary trie. One can change the * trie radix constant to support other trie radixes. */ library MerkleTrie { /** * @notice Struct representing a node in the trie. * * @custom:field encoded The RLP-encoded node. * @custom:field decoded The RLP-decoded node. */ struct TrieNode { bytes encoded; RLPReader.RLPItem[] decoded; } /** * @notice Determines the number of elements per branch node. */ uint256 internal constant TREE_RADIX = 16; /** * @notice Branch nodes have TREE_RADIX elements and one value element. */ uint256 internal constant BRANCH_NODE_LENGTH = TREE_RADIX + 1; /** * @notice Leaf nodes and extension nodes have two elements, a `path` and a `value`. */ uint256 internal constant LEAF_OR_EXTENSION_NODE_LENGTH = 2; /** * @notice Prefix for even-nibbled extension node paths. */ uint8 internal constant PREFIX_EXTENSION_EVEN = 0; /** * @notice Prefix for odd-nibbled extension node paths. */ uint8 internal constant PREFIX_EXTENSION_ODD = 1; /** * @notice Prefix for even-nibbled leaf node paths. */ uint8 internal constant PREFIX_LEAF_EVEN = 2; /** * @notice Prefix for odd-nibbled leaf node paths. */ uint8 internal constant PREFIX_LEAF_ODD = 3; /** * @notice Verifies a proof that a given key/value pair is present in the trie. * * @param _key Key of the node to search for, as a hex string. * @param _value Value of the node to search for, as a hex string. * @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle * trees, this proof is executed top-down and consists of a list of RLP-encoded * nodes that make a path down to the target node. * @param _root Known root of the Merkle trie. Used to verify that the included proof is * correctly constructed. * * @return Whether or not the proof is valid. */ function verifyInclusionProof( bytes memory _key, bytes memory _value, bytes[] memory _proof, bytes32 _root ) internal pure returns (bool) { return Bytes.equal(_value, get(_key, _proof, _root)); } /** * @notice Retrieves the value associated with a given key. * * @param _key Key to search for, as hex bytes. * @param _proof Merkle trie inclusion proof for the key. * @param _root Known root of the Merkle trie. * * @return Value of the key if it exists. */ function get( bytes memory _key, bytes[] memory _proof, bytes32 _root ) internal pure returns (bytes memory) { require(_key.length > 0, "MerkleTrie: empty key"); TrieNode[] memory proof = _parseProof(_proof); bytes memory key = Bytes.toNibbles(_key); bytes memory currentNodeID = abi.encodePacked(_root); uint256 currentKeyIndex = 0; // Proof is top-down, so we start at the first element (root). for (uint256 i = 0; i < proof.length; i++) { TrieNode memory currentNode = proof[i]; // Key index should never exceed total key length or we'll be out of bounds. require( currentKeyIndex <= key.length, "MerkleTrie: key index exceeds total key length" ); if (currentKeyIndex == 0) { // First proof element is always the root node. require( Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID), "MerkleTrie: invalid root hash" ); } else if (currentNode.encoded.length >= 32) { // Nodes 32 bytes or larger are hashed inside branch nodes. require( Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID), "MerkleTrie: invalid large internal hash" ); } else { // Nodes smaller than 32 bytes aren't hashed. require( Bytes.equal(currentNode.encoded, currentNodeID), "MerkleTrie: invalid internal node hash" ); } if (currentNode.decoded.length == BRANCH_NODE_LENGTH) { if (currentKeyIndex == key.length) { // Value is the last element of the decoded list (for branch nodes). There's // some ambiguity in the Merkle trie specification because bytes(0) is a // valid value to place into the trie, but for branch nodes bytes(0) can exist // even when the value wasn't explicitly placed there. Geth treats a value of // bytes(0) as "key does not exist" and so we do the same. bytes memory value = RLPReader.readBytes(currentNode.decoded[TREE_RADIX]); require( value.length > 0, "MerkleTrie: value length must be greater than zero (branch)" ); // Extra proof elements are not allowed. require( i == proof.length - 1, "MerkleTrie: value node must be last node in proof (branch)" ); return value; } else { // We're not at the end of the key yet. // Figure out what the next node ID should be and continue. uint8 branchKey = uint8(key[currentKeyIndex]); RLPReader.RLPItem memory nextNode = currentNode.decoded[branchKey]; currentNodeID = _getNodeID(nextNode); currentKeyIndex += 1; } } else if (currentNode.