ETH Price: $1,791.28 (-0.54%)

Transaction Decoder

Block:
22187312 at Apr-03-2025 08:51:47 AM +UTC
Transaction Fee:
0.001230046 ETH $2.20
Gas Used:
615,023 Gas / 2 Gwei

Emitted Events:

244 PerpToken.Transfer( from=[Sender] 0x4c3cc459bcc68442cef3707b41fe2d779c666666, to=[Receiver] L1ChugSplashProxy, value=14987010000000000000000 )
245 PerpToken.Approval( owner=[Sender] 0x4c3cc459bcc68442cef3707b41fe2d779c666666, spender=[Receiver] L1ChugSplashProxy, value=998999464440810000000000000000 )
246 L1ChugSplashProxy.0x718594027abd4eaed59f95162563e0cc6d0e8d5b86b1c7be8b1b0ac3343d0396( 0x718594027abd4eaed59f95162563e0cc6d0e8d5b86b1c7be8b1b0ac3343d0396, 0x000000000000000000000000bc396689893d065f41bc2c6ecbee5e0085233447, 0x0000000000000000000000009e1028f5f1d5ede59748ffcee5532509976840e0, 0x0000000000000000000000004c3cc459bcc68442cef3707b41fe2d779c666666, 0000000000000000000000004c3cc459bcc68442cef3707b41fe2d779c666666, 00000000000000000000000000000000000000000000032c728b6e6afb0d0000, 0000000000000000000000000000000000000000000000000000000000000060, 000000000000000000000000000000000000000000000000000000000000000b, 7375706572627269646765000000000000000000000000000000000000000000 )
247 L1ChugSplashProxy.0x7ff126db8024424bbfd9826e8ab82ff59136289ea440b04b39a0df1b03b9cabf( 0x7ff126db8024424bbfd9826e8ab82ff59136289ea440b04b39a0df1b03b9cabf, 0x000000000000000000000000bc396689893d065f41bc2c6ecbee5e0085233447, 0x0000000000000000000000009e1028f5f1d5ede59748ffcee5532509976840e0, 0x0000000000000000000000004c3cc459bcc68442cef3707b41fe2d779c666666, 0000000000000000000000004c3cc459bcc68442cef3707b41fe2d779c666666, 00000000000000000000000000000000000000000000032c728b6e6afb0d0000, 0000000000000000000000000000000000000000000000000000000000000060, 000000000000000000000000000000000000000000000000000000000000000b, 7375706572627269646765000000000000000000000000000000000000000000 )
248 Proxy.0xb3813568d9991fc951961fcb4c784893574240a28925604d09fc577c55bb7c32( 0xb3813568d9991fc951961fcb4c784893574240a28925604d09fc577c55bb7c32, 0x00000000000000000000000036bde71c97b33cc4729cf772ae268934f7ab70b2, 0x0000000000000000000000004200000000000000000000000000000000000007, 0x0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000020, 000000000000000000000000000000000000000000000000000000000000024d, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000, 000000000007832e00d764ad0b00010000000000000000000000000000000000, 00000000000000000000028fe100000000000000000000000099c9fc46f92e8a, 1c0dec1b1747d010903e884be100000000000000000000000042000000000000, 0000000000000000000000001000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000, 00000000000000000000030d4000000000000000000000000000000000000000, 000000000000000000000000c000000000000000000000000000000000000000, 000000000000000000000001040166a07a0000000000000000000000009e1028, f5f1d5ede59748ffcee5532509976840e0000000000000000000000000bc3966, 89893d065f41bc2c6ecbee5e00852334470000000000000000000000004c3cc4, 59bcc68442cef3707b41fe2d779c6666660000000000000000000000004c3cc4, 59bcc68442cef3707b41fe2d779c666666000000000000000000000000000000, 00000000000000032c728b6e6afb0d0000000000000000000000000000000000, 00000000000000000000000000000000c0000000000000000000000000000000, 000000000000000000000000000000000b737570657262726964676500000000, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000 )
249 Lib_ResolvedDelegateProxy.0xcb0f7ffd78f9aee47a248fae8db181db6eee833039123e026dcbff529522e52a( 0xcb0f7ffd78f9aee47a248fae8db181db6eee833039123e026dcbff529522e52a, 0x0000000000000000000000004200000000000000000000000000000000000010, 00000000000000000000000099c9fc46f92e8a1c0dec1b1747d010903e884be1, 0000000000000000000000000000000000000000000000000000000000000080, 0001000000000000000000000000000000000000000000000000000000028fe1, 0000000000000000000000000000000000000000000000000000000000030d40, 0000000000000000000000000000000000000000000000000000000000000104, 0166a07a0000000000000000000000009e1028f5f1d5ede59748ffcee5532509, 976840e0000000000000000000000000bc396689893d065f41bc2c6ecbee5e00, 852334470000000000000000000000004c3cc459bcc68442cef3707b41fe2d77, 9c6666660000000000000000000000004c3cc459bcc68442cef3707b41fe2d77, 9c66666600000000000000000000000000000000000000000000032c728b6e6a, fb0d000000000000000000000000000000000000000000000000000000000000, 000000c000000000000000000000000000000000000000000000000000000000, 0000000b73757065726272696467650000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000 )
250 Lib_ResolvedDelegateProxy.0x8ebb2ec2465bdb2a06a66fc37a0963af8a2a6a1479d81d56fdb8cbb98096d546( 0x8ebb2ec2465bdb2a06a66fc37a0963af8a2a6a1479d81d56fdb8cbb98096d546, 0x00000000000000000000000099c9fc46f92e8a1c0dec1b1747d010903e884be1, 0000000000000000000000000000000000000000000000000000000000000000 )

Account State Difference:

  Address   Before After State Difference Code
0x25ace71c...4F7ab5fA1
(Optimism: Proxy OVM L1 Cross Domain Messenger)
0x4c3CC459...79C666666
0.161211556274987525 Eth
Nonce: 296
0.159981510274987525 Eth
Nonce: 297
0.001230046
(beaverbuild)
11.476788920313108264 Eth11.477545785360321814 Eth0.00075686504721355
0x99C9fc46...03E884bE1
(Optimism: Gateway)
0xbC396689...085233447
0xbEb5Fc57...e41f106Ed
(Optimism: Portal)

Execution Trace

L1ChugSplashProxy.838b2520( )
  • ProxyAdmin.STATICCALL( )
  • L1StandardBridge.depositERC20To( _l1Token=0xbC396689893D065F41bc2C6EcbeE5e0085233447, _l2Token=0x9e1028F5F1D5eDE59748FFceE5532509976840E0, _to=0x4c3CC459BCc68442cEf3707b41fE2d779C666666, _amount=14987010000000000000000, _minGasLimit=200000, _extraData=0x7375706572627269646765 )
    • PerpToken.01ffc9a7( )
    • PerpToken.01ffc9a7( )
    • PerpToken.transferFrom( sender=0x4c3CC459BCc68442cEf3707b41fE2d779C666666, recipient=0x99C9fc46f92E8a1c0deC1b1747d010903E884bE1, amount=14987010000000000000000 ) => ( True )
    • Lib_ResolvedDelegateProxy.3dbb202b( )
      • Lib_AddressManager.getAddress( _name=OVM_L1CrossDomainMessenger ) => ( 0x3eA6084748ED1b2A9B5D4426181F1ad8C93F6231 )
      • L1CrossDomainMessenger.sendMessage( _target=0x4200000000000000000000000000000000000010, _message=0x0166A07A0000000000000000000000009E1028F5F1D5EDE59748FFCEE5532509976840E0000000000000000000000000BC396689893D065F41BC2C6ECBEE5E00852334470000000000000000000000004C3CC459BCC68442CEF3707B41FE2D779C6666660000000000000000000000004C3CC459BCC68442CEF3707B41FE2D779C66666600000000000000000000000000000000000000000000032C728B6E6AFB0D000000000000000000000000000000000000000000000000000000000000000000C0000000000000000000000000000000000000000000000000000000000000000B7375706572627269646765000000000000000000000000000000000000000000, _minGasLimit=200000 )
        • Proxy.e9e05c42( )
          • OptimismPortal2.depositTransaction( _to=0x4200000000000000000000000000000000000007, _value=0, _gasLimit=492334, _isCreation=False, _data=0xD764AD0B0001000000000000000000000000000000000000000000000000000000028FE100000000000000000000000099C9FC46F92E8A1C0DEC1B1747D010903E884BE1000000000000000000000000420000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000030D4000000000000000000000000000000000000000000000000000000000000000C000000000000000000000000000000000000000000000000000000000000001040166A07A0000000000000000000000009E1028F5F1D5EDE59748FFCEE5532509976840E0000000000000000000000000BC396689893D065F41BC2C6ECBEE5E00852334470000000000000000000000004C3CC459BCC68442CEF3707B41FE2D779C6666660000000000000000000000004C3CC459BCC68442CEF3707B41FE2D779C66666600000000000000000000000000000000000000000000032C728B6E6AFB0D000000000000000000000000000000000000000000000000000000000000000000C0000000000000000000000000000000000000000000000000000000000000000B737570657262726964676500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 )
            • Proxy.STATICCALL( )
              File 1 of 10: L1ChugSplashProxy
              // SPDX-License-Identifier: MIT
              pragma solidity >0.5.0 <0.8.0;
              import { iL1ChugSplashDeployer } from "./interfaces/iL1ChugSplashDeployer.sol";
              /**
               * @title L1ChugSplashProxy
               * @dev Basic ChugSplash proxy contract for L1. Very close to being a normal proxy but has added
               * functions `setCode` and `setStorage` for changing the code or storage of the contract. Nifty!
               *
               * Note for future developers: do NOT make anything in this contract 'public' unless you know what
               * you're doing. Anything public can potentially have a function signature that conflicts with a
               * signature attached to the implementation contract. Public functions SHOULD always have the
               * 'proxyCallIfNotOwner' modifier unless there's some *really* good reason not to have that
               * modifier. And there almost certainly is not a good reason to not have that modifier. Beware!
               */
              contract L1ChugSplashProxy {
                  /*************
                   * Constants *
                   *************/
                  // "Magic" prefix. When prepended to some arbitrary bytecode and used to create a contract, the
                  // appended bytecode will be deployed as given.
                  bytes13 constant internal DEPLOY_CODE_PREFIX = 0x600D380380600D6000396000f3;
                  // bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                  bytes32 constant internal IMPLEMENTATION_KEY = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                  // bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
                  bytes32 constant internal OWNER_KEY = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                  /***************
                   * Constructor *
                   ***************/
                  
                  /**
                   * @param _owner Address of the initial contract owner.
                   */
                  constructor(
                      address _owner
                  ) {
                      _setOwner(_owner);
                  }
                  /**********************
                   * Function Modifiers *
                   **********************/
                  /**
                   * Blocks a function from being called when the parent signals that the system should be paused
                   * via an isUpgrading function.
                   */
                  modifier onlyWhenNotPaused() {
                      address owner = _getOwner();
                      // We do a low-level call because there's no guarantee that the owner actually *is* an
                      // L1ChugSplashDeployer contract and Solidity will throw errors if we do a normal call and
                      // it turns out that it isn't the right type of contract.
                      (bool success, bytes memory returndata) = owner.staticcall(
                          abi.encodeWithSelector(
                              iL1ChugSplashDeployer.isUpgrading.selector
                          )
                      );
                      // If the call was unsuccessful then we assume that there's no "isUpgrading" method and we
                      // can just continue as normal. We also expect that the return value is exactly 32 bytes
                      // long. If this isn't the case then we can safely ignore the result.
                      if (success && returndata.length == 32) {
                          // Although the expected value is a *boolean*, it's safer to decode as a uint256 in the
                          // case that the isUpgrading function returned something other than 0 or 1. But we only
                          // really care about the case where this value is 0 (= false).
                          uint256 ret = abi.decode(returndata, (uint256));
                          require(
                              ret == 0,
                              "L1ChugSplashProxy: system is currently being upgraded"
                          );
                      }
                      _;
                  }
                  /**
                   * Makes a proxy call instead of triggering the given function when the caller is either the
                   * owner or the zero address. Caller can only ever be the zero address if this function is
                   * being called off-chain via eth_call, which is totally fine and can be convenient for
                   * client-side tooling. Avoids situations where the proxy and implementation share a sighash
                   * and the proxy function ends up being called instead of the implementation one.
                   *
                   * Note: msg.sender == address(0) can ONLY be triggered off-chain via eth_call. If there's a
                   * way for someone to send a transaction with msg.sender == address(0) in any real context then
                   * we have much bigger problems. Primary reason to include this additional allowed sender is
                   * because the owner address can be changed dynamically and we do not want clients to have to
                   * keep track of the current owner in order to make an eth_call that doesn't trigger the
                   * proxied contract.
                   */
                  modifier proxyCallIfNotOwner() {
                      if (msg.sender == _getOwner() || msg.sender == address(0)) {
                          _;
                      } else {
                          // This WILL halt the call frame on completion.
                          _doProxyCall();
                      }
                  }
                  /*********************
                   * Fallback Function *
                   *********************/
                  fallback()
                      external
                      payable
                  {
                      // Proxy call by default.
                      _doProxyCall();
                  }
                  /********************
                   * Public Functions *
                   ********************/
                  /**
                   * Sets the code that should be running behind this proxy. Note that this scheme is a bit
                   * different from the standard proxy scheme where one would typically deploy the code
                   * separately and then set the implementation address. We're doing it this way because it gives
                   * us a lot more freedom on the client side. Can only be triggered by the contract owner.
                   * @param _code New contract code to run inside this contract.
                   */
                  function setCode(
                      bytes memory _code
                  )
                      proxyCallIfNotOwner
                      public
                  {
                      // Get the code hash of the current implementation.
                      address implementation = _getImplementation();
                      // If the code hash matches the new implementation then we return early.
                      if (keccak256(_code) == _getAccountCodeHash(implementation)) {
                          return;
                      }
                      // Create the deploycode by appending the magic prefix.
                      bytes memory deploycode = abi.encodePacked(
                          DEPLOY_CODE_PREFIX,
                          _code
                      );
                      // Deploy the code and set the new implementation address.
                      address newImplementation;
                      assembly {
                          newImplementation := create(0x0, add(deploycode, 0x20), mload(deploycode))
                      }
                      // Check that the code was actually deployed correctly. I'm not sure if you can ever
                      // actually fail this check. Should only happen if the contract creation from above runs
                      // out of gas but this parent execution thread does NOT run out of gas. Seems like we
                      // should be doing this check anyway though.
                      require(
                          _getAccountCodeHash(newImplementation) == keccak256(_code),
                          "L1ChugSplashProxy: code was not correctly deployed."
                      );
                      _setImplementation(newImplementation);
                  }
                  /**
                   * Modifies some storage slot within the proxy contract. Gives us a lot of power to perform
                   * upgrades in a more transparent way. Only callable by the owner.
                   * @param _key Storage key to modify.
                   * @param _value New value for the storage key.
                   */
                  function setStorage(
                      bytes32 _key,
                      bytes32 _value
                  )
                      proxyCallIfNotOwner
                      public
                  {
                      assembly {
                          sstore(_key, _value)
                      }
                  }
                  /**
                   * Changes the owner of the proxy contract. Only callable by the owner.
                   * @param _owner New owner of the proxy contract.
                   */
                  function setOwner(
                      address _owner
                  )
                      proxyCallIfNotOwner
                      public
                  {
                      _setOwner(_owner);
                  }
                  /**
                   * Queries the owner of the proxy contract. Can only be called by the owner OR by making an
                   * eth_call and setting the "from" address to address(0).
                   * @return Owner address.
                   */
                  function getOwner()
                      proxyCallIfNotOwner
                      public
                      returns (
                          address
                      )
                  {
                      return _getOwner();
                  }
                  /**
                   * Queries the implementation address. Can only be called by the owner OR by making an
                   * eth_call and setting the "from" address to address(0).
                   * @return Implementation address.
                   */
                  function getImplementation()
                      proxyCallIfNotOwner
                      public
                      returns (
                          address
                      )
                  {
                      return _getImplementation();
                  }
                  /**********************
                   * Internal Functions *
                   **********************/
                  /**
                   * Sets the implementation address.
                   * @param _implementation New implementation address.
                   */
                  function _setImplementation(
                      address _implementation
                  )
                      internal
                  {
                      assembly {
                          sstore(IMPLEMENTATION_KEY, _implementation)
                      }
                  }
                  /**
                   * Queries the implementation address.
                   * @return Implementation address.
                   */
                  function _getImplementation()
                      internal
                      view
                      returns (
                          address
                      )
                  {
                      address implementation;
                      assembly {
                          implementation := sload(IMPLEMENTATION_KEY)
                      }
                      return implementation;
                  }
                  /**
                   * Changes the owner of the proxy contract.
                   * @param _owner New owner of the proxy contract.
                   */
                  function _setOwner(
                      address _owner
                  )
                      internal
                  {
                      assembly {
                          sstore(OWNER_KEY, _owner)
                      }
                  }
                  /**
                   * Queries the owner of the proxy contract.
                   * @return Owner address.
                   */
                  function _getOwner()
                      internal
                      view 
                      returns (
                          address
                      )
                  {
                      address owner;
                      assembly {
                          owner := sload(OWNER_KEY)
                      }
                      return owner;
                  }
                  /**
                   * Gets the code hash for a given account.
                   * @param _account Address of the account to get a code hash for.
                   * @return Code hash for the account.
                   */
                  function _getAccountCodeHash(
                      address _account
                  )
                      internal
                      view
                      returns (
                          bytes32
                      )
                  {
                      bytes32 codeHash;
                      assembly {
                          codeHash := extcodehash(_account)
                      }
                      return codeHash;
                  }
                  /**
                   * Performs the proxy call via a delegatecall.
                   */
                  function _doProxyCall()
                      onlyWhenNotPaused
                      internal
                  {
                      address implementation = _getImplementation();
                      require(
                          implementation != address(0),
                          "L1ChugSplashProxy: implementation is not set yet"
                      );
                      assembly {
                          // Copy calldata into memory at 0x0....calldatasize.
                          calldatacopy(0x0, 0x0, calldatasize())
                          // Perform the delegatecall, make sure to pass all available gas.
                          let success := delegatecall(gas(), implementation, 0x0, calldatasize(), 0x0, 0x0)
                          // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                          // overwrite the calldata that we just copied into memory but that doesn't really
                          // matter because we'll be returning in a second anyway.
                          returndatacopy(0x0, 0x0, returndatasize())
                          
                          // Success == 0 means a revert. We'll revert too and pass the data up.
                          if iszero(success) {
                              revert(0x0, returndatasize())
                          }
                          // Otherwise we'll just return and pass the data up.
                          return(0x0, returndatasize())
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >0.5.0 <0.8.0;
              /**
               * @title iL1ChugSplashDeployer
               */
              interface iL1ChugSplashDeployer {
                  function isUpgrading()
                      external
                      view
                      returns (
                          bool
                      );
              }
              

              File 2 of 10: PerpToken
              // SPDX-License-Identifier: BSD-3-Clause
              
              pragma solidity 0.6.7;
              
              
              // 
              /*
               * @dev Provides information about the current execution context, including the
               * sender of the transaction and its data. While these are generally available
               * via msg.sender and msg.data, they should not be accessed in such a direct
               * manner, since when dealing with GSN meta-transactions the account sending and
               * paying for execution may not be the actual sender (as far as an application
               * is concerned).
               *
               * This contract is only required for intermediate, library-like contracts.
               */
              abstract contract Context {
                  function _msgSender() internal view virtual returns (address payable) {
                      return msg.sender;
                  }
              
                  function _msgData() internal view virtual returns (bytes memory) {
                      this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
                      return msg.data;
                  }
              }
              
              // 
              /**
               * @dev Interface of the ERC20 standard as defined in the EIP.
               */
              interface IERC20 {
                  /**
                   * @dev Returns the amount of tokens in existence.
                   */
                  function totalSupply() external view returns (uint256);
              
                  /**
                   * @dev Returns the amount of tokens owned by `account`.
                   */
                  function balanceOf(address account) external view returns (uint256);
              
                  /**
                   * @dev Moves `amount` tokens from the caller's account to `recipient`.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transfer(address recipient, uint256 amount) external returns (bool);
              
                  /**
                   * @dev Returns the remaining number of tokens that `spender` will be
                   * allowed to spend on behalf of `owner` through {transferFrom}. This is
                   * zero by default.
                   *
                   * This value changes when {approve} or {transferFrom} are called.
                   */
                  function allowance(address owner, address spender) external view returns (uint256);
              
                  /**
                   * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * IMPORTANT: Beware that changing an allowance with this method brings the risk
                   * that someone may use both the old and the new allowance by unfortunate
                   * transaction ordering. One possible solution to mitigate this race
                   * condition is to first reduce the spender's allowance to 0 and set the
                   * desired value afterwards:
                   * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                   *
                   * Emits an {Approval} event.
                   */
                  function approve(address spender, uint256 amount) external returns (bool);
              
                  /**
                   * @dev Moves `amount` tokens from `sender` to `recipient` using the
                   * allowance mechanism. `amount` is then deducted from the caller's
                   * allowance.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
              
                  /**
                   * @dev Emitted when `value` tokens are moved from one account (`from`) to
                   * another (`to`).
                   *
                   * Note that `value` may be zero.
                   */
                  event Transfer(address indexed from, address indexed to, uint256 value);
              
                  /**
                   * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                   * a call to {approve}. `value` is the new allowance.
                   */
                  event Approval(address indexed owner, address indexed spender, uint256 value);
              }
              
              // 
              /**
               * @dev Wrappers over Solidity's arithmetic operations with added overflow
               * checks.
               *
               * Arithmetic operations in Solidity wrap on overflow. This can easily result
               * in bugs, because programmers usually assume that an overflow raises an
               * error, which is the standard behavior in high level programming languages.
               * `SafeMath` restores this intuition by reverting the transaction when an
               * operation overflows.
               *
               * Using this library instead of the unchecked operations eliminates an entire
               * class of bugs, so it's recommended to use it always.
               */
              library SafeMath {
                  /**
                   * @dev Returns the addition of two unsigned integers, reverting on
                   * overflow.
                   *
                   * Counterpart to Solidity's `+` operator.
                   *
                   * Requirements:
                   *
                   * - Addition cannot overflow.
                   */
                  function add(uint256 a, uint256 b) internal pure returns (uint256) {
                      uint256 c = a + b;
                      require(c >= a, "SafeMath: addition overflow");
              
                      return c;
                  }
              
                  /**
                   * @dev Returns the subtraction of two unsigned integers, reverting on
                   * overflow (when the result is negative).
                   *
                   * Counterpart to Solidity's `-` operator.
                   *
                   * Requirements:
                   *
                   * - Subtraction cannot overflow.
                   */
                  function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                      return sub(a, b, "SafeMath: subtraction overflow");
                  }
              
                  /**
                   * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
                   * overflow (when the result is negative).
                   *
                   * Counterpart to Solidity's `-` operator.
                   *
                   * Requirements:
                   *
                   * - Subtraction cannot overflow.
                   */
                  function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                      require(b <= a, errorMessage);
                      uint256 c = a - b;
              
                      return c;
                  }
              
                  /**
                   * @dev Returns the multiplication of two unsigned integers, reverting on
                   * overflow.
                   *
                   * Counterpart to Solidity's `*` operator.
                   *
                   * Requirements:
                   *
                   * - Multiplication cannot overflow.
                   */
                  function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                      // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                      // benefit is lost if 'b' is also tested.
                      // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                      if (a == 0) {
                          return 0;
                      }
              
                      uint256 c = a * b;
                      require(c / a == b, "SafeMath: multiplication overflow");
              
                      return c;
                  }
              
                  /**
                   * @dev Returns the integer division of two unsigned integers. Reverts on
                   * division by zero. The result is rounded towards zero.
                   *
                   * Counterpart to Solidity's `/` operator. Note: this function uses a
                   * `revert` opcode (which leaves remaining gas untouched) while Solidity
                   * uses an invalid opcode to revert (consuming all remaining gas).
                   *
                   * Requirements:
                   *
                   * - The divisor cannot be zero.
                   */
                  function div(uint256 a, uint256 b) internal pure returns (uint256) {
                      return div(a, b, "SafeMath: division by zero");
                  }
              
                  /**
                   * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
                   * division by zero. The result is rounded towards zero.
                   *
                   * Counterpart to Solidity's `/` operator. Note: this function uses a
                   * `revert` opcode (which leaves remaining gas untouched) while Solidity
                   * uses an invalid opcode to revert (consuming all remaining gas).
                   *
                   * Requirements:
                   *
                   * - The divisor cannot be zero.
                   */
                  function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                      require(b > 0, errorMessage);
                      uint256 c = a / b;
                      // assert(a == b * c + a % b); // There is no case in which this doesn't hold
              
                      return c;
                  }
              
                  /**
                   * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
                   * Reverts when dividing by zero.
                   *
                   * Counterpart to Solidity's `%` operator. This function uses a `revert`
                   * opcode (which leaves remaining gas untouched) while Solidity uses an
                   * invalid opcode to revert (consuming all remaining gas).
                   *
                   * Requirements:
                   *
                   * - The divisor cannot be zero.
                   */
                  function mod(uint256 a, uint256 b) internal pure returns (uint256) {
                      return mod(a, b, "SafeMath: modulo by zero");
                  }
              
                  /**
                   * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
                   * Reverts with custom message when dividing by zero.
                   *
                   * Counterpart to Solidity's `%` operator. This function uses a `revert`
                   * opcode (which leaves remaining gas untouched) while Solidity uses an
                   * invalid opcode to revert (consuming all remaining gas).
                   *
                   * Requirements:
                   *
                   * - The divisor cannot be zero.
                   */
                  function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                      require(b != 0, errorMessage);
                      return a % b;
                  }
              }
              
              // 
              /**
               * @dev Collection of functions related to the address type
               */
              library Address {
                  /**
                   * @dev Returns true if `account` is a contract.
                   *
                   * [IMPORTANT]
                   * ====
                   * It is unsafe to assume that an address for which this function returns
                   * false is an externally-owned account (EOA) and not a contract.
                   *
                   * Among others, `isContract` will return false for the following
                   * types of addresses:
                   *
                   *  - an externally-owned account
                   *  - a contract in construction
                   *  - an address where a contract will be created
                   *  - an address where a contract lived, but was destroyed
                   * ====
                   */
                  function isContract(address account) internal view returns (bool) {
                      // According to EIP-1052, 0x0 is the value returned for not-yet created accounts
                      // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
                      // for accounts without code, i.e. `keccak256('')`
                      bytes32 codehash;
                      bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
                      // solhint-disable-next-line no-inline-assembly
                      assembly { codehash := extcodehash(account) }
                      return (codehash != accountHash && codehash != 0x0);
                  }
              
                  /**
                   * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                   * `recipient`, forwarding all available gas and reverting on errors.
                   *
                   * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                   * of certain opcodes, possibly making contracts go over the 2300 gas limit
                   * imposed by `transfer`, making them unable to receive funds via
                   * `transfer`. {sendValue} removes this limitation.
                   *
                   * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                   *
                   * IMPORTANT: because control is transferred to `recipient`, care must be
                   * taken to not create reentrancy vulnerabilities. Consider using
                   * {ReentrancyGuard} or the
                   * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                   */
                  function sendValue(address payable recipient, uint256 amount) internal {
                      require(address(this).balance >= amount, "Address: insufficient balance");
              
                      // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
                      (bool success, ) = recipient.call{ value: amount }("");
                      require(success, "Address: unable to send value, recipient may have reverted");
                  }
              
                  /**
                   * @dev Performs a Solidity function call using a low level `call`. A
                   * plain`call` is an unsafe replacement for a function call: use this
                   * function instead.
                   *
                   * If `target` reverts with a revert reason, it is bubbled up by this
                   * function (like regular Solidity function calls).
                   *
                   * Returns the raw returned data. To convert to the expected return value,
                   * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                   *
                   * Requirements:
                   *
                   * - `target` must be a contract.
                   * - calling `target` with `data` must not revert.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionCall(target, data, "Address: low-level call failed");
                  }
              
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                   * `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                      return _functionCallWithValue(target, data, 0, errorMessage);
                  }
              
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but also transferring `value` wei to `target`.
                   *
                   * Requirements:
                   *
                   * - the calling contract must have an ETH balance of at least `value`.
                   * - the called Solidity function must be `payable`.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                  }
              
                  /**
                   * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                   * with `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
                      require(address(this).balance >= value, "Address: insufficient balance for call");
                      return _functionCallWithValue(target, data, value, errorMessage);
                  }
              
                  function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
                      require(isContract(target), "Address: call to non-contract");
              
                      // solhint-disable-next-line avoid-low-level-calls
                      (bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
                      if (success) {
                          return returndata;
                      } else {
                          // Look for revert reason and bubble it up if present
                          if (returndata.length > 0) {
                              // The easiest way to bubble the revert reason is using memory via assembly
              
                              // solhint-disable-next-line no-inline-assembly
                              assembly {
                                  let returndata_size := mload(returndata)
                                  revert(add(32, returndata), returndata_size)
                              }
                          } else {
                              revert(errorMessage);
                          }
                      }
                  }
              }
              
              // 
              /**
               * @dev Implementation of the {IERC20} interface.
               *
               * This implementation is agnostic to the way tokens are created. This means
               * that a supply mechanism has to be added in a derived contract using {_mint}.
               * For a generic mechanism see {ERC20PresetMinterPauser}.
               *
               * TIP: For a detailed writeup see our guide
               * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
               * to implement supply mechanisms].
               *
               * We have followed general OpenZeppelin guidelines: functions revert instead
               * of returning `false` on failure. This behavior is nonetheless conventional
               * and does not conflict with the expectations of ERC20 applications.
               *
               * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
               * This allows applications to reconstruct the allowance for all accounts just
               * by listening to said events. Other implementations of the EIP may not emit
               * these events, as it isn't required by the specification.
               *
               * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
               * functions have been added to mitigate the well-known issues around setting
               * allowances. See {IERC20-approve}.
               */
              contract ERC20 is Context, IERC20 {
                  using SafeMath for uint256;
                  using Address for address;
              
                  mapping (address => uint256) private _balances;
              
                  mapping (address => mapping (address => uint256)) private _allowances;
              
                  uint256 private _totalSupply;
              
                  string private _name;
                  string private _symbol;
                  uint8 private _decimals;
              
                  /**
                   * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
                   * a default value of 18.
                   *
                   * To select a different value for {decimals}, use {_setupDecimals}.
                   *
                   * All three of these values are immutable: they can only be set once during
                   * construction.
                   */
                  constructor (string memory name, string memory symbol) public {
                      _name = name;
                      _symbol = symbol;
                      _decimals = 18;
                  }
              
                  /**
                   * @dev Returns the name of the token.
                   */
                  function name() public view returns (string memory) {
                      return _name;
                  }
              
                  /**
                   * @dev Returns the symbol of the token, usually a shorter version of the
                   * name.
                   */
                  function symbol() public view returns (string memory) {
                      return _symbol;
                  }
              
                  /**
                   * @dev Returns the number of decimals used to get its user representation.
                   * For example, if `decimals` equals `2`, a balance of `505` tokens should
                   * be displayed to a user as `5,05` (`505 / 10 ** 2`).
                   *
                   * Tokens usually opt for a value of 18, imitating the relationship between
                   * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
                   * called.
                   *
                   * NOTE: This information is only used for _display_ purposes: it in
                   * no way affects any of the arithmetic of the contract, including
                   * {IERC20-balanceOf} and {IERC20-transfer}.
                   */
                  function decimals() public view returns (uint8) {
                      return _decimals;
                  }
              
                  /**
                   * @dev See {IERC20-totalSupply}.
                   */
                  function totalSupply() public view override returns (uint256) {
                      return _totalSupply;
                  }
              
                  /**
                   * @dev See {IERC20-balanceOf}.
                   */
                  function balanceOf(address account) public view override returns (uint256) {
                      return _balances[account];
                  }
              
                  /**
                   * @dev See {IERC20-transfer}.
                   *
                   * Requirements:
                   *
                   * - `recipient` cannot be the zero address.
                   * - the caller must have a balance of at least `amount`.
                   */
                  function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
                      _transfer(_msgSender(), recipient, amount);
                      return true;
                  }
              
                  /**
                   * @dev See {IERC20-allowance}.
                   */
                  function allowance(address owner, address spender) public view virtual override returns (uint256) {
                      return _allowances[owner][spender];
                  }
              
                  /**
                   * @dev See {IERC20-approve}.
                   *
                   * Requirements:
                   *
                   * - `spender` cannot be the zero address.
                   */
                  function approve(address spender, uint256 amount) public virtual override returns (bool) {
                      _approve(_msgSender(), spender, amount);
                      return true;
                  }
              
                  /**
                   * @dev See {IERC20-transferFrom}.
                   *
                   * Emits an {Approval} event indicating the updated allowance. This is not
                   * required by the EIP. See the note at the beginning of {ERC20};
                   *
                   * Requirements:
                   * - `sender` and `recipient` cannot be the zero address.
                   * - `sender` must have a balance of at least `amount`.
                   * - the caller must have allowance for ``sender``'s tokens of at least
                   * `amount`.
                   */
                  function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
                      _transfer(sender, recipient, amount);
                      _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
                      return true;
                  }
              
                  /**
                   * @dev Atomically increases the allowance granted to `spender` by the caller.
                   *
                   * This is an alternative to {approve} that can be used as a mitigation for
                   * problems described in {IERC20-approve}.
                   *
                   * Emits an {Approval} event indicating the updated allowance.
                   *
                   * Requirements:
                   *
                   * - `spender` cannot be the zero address.
                   */
                  function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
                      _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
                      return true;
                  }
              
                  /**
                   * @dev Atomically decreases the allowance granted to `spender` by the caller.
                   *
                   * This is an alternative to {approve} that can be used as a mitigation for
                   * problems described in {IERC20-approve}.
                   *
                   * Emits an {Approval} event indicating the updated allowance.
                   *
                   * Requirements:
                   *
                   * - `spender` cannot be the zero address.
                   * - `spender` must have allowance for the caller of at least
                   * `subtractedValue`.
                   */
                  function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
                      _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
                      return true;
                  }
              
                  /**
                   * @dev Moves tokens `amount` from `sender` to `recipient`.
                   *
                   * This is internal function is equivalent to {transfer}, and can be used to
                   * e.g. implement automatic token fees, slashing mechanisms, etc.
                   *
                   * Emits a {Transfer} event.
                   *
                   * Requirements:
                   *
                   * - `sender` cannot be the zero address.
                   * - `recipient` cannot be the zero address.
                   * - `sender` must have a balance of at least `amount`.
                   */
                  function _transfer(address sender, address recipient, uint256 amount) internal virtual {
                      require(sender != address(0), "ERC20: transfer from the zero address");
                      require(recipient != address(0), "ERC20: transfer to the zero address");
              
                      _beforeTokenTransfer(sender, recipient, amount);
              
                      _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
                      _balances[recipient] = _balances[recipient].add(amount);
                      emit Transfer(sender, recipient, amount);
                  }
              
                  /** @dev Creates `amount` tokens and assigns them to `account`, increasing
                   * the total supply.
                   *
                   * Emits a {Transfer} event with `from` set to the zero address.
                   *
                   * Requirements
                   *
                   * - `to` cannot be the zero address.
                   */
                  function _mint(address account, uint256 amount) internal virtual {
                      require(account != address(0), "ERC20: mint to the zero address");
              
                      _beforeTokenTransfer(address(0), account, amount);
              
                      _totalSupply = _totalSupply.add(amount);
                      _balances[account] = _balances[account].add(amount);
                      emit Transfer(address(0), account, amount);
                  }
              
                  /**
                   * @dev Destroys `amount` tokens from `account`, reducing the
                   * total supply.
                   *
                   * Emits a {Transfer} event with `to` set to the zero address.
                   *
                   * Requirements
                   *
                   * - `account` cannot be the zero address.
                   * - `account` must have at least `amount` tokens.
                   */
                  function _burn(address account, uint256 amount) internal virtual {
                      require(account != address(0), "ERC20: burn from the zero address");
              
                      _beforeTokenTransfer(account, address(0), amount);
              
                      _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
                      _totalSupply = _totalSupply.sub(amount);
                      emit Transfer(account, address(0), amount);
                  }
              
                  /**
                   * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
                   *
                   * This is internal function is equivalent to `approve`, and can be used to
                   * e.g. set automatic allowances for certain subsystems, etc.
                   *
                   * Emits an {Approval} event.
                   *
                   * Requirements:
                   *
                   * - `owner` cannot be the zero address.
                   * - `spender` cannot be the zero address.
                   */
                  function _approve(address owner, address spender, uint256 amount) internal virtual {
                      require(owner != address(0), "ERC20: approve from the zero address");
                      require(spender != address(0), "ERC20: approve to the zero address");
              
                      _allowances[owner][spender] = amount;
                      emit Approval(owner, spender, amount);
                  }
              
                  /**
                   * @dev Sets {decimals} to a value other than the default one of 18.
                   *
                   * WARNING: This function should only be called from the constructor. Most
                   * applications that interact with token contracts will not expect
                   * {decimals} to ever change, and may work incorrectly if it does.
                   */
                  function _setupDecimals(uint8 decimals_) internal {
                      _decimals = decimals_;
                  }
              
                  /**
                   * @dev Hook that is called before any transfer of tokens. This includes
                   * minting and burning.
                   *
                   * Calling conditions:
                   *
                   * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
                   * will be to transferred to `to`.
                   * - when `from` is zero, `amount` tokens will be minted for `to`.
                   * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
                   * - `from` and `to` are never both zero.
                   *
                   * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
                   */
                  function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
              }
              
              // copy from openzeppelin Ownable, only modify how the owner transfer
              /**
               * @dev Contract module which provides a basic access control mechanism, where
               * there is an account (an owner) that can be granted exclusive access to
               * specific functions.
               *
               * By default, the owner account will be the one that deploys the contract. This
               * can later be changed with {transferOwnership}.
               *
               * This module is used through inheritance. It will make available the modifier
               * `onlyOwner`, which can be applied to your functions to restrict their use to
               * the owner.
               */
              contract PerpFiOwnable is Context {
                  address private _owner;
                  address private _candidate;
              
                  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
              
                  /**
                   * @dev Initializes the contract setting the deployer as the initial owner.
                   */
                  constructor() internal {
                      address msgSender = _msgSender();
                      _owner = msgSender;
                      emit OwnershipTransferred(address(0), msgSender);
                  }
              
                  /**
                   * @dev Returns the address of the current owner.
                   */
                  function owner() public view returns (address) {
                      return _owner;
                  }
              
                  function candidate() public view returns (address) {
                      return _candidate;
                  }
              
                  /**
                   * @dev Throws if called by any account other than the owner.
                   */
                  modifier onlyOwner() {
                      require(_owner == _msgSender(), "PerpFiOwnable: caller is not the owner");
                      _;
                  }
              
                  /**
                   * @dev Leaves the contract without owner. It will not be possible to call
                   * `onlyOwner` functions anymore. Can only be called by the current owner.
                   *
                   * NOTE: Renouncing ownership will leave the contract without an owner,
                   * thereby removing any functionality that is only available to the owner.
                   */
                  function renounceOwnership() public virtual onlyOwner {
                      emit OwnershipTransferred(_owner, address(0));
                      _owner = address(0);
                  }
              
                  /**
                   * @dev Set ownership of the contract to a new account (`newOwner`).
                   * Can only be called by the current owner.
                   */
                  function setOwner(address newOwner) public onlyOwner {
                      require(newOwner != address(0), "PerpFiOwnable: zero address");
                      require(newOwner != _owner, "PerpFiOwnable: same as original");
                      require(newOwner != _candidate, "PerpFiOwnable: same as candidate");
                      _candidate = newOwner;
                  }
              
                  /**
                   * @dev Transfers ownership of the contract to a new account (`_candidate`).
                   * Can only be called by the new owner.
                   */
                  function updateOwner() public {
                      require(_candidate != address(0), "PerpFiOwnable: candidate is zero address");
                      require(_candidate == _msgSender(), "PerpFiOwnable: not the new owner");
              
                      emit OwnershipTransferred(_owner, _candidate);
                      _owner = _candidate;
                      _candidate = address(0);
                  }
              }
              
              contract PerpToken is ERC20, PerpFiOwnable {
                  mapping(address => bool) public minters;
              
                  constructor(uint256 _initialSupply) public ERC20("Perpetual", "PERP") {
                      _mint(msg.sender, _initialSupply);
                  }
              
                  function mint(address account, uint256 amount) external {
                      require(minters[msg.sender], "!minter");
                      _mint(account, amount);
                  }
              
                  function addMinter(address _minter) external onlyOwner {
                      minters[_minter] = true;
                  }
              
                  function removeMinter(address _minter) external onlyOwner {
                      minters[_minter] = false;
                  }
              }

              File 3 of 10: Proxy
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              /**
               * @title Proxy
               * @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
               *         if the caller is address(0), meaning that the call originated from an off-chain
               *         simulation.
               */
              contract Proxy {
                  /**
                   * @notice The storage slot that holds the address of the implementation.
                   *         bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                   */
                  bytes32 internal constant IMPLEMENTATION_KEY =
                      0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                  /**
                   * @notice The storage slot that holds the address of the owner.
                   *         bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
                   */
                  bytes32 internal constant OWNER_KEY =
                      0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                  /**
                   * @notice An event that is emitted each time the implementation is changed. This event is part
                   *         of the EIP-1967 specification.
                   *
                   * @param implementation The address of the implementation contract
                   */
                  event Upgraded(address indexed implementation);
                  /**
                   * @notice An event that is emitted each time the owner is upgraded. This event is part of the
                   *         EIP-1967 specification.
                   *
                   * @param previousAdmin The previous owner of the contract
                   * @param newAdmin      The new owner of the contract
                   */
                  event AdminChanged(address previousAdmin, address newAdmin);
                  /**
                   * @notice A modifier that reverts if not called by the owner or by address(0) to allow
                   *         eth_call to interact with this proxy without needing to use low-level storage
                   *         inspection. We assume that nobody is able to trigger calls from address(0) during
                   *         normal EVM execution.
                   */
                  modifier proxyCallIfNotAdmin() {
                      if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                          _;
                      } else {
                          // This WILL halt the call frame on completion.
                          _doProxyCall();
                      }
                  }
                  /**
                   * @notice Sets the initial admin during contract deployment. Admin address is stored at the
                   *         EIP-1967 admin storage slot so that accidental storage collision with the
                   *         implementation is not possible.
                   *
                   * @param _admin Address of the initial contract admin. Admin as the ability to access the
                   *               transparent proxy interface.
                   */
                  constructor(address _admin) {
                      _changeAdmin(_admin);
                  }
                  // slither-disable-next-line locked-ether
                  receive() external payable {
                      // Proxy call by default.
                      _doProxyCall();
                  }
                  // slither-disable-next-line locked-ether
                  fallback() external payable {
                      // Proxy call by default.
                      _doProxyCall();
                  }
                  /**
                   * @notice Set the implementation contract address. The code at the given address will execute
                   *         when this contract is called.
                   *
                   * @param _implementation Address of the implementation contract.
                   */
                  function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
                      _setImplementation(_implementation);
                  }
                  /**
                   * @notice Set the implementation and call a function in a single transaction. Useful to ensure
                   *         atomic execution of initialization-based upgrades.
                   *
                   * @param _implementation Address of the implementation contract.
                   * @param _data           Calldata to delegatecall the new implementation with.
                   */
                  function upgradeToAndCall(address _implementation, bytes calldata _data)
                      public
                      payable
                      virtual
                      proxyCallIfNotAdmin
                      returns (bytes memory)
                  {
                      _setImplementation(_implementation);
                      (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
                      require(success, "Proxy: delegatecall to new implementation contract failed");
                      return returndata;
                  }
                  /**
                   * @notice Changes the owner of the proxy contract. Only callable by the owner.
                   *
                   * @param _admin New owner of the proxy contract.
                   */
                  function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
                      _changeAdmin(_admin);
                  }
                  /**
                   * @notice Gets the owner of the proxy contract.
                   *
                   * @return Owner address.
                   */
                  function admin() public virtual proxyCallIfNotAdmin returns (address) {
                      return _getAdmin();
                  }
                  /**
                   * @notice Queries the implementation address.
                   *
                   * @return Implementation address.
                   */
                  function implementation() public virtual proxyCallIfNotAdmin returns (address) {
                      return _getImplementation();
                  }
                  /**
                   * @notice Sets the implementation address.
                   *
                   * @param _implementation New implementation address.
                   */
                  function _setImplementation(address _implementation) internal {
                      assembly {
                          sstore(IMPLEMENTATION_KEY, _implementation)
                      }
                      emit Upgraded(_implementation);
                  }
                  /**
                   * @notice Changes the owner of the proxy contract.
                   *
                   * @param _admin New owner of the proxy contract.
                   */
                  function _changeAdmin(address _admin) internal {
                      address previous = _getAdmin();
                      assembly {
                          sstore(OWNER_KEY, _admin)
                      }
                      emit AdminChanged(previous, _admin);
                  }
                  /**
                   * @notice Performs the proxy call via a delegatecall.
                   */
                  function _doProxyCall() internal {
                      address impl = _getImplementation();
                      require(impl != address(0), "Proxy: implementation not initialized");
                      assembly {
                          // Copy calldata into memory at 0x0....calldatasize.
                          calldatacopy(0x0, 0x0, calldatasize())
                          // Perform the delegatecall, make sure to pass all available gas.
                          let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                          // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                          // overwrite the calldata that we just copied into memory but that doesn't really
                          // matter because we'll be returning in a second anyway.
                          returndatacopy(0x0, 0x0, returndatasize())
                          // Success == 0 means a revert. We'll revert too and pass the data up.
                          if iszero(success) {
                              revert(0x0, returndatasize())
                          }
                          // Otherwise we'll just return and pass the data up.
                          return(0x0, returndatasize())
                      }
                  }
                  /**
                   * @notice Queries the implementation address.
                   *
                   * @return Implementation address.
                   */
                  function _getImplementation() internal view returns (address) {
                      address impl;
                      assembly {
                          impl := sload(IMPLEMENTATION_KEY)
                      }
                      return impl;
                  }
                  /**
                   * @notice Queries the owner of the proxy contract.
                   *
                   * @return Owner address.
                   */
                  function _getAdmin() internal view returns (address) {
                      address owner;
                      assembly {
                          owner := sload(OWNER_KEY)
                      }
                      return owner;
                  }
              }
              