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) { bytes memory path = _getNodePath(currentNode); uint8 prefix = uint8(path[0]); uint8 offset = 2 - (prefix % 2); bytes memory pathRemainder = Bytes.slice(path, offset); bytes memory keyRemainder = Bytes.slice(key, currentKeyIndex); uint256 sharedNibbleLength = _getSharedNibbleLength(pathRemainder, keyRemainder); // Whether this is a leaf node or an extension node, the path remainder MUST be a // prefix of the key remainder (or be equal to the key remainder) or the proof is // considered invalid. require( pathRemainder.length == sharedNibbleLength, "MerkleTrie: path remainder must share all nibbles with key" ); if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) { // Prefix of 2 or 3 means this is a leaf node. For the leaf node to be valid, // the key remainder must be exactly equal to the path remainder. We already // did the necessary byte comparison, so it's more efficient here to check that // the key remainder length equals the shared nibble length, which implies // equality with the path remainder (since we already did the same check with // the path remainder and the shared nibble length). require( keyRemainder.length == sharedNibbleLength, "MerkleTrie: key remainder must be identical to path remainder" ); // Our Merkle Trie is designed specifically for the purposes of the Ethereum // state trie. Empty values are not allowed in the state trie, so we can safely // say that if the value is empty, the key should not exist and the proof is // invalid. bytes memory value = RLPReader.readBytes(currentNode.decoded[1]); require( value.length > 0, "MerkleTrie: value length must be greater than zero (leaf)" ); // Extra proof elements are not allowed. require( i == proof.length - 1, "MerkleTrie: value node must be last node in proof (leaf)" ); return value; } else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) { // Prefix of 0 or 1 means this is an extension node. We move onto the next node // in the proof and increment the key index by the length of the path remainder // which is equal to the shared nibble length. currentNodeID = _getNodeID(currentNode.decoded[1]); currentKeyIndex += sharedNibbleLength; } else { revert("MerkleTrie: received a node with an unknown prefix"); } } else { revert("MerkleTrie: received an unparseable node"); } } revert("MerkleTrie: ran out of proof elements"); } /** * @notice Parses an array of proof elements into a new array that contains both the original * encoded element and the RLP-decoded element. * * @param _proof Array of proof elements to parse. * * @return Proof parsed into easily accessible structs. */ function _parseProof(bytes[] memory _proof) private pure returns (TrieNode[] memory) { uint256 length = _proof.length; TrieNode[] memory proof = new TrieNode[](length); for (uint256 i = 0; i < length; ) { proof[i] = TrieNode({ encoded: _proof[i], decoded: RLPReader.readList(_proof[i]) }); unchecked { ++i; } } return proof; } /** * @notice Picks out the ID for a node. Node ID is referred to as the "hash" within the * specification, but nodes < 32 bytes are not actually hashed. * * @param _node Node to pull an ID for. * * @return ID for the node, depending on the size of its contents. */ function _getNodeID(RLPReader.RLPItem memory _node) private pure returns (bytes memory) { return _node.length < 32 ? RLPReader.readRawBytes(_node) : RLPReader.readBytes(_node); } /** * @notice Gets the path for a leaf or extension node. * * @param _node Node to get a path for. * * @return Node path, converted to an array of nibbles. */ function _getNodePath(TrieNode memory _node) private pure returns (bytes memory) { return Bytes.toNibbles(RLPReader.readBytes(_node.decoded[0])); } /** * @notice Utility; determines the number of nibbles shared between two nibble arrays. * * @param _a First nibble array. * @param _b Second nibble array. * * @return Number of shared nibbles. */ function _getSharedNibbleLength(bytes memory _a, bytes memory _b) private pure returns (uint256) { uint256 shared; uint256 max = (_a.length < _b.length) ? _a.length : _b.length; for (; shared < max && _a[shared] == _b[shared]; ) { unchecked { ++shared; } } return shared; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`. // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`. // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a // good first aproximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1; uint256 x = a; if (x >> 128 > 0) { x >>= 128; result <<= 64; } if (x >> 64 > 0) { x >>= 64; result <<= 32; } if (x >> 32 > 0) { x >>= 32; result <<= 16; } if (x >> 16 > 0) { x >>= 16; result <<= 8; } if (x >> 8 > 0) { x >>= 8; result <<= 4; } if (x >> 4 > 0) { x >>= 4; result <<= 2; } if (x >> 2 > 0) { result <<= 1; } // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { uint256 result = sqrt(a); if (rounding == Rounding.Up && result * result < a) { result += 1; } return result; } } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; /** * @title Burn * @notice Utilities for burning stuff. */ library Burn { /** * Burns a given amount of ETH. * * @param _amount Amount of ETH to burn. */ function eth(uint256 _amount) internal { new Burner{ value: _amount }(); } /** * Burns a given amount of gas. * * @param _amount Amount of gas to burn. */ function gas(uint256 _amount) internal view { uint256 i = 0; uint256 initialGas = gasleft(); while (initialGas - gasleft() < _amount) { ++i; } } } /** * @title Burner * @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to * the contract from the circulating supply. Self-destructing is the only way to remove ETH * from the circulating supply. */ contract Burner { constructor() payable { selfdestruct(payable(address(this))); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol"; import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol"; /** * @title Arithmetic * @notice Even more math than before. */ library Arithmetic { /** * @notice Clamps a value between a minimum and maximum. * * @param _value The value to clamp. * @param _min The minimum value. * @param _max The maximum value. * * @return The clamped value. */ function clamp( int256 _value, int256 _min, int256 _max ) internal pure returns (int256) { return SignedMath.min(SignedMath.max(_value, _min), _max); } /** * @notice (c)oefficient (d)enominator (exp)onentiation function. * Returns the result of: c * (1 - 1/d)^exp. * * @param _coefficient Coefficient of the function. * @param _denominator Fractional denominator. * @param _exponent Power function exponent. * * @return Result of c * (1 - 1/d)^exp. */ function cdexp( int256 _coefficient, int256 _denominator, int256 _exponent ) internal pure returns (int256) { return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @custom:attribution https://github.com/bakaoh/solidity-rlp-encode * @title RLPWriter * @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's * RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor * modifications to improve legibility. */ library RLPWriter { /** * @notice RLP encodes a byte string. * * @param _in The byte string to encode. * * @return The RLP encoded string in bytes. */ function writeBytes(bytes memory _in) internal pure returns (bytes memory) { bytes memory encoded; if (_in.length == 1 && uint8(_in[0]) < 128) { encoded = _in; } else { encoded = abi.encodePacked(_writeLength(_in.length, 128), _in); } return encoded; } /** * @notice RLP encodes a list of RLP encoded byte byte strings. * * @param _in The list of RLP encoded byte strings. * * @return The RLP encoded list of items in bytes. */ function writeList(bytes[] memory _in) internal pure returns (bytes memory) { bytes memory list = _flatten(_in); return abi.encodePacked(_writeLength(list.length, 192), list); } /** * @notice RLP encodes a string. * * @param _in The string to encode. * * @return The RLP encoded string in bytes. */ function writeString(string memory _in) internal pure returns (bytes memory) { return writeBytes(bytes(_in)); } /** * @notice RLP encodes an address. * * @param _in The address to encode. * * @return The RLP encoded address in bytes. */ function writeAddress(address _in) internal pure returns (bytes memory) { return writeBytes(abi.encodePacked(_in)); } /** * @notice RLP encodes a uint. * * @param _in The uint256 to encode. * * @return The RLP encoded uint256 in bytes. */ function writeUint(uint256 _in) internal pure returns (bytes memory) { return writeBytes(_toBinary(_in)); } /** * @notice RLP encodes a bool. * * @param _in The bool to encode. * * @return The RLP encoded bool in bytes. */ function writeBool(bool _in) internal pure returns (bytes memory) { bytes memory encoded = new bytes(1); encoded[0] = (_in ? bytes1(0x01) : bytes1(0x80)); return encoded; } /** * @notice Encode the first byte and then the `len` in binary form if `length` is more than 55. * * @param _len The length of the string or the payload. * @param _offset 128 if item is string, 192 if item is list. * * @return RLP encoded bytes. */ function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory) { bytes memory encoded; if (_len < 56) { encoded = new bytes(1); encoded[0] = bytes1(uint8(_len) + uint8(_offset)); } else { uint256 lenLen; uint256 i = 1; while (_len / i != 0) { lenLen++; i *= 256; } encoded = new bytes(lenLen + 1); encoded[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55); for (i = 1; i <= lenLen; i++) { encoded[i] = bytes1(uint8((_len / (256**(lenLen - i))) % 256)); } } return encoded; } /** * @notice Encode integer in big endian binary form with no leading zeroes. * * @param _x The integer to encode. * * @return RLP encoded bytes. */ function _toBinary(uint256 _x) private pure returns (bytes memory) { bytes memory b = abi.encodePacked(_x); uint256 i = 0; for (; i < 32; i++) { if (b[i] != 0) { break; } } bytes memory res = new bytes(32 - i); for (uint256 j = 0; j < res.length; j++) { res[j] = b[i++]; } return res; } /** * @custom:attribution https://github.com/Arachnid/solidity-stringutils * @notice Copies a piece of memory to another location. * * @param _dest Destination location. * @param _src Source location. * @param _len Length of memory to copy. */ function _memcpy( uint256 _dest, uint256 _src, uint256 _len ) private pure { uint256 dest = _dest; uint256 src = _src; uint256 len = _len; for (; len >= 32; len -= 32) { assembly { mstore(dest, mload(src)) } dest += 32; src += 32; } uint256 mask; unchecked { mask = 256**(32 - len) - 1; } assembly { let srcpart := and(mload(src), not(mask)) let destpart := and(mload(dest), mask) mstore(dest, or(destpart, srcpart)) } } /** * @custom:attribution https://github.com/sammayo/solidity-rlp-encoder * @notice Flattens a list of byte strings into one byte string. * * @param _list List of byte strings to flatten. * * @return The flattened byte string. */ function _flatten(bytes[] memory _list) private pure returns (bytes memory) { if (_list.length == 0) { return new bytes(0); } uint256 len; uint256 i = 0; for (; i < _list.length; i++) { len += _list[i].length; } bytes memory flattened = new bytes(len); uint256 flattenedPtr; assembly { flattenedPtr := add(flattened, 0x20) } for (i = 0; i < _list.length; i++) { bytes memory item = _list[i]; uint256 listPtr; assembly { listPtr := add(item, 0x20) } _memcpy(flattenedPtr, listPtr, item.length); flattenedPtr += _list[i].length; } return flattened; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @title Bytes * @notice Bytes is a library for manipulating byte arrays. */ library Bytes { /** * @custom:attribution https://github.com/GNSPS/solidity-bytes-utils * @notice Slices a byte array with a given starting index and length. Returns a new byte array * as opposed to a pointer to the original array. Will throw if trying to slice more * bytes than exist in the array. * * @param _bytes Byte array to slice. * @param _start Starting index of the slice. * @param _length Length of the slice. * * @return Slice of the input byte array. */ function slice( bytes memory _bytes, uint256 _start, uint256 _length ) internal pure returns (bytes memory) { unchecked { require(_length + 31 >= _length, "slice_overflow"); require(_start + _length >= _start, "slice_overflow"); require(_bytes.length >= _start + _length, "slice_outOfBounds"); } bytes memory tempBytes; assembly { switch iszero(_length) case 0 { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // The first word of the slice result is potentially a partial // word read from the original array. To read it, we calculate // the length of that partial word and start copying that many // bytes into the array. The first word we copy will start with // data we don't care about, but the last `lengthmod` bytes will // land at the beginning of the contents of the new array. When // we're done copying, we overwrite the full first word with // the actual length of the slice. let lengthmod := and(_length, 31) // The multiplication in the next line is necessary // because when slicing multiples of 32 bytes (lengthmod == 0) // the following copy loop was copying the origin's length // and then ending prematurely not copying everything it should. let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod))) let end := add(mc, _length) for { // The multiplication in the next line has the same exact purpose // as the one above. let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } mstore(tempBytes, _length) //update free-memory pointer //allocating the array padded to 32 bytes like the compiler does now mstore(0x40, and(add(mc, 31), not(31))) } //if we want a zero-length slice let's just return a zero-length array default { tempBytes := mload(0x40) //zero out the 32 bytes slice we are about to return //we need to do it because Solidity does not garbage collect mstore(tempBytes, 0) mstore(0x40, add(tempBytes, 0x20)) } } return tempBytes; } /** * @notice Slices a byte array with a given starting index up to the end of the original byte * array. Returns a new array rathern than a pointer to the original. * * @param _bytes Byte array to slice. * @param _start Starting index of the slice. * * @return Slice of the input byte array. */ function slice(bytes memory _bytes, uint256 _start) internal pure returns (bytes memory) { if (_start >= _bytes.length) { return bytes(""); } return slice(_bytes, _start, _bytes.length - _start); } /** * @notice Converts a byte array into a nibble array by splitting each byte into two nibbles. * Resulting nibble array will be exactly twice as long as the input byte array. * * @param _bytes Input byte array to convert. * * @return Resulting nibble array. */ function toNibbles(bytes memory _bytes) internal pure returns (bytes memory) { bytes memory _nibbles; assembly { // Grab a free memory offset for the new array _nibbles := mload(0x40) // Load the length of the passed bytes array from memory let bytesLength := mload(_bytes) // Calculate the length of the new nibble array // This is the length of the input array times 2 let nibblesLength := shl(0x01, bytesLength) // Update the free memory pointer to allocate memory for the new array. // To do this, we add the length of the new array + 32 bytes for the array length // rounded up to the nearest 32 byte boundary to the current free memory pointer. mstore(0x40, add(_nibbles, and(not(0x1F), add(nibblesLength, 0x3F)))) // Store the length of the new array in memory mstore(_nibbles, nibblesLength) // Store the memory offset of the _bytes array's contents on the stack let bytesStart := add(_bytes, 0x20) // Store the memory offset of the nibbles array's contents on the stack let nibblesStart := add(_nibbles, 0x20) // Loop through each byte in the input array for { let i := 0x00 } lt(i, bytesLength) { i := add(i, 0x01) } { // Get the starting offset of the next 2 bytes in the nibbles array let offset := add(nibblesStart, shl(0x01, i)) // Load the byte at the current index within the `_bytes` array let b := byte(0x00, mload(add(bytesStart, i))) // Pull out the first nibble and store it in the new array mstore8(offset, shr(0x04, b)) // Pull out the second nibble and store it in the new array mstore8(add(offset, 0x01), and(b, 0x0F)) } } return _nibbles; } /** * @notice Compares two byte arrays by comparing their keccak256 hashes. * * @param _bytes First byte array to compare. * @param _other Second byte array to compare. * * @return True if the two byte arrays are equal, false otherwise. */ function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) { return keccak256(_bytes) == keccak256(_other); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.8; /** * @custom:attribution https://github.com/hamdiallam/Solidity-RLP * @title RLPReader * @notice RLPReader is a library for parsing RLP-encoded byte arrays into Solidity types. Adapted * from Solidity-RLP (https://github.com/hamdiallam/Solidity-RLP) by Hamdi Allam with * various tweaks to improve readability. */ library RLPReader { /** * Custom pointer type to avoid confusion between pointers and uint256s. */ type MemoryPointer is uint256; /** * @notice RLP item types. * * @custom:value DATA_ITEM Represents an RLP data item (NOT a list). * @custom:value LIST_ITEM Represents an RLP list item. */ enum RLPItemType { DATA_ITEM, LIST_ITEM } /** * @notice Struct representing an RLP item. * * @custom:field length Length of the RLP item. * @custom:field ptr Pointer to the RLP item in memory. */ struct RLPItem { uint256 length; MemoryPointer ptr; } /** * @notice Max list length that this library will accept. */ uint256 internal constant MAX_LIST_LENGTH = 32; /** * @notice Converts bytes to a reference to memory position and length. * * @param _in Input bytes to convert. * * @return Output memory reference. */ function toRLPItem(bytes memory _in) internal pure returns (RLPItem memory) { // Empty arrays are not RLP items. require( _in.length > 0, "RLPReader: length of an RLP item must be greater than zero to be decodable" ); MemoryPointer ptr; assembly { ptr := add(_in, 32) } return RLPItem({ length: _in.length, ptr: ptr }); } /** * @notice Reads an RLP list value into a list of RLP items. * * @param _in RLP list value. * * @return Decoded RLP list items. */ function readList(RLPItem memory _in) internal pure returns (RLPItem[] memory) { (uint256 listOffset, uint256 listLength, RLPItemType itemType) = _decodeLength(_in); require( itemType == RLPItemType.LIST_ITEM, "RLPReader: decoded item type for list is not a list item" ); require( listOffset + listLength == _in.length, "RLPReader: list item has an invalid data remainder" ); // Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by // writing to the length. Since we can't know the number of RLP items without looping over // the entire input, we'd have to loop twice to accurately size this array. It's easier to // simply set a reasonable maximum list length and decrease the size before we finish. RLPItem[] memory out = new RLPItem[](MAX_LIST_LENGTH); uint256 itemCount = 0; uint256 offset = listOffset; while (offset < _in.length) { (uint256 itemOffset, uint256 itemLength, ) = _decodeLength( RLPItem({ length: _in.length - offset, ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset) }) ); // We don't need to check itemCount < out.length explicitly because Solidity already // handles this check on our behalf, we'd just be wasting gas. out[itemCount] = RLPItem({ length: itemLength + itemOffset, ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset) }); itemCount += 1; offset += itemOffset + itemLength; } // Decrease the array size to match the actual item count. assembly { mstore(out, itemCount) } return out; } /** * @notice Reads an RLP list value into a list of RLP items. * * @param _in RLP list value. * * @return Decoded RLP list items. */ function readList(bytes memory _in) internal pure returns (RLPItem[] memory) { return readList(toRLPItem(_in)); } /** * @notice Reads an RLP bytes value into bytes. * * @param _in RLP bytes value. * * @return Decoded bytes. */ function readBytes(RLPItem memory _in) internal pure returns (bytes memory) { (uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in); require( itemType == RLPItemType.DATA_ITEM, "RLPReader: decoded item type for bytes is not a data item" ); require( _in.length == itemOffset + itemLength, "RLPReader: bytes value contains an invalid remainder" ); return _copy(_in.ptr, itemOffset, itemLength); } /** * @notice Reads an RLP bytes value into bytes. * * @param _in RLP bytes value. * * @return Decoded bytes. */ function readBytes(bytes memory _in) internal pure returns (bytes memory) { return readBytes(toRLPItem(_in)); } /** * @notice Reads the raw bytes of an RLP item. * * @param _in RLP item to read. * * @return Raw RLP bytes. */ function readRawBytes(RLPItem memory _in) internal pure returns (bytes memory) { return _copy(_in.ptr, 0, _in.length); } /** * @notice Decodes the length of an RLP item. * * @param _in RLP item to decode. * * @return Offset of the encoded data. * @return Length of the encoded data. * @return RLP item type (LIST_ITEM or DATA_ITEM). */ function _decodeLength(RLPItem memory _in) private pure returns ( uint256, uint256, RLPItemType ) { // Short-circuit if there's nothing to decode, note that we perform this check when // the user creates an RLP item via toRLPItem, but it's always possible for them to bypass // that function and create an RLP item directly. So we need to check this anyway. require( _in.length > 0, "RLPReader: length of an RLP item must be greater than zero to be decodable" ); MemoryPointer ptr = _in.ptr; uint256 prefix; assembly { prefix := byte(0, mload(ptr)) } if (prefix <= 0x7f) { // Single byte. return (0, 1, RLPItemType.DATA_ITEM); } else if (prefix <= 0xb7) { // Short string. // slither-disable-next-line variable-scope uint256 strLen = prefix - 0x80; require( _in.length > strLen, "RLPReader: length of content must be greater than string length (short string)" ); bytes1 firstByteOfContent; assembly { firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff)) } require( strLen != 1 || firstByteOfContent >= 0x80, "RLPReader: invalid prefix, single byte < 0x80 are not prefixed (short string)" ); return (1, strLen, RLPItemType.DATA_ITEM); } else if (prefix <= 0xbf) { // Long string. uint256 lenOfStrLen = prefix - 0xb7; require( _in.length > lenOfStrLen, "RLPReader: length of content must be > than length of string length (long string)" ); bytes1 firstByteOfContent; assembly { firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff)) } require( firstByteOfContent != 0x00, "RLPReader: length of content must not have any leading zeros (long string)" ); uint256 strLen; assembly { strLen := shr(sub(256, mul(8, lenOfStrLen)), mload(add(ptr, 1))) } require( strLen > 55, "RLPReader: length of content must be greater than 55 bytes (long string)" ); require( _in.length > lenOfStrLen + strLen, "RLPReader: length of content must be greater than total length (long string)" ); return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM); } else if (prefix <= 0xf7) { // Short list. // slither-disable-next-line variable-scope uint256 listLen = prefix - 0xc0; require( _in.length > listLen, "RLPReader: length of content must be greater than list length (short list)" ); return (1, listLen, RLPItemType.LIST_ITEM); } else { // Long list. uint256 lenOfListLen = prefix - 0xf7; require( _in.length > lenOfListLen, "RLPReader: length of content must be > than length of list length (long list)" ); bytes1 firstByteOfContent; assembly { firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff)) } require( firstByteOfContent != 0x00, "RLPReader: length of content must not have any leading zeros (long list)" ); uint256 listLen; assembly { listLen := shr(sub(256, mul(8, lenOfListLen)), mload(add(ptr, 1))) } require( listLen > 55, "RLPReader: length of content must be greater than 55 bytes (long list)" ); require( _in.length > lenOfListLen + listLen, "RLPReader: length of content must be greater than total length (long list)" ); return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM); } } /** * @notice Copies the bytes from a memory location. * * @param _src Pointer to the location to read from. * @param _offset Offset to start reading from. * @param _length Number of bytes to read. * * @return Copied bytes. */ function _copy( MemoryPointer _src, uint256 _offset, uint256 _length ) private pure returns (bytes memory) { bytes memory out = new bytes(_length); if (_length == 0) { return out; } // Mostly based on Solidity's copy_memory_to_memory: // solhint-disable max-line-length // https://github.com/ethereum/solidity/blob/34dd30d71b4da730488be72ff6af7083cf2a91f6/libsolidity/codegen/YulUtilFunctions.cpp#L102-L114 uint256 src = MemoryPointer.unwrap(_src) + _offset; assembly { let dest := add(out, 32) let i := 0 for { } lt(i, _length) { i := add(i, 32) } { mstore(add(dest, i), mload(add(src, i))) } if gt(i, _length) { mstore(add(dest, _length), 