              File 4 of 10: Lib_ResolvedDelegateProxy
              // SPDX-License-Identifier: MIT
              pragma solidity >=0.6.0 <0.8.0;
              import "../utils/Context.sol";
              /**
               * @dev Contract module which provides a basic access control mechanism, where
               * there is an account (an owner) that can be granted exclusive access to
               * specific functions.
               *
               * By default, the owner account will be the one that deploys the contract. This
               * can later be changed with {transferOwnership}.
               *
               * This module is used through inheritance. It will make available the modifier
               * `onlyOwner`, which can be applied to your functions to restrict their use to
               * the owner.
               */
              abstract contract Ownable is Context {
                  address private _owner;
                  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                  /**
                   * @dev Initializes the contract setting the deployer as the initial owner.
                   */
                  constructor () internal {
                      address msgSender = _msgSender();
                      _owner = msgSender;
                      emit OwnershipTransferred(address(0), msgSender);
                  }
                  /**
                   * @dev Returns the address of the current owner.
                   */
                  function owner() public view virtual returns (address) {
                      return _owner;
                  }
                  /**
                   * @dev Throws if called by any account other than the owner.
                   */
                  modifier onlyOwner() {
                      require(owner() == _msgSender(), "Ownable: caller is not the owner");
                      _;
                  }
                  /**
                   * @dev Leaves the contract without owner. It will not be possible to call
                   * `onlyOwner` functions anymore. Can only be called by the current owner.
                   *
                   * NOTE: Renouncing ownership will leave the contract without an owner,
                   * thereby removing any functionality that is only available to the owner.
                   */
                  function renounceOwnership() public virtual onlyOwner {
                      emit OwnershipTransferred(_owner, address(0));
                      _owner = address(0);
                  }
                  /**
                   * @dev Transfers ownership of the contract to a new account (`newOwner`).
                   * Can only be called by the current owner.
                   */
                  function transferOwnership(address newOwner) public virtual onlyOwner {
                      require(newOwner != address(0), "Ownable: new owner is the zero address");
                      emit OwnershipTransferred(_owner, newOwner);
                      _owner = newOwner;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >=0.6.0 <0.8.0;
              /*
               * @dev Provides information about the current execution context, including the
               * sender of the transaction and its data. While these are generally available
               * via msg.sender and msg.data, they should not be accessed in such a direct
               * manner, since when dealing with GSN meta-transactions the account sending and
               * paying for execution may not be the actual sender (as far as an application
               * is concerned).
               *
               * This contract is only required for intermediate, library-like contracts.
               */
              abstract contract Context {
                  function _msgSender() internal view virtual returns (address payable) {
                      return msg.sender;
                  }
                  function _msgData() internal view virtual returns (bytes memory) {
                      this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
                      return msg.data;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >0.5.0 <0.8.0;
              /* External Imports */
              import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
              /**
               * @title Lib_AddressManager
               */
              contract Lib_AddressManager is Ownable {
                  /**********
                   * Events *
                   **********/
                  event AddressSet(
                      string indexed _name,
                      address _newAddress,
                      address _oldAddress
                  );
                  /*************
                   * Variables *
                   *************/
                  mapping (bytes32 => address) private addresses;
                  /********************
                   * Public Functions *
                   ********************/
                  /**
                   * Changes the address associated with a particular name.
                   * @param _name String name to associate an address with.
                   * @param _address Address to associate with the name.
                   */
                  function setAddress(
                      string memory _name,
                      address _address
                  )
                      external
                      onlyOwner
                  {
                      bytes32 nameHash = _getNameHash(_name);
                      address oldAddress = addresses[nameHash];
                      addresses[nameHash] = _address;
                      emit AddressSet(
                          _name,
                          _address,
                          oldAddress
                      );
                  }
                  /**
                   * Retrieves the address associated with a given name.
                   * @param _name Name to retrieve an address for.
                   * @return Address associated with the given name.
                   */
                  function getAddress(
                      string memory _name
                  )
                      external
                      view
                      returns (
                          address
                      )
                  {
                      return addresses[_getNameHash(_name)];
                  }
                  /**********************
                   * Internal Functions *
                   **********************/
                  /**
                   * Computes the hash of a name.
                   * @param _name Name to compute a hash for.
                   * @return Hash of the given name.
                   */
                  function _getNameHash(
                      string memory _name
                  )
                      internal
                      pure
                      returns (
                          bytes32
                      )
                  {
                      return keccak256(abi.encodePacked(_name));
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >0.5.0 <0.8.0;
              /* Library Imports */
              import { Lib_AddressManager } from "./Lib_AddressManager.sol";
              /**
               * @title Lib_ResolvedDelegateProxy
               */
              contract Lib_ResolvedDelegateProxy {
                  /*************
                   * Variables *
                   *************/
                  // Using mappings to store fields to avoid overwriting storage slots in the
                  // implementation contract. For example, instead of storing these fields at
                  // storage slot `0` & `1`, they are stored at `keccak256(key + slot)`.
                  // See: https://solidity.readthedocs.io/en/v0.7.0/internals/layout_in_storage.html
                  // NOTE: Do not use this code in your own contract system.
                  //      There is a known flaw in this contract, and we will remove it from the repository
                  //      in the near future. Due to the very limited way that we are using it, this flaw is
                  //      not an issue in our system.
                  mapping (address => string) private implementationName;
                  mapping (address => Lib_AddressManager) private addressManager;
                  /***************
                   * Constructor *
                   ***************/
                  /**
                   * @param _libAddressManager Address of the Lib_AddressManager.
                   * @param _implementationName implementationName of the contract to proxy to.
                   */
                  constructor(
                      address _libAddressManager,
                      string memory _implementationName
                  ) {
                      addressManager[address(this)] = Lib_AddressManager(_libAddressManager);
                      implementationName[address(this)] = _implementationName;
                  }
                  /*********************
                   * Fallback Function *
                   *********************/
                  fallback()
                      external
                      payable
                  {
                      address target = addressManager[address(this)].getAddress(
                          (implementationName[address(this)])
                      );
                      require(
                          target != address(0),
                          "Target address must be initialized."
                      );
                      (bool success, bytes memory returndata) = target.delegatecall(msg.data);
                      if (success == true) {
                          assembly {
                              return(add(returndata, 0x20), mload(returndata))
                          }
                      } else {
                          assembly {
                              revert(add(returndata, 0x20), mload(returndata))
                          }
                      }
                  }
              }
              

              File 5 of 10: ProxyAdmin
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
              /**
               * @custom:legacy
               * @title AddressManager
               * @notice AddressManager is a legacy contract that was used in the old version of the Optimism
               *         system to manage a registry of string names to addresses. We now use a more standard
               *         proxy system instead, but this contract is still necessary for backwards compatibility
               *         with several older contracts.
               */
              contract AddressManager is Ownable {
                  /**
                   * @notice Mapping of the hashes of string names to addresses.
                   */
                  mapping(bytes32 => address) private addresses;
                  /**
                   * @notice Emitted when an address is modified in the registry.
                   *
                   * @param name       String name being set in the registry.
                   * @param newAddress Address set for the given name.
                   * @param oldAddress Address that was previously set for the given name.
                   */
                  event AddressSet(string indexed name, address newAddress, address oldAddress);
                  /**
                   * @notice Changes the address associated with a particular name.
                   *
                   * @param _name    String name to associate an address with.
                   * @param _address Address to associate with the name.
                   */
                  function setAddress(string memory _name, address _address) external onlyOwner {
                      bytes32 nameHash = _getNameHash(_name);
                      address oldAddress = addresses[nameHash];
                      addresses[nameHash] = _address;
                      emit AddressSet(_name, _address, oldAddress);
                  }
                  /**
                   * @notice Retrieves the address associated with a given name.
                   *
                   * @param _name Name to retrieve an address for.
                   *
                   * @return Address associated with the given name.
                   */
                  function getAddress(string memory _name) external view returns (address) {
                      return addresses[_getNameHash(_name)];
                  }
                  /**
                   * @notice Computes the hash of a name.
                   *
                   * @param _name Name to compute a hash for.
                   *
                   * @return Hash of the given name.
                   */
                  function _getNameHash(string memory _name) internal pure returns (bytes32) {
                      return keccak256(abi.encodePacked(_name));
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              /**
               * @title IL1ChugSplashDeployer
               */
              interface IL1ChugSplashDeployer {
                  function isUpgrading() external view returns (bool);
              }
              /**
               * @custom:legacy
               * @title L1ChugSplashProxy
               * @notice Basic ChugSplash proxy contract for L1. Very close to being a normal proxy but has added
               *         functions `setCode` and `setStorage` for changing the code or storage of the contract.
               *
               *         Note for future developers: do NOT make anything in this contract 'public' unless you
               *         know what you're doing. Anything public can potentially have a function signature that
               *         conflicts with a signature attached to the implementation contract. Public functions
               *         SHOULD always have the `proxyCallIfNotOwner` modifier unless there's some *really* good
               *         reason not to have that modifier. And there almost certainly is not a good reason to not
               *         have that modifier. Beware!
               */
              contract L1ChugSplashProxy {
                  /**
                   * @notice "Magic" prefix. When prepended to some arbitrary bytecode and used to create a
                   *         contract, the appended bytecode will be deployed as given.
                   */
                  bytes13 internal constant DEPLOY_CODE_PREFIX = 0x600D380380600D6000396000f3;
                  /**
                   * @notice bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                   */
                  bytes32 internal constant IMPLEMENTATION_KEY =
                      0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                  /**
                   * @notice bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
                   */
                  bytes32 internal constant OWNER_KEY =
                      0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                  /**
                   * @notice Blocks a function from being called when the parent signals that the system should
                   *         be paused via an isUpgrading function.
                   */
                  modifier onlyWhenNotPaused() {
                      address owner = _getOwner();
                      // We do a low-level call because there's no guarantee that the owner actually *is* an
                      // L1ChugSplashDeployer contract and Solidity will throw errors if we do a normal call and
                      // it turns out that it isn't the right type of contract.
                      (bool success, bytes memory returndata) = owner.staticcall(
                          abi.encodeWithSelector(IL1ChugSplashDeployer.isUpgrading.selector)
                      );
                      // If the call was unsuccessful then we assume that there's no "isUpgrading" method and we
                      // can just continue as normal. We also expect that the return value is exactly 32 bytes
                      // long. If this isn't the case then we can safely ignore the result.
                      if (success && returndata.length == 32) {
                          // Although the expected value is a *boolean*, it's safer to decode as a uint256 in the
                          // case that the isUpgrading function returned something other than 0 or 1. But we only
                          // really care about the case where this value is 0 (= false).
                          uint256 ret = abi.decode(returndata, (uint256));
                          require(ret == 0, "L1ChugSplashProxy: system is currently being upgraded");
                      }
                      _;
                  }
                  /**
                   * @notice Makes a proxy call instead of triggering the given function when the caller is
                   *         either the owner or the zero address. Caller can only ever be the zero address if
                   *         this function is being called off-chain via eth_call, which is totally fine and can
                   *         be convenient for client-side tooling. Avoids situations where the proxy and
                   *         implementation share a sighash and the proxy function ends up being called instead
                   *         of the implementation one.
                   *
                   *         Note: msg.sender == address(0) can ONLY be triggered off-chain via eth_call. If
                   *         there's a way for someone to send a transaction with msg.sender == address(0) in any
                   *         real context then we have much bigger problems. Primary reason to include this
                   *         additional allowed sender is because the owner address can be changed dynamically
                   *         and we do not want clients to have to keep track of the current owner in order to
                   *         make an eth_call that doesn't trigger the proxied contract.
                   */
                  // slither-disable-next-line incorrect-modifier
                  modifier proxyCallIfNotOwner() {
                      if (msg.sender == _getOwner() || msg.sender == address(0)) {
                          _;
                      } else {
                          // This WILL halt the call frame on completion.
                          _doProxyCall();
                      }
                  }
                  /**
                   * @param _owner Address of the initial contract owner.
                   */
                  constructor(address _owner) {
                      _setOwner(_owner);
                  }
                  // slither-disable-next-line locked-ether
                  receive() external payable {
                      // Proxy call by default.
                      _doProxyCall();
                  }
                  // slither-disable-next-line locked-ether
                  fallback() external payable {
                      // Proxy call by default.
                      _doProxyCall();
                  }
                  /**
                   * @notice Sets the code that should be running behind this proxy.
                   *
                   *         Note: This scheme is a bit different from the standard proxy scheme where one would
                   *         typically deploy the code separately and then set the implementation address. We're
                   *         doing it this way because it gives us a lot more freedom on the client side. Can
                   *         only be triggered by the contract owner.
                   *
                   * @param _code New contract code to run inside this contract.
                   */
                  function setCode(bytes memory _code) external proxyCallIfNotOwner {
                      // Get the code hash of the current implementation.
                      address implementation = _getImplementation();
                      // If the code hash matches the new implementation then we return early.
                      if (keccak256(_code) == _getAccountCodeHash(implementation)) {
                          return;
                      }
                      // Create the deploycode by appending the magic prefix.
                      bytes memory deploycode = abi.encodePacked(DEPLOY_CODE_PREFIX, _code);
                      // Deploy the code and set the new implementation address.
                      address newImplementation;
                      assembly {
                          newImplementation := create(0x0, add(deploycode, 0x20), mload(deploycode))
                      }
                      // Check that the code was actually deployed correctly. I'm not sure if you can ever
                      // actually fail this check. Should only happen if the contract creation from above runs
                      // out of gas but this parent execution thread does NOT run out of gas. Seems like we
                      // should be doing this check anyway though.
                      require(
                          _getAccountCodeHash(newImplementation) == keccak256(_code),
                          "L1ChugSplashProxy: code was not correctly deployed"
                      );
                      _setImplementation(newImplementation);
                  }
                  /**
                   * @notice Modifies some storage slot within the proxy contract. Gives us a lot of power to
                   *         perform upgrades in a more transparent way. Only callable by the owner.
                   *
                   * @param _key   Storage key to modify.
                   * @param _value New value for the storage key.
                   */
                  function setStorage(bytes32 _key, bytes32 _value) external proxyCallIfNotOwner {
                      assembly {
                          sstore(_key, _value)
                      }
                  }
                  /**
                   * @notice Changes the owner of the proxy contract. Only callable by the owner.
                   *
                   * @param _owner New owner of the proxy contract.
                   */
                  function setOwner(address _owner) external proxyCallIfNotOwner {
                      _setOwner(_owner);
                  }
                  /**
                   * @notice Queries the owner of the proxy contract. Can only be called by the owner OR by
                   *         making an eth_call and setting the "from" address to address(0).
                   *
                   * @return Owner address.
                   */
                  function getOwner() external proxyCallIfNotOwner returns (address) {
                      return _getOwner();
                  }
                  /**
                   * @notice Queries the implementation address. Can only be called by the owner OR by making an
                   *         eth_call and setting the "from" address to address(0).
                   *
                   * @return Implementation address.
                   */
                  function getImplementation() external proxyCallIfNotOwner returns (address) {
                      return _getImplementation();
                  }
                  /**
                   * @notice Sets the implementation address.
                   *
                   * @param _implementation New implementation address.
                   */
                  function _setImplementation(address _implementation) internal {
                      assembly {
                          sstore(IMPLEMENTATION_KEY, _implementation)
                      }
                  }
                  /**
                   * @notice Changes the owner of the proxy contract.
                   *
                   * @param _owner New owner of the proxy contract.
                   */
                  function _setOwner(address _owner) internal {
                      assembly {
                          sstore(OWNER_KEY, _owner)
                      }
                  }
                  /**
                   * @notice Performs the proxy call via a delegatecall.
                   */
                  function _doProxyCall() internal onlyWhenNotPaused {
                      address implementation = _getImplementation();
                      require(implementation != address(0), "L1ChugSplashProxy: implementation is not set yet");
                      assembly {
                          // Copy calldata into memory at 0x0....calldatasize.
                          calldatacopy(0x0, 0x0, calldatasize())
                          // Perform the delegatecall, make sure to pass all available gas.
                          let success := delegatecall(gas(), implementation, 0x0, calldatasize(), 0x0, 0x0)
                          // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                          // overwrite the calldata that we just copied into memory but that doesn't really
                          // matter because we'll be returning in a second anyway.
                          returndatacopy(0x0, 0x0, returndatasize())
                          // Success == 0 means a revert. We'll revert too and pass the data up.
                          if iszero(success) {
                              revert(0x0, returndatasize())
                          }
                          // Otherwise we'll just return and pass the data up.
                          return(0x0, returndatasize())
                      }
                  }
                  /**
                   * @notice Queries the implementation address.
                   *
                   * @return Implementation address.
                   */
                  function _getImplementation() internal view returns (address) {
                      address implementation;
                      assembly {
                          implementation := sload(IMPLEMENTATION_KEY)
                      }
                      return implementation;
                  }
                  /**
                   * @notice Queries the owner of the proxy contract.
                   *
                   * @return Owner address.
                   */
                  function _getOwner() internal view returns (address) {
                      address owner;
                      assembly {
                          owner := sload(OWNER_KEY)
                      }
                      return owner;
                  }
                  /**
                   * @notice Gets the code hash for a given account.
                   *
                   * @param _account Address of the account to get a code hash for.
                   *
                   * @return Code hash for the account.
                   */
                  function _getAccountCodeHash(address _account) internal view returns (bytes32) {
                      bytes32 codeHash;
                      assembly {
                          codeHash := extcodehash(_account)
                      }
                      return codeHash;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              /**
               * @title Proxy
               * @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
               *         if the caller is address(0), meaning that the call originated from an off-chain
               *         simulation.
               */
              contract Proxy {
                  /**
                   * @notice The storage slot that holds the address of the implementation.
                   *         bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                   */
                  bytes32 internal constant IMPLEMENTATION_KEY =
                      0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                  /**
                   * @notice The storage slot that holds the address of the owner.
                   *         bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
                   */
                  bytes32 internal constant OWNER_KEY =
                      0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                  /**
                   * @notice An event that is emitted each time the implementation is changed. This event is part
                   *         of the EIP-1967 specification.
                   *
                   * @param implementation The address of the implementation contract
                   */
                  event Upgraded(address indexed implementation);
                  /**
                   * @notice An event that is emitted each time the owner is upgraded. This event is part of the
                   *         EIP-1967 specification.
                   *
                   * @param previousAdmin The previous owner of the contract
                   * @param newAdmin      The new owner of the contract
                   */
                  event AdminChanged(address previousAdmin, address newAdmin);
                  /**
                   * @notice A modifier that reverts if not called by the owner or by address(0) to allow
                   *         eth_call to interact with this proxy without needing to use low-level storage
                   *         inspection. We assume that nobody is able to trigger calls from address(0) during
                   *         normal EVM execution.
                   */
                  modifier proxyCallIfNotAdmin() {
                      if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                          _;
                      } else {
                          // This WILL halt the call frame on completion.
                          _doProxyCall();
                      }
                  }
                  /**
                   * @notice Sets the initial admin during contract deployment. Admin address is stored at the
                   *         EIP-1967 admin storage slot so that accidental storage collision with the
                   *         implementation is not possible.
                   *
                   * @param _admin Address of the initial contract admin. Admin as the ability to access the
                   *               transparent proxy interface.
                   */
                  constructor(address _admin) {
                      _changeAdmin(_admin);
                  }
                  // slither-disable-next-line locked-ether
                  receive() external payable {
                      // Proxy call by default.
                      _doProxyCall();
                  }
                  // slither-disable-next-line locked-ether
                  fallback() external payable {
                      // Proxy call by default.
                      _doProxyCall();
                  }
                  /**
                   * @notice Set the implementation contract address. The code at the given address will execute
                   *         when this contract is called.
                   *
                   * @param _implementation Address of the implementation contract.
                   */
                  function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
                      _setImplementation(_implementation);
                  }
                  /**
                   * @notice Set the implementation and call a function in a single transaction. Useful to ensure
                   *         atomic execution of initialization-based upgrades.
                   *
                   * @param _implementation Address of the implementation contract.
                   * @param _data           Calldata to delegatecall the new implementation with.
                   */
                  function upgradeToAndCall(address _implementation, bytes calldata _data)
                      public
                      payable
                      virtual
                      proxyCallIfNotAdmin
                      returns (bytes memory)
                  {
                      _setImplementation(_implementation);
                      (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
                      require(success, "Proxy: delegatecall to new implementation contract failed");
                      return returndata;
                  }
                  /**
                   * @notice Changes the owner of the proxy contract. Only callable by the owner.
                   *
                   * @param _admin New owner of the proxy contract.
                   */
                  function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
                      _changeAdmin(_admin);
                  }
                  /**
                   * @notice Gets the owner of the proxy contract.
                   *
                   * @return Owner address.
                   */
                  function admin() public virtual proxyCallIfNotAdmin returns (address) {
                      return _getAdmin();
                  }
                  /**
                   * @notice Queries the implementation address.
                   *
                   * @return Implementation address.
                   */
                  function implementation() public virtual proxyCallIfNotAdmin returns (address) {
                      return _getImplementation();
                  }
                  /**
                   * @notice Sets the implementation address.
                   *
                   * @param _implementation New implementation address.
                   */
                  function _setImplementation(address _implementation) internal {
                      assembly {
                          sstore(IMPLEMENTATION_KEY, _implementation)
                      }
                      emit Upgraded(_implementation);
                  }
                  /**
                   * @notice Changes the owner of the proxy contract.
                   *
                   * @param _admin New owner of the proxy contract.
                   */
                  function _changeAdmin(address _admin) internal {
                      address previous = _getAdmin();
                      assembly {
                          sstore(OWNER_KEY, _admin)
                      }
                      emit AdminChanged(previous, _admin);
                  }
                  /**
                   * @notice Performs the proxy call via a delegatecall.
                   */
                  function _doProxyCall() internal {
                      address impl = _getImplementation();
                      require(impl != address(0), "Proxy: implementation not initialized");
                      assembly {
                          // Copy calldata into memory at 0x0....calldatasize.
                          calldatacopy(0x0, 0x0, calldatasize())
                          // Perform the delegatecall, make sure to pass all available gas.
                          let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                          // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                          // overwrite the calldata that we just copied into memory but that doesn't really
                          // matter because we'll be returning in a second anyway.
                          returndatacopy(0x0, 0x0, returndatasize())
                          // Success == 0 means a revert. We'll revert too and pass the data up.
                          if iszero(success) {
                              revert(0x0, returndatasize())
                          }
                          // Otherwise we'll just return and pass the data up.
                          return(0x0, returndatasize())
                      }
                  }
                  /**
                   * @notice Queries the implementation address.
                   *
                   * @return Implementation address.
                   */
                  function _getImplementation() internal view returns (address) {
                      address impl;
                      assembly {
                          impl := sload(IMPLEMENTATION_KEY)
                      }
                      return impl;
                  }
                  /**
                   * @notice Queries the owner of the proxy contract.
                   *
                   * @return Owner address.
                   */
                  function _getAdmin() internal view returns (address) {
                      address owner;
                      assembly {
                          owner := sload(OWNER_KEY)
                      }
                      return owner;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
              import { Proxy } from "./Proxy.sol";
              import { AddressManager } from "../legacy/AddressManager.sol";
              import { L1ChugSplashProxy } from "../legacy/L1ChugSplashProxy.sol";
              /**
               * @title IStaticERC1967Proxy
               * @notice IStaticERC1967Proxy is a static version of the ERC1967 proxy interface.
               */
              interface IStaticERC1967Proxy {
                  function implementation() external view returns (address);
                  function admin() external view returns (address);
              }
              /**
               * @title IStaticL1ChugSplashProxy
               * @notice IStaticL1ChugSplashProxy is a static version of the ChugSplash proxy interface.
               */
              interface IStaticL1ChugSplashProxy {
                  function getImplementation() external view returns (address);
                  function getOwner() external view returns (address);
              }
              /**
               * @title ProxyAdmin
               * @notice This is an auxiliary contract meant to be assigned as the admin of an ERC1967 Proxy,
               *         based on the OpenZeppelin implementation. It has backwards compatibility logic to work
               *         with the various types of proxies that have been deployed by Optimism in the past.
               */
              contract ProxyAdmin is Ownable {
                  /**
                   * @notice The proxy types that the ProxyAdmin can manage.
                   *
                   * @custom:value ERC1967    Represents an ERC1967 compliant transparent proxy interface.
                   * @custom:value CHUGSPLASH Represents the Chugsplash proxy interface (legacy).
                   * @custom:value RESOLVED   Represents the ResolvedDelegate proxy (legacy).
                   */
                  enum ProxyType {
                      ERC1967,
                      CHUGSPLASH,
                      RESOLVED
                  }
                  /**
                   * @notice A mapping of proxy types, used for backwards compatibility.
                   */
                  mapping(address => ProxyType) public proxyType;
                  /**
                   * @notice A reverse mapping of addresses to names held in the AddressManager. This must be
                   *         manually kept up to date with changes in the AddressManager for this contract
                   *         to be able to work as an admin for the ResolvedDelegateProxy type.
                   */
                  mapping(address => string) public implementationName;
                  /**
                   * @notice The address of the address manager, this is required to manage the
                   *         ResolvedDelegateProxy type.
                   */
                  AddressManager public addressManager;
                  /**
                   * @notice A legacy upgrading indicator used by the old Chugsplash Proxy.
                   */
                  bool internal upgrading;
                  /**
                   * @param _owner Address of the initial owner of this contract.
                   */
                  constructor(address _owner) Ownable() {
                      _transferOwnership(_owner);
                  }
                  /**
                   * @notice Sets the proxy type for a given address. Only required for non-standard (legacy)
                   *         proxy types.
                   *
                   * @param _address Address of the proxy.
                   * @param _type    Type of the proxy.
                   */
                  function setProxyType(address _address, ProxyType _type) external onlyOwner {
                      proxyType[_address] = _type;
                  }
                  /**
                   * @notice Sets the implementation name for a given address. Only required for
                   *         ResolvedDelegateProxy type proxies that have an implementation name.
                   *
                   * @param _address Address of the ResolvedDelegateProxy.
                   * @param _name    Name of the implementation for the proxy.
                   */
                  function setImplementationName(address _address, string memory _name) external onlyOwner {
                      implementationName[_address] = _name;
                  }
                  /**
                   * @notice Set the address of the AddressManager. This is required to manage legacy
                   *         ResolvedDelegateProxy type proxy contracts.
                   *
                   * @param _address Address of the AddressManager.
                   */
                  function setAddressManager(AddressManager _address) external onlyOwner {
                      addressManager = _address;
                  }
                  /**
                   * @custom:legacy
                   * @notice Set an address in the address manager. Since only the owner of the AddressManager
                   *         can directly modify addresses and the ProxyAdmin will own the AddressManager, this
                   *         gives the owner of the ProxyAdmin the ability to modify addresses directly.
                   *
                   * @param _name    Name to set within the AddressManager.
                   * @param _address Address to attach to the given name.
                   */
                  function setAddress(string memory _name, address _address) external onlyOwner {
                      addressManager.setAddress(_name, _address);
                  }
                  /**
                   * @custom:legacy
                   * @notice Set the upgrading status for the Chugsplash proxy type.
                   *
                   * @param _upgrading Whether or not the system is upgrading.
                   */
                  function setUpgrading(bool _upgrading) external onlyOwner {
                      upgrading = _upgrading;
                  }
                  /**
                   * @custom:legacy
                   * @notice Legacy function used to tell ChugSplashProxy contracts if an upgrade is happening.
                   *
                   * @return Whether or not there is an upgrade going on. May not actually tell you whether an
                   *         upgrade is going on, since we don't currently plan to use this variable for anything
                   *         other than a legacy indicator to fix a UX bug in the ChugSplash proxy.
                   */
                  function isUpgrading() external view returns (bool) {
                      return upgrading;
                  }
                  /**
                   * @notice Returns the implementation of the given proxy address.
                   *
                   * @param _proxy Address of the proxy to get the implementation of.
                   *
                   * @return Address of the implementation of the proxy.
                   */
                  function getProxyImplementation(address _proxy) external view returns (address) {
                      ProxyType ptype = proxyType[_proxy];
                      if (ptype == ProxyType.ERC1967) {
                          return IStaticERC1967Proxy(_proxy).implementation();
                      } else if (ptype == ProxyType.CHUGSPLASH) {
                          return IStaticL1ChugSplashProxy(_proxy).getImplementation();
                      } else if (ptype == ProxyType.RESOLVED) {
                          return addressManager.getAddress(implementationName[_proxy]);
                      } else {
                          revert("ProxyAdmin: unknown proxy type");
                      }
                  }
                  /**
                   * @notice Returns the admin of the given proxy address.
                   *
                   * @param _proxy Address of the proxy to get the admin of.
                   *
                   * @return Address of the admin of the proxy.
                   */
                  function getProxyAdmin(address payable _proxy) external view returns (address) {
                      ProxyType ptype = proxyType[_proxy];
                      if (ptype == ProxyType.ERC1967) {
                          return IStaticERC1967Proxy(_proxy).admin();
                      } else if (ptype == ProxyType.CHUGSPLASH) {
                          return IStaticL1ChugSplashProxy(_proxy).getOwner();
                      } else if (ptype == ProxyType.RESOLVED) {
                          return addressManager.owner();
                      } else {
                          revert("ProxyAdmin: unknown proxy type");
                      }
                  }
                  /**
                   * @notice Updates the admin of the given proxy address.
                   *
                   * @param _proxy    Address of the proxy to update.
                   * @param _newAdmin Address of the new proxy admin.
                   */
                  function changeProxyAdmin(address payable _proxy, address _newAdmin) external onlyOwner {
                      ProxyType ptype = proxyType[_proxy];
                      if (ptype == ProxyType.ERC1967) {
                          Proxy(_proxy).changeAdmin(_newAdmin);
                      } else if (ptype == ProxyType.CHUGSPLASH) {
                          L1ChugSplashProxy(_proxy).setOwner(_newAdmin);
                      } else if (ptype == ProxyType.RESOLVED) {
                          addressManager.transferOwnership(_newAdmin);
                      } else {
                          revert("ProxyAdmin: unknown proxy type");
                      }
                  }
                  /**
                   * @notice Changes a proxy's implementation contract.
                   *
                   * @param _proxy          Address of the proxy to upgrade.
                   * @param _implementation Address of the new implementation address.
                   */
                  function upgrade(address payable _proxy, address _implementation) public onlyOwner {
                      ProxyType ptype = proxyType[_proxy];
                      if (ptype == ProxyType.ERC1967) {
                          Proxy(_proxy).upgradeTo(_implementation);
                      } else if (ptype == ProxyType.CHUGSPLASH) {
                          L1ChugSplashProxy(_proxy).setStorage(
                              // bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                              0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc,
                              bytes32(uint256(uint160(_implementation)))
                          );
                      } else if (ptype == ProxyType.RESOLVED) {
                          string memory name = implementationName[_proxy];
                          addressManager.setAddress(name, _implementation);
                      } else {
                          // It should not be possible to retrieve a ProxyType value which is not matched by
                          // one of the previous conditions.
                          assert(false);
                      }
                  }
                  /**
                   * @notice Changes a proxy's implementation contract and delegatecalls the new implementation
                   *         with some given data. Useful for atomic upgrade-and-initialize calls.
                   *
                   * @param _proxy          Address of the proxy to upgrade.
                   * @param _implementation Address of the new implementation address.
                   * @param _data           Data to trigger the new implementation with.
                   */
                  function upgradeAndCall(
                      address payable _proxy,
                      address _implementation,
                      bytes memory _data
                  ) external payable onlyOwner {
                      ProxyType ptype = proxyType[_proxy];
                      if (ptype == ProxyType.ERC1967) {
                          Proxy(_proxy).upgradeToAndCall{ value: msg.value }(_implementation, _data);
                      } else {
                          // reverts if proxy type is unknown
                          upgrade(_proxy, _implementation);
                          (bool success, ) = _proxy.call{ value: msg.value }(_data);
                          require(success, "ProxyAdmin: call to proxy after upgrade failed");
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
              pragma solidity ^0.8.0;
              import "../utils/Context.sol";
              /**
               * @dev Contract module which provides a basic access control mechanism, where
               * there is an account (an owner) that can be granted exclusive access to
               * specific functions.
               *
               * By default, the owner account will be the one that deploys the contract. This
               * can later be changed with {transferOwnership}.
               *
               * This module is used through inheritance. It will make available the modifier
               * `onlyOwner`, which can be applied to your functions to restrict their use to
               * the owner.
               */
              abstract contract Ownable is Context {
                  address private _owner;
                  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                  /**
                   * @dev Initializes the contract setting the deployer as the initial owner.
                   */
                  constructor() {
                      _transferOwnership(_msgSender());
                  }
                  /**
                   * @dev Throws if called by any account other than the owner.
                   */
                  modifier onlyOwner() {
                      _checkOwner();
                      _;
                  }
                  /**
                   * @dev Returns the address of the current owner.
                   */
                  function owner() public view virtual returns (address) {
                      return _owner;
                  }
                  /**
                   * @dev Throws if the sender is not the owner.
                   */
                  function _checkOwner() internal view virtual {
                      require(owner() == _msgSender(), "Ownable: caller is not the owner");
                  }
                  /**
                   * @dev Leaves the contract without owner. It will not be possible to call
                   * `onlyOwner` functions anymore. Can only be called by the current owner.
                   *
                   * NOTE: Renouncing ownership will leave the contract without an owner,
                   * thereby removing any functionality that is only available to the owner.
                   */
                  function renounceOwnership() public virtual onlyOwner {
                      _transferOwnership(address(0));
                  }
                  /**
                   * @dev Transfers ownership of the contract to a new account (`newOwner`).
                   * Can only be called by the current owner.
                   */
                  function transferOwnership(address newOwner) public virtual onlyOwner {
                      require(newOwner != address(0), "Ownable: new owner is the zero address");
                      _transferOwnership(newOwner);
                  }
                  /**
                   * @dev Transfers ownership of the contract to a new account (`newOwner`).
                   * Internal function without access restriction.
                   */
                  function _transferOwnership(address newOwner) internal virtual {
                      address oldOwner = _owner;
                      _owner = newOwner;
                      emit OwnershipTransferred(oldOwner, newOwner);
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Provides information about the current execution context, including the
               * sender of the transaction and its data. While these are generally available
               * via msg.sender and msg.data, they should not be accessed in such a direct
               * manner, since when dealing with meta-transactions the account sending and
               * paying for execution may not be the actual sender (as far as an application
               * is concerned).
               *
               * This contract is only required for intermediate, library-like contracts.
               */
              abstract contract Context {
                  function _msgSender() internal view virtual returns (address) {
                      return msg.sender;
                  }
                  function _msgData() internal view virtual returns (bytes calldata) {
                      return msg.data;
                  }
              }
              