0) } } return out; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; /// @notice Arithmetic library with operations for fixed-point numbers. /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol) library FixedPointMathLib { /*////////////////////////////////////////////////////////////// SIMPLIFIED FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s. function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down. } function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up. } function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down. } function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up. } function powWad(int256 x, int256 y) internal pure returns (int256) { // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y) return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0. } function expWad(int256 x) internal pure returns (int256 r) { unchecked { // When the result is < 0.5 we return zero. This happens when // x <= floor(log(0.5e18) * 1e18) ~ -42e18 if (x <= -42139678854452767551) return 0; // When the result is > (2**255 - 1) / 1e18 we can not represent it as an // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135. if (x >= 135305999368893231589) revert("EXP_OVERFLOW"); // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96 // for more intermediate precision and a binary basis. This base conversion // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78. x = (x << 78) / 5**18; // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers // of two such that exp(x) = exp(x') * 2**k, where k is an integer. // Solving this gives k = round(x / log(2)) and x' = x - k * log(2). int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96; x = x - k * 54916777467707473351141471128; // k is in the range [-61, 195]. // Evaluate using a (6, 7)-term rational approximation. // p is made monic, we'll multiply by a scale factor later. int256 y = x + 1346386616545796478920950773328; y = ((y * x) >> 96) + 57155421227552351082224309758442; int256 p = y + x - 94201549194550492254356042504812; p = ((p * y) >> 96) + 28719021644029726153956944680412240; p = p * x + (4385272521454847904659076985693276 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. int256 q = x - 2855989394907223263936484059900; q = ((q * x) >> 96) + 50020603652535783019961831881945; q = ((q * x) >> 96) - 533845033583426703283633433725380; q = ((q * x) >> 96) + 3604857256930695427073651918091429; q = ((q * x) >> 96) - 14423608567350463180887372962807573; q = ((q * x) >> 96) + 26449188498355588339934803723976023; assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial won't have zeros in the domain as all its roots are complex. // No scaling is necessary because p is already 2**96 too large. r := sdiv(p, q) } // r should be in the range (0.09, 0.25) * 2**96. // We now need to multiply r by: // * the scale factor s = ~6.031367120. // * the 2**k factor from the range reduction. // * the 1e18 / 2**96 factor for base conversion. // We do this all at once, with an intermediate result in 2**213 // basis, so the final right shift is always by a positive amount. r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)); } } function lnWad(int256 x) internal pure returns (int256 r) { unchecked { require(x > 0, "UNDEFINED"); // We want to convert x from 10**18 fixed point to 2**96 fixed point. // We do this by multiplying by 2**96 / 10**18. But since // ln(x * C) = ln(x) + ln(C), we can simply do nothing here // and add ln(2**96 / 10**18) at the end. // Reduce range of x to (1, 2) * 2**96 // ln(2^k * x) = k * ln(2) + ln(x) int256 k = int256(log2(uint256(x))) - 96; x <<= uint256(159 - k); x = int256(uint256(x) >> 159); // Evaluate using a (8, 8)-term rational approximation. // p is made monic, we will multiply by a scale factor later. int256 p = x + 3273285459638523848632254066296; p = ((p * x) >> 96) + 24828157081833163892658089445524; p = ((p * x) >> 96) + 43456485725739037958740375743393; p = ((p * x) >> 96) - 11111509109440967052023855526967; p = ((p * x) >> 96) - 45023709667254063763336534515857; p = ((p * x) >> 96) - 14706773417378608786704636184526; p = p * x - (795164235651350426258249787498 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. // q is monic by convention. int256 q = x + 5573035233440673466300451813936; q = ((q * x) >> 96) + 71694874799317883764090561454958; q = ((q * x) >> 96) + 283447036172924575727196451306956; q = ((q * x) >> 96) + 401686690394027663651624208769553; q = ((q * x) >> 96) + 204048457590392012362485061816622; q = ((q * x) >> 96) + 31853899698501571402653359427138; q = ((q * x) >> 96) + 909429971244387300277376558375; assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial is known not to have zeros in the domain. // No scaling required because p is already 2**96 too large. r := sdiv(p, q) } // r is in the range (0, 0.125) * 2**96 // Finalization, we need to: // * multiply