              File 6 of 10: L1StandardBridge
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              // Contracts
              import { StandardBridge } from "src/universal/StandardBridge.sol";
              // Libraries
              import { Predeploys } from "src/libraries/Predeploys.sol";
              // Interfaces
              import { ISemver } from "interfaces/universal/ISemver.sol";
              import { ICrossDomainMessenger } from "interfaces/universal/ICrossDomainMessenger.sol";
              import { ISuperchainConfig } from "interfaces/L1/ISuperchainConfig.sol";
              /// @custom:proxied true
              /// @title L1StandardBridge
              /// @notice The L1StandardBridge is responsible for transfering ETH and ERC20 tokens between L1 and
              ///         L2. In the case that an ERC20 token is native to L1, it will be escrowed within this
              ///         contract. If the ERC20 token is native to L2, it will be burnt. Before Bedrock, ETH was
              ///         stored within this contract. After Bedrock, ETH is instead stored inside the
              ///         OptimismPortal contract.
              ///         NOTE: this contract is not intended to support all variations of ERC20 tokens. Examples
              ///         of some token types that may not be properly supported by this contract include, but are
              ///         not limited to: tokens with transfer fees, rebasing tokens, and tokens with blocklists.
              contract L1StandardBridge is StandardBridge, ISemver {
                  /// @custom:legacy
                  /// @notice Emitted whenever a deposit of ETH from L1 into L2 is initiated.
                  /// @param from      Address of the depositor.
                  /// @param to        Address of the recipient on L2.
                  /// @param amount    Amount of ETH deposited.
                  /// @param extraData Extra data attached to the deposit.
                  event ETHDepositInitiated(address indexed from, address indexed to, uint256 amount, bytes extraData);
                  /// @custom:legacy
                  /// @notice Emitted whenever a withdrawal of ETH from L2 to L1 is finalized.
                  /// @param from      Address of the withdrawer.
                  /// @param to        Address of the recipient on L1.
                  /// @param amount    Amount of ETH withdrawn.
                  /// @param extraData Extra data attached to the withdrawal.
                  event ETHWithdrawalFinalized(address indexed from, address indexed to, uint256 amount, bytes extraData);
                  /// @custom:legacy
                  /// @notice Emitted whenever an ERC20 deposit is initiated.
                  /// @param l1Token   Address of the token on L1.
                  /// @param l2Token   Address of the corresponding token on L2.
                  /// @param from      Address of the depositor.
                  /// @param to        Address of the recipient on L2.
                  /// @param amount    Amount of the ERC20 deposited.
                  /// @param extraData Extra data attached to the deposit.
                  event ERC20DepositInitiated(
                      address indexed l1Token,
                      address indexed l2Token,
                      address indexed from,
                      address to,
                      uint256 amount,
                      bytes extraData
                  );
                  /// @custom:legacy
                  /// @notice Emitted whenever an ERC20 withdrawal is finalized.
                  /// @param l1Token   Address of the token on L1.
                  /// @param l2Token   Address of the corresponding token on L2.
                  /// @param from      Address of the withdrawer.
                  /// @param to        Address of the recipient on L1.
                  /// @param amount    Amount of the ERC20 withdrawn.
                  /// @param extraData Extra data attached to the withdrawal.
                  event ERC20WithdrawalFinalized(
                      address indexed l1Token,
                      address indexed l2Token,
                      address indexed from,
                      address to,
                      uint256 amount,
                      bytes extraData
                  );
                  /// @notice Semantic version.
                  /// @custom:semver 2.2.2
                  string public constant version = "2.2.2";
                  /// @notice Address of the SuperchainConfig contract.
                  ISuperchainConfig public superchainConfig;
                  /// @custom:legacy
                  /// @custom:spacer systemConfig
                  /// @notice Spacer taking up the legacy `systemConfig` slot.
                  address private spacer_51_0_20;
                  /// @notice Constructs the L1StandardBridge contract.
                  constructor() StandardBridge() {
                      _disableInitializers();
                  }
                  /// @notice Initializer.
                  /// @param _messenger        Contract for the CrossDomainMessenger on this network.
                  /// @param _superchainConfig Contract for the SuperchainConfig on this network.
                  function initialize(ICrossDomainMessenger _messenger, ISuperchainConfig _superchainConfig) external initializer {
                      superchainConfig = _superchainConfig;
                      __StandardBridge_init({
                          _messenger: _messenger,
                          _otherBridge: StandardBridge(payable(Predeploys.L2_STANDARD_BRIDGE))
                      });
                  }
                  /// @inheritdoc StandardBridge
                  function paused() public view override returns (bool) {
                      return superchainConfig.paused();
                  }
                  /// @notice Allows EOAs to bridge ETH by sending directly to the bridge.
                  receive() external payable override onlyEOA {
                      _initiateETHDeposit(msg.sender, msg.sender, RECEIVE_DEFAULT_GAS_LIMIT, bytes(""));
                  }
                  /// @custom:legacy
                  /// @notice Deposits some amount of ETH into the sender's account on L2.
                  /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                  /// @param _extraData   Optional data to forward to L2.
                  ///                     Data supplied here will not be used to execute any code on L2 and is
                  ///                     only emitted as extra data for the convenience of off-chain tooling.
                  function depositETH(uint32 _minGasLimit, bytes calldata _extraData) external payable onlyEOA {
                      _initiateETHDeposit(msg.sender, msg.sender, _minGasLimit, _extraData);
                  }
                  /// @custom:legacy
                  /// @notice Deposits some amount of ETH into a target account on L2.
                  ///         Note that if ETH is sent to a contract on L2 and the call fails, then that ETH will
                  ///         be locked in the L2StandardBridge. ETH may be recoverable if the call can be
                  ///         successfully replayed by increasing the amount of gas supplied to the call. If the
                  ///         call will fail for any amount of gas, then the ETH will be locked permanently.
                  /// @param _to          Address of the recipient on L2.
                  /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                  /// @param _extraData   Optional data to forward to L2.
                  ///                     Data supplied here will not be used to execute any code on L2 and is
                  ///                     only emitted as extra data for the convenience of off-chain tooling.
                  function depositETHTo(address _to, uint32 _minGasLimit, bytes calldata _extraData) external payable {
                      _initiateETHDeposit(msg.sender, _to, _minGasLimit, _extraData);
                  }
                  /// @custom:legacy
                  /// @notice Deposits some amount of ERC20 tokens into the sender's account on L2.
                  /// @param _l1Token     Address of the L1 token being deposited.
                  /// @param _l2Token     Address of the corresponding token on L2.
                  /// @param _amount      Amount of the ERC20 to deposit.
                  /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                  /// @param _extraData   Optional data to forward to L2.
                  ///                     Data supplied here will not be used to execute any code on L2 and is
                  ///                     only emitted as extra data for the convenience of off-chain tooling.
                  function depositERC20(
                      address _l1Token,
                      address _l2Token,
                      uint256 _amount,
                      uint32 _minGasLimit,
                      bytes calldata _extraData
                  )
                      external
                      virtual
                      onlyEOA
                  {
                      _initiateERC20Deposit(_l1Token, _l2Token, msg.sender, msg.sender, _amount, _minGasLimit, _extraData);
                  }
                  /// @custom:legacy
                  /// @notice Deposits some amount of ERC20 tokens into a target account on L2.
                  /// @param _l1Token     Address of the L1 token being deposited.
                  /// @param _l2Token     Address of the corresponding token on L2.
                  /// @param _to          Address of the recipient on L2.
                  /// @param _amount      Amount of the ERC20 to deposit.
                  /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                  /// @param _extraData   Optional data to forward to L2.
                  ///                     Data supplied here will not be used to execute any code on L2 and is
                  ///                     only emitted as extra data for the convenience of off-chain tooling.
                  function depositERC20To(
                      address _l1Token,
                      address _l2Token,
                      address _to,
                      uint256 _amount,
                      uint32 _minGasLimit,
                      bytes calldata _extraData
                  )
                      external
                      virtual
                  {
                      _initiateERC20Deposit(_l1Token, _l2Token, msg.sender, _to, _amount, _minGasLimit, _extraData);
                  }
                  /// @custom:legacy
                  /// @notice Finalizes a withdrawal of ETH from L2.
                  /// @param _from      Address of the withdrawer on L2.
                  /// @param _to        Address of the recipient on L1.
                  /// @param _amount    Amount of ETH to withdraw.
                  /// @param _extraData Optional data forwarded from L2.
                  function finalizeETHWithdrawal(
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes calldata _extraData
                  )
                      external
                      payable
                  {
                      finalizeBridgeETH(_from, _to, _amount, _extraData);
                  }
                  /// @custom:legacy
                  /// @notice Finalizes a withdrawal of ERC20 tokens from L2.
                  /// @param _l1Token   Address of the token on L1.
                  /// @param _l2Token   Address of the corresponding token on L2.
                  /// @param _from      Address of the withdrawer on L2.
                  /// @param _to        Address of the recipient on L1.
                  /// @param _amount    Amount of the ERC20 to withdraw.
                  /// @param _extraData Optional data forwarded from L2.
                  function finalizeERC20Withdrawal(
                      address _l1Token,
                      address _l2Token,
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes calldata _extraData
                  )
                      external
                  {
                      finalizeBridgeERC20(_l1Token, _l2Token, _from, _to, _amount, _extraData);
                  }
                  /// @custom:legacy
                  /// @notice Retrieves the access of the corresponding L2 bridge contract.
                  /// @return Address of the corresponding L2 bridge contract.
                  function l2TokenBridge() external view returns (address) {
                      return address(otherBridge);
                  }
                  /// @notice Internal function for initiating an ETH deposit.
                  /// @param _from        Address of the sender on L1.
                  /// @param _to          Address of the recipient on L2.
                  /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                  /// @param _extraData   Optional data to forward to L2.
                  function _initiateETHDeposit(address _from, address _to, uint32 _minGasLimit, bytes memory _extraData) internal {
                      _initiateBridgeETH(_from, _to, msg.value, _minGasLimit, _extraData);
                  }
                  /// @notice Internal function for initiating an ERC20 deposit.
                  /// @param _l1Token     Address of the L1 token being deposited.
                  /// @param _l2Token     Address of the corresponding token on L2.
                  /// @param _from        Address of the sender on L1.
                  /// @param _to          Address of the recipient on L2.
                  /// @param _amount      Amount of the ERC20 to deposit.
                  /// @param _minGasLimit Minimum gas limit for the deposit message on L2.
                  /// @param _extraData   Optional data to forward to L2.
                  function _initiateERC20Deposit(
                      address _l1Token,
                      address _l2Token,
                      address _from,
                      address _to,
                      uint256 _amount,
                      uint32 _minGasLimit,
                      bytes memory _extraData
                  )
                      internal
                  {
                      _initiateBridgeERC20(_l1Token, _l2Token, _from, _to, _amount, _minGasLimit, _extraData);
                  }
                  /// @inheritdoc StandardBridge
                  /// @notice Emits the legacy ETHDepositInitiated event followed by the ETHBridgeInitiated event.
                  ///         This is necessary for backwards compatibility with the legacy bridge.
                  function _emitETHBridgeInitiated(
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes memory _extraData
                  )
                      internal
                      override
                  {
                      emit ETHDepositInitiated(_from, _to, _amount, _extraData);
                      super._emitETHBridgeInitiated(_from, _to, _amount, _extraData);
                  }
                  /// @inheritdoc StandardBridge
                  /// @notice Emits the legacy ERC20DepositInitiated event followed by the ERC20BridgeInitiated
                  ///         event. This is necessary for backwards compatibility with the legacy bridge.
                  function _emitETHBridgeFinalized(
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes memory _extraData
                  )
                      internal
                      override
                  {
                      emit ETHWithdrawalFinalized(_from, _to, _amount, _extraData);
                      super._emitETHBridgeFinalized(_from, _to, _amount, _extraData);
                  }
                  /// @inheritdoc StandardBridge
                  /// @notice Emits the legacy ERC20WithdrawalFinalized event followed by the ERC20BridgeFinalized
                  ///         event. This is necessary for backwards compatibility with the legacy bridge.
                  function _emitERC20BridgeInitiated(
                      address _localToken,
                      address _remoteToken,
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes memory _extraData
                  )
                      internal
                      override
                  {
                      emit ERC20DepositInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                      super._emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                  }
                  /// @inheritdoc StandardBridge
                  /// @notice Emits the legacy ERC20WithdrawalFinalized event followed by the ERC20BridgeFinalized
                  ///         event. This is necessary for backwards compatibility with the legacy bridge.
                  function _emitERC20BridgeFinalized(
                      address _localToken,
                      address _remoteToken,
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes memory _extraData
                  )
                      internal
                      override
                  {
                      emit ERC20WithdrawalFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                      super._emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              // Contracts
              import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
              // Libraries
              import { ERC165Checker } from "@openzeppelin/contracts/utils/introspection/ERC165Checker.sol";
              import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
              import { SafeCall } from "src/libraries/SafeCall.sol";
              import { EOA } from "src/libraries/EOA.sol";
              // Interfaces
              import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
              import { IOptimismMintableERC20 } from "interfaces/universal/IOptimismMintableERC20.sol";
              import { ILegacyMintableERC20 } from "interfaces/legacy/ILegacyMintableERC20.sol";
              import { ICrossDomainMessenger } from "interfaces/universal/ICrossDomainMessenger.sol";
              /// @custom:upgradeable
              /// @title StandardBridge
              /// @notice StandardBridge is a base contract for the L1 and L2 standard ERC20 bridges. It handles
              ///         the core bridging logic, including escrowing tokens that are native to the local chain
              ///         and minting/burning tokens that are native to the remote chain.
              abstract contract StandardBridge is Initializable {
                  using SafeERC20 for IERC20;
                  /// @notice The L2 gas limit set when eth is depoisited using the receive() function.
                  uint32 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 200_000;
                  /// @custom:legacy
                  /// @custom:spacer messenger
                  /// @notice Spacer for backwards compatibility.
                  bytes30 private spacer_0_2_30;
                  /// @custom:legacy
                  /// @custom:spacer l2TokenBridge
                  /// @notice Spacer for backwards compatibility.
                  address private spacer_1_0_20;
                  /// @notice Mapping that stores deposits for a given pair of local and remote tokens.
                  mapping(address => mapping(address => uint256)) public deposits;
                  /// @notice Messenger contract on this domain.
                  /// @custom:network-specific
                  ICrossDomainMessenger public messenger;
                  /// @notice Corresponding bridge on the other domain.
                  /// @custom:network-specific
                  StandardBridge public otherBridge;
                  /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
                  ///         A gap size of 45 was chosen here, so that the first slot used in a child contract
                  ///         would be a multiple of 50.
                  uint256[45] private __gap;
                  /// @notice Emitted when an ETH bridge is initiated to the other chain.
                  /// @param from      Address of the sender.
                  /// @param to        Address of the receiver.
                  /// @param amount    Amount of ETH sent.
                  /// @param extraData Extra data sent with the transaction.
                  event ETHBridgeInitiated(address indexed from, address indexed to, uint256 amount, bytes extraData);
                  /// @notice Emitted when an ETH bridge is finalized on this chain.
                  /// @param from      Address of the sender.
                  /// @param to        Address of the receiver.
                  /// @param amount    Amount of ETH sent.
                  /// @param extraData Extra data sent with the transaction.
                  event ETHBridgeFinalized(address indexed from, address indexed to, uint256 amount, bytes extraData);
                  /// @notice Emitted when an ERC20 bridge is initiated to the other chain.
                  /// @param localToken  Address of the ERC20 on this chain.
                  /// @param remoteToken Address of the ERC20 on the remote chain.
                  /// @param from        Address of the sender.
                  /// @param to          Address of the receiver.
                  /// @param amount      Amount of the ERC20 sent.
                  /// @param extraData   Extra data sent with the transaction.
                  event ERC20BridgeInitiated(
                      address indexed localToken,
                      address indexed remoteToken,
                      address indexed from,
                      address to,
                      uint256 amount,
                      bytes extraData
                  );
                  /// @notice Emitted when an ERC20 bridge is finalized on this chain.
                  /// @param localToken  Address of the ERC20 on this chain.
                  /// @param remoteToken Address of the ERC20 on the remote chain.
                  /// @param from        Address of the sender.
                  /// @param to          Address of the receiver.
                  /// @param amount      Amount of the ERC20 sent.
                  /// @param extraData   Extra data sent with the transaction.
                  event ERC20BridgeFinalized(
                      address indexed localToken,
                      address indexed remoteToken,
                      address indexed from,
                      address to,
                      uint256 amount,
                      bytes extraData
                  );
                  /// @notice Only allow EOAs to call the functions. Note that this is not safe against contracts
                  ///         calling code within their constructors, but also doesn't really matter since we're
                  ///         just trying to prevent users accidentally depositing with smart contract wallets.
                  modifier onlyEOA() {
                      require(EOA.isSenderEOA(), "StandardBridge: function can only be called from an EOA");
                      _;
                  }
                  /// @notice Ensures that the caller is a cross-chain message from the other bridge.
                  modifier onlyOtherBridge() {
                      require(
                          msg.sender == address(messenger) && messenger.xDomainMessageSender() == address(otherBridge),
                          "StandardBridge: function can only be called from the other bridge"
                      );
                      _;
                  }
                  /// @notice Initializer.
                  /// @param _messenger   Contract for CrossDomainMessenger on this network.
                  /// @param _otherBridge Contract for the other StandardBridge contract.
                  function __StandardBridge_init(
                      ICrossDomainMessenger _messenger,
                      StandardBridge _otherBridge
                  )
                      internal
                      onlyInitializing
                  {
                      messenger = _messenger;
                      otherBridge = _otherBridge;
                  }
                  /// @notice Allows EOAs to bridge ETH by sending directly to the bridge.
                  ///         Must be implemented by contracts that inherit.
                  receive() external payable virtual;
                  /// @notice Getter for messenger contract.
                  ///         Public getter is legacy and will be removed in the future. Use `messenger` instead.
                  /// @return Contract of the messenger on this domain.
                  /// @custom:legacy
                  function MESSENGER() external view returns (ICrossDomainMessenger) {
                      return messenger;
                  }
                  /// @notice Getter for the other bridge contract.
                  ///         Public getter is legacy and will be removed in the future. Use `otherBridge` instead.
                  /// @return Contract of the bridge on the other network.
                  /// @custom:legacy
                  function OTHER_BRIDGE() external view returns (StandardBridge) {
                      return otherBridge;
                  }
                  /// @notice This function should return true if the contract is paused.
                  ///         On L1 this function will check the SuperchainConfig for its paused status.
                  ///         On L2 this function should be a no-op.
                  /// @return Whether or not the contract is paused.
                  function paused() public view virtual returns (bool) {
                      return false;
                  }
                  /// @notice Sends ETH to the sender's address on the other chain.
                  /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                  /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                  ///                     not be triggered with this data, but it will be emitted and can be used
                  ///                     to identify the transaction.
                  function bridgeETH(uint32 _minGasLimit, bytes calldata _extraData) public payable onlyEOA {
                      _initiateBridgeETH(msg.sender, msg.sender, msg.value, _minGasLimit, _extraData);
                  }
                  /// @notice Sends ETH to a receiver's address on the other chain. Note that if ETH is sent to a
                  ///         smart contract and the call fails, the ETH will be temporarily locked in the
                  ///         StandardBridge on the other chain until the call is replayed. If the call cannot be
                  ///         replayed with any amount of gas (call always reverts), then the ETH will be
                  ///         permanently locked in the StandardBridge on the other chain. ETH will also
                  ///         be locked if the receiver is the other bridge, because finalizeBridgeETH will revert
                  ///         in that case.
                  /// @param _to          Address of the receiver.
                  /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                  /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                  ///                     not be triggered with this data, but it will be emitted and can be used
                  ///                     to identify the transaction.
                  function bridgeETHTo(address _to, uint32 _minGasLimit, bytes calldata _extraData) public payable {
                      _initiateBridgeETH(msg.sender, _to, msg.value, _minGasLimit, _extraData);
                  }
                  /// @notice Sends ERC20 tokens to the sender's address on the other chain.
                  /// @param _localToken  Address of the ERC20 on this chain.
                  /// @param _remoteToken Address of the corresponding token on the remote chain.
                  /// @param _amount      Amount of local tokens to deposit.
                  /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                  /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                  ///                     not be triggered with this data, but it will be emitted and can be used
                  ///                     to identify the transaction.
                  function bridgeERC20(
                      address _localToken,
                      address _remoteToken,
                      uint256 _amount,
                      uint32 _minGasLimit,
                      bytes calldata _extraData
                  )
                      public
                      virtual
                      onlyEOA
                  {
                      _initiateBridgeERC20(_localToken, _remoteToken, msg.sender, msg.sender, _amount, _minGasLimit, _extraData);
                  }
                  /// @notice Sends ERC20 tokens to a receiver's address on the other chain.
                  /// @param _localToken  Address of the ERC20 on this chain.
                  /// @param _remoteToken Address of the corresponding token on the remote chain.
                  /// @param _to          Address of the receiver.
                  /// @param _amount      Amount of local tokens to deposit.
                  /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                  /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                  ///                     not be triggered with this data, but it will be emitted and can be used
                  ///                     to identify the transaction.
                  function bridgeERC20To(
                      address _localToken,
                      address _remoteToken,
                      address _to,
                      uint256 _amount,
                      uint32 _minGasLimit,
                      bytes calldata _extraData
                  )
                      public
                      virtual
                  {
                      _initiateBridgeERC20(_localToken, _remoteToken, msg.sender, _to, _amount, _minGasLimit, _extraData);
                  }
                  /// @notice Finalizes an ETH bridge on this chain. Can only be triggered by the other
                  ///         StandardBridge contract on the remote chain.
                  /// @param _from      Address of the sender.
                  /// @param _to        Address of the receiver.
                  /// @param _amount    Amount of ETH being bridged.
                  /// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
                  ///                   not be triggered with this data, but it will be emitted and can be used
                  ///                   to identify the transaction.
                  function finalizeBridgeETH(
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes calldata _extraData
                  )
                      public
                      payable
                      onlyOtherBridge
                  {
                      require(paused() == false, "StandardBridge: paused");
                      require(msg.value == _amount, "StandardBridge: amount sent does not match amount required");
                      require(_to != address(this), "StandardBridge: cannot send to self");
                      require(_to != address(messenger), "StandardBridge: cannot send to messenger");
                      // Emit the correct events. By default this will be _amount, but child
                      // contracts may override this function in order to emit legacy events as well.
                      _emitETHBridgeFinalized(_from, _to, _amount, _extraData);
                      bool success = SafeCall.call(_to, gasleft(), _amount, hex"");
                      require(success, "StandardBridge: ETH transfer failed");
                  }
                  /// @notice Finalizes an ERC20 bridge on this chain. Can only be triggered by the other
                  ///         StandardBridge contract on the remote chain.
                  /// @param _localToken  Address of the ERC20 on this chain.
                  /// @param _remoteToken Address of the corresponding token on the remote chain.
                  /// @param _from        Address of the sender.
                  /// @param _to          Address of the receiver.
                  /// @param _amount      Amount of the ERC20 being bridged.
                  /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                  ///                     not be triggered with this data, but it will be emitted and can be used
                  ///                     to identify the transaction.
                  function finalizeBridgeERC20(
                      address _localToken,
                      address _remoteToken,
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes calldata _extraData
                  )
                      public
                      onlyOtherBridge
                  {
                      require(paused() == false, "StandardBridge: paused");
                      if (_isOptimismMintableERC20(_localToken)) {
                          require(
                              _isCorrectTokenPair(_localToken, _remoteToken),
                              "StandardBridge: wrong remote token for Optimism Mintable ERC20 local token"
                          );
                          IOptimismMintableERC20(_localToken).mint(_to, _amount);
                      } else {
                          deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] - _amount;
                          IERC20(_localToken).safeTransfer(_to, _amount);
                      }
                      // Emit the correct events. By default this will be ERC20BridgeFinalized, but child
                      // contracts may override this function in order to emit legacy events as well.
                      _emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                  }
                  /// @notice Initiates a bridge of ETH through the CrossDomainMessenger.
                  /// @param _from        Address of the sender.
                  /// @param _to          Address of the receiver.
                  /// @param _amount      Amount of ETH being bridged.
                  /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                  /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                  ///                     not be triggered with this data, but it will be emitted and can be used
                  ///                     to identify the transaction.
                  function _initiateBridgeETH(
                      address _from,
                      address _to,
                      uint256 _amount,
                      uint32 _minGasLimit,
                      bytes memory _extraData
                  )
                      internal
                  {
                      require(msg.value == _amount, "StandardBridge: bridging ETH must include sufficient ETH value");
                      // Emit the correct events. By default this will be _amount, but child
                      // contracts may override this function in order to emit legacy events as well.
                      _emitETHBridgeInitiated(_from, _to, _amount, _extraData);
                      messenger.sendMessage{ value: _amount }({
                          _target: address(otherBridge),
                          _message: abi.encodeWithSelector(this.finalizeBridgeETH.selector, _from, _to, _amount, _extraData),
                          _minGasLimit: _minGasLimit
                      });
                  }
                  /// @notice Sends ERC20 tokens to a receiver's address on the other chain.
                  /// @param _localToken  Address of the ERC20 on this chain.
                  /// @param _remoteToken Address of the corresponding token on the remote chain.
                  /// @param _to          Address of the receiver.
                  /// @param _amount      Amount of local tokens to deposit.
                  /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
                  /// @param _extraData   Extra data to be sent with the transaction. Note that the recipient will
                  ///                     not be triggered with this data, but it will be emitted and can be used
                  ///                     to identify the transaction.
                  function _initiateBridgeERC20(
                      address _localToken,
                      address _remoteToken,
                      address _from,
                      address _to,
                      uint256 _amount,
                      uint32 _minGasLimit,
                      bytes memory _extraData
                  )
                      internal
                  {
                      require(msg.value == 0, "StandardBridge: cannot send value");
                      if (_isOptimismMintableERC20(_localToken)) {
                          require(
                              _isCorrectTokenPair(_localToken, _remoteToken),
                              "StandardBridge: wrong remote token for Optimism Mintable ERC20 local token"
                          );
                          IOptimismMintableERC20(_localToken).burn(_from, _amount);
                      } else {
                          IERC20(_localToken).safeTransferFrom(_from, address(this), _amount);
                          deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] + _amount;
                      }
                      // Emit the correct events. By default this will be ERC20BridgeInitiated, but child
                      // contracts may override this function in order to emit legacy events as well.
                      _emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                      messenger.sendMessage({
                          _target: address(otherBridge),
                          _message: abi.encodeWithSelector(
                              this.finalizeBridgeERC20.selector,
                              // Because this call will be executed on the remote chain, we reverse the order of
                              // the remote and local token addresses relative to their order in the
                              // finalizeBridgeERC20 function.
                              _remoteToken,
                              _localToken,
                              _from,
                              _to,
                              _amount,
                              _extraData
                          ),
                          _minGasLimit: _minGasLimit
                      });
                  }
                  /// @notice Checks if a given address is an OptimismMintableERC20. Not perfect, but good enough.
                  ///         Just the way we like it.
                  /// @param _token Address of the token to check.
                  /// @return True if the token is an OptimismMintableERC20.
                  function _isOptimismMintableERC20(address _token) internal view returns (bool) {
                      return ERC165Checker.supportsInterface(_token, type(ILegacyMintableERC20).interfaceId)
                          || ERC165Checker.supportsInterface(_token, type(IOptimismMintableERC20).interfaceId);
                  }
                  /// @notice Checks if the "other token" is the correct pair token for the OptimismMintableERC20.
                  ///         Calls can be saved in the future by combining this logic with
                  ///         `_isOptimismMintableERC20`.
                  /// @param _mintableToken OptimismMintableERC20 to check against.
                  /// @param _otherToken    Pair token to check.
                  /// @return True if the other token is the correct pair token for the OptimismMintableERC20.
                  function _isCorrectTokenPair(address _mintableToken, address _otherToken) internal view returns (bool) {
                      if (ERC165Checker.supportsInterface(_mintableToken, type(ILegacyMintableERC20).interfaceId)) {
                          return _otherToken == ILegacyMintableERC20(_mintableToken).l1Token();
                      } else {
                          return _otherToken == IOptimismMintableERC20(_mintableToken).remoteToken();
                      }
                  }
                  /// @notice Emits the ETHBridgeInitiated event and if necessary the appropriate legacy event
                  ///         when an ETH bridge is finalized on this chain.
                  /// @param _from      Address of the sender.
                  /// @param _to        Address of the receiver.
                  /// @param _amount    Amount of ETH sent.
                  /// @param _extraData Extra data sent with the transaction.
                  function _emitETHBridgeInitiated(
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes memory _extraData
                  )
                      internal
                      virtual
                  {
                      emit ETHBridgeInitiated(_from, _to, _amount, _extraData);
                  }
                  /// @notice Emits the ETHBridgeFinalized and if necessary the appropriate legacy event when an
                  ///         ETH bridge is finalized on this chain.
                  /// @param _from      Address of the sender.
                  /// @param _to        Address of the receiver.
                  /// @param _amount    Amount of ETH sent.
                  /// @param _extraData Extra data sent with the transaction.
                  function _emitETHBridgeFinalized(
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes memory _extraData
                  )
                      internal
                      virtual
                  {
                      emit ETHBridgeFinalized(_from, _to, _amount, _extraData);
                  }
                  /// @notice Emits the ERC20BridgeInitiated event and if necessary the appropriate legacy
                  ///         event when an ERC20 bridge is initiated to the other chain.
                  /// @param _localToken  Address of the ERC20 on this chain.
                  /// @param _remoteToken Address of the ERC20 on the remote chain.
                  /// @param _from        Address of the sender.
                  /// @param _to          Address of the receiver.
                  /// @param _amount      Amount of the ERC20 sent.
                  /// @param _extraData   Extra data sent with the transaction.
                  function _emitERC20BridgeInitiated(
                      address _localToken,
                      address _remoteToken,
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes memory _extraData
                  )
                      internal
                      virtual
                  {
                      emit ERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                  }
                  /// @notice Emits the ERC20BridgeFinalized event and if necessary the appropriate legacy
                  ///         event when an ERC20 bridge is initiated to the other chain.
                  /// @param _localToken  Address of the ERC20 on this chain.
                  /// @param _remoteToken Address of the ERC20 on the remote chain.
                  /// @param _from        Address of the sender.
                  /// @param _to          Address of the receiver.
                  /// @param _amount      Amount of the ERC20 sent.
                  /// @param _extraData   Extra data sent with the transaction.
                  function _emitERC20BridgeFinalized(
                      address _localToken,
                      address _remoteToken,
                      address _from,
                      address _to,
                      uint256 _amount,
                      bytes memory _extraData
                  )
                      internal
                      virtual
                  {
                      emit ERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title Predeploys
              /// @notice Contains constant addresses for protocol contracts that are pre-deployed to the L2 system.
              //          This excludes the preinstalls (non-protocol contracts).
              library Predeploys {
                  /// @notice Number of predeploy-namespace addresses reserved for protocol usage.
                  uint256 internal constant PREDEPLOY_COUNT = 2048;
                  /// @custom:legacy
                  /// @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated
                  ///         L2ToL1MessagePasser contract instead.
                  address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000;
                  /// @custom:legacy
                  /// @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger
                  ///         or access tx.origin (or msg.sender) in a L1 to L2 transaction instead.
                  ///         Not embedded into new OP-Stack chains.
                  address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001;
                  /// @custom:legacy
                  /// @notice Address of the DeployerWhitelist predeploy. No longer active.
                  address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002;
                  /// @notice Address of the canonical WETH contract.
                  address internal constant WETH = 0x4200000000000000000000000000000000000006;
                  /// @notice Address of the L2CrossDomainMessenger predeploy.
                  address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007;
                  /// @notice Address of the GasPriceOracle predeploy. Includes fee information
                  ///         and helpers for computing the L1 portion of the transaction fee.
                  address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F;
                  /// @notice Address of the L2StandardBridge predeploy.
                  address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010;
                  //// @notice Address of the SequencerFeeWallet predeploy.
                  address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;
                  /// @notice Address of the OptimismMintableERC20Factory predeploy.
                  address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012;
                  /// @custom:legacy
                  /// @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy
                  ///         instead, which exposes more information about the L1 state.
                  address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013;
                  /// @notice Address of the L2ERC721Bridge predeploy.
                  address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014;
                  /// @notice Address of the L1Block predeploy.
                  address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015;
                  /// @notice Address of the L2ToL1MessagePasser predeploy.
                  address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016;
                  /// @notice Address of the OptimismMintableERC721Factory predeploy.
                  address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017;
                  /// @notice Address of the ProxyAdmin predeploy.
                  address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018;
                  /// @notice Address of the BaseFeeVault predeploy.
                  address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019;
                  /// @notice Address of the L1FeeVault predeploy.
                  address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A;
                  /// @notice Address of the SchemaRegistry predeploy.
                  address internal constant SCHEMA_REGISTRY = 0x4200000000000000000000000000000000000020;
                  /// @notice Address of the EAS predeploy.
                  address internal constant EAS = 0x4200000000000000000000000000000000000021;
                  /// @notice Address of the GovernanceToken predeploy.
                  address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042;
                  /// @custom:legacy
                  /// @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the
                  ///         state trie as of the Bedrock upgrade. Contract has been locked and write functions
                  ///         can no longer be accessed.
                  address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000;
                  /// @notice Address of the CrossL2Inbox predeploy.
                  address internal constant CROSS_L2_INBOX = 0x4200000000000000000000000000000000000022;
                  /// @notice Address of the L2ToL2CrossDomainMessenger predeploy.
                  address internal constant L2_TO_L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000023;
                  /// @notice Address of the SuperchainWETH predeploy.
                  address internal constant SUPERCHAIN_WETH = 0x4200000000000000000000000000000000000024;
                  /// @notice Address of the ETHLiquidity predeploy.
                  address internal constant ETH_LIQUIDITY = 0x4200000000000000000000000000000000000025;
                  /// @notice Address of the OptimismSuperchainERC20Factory predeploy.
                  address internal constant OPTIMISM_SUPERCHAIN_ERC20_FACTORY = 0x4200000000000000000000000000000000000026;
                  /// @notice Address of the OptimismSuperchainERC20Beacon predeploy.
                  address internal constant OPTIMISM_SUPERCHAIN_ERC20_BEACON = 0x4200000000000000000000000000000000000027;
                  // TODO: Precalculate the address of the implementation contract
                  /// @notice Arbitrary address of the OptimismSuperchainERC20 implementation contract.
                  address internal constant OPTIMISM_SUPERCHAIN_ERC20 = 0xB9415c6cA93bdC545D4c5177512FCC22EFa38F28;
                  /// @notice Address of the SuperchainTokenBridge predeploy.
                  address internal constant SUPERCHAIN_TOKEN_BRIDGE = 0x4200000000000000000000000000000000000028;
                  /// @notice Returns the name of the predeploy at the given address.
                  function getName(address _addr) internal pure returns (string memory out_) {
                      require(isPredeployNamespace(_addr), "Predeploys: address must be a predeploy");
                      if (_addr == LEGACY_MESSAGE_PASSER) return "LegacyMessagePasser";
                      if (_addr == L1_MESSAGE_SENDER) return "L1MessageSender";
                      if (_addr == DEPLOYER_WHITELIST) return "DeployerWhitelist";
                      if (_addr == WETH) return "WETH";
                      if (_addr == L2_CROSS_DOMAIN_MESSENGER) return "L2CrossDomainMessenger";
                      if (_addr == GAS_PRICE_ORACLE) return "GasPriceOracle";
                      if (_addr == L2_STANDARD_BRIDGE) return "L2StandardBridge";
                      if (_addr == SEQUENCER_FEE_WALLET) return "SequencerFeeVault";
                      if (_addr == OPTIMISM_MINTABLE_ERC20_FACTORY) return "OptimismMintableERC20Factory";
                      if (_addr == L1_BLOCK_NUMBER) return "L1BlockNumber";
                      if (_addr == L2_ERC721_BRIDGE) return "L2ERC721Bridge";
                      if (_addr == L1_BLOCK_ATTRIBUTES) return "L1Block";
                      if (_addr == L2_TO_L1_MESSAGE_PASSER) return "L2ToL1MessagePasser";
                      if (_addr == OPTIMISM_MINTABLE_ERC721_FACTORY) return "OptimismMintableERC721Factory";
                      if (_addr == PROXY_ADMIN) return "ProxyAdmin";
                      if (_addr == BASE_FEE_VAULT) return "BaseFeeVault";
                      if (_addr == L1_FEE_VAULT) return "L1FeeVault";
                      if (_addr == SCHEMA_REGISTRY) return "SchemaRegistry";
                      if (_addr == EAS) return "EAS";
                      if (_addr == GOVERNANCE_TOKEN) return "GovernanceToken";
                      if (_addr == LEGACY_ERC20_ETH) return "LegacyERC20ETH";
                      if (_addr == CROSS_L2_INBOX) return "CrossL2Inbox";
                      if (_addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER) return "L2ToL2CrossDomainMessenger";
                      if (_addr == SUPERCHAIN_WETH) return "SuperchainWETH";
                      if (_addr == ETH_LIQUIDITY) return "ETHLiquidity";
                      if (_addr == OPTIMISM_SUPERCHAIN_ERC20_FACTORY) return "OptimismSuperchainERC20Factory";
                      if (_addr == OPTIMISM_SUPERCHAIN_ERC20_BEACON) return "OptimismSuperchainERC20Beacon";
                      if (_addr == SUPERCHAIN_TOKEN_BRIDGE) return "SuperchainTokenBridge";
                      revert("Predeploys: unnamed predeploy");
                  }
                  /// @notice Returns true if the predeploy is not proxied.
                  function notProxied(address _addr) internal pure returns (bool) {
                      return _addr == GOVERNANCE_TOKEN || _addr == WETH;
                  }
                  /// @notice Returns true if the address is a defined predeploy that is embedded into new OP-Stack chains.
                  function isSupportedPredeploy(address _addr, bool _useInterop) internal pure returns (bool) {
                      return _addr == LEGACY_MESSAGE_PASSER || _addr == DEPLOYER_WHITELIST || _addr == WETH
                          || _addr == L2_CROSS_DOMAIN_MESSENGER || _addr == GAS_PRICE_ORACLE || _addr == L2_STANDARD_BRIDGE
                          || _addr == SEQUENCER_FEE_WALLET || _addr == OPTIMISM_MINTABLE_ERC20_FACTORY || _addr == L1_BLOCK_NUMBER
                          || _addr == L2_ERC721_BRIDGE || _addr == L1_BLOCK_ATTRIBUTES || _addr == L2_TO_L1_MESSAGE_PASSER
                          || _addr == OPTIMISM_MINTABLE_ERC721_FACTORY || _addr == PROXY_ADMIN || _addr == BASE_FEE_VAULT
                          || _addr == L1_FEE_VAULT || _addr == SCHEMA_REGISTRY || _addr == EAS || _addr == GOVERNANCE_TOKEN
                          || (_useInterop && _addr == CROSS_L2_INBOX) || (_useInterop && _addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER)
                          || (_useInterop && _addr == SUPERCHAIN_WETH) || (_useInterop && _addr == ETH_LIQUIDITY)
                          || (_useInterop && _addr == SUPERCHAIN_TOKEN_BRIDGE);
                  }
                  function isPredeployNamespace(address _addr) internal pure returns (bool) {
                      return uint160(_addr) >> 11 == uint160(0x4200000000000000000000000000000000000000) >> 11;
                  }
                  /// @notice Function to compute the expected address of the predeploy implementation
                  ///         in the genesis state.
                  function predeployToCodeNamespace(address _addr) internal pure returns (address) {
                      require(
                          isPredeployNamespace(_addr), "Predeploys: can only derive code-namespace address for predeploy addresses"
                      );
                      return address(
                          uint160(uint256(uint160(_addr)) & 0xffff | uint256(uint160(0xc0D3C0d3C0d3C0D3c0d3C0d3c0D3C0d3c0d30000)))
                      );
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title ISemver
              /// @notice ISemver is a simple contract for ensuring that contracts are
              ///         versioned using semantic versioning.
              interface ISemver {
                  /// @notice Getter for the semantic version of the contract. This is not
                  ///         meant to be used onchain but instead meant to be used by offchain
                  ///         tooling.
                  /// @return Semver contract version as a string.
                  function version() external view returns (string memory);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              interface ICrossDomainMessenger {
                  event FailedRelayedMessage(bytes32 indexed msgHash);
                  event Initialized(uint8 version);
                  event RelayedMessage(bytes32 indexed msgHash);
                  event SentMessage(address indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit);
                  event SentMessageExtension1(address indexed sender, uint256 value);
                  function MESSAGE_VERSION() external view returns (uint16);
                  function MIN_GAS_CALLDATA_OVERHEAD() external view returns (uint64);
                  function MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR() external view returns (uint64);
                  function MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR() external view returns (uint64);
                  function OTHER_MESSENGER() external view returns (ICrossDomainMessenger);
                  function RELAY_CALL_OVERHEAD() external view returns (uint64);
                  function RELAY_CONSTANT_OVERHEAD() external view returns (uint64);
                  function RELAY_GAS_CHECK_BUFFER() external view returns (uint64);
                  function RELAY_RESERVED_GAS() external view returns (uint64);
                  function baseGas(bytes memory _message, uint32 _minGasLimit) external pure returns (uint64);
                  function failedMessages(bytes32) external view returns (bool);
                  function messageNonce() external view returns (uint256);
                  function otherMessenger() external view returns (ICrossDomainMessenger);
                  function paused() external view returns (bool);
                  function relayMessage(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _minGasLimit,
                      bytes memory _message
                  )
                      external
                      payable;
                  function sendMessage(address _target, bytes memory _message, uint32 _minGasLimit) external payable;
                  function successfulMessages(bytes32) external view returns (bool);
                  function xDomainMessageSender() external view returns (address);
                  function __constructor__() external;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              interface ISuperchainConfig {
                  enum UpdateType {
                      GUARDIAN
                  }
                  event ConfigUpdate(UpdateType indexed updateType, bytes data);
                  event Initialized(uint8 version);
                  event Paused(string identifier);
                  event Unpaused();
                  function GUARDIAN_SLOT() external view returns (bytes32);
                  function PAUSED_SLOT() external view returns (bytes32);
                  function guardian() external view returns (address guardian_);
                  function initialize(address _guardian, bool _paused) external;
                  function pause(string memory _identifier) external;
                  function paused() external view returns (bool paused_);
                  function unpause() external;
                  function version() external view returns (string memory);
                  function __constructor__() external;
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
              pragma solidity ^0.8.2;
              import "../../utils/Address.sol";
              /**
               * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
               * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
               * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
               * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
               *
               * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
               * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
               * case an upgrade adds a module that needs to be initialized.
               *
               * For example:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * contract MyToken is ERC20Upgradeable {
               *     function initialize() initializer public {
               *         __ERC20_init("MyToken", "MTK");
               *     }
               * }
               * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
               *     function initializeV2() reinitializer(2) public {
               *         __ERC20Permit_init("MyToken");
               *     }
               * }
               * ```
               *
               * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
               * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
               *
               * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
               * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
               *
               * [CAUTION]
               * ====
               * Avoid leaving a contract uninitialized.
               *
               * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
               * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
               * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * /// @custom:oz-upgrades-unsafe-allow constructor
               * constructor() {
               *     _disableInitializers();
               * }
               * ```
               * ====
               */
              abstract contract Initializable {
                  /**
                   * @dev Indicates that the contract has been initialized.
                   * @custom:oz-retyped-from bool
                   */
                  uint8 private _initialized;
                  /**
                   * @dev Indicates that the contract is in the process of being initialized.
                   */
                  bool private _initializing;
                  /**
                   * @dev Triggered when the contract has been initialized or reinitialized.
                   */
                  event Initialized(uint8 version);
                  /**
                   * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                   * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                   */
                  modifier initializer() {
                      bool isTopLevelCall = !_initializing;
                      require(
                          (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                          "Initializable: contract is already initialized"
                      );
                      _initialized = 1;
                      if (isTopLevelCall) {
                          _initializing = true;
                      }
                      _;
                      if (isTopLevelCall) {
                          _initializing = false;
                          emit Initialized(1);
                      }
                  }
                  /**
                   * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                   * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                   * used to initialize parent contracts.
                   *
                   * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                   * initialization step. This is essential to configure modules that are added through upgrades and that require
                   * initialization.
                   *
                   * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                   * a contract, executing them in the right order is up to the developer or operator.
                   */
                  modifier reinitializer(uint8 version) {
                      require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                      _initialized = version;
                      _initializing = true;
                      _;
                      _initializing = false;
                      emit Initialized(version);
                  }
                  /**
                   * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                   * {initializer} and {reinitializer} modifiers, directly or indirectly.
                   */
                  modifier onlyInitializing() {
                      require(_initializing, "Initializable: contract is not initializing");
                      _;
                  }
                  /**
                   * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                   * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                   * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                   * through proxies.
                   */
                  function _disableInitializers() internal virtual {
                      require(!_initializing, "Initializable: contract is initializing");
                      if (_initialized < type(uint8).max) {
                          _initialized = type(uint8).max;
                          emit Initialized(type(uint8).max);
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.2) (utils/introspection/ERC165Checker.sol)
              pragma solidity ^0.8.0;
              import "./IERC165.sol";
              /**
               * @dev Library used to query support of an interface declared via {IERC165}.
               *
               * Note that these functions return the actual result of the query: they do not
               * `revert` if an interface is not supported. It is up to the caller to decide
               * what to do in these cases.
               */
              library ERC165Checker {
                  // As per the EIP-165 spec, no interface should ever match 0xffffffff
                  bytes4 private constant _INTERFACE_ID_INVALID = 0xffffffff;
                  /**
                   * @dev Returns true if `account` supports the {IERC165} interface,
                   */
                  function supportsERC165(address account) internal view returns (bool) {
                      // Any contract that implements ERC165 must explicitly indicate support of
                      // InterfaceId_ERC165 and explicitly indicate non-support of InterfaceId_Invalid
                      return
                          _supportsERC165Interface(account, type(IERC165).interfaceId) &&
                          !_supportsERC165Interface(account, _INTERFACE_ID_INVALID);
                  }
                  /**
                   * @dev Returns true if `account` supports the interface defined by
                   * `interfaceId`. Support for {IERC165} itself is queried automatically.
                   *
                   * See {IERC165-supportsInterface}.
                   */
                  function supportsInterface(address account, bytes4 interfaceId) internal view returns (bool) {
                      // query support of both ERC165 as per the spec and support of _interfaceId
                      return supportsERC165(account) && _supportsERC165Interface(account, interfaceId);
                  }
                  /**
                   * @dev Returns a boolean array where each value corresponds to the
                   * interfaces passed in and whether they're supported or not. This allows
                   * you to batch check interfaces for a contract where your expectation
                   * is that some interfaces may not be supported.
                   *
                   * See {IERC165-supportsInterface}.
                   *
                   * _Available since v3.4._
                   */
                  function getSupportedInterfaces(address account, bytes4[] memory interfaceIds)
                      internal
                      view
                      returns (bool[] memory)
                  {
                      // an array of booleans corresponding to interfaceIds and whether they're supported or not
                      bool[] memory interfaceIdsSupported = new bool[](interfaceIds.length);
                      // query support of ERC165 itself
                      if (supportsERC165(account)) {
                          // query support of each interface in interfaceIds
                          for (uint256 i = 0; i < interfaceIds.length; i++) {
                              interfaceIdsSupported[i] = _supportsERC165Interface(account, interfaceIds[i]);
                          }
                      }
                      return interfaceIdsSupported;
                  }
                  /**
                   * @dev Returns true if `account` supports all the interfaces defined in
                   * `interfaceIds`. Support for {IERC165} itself is queried automatically.
                   *
                   * Batch-querying can lead to gas savings by skipping repeated checks for
                   * {IERC165} support.
                   *
                   * See {IERC165-supportsInterface}.
                   */
                  function supportsAllInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool) {
                      // query support of ERC165 itself
                      if (!supportsERC165(account)) {
                          return false;
                      }
                      // query support of each interface in _interfaceIds
                      for (uint256 i = 0; i < interfaceIds.length; i++) {
                          if (!_supportsERC165Interface(account, interfaceIds[i])) {
                              return false;
                          }
                      }
                      // all interfaces supported
                      return true;
                  }
                  /**
                   * @notice Query if a contract implements an interface, does not check ERC165 support
                   * @param account The address of the contract to query for support of an interface
                   * @param interfaceId The interface identifier, as specified in ERC-165
                   * @return true if the contract at account indicates support of the interface with
                   * identifier interfaceId, false otherwise
                   * @dev Assumes that account contains a contract that supports ERC165, otherwise
                   * the behavior of this method is undefined. This precondition can be checked
                   * with {supportsERC165}.
                   * Interface identification is specified in ERC-165.
                   */
                  function _supportsERC165Interface(address account, bytes4 interfaceId) private view returns (bool) {
                      // prepare call
                      bytes memory encodedParams = abi.encodeWithSelector(IERC165.supportsInterface.selector, interfaceId);
                      // perform static call
                      bool success;
                      uint256 returnSize;
                      uint256 returnValue;
                      assembly {
                          success := staticcall(30000, account, add(encodedParams, 0x20), mload(encodedParams), 0x00, 0x20)
                          returnSize := returndatasize()
                          returnValue := mload(0x00)
                      }
                      return success && returnSize >= 0x20 && returnValue > 0;
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)
              pragma solidity ^0.8.0;
              import "../IERC20.sol";
              import "../extensions/draft-IERC20Permit.sol";
              import "../../../utils/Address.sol";
              /**
               * @title SafeERC20
               * @dev Wrappers around ERC20 operations that throw on failure (when the token
               * contract returns false). Tokens that return no value (and instead revert or
               * throw on failure) are also supported, non-reverting calls are assumed to be
               * successful.
               * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
               * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
               */
              library SafeERC20 {
                  using Address for address;
                  function safeTransfer(
                      IERC20 token,
                      address to,
                      uint256 value
                  ) internal {
                      _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                  }
                  function safeTransferFrom(
                      IERC20 token,
                      address from,
                      address to,
                      uint256 value
                  ) internal {
                      _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                  }
                  /**
                   * @dev Deprecated. This function has issues similar to the ones found in
                   * {IERC20-approve}, and its usage is discouraged.
                   *
                   * Whenever possible, use {safeIncreaseAllowance} and
                   * {safeDecreaseAllowance} instead.
                   */
                  function safeApprove(
                      IERC20 token,
                      address spender,
                      uint256 value
                  ) internal {
                      // safeApprove should only be called when setting an initial allowance,
                      // or when resetting it to zero. To increase and decrease it, use
                      // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                      require(
                          (value == 0) || (token.allowance(address(this), spender) == 0),
                          "SafeERC20: approve from non-zero to non-zero allowance"
                      );
                      _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                  }
                  function safeIncreaseAllowance(
                      IERC20 token,
                      address spender,
                      uint256 value
                  ) internal {
                      uint256 newAllowance = token.allowance(address(this), spender) + value;
                      _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                  }
                  function safeDecreaseAllowance(
                      IERC20 token,
                      address spender,
                      uint256 value
                  ) internal {
                      unchecked {
                          uint256 oldAllowance = token.allowance(address(this), spender);
                          require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                          uint256 newAllowance = oldAllowance - value;
                          _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                      }
                  }
                  function safePermit(
                      IERC20Permit token,
                      address owner,
                      address spender,
                      uint256 value,
                      uint256 deadline,
                      uint8 v,
                      bytes32 r,
                      bytes32 s
                  ) internal {
                      uint256 nonceBefore = token.nonces(owner);
                      token.permit(owner, spender, value, deadline, v, r, s);
                      uint256 nonceAfter = token.nonces(owner);
                      require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
                  }
                  /**
                   * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                   * on the return value: the return value is optional (but if data is returned, it must not be false).
                   * @param token The token targeted by the call.
                   * @param data The call data (encoded using abi.encode or one of its variants).
                   */
                  function _callOptionalReturn(IERC20 token, bytes memory data) private {
                      // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                      // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
                      // the target address contains contract code and also asserts for success in the low-level call.
                      bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                      if (returndata.length > 0) {
                          // Return data is optional
                          require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title SafeCall
              /// @notice Perform low level safe calls
              library SafeCall {
                  /// @notice Performs a low level call without copying any returndata.
                  /// @dev Passes no calldata to the call context.
                  /// @param _target   Address to call
                  /// @param _gas      Amount of gas to pass to the call
                  /// @param _value    Amount of value to pass to the call
                  function send(address _target, uint256 _gas, uint256 _value) internal returns (bool success_) {
                      assembly {
                          success_ :=
                              call(
                                  _gas, // gas
                                  _target, // recipient
                                  _value, // ether value
                                  0, // inloc
                                  0, // inlen
                                  0, // outloc
                                  0 // outlen
                              )
                      }
                  }
                  /// @notice Perform a low level call with all gas without copying any returndata
                  /// @param _target   Address to call
                  /// @param _value    Amount of value to pass to the call
                  function send(address _target, uint256 _value) internal returns (bool success_) {
                      success_ = send(_target, gasleft(), _value);
                  }
                  /// @notice Perform a low level call without copying any returndata
                  /// @param _target   Address to call
                  /// @param _gas      Amount of gas to pass to the call
                  /// @param _value    Amount of value to pass to the call
                  /// @param _calldata Calldata to pass to the call
                  function call(
                      address _target,
                      uint256 _gas,
                      uint256 _value,
                      bytes memory _calldata
                  )
                      internal
                      returns (bool success_)
                  {
                      assembly {
                          success_ :=
                              call(
                                  _gas, // gas
                                  _target, // recipient
                                  _value, // ether value
                                  add(_calldata, 32), // inloc
                                  mload(_calldata), // inlen
                                  0, // outloc
                                  0 // outlen
                              )
                      }
                  }
                  /// @notice Perform a low level call without copying any returndata
                  /// @param _target   Address to call
                  /// @param _value    Amount of value to pass to the call
                  /// @param _calldata Calldata to pass to the call
                  function call(address _target, uint256 _value, bytes memory _calldata) internal returns (bool success_) {
                      success_ = call({ _target: _target, _gas: gasleft(), _value: _value, _calldata: _calldata });
                  }
                  /// @notice Perform a low level call without copying any returndata
                  /// @param _target   Address to call
                  /// @param _calldata Calldata to pass to the call
                  function call(address _target, bytes memory _calldata) internal returns (bool success_) {
                      success_ = call({ _target: _target, _gas: gasleft(), _value: 0, _calldata: _calldata });
                  }
                  /// @notice Helper function to determine if there is sufficient gas remaining within the context
                  ///         to guarantee that the minimum gas requirement for a call will be met as well as
                  ///         optionally reserving a specified amount of gas for after the call has concluded.
                  /// @param _minGas      The minimum amount of gas that may be passed to the target context.
                  /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
                  ///                     of the target context.
                  /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
                  ///         context as well as reserve `_reservedGas` for the caller after the execution of
                  ///         the target context.
                  /// @dev !!!!! FOOTGUN ALERT !!!!!
                  ///      1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
                  ///          `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
                  ///          `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
                  ///          still possible to self-rekt by initiating a withdrawal with a minimum gas limit
                  ///          that does not account for the `memory_expansion_cost` & `code_execution_cost`
                  ///          factors of the dynamic cost of the `CALL` opcode.
                  ///      2.) This function should *directly* precede the external call if possible. There is an
                  ///          added buffer to account for gas consumed between this check and the call, but it
                  ///          is only 5,700 gas.
                  ///      3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
                  ///          frame may be passed to a subcontext, we need to ensure that the gas will not be
                  ///          truncated.
                  ///      4.) Use wisely. This function is not a silver bullet.
                  function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
                      bool _hasMinGas;
                      assembly {
                          // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
                          _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
                      }
                      return _hasMinGas;
                  }
                  /// @notice Perform a low level call without copying any returndata. This function
                  ///         will revert if the call cannot be performed with the specified minimum
                  ///         gas.
                  /// @param _target   Address to call
                  /// @param _minGas   The minimum amount of gas that may be passed to the call
                  /// @param _value    Amount of value to pass to the call
                  /// @param _calldata Calldata to pass to the call
                  function callWithMinGas(
                      address _target,
                      uint256 _minGas,
                      uint256 _value,
                      bytes memory _calldata
                  )
                      internal
                      returns (bool)
                  {
                      bool _success;
                      bool _hasMinGas = hasMinGas(_minGas, 0);
                      assembly {
                          // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
                          if iszero(_hasMinGas) {
                              // Store the "Error(string)" selector in scratch space.
                              mstore(0, 0x08c379a0)
                              // Store the pointer to the string length in scratch space.
                              mstore(32, 32)
                              // Store the string.
                              //
                              // SAFETY:
                              // - We pad the beginning of the string with two zero bytes as well as the
                              // length (24) to ensure that we override the free memory pointer at offset
                              // 0x40. This is necessary because the free memory pointer is likely to
                              // be greater than 1 byte when this function is called, but it is incredibly
                              // unlikely that it will be greater than 3 bytes. As for the data within
                              // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                              // - It's fine to clobber the free memory pointer, we're reverting.
                              mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
                              // Revert with 'Error("SafeCall: Not enough gas")'
                              revert(28, 100)
                          }
                          // The call will be supplied at least ((_minGas * 64) / 63) gas due to the
                          // above assertion. This ensures that, in all circumstances (except for when the
                          // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
                          // factors of the dynamic cost of the `CALL` opcode), the call will receive at least
                          // the minimum amount of gas specified.
                          _success :=
                              call(
                                  gas(), // gas
                                  _target, // recipient
                                  _value, // ether value
                                  add(_calldata, 32), // inloc
                                  mload(_calldata), // inlen
                                  0x00, // outloc
                                  0x00 // outlen
                              )
                      }
                      return _success;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title EOA
              /// @notice A library for detecting if an address is an EOA.
              library EOA {
                  /// @notice Returns true if sender address is an EOA.
                  /// @return isEOA_ True if the sender address is an EOA.
                  function isSenderEOA() internal view returns (bool isEOA_) {
                      if (msg.sender == tx.origin) {
                          isEOA_ = true;
                      } else {
                          // If the sender is not the origin, check for 7702 delegated EOAs.
                          assembly {
                              let ptr := mload(0x40)
                              mstore(0x40, add(ptr, 0x20))
                              extcodecopy(caller(), ptr, 0, 0x20)
                              isEOA_ := eq(shr(232, mload(ptr)), 0xEF0100)
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Interface of the ERC20 standard as defined in the EIP.
               */
              interface IERC20 {
                  /**
                   * @dev Emitted when `value` tokens are moved from one account (`from`) to
                   * another (`to`).
                   *
                   * Note that `value` may be zero.
                   */
                  event Transfer(address indexed from, address indexed to, uint256 value);
                  /**
                   * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                   * a call to {approve}. `value` is the new allowance.
                   */
                  event Approval(address indexed owner, address indexed spender, uint256 value);
                  /**
                   * @dev Returns the amount of tokens in existence.
                   */
                  function totalSupply() external view returns (uint256);
                  /**
                   * @dev Returns the amount of tokens owned by `account`.
                   */
                  function balanceOf(address account) external view returns (uint256);
                  /**
                   * @dev Moves `amount` tokens from the caller's account to `to`.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transfer(address to, uint256 amount) external returns (bool);
                  /**
                   * @dev Returns the remaining number of tokens that `spender` will be
                   * allowed to spend on behalf of `owner` through {transferFrom}. This is
                   * zero by default.
                   *
                   * This value changes when {approve} or {transferFrom} are called.
                   */
                  function allowance(address owner, address spender) external view returns (uint256);
                  /**
                   * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * IMPORTANT: Beware that changing an allowance with this method brings the risk
                   * that someone may use both the old and the new allowance by unfortunate
                   * transaction ordering. One possible solution to mitigate this race
                   * condition is to first reduce the spender's allowance to 0 and set the
                   * desired value afterwards:
                   * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                   *
                   * Emits an {Approval} event.
                   */
                  function approve(address spender, uint256 amount) external returns (bool);
                  /**
                   * @dev Moves `amount` tokens from `from` to `to` using the
                   * allowance mechanism. `amount` is then deducted from the caller's
                   * allowance.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transferFrom(
                      address from,
                      address to,
                      uint256 amount
                  ) external returns (bool);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
              /// @title IOptimismMintableERC20
              /// @notice This interface is available on the OptimismMintableERC20 contract.
              ///         We declare it as a separate interface so that it can be used in
              ///         custom implementations of OptimismMintableERC20.
              interface IOptimismMintableERC20 is IERC165 {
                  function remoteToken() external view returns (address);
                  function bridge() external returns (address);
                  function mint(address _to, uint256 _amount) external;
                  function burn(address _from, uint256 _amount) external;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
              /// @custom:legacy
              /// @title ILegacyMintableERC20
              /// @notice This interface was available on the legacy L2StandardERC20 contract.
              ///         It remains available on the OptimismMintableERC20 contract for
              ///         backwards compatibility.
              interface ILegacyMintableERC20 is IERC165 {
                  function l1Token() external view returns (address);
                  function mint(address _to, uint256 _amount) external;
                  function burn(address _from, uint256 _amount) external;
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
              pragma solidity ^0.8.1;
              /**
               * @dev Collection of functions related to the address type
               */
              library Address {
                  /**
                   * @dev Returns true if `account` is a contract.
                   *
                   * [IMPORTANT]
                   * ====
                   * It is unsafe to assume that an address for which this function returns
                   * false is an externally-owned account (EOA) and not a contract.
                   *
                   * Among others, `isContract` will return false for the following
                   * types of addresses:
                   *
                   *  - an externally-owned account
                   *  - a contract in construction
                   *  - an address where a contract will be created
                   *  - an address where a contract lived, but was destroyed
                   * ====
                   *
                   * [IMPORTANT]
                   * ====
                   * You shouldn't rely on `isContract` to protect against flash loan attacks!
                   *
                   * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                   * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                   * constructor.
                   * ====
                   */
                  function isContract(address account) internal view returns (bool) {
                      // This method relies on extcodesize/address.code.length, which returns 0
                      // for contracts in construction, since the code is only stored at the end
                      // of the constructor execution.
                      return account.code.length > 0;
                  }
                  /**
                   * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                   * `recipient`, forwarding all available gas and reverting on errors.
                   *
                   * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                   * of certain opcodes, possibly making contracts go over the 2300 gas limit
                   * imposed by `transfer`, making them unable to receive funds via
                   * `transfer`. {sendValue} removes this limitation.
                   *
                   * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                   *
                   * IMPORTANT: because control is transferred to `recipient`, care must be
                   * taken to not create reentrancy vulnerabilities. Consider using
                   * {ReentrancyGuard} or the
                   * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                   */
                  function sendValue(address payable recipient, uint256 amount) internal {
                      require(address(this).balance >= amount, "Address: insufficient balance");
                      (bool success, ) = recipient.call{value: amount}("");
                      require(success, "Address: unable to send value, recipient may have reverted");
                  }
                  /**
                   * @dev Performs a Solidity function call using a low level `call`. A
                   * plain `call` is an unsafe replacement for a function call: use this
                   * function instead.
                   *
                   * If `target` reverts with a revert reason, it is bubbled up by this
                   * function (like regular Solidity function calls).
                   *
                   * Returns the raw returned data. To convert to the expected return value,
                   * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                   *
                   * Requirements:
                   *
                   * - `target` must be a contract.
                   * - calling `target` with `data` must not revert.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionCall(target, data, "Address: low-level call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                   * `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, 0, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but also transferring `value` wei to `target`.
                   *
                   * Requirements:
                   *
                   * - the calling contract must have an ETH balance of at least `value`.
                   * - the called Solidity function must be `payable`.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                   * with `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(address(this).balance >= value, "Address: insufficient balance for call");
                      require(isContract(target), "Address: call to non-contract");
                      (bool success, bytes memory returndata) = target.call{value: value}(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                      return functionStaticCall(target, data, "Address: low-level static call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal view returns (bytes memory) {
                      require(isContract(target), "Address: static call to non-contract");
                      (bool success, bytes memory returndata) = target.staticcall(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(isContract(target), "Address: delegate call to non-contract");
                      (bool success, bytes memory returndata) = target.delegatecall(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                   * revert reason using the provided one.
                   *
                   * _Available since v4.3._
                   */
                  function verifyCallResult(
                      bool success,
                      bytes memory returndata,
                      string memory errorMessage
                  ) internal pure returns (bytes memory) {
                      if (success) {
                          return returndata;
                      } else {
                          // Look for revert reason and bubble it up if present
                          if (returndata.length > 0) {
                              // The easiest way to bubble the revert reason is using memory via assembly
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let returndata_size := mload(returndata)
                                  revert(add(32, returndata), returndata_size)
                              }
                          } else {
                              revert(errorMessage);
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Interface of the ERC165 standard, as defined in the
               * https://eips.ethereum.org/EIPS/eip-165[EIP].
               *
               * Implementers can declare support of contract interfaces, which can then be
               * queried by others ({ERC165Checker}).
               *
               * For an implementation, see {ERC165}.
               */
              interface IERC165 {
                  /**
                   * @dev Returns true if this contract implements the interface defined by
                   * `interfaceId`. See the corresponding
                   * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
                   * to learn more about how these ids are created.
                   *
                   * This function call must use less than 30 000 gas.
                   */
                  function supportsInterface(bytes4 interfaceId) external view returns (bool);
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
               * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
               *
               * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
               * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
               * need to send a transaction, and thus is not required to hold Ether at all.
               */
              interface IERC20Permit {
                  /**
                   * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
                   * given ``owner``'s signed approval.
                   *
                   * IMPORTANT: The same issues {IERC20-approve} has related to transaction
                   * ordering also apply here.
                   *
                   * Emits an {Approval} event.
                   *
                   * Requirements:
                   *
                   * - `spender` cannot be the zero address.
                   * - `deadline` must be a timestamp in the future.
                   * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
                   * over the EIP712-formatted function arguments.
                   * - the signature must use ``owner``'s current nonce (see {nonces}).
                   *
                   * For more information on the signature format, see the
                   * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
                   * section].
                   */
                  function permit(
                      address owner,
                      address spender,
                      uint256 value,
                      uint256 deadline,
                      uint8 v,
                      bytes32 r,
                      bytes32 s
                  ) external;
                  /**
                   * @dev Returns the current nonce for `owner`. This value must be
                   * included whenever a signature is generated for {permit}.
                   *
                   * Every successful call to {permit} increases ``owner``'s nonce by one. This
                   * prevents a signature from being used multiple times.
                   */
                  function nonces(address owner) external view returns (uint256);
                  /**
                   * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
                   */
                  // solhint-disable-next-line func-name-mixedcase
                  function DOMAIN_SEPARATOR() external view returns (bytes32);
              }
              

              File 7 of 10: Lib_AddressManager
              // SPDX-License-Identifier: MIT
              pragma solidity >=0.6.0 <0.8.0;
              import "../utils/Context.sol";
              /**
               * @dev Contract module which provides a basic access control mechanism, where
               * there is an account (an owner) that can be granted exclusive access to
               * specific functions.
               *
               * By default, the owner account will be the one that deploys the contract. This
               * can later be changed with {transferOwnership}.
               *
               * This module is used through inheritance. It will make available the modifier
               * `onlyOwner`, which can be applied to your functions to restrict their use to
               * the owner.
               */
              abstract contract Ownable is Context {
                  address private _owner;
                  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                  /**
                   * @dev Initializes the contract setting the deployer as the initial owner.
                   */
                  constructor () internal {
                      address msgSender = _msgSender();
                      _owner = msgSender;
                      emit OwnershipTransferred(address(0), msgSender);
                  }
                  /**
                   * @dev Returns the address of the current owner.
                   */
                  function owner() public view virtual returns (address) {
                      return _owner;
                  }
                  /**
                   * @dev Throws if called by any account other than the owner.
                   */
                  modifier onlyOwner() {
                      require(owner() == _msgSender(), "Ownable: caller is not the owner");
                      _;
                  }
                  /**
                   * @dev Leaves the contract without owner. It will not be possible to call
                   * `onlyOwner` functions anymore. Can only be called by the current owner.
                   *
                   * NOTE: Renouncing ownership will leave the contract without an owner,
                   * thereby removing any functionality that is only available to the owner.
                   */
                  function renounceOwnership() public virtual onlyOwner {
                      emit OwnershipTransferred(_owner, address(0));
                      _owner = address(0);
                  }
                  /**
                   * @dev Transfers ownership of the contract to a new account (`newOwner`).
                   * Can only be called by the current owner.
                   */
                  function transferOwnership(address newOwner) public virtual onlyOwner {
                      require(newOwner != address(0), "Ownable: new owner is the zero address");
                      emit OwnershipTransferred(_owner, newOwner);
                      _owner = newOwner;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >=0.6.0 <0.8.0;
              /*
               * @dev Provides information about the current execution context, including the
               * sender of the transaction and its data. While these are generally available
               * via msg.sender and msg.data, they should not be accessed in such a direct
               * manner, since when dealing with GSN meta-transactions the account sending and
               * paying for execution may not be the actual sender (as far as an application
               * is concerned).
               *
               * This contract is only required for intermediate, library-like contracts.
               */
              abstract contract Context {
                  function _msgSender() internal view virtual returns (address payable) {
                      return msg.sender;
                  }
                  function _msgData() internal view virtual returns (bytes memory) {
                      this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
                      return msg.data;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >0.5.0 <0.8.0;
              /* External Imports */
              import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
              /**
               * @title Lib_AddressManager
               */
              contract Lib_AddressManager is Ownable {
                  /**********
                   * Events *
                   **********/
                  event AddressSet(
                      string indexed _name,
                      address _newAddress,
                      address _oldAddress
                  );
                  /*************
                   * Variables *
                   *************/
                  mapping (bytes32 => address) private addresses;
                  /********************
                   * Public Functions *
                   ********************/
                  /**
                   * Changes the address associated with a particular name.
                   * @param _name String name to associate an address with.
                   * @param _address Address to associate with the name.
                   */
                  function setAddress(
                      string memory _name,
                      address _address
                  )
                      external
                      onlyOwner
                  {
                      bytes32 nameHash = _getNameHash(_name);
                      address oldAddress = addresses[nameHash];
                      addresses[nameHash] = _address;
                      emit AddressSet(
                          _name,
                          _address,
                          oldAddress
                      );
                  }
                  /**
                   * Retrieves the address associated with a given name.
                   * @param _name Name to retrieve an address for.
                   * @return Address associated with the given name.
                   */
                  function getAddress(
                      string memory _name
                  )
                      external
                      view
                      returns (
                          address
                      )
                  {
                      return addresses[_getNameHash(_name)];
                  }
                  /**********************
                   * Internal Functions *
                   **********************/
                  /**
                   * Computes the hash of a name.
                   * @param _name Name to compute a hash for.
                   * @return Hash of the given name.
                   */
                  function _getNameHash(
                      string memory _name
                  )
                      internal
                      pure
                      returns (
                          bytes32
                      )
                  {
                      return keccak256(abi.encodePacked(_name));
                  }
              }
              