by the scale factor s = 5.549… // * add ln(2**96 / 10**18) // * add k * ln(2) // * multiply by 10**18 / 2**96 = 5**18 >> 78 // mul s * 5e18 * 2**96, base is now 5**18 * 2**192 r *= 1677202110996718588342820967067443963516166; // add ln(2) * k * 5e18 * 2**192 r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k; // add ln(2**96 / 10**18) * 5e18 * 2**192 r += 600920179829731861736702779321621459595472258049074101567377883020018308; // base conversion: mul 2**18 / 2**192 r >>= 174; } } /*////////////////////////////////////////////////////////////// LOW LEVEL FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ function mulDivDown( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y)) if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) { revert(0, 0) } // Divide z by the denominator. z := div(z, denominator) } } function mulDivUp( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y)) if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) { revert(0, 0) } // First, divide z - 1 by the denominator and add 1. // We allow z - 1 to underflow if z is 0, because we multiply the // end result by 0 if z is zero, ensuring we return 0 if z is zero. z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1)) } } function rpow( uint256 x, uint256 n, uint256 scalar ) internal pure returns (uint256 z) { assembly { switch x case 0 { switch n case 0 { // 0 ** 0 = 1 z := scalar } default { // 0 ** n = 0 z := 0 } } default { switch mod(n, 2) case 0 { // If n is even, store scalar in z for now. z := scalar } default { // If n is odd, store x in z for now. z := x } // Shifting right by 1 is like dividing by 2. let half := shr(1, scalar) for { // Shift n right by 1 before looping to halve it. n := shr(1, n) } n { // Shift n right by 1 each iteration to halve it. n := shr(1, n) } { // Revert immediately if x ** 2 would overflow. // Equivalent to iszero(eq(div(xx, x), x)) here. if shr(128, x) { revert(0, 0) } // Store x squared. let xx := mul(x, x) // Round to the nearest number. let xxRound := add(xx, half) // Revert if xx + half overflowed. if lt(xxRound, xx) { revert(0, 0) } // Set x to scaled xxRound. x := div(xxRound, scalar) // If n is even: if mod(n, 2) { // Compute z * x. let zx := mul(z, x) // If z * x overflowed: if iszero(eq(div(zx, x), z)) { // Revert if x is non-zero. if iszero(iszero(x)) { revert(0, 0) } } // Round to the nearest number. let zxRound := add(zx, half) // Revert if zx + half overflowed. if lt(zxRound, zx) { revert(0, 0) } // Return properly scaled zxRound. z := div(zxRound, scalar) } } } } } /*////////////////////////////////////////////////////////////// GENERAL NUMBER UTILITIES //////////////////////////////////////////////////////////////*/ function sqrt(uint256 x) internal pure returns (uint256 z) { assembly { let y := x // We start y at x, which will help us make our initial estimate. z := 181 // The "correct" value is 1, but this saves a multiplication later. // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically. // We check y >= 2^(k + 8) but shift right by k bits // each branch to ensure that if x >= 256, then y >= 256. if iszero(lt(y, 0x10000000000000000000000000000000000)) { y := shr(128, y) z := shl(64, z) } if iszero(lt(y, 0x1000000000000000000)) { y := shr(64, y) z := shl(32, z) } if iszero(lt(y, 0x10000000000)) { y := shr(32, y) z := shl(16, z) } if iszero(lt(y, 0x1000000)) { y := shr(16, y) z := shl(8, z) } // Goal was to get z*z*y within a small factor of x. More iterations could // get y in a tighter range. Currently, we will have y in [256, 256*2^16). // We ensured y >= 256 so that the relative difference between y and y+1 is small. // That's not possible if x < 256 but we can just verify those cases exhaustively. // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256. // Correctness can be checked exhaustively for x < 256, so we assume y >= 256. // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps. // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256. // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18. // There is no overflow risk here since y < 2^136 after the first branch above. z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181. // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough. z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) // If x+1 is a perfect square, the Babylonian method cycles between // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor. // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case. // If you don't care whether the floor or ceil square root is returned, you can remove this statement. z := sub(z, lt(div(x, z), z)) } } function log2(uint256 x) internal pure returns (uint256 r) { require(x > 0, "UNDEFINED"); assembly { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) r := or(r, shl(2, lt(0xf, shr(r, x)))) r := or(r, shl(1, lt(0x3, shr(r, x)))) r := or(r, lt(0x1, shr(r, x))) } } }