              File 8 of 10: L1CrossDomainMessenger
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              // Contracts
              import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
              // Libraries
              import { Predeploys } from "src/libraries/Predeploys.sol";
              // Interfaces
              import { ISemver } from "interfaces/universal/ISemver.sol";
              import { ISuperchainConfig } from "interfaces/L1/ISuperchainConfig.sol";
              import { IOptimismPortal2 as IOptimismPortal } from "interfaces/L1/IOptimismPortal2.sol";
              /// @custom:proxied true
              /// @title L1CrossDomainMessenger
              /// @notice The L1CrossDomainMessenger is a message passing interface between L1 and L2 responsible
              ///         for sending and receiving data on the L1 side. Users are encouraged to use this
              ///         interface instead of interacting with lower-level contracts directly.
              contract L1CrossDomainMessenger is CrossDomainMessenger, ISemver {
                  /// @notice Contract of the SuperchainConfig.
                  ISuperchainConfig public superchainConfig;
                  /// @notice Contract of the OptimismPortal.
                  /// @custom:network-specific
                  IOptimismPortal public portal;
                  /// @custom:legacy
                  /// @custom:spacer systemConfig
                  /// @notice Spacer taking up the legacy `systemConfig` slot.
                  address private spacer_253_0_20;
                  /// @notice Semantic version.
                  /// @custom:semver 2.5.0
                  string public constant version = "2.5.0";
                  /// @notice Constructs the L1CrossDomainMessenger contract.
                  constructor() {
                      _disableInitializers();
                  }
                  /// @notice Initializes the contract.
                  /// @param _superchainConfig Contract of the SuperchainConfig contract on this network.
                  /// @param _portal Contract of the OptimismPortal contract on this network.
                  function initialize(ISuperchainConfig _superchainConfig, IOptimismPortal _portal) external initializer {
                      superchainConfig = _superchainConfig;
                      portal = _portal;
                      __CrossDomainMessenger_init({ _otherMessenger: CrossDomainMessenger(Predeploys.L2_CROSS_DOMAIN_MESSENGER) });
                  }
                  /// @notice Getter function for the OptimismPortal contract on this chain.
                  ///         Public getter is legacy and will be removed in the future. Use `portal()` instead.
                  /// @return Contract of the OptimismPortal on this chain.
                  /// @custom:legacy
                  function PORTAL() external view returns (IOptimismPortal) {
                      return portal;
                  }
                  /// @inheritdoc CrossDomainMessenger
                  function _sendMessage(address _to, uint64 _gasLimit, uint256 _value, bytes memory _data) internal override {
                      portal.depositTransaction{ value: _value }({
                          _to: _to,
                          _value: _value,
                          _gasLimit: _gasLimit,
                          _isCreation: false,
                          _data: _data
                      });
                  }
                  /// @inheritdoc CrossDomainMessenger
                  function _isOtherMessenger() internal view override returns (bool) {
                      return msg.sender == address(portal) && portal.l2Sender() == address(otherMessenger);
                  }
                  /// @inheritdoc CrossDomainMessenger
                  function _isUnsafeTarget(address _target) internal view override returns (bool) {
                      return _target == address(this) || _target == address(portal);
                  }
                  /// @inheritdoc CrossDomainMessenger
                  function paused() public view override returns (bool) {
                      return superchainConfig.paused();
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              // Libraries
              import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
              import { SafeCall } from "src/libraries/SafeCall.sol";
              import { Hashing } from "src/libraries/Hashing.sol";
              import { Encoding } from "src/libraries/Encoding.sol";
              import { Constants } from "src/libraries/Constants.sol";
              /// @custom:legacy
              /// @title CrossDomainMessengerLegacySpacer0
              /// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
              ///         libAddressManager variable used to exist. Must be the first contract in the inheritance
              ///         tree of the CrossDomainMessenger.
              contract CrossDomainMessengerLegacySpacer0 {
                  /// @custom:legacy
                  /// @custom:spacer libAddressManager
                  /// @notice Spacer for backwards compatibility.
                  address private spacer_0_0_20;
              }
              /// @custom:legacy
              /// @title CrossDomainMessengerLegacySpacer1
              /// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
              ///         PausableUpgradable and OwnableUpgradeable variables used to exist. Must be
              ///         the third contract in the inheritance tree of the CrossDomainMessenger.
              contract CrossDomainMessengerLegacySpacer1 {
                  /// @custom:legacy
                  /// @custom:spacer ContextUpgradable's __gap
                  /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
                  ///         ContextUpgradable.
                  uint256[50] private spacer_1_0_1600;
                  /// @custom:legacy
                  /// @custom:spacer OwnableUpgradeable's _owner
                  /// @notice Spacer for backwards compatibility.
                  ///         Come from OpenZeppelin OwnableUpgradeable.
                  address private spacer_51_0_20;
                  /// @custom:legacy
                  /// @custom:spacer OwnableUpgradeable's __gap
                  /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
                  ///         OwnableUpgradeable.
                  uint256[49] private spacer_52_0_1568;
                  /// @custom:legacy
                  /// @custom:spacer PausableUpgradable's _paused
                  /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
                  ///         PausableUpgradable.
                  bool private spacer_101_0_1;
                  /// @custom:legacy
                  /// @custom:spacer PausableUpgradable's __gap
                  /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
                  ///         PausableUpgradable.
                  uint256[49] private spacer_102_0_1568;
                  /// @custom:legacy
                  /// @custom:spacer ReentrancyGuardUpgradeable's `_status` field.
                  /// @notice Spacer for backwards compatibility.
                  uint256 private spacer_151_0_32;
                  /// @custom:legacy
                  /// @custom:spacer ReentrancyGuardUpgradeable's __gap
                  /// @notice Spacer for backwards compatibility.
                  uint256[49] private spacer_152_0_1568;
                  /// @custom:legacy
                  /// @custom:spacer blockedMessages
                  /// @notice Spacer for backwards compatibility.
                  mapping(bytes32 => bool) private spacer_201_0_32;
                  /// @custom:legacy
                  /// @custom:spacer relayedMessages
                  /// @notice Spacer for backwards compatibility.
                  mapping(bytes32 => bool) private spacer_202_0_32;
              }
              /// @custom:upgradeable
              /// @title CrossDomainMessenger
              /// @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2
              ///         cross-chain messenger contracts. It's designed to be a universal interface that only
              ///         needs to be extended slightly to provide low-level message passing functionality on each
              ///         chain it's deployed on. Currently only designed for message passing between two paired
              ///         chains and does not support one-to-many interactions.
              ///         Any changes to this contract MUST result in a semver bump for contracts that inherit it.
              abstract contract CrossDomainMessenger is
                  CrossDomainMessengerLegacySpacer0,
                  Initializable,
                  CrossDomainMessengerLegacySpacer1
              {
                  /// @notice Current message version identifier.
                  uint16 public constant MESSAGE_VERSION = 1;
                  /// @notice Constant overhead added to the base gas for a message.
                  uint64 public constant RELAY_CONSTANT_OVERHEAD = 200_000;
                  /// @notice Numerator for dynamic overhead added to the base gas for a message.
                  uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 64;
                  /// @notice Denominator for dynamic overhead added to the base gas for a message.
                  uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 63;
                  /// @notice Extra gas added to base gas for each byte of calldata in a message.
                  uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16;
                  /// @notice Gas reserved for performing the external call in `relayMessage`.
                  uint64 public constant RELAY_CALL_OVERHEAD = 40_000;
                  /// @notice Gas reserved for finalizing the execution of `relayMessage` after the safe call.
                  uint64 public constant RELAY_RESERVED_GAS = 40_000;
                  /// @notice Gas reserved for the execution between the `hasMinGas` check and the external
                  ///         call in `relayMessage`.
                  uint64 public constant RELAY_GAS_CHECK_BUFFER = 5_000;
                  /// @notice Mapping of message hashes to boolean receipt values. Note that a message will only
                  ///         be present in this mapping if it has successfully been relayed on this chain, and
                  ///         can therefore not be relayed again.
                  mapping(bytes32 => bool) public successfulMessages;
                  /// @notice Address of the sender of the currently executing message on the other chain. If the
                  ///         value of this variable is the default value (0x00000000...dead) then no message is
                  ///         currently being executed. Use the xDomainMessageSender getter which will throw an
                  ///         error if this is the case.
                  address internal xDomainMsgSender;
                  /// @notice Nonce for the next message to be sent, without the message version applied. Use the
                  ///         messageNonce getter which will insert the message version into the nonce to give you
                  ///         the actual nonce to be used for the message.
                  uint240 internal msgNonce;
                  /// @notice Mapping of message hashes to a boolean if and only if the message has failed to be
                  ///         executed at least once. A message will not be present in this mapping if it
                  ///         successfully executed on the first attempt.
                  mapping(bytes32 => bool) public failedMessages;
                  /// @notice CrossDomainMessenger contract on the other chain.
                  /// @custom:network-specific
                  CrossDomainMessenger public otherMessenger;
                  /// @notice Reserve extra slots in the storage layout for future upgrades.
                  ///         A gap size of 43 was chosen here, so that the first slot used in a child contract
                  ///         would be 1 plus a multiple of 50.
                  uint256[43] private __gap;
                  /// @notice Emitted whenever a message is sent to the other chain.
                  /// @param target       Address of the recipient of the message.
                  /// @param sender       Address of the sender of the message.
                  /// @param message      Message to trigger the recipient address with.
                  /// @param messageNonce Unique nonce attached to the message.
                  /// @param gasLimit     Minimum gas limit that the message can be executed with.
                  event SentMessage(address indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit);
                  /// @notice Additional event data to emit, required as of Bedrock. Cannot be merged with the
                  ///         SentMessage event without breaking the ABI of this contract, this is good enough.
                  /// @param sender Address of the sender of the message.
                  /// @param value  ETH value sent along with the message to the recipient.
                  event SentMessageExtension1(address indexed sender, uint256 value);
                  /// @notice Emitted whenever a message is successfully relayed on this chain.
                  /// @param msgHash Hash of the message that was relayed.
                  event RelayedMessage(bytes32 indexed msgHash);
                  /// @notice Emitted whenever a message fails to be relayed on this chain.
                  /// @param msgHash Hash of the message that failed to be relayed.
                  event FailedRelayedMessage(bytes32 indexed msgHash);
                  /// @notice Sends a message to some target address on the other chain. Note that if the call
                  ///         always reverts, then the message will be unrelayable, and any ETH sent will be
                  ///         permanently locked. The same will occur if the target on the other chain is
                  ///         considered unsafe (see the _isUnsafeTarget() function).
                  /// @param _target      Target contract or wallet address.
                  /// @param _message     Message to trigger the target address with.
                  /// @param _minGasLimit Minimum gas limit that the message can be executed with.
                  function sendMessage(address _target, bytes calldata _message, uint32 _minGasLimit) external payable {
                      // Triggers a message to the other messenger. Note that the amount of gas provided to the
                      // message is the amount of gas requested by the user PLUS the base gas value. We want to
                      // guarantee the property that the call to the target contract will always have at least
                      // the minimum gas limit specified by the user.
                      _sendMessage({
                          _to: address(otherMessenger),
                          _gasLimit: baseGas(_message, _minGasLimit),
                          _value: msg.value,
                          _data: abi.encodeWithSelector(
                              this.relayMessage.selector, messageNonce(), msg.sender, _target, msg.value, _minGasLimit, _message
                          )
                      });
                      emit SentMessage(_target, msg.sender, _message, messageNonce(), _minGasLimit);
                      emit SentMessageExtension1(msg.sender, msg.value);
                      unchecked {
                          ++msgNonce;
                      }
                  }
                  /// @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only
                  ///         be executed via cross-chain call from the other messenger OR if the message was
                  ///         already received once and is currently being replayed.
                  /// @param _nonce       Nonce of the message being relayed.
                  /// @param _sender      Address of the user who sent the message.
                  /// @param _target      Address that the message is targeted at.
                  /// @param _value       ETH value to send with the message.
                  /// @param _minGasLimit Minimum amount of gas that the message can be executed with.
                  /// @param _message     Message to send to the target.
                  function relayMessage(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _minGasLimit,
                      bytes calldata _message
                  )
                      external
                      payable
                  {
                      // On L1 this function will check the Portal for its paused status.
                      // On L2 this function should be a no-op, because paused will always return false.
                      require(paused() == false, "CrossDomainMessenger: paused");
                      (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
                      require(version < 2, "CrossDomainMessenger: only version 0 or 1 messages are supported at this time");
                      // If the message is version 0, then it's a migrated legacy withdrawal. We therefore need
                      // to check that the legacy version of the message has not already been relayed.
                      if (version == 0) {
                          bytes32 oldHash = Hashing.hashCrossDomainMessageV0(_target, _sender, _message, _nonce);
                          require(successfulMessages[oldHash] == false, "CrossDomainMessenger: legacy withdrawal already relayed");
                      }
                      // We use the v1 message hash as the unique identifier for the message because it commits
                      // to the value and minimum gas limit of the message.
                      bytes32 versionedHash =
                          Hashing.hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _minGasLimit, _message);
                      if (_isOtherMessenger()) {
                          // These properties should always hold when the message is first submitted (as
                          // opposed to being replayed).
                          assert(msg.value == _value);
                          assert(!failedMessages[versionedHash]);
                      } else {
                          require(msg.value == 0, "CrossDomainMessenger: value must be zero unless message is from a system address");
                          require(failedMessages[versionedHash], "CrossDomainMessenger: message cannot be replayed");
                      }
                      require(
                          _isUnsafeTarget(_target) == false, "CrossDomainMessenger: cannot send message to blocked system address"
                      );
                      require(successfulMessages[versionedHash] == false, "CrossDomainMessenger: message has already been relayed");
                      // If there is not enough gas left to perform the external call and finish the execution,
                      // return early and assign the message to the failedMessages mapping.
                      // We are asserting that we have enough gas to:
                      // 1. Call the target contract (_minGasLimit + RELAY_CALL_OVERHEAD + RELAY_GAS_CHECK_BUFFER)
                      //   1.a. The RELAY_CALL_OVERHEAD is included in `hasMinGas`.
                      // 2. Finish the execution after the external call (RELAY_RESERVED_GAS).
                      //
                      // If `xDomainMsgSender` is not the default L2 sender, this function
                      // is being re-entered. This marks the message as failed to allow it to be replayed.
                      if (
                          !SafeCall.hasMinGas(_minGasLimit, RELAY_RESERVED_GAS + RELAY_GAS_CHECK_BUFFER)
                              || xDomainMsgSender != Constants.DEFAULT_L2_SENDER
                      ) {
                          failedMessages[versionedHash] = true;
                          emit FailedRelayedMessage(versionedHash);
                          // Revert in this case if the transaction was triggered by the estimation address. This
                          // should only be possible during gas estimation or we have bigger problems. Reverting
                          // here will make the behavior of gas estimation change such that the gas limit
                          // computed will be the amount required to relay the message, even if that amount is
                          // greater than the minimum gas limit specified by the user.
                          if (tx.origin == Constants.ESTIMATION_ADDRESS) {
                              revert("CrossDomainMessenger: failed to relay message");
                          }
                          return;
                      }
                      xDomainMsgSender = _sender;
                      bool success = SafeCall.call(_target, gasleft() - RELAY_RESERVED_GAS, _value, _message);
                      xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
                      if (success) {
                          // This check is identical to one above, but it ensures that the same message cannot be relayed
                          // twice, and adds a layer of protection against rentrancy.
                          assert(successfulMessages[versionedHash] == false);
                          successfulMessages[versionedHash] = true;
                          emit RelayedMessage(versionedHash);
                      } else {
                          failedMessages[versionedHash] = true;
                          emit FailedRelayedMessage(versionedHash);
                          // Revert in this case if the transaction was triggered by the estimation address. This
                          // should only be possible during gas estimation or we have bigger problems. Reverting
                          // here will make the behavior of gas estimation change such that the gas limit
                          // computed will be the amount required to relay the message, even if that amount is
                          // greater than the minimum gas limit specified by the user.
                          if (tx.origin == Constants.ESTIMATION_ADDRESS) {
                              revert("CrossDomainMessenger: failed to relay message");
                          }
                      }
                  }
                  /// @notice Retrieves the address of the contract or wallet that initiated the currently
                  ///         executing message on the other chain. Will throw an error if there is no message
                  ///         currently being executed. Allows the recipient of a call to see who triggered it.
                  /// @return Address of the sender of the currently executing message on the other chain.
                  function xDomainMessageSender() external view returns (address) {
                      require(
                          xDomainMsgSender != Constants.DEFAULT_L2_SENDER, "CrossDomainMessenger: xDomainMessageSender is not set"
                      );
                      return xDomainMsgSender;
                  }
                  /// @notice Retrieves the address of the paired CrossDomainMessenger contract on the other chain
                  ///         Public getter is legacy and will be removed in the future. Use `otherMessenger()` instead.
                  /// @return CrossDomainMessenger contract on the other chain.
                  /// @custom:legacy
                  function OTHER_MESSENGER() public view returns (CrossDomainMessenger) {
                      return otherMessenger;
                  }
                  /// @notice Retrieves the next message nonce. Message version will be added to the upper two
                  ///         bytes of the message nonce. Message version allows us to treat messages as having
                  ///         different structures.
                  /// @return Nonce of the next message to be sent, with added message version.
                  function messageNonce() public view returns (uint256) {
                      return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION);
                  }
                  /// @notice Computes the amount of gas required to guarantee that a given message will be
                  ///         received on the other chain without running out of gas. Guaranteeing that a message
                  ///         will not run out of gas is important because this ensures that a message can always
                  ///         be replayed on the other chain if it fails to execute completely.
                  /// @param _message     Message to compute the amount of required gas for.
                  /// @param _minGasLimit Minimum desired gas limit when message goes to target.
                  /// @return Amount of gas required to guarantee message receipt.
                  function baseGas(bytes calldata _message, uint32 _minGasLimit) public pure returns (uint64) {
                      return
                      // Constant overhead
                      RELAY_CONSTANT_OVERHEAD
                      // Calldata overhead
                      + (uint64(_message.length) * MIN_GAS_CALLDATA_OVERHEAD)
                      // Dynamic overhead (EIP-150)
                      + ((_minGasLimit * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) / MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR)
                      // Gas reserved for the worst-case cost of 3/5 of the `CALL` opcode's dynamic gas
                      // factors. (Conservative)
                      + RELAY_CALL_OVERHEAD
                      // Relay reserved gas (to ensure execution of `relayMessage` completes after the
                      // subcontext finishes executing) (Conservative)
                      + RELAY_RESERVED_GAS
                      // Gas reserved for the execution between the `hasMinGas` check and the `CALL`
                      // opcode. (Conservative)
                      + RELAY_GAS_CHECK_BUFFER;
                  }
                  /// @notice Initializer.
                  /// @param _otherMessenger CrossDomainMessenger contract on the other chain.
                  function __CrossDomainMessenger_init(CrossDomainMessenger _otherMessenger) internal onlyInitializing {
                      // We only want to set the xDomainMsgSender to the default value if it hasn't been initialized yet,
                      // meaning that this is a fresh contract deployment.
                      // This prevents resetting the xDomainMsgSender to the default value during an upgrade, which would enable
                      // a reentrant withdrawal to sandwhich the upgrade replay a withdrawal twice.
                      if (xDomainMsgSender == address(0)) {
                          xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
                      }
                      otherMessenger = _otherMessenger;
                  }
                  /// @notice Sends a low-level message to the other messenger. Needs to be implemented by child
                  ///         contracts because the logic for this depends on the network where the messenger is
                  ///         being deployed.
                  /// @param _to       Recipient of the message on the other chain.
                  /// @param _gasLimit Minimum gas limit the message can be executed with.
                  /// @param _value    Amount of ETH to send with the message.
                  /// @param _data     Message data.
                  function _sendMessage(address _to, uint64 _gasLimit, uint256 _value, bytes memory _data) internal virtual;
                  /// @notice Checks whether the message is coming from the other messenger. Implemented by child
                  ///         contracts because the logic for this depends on the network where the messenger is
                  ///         being deployed.
                  /// @return Whether the message is coming from the other messenger.
                  function _isOtherMessenger() internal view virtual returns (bool);
                  /// @notice Checks whether a given call target is a system address that could cause the
                  ///         messenger to peform an unsafe action. This is NOT a mechanism for blocking user
                  ///         addresses. This is ONLY used to prevent the execution of messages to specific
                  ///         system addresses that could cause security issues, e.g., having the
                  ///         CrossDomainMessenger send messages to itself.
                  /// @param _target Address of the contract to check.
                  /// @return Whether or not the address is an unsafe system address.
                  function _isUnsafeTarget(address _target) internal view virtual returns (bool);
                  /// @notice This function should return true if the contract is paused.
                  ///         On L1 this function will check the SuperchainConfig for its paused status.
                  ///         On L2 this function should be a no-op.
                  /// @return Whether or not the contract is paused.
                  function paused() public view virtual returns (bool) {
                      return false;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title Predeploys
              /// @notice Contains constant addresses for protocol contracts that are pre-deployed to the L2 system.
              //          This excludes the preinstalls (non-protocol contracts).
              library Predeploys {
                  /// @notice Number of predeploy-namespace addresses reserved for protocol usage.
                  uint256 internal constant PREDEPLOY_COUNT = 2048;
                  /// @custom:legacy
                  /// @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated
                  ///         L2ToL1MessagePasser contract instead.
                  address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000;
                  /// @custom:legacy
                  /// @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger
                  ///         or access tx.origin (or msg.sender) in a L1 to L2 transaction instead.
                  ///         Not embedded into new OP-Stack chains.
                  address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001;
                  /// @custom:legacy
                  /// @notice Address of the DeployerWhitelist predeploy. No longer active.
                  address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002;
                  /// @notice Address of the canonical WETH contract.
                  address internal constant WETH = 0x4200000000000000000000000000000000000006;
                  /// @notice Address of the L2CrossDomainMessenger predeploy.
                  address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007;
                  /// @notice Address of the GasPriceOracle predeploy. Includes fee information
                  ///         and helpers for computing the L1 portion of the transaction fee.
                  address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F;
                  /// @notice Address of the L2StandardBridge predeploy.
                  address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010;
                  //// @notice Address of the SequencerFeeWallet predeploy.
                  address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;
                  /// @notice Address of the OptimismMintableERC20Factory predeploy.
                  address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012;
                  /// @custom:legacy
                  /// @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy
                  ///         instead, which exposes more information about the L1 state.
                  address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013;
                  /// @notice Address of the L2ERC721Bridge predeploy.
                  address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014;
                  /// @notice Address of the L1Block predeploy.
                  address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015;
                  /// @notice Address of the L2ToL1MessagePasser predeploy.
                  address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016;
                  /// @notice Address of the OptimismMintableERC721Factory predeploy.
                  address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017;
                  /// @notice Address of the ProxyAdmin predeploy.
                  address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018;
                  /// @notice Address of the BaseFeeVault predeploy.
                  address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019;
                  /// @notice Address of the L1FeeVault predeploy.
                  address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A;
                  /// @notice Address of the SchemaRegistry predeploy.
                  address internal constant SCHEMA_REGISTRY = 0x4200000000000000000000000000000000000020;
                  /// @notice Address of the EAS predeploy.
                  address internal constant EAS = 0x4200000000000000000000000000000000000021;
                  /// @notice Address of the GovernanceToken predeploy.
                  address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042;
                  /// @custom:legacy
                  /// @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the
                  ///         state trie as of the Bedrock upgrade. Contract has been locked and write functions
                  ///         can no longer be accessed.
                  address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000;
                  /// @notice Address of the CrossL2Inbox predeploy.
                  address internal constant CROSS_L2_INBOX = 0x4200000000000000000000000000000000000022;
                  /// @notice Address of the L2ToL2CrossDomainMessenger predeploy.
                  address internal constant L2_TO_L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000023;
                  /// @notice Address of the SuperchainWETH predeploy.
                  address internal constant SUPERCHAIN_WETH = 0x4200000000000000000000000000000000000024;
                  /// @notice Address of the ETHLiquidity predeploy.
                  address internal constant ETH_LIQUIDITY = 0x4200000000000000000000000000000000000025;
                  /// @notice Address of the OptimismSuperchainERC20Factory predeploy.
                  address internal constant OPTIMISM_SUPERCHAIN_ERC20_FACTORY = 0x4200000000000000000000000000000000000026;
                  /// @notice Address of the OptimismSuperchainERC20Beacon predeploy.
                  address internal constant OPTIMISM_SUPERCHAIN_ERC20_BEACON = 0x4200000000000000000000000000000000000027;
                  // TODO: Precalculate the address of the implementation contract
                  /// @notice Arbitrary address of the OptimismSuperchainERC20 implementation contract.
                  address internal constant OPTIMISM_SUPERCHAIN_ERC20 = 0xB9415c6cA93bdC545D4c5177512FCC22EFa38F28;
                  /// @notice Address of the SuperchainTokenBridge predeploy.
                  address internal constant SUPERCHAIN_TOKEN_BRIDGE = 0x4200000000000000000000000000000000000028;
                  /// @notice Returns the name of the predeploy at the given address.
                  function getName(address _addr) internal pure returns (string memory out_) {
                      require(isPredeployNamespace(_addr), "Predeploys: address must be a predeploy");
                      if (_addr == LEGACY_MESSAGE_PASSER) return "LegacyMessagePasser";
                      if (_addr == L1_MESSAGE_SENDER) return "L1MessageSender";
                      if (_addr == DEPLOYER_WHITELIST) return "DeployerWhitelist";
                      if (_addr == WETH) return "WETH";
                      if (_addr == L2_CROSS_DOMAIN_MESSENGER) return "L2CrossDomainMessenger";
                      if (_addr == GAS_PRICE_ORACLE) return "GasPriceOracle";
                      if (_addr == L2_STANDARD_BRIDGE) return "L2StandardBridge";
                      if (_addr == SEQUENCER_FEE_WALLET) return "SequencerFeeVault";
                      if (_addr == OPTIMISM_MINTABLE_ERC20_FACTORY) return "OptimismMintableERC20Factory";
                      if (_addr == L1_BLOCK_NUMBER) return "L1BlockNumber";
                      if (_addr == L2_ERC721_BRIDGE) return "L2ERC721Bridge";
                      if (_addr == L1_BLOCK_ATTRIBUTES) return "L1Block";
                      if (_addr == L2_TO_L1_MESSAGE_PASSER) return "L2ToL1MessagePasser";
                      if (_addr == OPTIMISM_MINTABLE_ERC721_FACTORY) return "OptimismMintableERC721Factory";
                      if (_addr == PROXY_ADMIN) return "ProxyAdmin";
                      if (_addr == BASE_FEE_VAULT) return "BaseFeeVault";
                      if (_addr == L1_FEE_VAULT) return "L1FeeVault";
                      if (_addr == SCHEMA_REGISTRY) return "SchemaRegistry";
                      if (_addr == EAS) return "EAS";
                      if (_addr == GOVERNANCE_TOKEN) return "GovernanceToken";
                      if (_addr == LEGACY_ERC20_ETH) return "LegacyERC20ETH";
                      if (_addr == CROSS_L2_INBOX) return "CrossL2Inbox";
                      if (_addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER) return "L2ToL2CrossDomainMessenger";
                      if (_addr == SUPERCHAIN_WETH) return "SuperchainWETH";
                      if (_addr == ETH_LIQUIDITY) return "ETHLiquidity";
                      if (_addr == OPTIMISM_SUPERCHAIN_ERC20_FACTORY) return "OptimismSuperchainERC20Factory";
                      if (_addr == OPTIMISM_SUPERCHAIN_ERC20_BEACON) return "OptimismSuperchainERC20Beacon";
                      if (_addr == SUPERCHAIN_TOKEN_BRIDGE) return "SuperchainTokenBridge";
                      revert("Predeploys: unnamed predeploy");
                  }
                  /// @notice Returns true if the predeploy is not proxied.
                  function notProxied(address _addr) internal pure returns (bool) {
                      return _addr == GOVERNANCE_TOKEN || _addr == WETH;
                  }
                  /// @notice Returns true if the address is a defined predeploy that is embedded into new OP-Stack chains.
                  function isSupportedPredeploy(address _addr, bool _useInterop) internal pure returns (bool) {
                      return _addr == LEGACY_MESSAGE_PASSER || _addr == DEPLOYER_WHITELIST || _addr == WETH
                          || _addr == L2_CROSS_DOMAIN_MESSENGER || _addr == GAS_PRICE_ORACLE || _addr == L2_STANDARD_BRIDGE
                          || _addr == SEQUENCER_FEE_WALLET || _addr == OPTIMISM_MINTABLE_ERC20_FACTORY || _addr == L1_BLOCK_NUMBER
                          || _addr == L2_ERC721_BRIDGE || _addr == L1_BLOCK_ATTRIBUTES || _addr == L2_TO_L1_MESSAGE_PASSER
                          || _addr == OPTIMISM_MINTABLE_ERC721_FACTORY || _addr == PROXY_ADMIN || _addr == BASE_FEE_VAULT
                          || _addr == L1_FEE_VAULT || _addr == SCHEMA_REGISTRY || _addr == EAS || _addr == GOVERNANCE_TOKEN
                          || (_useInterop && _addr == CROSS_L2_INBOX) || (_useInterop && _addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER)
                          || (_useInterop && _addr == SUPERCHAIN_WETH) || (_useInterop && _addr == ETH_LIQUIDITY)
                          || (_useInterop && _addr == SUPERCHAIN_TOKEN_BRIDGE);
                  }
                  function isPredeployNamespace(address _addr) internal pure returns (bool) {
                      return uint160(_addr) >> 11 == uint160(0x4200000000000000000000000000000000000000) >> 11;
                  }
                  /// @notice Function to compute the expected address of the predeploy implementation
                  ///         in the genesis state.
                  function predeployToCodeNamespace(address _addr) internal pure returns (address) {
                      require(
                          isPredeployNamespace(_addr), "Predeploys: can only derive code-namespace address for predeploy addresses"
                      );
                      return address(
                          uint160(uint256(uint160(_addr)) & 0xffff | uint256(uint160(0xc0D3C0d3C0d3C0D3c0d3C0d3c0D3C0d3c0d30000)))
                      );
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title ISemver
              /// @notice ISemver is a simple contract for ensuring that contracts are
              ///         versioned using semantic versioning.
              interface ISemver {
                  /// @notice Getter for the semantic version of the contract. This is not
                  ///         meant to be used onchain but instead meant to be used by offchain
                  ///         tooling.
                  /// @return Semver contract version as a string.
                  function version() external view returns (string memory);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              interface ISuperchainConfig {
                  enum UpdateType {
                      GUARDIAN
                  }
                  event ConfigUpdate(UpdateType indexed updateType, bytes data);
                  event Initialized(uint8 version);
                  event Paused(string identifier);
                  event Unpaused();
                  function GUARDIAN_SLOT() external view returns (bytes32);
                  function PAUSED_SLOT() external view returns (bytes32);
                  function guardian() external view returns (address guardian_);
                  function initialize(address _guardian, bool _paused) external;
                  function pause(string memory _identifier) external;
                  function paused() external view returns (bool paused_);
                  function unpause() external;
                  function version() external view returns (string memory);
                  function __constructor__() external;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { Types } from "src/libraries/Types.sol";
              import { GameType, Timestamp } from "src/dispute/lib/LibUDT.sol";
              import { IDisputeGame } from "interfaces/dispute/IDisputeGame.sol";
              import { IDisputeGameFactory } from "interfaces/dispute/IDisputeGameFactory.sol";
              import { ISystemConfig } from "interfaces/L1/ISystemConfig.sol";
              import { ISuperchainConfig } from "interfaces/L1/ISuperchainConfig.sol";
              interface IOptimismPortal2 {
                  error AlreadyFinalized();
                  error BadTarget();
                  error Blacklisted();
                  error CallPaused();
                  error ContentLengthMismatch();
                  error EmptyItem();
                  error GasEstimation();
                  error InvalidDataRemainder();
                  error InvalidDisputeGame();
                  error InvalidGameType();
                  error InvalidHeader();
                  error InvalidMerkleProof();
                  error InvalidProof();
                  error LargeCalldata();
                  error NonReentrant();
                  error OutOfGas();
                  error ProposalNotValidated();
                  error SmallGasLimit();
                  error Unauthorized();
                  error UnexpectedList();
                  error UnexpectedString();
                  error Unproven();
                  error LegacyGame();
                  event DisputeGameBlacklisted(IDisputeGame indexed disputeGame);
                  event Initialized(uint8 version);
                  event RespectedGameTypeSet(GameType indexed newGameType, Timestamp indexed updatedAt);
                  event TransactionDeposited(address indexed from, address indexed to, uint256 indexed version, bytes opaqueData);
                  event WithdrawalFinalized(bytes32 indexed withdrawalHash, bool success);
                  event WithdrawalProven(bytes32 indexed withdrawalHash, address indexed from, address indexed to);
                  event WithdrawalProvenExtension1(bytes32 indexed withdrawalHash, address indexed proofSubmitter);
                  receive() external payable;
                  function blacklistDisputeGame(IDisputeGame _disputeGame) external;
                  function checkWithdrawal(bytes32 _withdrawalHash, address _proofSubmitter) external view;
                  function depositTransaction(
                      address _to,
                      uint256 _value,
                      uint64 _gasLimit,
                      bool _isCreation,
                      bytes memory _data
                  )
                      external
                      payable;
                  function disputeGameBlacklist(IDisputeGame) external view returns (bool);
                  function disputeGameFactory() external view returns (IDisputeGameFactory);
                  function disputeGameFinalityDelaySeconds() external view returns (uint256);
                  function donateETH() external payable;
                  function finalizeWithdrawalTransaction(Types.WithdrawalTransaction memory _tx) external;
                  function finalizeWithdrawalTransactionExternalProof(
                      Types.WithdrawalTransaction memory _tx,
                      address _proofSubmitter
                  )
                      external;
                  function finalizedWithdrawals(bytes32) external view returns (bool);
                  function guardian() external view returns (address);
                  function initialize(
                      IDisputeGameFactory _disputeGameFactory,
                      ISystemConfig _systemConfig,
                      ISuperchainConfig _superchainConfig,
                      GameType _initialRespectedGameType
                  )
                      external;
                  function l2Sender() external view returns (address);
                  function minimumGasLimit(uint64 _byteCount) external pure returns (uint64);
                  function numProofSubmitters(bytes32 _withdrawalHash) external view returns (uint256);
                  function params() external view returns (uint128 prevBaseFee, uint64 prevBoughtGas, uint64 prevBlockNum); // nosemgrep
                  function paused() external view returns (bool);
                  function proofMaturityDelaySeconds() external view returns (uint256);
                  function proofSubmitters(bytes32, uint256) external view returns (address);
                  function proveWithdrawalTransaction(
                      Types.WithdrawalTransaction memory _tx,
                      uint256 _disputeGameIndex,
                      Types.OutputRootProof memory _outputRootProof,
                      bytes[] memory _withdrawalProof
                  )
                      external;
                  function provenWithdrawals(
                      bytes32,
                      address
                  )
                      external
                      view
                      returns (IDisputeGame disputeGameProxy, uint64 timestamp); // nosemgrep
                  function respectedGameType() external view returns (GameType);
                  function respectedGameTypeUpdatedAt() external view returns (uint64);
                  function setRespectedGameType(GameType _gameType) external;
                  function superchainConfig() external view returns (ISuperchainConfig);
                  function systemConfig() external view returns (ISystemConfig);
                  function version() external pure returns (string memory);
                  function __constructor__(uint256 _proofMaturityDelaySeconds, uint256 _disputeGameFinalityDelaySeconds) external;
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
              pragma solidity ^0.8.2;
              import "../../utils/AddressUpgradeable.sol";
              /**
               * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
               * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
               * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
               * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
               *
               * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
               * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
               * case an upgrade adds a module that needs to be initialized.
               *
               * For example:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * contract MyToken is ERC20Upgradeable {
               *     function initialize() initializer public {
               *         __ERC20_init("MyToken", "MTK");
               *     }
               * }
               * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
               *     function initializeV2() reinitializer(2) public {
               *         __ERC20Permit_init("MyToken");
               *     }
               * }
               * ```
               *
               * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
               * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
               *
               * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
               * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
               *
               * [CAUTION]
               * ====
               * Avoid leaving a contract uninitialized.
               *
               * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
               * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
               * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * /// @custom:oz-upgrades-unsafe-allow constructor
               * constructor() {
               *     _disableInitializers();
               * }
               * ```
               * ====
               */
              abstract contract Initializable {
                  /**
                   * @dev Indicates that the contract has been initialized.
                   * @custom:oz-retyped-from bool
                   */
                  uint8 private _initialized;
                  /**
                   * @dev Indicates that the contract is in the process of being initialized.
                   */
                  bool private _initializing;
                  /**
                   * @dev Triggered when the contract has been initialized or reinitialized.
                   */
                  event Initialized(uint8 version);
                  /**
                   * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                   * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                   */
                  modifier initializer() {
                      bool isTopLevelCall = !_initializing;
                      require(
                          (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                          "Initializable: contract is already initialized"
                      );
                      _initialized = 1;
                      if (isTopLevelCall) {
                          _initializing = true;
                      }
                      _;
                      if (isTopLevelCall) {
                          _initializing = false;
                          emit Initialized(1);
                      }
                  }
                  /**
                   * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                   * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                   * used to initialize parent contracts.
                   *
                   * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                   * initialization step. This is essential to configure modules that are added through upgrades and that require
                   * initialization.
                   *
                   * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                   * a contract, executing them in the right order is up to the developer or operator.
                   */
                  modifier reinitializer(uint8 version) {
                      require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                      _initialized = version;
                      _initializing = true;
                      _;
                      _initializing = false;
                      emit Initialized(version);
                  }
                  /**
                   * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                   * {initializer} and {reinitializer} modifiers, directly or indirectly.
                   */
                  modifier onlyInitializing() {
                      require(_initializing, "Initializable: contract is not initializing");
                      _;
                  }
                  /**
                   * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                   * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                   * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                   * through proxies.
                   */
                  function _disableInitializers() internal virtual {
                      require(!_initializing, "Initializable: contract is initializing");
                      if (_initialized < type(uint8).max) {
                          _initialized = type(uint8).max;
                          emit Initialized(type(uint8).max);
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title SafeCall
              /// @notice Perform low level safe calls
              library SafeCall {
                  /// @notice Performs a low level call without copying any returndata.
                  /// @dev Passes no calldata to the call context.
                  /// @param _target   Address to call
                  /// @param _gas      Amount of gas to pass to the call
                  /// @param _value    Amount of value to pass to the call
                  function send(address _target, uint256 _gas, uint256 _value) internal returns (bool success_) {
                      assembly {
                          success_ :=
                              call(
                                  _gas, // gas
                                  _target, // recipient
                                  _value, // ether value
                                  0, // inloc
                                  0, // inlen
                                  0, // outloc
                                  0 // outlen
                              )
                      }
                  }
                  /// @notice Perform a low level call with all gas without copying any returndata
                  /// @param _target   Address to call
                  /// @param _value    Amount of value to pass to the call
                  function send(address _target, uint256 _value) internal returns (bool success_) {
                      success_ = send(_target, gasleft(), _value);
                  }
                  /// @notice Perform a low level call without copying any returndata
                  /// @param _target   Address to call
                  /// @param _gas      Amount of gas to pass to the call
                  /// @param _value    Amount of value to pass to the call
                  /// @param _calldata Calldata to pass to the call
                  function call(
                      address _target,
                      uint256 _gas,
                      uint256 _value,
                      bytes memory _calldata
                  )
                      internal
                      returns (bool success_)
                  {
                      assembly {
                          success_ :=
                              call(
                                  _gas, // gas
                                  _target, // recipient
                                  _value, // ether value
                                  add(_calldata, 32), // inloc
                                  mload(_calldata), // inlen
                                  0, // outloc
                                  0 // outlen
                              )
                      }
                  }
                  /// @notice Perform a low level call without copying any returndata
                  /// @param _target   Address to call
                  /// @param _value    Amount of value to pass to the call
                  /// @param _calldata Calldata to pass to the call
                  function call(address _target, uint256 _value, bytes memory _calldata) internal returns (bool success_) {
                      success_ = call({ _target: _target, _gas: gasleft(), _value: _value, _calldata: _calldata });
                  }
                  /// @notice Perform a low level call without copying any returndata
                  /// @param _target   Address to call
                  /// @param _calldata Calldata to pass to the call
                  function call(address _target, bytes memory _calldata) internal returns (bool success_) {
                      success_ = call({ _target: _target, _gas: gasleft(), _value: 0, _calldata: _calldata });
                  }
                  /// @notice Helper function to determine if there is sufficient gas remaining within the context
                  ///         to guarantee that the minimum gas requirement for a call will be met as well as
                  ///         optionally reserving a specified amount of gas for after the call has concluded.
                  /// @param _minGas      The minimum amount of gas that may be passed to the target context.
                  /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
                  ///                     of the target context.
                  /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
                  ///         context as well as reserve `_reservedGas` for the caller after the execution of
                  ///         the target context.
                  /// @dev !!!!! FOOTGUN ALERT !!!!!
                  ///      1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
                  ///          `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
                  ///          `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
                  ///          still possible to self-rekt by initiating a withdrawal with a minimum gas limit
                  ///          that does not account for the `memory_expansion_cost` & `code_execution_cost`
                  ///          factors of the dynamic cost of the `CALL` opcode.
                  ///      2.) This function should *directly* precede the external call if possible. There is an
                  ///          added buffer to account for gas consumed between this check and the call, but it
                  ///          is only 5,700 gas.
                  ///      3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
                  ///          frame may be passed to a subcontext, we need to ensure that the gas will not be
                  ///          truncated.
                  ///      4.) Use wisely. This function is not a silver bullet.
                  function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
                      bool _hasMinGas;
                      assembly {
                          // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
                          _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
                      }
                      return _hasMinGas;
                  }
                  /// @notice Perform a low level call without copying any returndata. This function
                  ///         will revert if the call cannot be performed with the specified minimum
                  ///         gas.
                  /// @param _target   Address to call
                  /// @param _minGas   The minimum amount of gas that may be passed to the call
                  /// @param _value    Amount of value to pass to the call
                  /// @param _calldata Calldata to pass to the call
                  function callWithMinGas(
                      address _target,
                      uint256 _minGas,
                      uint256 _value,
                      bytes memory _calldata
                  )
                      internal
                      returns (bool)
                  {
                      bool _success;
                      bool _hasMinGas = hasMinGas(_minGas, 0);
                      assembly {
                          // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
                          if iszero(_hasMinGas) {
                              // Store the "Error(string)" selector in scratch space.
                              mstore(0, 0x08c379a0)
                              // Store the pointer to the string length in scratch space.
                              mstore(32, 32)
                              // Store the string.
                              //
                              // SAFETY:
                              // - We pad the beginning of the string with two zero bytes as well as the
                              // length (24) to ensure that we override the free memory pointer at offset
                              // 0x40. This is necessary because the free memory pointer is likely to
                              // be greater than 1 byte when this function is called, but it is incredibly
                              // unlikely that it will be greater than 3 bytes. As for the data within
                              // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                              // - It's fine to clobber the free memory pointer, we're reverting.
                              mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
                              // Revert with 'Error("SafeCall: Not enough gas")'
                              revert(28, 100)
                          }
                          // The call will be supplied at least ((_minGas * 64) / 63) gas due to the
                          // above assertion. This ensures that, in all circumstances (except for when the
                          // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
                          // factors of the dynamic cost of the `CALL` opcode), the call will receive at least
                          // the minimum amount of gas specified.
                          _success :=
                              call(
                                  gas(), // gas
                                  _target, // recipient
                                  _value, // ether value
                                  add(_calldata, 32), // inloc
                                  mload(_calldata), // inlen
                                  0x00, // outloc
                                  0x00 // outlen
                              )
                      }
                      return _success;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              // Libraries
              import { Types } from "src/libraries/Types.sol";
              import { Encoding } from "src/libraries/Encoding.sol";
              /// @title Hashing
              /// @notice Hashing handles Optimism's various different hashing schemes.
              library Hashing {
                  /// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
                  ///         given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
                  ///         system.
                  /// @param _tx User deposit transaction to hash.
                  /// @return Hash of the RLP encoded L2 deposit transaction.
                  function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) {
                      return keccak256(Encoding.encodeDepositTransaction(_tx));
                  }
                  /// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
                  ///         of the L2 transaction that corresponds to a deposit is unique and is
                  ///         deterministically generated from L1 transaction data.
                  /// @param _l1BlockHash Hash of the L1 block where the deposit was included.
                  /// @param _logIndex    The index of the log that created the deposit transaction.
                  /// @return Hash of the deposit transaction's "source hash".
                  function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) {
                      bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
                      return keccak256(abi.encode(bytes32(0), depositId));
                  }
                  /// @notice Hashes the cross domain message based on the version that is encoded into the
                  ///         message nonce.
                  /// @param _nonce    Message nonce with version encoded into the first two bytes.
                  /// @param _sender   Address of the sender of the message.
                  /// @param _target   Address of the target of the message.
                  /// @param _value    ETH value to send to the target.
                  /// @param _gasLimit Gas limit to use for the message.
                  /// @param _data     Data to send with the message.
                  /// @return Hashed cross domain message.
                  function hashCrossDomainMessage(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _gasLimit,
                      bytes memory _data
                  )
                      internal
                      pure
                      returns (bytes32)
                  {
                      (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
                      if (version == 0) {
                          return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
                      } else if (version == 1) {
                          return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                      } else {
                          revert("Hashing: unknown cross domain message version");
                      }
                  }
                  /// @notice Hashes a cross domain message based on the V0 (legacy) encoding.
                  /// @param _target Address of the target of the message.
                  /// @param _sender Address of the sender of the message.
                  /// @param _data   Data to send with the message.
                  /// @param _nonce  Message nonce.
                  /// @return Hashed cross domain message.
                  function hashCrossDomainMessageV0(
                      address _target,
                      address _sender,
                      bytes memory _data,
                      uint256 _nonce
                  )
                      internal
                      pure
                      returns (bytes32)
                  {
                      return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
                  }
                  /// @notice Hashes a cross domain message based on the V1 (current) encoding.
                  /// @param _nonce    Message nonce.
                  /// @param _sender   Address of the sender of the message.
                  /// @param _target   Address of the target of the message.
                  /// @param _value    ETH value to send to the target.
                  /// @param _gasLimit Gas limit to use for the message.
                  /// @param _data     Data to send with the message.
                  /// @return Hashed cross domain message.
                  function hashCrossDomainMessageV1(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _gasLimit,
                      bytes memory _data
                  )
                      internal
                      pure
                      returns (bytes32)
                  {
                      return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data));
                  }
                  /// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
                  /// @param _tx Withdrawal transaction to hash.
                  /// @return Hashed withdrawal transaction.
                  function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) {
                      return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data));
                  }
                  /// @notice Hashes the various elements of an output root proof into an output root hash which
                  ///         can be used to check if the proof is valid.
                  /// @param _outputRootProof Output root proof which should hash to an output root.
                  /// @return Hashed output root proof.
                  function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) {
                      return keccak256(
                          abi.encode(
                              _outputRootProof.version,
                              _outputRootProof.stateRoot,
                              _outputRootProof.messagePasserStorageRoot,
                              _outputRootProof.latestBlockhash
                          )
                      );
                  }
                  /// @notice Generates a unique hash for cross l2 messages. This hash is used to identify
                  ///         the message and ensure it is not relayed more than once.
                  /// @param _destination Chain ID of the destination chain.
                  /// @param _source Chain ID of the source chain.
                  /// @param _nonce Unique nonce associated with the message to prevent replay attacks.
                  /// @param _sender Address of the user who originally sent the message.
                  /// @param _target Address of the contract or wallet that the message is targeting on the destination chain.
                  /// @param _message The message payload to be relayed to the target on the destination chain.
                  /// @return Hash of the encoded message parameters, used to uniquely identify the message.
                  function hashL2toL2CrossDomainMessage(
                      uint256 _destination,
                      uint256 _source,
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      bytes memory _message
                  )
                      internal
                      pure
                      returns (bytes32)
                  {
                      return keccak256(abi.encode(_destination, _source, _nonce, _sender, _target, _message));
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              // Libraries
              import { Types } from "src/libraries/Types.sol";
              import { Hashing } from "src/libraries/Hashing.sol";
              import { RLPWriter } from "src/libraries/rlp/RLPWriter.sol";
              /// @title Encoding
              /// @notice Encoding handles Optimism's various different encoding schemes.
              library Encoding {
                  /// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
                  ///         to the L2 system. Useful for searching for a deposit in the L2 system. The
                  ///         transaction is prefixed with 0x7e to identify its EIP-2718 type.
                  /// @param _tx User deposit transaction to encode.
                  /// @return RLP encoded L2 deposit transaction.
                  function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) {
                      bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
                      bytes[] memory raw = new bytes[](8);
                      raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
                      raw[1] = RLPWriter.writeAddress(_tx.from);
                      raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
                      raw[3] = RLPWriter.writeUint(_tx.mint);
                      raw[4] = RLPWriter.writeUint(_tx.value);
                      raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
                      raw[6] = RLPWriter.writeBool(false);
                      raw[7] = RLPWriter.writeBytes(_tx.data);
                      return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
                  }
                  /// @notice Encodes the cross domain message based on the version that is encoded into the
                  ///         message nonce.
                  /// @param _nonce    Message nonce with version encoded into the first two bytes.
                  /// @param _sender   Address of the sender of the message.
                  /// @param _target   Address of the target of the message.
                  /// @param _value    ETH value to send to the target.
                  /// @param _gasLimit Gas limit to use for the message.
                  /// @param _data     Data to send with the message.
                  /// @return Encoded cross domain message.
                  function encodeCrossDomainMessage(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _gasLimit,
                      bytes memory _data
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      (, uint16 version) = decodeVersionedNonce(_nonce);
                      if (version == 0) {
                          return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
                      } else if (version == 1) {
                          return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                      } else {
                          revert("Encoding: unknown cross domain message version");
                      }
                  }
                  /// @notice Encodes a cross domain message based on the V0 (legacy) encoding.
                  /// @param _target Address of the target of the message.
                  /// @param _sender Address of the sender of the message.
                  /// @param _data   Data to send with the message.
                  /// @param _nonce  Message nonce.
                  /// @return Encoded cross domain message.
                  function encodeCrossDomainMessageV0(
                      address _target,
                      address _sender,
                      bytes memory _data,
                      uint256 _nonce
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      // nosemgrep: sol-style-use-abi-encodecall
                      return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce);
                  }
                  /// @notice Encodes a cross domain message based on the V1 (current) encoding.
                  /// @param _nonce    Message nonce.
                  /// @param _sender   Address of the sender of the message.
                  /// @param _target   Address of the target of the message.
                  /// @param _value    ETH value to send to the target.
                  /// @param _gasLimit Gas limit to use for the message.
                  /// @param _data     Data to send with the message.
                  /// @return Encoded cross domain message.
                  function encodeCrossDomainMessageV1(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _gasLimit,
                      bytes memory _data
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      // nosemgrep: sol-style-use-abi-encodecall
                      return abi.encodeWithSignature(
                          "relayMessage(uint256,address,address,uint256,uint256,bytes)",
                          _nonce,
                          _sender,
                          _target,
                          _value,
                          _gasLimit,
                          _data
                      );
                  }
                  /// @notice Adds a version number into the first two bytes of a message nonce.
                  /// @param _nonce   Message nonce to encode into.
                  /// @param _version Version number to encode into the message nonce.
                  /// @return Message nonce with version encoded into the first two bytes.
                  function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
                      uint256 nonce;
                      assembly {
                          nonce := or(shl(240, _version), _nonce)
                      }
                      return nonce;
                  }
                  /// @notice Pulls the version out of a version-encoded nonce.
                  /// @param _nonce Message nonce with version encoded into the first two bytes.
                  /// @return Nonce without encoded version.
                  /// @return Version of the message.
                  function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
                      uint240 nonce;
                      uint16 version;
                      assembly {
                          nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
                          version := shr(240, _nonce)
                      }
                      return (nonce, version);
                  }
                  /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesEcotone
                  /// @param _baseFeeScalar       L1 base fee Scalar
                  /// @param _blobBaseFeeScalar   L1 blob base fee Scalar
                  /// @param _sequenceNumber      Number of L2 blocks since epoch start.
                  /// @param _timestamp           L1 timestamp.
                  /// @param _number              L1 blocknumber.
                  /// @param _baseFee             L1 base fee.
                  /// @param _blobBaseFee         L1 blob base fee.
                  /// @param _hash                L1 blockhash.
                  /// @param _batcherHash         Versioned hash to authenticate batcher by.
                  function encodeSetL1BlockValuesEcotone(
                      uint32 _baseFeeScalar,
                      uint32 _blobBaseFeeScalar,
                      uint64 _sequenceNumber,
                      uint64 _timestamp,
                      uint64 _number,
                      uint256 _baseFee,
                      uint256 _blobBaseFee,
                      bytes32 _hash,
                      bytes32 _batcherHash
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesEcotone()"));
                      return abi.encodePacked(
                          functionSignature,
                          _baseFeeScalar,
                          _blobBaseFeeScalar,
                          _sequenceNumber,
                          _timestamp,
                          _number,
                          _baseFee,
                          _blobBaseFee,
                          _hash,
                          _batcherHash
                      );
                  }
                  /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesInterop
                  /// @param _baseFeeScalar       L1 base fee Scalar
                  /// @param _blobBaseFeeScalar   L1 blob base fee Scalar
                  /// @param _sequenceNumber      Number of L2 blocks since epoch start.
                  /// @param _timestamp           L1 timestamp.
                  /// @param _number              L1 blocknumber.
                  /// @param _baseFee             L1 base fee.
                  /// @param _blobBaseFee         L1 blob base fee.
                  /// @param _hash                L1 blockhash.
                  /// @param _batcherHash         Versioned hash to authenticate batcher by.
                  function encodeSetL1BlockValuesInterop(
                      uint32 _baseFeeScalar,
                      uint32 _blobBaseFeeScalar,
                      uint64 _sequenceNumber,
                      uint64 _timestamp,
                      uint64 _number,
                      uint256 _baseFee,
                      uint256 _blobBaseFee,
                      bytes32 _hash,
                      bytes32 _batcherHash
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesInterop()"));
                      return abi.encodePacked(
                          functionSignature,
                          _baseFeeScalar,
                          _blobBaseFeeScalar,
                          _sequenceNumber,
                          _timestamp,
                          _number,
                          _baseFee,
                          _blobBaseFee,
                          _hash,
                          _batcherHash
                      );
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              // Interfaces
              import { IResourceMetering } from "interfaces/L1/IResourceMetering.sol";
              /// @title Constants
              /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
              ///         the stuff used in multiple contracts. Constants that only apply to a single contract
              ///         should be defined in that contract instead.
              library Constants {
                  /// @notice Special address to be used as the tx origin for gas estimation calls in the
                  ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
                  ///         the minimum gas limit specified by the user is not actually enough to execute the
                  ///         given message and you're attempting to estimate the actual necessary gas limit. We
                  ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
                  ///         never have any code on any EVM chain.
                  address internal constant ESTIMATION_ADDRESS = address(1);
                  /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
                  ///         CrossDomainMessenger contracts before an actual sender is set. This value is
                  ///         non-zero to reduce the gas cost of message passing transactions.
                  address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
                  /// @notice The storage slot that holds the address of a proxy implementation.
                  /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
                  bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                      0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                  /// @notice The storage slot that holds the address of the owner.
                  /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
                  bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                  /// @notice The address that represents ether when dealing with ERC20 token addresses.
                  address internal constant ETHER = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
                  /// @notice The address that represents the system caller responsible for L1 attributes
                  ///         transactions.
                  address internal constant DEPOSITOR_ACCOUNT = 0xDeaDDEaDDeAdDeAdDEAdDEaddeAddEAdDEAd0001;
                  /// @notice Returns the default values for the ResourceConfig. These are the recommended values
                  ///         for a production network.
                  function DEFAULT_RESOURCE_CONFIG() internal pure returns (IResourceMetering.ResourceConfig memory) {
                      IResourceMetering.ResourceConfig memory config = IResourceMetering.ResourceConfig({
                          maxResourceLimit: 20_000_000,
                          elasticityMultiplier: 10,
                          baseFeeMaxChangeDenominator: 8,
                          minimumBaseFee: 1 gwei,
                          systemTxMaxGas: 1_000_000,
                          maximumBaseFee: type(uint128).max
                      });
                      return config;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title Types
              /// @notice Contains various types used throughout the Optimism contract system.
              library Types {
                  /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
                  ///         timestamp that the output root is posted. This timestamp is used to verify that the
                  ///         finalization period has passed since the output root was submitted.
                  /// @custom:field outputRoot    Hash of the L2 output.
                  /// @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
                  /// @custom:field l2BlockNumber L2 block number that the output corresponds to.
                  struct OutputProposal {
                      bytes32 outputRoot;
                      uint128 timestamp;
                      uint128 l2BlockNumber;
                  }
                  /// @notice Struct representing the elements that are hashed together to generate an output root
                  ///         which itself represents a snapshot of the L2 state.
                  /// @custom:field version                  Version of the output root.
                  /// @custom:field stateRoot                Root of the state trie at the block of this output.
                  /// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
                  /// @custom:field latestBlockhash          Hash of the block this output was generated from.
                  struct OutputRootProof {
                      bytes32 version;
                      bytes32 stateRoot;
                      bytes32 messagePasserStorageRoot;
                      bytes32 latestBlockhash;
                  }
                  /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
                  ///         user (as opposed to a system deposit transaction generated by the system).
                  /// @custom:field from        Address of the sender of the transaction.
                  /// @custom:field to          Address of the recipient of the transaction.
                  /// @custom:field isCreation  True if the transaction is a contract creation.
                  /// @custom:field value       Value to send to the recipient.
                  /// @custom:field mint        Amount of ETH to mint.
                  /// @custom:field gasLimit    Gas limit of the transaction.
                  /// @custom:field data        Data of the transaction.
                  /// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
                  /// @custom:field logIndex    Index of the log in the block the transaction was submitted in.
                  struct UserDepositTransaction {
                      address from;
                      address to;
                      bool isCreation;
                      uint256 value;
                      uint256 mint;
                      uint64 gasLimit;
                      bytes data;
                      bytes32 l1BlockHash;
                      uint256 logIndex;
                  }
                  /// @notice Struct representing a withdrawal transaction.
                  /// @custom:field nonce    Nonce of the withdrawal transaction
                  /// @custom:field sender   Address of the sender of the transaction.
                  /// @custom:field target   Address of the recipient of the transaction.
                  /// @custom:field value    Value to send to the recipient.
                  /// @custom:field gasLimit Gas limit of the transaction.
                  /// @custom:field data     Data of the transaction.
                  struct WithdrawalTransaction {
                      uint256 nonce;
                      address sender;
                      address target;
                      uint256 value;
                      uint256 gasLimit;
                      bytes data;
                  }
                  /// @notice Enum representing where the FeeVault withdraws funds to.
                  /// @custom:value L1 FeeVault withdraws funds to L1.
                  /// @custom:value L2 FeeVault withdraws funds to L2.
                  enum WithdrawalNetwork {
                      L1,
                      L2
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.15;
              // Libraries
              import { Position } from "src/dispute/lib/LibPosition.sol";
              using LibClaim for Claim global;
              using LibHash for Hash global;
              using LibDuration for Duration global;
              using LibClock for Clock global;
              using LibGameId for GameId global;
              using LibTimestamp for Timestamp global;
              using LibVMStatus for VMStatus global;
              using LibGameType for GameType global;
              /// @notice A `Clock` represents a packed `Duration` and `Timestamp`
              /// @dev The packed layout of this type is as follows:
              /// ┌────────────┬────────────────┐
              /// │    Bits    │     Value      │
              /// ├────────────┼────────────────┤
              /// │ [0, 64)    │ Duration       │
              /// │ [64, 128)  │ Timestamp      │
              /// └────────────┴────────────────┘
              type Clock is uint128;
              /// @title LibClock
              /// @notice This library contains helper functions for working with the `Clock` type.
              library LibClock {
                  /// @notice Packs a `Duration` and `Timestamp` into a `Clock` type.
                  /// @param _duration The `Duration` to pack into the `Clock` type.
                  /// @param _timestamp The `Timestamp` to pack into the `Clock` type.
                  /// @return clock_ The `Clock` containing the `_duration` and `_timestamp`.
                  function wrap(Duration _duration, Timestamp _timestamp) internal pure returns (Clock clock_) {
                      assembly {
                          clock_ := or(shl(0x40, _duration), _timestamp)
                      }
                  }
                  /// @notice Pull the `Duration` out of a `Clock` type.
                  /// @param _clock The `Clock` type to pull the `Duration` out of.
                  /// @return duration_ The `Duration` pulled out of `_clock`.
                  function duration(Clock _clock) internal pure returns (Duration duration_) {
                      // Shift the high-order 64 bits into the low-order 64 bits, leaving only the `duration`.
                      assembly {
                          duration_ := shr(0x40, _clock)
                      }
                  }
                  /// @notice Pull the `Timestamp` out of a `Clock` type.
                  /// @param _clock The `Clock` type to pull the `Timestamp` out of.
                  /// @return timestamp_ The `Timestamp` pulled out of `_clock`.
                  function timestamp(Clock _clock) internal pure returns (Timestamp timestamp_) {
                      // Clean the high-order 192 bits by shifting the clock left and then right again, leaving
                      // only the `timestamp`.
                      assembly {
                          timestamp_ := shr(0xC0, shl(0xC0, _clock))
                      }
                  }
                  /// @notice Get the value of a `Clock` type in the form of the underlying uint128.
                  /// @param _clock The `Clock` type to get the value of.
                  /// @return clock_ The value of the `Clock` type as a uint128 type.
                  function raw(Clock _clock) internal pure returns (uint128 clock_) {
                      assembly {
                          clock_ := _clock
                      }
                  }
              }
              /// @notice A `GameId` represents a packed 4 byte game ID, a 8 byte timestamp, and a 20 byte address.
              /// @dev The packed layout of this type is as follows:
              /// ┌───────────┬───────────┐
              /// │   Bits    │   Value   │
              /// ├───────────┼───────────┤
              /// │ [0, 32)   │ Game Type │
              /// │ [32, 96)  │ Timestamp │
              /// │ [96, 256) │ Address   │
              /// └───────────┴───────────┘
              type GameId is bytes32;
              /// @title LibGameId
              /// @notice Utility functions for packing and unpacking GameIds.
              library LibGameId {
                  /// @notice Packs values into a 32 byte GameId type.
                  /// @param _gameType The game type.
                  /// @param _timestamp The timestamp of the game's creation.
                  /// @param _gameProxy The game proxy address.
                  /// @return gameId_ The packed GameId.
                  function pack(
                      GameType _gameType,
                      Timestamp _timestamp,
                      address _gameProxy
                  )
                      internal
                      pure
                      returns (GameId gameId_)
                  {
                      assembly {
                          gameId_ := or(or(shl(224, _gameType), shl(160, _timestamp)), _gameProxy)
                      }
                  }
                  /// @notice Unpacks values from a 32 byte GameId type.
                  /// @param _gameId The packed GameId.
                  /// @return gameType_ The game type.
                  /// @return timestamp_ The timestamp of the game's creation.
                  /// @return gameProxy_ The game proxy address.
                  function unpack(GameId _gameId)
                      internal
                      pure
                      returns (GameType gameType_, Timestamp timestamp_, address gameProxy_)
                  {
                      assembly {
                          gameType_ := shr(224, _gameId)
                          timestamp_ := and(shr(160, _gameId), 0xFFFFFFFFFFFFFFFF)
                          gameProxy_ := and(_gameId, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
                      }
                  }
              }
              /// @notice A claim represents an MPT root representing the state of the fault proof program.
              type Claim is bytes32;
              /// @title LibClaim
              /// @notice This library contains helper functions for working with the `Claim` type.
              library LibClaim {
                  /// @notice Get the value of a `Claim` type in the form of the underlying bytes32.
                  /// @param _claim The `Claim` type to get the value of.
                  /// @return claim_ The value of the `Claim` type as a bytes32 type.
                  function raw(Claim _claim) internal pure returns (bytes32 claim_) {
                      assembly {
                          claim_ := _claim
                      }
                  }
                  /// @notice Hashes a claim and a position together.
                  /// @param _claim A Claim type.
                  /// @param _position The position of `claim`.
                  /// @param _challengeIndex The index of the claim being moved against.
                  /// @return claimHash_ A hash of abi.encodePacked(claim, position|challengeIndex);
                  function hashClaimPos(
                      Claim _claim,
                      Position _position,
                      uint256 _challengeIndex
                  )
                      internal
                      pure
                      returns (Hash claimHash_)
                  {
                      assembly {
                          mstore(0x00, _claim)
                          mstore(0x20, or(shl(128, _position), and(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF, _challengeIndex)))
                          claimHash_ := keccak256(0x00, 0x40)
                      }
                  }
              }
              /// @notice A dedicated duration type.
              /// @dev Unit: seconds
              type Duration is uint64;
              /// @title LibDuration
              /// @notice This library contains helper functions for working with the `Duration` type.
              library LibDuration {
                  /// @notice Get the value of a `Duration` type in the form of the underlying uint64.
                  /// @param _duration The `Duration` type to get the value of.
                  /// @return duration_ The value of the `Duration` type as a uint64 type.
                  function raw(Duration _duration) internal pure returns (uint64 duration_) {
                      assembly {
                          duration_ := _duration
                      }
                  }
              }
              /// @notice A custom type for a generic hash.
              type Hash is bytes32;
              /// @title LibHash
              /// @notice This library contains helper functions for working with the `Hash` type.
              library LibHash {
                  /// @notice Get the value of a `Hash` type in the form of the underlying bytes32.
                  /// @param _hash The `Hash` type to get the value of.
                  /// @return hash_ The value of the `Hash` type as a bytes32 type.
                  function raw(Hash _hash) internal pure returns (bytes32 hash_) {
                      assembly {
                          hash_ := _hash
                      }
                  }
              }
              /// @notice A dedicated timestamp type.
              type Timestamp is uint64;
              /// @title LibTimestamp
              /// @notice This library contains helper functions for working with the `Timestamp` type.
              library LibTimestamp {
                  /// @notice Get the value of a `Timestamp` type in the form of the underlying uint64.
                  /// @param _timestamp The `Timestamp` type to get the value of.
                  /// @return timestamp_ The value of the `Timestamp` type as a uint64 type.
                  function raw(Timestamp _timestamp) internal pure returns (uint64 timestamp_) {
                      assembly {
                          timestamp_ := _timestamp
                      }
                  }
              }
              /// @notice A `VMStatus` represents the status of a VM execution.
              type VMStatus is uint8;
              /// @title LibVMStatus
              /// @notice This library contains helper functions for working with the `VMStatus` type.
              library LibVMStatus {
                  /// @notice Get the value of a `VMStatus` type in the form of the underlying uint8.
                  /// @param _vmstatus The `VMStatus` type to get the value of.
                  /// @return vmstatus_ The value of the `VMStatus` type as a uint8 type.
                  function raw(VMStatus _vmstatus) internal pure returns (uint8 vmstatus_) {
                      assembly {
                          vmstatus_ := _vmstatus
                      }
                  }
              }
              /// @notice A `GameType` represents the type of game being played.
              type GameType is uint32;
              /// @title LibGameType
              /// @notice This library contains helper functions for working with the `GameType` type.
              library LibGameType {
                  /// @notice Get the value of a `GameType` type in the form of the underlying uint32.
                  /// @param _gametype The `GameType` type to get the value of.
                  /// @return gametype_ The value of the `GameType` type as a uint32 type.
                  function raw(GameType _gametype) internal pure returns (uint32 gametype_) {
                      assembly {
                          gametype_ := _gametype
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { IInitializable } from "interfaces/dispute/IInitializable.sol";
              import { Timestamp, GameStatus, GameType, Claim, Hash } from "src/dispute/lib/Types.sol";
              interface IDisputeGame is IInitializable {
                  event Resolved(GameStatus indexed status);
                  function createdAt() external view returns (Timestamp);
                  function resolvedAt() external view returns (Timestamp);
                  function status() external view returns (GameStatus);
                  function gameType() external view returns (GameType gameType_);
                  function gameCreator() external pure returns (address creator_);
                  function rootClaim() external pure returns (Claim rootClaim_);
                  function l1Head() external pure returns (Hash l1Head_);
                  function l2BlockNumber() external pure returns (uint256 l2BlockNumber_);
                  function extraData() external pure returns (bytes memory extraData_);
                  function resolve() external returns (GameStatus status_);
                  function gameData() external view returns (GameType gameType_, Claim rootClaim_, bytes memory extraData_);
                  function wasRespectedGameTypeWhenCreated() external view returns (bool);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { IDisputeGame } from "interfaces/dispute/IDisputeGame.sol";
              import { GameId, Timestamp, Claim, Hash, GameType } from "src/dispute/lib/Types.sol";
              interface IDisputeGameFactory {
                  struct GameSearchResult {
                      uint256 index;
                      GameId metadata;
                      Timestamp timestamp;
                      Claim rootClaim;
                      bytes extraData;
                  }
                  error GameAlreadyExists(Hash uuid);
                  error IncorrectBondAmount();
                  error NoImplementation(GameType gameType);
                  event DisputeGameCreated(address indexed disputeProxy, GameType indexed gameType, Claim indexed rootClaim);
                  event ImplementationSet(address indexed impl, GameType indexed gameType);
                  event InitBondUpdated(GameType indexed gameType, uint256 indexed newBond);
                  event Initialized(uint8 version);
                  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                  function create(
                      GameType _gameType,
                      Claim _rootClaim,
                      bytes memory _extraData
                  )
                      external
                      payable
                      returns (IDisputeGame proxy_);
                  function findLatestGames(
                      GameType _gameType,
                      uint256 _start,
                      uint256 _n
                  )
                      external
                      view
                      returns (GameSearchResult[] memory games_);
                  function gameAtIndex(uint256 _index)
                      external
                      view
                      returns (GameType gameType_, Timestamp timestamp_, IDisputeGame proxy_);
                  function gameCount() external view returns (uint256 gameCount_);
                  function gameImpls(GameType) external view returns (IDisputeGame);
                  function games(
                      GameType _gameType,
                      Claim _rootClaim,
                      bytes memory _extraData
                  )
                      external
                      view
                      returns (IDisputeGame proxy_, Timestamp timestamp_);
                  function getGameUUID(
                      GameType _gameType,
                      Claim _rootClaim,
                      bytes memory _extraData
                  )
                      external
                      pure
                      returns (Hash uuid_);
                  function initBonds(GameType) external view returns (uint256);
                  function initialize(address _owner) external;
                  function owner() external view returns (address);
                  function renounceOwnership() external;
                  function setImplementation(GameType _gameType, IDisputeGame _impl) external;
                  function setInitBond(GameType _gameType, uint256 _initBond) external;
                  function transferOwnership(address newOwner) external; // nosemgrep
                  function version() external view returns (string memory);
                  function __constructor__() external;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { IResourceMetering } from "interfaces/L1/IResourceMetering.sol";
              interface ISystemConfig {
                  enum UpdateType {
                      BATCHER,
                      FEE_SCALARS,
                      GAS_LIMIT,
                      UNSAFE_BLOCK_SIGNER,
                      EIP_1559_PARAMS
                  }
                  struct Addresses {
                      address l1CrossDomainMessenger;
                      address l1ERC721Bridge;
                      address l1StandardBridge;
                      address disputeGameFactory;
                      address optimismPortal;
                      address optimismMintableERC20Factory;
                  }
                  event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);
                  event Initialized(uint8 version);
                  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                  function BATCH_INBOX_SLOT() external view returns (bytes32);
                  function DISPUTE_GAME_FACTORY_SLOT() external view returns (bytes32);
                  function L1_CROSS_DOMAIN_MESSENGER_SLOT() external view returns (bytes32);
                  function L1_ERC_721_BRIDGE_SLOT() external view returns (bytes32);
                  function L1_STANDARD_BRIDGE_SLOT() external view returns (bytes32);
                  function OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT() external view returns (bytes32);
                  function OPTIMISM_PORTAL_SLOT() external view returns (bytes32);
                  function START_BLOCK_SLOT() external view returns (bytes32);
                  function UNSAFE_BLOCK_SIGNER_SLOT() external view returns (bytes32);
                  function VERSION() external view returns (uint256);
                  function basefeeScalar() external view returns (uint32);
                  function batchInbox() external view returns (address addr_);
                  function batcherHash() external view returns (bytes32);
                  function blobbasefeeScalar() external view returns (uint32);
                  function disputeGameFactory() external view returns (address addr_);
                  function gasLimit() external view returns (uint64);
                  function eip1559Denominator() external view returns (uint32);
                  function eip1559Elasticity() external view returns (uint32);
                  function getAddresses() external view returns (Addresses memory);
                  function initialize(
                      address _owner,
                      uint32 _basefeeScalar,
                      uint32 _blobbasefeeScalar,
                      bytes32 _batcherHash,
                      uint64 _gasLimit,
                      address _unsafeBlockSigner,
                      IResourceMetering.ResourceConfig memory _config,
                      address _batchInbox,
                      Addresses memory _addresses
                  )
                      external;
                  function l1CrossDomainMessenger() external view returns (address addr_);
                  function l1ERC721Bridge() external view returns (address addr_);
                  function l1StandardBridge() external view returns (address addr_);
                  function maximumGasLimit() external pure returns (uint64);
                  function minimumGasLimit() external view returns (uint64);
                  function optimismMintableERC20Factory() external view returns (address addr_);
                  function optimismPortal() external view returns (address addr_);
                  function overhead() external view returns (uint256);
                  function owner() external view returns (address);
                  function renounceOwnership() external;
                  function resourceConfig() external view returns (IResourceMetering.ResourceConfig memory);
                  function scalar() external view returns (uint256);
                  function setBatcherHash(bytes32 _batcherHash) external;
                  function setGasConfig(uint256 _overhead, uint256 _scalar) external;
                  function setGasConfigEcotone(uint32 _basefeeScalar, uint32 _blobbasefeeScalar) external;
                  function setGasLimit(uint64 _gasLimit) external;
                  function setUnsafeBlockSigner(address _unsafeBlockSigner) external;
                  function setEIP1559Params(uint32 _denominator, uint32 _elasticity) external;
                  function startBlock() external view returns (uint256 startBlock_);
                  function transferOwnership(address newOwner) external; // nosemgrep
                  function unsafeBlockSigner() external view returns (address addr_);
                  function version() external pure returns (string memory);
                  function __constructor__() external;
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
              pragma solidity ^0.8.1;
              /**
               * @dev Collection of functions related to the address type
               */
              library AddressUpgradeable {
                  /**
                   * @dev Returns true if `account` is a contract.
                   *
                   * [IMPORTANT]
                   * ====
                   * It is unsafe to assume that an address for which this function returns
                   * false is an externally-owned account (EOA) and not a contract.
                   *
                   * Among others, `isContract` will return false for the following
                   * types of addresses:
                   *
                   *  - an externally-owned account
                   *  - a contract in construction
                   *  - an address where a contract will be created
                   *  - an address where a contract lived, but was destroyed
                   * ====
                   *
                   * [IMPORTANT]
                   * ====
                   * You shouldn't rely on `isContract` to protect against flash loan attacks!
                   *
                   * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                   * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                   * constructor.
                   * ====
                   */
                  function isContract(address account) internal view returns (bool) {
                      // This method relies on extcodesize/address.code.length, which returns 0
                      // for contracts in construction, since the code is only stored at the end
                      // of the constructor execution.
                      return account.code.length > 0;
                  }
                  /**
                   * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                   * `recipient`, forwarding all available gas and reverting on errors.
                   *
                   * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                   * of certain opcodes, possibly making contracts go over the 2300 gas limit
                   * imposed by `transfer`, making them unable to receive funds via
                   * `transfer`. {sendValue} removes this limitation.
                   *
                   * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                   *
                   * IMPORTANT: because control is transferred to `recipient`, care must be
                   * taken to not create reentrancy vulnerabilities. Consider using
                   * {ReentrancyGuard} or the
                   * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                   */
                  function sendValue(address payable recipient, uint256 amount) internal {
                      require(address(this).balance >= amount, "Address: insufficient balance");
                      (bool success, ) = recipient.call{value: amount}("");
                      require(success, "Address: unable to send value, recipient may have reverted");
                  }
                  /**
                   * @dev Performs a Solidity function call using a low level `call`. A
                   * plain `call` is an unsafe replacement for a function call: use this
                   * function instead.
                   *
                   * If `target` reverts with a revert reason, it is bubbled up by this
                   * function (like regular Solidity function calls).
                   *
                   * Returns the raw returned data. To convert to the expected return value,
                   * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                   *
                   * Requirements:
                   *
                   * - `target` must be a contract.
                   * - calling `target` with `data` must not revert.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionCall(target, data, "Address: low-level call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                   * `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, 0, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but also transferring `value` wei to `target`.
                   *
                   * Requirements:
                   *
                   * - the calling contract must have an ETH balance of at least `value`.
                   * - the called Solidity function must be `payable`.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                   * with `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(address(this).balance >= value, "Address: insufficient balance for call");
                      require(isContract(target), "Address: call to non-contract");
                      (bool success, bytes memory returndata) = target.call{value: value}(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                      return functionStaticCall(target, data, "Address: low-level static call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal view returns (bytes memory) {
                      require(isContract(target), "Address: static call to non-contract");
                      (bool success, bytes memory returndata) = target.staticcall(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                   * revert reason using the provided one.
                   *
                   * _Available since v4.3._
                   */
                  function verifyCallResult(
                      bool success,
                      bytes memory returndata,
                      string memory errorMessage
                  ) internal pure returns (bytes memory) {
                      if (success) {
                          return returndata;
                      } else {
                          // Look for revert reason and bubble it up if present
                          if (returndata.length > 0) {
                              // The easiest way to bubble the revert reason is using memory via assembly
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let returndata_size := mload(returndata)
                                  revert(add(32, returndata), returndata_size)
                              }
                          } else {
                              revert(errorMessage);
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
              /// @title RLPWriter
              /// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
              ///         RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
              ///         modifications to improve legibility.
              library RLPWriter {
                  /// @notice RLP encodes a byte string.
                  /// @param _in The byte string to encode.
                  /// @return out_ The RLP encoded string in bytes.
                  function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) {
                      if (_in.length == 1 && uint8(_in[0]) < 128) {
                          out_ = _in;
                      } else {
                          out_ = abi.encodePacked(_writeLength(_in.length, 128), _in);
                      }
                  }
                  /// @notice RLP encodes a list of RLP encoded byte byte strings.
                  /// @param _in The list of RLP encoded byte strings.
                  /// @return list_ The RLP encoded list of items in bytes.
                  function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) {
                      list_ = _flatten(_in);
                      list_ = abi.encodePacked(_writeLength(list_.length, 192), list_);
                  }
                  /// @notice RLP encodes a string.
                  /// @param _in The string to encode.
                  /// @return out_ The RLP encoded string in bytes.
                  function writeString(string memory _in) internal pure returns (bytes memory out_) {
                      out_ = writeBytes(bytes(_in));
                  }
                  /// @notice RLP encodes an address.
                  /// @param _in The address to encode.
                  /// @return out_ The RLP encoded address in bytes.
                  function writeAddress(address _in) internal pure returns (bytes memory out_) {
                      out_ = writeBytes(abi.encodePacked(_in));
                  }
                  /// @notice RLP encodes a uint.
                  /// @param _in The uint256 to encode.
                  /// @return out_ The RLP encoded uint256 in bytes.
                  function writeUint(uint256 _in) internal pure returns (bytes memory out_) {
                      out_ = writeBytes(_toBinary(_in));
                  }
                  /// @notice RLP encodes a bool.
                  /// @param _in The bool to encode.
                  /// @return out_ The RLP encoded bool in bytes.
                  function writeBool(bool _in) internal pure returns (bytes memory out_) {
                      out_ = new bytes(1);
                      out_[0] = (_in ? bytes1(0x01) : bytes1(0x80));
                  }
                  /// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
                  /// @param _len    The length of the string or the payload.
                  /// @param _offset 128 if item is string, 192 if item is list.
                  /// @return out_ RLP encoded bytes.
                  function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) {
                      if (_len < 56) {
                          out_ = new bytes(1);
                          out_[0] = bytes1(uint8(_len) + uint8(_offset));
                      } else {
                          uint256 lenLen;
                          uint256 i = 1;
                          while (_len / i != 0) {
                              lenLen++;
                              i *= 256;
                          }
                          out_ = new bytes(lenLen + 1);
                          out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
                          for (i = 1; i <= lenLen; i++) {
                              out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256));
                          }
                      }
                  }
                  /// @notice Encode integer in big endian binary form with no leading zeroes.
                  /// @param _x The integer to encode.
                  /// @return out_ RLP encoded bytes.
                  function _toBinary(uint256 _x) private pure returns (bytes memory out_) {
                      bytes memory b = abi.encodePacked(_x);
                      uint256 i = 0;
                      for (; i < 32; i++) {
                          if (b[i] != 0) {
                              break;
                          }
                      }
                      out_ = new bytes(32 - i);
                      for (uint256 j = 0; j < out_.length; j++) {
                          out_[j] = b[i++];
                      }
                  }
                  /// @custom:attribution https://github.com/Arachnid/solidity-stringutils
                  /// @notice Copies a piece of memory to another location.
                  /// @param _dest Destination location.
                  /// @param _src  Source location.
                  /// @param _len  Length of memory to copy.
                  function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure {
                      uint256 dest = _dest;
                      uint256 src = _src;
                      uint256 len = _len;
                      for (; len >= 32; len -= 32) {
                          assembly {
                              mstore(dest, mload(src))
                          }
                          dest += 32;
                          src += 32;
                      }
                      uint256 mask;
                      unchecked {
                          mask = 256 ** (32 - len) - 1;
                      }
                      assembly {
                          let srcpart := and(mload(src), not(mask))
                          let destpart := and(mload(dest), mask)
                          mstore(dest, or(destpart, srcpart))
                      }
                  }
                  /// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
                  /// @notice Flattens a list of byte strings into one byte string.
                  /// @param _list List of byte strings to flatten.
                  /// @return out_ The flattened byte string.
                  function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) {
                      if (_list.length == 0) {
                          return new bytes(0);
                      }
                      uint256 len;
                      uint256 i = 0;
                      for (; i < _list.length; i++) {
                          len += _list[i].length;
                      }
                      out_ = new bytes(len);
                      uint256 flattenedPtr;
                      assembly {
                          flattenedPtr := add(out_, 0x20)
                      }
                      for (i = 0; i < _list.length; i++) {
                          bytes memory item = _list[i];
                          uint256 listPtr;
                          assembly {
                              listPtr := add(item, 0x20)
                          }
                          _memcpy(flattenedPtr, listPtr, item.length);
                          flattenedPtr += _list[i].length;
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              interface IResourceMetering {
                  struct ResourceParams {
                      uint128 prevBaseFee;
                      uint64 prevBoughtGas;
                      uint64 prevBlockNum;
                  }
                  struct ResourceConfig {
                      uint32 maxResourceLimit;
                      uint8 elasticityMultiplier;
                      uint8 baseFeeMaxChangeDenominator;
                      uint32 minimumBaseFee;
                      uint32 systemTxMaxGas;
                      uint128 maximumBaseFee;
                  }
                  error OutOfGas();
                  event Initialized(uint8 version);
                  function params() external view returns (uint128 prevBaseFee, uint64 prevBoughtGas, uint64 prevBlockNum); // nosemgrep
                  function __constructor__() external;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.15;
              using LibPosition for Position global;
              /// @notice A `Position` represents a position of a claim within the game tree.
              /// @dev This is represented as a "generalized index" where the high-order bit
              /// is the level in the tree and the remaining bits is a unique bit pattern, allowing
              /// a unique identifier for each node in the tree. Mathematically, it is calculated
              /// as 2^{depth} + indexAtDepth.
              type Position is uint128;
              /// @title LibPosition
              /// @notice This library contains helper functions for working with the `Position` type.
              library LibPosition {
                  /// @notice the `MAX_POSITION_BITLEN` is the number of bits that the `Position` type, and the implementation of
                  ///         its behavior within this library, can safely support.
                  uint8 internal constant MAX_POSITION_BITLEN = 126;
                  /// @notice Computes a generalized index (2^{depth} + indexAtDepth).
                  /// @param _depth The depth of the position.
                  /// @param _indexAtDepth The index at the depth of the position.
                  /// @return position_ The computed generalized index.
                  function wrap(uint8 _depth, uint128 _indexAtDepth) internal pure returns (Position position_) {
                      assembly {
                          // gindex = 2^{_depth} + _indexAtDepth
                          position_ := add(shl(_depth, 1), _indexAtDepth)
                      }
                  }
                  /// @notice Pulls the `depth` out of a `Position` type.
                  /// @param _position The generalized index to get the `depth` of.
                  /// @return depth_ The `depth` of the `position` gindex.
                  /// @custom:attribution Solady <https://github.com/Vectorized/Solady>
                  function depth(Position _position) internal pure returns (uint8 depth_) {
                      // Return the most significant bit offset, which signifies the depth of the gindex.
                      assembly {
                          depth_ := or(depth_, shl(6, lt(0xffffffffffffffff, shr(depth_, _position))))
                          depth_ := or(depth_, shl(5, lt(0xffffffff, shr(depth_, _position))))
                          // For the remaining 32 bits, use a De Bruijn lookup.
                          _position := shr(depth_, _position)
                          _position := or(_position, shr(1, _position))
                          _position := or(_position, shr(2, _position))
                          _position := or(_position, shr(4, _position))
                          _position := or(_position, shr(8, _position))
                          _position := or(_position, shr(16, _position))
                          depth_ :=
                              or(
                                  depth_,
                                  byte(
                                      shr(251, mul(_position, shl(224, 0x07c4acdd))),
                                      0x0009010a0d15021d0b0e10121619031e080c141c0f111807131b17061a05041f
                                  )
                              )
                      }
                  }
                  /// @notice Pulls the `indexAtDepth` out of a `Position` type.
                  ///         The `indexAtDepth` is the left/right index of a position at a specific depth within
                  ///         the binary tree, starting from index 0. For example, at gindex 2, the `depth` = 1
                  ///         and the `indexAtDepth` = 0.
                  /// @param _position The generalized index to get the `indexAtDepth` of.
                  /// @return indexAtDepth_ The `indexAtDepth` of the `position` gindex.
                  function indexAtDepth(Position _position) internal pure returns (uint128 indexAtDepth_) {
                      // Return bits p_{msb-1}...p_{0}. This effectively pulls the 2^{depth} out of the gindex,
                      // leaving only the `indexAtDepth`.
                      uint256 msb = depth(_position);
                      assembly {
                          indexAtDepth_ := sub(_position, shl(msb, 1))
                      }
                  }
                  /// @notice Get the left child of `_position`.
                  /// @param _position The position to get the left position of.
                  /// @return left_ The position to the left of `position`.
                  function left(Position _position) internal pure returns (Position left_) {
                      assembly {
                          left_ := shl(1, _position)
                      }
                  }
                  /// @notice Get the right child of `_position`
                  /// @param _position The position to get the right position of.
                  /// @return right_ The position to the right of `position`.
                  function right(Position _position) internal pure returns (Position right_) {
                      assembly {
                          right_ := or(1, shl(1, _position))
                      }
                  }
                  /// @notice Get the parent position of `_position`.
                  /// @param _position The position to get the parent position of.
                  /// @return parent_ The parent position of `position`.
                  function parent(Position _position) internal pure returns (Position parent_) {
                      assembly {
                          parent_ := shr(1, _position)
                      }
                  }
                  /// @notice Get the deepest, right most gindex relative to the `position`. This is equivalent to
                  ///         calling `right` on a position until the maximum depth is reached.
                  /// @param _position The position to get the relative deepest, right most gindex of.
                  /// @param _maxDepth The maximum depth of the game.
                  /// @return rightIndex_ The deepest, right most gindex relative to the `position`.
                  function rightIndex(Position _position, uint256 _maxDepth) internal pure returns (Position rightIndex_) {
                      uint256 msb = depth(_position);
                      assembly {
                          let remaining := sub(_maxDepth, msb)
                          rightIndex_ := or(shl(remaining, _position), sub(shl(remaining, 1), 1))
                      }
                  }
                  /// @notice Get the deepest, right most trace index relative to the `position`. This is
                  ///         equivalent to calling `right` on a position until the maximum depth is reached and
                  ///         then finding its index at depth.
                  /// @param _position The position to get the relative trace index of.
                  /// @param _maxDepth The maximum depth of the game.
                  /// @return traceIndex_ The trace index relative to the `position`.
                  function traceIndex(Position _position, uint256 _maxDepth) internal pure returns (uint256 traceIndex_) {
                      uint256 msb = depth(_position);
                      assembly {
                          let remaining := sub(_maxDepth, msb)
                          traceIndex_ := sub(or(shl(remaining, _position), sub(shl(remaining, 1), 1)), shl(_maxDepth, 1))
                      }
                  }
                  /// @notice Gets the position of the highest ancestor of `_position` that commits to the same
                  ///         trace index.
                  /// @param _position The position to get the highest ancestor of.
                  /// @return ancestor_ The highest ancestor of `position` that commits to the same trace index.
                  function traceAncestor(Position _position) internal pure returns (Position ancestor_) {
                      // Create a field with only the lowest unset bit of `_position` set.
                      Position lsb;
                      assembly {
                          lsb := and(not(_position), add(_position, 1))
                      }
                      // Find the index of the lowest unset bit within the field.
                      uint256 msb = depth(lsb);
                      // The highest ancestor that commits to the same trace index is the original position
                      // shifted right by the index of the lowest unset bit.
                      assembly {
                          let a := shr(msb, _position)
                          // Bound the ancestor to the minimum gindex, 1.
                          ancestor_ := or(a, iszero(a))
                      }
                  }
                  /// @notice Gets the position of the highest ancestor of `_position` that commits to the same
                  ///         trace index, while still being below `_upperBoundExclusive`.
                  /// @param _position The position to get the highest ancestor of.
                  /// @param _upperBoundExclusive The exclusive upper depth bound, used to inform where to stop in order
                  ///                             to not escape a sub-tree.
                  /// @return ancestor_ The highest ancestor of `position` that commits to the same trace index.
                  function traceAncestorBounded(
                      Position _position,
                      uint256 _upperBoundExclusive
                  )
                      internal
                      pure
                      returns (Position ancestor_)
                  {
                      // This function only works for positions that are below the upper bound.
                      if (_position.depth() <= _upperBoundExclusive) {
                          assembly {
                              // Revert with `ClaimAboveSplit()`
                              mstore(0x00, 0xb34b5c22)
                              revert(0x1C, 0x04)
                          }
                      }
                      // Grab the global trace ancestor.
                      ancestor_ = traceAncestor(_position);
                      // If the ancestor is above or at the upper bound, shift it to be below the upper bound.
                      // This should be a special case that only covers positions that commit to the final leaf
                      // in a sub-tree.
                      if (ancestor_.depth() <= _upperBoundExclusive) {
                          ancestor_ = ancestor_.rightIndex(_upperBoundExclusive + 1);
                      }
                  }
                  /// @notice Get the move position of `_position`, which is the left child of:
                  ///         1. `_position` if `_isAttack` is true.
                  ///         2. `_position | 1` if `_isAttack` is false.
                  /// @param _position The position to get the relative attack/defense position of.
                  /// @param _isAttack Whether or not the move is an attack move.
                  /// @return move_ The move position relative to `position`.
                  function move(Position _position, bool _isAttack) internal pure returns (Position move_) {
                      assembly {
                          move_ := shl(1, or(iszero(_isAttack), _position))
                      }
                  }
                  /// @notice Get the value of a `Position` type in the form of the underlying uint128.
                  /// @param _position The position to get the value of.
                  /// @return raw_ The value of the `position` as a uint128 type.
                  function raw(Position _position) internal pure returns (uint128 raw_) {
                      assembly {
                          raw_ := _position
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              interface IInitializable {
                  function initialize() external payable;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.15;
              // Libraries
              import {
                  Position,
                  Hash,
                  GameType,
                  VMStatus,
                  Timestamp,
                  Duration,
                  Clock,
                  GameId,
                  Claim,
                  LibGameId,
                  LibClock
              } from "src/dispute/lib/LibUDT.sol";
              /// @notice The current status of the dispute game.
              enum GameStatus {
                  // The game is currently in progress, and has not been resolved.
                  IN_PROGRESS,
                  // The game has concluded, and the `rootClaim` was challenged successfully.
                  CHALLENGER_WINS,
                  // The game has concluded, and the `rootClaim` could not be contested.
                  DEFENDER_WINS
              }
              /// @notice The game's bond distribution type. Games are expected to start in the `UNDECIDED`
              ///         state, and then choose either `NORMAL` or `REFUND`.
              enum BondDistributionMode {
                  // Bond distribution strategy has not been chosen.
                  UNDECIDED,
                  // Bonds should be distributed as normal.
                  NORMAL,
                  // Bonds should be refunded to claimants.
                  REFUND
              }
              /// @notice Represents an L2 output root and the L2 block number at which it was generated.
              /// @custom:field root The output root.
              /// @custom:field l2BlockNumber The L2 block number at which the output root was generated.
              struct OutputRoot {
                  Hash root;
                  uint256 l2BlockNumber;
              }
              /// @title GameTypes
              /// @notice A library that defines the IDs of games that can be played.
              library GameTypes {
                  /// @dev A dispute game type the uses the cannon vm.
                  GameType internal constant CANNON = GameType.wrap(0);
                  /// @dev A permissioned dispute game type that uses the cannon vm.
                  GameType internal constant PERMISSIONED_CANNON = GameType.wrap(1);
                  /// @notice A dispute game type that uses the asterisc vm.
                  GameType internal constant ASTERISC = GameType.wrap(2);
                  /// @notice A dispute game type that uses the asterisc vm with Kona.
                  GameType internal constant ASTERISC_KONA = GameType.wrap(3);
                  /// @notice A dispute game type that uses OP Succinct
                  GameType internal constant OP_SUCCINCT = GameType.wrap(6);
                  /// @notice A dispute game type with short game duration for testing withdrawals.
                  ///         Not intended for production use.
                  GameType internal constant FAST = GameType.wrap(254);
                  /// @notice A dispute game type that uses an alphabet vm.
                  ///         Not intended for production use.
                  GameType internal constant ALPHABET = GameType.wrap(255);
                  /// @notice A dispute game type that uses RISC Zero's Kailua
                  GameType internal constant KAILUA = GameType.wrap(1337);
              }
              /// @title VMStatuses
              /// @notice Named type aliases for the various valid VM status bytes.
              library VMStatuses {
                  /// @notice The VM has executed successfully and the outcome is valid.
                  VMStatus internal constant VALID = VMStatus.wrap(0);
                  /// @notice The VM has executed successfully and the outcome is invalid.
                  VMStatus internal constant INVALID = VMStatus.wrap(1);
                  /// @notice The VM has paniced.
                  VMStatus internal constant PANIC = VMStatus.wrap(2);
                  /// @notice The VM execution is still in progress.
                  VMStatus internal constant UNFINISHED = VMStatus.wrap(3);
              }
              /// @title LocalPreimageKey
              /// @notice Named type aliases for local `PreimageOracle` key identifiers.
              library LocalPreimageKey {
                  /// @notice The identifier for the L1 head hash.
                  uint256 internal constant L1_HEAD_HASH = 0x01;
                  /// @notice The identifier for the starting output root.
                  uint256 internal constant STARTING_OUTPUT_ROOT = 0x02;
                  /// @notice The identifier for the disputed output root.
                  uint256 internal constant DISPUTED_OUTPUT_ROOT = 0x03;
                  /// @notice The identifier for the disputed L2 block number.
                  uint256 internal constant DISPUTED_L2_BLOCK_NUMBER = 0x04;
                  /// @notice The identifier for the chain ID.
                  uint256 internal constant CHAIN_ID = 0x05;
              }
              

              File 9 of 10: OptimismPortal2
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              // Contracts
              import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
              import { ResourceMetering } from "src/L1/ResourceMetering.sol";
              // Libraries
              import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
              import { EOA } from "src/libraries/EOA.sol";
              import { SafeCall } from "src/libraries/SafeCall.sol";
              import { Constants } from "src/libraries/Constants.sol";
              import { Types } from "src/libraries/Types.sol";
              import { Hashing } from "src/libraries/Hashing.sol";
              import { SecureMerkleTrie } from "src/libraries/trie/SecureMerkleTrie.sol";
              import { AddressAliasHelper } from "src/vendor/AddressAliasHelper.sol";
              import {
                  BadTarget,
                  LargeCalldata,
                  SmallGasLimit,
                  Unauthorized,
                  CallPaused,
                  GasEstimation,
                  NonReentrant,
                  InvalidProof,
                  InvalidGameType,
                  InvalidDisputeGame,
                  InvalidMerkleProof,
                  Blacklisted,
                  Unproven,
                  ProposalNotValidated,
                  AlreadyFinalized,
                  LegacyGame
              } from "src/libraries/PortalErrors.sol";
              import { GameStatus, GameType, Claim, Timestamp } from "src/dispute/lib/Types.sol";
              // Interfaces
              import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
              import { ISemver } from "interfaces/universal/ISemver.sol";
              import { ISystemConfig } from "interfaces/L1/ISystemConfig.sol";
              import { IResourceMetering } from "interfaces/L1/IResourceMetering.sol";
              import { ISuperchainConfig } from "interfaces/L1/ISuperchainConfig.sol";
              import { IDisputeGameFactory } from "interfaces/dispute/IDisputeGameFactory.sol";
              import { IDisputeGame } from "interfaces/dispute/IDisputeGame.sol";
              /// @custom:proxied true
              /// @title OptimismPortal2
              /// @notice The OptimismPortal is a low-level contract responsible for passing messages between L1
              ///         and L2. Messages sent directly to the OptimismPortal have no form of replayability.
              ///         Users are encouraged to use the L1CrossDomainMessenger for a higher-level interface.
              contract OptimismPortal2 is Initializable, ResourceMetering, ISemver {
                  /// @notice Allows for interactions with non standard ERC20 tokens.
                  using SafeERC20 for IERC20;
                  /// @notice Represents a proven withdrawal.
                  /// @custom:field disputeGameProxy The address of the dispute game proxy that the withdrawal was proven against.
                  /// @custom:field timestamp        Timestamp at which the withdrawal was proven.
                  struct ProvenWithdrawal {
                      IDisputeGame disputeGameProxy;
                      uint64 timestamp;
                  }
                  /// @notice The delay between when a withdrawal transaction is proven and when it may be finalized.
                  uint256 internal immutable PROOF_MATURITY_DELAY_SECONDS;
                  /// @notice The delay between when a dispute game is resolved and when a withdrawal proven against it may be
                  ///         finalized.
                  uint256 internal immutable DISPUTE_GAME_FINALITY_DELAY_SECONDS;
                  /// @notice Version of the deposit event.
                  uint256 internal constant DEPOSIT_VERSION = 0;
                  /// @notice The L2 gas limit set when eth is deposited using the receive() function.
                  uint64 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000;
                  /// @notice The L2 gas limit for system deposit transactions that are initiated from L1.
                  uint32 internal constant SYSTEM_DEPOSIT_GAS_LIMIT = 200_000;
                  /// @notice Address of the L2 account which initiated a withdrawal in this transaction.
                  ///         If the of this variable is the default L2 sender address, then we are NOT inside of
                  ///         a call to finalizeWithdrawalTransaction.
                  address public l2Sender;
                  /// @notice A list of withdrawal hashes which have been successfully finalized.
                  mapping(bytes32 => bool) public finalizedWithdrawals;
                  /// @custom:legacy
                  /// @custom:spacer provenWithdrawals
                  /// @notice Spacer taking up the legacy `provenWithdrawals` mapping slot.
                  bytes32 private spacer_52_0_32;
                  /// @custom:legacy
                  /// @custom:spacer paused
                  /// @notice Spacer for backwards compatibility.
                  bool private spacer_53_0_1;
                  /// @notice Contract of the Superchain Config.
                  ISuperchainConfig public superchainConfig;
                  /// @custom:legacy
                  /// @custom:spacer l2Oracle
                  /// @notice Spacer taking up the legacy `l2Oracle` address slot.
                  address private spacer_54_0_20;
                  /// @notice Contract of the SystemConfig.
                  /// @custom:network-specific
                  ISystemConfig public systemConfig;
                  /// @notice Address of the DisputeGameFactory.
                  /// @custom:network-specific
                  IDisputeGameFactory public disputeGameFactory;
                  /// @notice A mapping of withdrawal hashes to proof submitters to `ProvenWithdrawal` data.
                  mapping(bytes32 => mapping(address => ProvenWithdrawal)) public provenWithdrawals;
                  /// @notice A mapping of dispute game addresses to whether or not they are blacklisted.
                  mapping(IDisputeGame => bool) public disputeGameBlacklist;
                  /// @notice The game type that the OptimismPortal consults for output proposals.
                  GameType public respectedGameType;
                  /// @notice The timestamp at which the respected game type was last updated.
                  uint64 public respectedGameTypeUpdatedAt;
                  /// @notice Mapping of withdrawal hashes to addresses that have submitted a proof for the
                  ///         withdrawal. Original OptimismPortal contract only allowed one proof to be submitted
                  ///         for any given withdrawal hash. Fault Proofs version of this contract must allow
                  ///         multiple proofs for the same withdrawal hash to prevent a malicious user from
                  ///         blocking other withdrawals by proving them against invalid proposals. Submitters
                  ///         are tracked in an array to simplify the off-chain process of determining which
                  ///         proof submission should be used when finalizing a withdrawal.
                  mapping(bytes32 => address[]) public proofSubmitters;
                  /// @custom:legacy
                  /// @custom:spacer _balance
                  /// @notice Spacer taking up the legacy `_balance` slot.
                  uint256 private spacer_61_0_32;
                  /// @notice Emitted when a transaction is deposited from L1 to L2.
                  ///         The parameters of this event are read by the rollup node and used to derive deposit
                  ///         transactions on L2.
                  /// @param from       Address that triggered the deposit transaction.
                  /// @param to         Address that the deposit transaction is directed to.
                  /// @param version    Version of this deposit transaction event.
                  /// @param opaqueData ABI encoded deposit data to be parsed off-chain.
                  event TransactionDeposited(address indexed from, address indexed to, uint256 indexed version, bytes opaqueData);
                  /// @notice Emitted when a withdrawal transaction is proven.
                  /// @param withdrawalHash Hash of the withdrawal transaction.
                  /// @param from           Address that triggered the withdrawal transaction.
                  /// @param to             Address that the withdrawal transaction is directed to.
                  event WithdrawalProven(bytes32 indexed withdrawalHash, address indexed from, address indexed to);
                  /// @notice Emitted when a withdrawal transaction is proven. Exists as a separate event to allow for backwards
                  ///         compatibility for tooling that observes the `WithdrawalProven` event.
                  /// @param withdrawalHash Hash of the withdrawal transaction.
                  /// @param proofSubmitter Address of the proof submitter.
                  event WithdrawalProvenExtension1(bytes32 indexed withdrawalHash, address indexed proofSubmitter);
                  /// @notice Emitted when a withdrawal transaction is finalized.
                  /// @param withdrawalHash Hash of the withdrawal transaction.
                  /// @param success        Whether the withdrawal transaction was successful.
                  event WithdrawalFinalized(bytes32 indexed withdrawalHash, bool success);
                  /// @notice Emitted when a dispute game is blacklisted by the Guardian.
                  /// @param disputeGame Address of the dispute game that was blacklisted.
                  event DisputeGameBlacklisted(IDisputeGame indexed disputeGame);
                  /// @notice Emitted when the Guardian changes the respected game type in the portal.
                  /// @param newGameType The new respected game type.
                  /// @param updatedAt   The timestamp at which the respected game type was updated.
                  event RespectedGameTypeSet(GameType indexed newGameType, Timestamp indexed updatedAt);
                  /// @notice Reverts when paused.
                  modifier whenNotPaused() {
                      if (paused()) revert CallPaused();
                      _;
                  }
                  /// @notice Semantic version.
                  /// @custom:semver 3.13.0
                  function version() public pure virtual returns (string memory) {
                      return "3.13.0";
                  }
                  /// @notice Constructs the OptimismPortal contract.
                  constructor(uint256 _proofMaturityDelaySeconds, uint256 _disputeGameFinalityDelaySeconds) {
                      PROOF_MATURITY_DELAY_SECONDS = _proofMaturityDelaySeconds;
                      DISPUTE_GAME_FINALITY_DELAY_SECONDS = _disputeGameFinalityDelaySeconds;
                      _disableInitializers();
                  }
                  /// @notice Initializer.
                  /// @param _disputeGameFactory Contract of the DisputeGameFactory.
                  /// @param _systemConfig Contract of the SystemConfig.
                  /// @param _superchainConfig Contract of the SuperchainConfig.
                  function initialize(
                      IDisputeGameFactory _disputeGameFactory,
                      ISystemConfig _systemConfig,
                      ISuperchainConfig _superchainConfig,
                      GameType _initialRespectedGameType
                  )
                      external
                      initializer
                  {
                      disputeGameFactory = _disputeGameFactory;
                      systemConfig = _systemConfig;
                      superchainConfig = _superchainConfig;
                      // Set the `l2Sender` slot, only if it is currently empty. This signals the first initialization of the
                      // contract.
                      if (l2Sender == address(0)) {
                          l2Sender = Constants.DEFAULT_L2_SENDER;
                          // Set the `respectedGameTypeUpdatedAt` timestamp, to ignore all games of the respected type prior
                          // to this operation.
                          respectedGameTypeUpdatedAt = uint64(block.timestamp);
                          // Set the initial respected game type
                          respectedGameType = _initialRespectedGameType;
                      }
                      __ResourceMetering_init();
                  }
                  /// @notice Getter function for the address of the guardian.
                  ///         Public getter is legacy and will be removed in the future. Use `SuperchainConfig.guardian()` instead.
                  /// @return Address of the guardian.
                  /// @custom:legacy
                  function guardian() public view returns (address) {
                      return superchainConfig.guardian();
                  }
                  /// @notice Getter for the current paused status.
                  function paused() public view returns (bool) {
                      return superchainConfig.paused();
                  }
                  /// @notice Getter for the proof maturity delay.
                  function proofMaturityDelaySeconds() public view returns (uint256) {
                      return PROOF_MATURITY_DELAY_SECONDS;
                  }
                  /// @notice Getter for the dispute game finality delay.
                  function disputeGameFinalityDelaySeconds() public view returns (uint256) {
                      return DISPUTE_GAME_FINALITY_DELAY_SECONDS;
                  }
                  /// @notice Computes the minimum gas limit for a deposit.
                  ///         The minimum gas limit linearly increases based on the size of the calldata.
                  ///         This is to prevent users from creating L2 resource usage without paying for it.
                  ///         This function can be used when interacting with the portal to ensure forwards
                  ///         compatibility.
                  /// @param _byteCount Number of bytes in the calldata.
                  /// @return The minimum gas limit for a deposit.
                  function minimumGasLimit(uint64 _byteCount) public pure returns (uint64) {
                      return _byteCount * 16 + 21000;
                  }
                  /// @notice Accepts value so that users can send ETH directly to this contract and have the
                  ///         funds be deposited to their address on L2. This is intended as a convenience
                  ///         function for EOAs. Contracts should call the depositTransaction() function directly
                  ///         otherwise any deposited funds will be lost due to address aliasing.
                  receive() external payable {
                      depositTransaction(msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, false, bytes(""));
                  }
                  /// @notice Accepts ETH value without triggering a deposit to L2.
                  ///         This function mainly exists for the sake of the migration between the legacy
                  ///         Optimism system and Bedrock.
                  function donateETH() external payable {
                      // Intentionally empty.
                  }
                  /// @notice Getter for the resource config.
                  ///         Used internally by the ResourceMetering contract.
                  ///         The SystemConfig is the source of truth for the resource config.
                  /// @return config_ ResourceMetering ResourceConfig
                  function _resourceConfig() internal view override returns (ResourceMetering.ResourceConfig memory config_) {
                      IResourceMetering.ResourceConfig memory config = systemConfig.resourceConfig();
                      assembly ("memory-safe") {
                          config_ := config
                      }
                  }
                  /// @notice Proves a withdrawal transaction.
                  /// @param _tx               Withdrawal transaction to finalize.
                  /// @param _disputeGameIndex Index of the dispute game to prove the withdrawal against.
                  /// @param _outputRootProof  Inclusion proof of the L2ToL1MessagePasser contract's storage root.
                  /// @param _withdrawalProof  Inclusion proof of the withdrawal in L2ToL1MessagePasser contract.
                  function proveWithdrawalTransaction(
                      Types.WithdrawalTransaction memory _tx,
                      uint256 _disputeGameIndex,
                      Types.OutputRootProof calldata _outputRootProof,
                      bytes[] calldata _withdrawalProof
                  )
                      external
                      whenNotPaused
                  {
                      // Prevent users from creating a deposit transaction where this address is the message
                      // sender on L2. Because this is checked here, we do not need to check again in
                      // `finalizeWithdrawalTransaction`.
                      if (_tx.target == address(this)) revert BadTarget();
                      // Fetch the dispute game proxy from the `DisputeGameFactory` contract.
                      (GameType gameType,, IDisputeGame gameProxy) = disputeGameFactory.gameAtIndex(_disputeGameIndex);
                      Claim outputRoot = gameProxy.rootClaim();
                      // The game type of the dispute game must be the respected game type.
                      if (gameType.raw() != respectedGameType.raw()) revert InvalidGameType();
                      // The game type of the DisputeGame must have been the respected game type at creation.
                      // eip150-safe
                      try gameProxy.wasRespectedGameTypeWhenCreated() returns (bool wasRespected_) {
                          if (!wasRespected_) revert InvalidGameType();
                      } catch {
                          revert LegacyGame();
                      }
                      // Game must have been created after the respected game type was updated. This check is a
                      // strict inequality because we want to prevent users from being able to prove or finalize
                      // withdrawals against games that were created in the same block that the retirement
                      // timestamp was set. If the retirement timestamp and game type are changed in the same
                      // block, such games could still be considered valid even if they used the old game type
                      // that we intended to invalidate.
                      require(
                          gameProxy.createdAt().raw() > respectedGameTypeUpdatedAt,
                          "OptimismPortal: dispute game created before respected game type was updated"
                      );
                      // Verify that the output root can be generated with the elements in the proof.
                      if (outputRoot.raw() != Hashing.hashOutputRootProof(_outputRootProof)) revert InvalidProof();
                      // Load the ProvenWithdrawal into memory, using the withdrawal hash as a unique identifier.
                      bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
                      // We do not allow for proving withdrawals against dispute games that have resolved against the favor
                      // of the root claim.
                      if (gameProxy.status() == GameStatus.CHALLENGER_WINS) revert InvalidDisputeGame();
                      // Compute the storage slot of the withdrawal hash in the L2ToL1MessagePasser contract.
                      // Refer to the Solidity documentation for more information on how storage layouts are
                      // computed for mappings.
                      bytes32 storageKey = keccak256(
                          abi.encode(
                              withdrawalHash,
                              uint256(0) // The withdrawals mapping is at the first slot in the layout.
                          )
                      );
                      // Verify that the hash of this withdrawal was stored in the L2toL1MessagePasser contract
                      // on L2. If this is true, under the assumption that the SecureMerkleTrie does not have
                      // bugs, then we know that this withdrawal was actually triggered on L2 and can therefore
                      // be relayed on L1.
                      if (
                          SecureMerkleTrie.verifyInclusionProof({
                              _key: abi.encode(storageKey),
                              _value: hex"01",
                              _proof: _withdrawalProof,
                              _root: _outputRootProof.messagePasserStorageRoot
                          }) == false
                      ) revert InvalidMerkleProof();
                      // Designate the withdrawalHash as proven by storing the `disputeGameProxy` & `timestamp` in the
                      // `provenWithdrawals` mapping. A `withdrawalHash` can only be proven once unless the dispute game it proved
                      // against resolves against the favor of the root claim.
                      provenWithdrawals[withdrawalHash][msg.sender] =
                          ProvenWithdrawal({ disputeGameProxy: gameProxy, timestamp: uint64(block.timestamp) });
                      // Emit a `WithdrawalProven` event.
                      emit WithdrawalProven(withdrawalHash, _tx.sender, _tx.target);
                      // Emit a `WithdrawalProvenExtension1` event.
                      emit WithdrawalProvenExtension1(withdrawalHash, msg.sender);
                      // Add the proof submitter to the list of proof submitters for this withdrawal hash.
                      proofSubmitters[withdrawalHash].push(msg.sender);
                  }
                  /// @notice Finalizes a withdrawal transaction.
                  /// @param _tx Withdrawal transaction to finalize.
                  function finalizeWithdrawalTransaction(Types.WithdrawalTransaction memory _tx) external whenNotPaused {
                      finalizeWithdrawalTransactionExternalProof(_tx, msg.sender);
                  }
                  /// @notice Finalizes a withdrawal transaction, using an external proof submitter.
                  /// @param _tx Withdrawal transaction to finalize.
                  /// @param _proofSubmitter Address of the proof submitter.
                  function finalizeWithdrawalTransactionExternalProof(
                      Types.WithdrawalTransaction memory _tx,
                      address _proofSubmitter
                  )
                      public
                      whenNotPaused
                  {
                      // Make sure that the l2Sender has not yet been set. The l2Sender is set to a value other
                      // than the default value when a withdrawal transaction is being finalized. This check is
                      // a defacto reentrancy guard.
                      if (l2Sender != Constants.DEFAULT_L2_SENDER) revert NonReentrant();
                      // Compute the withdrawal hash.
                      bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
                      // Check that the withdrawal can be finalized.
                      checkWithdrawal(withdrawalHash, _proofSubmitter);
                      // Mark the withdrawal as finalized so it can't be replayed.
                      finalizedWithdrawals[withdrawalHash] = true;
                      // Set the l2Sender so contracts know who triggered this withdrawal on L2.
                      l2Sender = _tx.sender;
                      // Trigger the call to the target contract. We use a custom low level method
                      // SafeCall.callWithMinGas to ensure two key properties
                      //   1. Target contracts cannot force this call to run out of gas by returning a very large
                      //      amount of data (and this is OK because we don't care about the returndata here).
                      //   2. The amount of gas provided to the execution context of the target is at least the
                      //      gas limit specified by the user. If there is not enough gas in the current context
                      //      to accomplish this, `callWithMinGas` will revert.
                      bool success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, _tx.value, _tx.data);
                      // Reset the l2Sender back to the default value.
                      l2Sender = Constants.DEFAULT_L2_SENDER;
                      // All withdrawals are immediately finalized. Replayability can
                      // be achieved through contracts built on top of this contract
                      emit WithdrawalFinalized(withdrawalHash, success);
                      // Reverting here is useful for determining the exact gas cost to successfully execute the
                      // sub call to the target contract if the minimum gas limit specified by the user would not
                      // be sufficient to execute the sub call.
                      if (!success && tx.origin == Constants.ESTIMATION_ADDRESS) {
                          revert GasEstimation();
                      }
                  }
                  /// @notice Accepts deposits of ETH and data, and emits a TransactionDeposited event for use in
                  ///         deriving deposit transactions. Note that if a deposit is made by a contract, its
                  ///         address will be aliased when retrieved using `tx.origin` or `msg.sender`. Consider
                  ///         using the CrossDomainMessenger contracts for a simpler developer experience.
                  /// @param _to         Target address on L2.
                  /// @param _value      ETH value to send to the recipient.
                  /// @param _gasLimit   Amount of L2 gas to purchase by burning gas on L1.
                  /// @param _isCreation Whether or not the transaction is a contract creation.
                  /// @param _data       Data to trigger the recipient with.
                  function depositTransaction(
                      address _to,
                      uint256 _value,
                      uint64 _gasLimit,
                      bool _isCreation,
                      bytes memory _data
                  )
                      public
                      payable
                      metered(_gasLimit)
                  {
                      // Just to be safe, make sure that people specify address(0) as the target when doing
                      // contract creations.
                      if (_isCreation && _to != address(0)) revert BadTarget();
                      // Prevent depositing transactions that have too small of a gas limit. Users should pay
                      // more for more resource usage.
                      if (_gasLimit < minimumGasLimit(uint64(_data.length))) revert SmallGasLimit();
                      // Prevent the creation of deposit transactions that have too much calldata. This gives an
                      // upper limit on the size of unsafe blocks over the p2p network. 120kb is chosen to ensure
                      // that the transaction can fit into the p2p network policy of 128kb even though deposit
                      // transactions are not gossipped over the p2p network.
                      if (_data.length > 120_000) revert LargeCalldata();
                      // Transform the from-address to its alias if the caller is a contract.
                      address from = msg.sender;
                      if (!EOA.isSenderEOA()) {
                          from = AddressAliasHelper.applyL1ToL2Alias(msg.sender);
                      }
                      // Compute the opaque data that will be emitted as part of the TransactionDeposited event.
                      // We use opaque data so that we can update the TransactionDeposited event in the future
                      // without breaking the current interface.
                      bytes memory opaqueData = abi.encodePacked(msg.value, _value, _gasLimit, _isCreation, _data);
                      // Emit a TransactionDeposited event so that the rollup node can derive a deposit
                      // transaction for this deposit.
                      emit TransactionDeposited(from, _to, DEPOSIT_VERSION, opaqueData);
                  }
                  /// @notice Blacklists a dispute game. Should only be used in the event that a dispute game resolves incorrectly.
                  /// @param _disputeGame Dispute game to blacklist.
                  function blacklistDisputeGame(IDisputeGame _disputeGame) external {
                      if (msg.sender != guardian()) revert Unauthorized();
                      disputeGameBlacklist[_disputeGame] = true;
                      emit DisputeGameBlacklisted(_disputeGame);
                  }
                  /// @notice Sets the respected game type. Changing this value can alter the security properties of the system,
                  ///         depending on the new game's behavior.
                  /// @param _gameType The game type to consult for output proposals.
                  function setRespectedGameType(GameType _gameType) external {
                      if (msg.sender != guardian()) revert Unauthorized();
                      // respectedGameTypeUpdatedAt is now no longer set by default. We want to avoid modifying
                      // this function's signature as that would result in changes to the DeputyGuardianModule.
                      // We use type(uint32).max as a temporary solution to allow us to update the
                      // respectedGameTypeUpdatedAt timestamp without modifying this function's signature.
                      if (_gameType.raw() == type(uint32).max) {
                          respectedGameTypeUpdatedAt = uint64(block.timestamp);
                      } else {
                          respectedGameType = _gameType;
                      }
                      emit RespectedGameTypeSet(respectedGameType, Timestamp.wrap(respectedGameTypeUpdatedAt));
                  }
                  /// @notice Checks if a withdrawal can be finalized. This function will revert if the withdrawal cannot be
                  ///         finalized, and otherwise has no side-effects.
                  /// @param _withdrawalHash Hash of the withdrawal to check.
                  /// @param _proofSubmitter The submitter of the proof for the withdrawal hash
                  function checkWithdrawal(bytes32 _withdrawalHash, address _proofSubmitter) public view {
                      ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[_withdrawalHash][_proofSubmitter];
                      IDisputeGame disputeGameProxy = provenWithdrawal.disputeGameProxy;
                      // The dispute game must not be blacklisted.
                      if (disputeGameBlacklist[disputeGameProxy]) revert Blacklisted();
                      // A withdrawal can only be finalized if it has been proven. We know that a withdrawal has
                      // been proven at least once when its timestamp is non-zero. Unproven withdrawals will have
                      // a timestamp of zero.
                      if (provenWithdrawal.timestamp == 0) revert Unproven();
                      // Grab the createdAt timestamp once.
                      uint64 createdAt = disputeGameProxy.createdAt().raw();
                      // As a sanity check, we make sure that the proven withdrawal's timestamp is greater than
                      // starting timestamp inside the Dispute Game. Not strictly necessary but extra layer of
                      // safety against weird bugs in the proving step.
                      require(
                          provenWithdrawal.timestamp > createdAt,
                          "OptimismPortal: withdrawal timestamp less than dispute game creation timestamp"
                      );
                      // A proven withdrawal must wait at least `PROOF_MATURITY_DELAY_SECONDS` before finalizing.
                      require(
                          block.timestamp - provenWithdrawal.timestamp > PROOF_MATURITY_DELAY_SECONDS,
                          "OptimismPortal: proven withdrawal has not matured yet"
                      );
                      // A proven withdrawal must wait until the dispute game it was proven against has been
                      // resolved in favor of the root claim (the output proposal). This is to prevent users
                      // from finalizing withdrawals proven against non-finalized output roots.
                      if (disputeGameProxy.status() != GameStatus.DEFENDER_WINS) revert ProposalNotValidated();
                      // The game type of the dispute game must have been the respected game type at creation
                      // time. We check that the game type is the respected game type at proving time, but it's
                      // possible that the respected game type has since changed. Users can still use this game
                      // to finalize a withdrawal as long as it has not been otherwise invalidated.
                      // The game type of the DisputeGame must have been the respected game type at creation.
                      // eip150-safe
                      try disputeGameProxy.wasRespectedGameTypeWhenCreated() returns (bool wasRespected_) {
                          if (!wasRespected_) revert InvalidGameType();
                      } catch {
                          revert LegacyGame();
                      }
                      // Game must have been created after the respected game type was updated. This check is a
                      // strict inequality because we want to prevent users from being able to prove or finalize
                      // withdrawals against games that were created in the same block that the retirement
                      // timestamp was set. If the retirement timestamp and game type are changed in the same
                      // block, such games could still be considered valid even if they used the old game type
                      // that we intended to invalidate.
                      require(
                          createdAt > respectedGameTypeUpdatedAt,
                          "OptimismPortal: dispute game created before respected game type was updated"
                      );
                      // Before a withdrawal can be finalized, the dispute game it was proven against must have been
                      // resolved for at least `DISPUTE_GAME_FINALITY_DELAY_SECONDS`. This is to allow for manual
                      // intervention in the event that a dispute game is resolved incorrectly.
                      require(
                          block.timestamp - disputeGameProxy.resolvedAt().raw() > DISPUTE_GAME_FINALITY_DELAY_SECONDS,
                          "OptimismPortal: output proposal in air-gap"
                      );
                      // Check that this withdrawal has not already been finalized, this is replay protection.
                      if (finalizedWithdrawals[_withdrawalHash]) revert AlreadyFinalized();
                  }
                  /// @notice External getter for the number of proof submitters for a withdrawal hash.
                  /// @param _withdrawalHash Hash of the withdrawal.
                  /// @return The number of proof submitters for the withdrawal hash.
                  function numProofSubmitters(bytes32 _withdrawalHash) external view returns (uint256) {
                      return proofSubmitters[_withdrawalHash].length;
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
              pragma solidity ^0.8.2;
              import "../../utils/Address.sol";
              /**
               * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
               * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
               * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
               * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
               *
               * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
               * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
               * case an upgrade adds a module that needs to be initialized.
               *
               * For example:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * contract MyToken is ERC20Upgradeable {
               *     function initialize() initializer public {
               *         __ERC20_init("MyToken", "MTK");
               *     }
               * }
               * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
               *     function initializeV2() reinitializer(2) public {
               *         __ERC20Permit_init("MyToken");
               *     }
               * }
               * ```
               *
               * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
               * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
               *
               * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
               * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
               *
               * [CAUTION]
               * ====
               * Avoid leaving a contract uninitialized.
               *
               * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
               * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
               * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
               *
               * [.hljs-theme-light.nopadding]
               * ```
               * /// @custom:oz-upgrades-unsafe-allow constructor
               * constructor() {
               *     _disableInitializers();
               * }
               * ```
               * ====
               */
              abstract contract Initializable {
                  /**
                   * @dev Indicates that the contract has been initialized.
                   * @custom:oz-retyped-from bool
                   */
                  uint8 private _initialized;
                  /**
                   * @dev Indicates that the contract is in the process of being initialized.
                   */
                  bool private _initializing;
                  /**
                   * @dev Triggered when the contract has been initialized or reinitialized.
                   */
                  event Initialized(uint8 version);
                  /**
                   * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                   * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                   */
                  modifier initializer() {
                      bool isTopLevelCall = !_initializing;
                      require(
                          (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                          "Initializable: contract is already initialized"
                      );
                      _initialized = 1;
                      if (isTopLevelCall) {
                          _initializing = true;
                      }
                      _;
                      if (isTopLevelCall) {
                          _initializing = false;
                          emit Initialized(1);
                      }
                  }
                  /**
                   * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                   * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                   * used to initialize parent contracts.
                   *
                   * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                   * initialization step. This is essential to configure modules that are added through upgrades and that require
                   * initialization.
                   *
                   * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                   * a contract, executing them in the right order is up to the developer or operator.
                   */
                  modifier reinitializer(uint8 version) {
                      require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                      _initialized = version;
                      _initializing = true;
                      _;
                      _initializing = false;
                      emit Initialized(version);
                  }
                  /**
                   * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                   * {initializer} and {reinitializer} modifiers, directly or indirectly.
                   */
                  modifier onlyInitializing() {
                      require(_initializing, "Initializable: contract is not initializing");
                      _;
                  }
                  /**
                   * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                   * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                   * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                   * through proxies.
                   */
                  function _disableInitializers() internal virtual {
                      require(!_initializing, "Initializable: contract is initializing");
                      if (_initialized < type(uint8).max) {
                          _initialized = type(uint8).max;
                          emit Initialized(type(uint8).max);
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              // Contracts
              import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
              // Libraries
              import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
              import { Burn } from "src/libraries/Burn.sol";
              import { Arithmetic } from "src/libraries/Arithmetic.sol";
              /// @custom:upgradeable
              /// @title ResourceMetering
              /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
              ///         updates automatically based on current demand.
              abstract contract ResourceMetering is Initializable {
                  /// @notice Error returned when too much gas resource is consumed.
                  error OutOfGas();
                  /// @notice Represents the various parameters that control the way in which resources are
                  ///         metered. Corresponds to the EIP-1559 resource metering system.
                  /// @custom:field prevBaseFee   Base fee from the previous block(s).
                  /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
                  /// @custom:field prevBlockNum  Last block number that the base fee was updated.
                  struct ResourceParams {
                      uint128 prevBaseFee;
                      uint64 prevBoughtGas;
                      uint64 prevBlockNum;
                  }
                  /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
                  ///         market. These values should be set with care as it is possible to set them in
                  ///         a way that breaks the deposit gas market. The target resource limit is defined as
                  ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
                  ///         single word. There is additional space for additions in the future.
                  /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
                  ///                                            can be purchased per block.
                  /// @custom:field elasticityMultiplier         Determines the target resource limit along with
                  ///                                            the resource limit.
                  /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
                  /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
                  ///                                            value.
                  /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
                  ///                                            transaction. This should be set to the same
                  ///                                            number that the op-node sets as the gas limit
                  ///                                            for the system transaction.
                  /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
                  ///                                            value.
                  struct ResourceConfig {
                      uint32 maxResourceLimit;
                      uint8 elasticityMultiplier;
                      uint8 baseFeeMaxChangeDenominator;
                      uint32 minimumBaseFee;
                      uint32 systemTxMaxGas;
                      uint128 maximumBaseFee;
                  }
                  /// @notice EIP-1559 style gas parameters.
                  ResourceParams public params;
                  /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
                  uint256[48] private __gap;
                  /// @notice Meters access to a function based an amount of a requested resource.
                  /// @param _amount Amount of the resource requested.
                  modifier metered(uint64 _amount) {
                      // Record initial gas amount so we can refund for it later.
                      uint256 initialGas = gasleft();
                      // Run the underlying function.
                      _;
                      // Run the metering function.
                      _metered(_amount, initialGas);
                  }
                  /// @notice An internal function that holds all of the logic for metering a resource.
                  /// @param _amount     Amount of the resource requested.
                  /// @param _initialGas The amount of gas before any modifier execution.
                  function _metered(uint64 _amount, uint256 _initialGas) internal {
                      // Update block number and base fee if necessary.
                      uint256 blockDiff = block.number - params.prevBlockNum;
                      ResourceConfig memory config = _resourceConfig();
                      int256 targetResourceLimit =
                          int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
                      if (blockDiff > 0) {
                          // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                          // at which deposits can be created and therefore limit the potential for deposits to
                          // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                          int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                          int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                              / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                          // Update base fee by adding the base fee delta and clamp the resulting value between
                          // min and max.
                          int256 newBaseFee = Arithmetic.clamp({
                              _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                              _min: int256(uint256(config.minimumBaseFee)),
                              _max: int256(uint256(config.maximumBaseFee))
                          });
                          // If we skipped more than one block, we also need to account for every empty block.
                          // Empty block means there was no demand for deposits in that block, so we should
                          // reflect this lack of demand in the fee.
                          if (blockDiff > 1) {
                              // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                              // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                              // between min and max.
                              newBaseFee = Arithmetic.clamp({
                                  _value: Arithmetic.cdexp({
                                      _coefficient: newBaseFee,
                                      _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                                      _exponent: int256(blockDiff - 1)
                                  }),
                                  _min: int256(uint256(config.minimumBaseFee)),
                                  _max: int256(uint256(config.maximumBaseFee))
                              });
                          }
                          // Update new base fee, reset bought gas, and update block number.
                          params.prevBaseFee = uint128(uint256(newBaseFee));
                          params.prevBoughtGas = 0;
                          params.prevBlockNum = uint64(block.number);
                      }
                      // Make sure we can actually buy the resource amount requested by the user.
                      params.prevBoughtGas += _amount;
                      if (int256(uint256(params.prevBoughtGas)) > int256(uint256(config.maxResourceLimit))) {
                          revert OutOfGas();
                      }
                      // Determine the amount of ETH to be paid.
                      uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
                      // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
                      // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
                      // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
                      // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
                      // during any 1 day period in the last 5 years, so should be fine.
                      uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
                      // Give the user a refund based on the amount of gas they used to do all of the work up to
                      // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
                      // effectively like a dynamic stipend (with a minimum value).
                      uint256 usedGas = _initialGas - gasleft();
                      if (gasCost > usedGas) {
                          Burn.gas(gasCost - usedGas);
                      }
                  }
                  /// @notice Adds an amount of L2 gas consumed to the prev bought gas params. This is meant to be used
                  ///         when L2 system transactions are generated from L1.
                  /// @param _amount Amount of the L2 gas resource requested.
                  function useGas(uint32 _amount) internal {
                      params.prevBoughtGas += uint64(_amount);
                  }
                  /// @notice Virtual function that returns the resource config.
                  ///         Contracts that inherit this contract must implement this function.
                  /// @return ResourceConfig
                  function _resourceConfig() internal virtual returns (ResourceConfig memory);
                  /// @notice Sets initial resource parameter values.
                  ///         This function must either be called by the initializer function of an upgradeable
                  ///         child contract.
                  function __ResourceMetering_init() internal onlyInitializing {
                      if (params.prevBlockNum == 0) {
                          params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)
              pragma solidity ^0.8.0;
              import "../IERC20.sol";
              import "../extensions/draft-IERC20Permit.sol";
              import "../../../utils/Address.sol";
              /**
               * @title SafeERC20
               * @dev Wrappers around ERC20 operations that throw on failure (when the token
               * contract returns false). Tokens that return no value (and instead revert or
               * throw on failure) are also supported, non-reverting calls are assumed to be
               * successful.
               * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
               * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
               */
              library SafeERC20 {
                  using Address for address;
                  function safeTransfer(
                      IERC20 token,
                      address to,
                      uint256 value
                  ) internal {
                      _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                  }
                  function safeTransferFrom(
                      IERC20 token,
                      address from,
                      address to,
                      uint256 value
                  ) internal {
                      _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                  }
                  /**
                   * @dev Deprecated. This function has issues similar to the ones found in
                   * {IERC20-approve}, and its usage is discouraged.
                   *
                   * Whenever possible, use {safeIncreaseAllowance} and
                   * {safeDecreaseAllowance} instead.
                   */
                  function safeApprove(
                      IERC20 token,
                      address spender,
                      uint256 value
                  ) internal {
                      // safeApprove should only be called when setting an initial allowance,
                      // or when resetting it to zero. To increase and decrease it, use
                      // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                      require(
                          (value == 0) || (token.allowance(address(this), spender) == 0),
                          "SafeERC20: approve from non-zero to non-zero allowance"
                      );
                      _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                  }
                  function safeIncreaseAllowance(
                      IERC20 token,
                      address spender,
                      uint256 value
                  ) internal {
                      uint256 newAllowance = token.allowance(address(this), spender) + value;
                      _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                  }
                  function safeDecreaseAllowance(
                      IERC20 token,
                      address spender,
                      uint256 value
                  ) internal {
                      unchecked {
                          uint256 oldAllowance = token.allowance(address(this), spender);
                          require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                          uint256 newAllowance = oldAllowance - value;
                          _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                      }
                  }
                  function safePermit(
                      IERC20Permit token,
                      address owner,
                      address spender,
                      uint256 value,
                      uint256 deadline,
                      uint8 v,
                      bytes32 r,
                      bytes32 s
                  ) internal {
                      uint256 nonceBefore = token.nonces(owner);
                      token.permit(owner, spender, value, deadline, v, r, s);
                      uint256 nonceAfter = token.nonces(owner);
                      require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
                  }
                  /**
                   * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                   * on the return value: the return value is optional (but if data is returned, it must not be false).
                   * @param token The token targeted by the call.
                   * @param data The call data (encoded using abi.encode or one of its variants).
                   */
                  function _callOptionalReturn(IERC20 token, bytes memory data) private {
                      // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                      // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
                      // the target address contains contract code and also asserts for success in the low-level call.
                      bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                      if (returndata.length > 0) {
                          // Return data is optional
                          require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title EOA
              /// @notice A library for detecting if an address is an EOA.
              library EOA {
                  /// @notice Returns true if sender address is an EOA.
                  /// @return isEOA_ True if the sender address is an EOA.
                  function isSenderEOA() internal view returns (bool isEOA_) {
                      if (msg.sender == tx.origin) {
                          isEOA_ = true;
                      } else {
                          // If the sender is not the origin, check for 7702 delegated EOAs.
                          assembly {
                              let ptr := mload(0x40)
                              mstore(0x40, add(ptr, 0x20))
                              extcodecopy(caller(), ptr, 0, 0x20)
                              isEOA_ := eq(shr(232, mload(ptr)), 0xEF0100)
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title SafeCall
              /// @notice Perform low level safe calls
              library SafeCall {
                  /// @notice Performs a low level call without copying any returndata.
                  /// @dev Passes no calldata to the call context.
                  /// @param _target   Address to call
                  /// @param _gas      Amount of gas to pass to the call
                  /// @param _value    Amount of value to pass to the call
                  function send(address _target, uint256 _gas, uint256 _value) internal returns (bool success_) {
                      assembly {
                          success_ :=
                              call(
                                  _gas, // gas
                                  _target, // recipient
                                  _value, // ether value
                                  0, // inloc
                                  0, // inlen
                                  0, // outloc
                                  0 // outlen
                              )
                      }
                  }
                  /// @notice Perform a low level call with all gas without copying any returndata
                  /// @param _target   Address to call
                  /// @param _value    Amount of value to pass to the call
                  function send(address _target, uint256 _value) internal returns (bool success_) {
                      success_ = send(_target, gasleft(), _value);
                  }
                  /// @notice Perform a low level call without copying any returndata
                  /// @param _target   Address to call
                  /// @param _gas      Amount of gas to pass to the call
                  /// @param _value    Amount of value to pass to the call
                  /// @param _calldata Calldata to pass to the call
                  function call(
                      address _target,
                      uint256 _gas,
                      uint256 _value,
                      bytes memory _calldata
                  )
                      internal
                      returns (bool success_)
                  {
                      assembly {
                          success_ :=
                              call(
                                  _gas, // gas
                                  _target, // recipient
                                  _value, // ether value
                                  add(_calldata, 32), // inloc
                                  mload(_calldata), // inlen
                                  0, // outloc
                                  0 // outlen
                              )
                      }
                  }
                  /// @notice Perform a low level call without copying any returndata
                  /// @param _target   Address to call
                  /// @param _value    Amount of value to pass to the call
                  /// @param _calldata Calldata to pass to the call
                  function call(address _target, uint256 _value, bytes memory _calldata) internal returns (bool success_) {
                      success_ = call({ _target: _target, _gas: gasleft(), _value: _value, _calldata: _calldata });
                  }
                  /// @notice Perform a low level call without copying any returndata
                  /// @param _target   Address to call
                  /// @param _calldata Calldata to pass to the call
                  function call(address _target, bytes memory _calldata) internal returns (bool success_) {
                      success_ = call({ _target: _target, _gas: gasleft(), _value: 0, _calldata: _calldata });
                  }
                  /// @notice Helper function to determine if there is sufficient gas remaining within the context
                  ///         to guarantee that the minimum gas requirement for a call will be met as well as
                  ///         optionally reserving a specified amount of gas for after the call has concluded.
                  /// @param _minGas      The minimum amount of gas that may be passed to the target context.
                  /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
                  ///                     of the target context.
                  /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
                  ///         context as well as reserve `_reservedGas` for the caller after the execution of
                  ///         the target context.
                  /// @dev !!!!! FOOTGUN ALERT !!!!!
                  ///      1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
                  ///          `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
                  ///          `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
                  ///          still possible to self-rekt by initiating a withdrawal with a minimum gas limit
                  ///          that does not account for the `memory_expansion_cost` & `code_execution_cost`
                  ///          factors of the dynamic cost of the `CALL` opcode.
                  ///      2.) This function should *directly* precede the external call if possible. There is an
                  ///          added buffer to account for gas consumed between this check and the call, but it
                  ///          is only 5,700 gas.
                  ///      3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
                  ///          frame may be passed to a subcontext, we need to ensure that the gas will not be
                  ///          truncated.
                  ///      4.) Use wisely. This function is not a silver bullet.
                  function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
                      bool _hasMinGas;
                      assembly {
                          // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
                          _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
                      }
                      return _hasMinGas;
                  }
                  /// @notice Perform a low level call without copying any returndata. This function
                  ///         will revert if the call cannot be performed with the specified minimum
                  ///         gas.
                  /// @param _target   Address to call
                  /// @param _minGas   The minimum amount of gas that may be passed to the call
                  /// @param _value    Amount of value to pass to the call
                  /// @param _calldata Calldata to pass to the call
                  function callWithMinGas(
                      address _target,
                      uint256 _minGas,
                      uint256 _value,
                      bytes memory _calldata
                  )
                      internal
                      returns (bool)
                  {
                      bool _success;
                      bool _hasMinGas = hasMinGas(_minGas, 0);
                      assembly {
                          // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
                          if iszero(_hasMinGas) {
                              // Store the "Error(string)" selector in scratch space.
                              mstore(0, 0x08c379a0)
                              // Store the pointer to the string length in scratch space.
                              mstore(32, 32)
                              // Store the string.
                              //
                              // SAFETY:
                              // - We pad the beginning of the string with two zero bytes as well as the
                              // length (24) to ensure that we override the free memory pointer at offset
                              // 0x40. This is necessary because the free memory pointer is likely to
                              // be greater than 1 byte when this function is called, but it is incredibly
                              // unlikely that it will be greater than 3 bytes. As for the data within
                              // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                              // - It's fine to clobber the free memory pointer, we're reverting.
                              mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
                              // Revert with 'Error("SafeCall: Not enough gas")'
                              revert(28, 100)
                          }
                          // The call will be supplied at least ((_minGas * 64) / 63) gas due to the
                          // above assertion. This ensures that, in all circumstances (except for when the
                          // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
                          // factors of the dynamic cost of the `CALL` opcode), the call will receive at least
                          // the minimum amount of gas specified.
                          _success :=
                              call(
                                  gas(), // gas
                                  _target, // recipient
                                  _value, // ether value
                                  add(_calldata, 32), // inloc
                                  mload(_calldata), // inlen
                                  0x00, // outloc
                                  0x00 // outlen
                              )
                      }
                      return _success;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              // Interfaces
              import { IResourceMetering } from "interfaces/L1/IResourceMetering.sol";
              /// @title Constants
              /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
              ///         the stuff used in multiple contracts. Constants that only apply to a single contract
              ///         should be defined in that contract instead.
              library Constants {
                  /// @notice Special address to be used as the tx origin for gas estimation calls in the
                  ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
                  ///         the minimum gas limit specified by the user is not actually enough to execute the
                  ///         given message and you're attempting to estimate the actual necessary gas limit. We
                  ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
                  ///         never have any code on any EVM chain.
                  address internal constant ESTIMATION_ADDRESS = address(1);
                  /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
                  ///         CrossDomainMessenger contracts before an actual sender is set. This value is
                  ///         non-zero to reduce the gas cost of message passing transactions.
                  address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
                  /// @notice The storage slot that holds the address of a proxy implementation.
                  /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
                  bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                      0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                  /// @notice The storage slot that holds the address of the owner.
                  /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
                  bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                  /// @notice The address that represents ether when dealing with ERC20 token addresses.
                  address internal constant ETHER = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
                  /// @notice The address that represents the system caller responsible for L1 attributes
                  ///         transactions.
                  address internal constant DEPOSITOR_ACCOUNT = 0xDeaDDEaDDeAdDeAdDEAdDEaddeAddEAdDEAd0001;
                  /// @notice Returns the default values for the ResourceConfig. These are the recommended values
                  ///         for a production network.
                  function DEFAULT_RESOURCE_CONFIG() internal pure returns (IResourceMetering.ResourceConfig memory) {
                      IResourceMetering.ResourceConfig memory config = IResourceMetering.ResourceConfig({
                          maxResourceLimit: 20_000_000,
                          elasticityMultiplier: 10,
                          baseFeeMaxChangeDenominator: 8,
                          minimumBaseFee: 1 gwei,
                          systemTxMaxGas: 1_000_000,
                          maximumBaseFee: type(uint128).max
                      });
                      return config;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title Types
              /// @notice Contains various types used throughout the Optimism contract system.
              library Types {
                  /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
                  ///         timestamp that the output root is posted. This timestamp is used to verify that the
                  ///         finalization period has passed since the output root was submitted.
                  /// @custom:field outputRoot    Hash of the L2 output.
                  /// @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
                  /// @custom:field l2BlockNumber L2 block number that the output corresponds to.
                  struct OutputProposal {
                      bytes32 outputRoot;
                      uint128 timestamp;
                      uint128 l2BlockNumber;
                  }
                  /// @notice Struct representing the elements that are hashed together to generate an output root
                  ///         which itself represents a snapshot of the L2 state.
                  /// @custom:field version                  Version of the output root.
                  /// @custom:field stateRoot                Root of the state trie at the block of this output.
                  /// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
                  /// @custom:field latestBlockhash          Hash of the block this output was generated from.
                  struct OutputRootProof {
                      bytes32 version;
                      bytes32 stateRoot;
                      bytes32 messagePasserStorageRoot;
                      bytes32 latestBlockhash;
                  }
                  /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
                  ///         user (as opposed to a system deposit transaction generated by the system).
                  /// @custom:field from        Address of the sender of the transaction.
                  /// @custom:field to          Address of the recipient of the transaction.
                  /// @custom:field isCreation  True if the transaction is a contract creation.
                  /// @custom:field value       Value to send to the recipient.
                  /// @custom:field mint        Amount of ETH to mint.
                  /// @custom:field gasLimit    Gas limit of the transaction.
                  /// @custom:field data        Data of the transaction.
                  /// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
                  /// @custom:field logIndex    Index of the log in the block the transaction was submitted in.
                  struct UserDepositTransaction {
                      address from;
                      address to;
                      bool isCreation;
                      uint256 value;
                      uint256 mint;
                      uint64 gasLimit;
                      bytes data;
                      bytes32 l1BlockHash;
                      uint256 logIndex;
                  }
                  /// @notice Struct representing a withdrawal transaction.
                  /// @custom:field nonce    Nonce of the withdrawal transaction
                  /// @custom:field sender   Address of the sender of the transaction.
                  /// @custom:field target   Address of the recipient of the transaction.
                  /// @custom:field value    Value to send to the recipient.
                  /// @custom:field gasLimit Gas limit of the transaction.
                  /// @custom:field data     Data of the transaction.
                  struct WithdrawalTransaction {
                      uint256 nonce;
                      address sender;
                      address target;
                      uint256 value;
                      uint256 gasLimit;
                      bytes data;
                  }
                  /// @notice Enum representing where the FeeVault withdraws funds to.
                  /// @custom:value L1 FeeVault withdraws funds to L1.
                  /// @custom:value L2 FeeVault withdraws funds to L2.
                  enum WithdrawalNetwork {
                      L1,
                      L2
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              // Libraries
              import { Types } from "src/libraries/Types.sol";
              import { Encoding } from "src/libraries/Encoding.sol";
              /// @title Hashing
              /// @notice Hashing handles Optimism's various different hashing schemes.
              library Hashing {
                  /// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
                  ///         given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
                  ///         system.
                  /// @param _tx User deposit transaction to hash.
                  /// @return Hash of the RLP encoded L2 deposit transaction.
                  function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) {
                      return keccak256(Encoding.encodeDepositTransaction(_tx));
                  }
                  /// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
                  ///         of the L2 transaction that corresponds to a deposit is unique and is
                  ///         deterministically generated from L1 transaction data.
                  /// @param _l1BlockHash Hash of the L1 block where the deposit was included.
                  /// @param _logIndex    The index of the log that created the deposit transaction.
                  /// @return Hash of the deposit transaction's "source hash".
                  function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) {
                      bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
                      return keccak256(abi.encode(bytes32(0), depositId));
                  }
                  /// @notice Hashes the cross domain message based on the version that is encoded into the
                  ///         message nonce.
                  /// @param _nonce    Message nonce with version encoded into the first two bytes.
                  /// @param _sender   Address of the sender of the message.
                  /// @param _target   Address of the target of the message.
                  /// @param _value    ETH value to send to the target.
                  /// @param _gasLimit Gas limit to use for the message.
                  /// @param _data     Data to send with the message.
                  /// @return Hashed cross domain message.
                  function hashCrossDomainMessage(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _gasLimit,
                      bytes memory _data
                  )
                      internal
                      pure
                      returns (bytes32)
                  {
                      (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
                      if (version == 0) {
                          return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
                      } else if (version == 1) {
                          return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                      } else {
                          revert("Hashing: unknown cross domain message version");
                      }
                  }
                  /// @notice Hashes a cross domain message based on the V0 (legacy) encoding.
                  /// @param _target Address of the target of the message.
                  /// @param _sender Address of the sender of the message.
                  /// @param _data   Data to send with the message.
                  /// @param _nonce  Message nonce.
                  /// @return Hashed cross domain message.
                  function hashCrossDomainMessageV0(
                      address _target,
                      address _sender,
                      bytes memory _data,
                      uint256 _nonce
                  )
                      internal
                      pure
                      returns (bytes32)
                  {
                      return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
                  }
                  /// @notice Hashes a cross domain message based on the V1 (current) encoding.
                  /// @param _nonce    Message nonce.
                  /// @param _sender   Address of the sender of the message.
                  /// @param _target   Address of the target of the message.
                  /// @param _value    ETH value to send to the target.
                  /// @param _gasLimit Gas limit to use for the message.
                  /// @param _data     Data to send with the message.
                  /// @return Hashed cross domain message.
                  function hashCrossDomainMessageV1(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _gasLimit,
                      bytes memory _data
                  )
                      internal
                      pure
                      returns (bytes32)
                  {
                      return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data));
                  }
                  /// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
                  /// @param _tx Withdrawal transaction to hash.
                  /// @return Hashed withdrawal transaction.
                  function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) {
                      return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data));
                  }
                  /// @notice Hashes the various elements of an output root proof into an output root hash which
                  ///         can be used to check if the proof is valid.
                  /// @param _outputRootProof Output root proof which should hash to an output root.
                  /// @return Hashed output root proof.
                  function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) {
                      return keccak256(
                          abi.encode(
                              _outputRootProof.version,
                              _outputRootProof.stateRoot,
                              _outputRootProof.messagePasserStorageRoot,
                              _outputRootProof.latestBlockhash
                          )
                      );
                  }
                  /// @notice Generates a unique hash for cross l2 messages. This hash is used to identify
                  ///         the message and ensure it is not relayed more than once.
                  /// @param _destination Chain ID of the destination chain.
                  /// @param _source Chain ID of the source chain.
                  /// @param _nonce Unique nonce associated with the message to prevent replay attacks.
                  /// @param _sender Address of the user who originally sent the message.
                  /// @param _target Address of the contract or wallet that the message is targeting on the destination chain.
                  /// @param _message The message payload to be relayed to the target on the destination chain.
                  /// @return Hash of the encoded message parameters, used to uniquely identify the message.
                  function hashL2toL2CrossDomainMessage(
                      uint256 _destination,
                      uint256 _source,
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      bytes memory _message
                  )
                      internal
                      pure
                      returns (bytes32)
                  {
                      return keccak256(abi.encode(_destination, _source, _nonce, _sender, _target, _message));
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              // Libraries
              import { MerkleTrie } from "src/libraries/trie/MerkleTrie.sol";
              /// @title SecureMerkleTrie
              /// @notice SecureMerkleTrie is a thin wrapper around the MerkleTrie library that hashes the input
              ///         keys. Ethereum's state trie hashes input keys before storing them.
              library SecureMerkleTrie {
                  /// @notice Verifies a proof that a given key/value pair is present in the Merkle trie.
                  /// @param _key   Key of the node to search for, as a hex string.
                  /// @param _value Value of the node to search for, as a hex string.
                  /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
                  ///               trees, this proof is executed top-down and consists of a list of RLP-encoded
                  ///               nodes that make a path down to the target node.
                  /// @param _root  Known root of the Merkle trie. Used to verify that the included proof is
                  ///               correctly constructed.
                  /// @return valid_ Whether or not the proof is valid.
                  function verifyInclusionProof(
                      bytes memory _key,
                      bytes memory _value,
                      bytes[] memory _proof,
                      bytes32 _root
                  )
                      internal
                      pure
                      returns (bool valid_)
                  {
                      bytes memory key = _getSecureKey(_key);
                      valid_ = MerkleTrie.verifyInclusionProof(key, _value, _proof, _root);
                  }
                  /// @notice Retrieves the value associated with a given key.
                  /// @param _key   Key to search for, as hex bytes.
                  /// @param _proof Merkle trie inclusion proof for the key.
                  /// @param _root  Known root of the Merkle trie.
                  /// @return value_ Value of the key if it exists.
                  function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
                      bytes memory key = _getSecureKey(_key);
                      value_ = MerkleTrie.get(key, _proof, _root);
                  }
                  /// @notice Computes the hashed version of the input key.
                  /// @param _key Key to hash.
                  /// @return hash_ Hashed version of the key.
                  function _getSecureKey(bytes memory _key) private pure returns (bytes memory hash_) {
                      hash_ = abi.encodePacked(keccak256(_key));
                  }
              }
              // SPDX-License-Identifier: Apache-2.0
              /*
               * Copyright 2019-2021, Offchain Labs, Inc.
               *
               * Licensed under the Apache License, Version 2.0 (the "License");
               * you may not use this file except in compliance with the License.
               * You may obtain a copy of the License at
               *
               *    http://www.apache.org/licenses/LICENSE-2.0
               *
               * Unless required by applicable law or agreed to in writing, software
               * distributed under the License is distributed on an "AS IS" BASIS,
               * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
               * See the License for the specific language governing permissions and
               * limitations under the License.
               */
              pragma solidity ^0.8.0;
              library AddressAliasHelper {
                  uint160 constant offset = uint160(0x1111000000000000000000000000000000001111);
                  /// @notice Utility function that converts the address in the L1 that submitted a tx to
                  /// the inbox to the msg.sender viewed in the L2
                  /// @param l1Address the address in the L1 that triggered the tx to L2
                  /// @return l2Address L2 address as viewed in msg.sender
                  function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) {
                      unchecked {
                          l2Address = address(uint160(l1Address) + offset);
                      }
                  }
                  /// @notice Utility function that converts the msg.sender viewed in the L2 to the
                  /// address in the L1 that submitted a tx to the inbox
                  /// @param l2Address L2 address as viewed in msg.sender
                  /// @return l1Address the address in the L1 that triggered the tx to L2
                  function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) {
                      unchecked {
                          l1Address = address(uint160(l2Address) - offset);
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @notice Error for when a deposit or withdrawal is to a bad target.
              error BadTarget();
              /// @notice Error for when a deposit has too much calldata.
              error LargeCalldata();
              /// @notice Error for when a deposit has too small of a gas limit.
              error SmallGasLimit();
              /// @notice Error for when a withdrawal transfer fails.
              error TransferFailed();
              /// @notice Error for when a method cannot be called with non zero CALLVALUE.
              error NoValue();
              /// @notice Error for an unauthorized CALLER.
              error Unauthorized();
              /// @notice Error for when a method cannot be called when paused. This could be renamed
              ///         to `Paused` in the future, but it collides with the `Paused` event.
              error CallPaused();
              /// @notice Error for special gas estimation.
              error GasEstimation();
              /// @notice Error for when a method is being reentered.
              error NonReentrant();
              /// @notice Error for invalid proof.
              error InvalidProof();
              /// @notice Error for invalid game type.
              error InvalidGameType();
              /// @notice Error for an invalid dispute game.
              error InvalidDisputeGame();
              /// @notice Error for an invalid merkle proof.
              error InvalidMerkleProof();
              /// @notice Error for when a dispute game has been blacklisted.
              error Blacklisted();
              /// @notice Error for when trying to withdrawal without first proven.
              error Unproven();
              /// @notice Error for when a proposal is not validated.
              error ProposalNotValidated();
              /// @notice Error for when a withdrawal has already been finalized.
              error AlreadyFinalized();
              /// @notice Error for when a game is a legacy game.
              error LegacyGame();
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.15;
              // Libraries
              import {
                  Position,
                  Hash,
                  GameType,
                  VMStatus,
                  Timestamp,
                  Duration,
                  Clock,
                  GameId,
                  Claim,
                  LibGameId,
                  LibClock
              } from "src/dispute/lib/LibUDT.sol";
              /// @notice The current status of the dispute game.
              enum GameStatus {
                  // The game is currently in progress, and has not been resolved.
                  IN_PROGRESS,
                  // The game has concluded, and the `rootClaim` was challenged successfully.
                  CHALLENGER_WINS,
                  // The game has concluded, and the `rootClaim` could not be contested.
                  DEFENDER_WINS
              }
              /// @notice The game's bond distribution type. Games are expected to start in the `UNDECIDED`
              ///         state, and then choose either `NORMAL` or `REFUND`.
              enum BondDistributionMode {
                  // Bond distribution strategy has not been chosen.
                  UNDECIDED,
                  // Bonds should be distributed as normal.
                  NORMAL,
                  // Bonds should be refunded to claimants.
                  REFUND
              }
              /// @notice Represents an L2 output root and the L2 block number at which it was generated.
              /// @custom:field root The output root.
              /// @custom:field l2BlockNumber The L2 block number at which the output root was generated.
              struct OutputRoot {
                  Hash root;
                  uint256 l2BlockNumber;
              }
              /// @title GameTypes
              /// @notice A library that defines the IDs of games that can be played.
              library GameTypes {
                  /// @dev A dispute game type the uses the cannon vm.
                  GameType internal constant CANNON = GameType.wrap(0);
                  /// @dev A permissioned dispute game type that uses the cannon vm.
                  GameType internal constant PERMISSIONED_CANNON = GameType.wrap(1);
                  /// @notice A dispute game type that uses the asterisc vm.
                  GameType internal constant ASTERISC = GameType.wrap(2);
                  /// @notice A dispute game type that uses the asterisc vm with Kona.
                  GameType internal constant ASTERISC_KONA = GameType.wrap(3);
                  /// @notice A dispute game type that uses OP Succinct
                  GameType internal constant OP_SUCCINCT = GameType.wrap(6);
                  /// @notice A dispute game type with short game duration for testing withdrawals.
                  ///         Not intended for production use.
                  GameType internal constant FAST = GameType.wrap(254);
                  /// @notice A dispute game type that uses an alphabet vm.
                  ///         Not intended for production use.
                  GameType internal constant ALPHABET = GameType.wrap(255);
                  /// @notice A dispute game type that uses RISC Zero's Kailua
                  GameType internal constant KAILUA = GameType.wrap(1337);
              }
              /// @title VMStatuses
              /// @notice Named type aliases for the various valid VM status bytes.
              library VMStatuses {
                  /// @notice The VM has executed successfully and the outcome is valid.
                  VMStatus internal constant VALID = VMStatus.wrap(0);
                  /// @notice The VM has executed successfully and the outcome is invalid.
                  VMStatus internal constant INVALID = VMStatus.wrap(1);
                  /// @notice The VM has paniced.
                  VMStatus internal constant PANIC = VMStatus.wrap(2);
                  /// @notice The VM execution is still in progress.
                  VMStatus internal constant UNFINISHED = VMStatus.wrap(3);
              }
              /// @title LocalPreimageKey
              /// @notice Named type aliases for local `PreimageOracle` key identifiers.
              library LocalPreimageKey {
                  /// @notice The identifier for the L1 head hash.
                  uint256 internal constant L1_HEAD_HASH = 0x01;
                  /// @notice The identifier for the starting output root.
                  uint256 internal constant STARTING_OUTPUT_ROOT = 0x02;
                  /// @notice The identifier for the disputed output root.
                  uint256 internal constant DISPUTED_OUTPUT_ROOT = 0x03;
                  /// @notice The identifier for the disputed L2 block number.
                  uint256 internal constant DISPUTED_L2_BLOCK_NUMBER = 0x04;
                  /// @notice The identifier for the chain ID.
                  uint256 internal constant CHAIN_ID = 0x05;
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Interface of the ERC20 standard as defined in the EIP.
               */
              interface IERC20 {
                  /**
                   * @dev Emitted when `value` tokens are moved from one account (`from`) to
                   * another (`to`).
                   *
                   * Note that `value` may be zero.
                   */
                  event Transfer(address indexed from, address indexed to, uint256 value);
                  /**
                   * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                   * a call to {approve}. `value` is the new allowance.
                   */
                  event Approval(address indexed owner, address indexed spender, uint256 value);
                  /**
                   * @dev Returns the amount of tokens in existence.
                   */
                  function totalSupply() external view returns (uint256);
                  /**
                   * @dev Returns the amount of tokens owned by `account`.
                   */
                  function balanceOf(address account) external view returns (uint256);
                  /**
                   * @dev Moves `amount` tokens from the caller's account to `to`.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transfer(address to, uint256 amount) external returns (bool);
                  /**
                   * @dev Returns the remaining number of tokens that `spender` will be
                   * allowed to spend on behalf of `owner` through {transferFrom}. This is
                   * zero by default.
                   *
                   * This value changes when {approve} or {transferFrom} are called.
                   */
                  function allowance(address owner, address spender) external view returns (uint256);
                  /**
                   * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * IMPORTANT: Beware that changing an allowance with this method brings the risk
                   * that someone may use both the old and the new allowance by unfortunate
                   * transaction ordering. One possible solution to mitigate this race
                   * condition is to first reduce the spender's allowance to 0 and set the
                   * desired value afterwards:
                   * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                   *
                   * Emits an {Approval} event.
                   */
                  function approve(address spender, uint256 amount) external returns (bool);
                  /**
                   * @dev Moves `amount` tokens from `from` to `to` using the
                   * allowance mechanism. `amount` is then deducted from the caller's
                   * allowance.
                   *
                   * Returns a boolean value indicating whether the operation succeeded.
                   *
                   * Emits a {Transfer} event.
                   */
                  function transferFrom(
                      address from,
                      address to,
                      uint256 amount
                  ) external returns (bool);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title ISemver
              /// @notice ISemver is a simple contract for ensuring that contracts are
              ///         versioned using semantic versioning.
              interface ISemver {
                  /// @notice Getter for the semantic version of the contract. This is not
                  ///         meant to be used onchain but instead meant to be used by offchain
                  ///         tooling.
                  /// @return Semver contract version as a string.
                  function version() external view returns (string memory);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { IResourceMetering } from "interfaces/L1/IResourceMetering.sol";
              interface ISystemConfig {
                  enum UpdateType {
                      BATCHER,
                      FEE_SCALARS,
                      GAS_LIMIT,
                      UNSAFE_BLOCK_SIGNER,
                      EIP_1559_PARAMS
                  }
                  struct Addresses {
                      address l1CrossDomainMessenger;
                      address l1ERC721Bridge;
                      address l1StandardBridge;
                      address disputeGameFactory;
                      address optimismPortal;
                      address optimismMintableERC20Factory;
                  }
                  event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);
                  event Initialized(uint8 version);
                  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                  function BATCH_INBOX_SLOT() external view returns (bytes32);
                  function DISPUTE_GAME_FACTORY_SLOT() external view returns (bytes32);
                  function L1_CROSS_DOMAIN_MESSENGER_SLOT() external view returns (bytes32);
                  function L1_ERC_721_BRIDGE_SLOT() external view returns (bytes32);
                  function L1_STANDARD_BRIDGE_SLOT() external view returns (bytes32);
                  function OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT() external view returns (bytes32);
                  function OPTIMISM_PORTAL_SLOT() external view returns (bytes32);
                  function START_BLOCK_SLOT() external view returns (bytes32);
                  function UNSAFE_BLOCK_SIGNER_SLOT() external view returns (bytes32);
                  function VERSION() external view returns (uint256);
                  function basefeeScalar() external view returns (uint32);
                  function batchInbox() external view returns (address addr_);
                  function batcherHash() external view returns (bytes32);
                  function blobbasefeeScalar() external view returns (uint32);
                  function disputeGameFactory() external view returns (address addr_);
                  function gasLimit() external view returns (uint64);
                  function eip1559Denominator() external view returns (uint32);
                  function eip1559Elasticity() external view returns (uint32);
                  function getAddresses() external view returns (Addresses memory);
                  function initialize(
                      address _owner,
                      uint32 _basefeeScalar,
                      uint32 _blobbasefeeScalar,
                      bytes32 _batcherHash,
                      uint64 _gasLimit,
                      address _unsafeBlockSigner,
                      IResourceMetering.ResourceConfig memory _config,
                      address _batchInbox,
                      Addresses memory _addresses
                  )
                      external;
                  function l1CrossDomainMessenger() external view returns (address addr_);
                  function l1ERC721Bridge() external view returns (address addr_);
                  function l1StandardBridge() external view returns (address addr_);
                  function maximumGasLimit() external pure returns (uint64);
                  function minimumGasLimit() external view returns (uint64);
                  function optimismMintableERC20Factory() external view returns (address addr_);
                  function optimismPortal() external view returns (address addr_);
                  function overhead() external view returns (uint256);
                  function owner() external view returns (address);
                  function renounceOwnership() external;
                  function resourceConfig() external view returns (IResourceMetering.ResourceConfig memory);
                  function scalar() external view returns (uint256);
                  function setBatcherHash(bytes32 _batcherHash) external;
                  function setGasConfig(uint256 _overhead, uint256 _scalar) external;
                  function setGasConfigEcotone(uint32 _basefeeScalar, uint32 _blobbasefeeScalar) external;
                  function setGasLimit(uint64 _gasLimit) external;
                  function setUnsafeBlockSigner(address _unsafeBlockSigner) external;
                  function setEIP1559Params(uint32 _denominator, uint32 _elasticity) external;
                  function startBlock() external view returns (uint256 startBlock_);
                  function transferOwnership(address newOwner) external; // nosemgrep
                  function unsafeBlockSigner() external view returns (address addr_);
                  function version() external pure returns (string memory);
                  function __constructor__() external;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              interface IResourceMetering {
                  struct ResourceParams {
                      uint128 prevBaseFee;
                      uint64 prevBoughtGas;
                      uint64 prevBlockNum;
                  }
                  struct ResourceConfig {
                      uint32 maxResourceLimit;
                      uint8 elasticityMultiplier;
                      uint8 baseFeeMaxChangeDenominator;
                      uint32 minimumBaseFee;
                      uint32 systemTxMaxGas;
                      uint128 maximumBaseFee;
                  }
                  error OutOfGas();
                  event Initialized(uint8 version);
                  function params() external view returns (uint128 prevBaseFee, uint64 prevBoughtGas, uint64 prevBlockNum); // nosemgrep
                  function __constructor__() external;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              interface ISuperchainConfig {
                  enum UpdateType {
                      GUARDIAN
                  }
                  event ConfigUpdate(UpdateType indexed updateType, bytes data);
                  event Initialized(uint8 version);
                  event Paused(string identifier);
                  event Unpaused();
                  function GUARDIAN_SLOT() external view returns (bytes32);
                  function PAUSED_SLOT() external view returns (bytes32);
                  function guardian() external view returns (address guardian_);
                  function initialize(address _guardian, bool _paused) external;
                  function pause(string memory _identifier) external;
                  function paused() external view returns (bool paused_);
                  function unpause() external;
                  function version() external view returns (string memory);
                  function __constructor__() external;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { IDisputeGame } from "interfaces/dispute/IDisputeGame.sol";
              import { GameId, Timestamp, Claim, Hash, GameType } from "src/dispute/lib/Types.sol";
              interface IDisputeGameFactory {
                  struct GameSearchResult {
                      uint256 index;
                      GameId metadata;
                      Timestamp timestamp;
                      Claim rootClaim;
                      bytes extraData;
                  }
                  error GameAlreadyExists(Hash uuid);
                  error IncorrectBondAmount();
                  error NoImplementation(GameType gameType);
                  event DisputeGameCreated(address indexed disputeProxy, GameType indexed gameType, Claim indexed rootClaim);
                  event ImplementationSet(address indexed impl, GameType indexed gameType);
                  event InitBondUpdated(GameType indexed gameType, uint256 indexed newBond);
                  event Initialized(uint8 version);
                  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                  function create(
                      GameType _gameType,
                      Claim _rootClaim,
                      bytes memory _extraData
                  )
                      external
                      payable
                      returns (IDisputeGame proxy_);
                  function findLatestGames(
                      GameType _gameType,
                      uint256 _start,
                      uint256 _n
                  )
                      external
                      view
                      returns (GameSearchResult[] memory games_);
                  function gameAtIndex(uint256 _index)
                      external
                      view
                      returns (GameType gameType_, Timestamp timestamp_, IDisputeGame proxy_);
                  function gameCount() external view returns (uint256 gameCount_);
                  function gameImpls(GameType) external view returns (IDisputeGame);
                  function games(
                      GameType _gameType,
                      Claim _rootClaim,
                      bytes memory _extraData
                  )
                      external
                      view
                      returns (IDisputeGame proxy_, Timestamp timestamp_);
                  function getGameUUID(
                      GameType _gameType,
                      Claim _rootClaim,
                      bytes memory _extraData
                  )
                      external
                      pure
                      returns (Hash uuid_);
                  function initBonds(GameType) external view returns (uint256);
                  function initialize(address _owner) external;
                  function owner() external view returns (address);
                  function renounceOwnership() external;
                  function setImplementation(GameType _gameType, IDisputeGame _impl) external;
                  function setInitBond(GameType _gameType, uint256 _initBond) external;
                  function transferOwnership(address newOwner) external; // nosemgrep
                  function version() external view returns (string memory);
                  function __constructor__() external;
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              import { IInitializable } from "interfaces/dispute/IInitializable.sol";
              import { Timestamp, GameStatus, GameType, Claim, Hash } from "src/dispute/lib/Types.sol";
              interface IDisputeGame is IInitializable {
                  event Resolved(GameStatus indexed status);
                  function createdAt() external view returns (Timestamp);
                  function resolvedAt() external view returns (Timestamp);
                  function status() external view returns (GameStatus);
                  function gameType() external view returns (GameType gameType_);
                  function gameCreator() external pure returns (address creator_);
                  function rootClaim() external pure returns (Claim rootClaim_);
                  function l1Head() external pure returns (Hash l1Head_);
                  function l2BlockNumber() external pure returns (uint256 l2BlockNumber_);
                  function extraData() external pure returns (bytes memory extraData_);
                  function resolve() external returns (GameStatus status_);
                  function gameData() external view returns (GameType gameType_, Claim rootClaim_, bytes memory extraData_);
                  function wasRespectedGameTypeWhenCreated() external view returns (bool);
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
              pragma solidity ^0.8.1;
              /**
               * @dev Collection of functions related to the address type
               */
              library Address {
                  /**
                   * @dev Returns true if `account` is a contract.
                   *
                   * [IMPORTANT]
                   * ====
                   * It is unsafe to assume that an address for which this function returns
                   * false is an externally-owned account (EOA) and not a contract.
                   *
                   * Among others, `isContract` will return false for the following
                   * types of addresses:
                   *
                   *  - an externally-owned account
                   *  - a contract in construction
                   *  - an address where a contract will be created
                   *  - an address where a contract lived, but was destroyed
                   * ====
                   *
                   * [IMPORTANT]
                   * ====
                   * You shouldn't rely on `isContract` to protect against flash loan attacks!
                   *
                   * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                   * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                   * constructor.
                   * ====
                   */
                  function isContract(address account) internal view returns (bool) {
                      // This method relies on extcodesize/address.code.length, which returns 0
                      // for contracts in construction, since the code is only stored at the end
                      // of the constructor execution.
                      return account.code.length > 0;
                  }
                  /**
                   * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                   * `recipient`, forwarding all available gas and reverting on errors.
                   *
                   * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                   * of certain opcodes, possibly making contracts go over the 2300 gas limit
                   * imposed by `transfer`, making them unable to receive funds via
                   * `transfer`. {sendValue} removes this limitation.
                   *
                   * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                   *
                   * IMPORTANT: because control is transferred to `recipient`, care must be
                   * taken to not create reentrancy vulnerabilities. Consider using
                   * {ReentrancyGuard} or the
                   * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                   */
                  function sendValue(address payable recipient, uint256 amount) internal {
                      require(address(this).balance >= amount, "Address: insufficient balance");
                      (bool success, ) = recipient.call{value: amount}("");
                      require(success, "Address: unable to send value, recipient may have reverted");
                  }
                  /**
                   * @dev Performs a Solidity function call using a low level `call`. A
                   * plain `call` is an unsafe replacement for a function call: use this
                   * function instead.
                   *
                   * If `target` reverts with a revert reason, it is bubbled up by this
                   * function (like regular Solidity function calls).
                   *
                   * Returns the raw returned data. To convert to the expected return value,
                   * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                   *
                   * Requirements:
                   *
                   * - `target` must be a contract.
                   * - calling `target` with `data` must not revert.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionCall(target, data, "Address: low-level call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                   * `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, 0, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but also transferring `value` wei to `target`.
                   *
                   * Requirements:
                   *
                   * - the calling contract must have an ETH balance of at least `value`.
                   * - the called Solidity function must be `payable`.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value
                  ) internal returns (bytes memory) {
                      return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                   * with `errorMessage` as a fallback revert reason when `target` reverts.
                   *
                   * _Available since v3.1._
                   */
                  function functionCallWithValue(
                      address target,
                      bytes memory data,
                      uint256 value,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(address(this).balance >= value, "Address: insufficient balance for call");
                      require(isContract(target), "Address: call to non-contract");
                      (bool success, bytes memory returndata) = target.call{value: value}(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                      return functionStaticCall(target, data, "Address: low-level static call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a static call.
                   *
                   * _Available since v3.3._
                   */
                  function functionStaticCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal view returns (bytes memory) {
                      require(isContract(target), "Address: static call to non-contract");
                      (bool success, bytes memory returndata) = target.staticcall(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                      return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                  }
                  /**
                   * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                   * but performing a delegate call.
                   *
                   * _Available since v3.4._
                   */
                  function functionDelegateCall(
                      address target,
                      bytes memory data,
                      string memory errorMessage
                  ) internal returns (bytes memory) {
                      require(isContract(target), "Address: delegate call to non-contract");
                      (bool success, bytes memory returndata) = target.delegatecall(data);
                      return verifyCallResult(success, returndata, errorMessage);
                  }
                  /**
                   * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                   * revert reason using the provided one.
                   *
                   * _Available since v4.3._
                   */
                  function verifyCallResult(
                      bool success,
                      bytes memory returndata,
                      string memory errorMessage
                  ) internal pure returns (bytes memory) {
                      if (success) {
                          return returndata;
                      } else {
                          // Look for revert reason and bubble it up if present
                          if (returndata.length > 0) {
                              // The easiest way to bubble the revert reason is using memory via assembly
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let returndata_size := mload(returndata)
                                  revert(add(32, returndata), returndata_size)
                              }
                          } else {
                              revert(errorMessage);
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Standard math utilities missing in the Solidity language.
               */
              library Math {
                  enum Rounding {
                      Down, // Toward negative infinity
                      Up, // Toward infinity
                      Zero // Toward zero
                  }
                  /**
                   * @dev Returns the largest of two numbers.
                   */
                  function max(uint256 a, uint256 b) internal pure returns (uint256) {
                      return a >= b ? a : b;
                  }
                  /**
                   * @dev Returns the smallest of two numbers.
                   */
                  function min(uint256 a, uint256 b) internal pure returns (uint256) {
                      return a < b ? a : b;
                  }
                  /**
                   * @dev Returns the average of two numbers. The result is rounded towards
                   * zero.
                   */
                  function average(uint256 a, uint256 b) internal pure returns (uint256) {
                      // (a + b) / 2 can overflow.
                      return (a & b) + (a ^ b) / 2;
                  }
                  /**
                   * @dev Returns the ceiling of the division of two numbers.
                   *
                   * This differs from standard division with `/` in that it rounds up instead
                   * of rounding down.
                   */
                  function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                      // (a + b - 1) / b can overflow on addition, so we distribute.
                      return a == 0 ? 0 : (a - 1) / b + 1;
                  }
                  /**
                   * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                   * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
                   * with further edits by Uniswap Labs also under MIT license.
                   */
                  function mulDiv(
                      uint256 x,
                      uint256 y,
                      uint256 denominator
                  ) internal pure returns (uint256 result) {
                      unchecked {
                          // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                          // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                          // variables such that product = prod1 * 2^256 + prod0.
                          uint256 prod0; // Least significant 256 bits of the product
                          uint256 prod1; // Most significant 256 bits of the product
                          assembly {
                              let mm := mulmod(x, y, not(0))
                              prod0 := mul(x, y)
                              prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                          }
                          // Handle non-overflow cases, 256 by 256 division.
                          if (prod1 == 0) {
                              return prod0 / denominator;
                          }
                          // Make sure the result is less than 2^256. Also prevents denominator == 0.
                          require(denominator > prod1);
                          ///////////////////////////////////////////////
                          // 512 by 256 division.
                          ///////////////////////////////////////////////
                          // Make division exact by subtracting the remainder from [prod1 prod0].
                          uint256 remainder;
                          assembly {
                              // Compute remainder using mulmod.
                              remainder := mulmod(x, y, denominator)
                              // Subtract 256 bit number from 512 bit number.
                              prod1 := sub(prod1, gt(remainder, prod0))
                              prod0 := sub(prod0, remainder)
                          }
                          // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                          // See https://cs.stackexchange.com/q/138556/92363.
                          // Does not overflow because the denominator cannot be zero at this stage in the function.
                          uint256 twos = denominator & (~denominator + 1);
                          assembly {
                              // Divide denominator by twos.
                              denominator := div(denominator, twos)
                              // Divide [prod1 prod0] by twos.
                              prod0 := div(prod0, twos)
                              // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                              twos := add(div(sub(0, twos), twos), 1)
                          }
                          // Shift in bits from prod1 into prod0.
                          prod0 |= prod1 * twos;
                          // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                          // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                          // four bits. That is, denominator * inv = 1 mod 2^4.
                          uint256 inverse = (3 * denominator) ^ 2;
                          // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                          // in modular arithmetic, doubling the correct bits in each step.
                          inverse *= 2 - denominator * inverse; // inverse mod 2^8
                          inverse *= 2 - denominator * inverse; // inverse mod 2^16
                          inverse *= 2 - denominator * inverse; // inverse mod 2^32
                          inverse *= 2 - denominator * inverse; // inverse mod 2^64
                          inverse *= 2 - denominator * inverse; // inverse mod 2^128
                          inverse *= 2 - denominator * inverse; // inverse mod 2^256
                          // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                          // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                          // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                          // is no longer required.
                          result = prod0 * inverse;
                          return result;
                      }
                  }
                  /**
                   * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
                   */
                  function mulDiv(
                      uint256 x,
                      uint256 y,
                      uint256 denominator,
                      Rounding rounding
                  ) internal pure returns (uint256) {
                      uint256 result = mulDiv(x, y, denominator);
                      if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                          result += 1;
                      }
                      return result;
                  }
                  /**
                   * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
                   *
                   * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
                   */
                  function sqrt(uint256 a) internal pure returns (uint256) {
                      if (a == 0) {
                          return 0;
                      }
                      // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                      // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                      // `msb(a) <= a < 2*msb(a)`.
                      // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                      // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                      // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                      // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                      uint256 result = 1;
                      uint256 x = a;
                      if (x >> 128 > 0) {
                          x >>= 128;
                          result <<= 64;
                      }
                      if (x >> 64 > 0) {
                          x >>= 64;
                          result <<= 32;
                      }
                      if (x >> 32 > 0) {
                          x >>= 32;
                          result <<= 16;
                      }
                      if (x >> 16 > 0) {
                          x >>= 16;
                          result <<= 8;
                      }
                      if (x >> 8 > 0) {
                          x >>= 8;
                          result <<= 4;
                      }
                      if (x >> 4 > 0) {
                          x >>= 4;
                          result <<= 2;
                      }
                      if (x >> 2 > 0) {
                          result <<= 1;
                      }
                      // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                      // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                      // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                      // into the expected uint128 result.
                      unchecked {
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          result = (result + a / result) >> 1;
                          return min(result, a / result);
                      }
                  }
                  /**
                   * @notice Calculates sqrt(a), following the selected rounding direction.
                   */
                  function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                      uint256 result = sqrt(a);
                      if (rounding == Rounding.Up && result * result < a) {
                          result += 1;
                      }
                      return result;
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              /// @title Burn
              /// @notice Utilities for burning stuff.
              library Burn {
                  /// @notice Burns a given amount of ETH.
                  /// @param _amount Amount of ETH to burn.
                  function eth(uint256 _amount) internal {
                      new Burner{ value: _amount }();
                  }
                  /// @notice Burns a given amount of gas.
                  /// @param _amount Amount of gas to burn.
                  function gas(uint256 _amount) internal view {
                      uint256 i = 0;
                      uint256 initialGas = gasleft();
                      while (initialGas - gasleft() < _amount) {
                          ++i;
                      }
                  }
              }
              /// @title Burner
              /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
              ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
              ///         from the circulating supply.
              contract Burner {
                  constructor() payable {
                      selfdestruct(payable(address(this)));
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              // Libraries
              import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
              import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
              /// @title Arithmetic
              /// @notice Even more math than before.
              library Arithmetic {
                  /// @notice Clamps a value between a minimum and maximum.
                  /// @param _value The value to clamp.
                  /// @param _min   The minimum value.
                  /// @param _max   The maximum value.
                  /// @return The clamped value.
                  function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
                      return SignedMath.min(SignedMath.max(_value, _min), _max);
                  }
                  /// @notice (c)oefficient (d)enominator (exp)onentiation function.
                  ///         Returns the result of: c * (1 - 1/d)^exp.
                  /// @param _coefficient Coefficient of the function.
                  /// @param _denominator Fractional denominator.
                  /// @param _exponent    Power function exponent.
                  /// @return Result of c * (1 - 1/d)^exp.
                  function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
                      return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
                  }
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
               * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
               *
               * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
               * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
               * need to send a transaction, and thus is not required to hold Ether at all.
               */
              interface IERC20Permit {
                  /**
                   * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
                   * given ``owner``'s signed approval.
                   *
                   * IMPORTANT: The same issues {IERC20-approve} has related to transaction
                   * ordering also apply here.
                   *
                   * Emits an {Approval} event.
                   *
                   * Requirements:
                   *
                   * - `spender` cannot be the zero address.
                   * - `deadline` must be a timestamp in the future.
                   * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
                   * over the EIP712-formatted function arguments.
                   * - the signature must use ``owner``'s current nonce (see {nonces}).
                   *
                   * For more information on the signature format, see the
                   * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
                   * section].
                   */
                  function permit(
                      address owner,
                      address spender,
                      uint256 value,
                      uint256 deadline,
                      uint8 v,
                      bytes32 r,
                      bytes32 s
                  ) external;
                  /**
                   * @dev Returns the current nonce for `owner`. This value must be
                   * included whenever a signature is generated for {permit}.
                   *
                   * Every successful call to {permit} increases ``owner``'s nonce by one. This
                   * prevents a signature from being used multiple times.
                   */
                  function nonces(address owner) external view returns (uint256);
                  /**
                   * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
                   */
                  // solhint-disable-next-line func-name-mixedcase
                  function DOMAIN_SEPARATOR() external view returns (bytes32);
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              // Libraries
              import { Types } from "src/libraries/Types.sol";
              import { Hashing } from "src/libraries/Hashing.sol";
              import { RLPWriter } from "src/libraries/rlp/RLPWriter.sol";
              /// @title Encoding
              /// @notice Encoding handles Optimism's various different encoding schemes.
              library Encoding {
                  /// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
                  ///         to the L2 system. Useful for searching for a deposit in the L2 system. The
                  ///         transaction is prefixed with 0x7e to identify its EIP-2718 type.
                  /// @param _tx User deposit transaction to encode.
                  /// @return RLP encoded L2 deposit transaction.
                  function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) {
                      bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
                      bytes[] memory raw = new bytes[](8);
                      raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
                      raw[1] = RLPWriter.writeAddress(_tx.from);
                      raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
                      raw[3] = RLPWriter.writeUint(_tx.mint);
                      raw[4] = RLPWriter.writeUint(_tx.value);
                      raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
                      raw[6] = RLPWriter.writeBool(false);
                      raw[7] = RLPWriter.writeBytes(_tx.data);
                      return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
                  }
                  /// @notice Encodes the cross domain message based on the version that is encoded into the
                  ///         message nonce.
                  /// @param _nonce    Message nonce with version encoded into the first two bytes.
                  /// @param _sender   Address of the sender of the message.
                  /// @param _target   Address of the target of the message.
                  /// @param _value    ETH value to send to the target.
                  /// @param _gasLimit Gas limit to use for the message.
                  /// @param _data     Data to send with the message.
                  /// @return Encoded cross domain message.
                  function encodeCrossDomainMessage(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _gasLimit,
                      bytes memory _data
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      (, uint16 version) = decodeVersionedNonce(_nonce);
                      if (version == 0) {
                          return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
                      } else if (version == 1) {
                          return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                      } else {
                          revert("Encoding: unknown cross domain message version");
                      }
                  }
                  /// @notice Encodes a cross domain message based on the V0 (legacy) encoding.
                  /// @param _target Address of the target of the message.
                  /// @param _sender Address of the sender of the message.
                  /// @param _data   Data to send with the message.
                  /// @param _nonce  Message nonce.
                  /// @return Encoded cross domain message.
                  function encodeCrossDomainMessageV0(
                      address _target,
                      address _sender,
                      bytes memory _data,
                      uint256 _nonce
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      // nosemgrep: sol-style-use-abi-encodecall
                      return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce);
                  }
                  /// @notice Encodes a cross domain message based on the V1 (current) encoding.
                  /// @param _nonce    Message nonce.
                  /// @param _sender   Address of the sender of the message.
                  /// @param _target   Address of the target of the message.
                  /// @param _value    ETH value to send to the target.
                  /// @param _gasLimit Gas limit to use for the message.
                  /// @param _data     Data to send with the message.
                  /// @return Encoded cross domain message.
                  function encodeCrossDomainMessageV1(
                      uint256 _nonce,
                      address _sender,
                      address _target,
                      uint256 _value,
                      uint256 _gasLimit,
                      bytes memory _data
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      // nosemgrep: sol-style-use-abi-encodecall
                      return abi.encodeWithSignature(
                          "relayMessage(uint256,address,address,uint256,uint256,bytes)",
                          _nonce,
                          _sender,
                          _target,
                          _value,
                          _gasLimit,
                          _data
                      );
                  }
                  /// @notice Adds a version number into the first two bytes of a message nonce.
                  /// @param _nonce   Message nonce to encode into.
                  /// @param _version Version number to encode into the message nonce.
                  /// @return Message nonce with version encoded into the first two bytes.
                  function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
                      uint256 nonce;
                      assembly {
                          nonce := or(shl(240, _version), _nonce)
                      }
                      return nonce;
                  }
                  /// @notice Pulls the version out of a version-encoded nonce.
                  /// @param _nonce Message nonce with version encoded into the first two bytes.
                  /// @return Nonce without encoded version.
                  /// @return Version of the message.
                  function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
                      uint240 nonce;
                      uint16 version;
                      assembly {
                          nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
                          version := shr(240, _nonce)
                      }
                      return (nonce, version);
                  }
                  /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesEcotone
                  /// @param _baseFeeScalar       L1 base fee Scalar
                  /// @param _blobBaseFeeScalar   L1 blob base fee Scalar
                  /// @param _sequenceNumber      Number of L2 blocks since epoch start.
                  /// @param _timestamp           L1 timestamp.
                  /// @param _number              L1 blocknumber.
                  /// @param _baseFee             L1 base fee.
                  /// @param _blobBaseFee         L1 blob base fee.
                  /// @param _hash                L1 blockhash.
                  /// @param _batcherHash         Versioned hash to authenticate batcher by.
                  function encodeSetL1BlockValuesEcotone(
                      uint32 _baseFeeScalar,
                      uint32 _blobBaseFeeScalar,
                      uint64 _sequenceNumber,
                      uint64 _timestamp,
                      uint64 _number,
                      uint256 _baseFee,
                      uint256 _blobBaseFee,
                      bytes32 _hash,
                      bytes32 _batcherHash
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesEcotone()"));
                      return abi.encodePacked(
                          functionSignature,
                          _baseFeeScalar,
                          _blobBaseFeeScalar,
                          _sequenceNumber,
                          _timestamp,
                          _number,
                          _baseFee,
                          _blobBaseFee,
                          _hash,
                          _batcherHash
                      );
                  }
                  /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesInterop
                  /// @param _baseFeeScalar       L1 base fee Scalar
                  /// @param _blobBaseFeeScalar   L1 blob base fee Scalar
                  /// @param _sequenceNumber      Number of L2 blocks since epoch start.
                  /// @param _timestamp           L1 timestamp.
                  /// @param _number              L1 blocknumber.
                  /// @param _baseFee             L1 base fee.
                  /// @param _blobBaseFee         L1 blob base fee.
                  /// @param _hash                L1 blockhash.
                  /// @param _batcherHash         Versioned hash to authenticate batcher by.
                  function encodeSetL1BlockValuesInterop(
                      uint32 _baseFeeScalar,
                      uint32 _blobBaseFeeScalar,
                      uint64 _sequenceNumber,
                      uint64 _timestamp,
                      uint64 _number,
                      uint256 _baseFee,
                      uint256 _blobBaseFee,
                      bytes32 _hash,
                      bytes32 _batcherHash
                  )
                      internal
                      pure
                      returns (bytes memory)
                  {
                      bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesInterop()"));
                      return abi.encodePacked(
                          functionSignature,
                          _baseFeeScalar,
                          _blobBaseFeeScalar,
                          _sequenceNumber,
                          _timestamp,
                          _number,
                          _baseFee,
                          _blobBaseFee,
                          _hash,
                          _batcherHash
                      );
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              // Libraries
              import { Bytes } from "src/libraries/Bytes.sol";
              import { RLPReader } from "src/libraries/rlp/RLPReader.sol";
              /// @title MerkleTrie
              /// @notice MerkleTrie is a small library for verifying standard Ethereum Merkle-Patricia trie
              ///         inclusion proofs. By default, this library assumes a hexary trie. One can change the
              ///         trie radix constant to support other trie radixes.
              library MerkleTrie {
                  /// @notice Struct representing a node in the trie.
                  /// @custom:field encoded The RLP-encoded node.
                  /// @custom:field decoded The RLP-decoded node.
                  struct TrieNode {
                      bytes encoded;
                      RLPReader.RLPItem[] decoded;
                  }
                  /// @notice Determines the number of elements per branch node.
                  uint256 internal constant TREE_RADIX = 16;
                  /// @notice Branch nodes have TREE_RADIX elements and one value element.
                  uint256 internal constant BRANCH_NODE_LENGTH = TREE_RADIX + 1;
                  /// @notice Leaf nodes and extension nodes have two elements, a `path` and a `value`.
                  uint256 internal constant LEAF_OR_EXTENSION_NODE_LENGTH = 2;
                  /// @notice Prefix for even-nibbled extension node paths.
                  uint8 internal constant PREFIX_EXTENSION_EVEN = 0;
                  /// @notice Prefix for odd-nibbled extension node paths.
                  uint8 internal constant PREFIX_EXTENSION_ODD = 1;
                  /// @notice Prefix for even-nibbled leaf node paths.
                  uint8 internal constant PREFIX_LEAF_EVEN = 2;
                  /// @notice Prefix for odd-nibbled leaf node paths.
                  uint8 internal constant PREFIX_LEAF_ODD = 3;
                  /// @notice Verifies a proof that a given key/value pair is present in the trie.
                  /// @param _key   Key of the node to search for, as a hex string.
                  /// @param _value Value of the node to search for, as a hex string.
                  /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
                  ///               trees, this proof is executed top-down and consists of a list of RLP-encoded
                  ///               nodes that make a path down to the target node.
                  /// @param _root  Known root of the Merkle trie. Used to verify that the included proof is
                  ///               correctly constructed.
                  /// @return valid_ Whether or not the proof is valid.
                  function verifyInclusionProof(
                      bytes memory _key,
                      bytes memory _value,
                      bytes[] memory _proof,
                      bytes32 _root
                  )
                      internal
                      pure
                      returns (bool valid_)
                  {
                      valid_ = Bytes.equal(_value, get(_key, _proof, _root));
                  }
                  /// @notice Retrieves the value associated with a given key.
                  /// @param _key   Key to search for, as hex bytes.
                  /// @param _proof Merkle trie inclusion proof for the key.
                  /// @param _root  Known root of the Merkle trie.
                  /// @return value_ Value of the key if it exists.
                  function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
                      require(_key.length > 0, "MerkleTrie: empty key");
                      TrieNode[] memory proof = _parseProof(_proof);
                      bytes memory key = Bytes.toNibbles(_key);
                      bytes memory currentNodeID = abi.encodePacked(_root);
                      uint256 currentKeyIndex = 0;
                      // Proof is top-down, so we start at the first element (root).
                      for (uint256 i = 0; i < proof.length; i++) {
                          TrieNode memory currentNode = proof[i];
                          // Key index should never exceed total key length or we'll be out of bounds.
                          require(currentKeyIndex <= key.length, "MerkleTrie: key index exceeds total key length");
                          if (currentKeyIndex == 0) {
                              // First proof element is always the root node.
                              require(
                                  Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                                  "MerkleTrie: invalid root hash"
                              );
                          } else if (currentNode.encoded.length >= 32) {
                              // Nodes 32 bytes or larger are hashed inside branch nodes.
                              require(
                                  Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                                  "MerkleTrie: invalid large internal hash"
                              );
                          } else {
                              // Nodes smaller than 32 bytes aren't hashed.
                              require(Bytes.equal(currentNode.encoded, currentNodeID), "MerkleTrie: invalid internal node hash");
                          }
                          if (currentNode.decoded.length == BRANCH_NODE_LENGTH) {
                              if (currentKeyIndex == key.length) {
                                  // Value is the last element of the decoded list (for branch nodes). There's
                                  // some ambiguity in the Merkle trie specification because bytes(0) is a
                                  // valid value to place into the trie, but for branch nodes bytes(0) can exist
                                  // even when the value wasn't explicitly placed there. Geth treats a value of
                                  // bytes(0) as "key does not exist" and so we do the same.
                                  value_ = RLPReader.readBytes(currentNode.decoded[TREE_RADIX]);
                                  require(value_.length > 0, "MerkleTrie: value length must be greater than zero (branch)");
                                  // Extra proof elements are not allowed.
                                  require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (branch)");
                                  return value_;
                              } else {
                                  // We're not at the end of the key yet.
                                  // Figure out what the next node ID should be and continue.
                                  uint8 branchKey = uint8(key[currentKeyIndex]);
                                  RLPReader.RLPItem memory nextNode = currentNode.decoded[branchKey];
                                  currentNodeID = _getNodeID(nextNode);
                                  currentKeyIndex += 1;
                              }
                          } else if (currentNode.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) {
                              bytes memory path = _getNodePath(currentNode);
                              uint8 prefix = uint8(path[0]);
                              uint8 offset = 2 - (prefix % 2);
                              bytes memory pathRemainder = Bytes.slice(path, offset);
                              bytes memory keyRemainder = Bytes.slice(key, currentKeyIndex);
                              uint256 sharedNibbleLength = _getSharedNibbleLength(pathRemainder, keyRemainder);
                              // Whether this is a leaf node or an extension node, the path remainder MUST be a
                              // prefix of the key remainder (or be equal to the key remainder) or the proof is
                              // considered invalid.
                              require(
                                  pathRemainder.length == sharedNibbleLength,
                                  "MerkleTrie: path remainder must share all nibbles with key"
                              );
                              if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) {
                                  // Prefix of 2 or 3 means this is a leaf node. For the leaf node to be valid,
                                  // the key remainder must be exactly equal to the path remainder. We already
                                  // did the necessary byte comparison, so it's more efficient here to check that
                                  // the key remainder length equals the shared nibble length, which implies
                                  // equality with the path remainder (since we already did the same check with
                                  // the path remainder and the shared nibble length).
                                  require(
                                      keyRemainder.length == sharedNibbleLength,
                                      "MerkleTrie: key remainder must be identical to path remainder"
                                  );
                                  // Our Merkle Trie is designed specifically for the purposes of the Ethereum
                                  // state trie. Empty values are not allowed in the state trie, so we can safely
                                  // say that if the value is empty, the key should not exist and the proof is
                                  // invalid.
                                  value_ = RLPReader.readBytes(currentNode.decoded[1]);
                                  require(value_.length > 0, "MerkleTrie: value length must be greater than zero (leaf)");
                                  // Extra proof elements are not allowed.
                                  require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (leaf)");
                                  return value_;
                              } else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) {
                                  // Prefix of 0 or 1 means this is an extension node. We move onto the next node
                                  // in the proof and increment the key index by the length of the path remainder
                                  // which is equal to the shared nibble length.
                                  currentNodeID = _getNodeID(currentNode.decoded[1]);
                                  currentKeyIndex += sharedNibbleLength;
                              } else {
                                  revert("MerkleTrie: received a node with an unknown prefix");
                              }
                          } else {
                              revert("MerkleTrie: received an unparseable node");
                          }
                      }
                      revert("MerkleTrie: ran out of proof elements");
                  }
                  /// @notice Parses an array of proof elements into a new array that contains both the original
                  ///         encoded element and the RLP-decoded element.
                  /// @param _proof Array of proof elements to parse.
                  /// @return proof_ Proof parsed into easily accessible structs.
                  function _parseProof(bytes[] memory _proof) private pure returns (TrieNode[] memory proof_) {
                      uint256 length = _proof.length;
                      proof_ = new TrieNode[](length);
                      for (uint256 i = 0; i < length;) {
                          proof_[i] = TrieNode({ encoded: _proof[i], decoded: RLPReader.readList(_proof[i]) });
                          unchecked {
                              ++i;
                          }
                      }
                  }
                  /// @notice Picks out the ID for a node. Node ID is referred to as the "hash" within the
                  ///         specification, but nodes < 32 bytes are not actually hashed.
                  /// @param _node Node to pull an ID for.
                  /// @return id_ ID for the node, depending on the size of its contents.
                  function _getNodeID(RLPReader.RLPItem memory _node) private pure returns (bytes memory id_) {
                      id_ = _node.length < 32 ? RLPReader.readRawBytes(_node) : RLPReader.readBytes(_node);
                  }
                  /// @notice Gets the path for a leaf or extension node.
                  /// @param _node Node to get a path for.
                  /// @return nibbles_ Node path, converted to an array of nibbles.
                  function _getNodePath(TrieNode memory _node) private pure returns (bytes memory nibbles_) {
                      nibbles_ = Bytes.toNibbles(RLPReader.readBytes(_node.decoded[0]));
                  }
                  /// @notice Utility; determines the number of nibbles shared between two nibble arrays.
                  /// @param _a First nibble array.
                  /// @param _b Second nibble array.
                  /// @return shared_ Number of shared nibbles.
                  function _getSharedNibbleLength(bytes memory _a, bytes memory _b) private pure returns (uint256 shared_) {
                      uint256 max = (_a.length < _b.length) ? _a.length : _b.length;
                      for (; shared_ < max && _a[shared_] == _b[shared_];) {
                          unchecked {
                              ++shared_;
                          }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.15;
              // Libraries
              import { Position } from "src/dispute/lib/LibPosition.sol";
              using LibClaim for Claim global;
              using LibHash for Hash global;
              using LibDuration for Duration global;
              using LibClock for Clock global;
              using LibGameId for GameId global;
              using LibTimestamp for Timestamp global;
              using LibVMStatus for VMStatus global;
              using LibGameType for GameType global;
              /// @notice A `Clock` represents a packed `Duration` and `Timestamp`
              /// @dev The packed layout of this type is as follows:
              /// ┌────────────┬────────────────┐
              /// │    Bits    │     Value      │
              /// ├────────────┼────────────────┤
              /// │ [0, 64)    │ Duration       │
              /// │ [64, 128)  │ Timestamp      │
              /// └────────────┴────────────────┘
              type Clock is uint128;
              /// @title LibClock
              /// @notice This library contains helper functions for working with the `Clock` type.
              library LibClock {
                  /// @notice Packs a `Duration` and `Timestamp` into a `Clock` type.
                  /// @param _duration The `Duration` to pack into the `Clock` type.
                  /// @param _timestamp The `Timestamp` to pack into the `Clock` type.
                  /// @return clock_ The `Clock` containing the `_duration` and `_timestamp`.
                  function wrap(Duration _duration, Timestamp _timestamp) internal pure returns (Clock clock_) {
                      assembly {
                          clock_ := or(shl(0x40, _duration), _timestamp)
                      }
                  }
                  /// @notice Pull the `Duration` out of a `Clock` type.
                  /// @param _clock The `Clock` type to pull the `Duration` out of.
                  /// @return duration_ The `Duration` pulled out of `_clock`.
                  function duration(Clock _clock) internal pure returns (Duration duration_) {
                      // Shift the high-order 64 bits into the low-order 64 bits, leaving only the `duration`.
                      assembly {
                          duration_ := shr(0x40, _clock)
                      }
                  }
                  /// @notice Pull the `Timestamp` out of a `Clock` type.
                  /// @param _clock The `Clock` type to pull the `Timestamp` out of.
                  /// @return timestamp_ The `Timestamp` pulled out of `_clock`.
                  function timestamp(Clock _clock) internal pure returns (Timestamp timestamp_) {
                      // Clean the high-order 192 bits by shifting the clock left and then right again, leaving
                      // only the `timestamp`.
                      assembly {
                          timestamp_ := shr(0xC0, shl(0xC0, _clock))
                      }
                  }
                  /// @notice Get the value of a `Clock` type in the form of the underlying uint128.
                  /// @param _clock The `Clock` type to get the value of.
                  /// @return clock_ The value of the `Clock` type as a uint128 type.
                  function raw(Clock _clock) internal pure returns (uint128 clock_) {
                      assembly {
                          clock_ := _clock
                      }
                  }
              }
              /// @notice A `GameId` represents a packed 4 byte game ID, a 8 byte timestamp, and a 20 byte address.
              /// @dev The packed layout of this type is as follows:
              /// ┌───────────┬───────────┐
              /// │   Bits    │   Value   │
              /// ├───────────┼───────────┤
              /// │ [0, 32)   │ Game Type │
              /// │ [32, 96)  │ Timestamp │
              /// │ [96, 256) │ Address   │
              /// └───────────┴───────────┘
              type GameId is bytes32;
              /// @title LibGameId
              /// @notice Utility functions for packing and unpacking GameIds.
              library LibGameId {
                  /// @notice Packs values into a 32 byte GameId type.
                  /// @param _gameType The game type.
                  /// @param _timestamp The timestamp of the game's creation.
                  /// @param _gameProxy The game proxy address.
                  /// @return gameId_ The packed GameId.
                  function pack(
                      GameType _gameType,
                      Timestamp _timestamp,
                      address _gameProxy
                  )
                      internal
                      pure
                      returns (GameId gameId_)
                  {
                      assembly {
                          gameId_ := or(or(shl(224, _gameType), shl(160, _timestamp)), _gameProxy)
                      }
                  }
                  /// @notice Unpacks values from a 32 byte GameId type.
                  /// @param _gameId The packed GameId.
                  /// @return gameType_ The game type.
                  /// @return timestamp_ The timestamp of the game's creation.
                  /// @return gameProxy_ The game proxy address.
                  function unpack(GameId _gameId)
                      internal
                      pure
                      returns (GameType gameType_, Timestamp timestamp_, address gameProxy_)
                  {
                      assembly {
                          gameType_ := shr(224, _gameId)
                          timestamp_ := and(shr(160, _gameId), 0xFFFFFFFFFFFFFFFF)
                          gameProxy_ := and(_gameId, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
                      }
                  }
              }
              /// @notice A claim represents an MPT root representing the state of the fault proof program.
              type Claim is bytes32;
              /// @title LibClaim
              /// @notice This library contains helper functions for working with the `Claim` type.
              library LibClaim {
                  /// @notice Get the value of a `Claim` type in the form of the underlying bytes32.
                  /// @param _claim The `Claim` type to get the value of.
                  /// @return claim_ The value of the `Claim` type as a bytes32 type.
                  function raw(Claim _claim) internal pure returns (bytes32 claim_) {
                      assembly {
                          claim_ := _claim
                      }
                  }
                  /// @notice Hashes a claim and a position together.
                  /// @param _claim A Claim type.
                  /// @param _position The position of `claim`.
                  /// @param _challengeIndex The index of the claim being moved against.
                  /// @return claimHash_ A hash of abi.encodePacked(claim, position|challengeIndex);
                  function hashClaimPos(
                      Claim _claim,
                      Position _position,
                      uint256 _challengeIndex
                  )
                      internal
                      pure
                      returns (Hash claimHash_)
                  {
                      assembly {
                          mstore(0x00, _claim)
                          mstore(0x20, or(shl(128, _position), and(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF, _challengeIndex)))
                          claimHash_ := keccak256(0x00, 0x40)
                      }
                  }
              }
              /// @notice A dedicated duration type.
              /// @dev Unit: seconds
              type Duration is uint64;
              /// @title LibDuration
              /// @notice This library contains helper functions for working with the `Duration` type.
              library LibDuration {
                  /// @notice Get the value of a `Duration` type in the form of the underlying uint64.
                  /// @param _duration The `Duration` type to get the value of.
                  /// @return duration_ The value of the `Duration` type as a uint64 type.
                  function raw(Duration _duration) internal pure returns (uint64 duration_) {
                      assembly {
                          duration_ := _duration
                      }
                  }
              }
              /// @notice A custom type for a generic hash.
              type Hash is bytes32;
              /// @title LibHash
              /// @notice This library contains helper functions for working with the `Hash` type.
              library LibHash {
                  /// @notice Get the value of a `Hash` type in the form of the underlying bytes32.
                  /// @param _hash The `Hash` type to get the value of.
                  /// @return hash_ The value of the `Hash` type as a bytes32 type.
                  function raw(Hash _hash) internal pure returns (bytes32 hash_) {
                      assembly {
                          hash_ := _hash
                      }
                  }
              }
              /// @notice A dedicated timestamp type.
              type Timestamp is uint64;
              /// @title LibTimestamp
              /// @notice This library contains helper functions for working with the `Timestamp` type.
              library LibTimestamp {
                  /// @notice Get the value of a `Timestamp` type in the form of the underlying uint64.
                  /// @param _timestamp The `Timestamp` type to get the value of.
                  /// @return timestamp_ The value of the `Timestamp` type as a uint64 type.
                  function raw(Timestamp _timestamp) internal pure returns (uint64 timestamp_) {
                      assembly {
                          timestamp_ := _timestamp
                      }
                  }
              }
              /// @notice A `VMStatus` represents the status of a VM execution.
              type VMStatus is uint8;
              /// @title LibVMStatus
              /// @notice This library contains helper functions for working with the `VMStatus` type.
              library LibVMStatus {
                  /// @notice Get the value of a `VMStatus` type in the form of the underlying uint8.
                  /// @param _vmstatus The `VMStatus` type to get the value of.
                  /// @return vmstatus_ The value of the `VMStatus` type as a uint8 type.
                  function raw(VMStatus _vmstatus) internal pure returns (uint8 vmstatus_) {
                      assembly {
                          vmstatus_ := _vmstatus
                      }
                  }
              }
              /// @notice A `GameType` represents the type of game being played.
              type GameType is uint32;
              /// @title LibGameType
              /// @notice This library contains helper functions for working with the `GameType` type.
              library LibGameType {
                  /// @notice Get the value of a `GameType` type in the form of the underlying uint32.
                  /// @param _gametype The `GameType` type to get the value of.
                  /// @return gametype_ The value of the `GameType` type as a uint32 type.
                  function raw(GameType _gametype) internal pure returns (uint32 gametype_) {
                      assembly {
                          gametype_ := _gametype
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              interface IInitializable {
                  function initialize() external payable;
              }
              // SPDX-License-Identifier: MIT
              // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
              pragma solidity ^0.8.0;
              /**
               * @dev Standard signed math utilities missing in the Solidity language.
               */
              library SignedMath {
                  /**
                   * @dev Returns the largest of two signed numbers.
                   */
                  function max(int256 a, int256 b) internal pure returns (int256) {
                      return a >= b ? a : b;
                  }
                  /**
                   * @dev Returns the smallest of two signed numbers.
                   */
                  function min(int256 a, int256 b) internal pure returns (int256) {
                      return a < b ? a : b;
                  }
                  /**
                   * @dev Returns the average of two signed numbers without overflow.
                   * The result is rounded towards zero.
                   */
                  function average(int256 a, int256 b) internal pure returns (int256) {
                      // Formula from the book "Hacker's Delight"
                      int256 x = (a & b) + ((a ^ b) >> 1);
                      return x + (int256(uint256(x) >> 255) & (a ^ b));
                  }
                  /**
                   * @dev Returns the absolute unsigned value of a signed value.
                   */
                  function abs(int256 n) internal pure returns (uint256) {
                      unchecked {
                          // must be unchecked in order to support `n = type(int256).min`
                          return uint256(n >= 0 ? n : -n);
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity >=0.8.0;
              /// @notice Arithmetic library with operations for fixed-point numbers.
              /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
              library FixedPointMathLib {
                  /*//////////////////////////////////////////////////////////////
                                  SIMPLIFIED FIXED POINT OPERATIONS
                  //////////////////////////////////////////////////////////////*/
                  uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
                  function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                      return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
                  }
                  function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                      return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
                  }
                  function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                      return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
                  }
                  function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                      return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
                  }
                  function powWad(int256 x, int256 y) internal pure returns (int256) {
                      // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
                      return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
                  }
                  function expWad(int256 x) internal pure returns (int256 r) {
                      unchecked {
                          // When the result is < 0.5 we return zero. This happens when
                          // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                          if (x <= -42139678854452767551) return 0;
                          // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                          // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                          if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                          // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                          // for more intermediate precision and a binary basis. This base conversion
                          // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                          x = (x << 78) / 5**18;
                          // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                          // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                          // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                          int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                          x = x - k * 54916777467707473351141471128;
                          // k is in the range [-61, 195].
                          // Evaluate using a (6, 7)-term rational approximation.
                          // p is made monic, we'll multiply by a scale factor later.
                          int256 y = x + 1346386616545796478920950773328;
                          y = ((y * x) >> 96) + 57155421227552351082224309758442;
                          int256 p = y + x - 94201549194550492254356042504812;
                          p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                          p = p * x + (4385272521454847904659076985693276 << 96);
                          // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                          int256 q = x - 2855989394907223263936484059900;
                          q = ((q * x) >> 96) + 50020603652535783019961831881945;
                          q = ((q * x) >> 96) - 533845033583426703283633433725380;
                          q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                          q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                          q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                          assembly {
                              // Div in assembly because solidity adds a zero check despite the unchecked.
                              // The q polynomial won't have zeros in the domain as all its roots are complex.
                              // No scaling is necessary because p is already 2**96 too large.
                              r := sdiv(p, q)
                          }
                          // r should be in the range (0.09, 0.25) * 2**96.
                          // We now need to multiply r by:
                          // * the scale factor s = ~6.031367120.
                          // * the 2**k factor from the range reduction.
                          // * the 1e18 / 2**96 factor for base conversion.
                          // We do this all at once, with an intermediate result in 2**213
                          // basis, so the final right shift is always by a positive amount.
                          r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
                      }
                  }
                  function lnWad(int256 x) internal pure returns (int256 r) {
                      unchecked {
                          require(x > 0, "UNDEFINED");
                          // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                          // We do this by multiplying by 2**96 / 10**18. But since
                          // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                          // and add ln(2**96 / 10**18) at the end.
                          // Reduce range of x to (1, 2) * 2**96
                          // ln(2^k * x) = k * ln(2) + ln(x)
                          int256 k = int256(log2(uint256(x))) - 96;
                          x <<= uint256(159 - k);
                          x = int256(uint256(x) >> 159);
                          // Evaluate using a (8, 8)-term rational approximation.
                          // p is made monic, we will multiply by a scale factor later.
                          int256 p = x + 3273285459638523848632254066296;
                          p = ((p * x) >> 96) + 24828157081833163892658089445524;
                          p = ((p * x) >> 96) + 43456485725739037958740375743393;
                          p = ((p * x) >> 96) - 11111509109440967052023855526967;
                          p = ((p * x) >> 96) - 45023709667254063763336534515857;
                          p = ((p * x) >> 96) - 14706773417378608786704636184526;
                          p = p * x - (795164235651350426258249787498 << 96);
                          // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                          // q is monic by convention.
                          int256 q = x + 5573035233440673466300451813936;
                          q = ((q * x) >> 96) + 71694874799317883764090561454958;
                          q = ((q * x) >> 96) + 283447036172924575727196451306956;
                          q = ((q * x) >> 96) + 401686690394027663651624208769553;
                          q = ((q * x) >> 96) + 204048457590392012362485061816622;
                          q = ((q * x) >> 96) + 31853899698501571402653359427138;
                          q = ((q * x) >> 96) + 909429971244387300277376558375;
                          assembly {
                              // Div in assembly because solidity adds a zero check despite the unchecked.
                              // The q polynomial is known not to have zeros in the domain.
                              // No scaling required because p is already 2**96 too large.
                              r := sdiv(p, q)
                          }
                          // r is in the range (0, 0.125) * 2**96
                          // Finalization, we need to:
                          // * multiply by the scale factor s = 5.549…
                          // * add ln(2**96 / 10**18)
                          // * add k * ln(2)
                          // * multiply by 10**18 / 2**96 = 5**18 >> 78
                          // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                          r *= 1677202110996718588342820967067443963516166;
                          // add ln(2) * k * 5e18 * 2**192
                          r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                          // add ln(2**96 / 10**18) * 5e18 * 2**192
                          r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                          // base conversion: mul 2**18 / 2**192
                          r >>= 174;
                      }
                  }
                  /*//////////////////////////////////////////////////////////////
                                  LOW LEVEL FIXED POINT OPERATIONS
                  //////////////////////////////////////////////////////////////*/
                  function mulDivDown(
                      uint256 x,
                      uint256 y,
                      uint256 denominator
                  ) internal pure returns (uint256 z) {
                      assembly {
                          // Store x * y in z for now.
                          z := mul(x, y)
                          // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                          if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                              revert(0, 0)
                          }
                          // Divide z by the denominator.
                          z := div(z, denominator)
                      }
                  }
                  function mulDivUp(
                      uint256 x,
                      uint256 y,
                      uint256 denominator
                  ) internal pure returns (uint256 z) {
                      assembly {
                          // Store x * y in z for now.
                          z := mul(x, y)
                          // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                          if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                              revert(0, 0)
                          }
                          // First, divide z - 1 by the denominator and add 1.
                          // We allow z - 1 to underflow if z is 0, because we multiply the
                          // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                          z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
                      }
                  }
                  function rpow(
                      uint256 x,
                      uint256 n,
                      uint256 scalar
                  ) internal pure returns (uint256 z) {
                      assembly {
                          switch x
                          case 0 {
                              switch n
                              case 0 {
                                  // 0 ** 0 = 1
                                  z := scalar
                              }
                              default {
                                  // 0 ** n = 0
                                  z := 0
                              }
                          }
                          default {
                              switch mod(n, 2)
                              case 0 {
                                  // If n is even, store scalar in z for now.
                                  z := scalar
                              }
                              default {
                                  // If n is odd, store x in z for now.
                                  z := x
                              }
                              // Shifting right by 1 is like dividing by 2.
                              let half := shr(1, scalar)
                              for {
                                  // Shift n right by 1 before looping to halve it.
                                  n := shr(1, n)
                              } n {
                                  // Shift n right by 1 each iteration to halve it.
                                  n := shr(1, n)
                              } {
                                  // Revert immediately if x ** 2 would overflow.
                                  // Equivalent to iszero(eq(div(xx, x), x)) here.
                                  if shr(128, x) {
                                      revert(0, 0)
                                  }
                                  // Store x squared.
                                  let xx := mul(x, x)
                                  // Round to the nearest number.
                                  let xxRound := add(xx, half)
                                  // Revert if xx + half overflowed.
                                  if lt(xxRound, xx) {
                                      revert(0, 0)
                                  }
                                  // Set x to scaled xxRound.
                                  x := div(xxRound, scalar)
                                  // If n is even:
                                  if mod(n, 2) {
                                      // Compute z * x.
                                      let zx := mul(z, x)
                                      // If z * x overflowed:
                                      if iszero(eq(div(zx, x), z)) {
                                          // Revert if x is non-zero.
                                          if iszero(iszero(x)) {
                                              revert(0, 0)
                                          }
                                      }
                                      // Round to the nearest number.
                                      let zxRound := add(zx, half)
                                      // Revert if zx + half overflowed.
                                      if lt(zxRound, zx) {
                                          revert(0, 0)
                                      }
                                      // Return properly scaled zxRound.
                                      z := div(zxRound, scalar)
                                  }
                              }
                          }
                      }
                  }
                  /*//////////////////////////////////////////////////////////////
                                      GENERAL NUMBER UTILITIES
                  //////////////////////////////////////////////////////////////*/
                  function sqrt(uint256 x) internal pure returns (uint256 z) {
                      assembly {
                          let y := x // We start y at x, which will help us make our initial estimate.
                          z := 181 // The "correct" value is 1, but this saves a multiplication later.
                          // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                          // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                          // We check y >= 2^(k + 8) but shift right by k bits
                          // each branch to ensure that if x >= 256, then y >= 256.
                          if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                              y := shr(128, y)
                              z := shl(64, z)
                          }
                          if iszero(lt(y, 0x1000000000000000000)) {
                              y := shr(64, y)
                              z := shl(32, z)
                          }
                          if iszero(lt(y, 0x10000000000)) {
                              y := shr(32, y)
                              z := shl(16, z)
                          }
                          if iszero(lt(y, 0x1000000)) {
                              y := shr(16, y)
                              z := shl(8, z)
                          }
                          // Goal was to get z*z*y within a small factor of x. More iterations could
                          // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                          // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                          // That's not possible if x < 256 but we can just verify those cases exhaustively.
                          // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                          // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                          // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                          // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                          // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                          // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                          // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                          // There is no overflow risk here since y < 2^136 after the first branch above.
                          z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                          // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          z := shr(1, add(z, div(x, z)))
                          // If x+1 is a perfect square, the Babylonian method cycles between
                          // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                          // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                          // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                          // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                          z := sub(z, lt(div(x, z), z))
                      }
                  }
                  function log2(uint256 x) internal pure returns (uint256 r) {
                      require(x > 0, "UNDEFINED");
                      assembly {
                          r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                          r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                          r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                          r := or(r, shl(4, lt(0xffff, shr(r, x))))
                          r := or(r, shl(3, lt(0xff, shr(r, x))))
                          r := or(r, shl(2, lt(0xf, shr(r, x))))
                          r := or(r, shl(1, lt(0x3, shr(r, x))))
                          r := or(r, lt(0x1, shr(r, x)))
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
              /// @title RLPWriter
              /// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
              ///         RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
              ///         modifications to improve legibility.
              library RLPWriter {
                  /// @notice RLP encodes a byte string.
                  /// @param _in The byte string to encode.
                  /// @return out_ The RLP encoded string in bytes.
                  function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) {
                      if (_in.length == 1 && uint8(_in[0]) < 128) {
                          out_ = _in;
                      } else {
                          out_ = abi.encodePacked(_writeLength(_in.length, 128), _in);
                      }
                  }
                  /// @notice RLP encodes a list of RLP encoded byte byte strings.
                  /// @param _in The list of RLP encoded byte strings.
                  /// @return list_ The RLP encoded list of items in bytes.
                  function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) {
                      list_ = _flatten(_in);
                      list_ = abi.encodePacked(_writeLength(list_.length, 192), list_);
                  }
                  /// @notice RLP encodes a string.
                  /// @param _in The string to encode.
                  /// @return out_ The RLP encoded string in bytes.
                  function writeString(string memory _in) internal pure returns (bytes memory out_) {
                      out_ = writeBytes(bytes(_in));
                  }
                  /// @notice RLP encodes an address.
                  /// @param _in The address to encode.
                  /// @return out_ The RLP encoded address in bytes.
                  function writeAddress(address _in) internal pure returns (bytes memory out_) {
                      out_ = writeBytes(abi.encodePacked(_in));
                  }
                  /// @notice RLP encodes a uint.
                  /// @param _in The uint256 to encode.
                  /// @return out_ The RLP encoded uint256 in bytes.
                  function writeUint(uint256 _in) internal pure returns (bytes memory out_) {
                      out_ = writeBytes(_toBinary(_in));
                  }
                  /// @notice RLP encodes a bool.
                  /// @param _in The bool to encode.
                  /// @return out_ The RLP encoded bool in bytes.
                  function writeBool(bool _in) internal pure returns (bytes memory out_) {
                      out_ = new bytes(1);
                      out_[0] = (_in ? bytes1(0x01) : bytes1(0x80));
                  }
                  /// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
                  /// @param _len    The length of the string or the payload.
                  /// @param _offset 128 if item is string, 192 if item is list.
                  /// @return out_ RLP encoded bytes.
                  function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) {
                      if (_len < 56) {
                          out_ = new bytes(1);
                          out_[0] = bytes1(uint8(_len) + uint8(_offset));
                      } else {
                          uint256 lenLen;
                          uint256 i = 1;
                          while (_len / i != 0) {
                              lenLen++;
                              i *= 256;
                          }
                          out_ = new bytes(lenLen + 1);
                          out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
                          for (i = 1; i <= lenLen; i++) {
                              out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256));
                          }
                      }
                  }
                  /// @notice Encode integer in big endian binary form with no leading zeroes.
                  /// @param _x The integer to encode.
                  /// @return out_ RLP encoded bytes.
                  function _toBinary(uint256 _x) private pure returns (bytes memory out_) {
                      bytes memory b = abi.encodePacked(_x);
                      uint256 i = 0;
                      for (; i < 32; i++) {
                          if (b[i] != 0) {
                              break;
                          }
                      }
                      out_ = new bytes(32 - i);
                      for (uint256 j = 0; j < out_.length; j++) {
                          out_[j] = b[i++];
                      }
                  }
                  /// @custom:attribution https://github.com/Arachnid/solidity-stringutils
                  /// @notice Copies a piece of memory to another location.
                  /// @param _dest Destination location.
                  /// @param _src  Source location.
                  /// @param _len  Length of memory to copy.
                  function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure {
                      uint256 dest = _dest;
                      uint256 src = _src;
                      uint256 len = _len;
                      for (; len >= 32; len -= 32) {
                          assembly {
                              mstore(dest, mload(src))
                          }
                          dest += 32;
                          src += 32;
                      }
                      uint256 mask;
                      unchecked {
                          mask = 256 ** (32 - len) - 1;
                      }
                      assembly {
                          let srcpart := and(mload(src), not(mask))
                          let destpart := and(mload(dest), mask)
                          mstore(dest, or(destpart, srcpart))
                      }
                  }
                  /// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
                  /// @notice Flattens a list of byte strings into one byte string.
                  /// @param _list List of byte strings to flatten.
                  /// @return out_ The flattened byte string.
                  function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) {
                      if (_list.length == 0) {
                          return new bytes(0);
                      }
                      uint256 len;
                      uint256 i = 0;
                      for (; i < _list.length; i++) {
                          len += _list[i].length;
                      }
                      out_ = new bytes(len);
                      uint256 flattenedPtr;
                      assembly {
                          flattenedPtr := add(out_, 0x20)
                      }
                      for (i = 0; i < _list.length; i++) {
                          bytes memory item = _list[i];
                          uint256 listPtr;
                          assembly {
                              listPtr := add(item, 0x20)
                          }
                          _memcpy(flattenedPtr, listPtr, item.length);
                          flattenedPtr += _list[i].length;
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @title Bytes
              /// @notice Bytes is a library for manipulating byte arrays.
              library Bytes {
                  /// @custom:attribution https://github.com/GNSPS/solidity-bytes-utils
                  /// @notice Slices a byte array with a given starting index and length. Returns a new byte array
                  ///         as opposed to a pointer to the original array. Will throw if trying to slice more
                  ///         bytes than exist in the array.
                  /// @param _bytes Byte array to slice.
                  /// @param _start Starting index of the slice.
                  /// @param _length Length of the slice.
                  /// @return Slice of the input byte array.
                  function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) {
                      unchecked {
                          require(_length + 31 >= _length, "slice_overflow");
                          require(_start + _length >= _start, "slice_overflow");
                          require(_bytes.length >= _start + _length, "slice_outOfBounds");
                      }
                      bytes memory tempBytes;
                      assembly {
                          switch iszero(_length)
                          case 0 {
                              // Get a location of some free memory and store it in tempBytes as
                              // Solidity does for memory variables.
                              tempBytes := mload(0x40)
                              // The first word of the slice result is potentially a partial
                              // word read from the original array. To read it, we calculate
                              // the length of that partial word and start copying that many
                              // bytes into the array. The first word we copy will start with
                              // data we don't care about, but the last `lengthmod` bytes will
                              // land at the beginning of the contents of the new array. When
                              // we're done copying, we overwrite the full first word with
                              // the actual length of the slice.
                              let lengthmod := and(_length, 31)
                              // The multiplication in the next line is necessary
                              // because when slicing multiples of 32 bytes (lengthmod == 0)
                              // the following copy loop was copying the origin's length
                              // and then ending prematurely not copying everything it should.
                              let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                              let end := add(mc, _length)
                              for {
                                  // The multiplication in the next line has the same exact purpose
                                  // as the one above.
                                  let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                              } lt(mc, end) {
                                  mc := add(mc, 0x20)
                                  cc := add(cc, 0x20)
                              } { mstore(mc, mload(cc)) }
                              mstore(tempBytes, _length)
                              //update free-memory pointer
                              //allocating the array padded to 32 bytes like the compiler does now
                              mstore(0x40, and(add(mc, 31), not(31)))
                          }
                          //if we want a zero-length slice let's just return a zero-length array
                          default {
                              tempBytes := mload(0x40)
                              //zero out the 32 bytes slice we are about to return
                              //we need to do it because Solidity does not garbage collect
                              mstore(tempBytes, 0)
                              mstore(0x40, add(tempBytes, 0x20))
                          }
                      }
                      return tempBytes;
                  }
                  /// @notice Slices a byte array with a given starting index up to the end of the original byte
                  ///         array. Returns a new array rathern than a pointer to the original.
                  /// @param _bytes Byte array to slice.
                  /// @param _start Starting index of the slice.
                  /// @return Slice of the input byte array.
                  function slice(bytes memory _bytes, uint256 _start) internal pure returns (bytes memory) {
                      if (_start >= _bytes.length) {
                          return bytes("");
                      }
                      return slice(_bytes, _start, _bytes.length - _start);
                  }
                  /// @notice Converts a byte array into a nibble array by splitting each byte into two nibbles.
                  ///         Resulting nibble array will be exactly twice as long as the input byte array.
                  /// @param _bytes Input byte array to convert.
                  /// @return Resulting nibble array.
                  function toNibbles(bytes memory _bytes) internal pure returns (bytes memory) {
                      bytes memory _nibbles;
                      assembly {
                          // Grab a free memory offset for the new array
                          _nibbles := mload(0x40)
                          // Load the length of the passed bytes array from memory
                          let bytesLength := mload(_bytes)
                          // Calculate the length of the new nibble array
                          // This is the length of the input array times 2
                          let nibblesLength := shl(0x01, bytesLength)
                          // Update the free memory pointer to allocate memory for the new array.
                          // To do this, we add the length of the new array + 32 bytes for the array length
                          // rounded up to the nearest 32 byte boundary to the current free memory pointer.
                          mstore(0x40, add(_nibbles, and(not(0x1F), add(nibblesLength, 0x3F))))
                          // Store the length of the new array in memory
                          mstore(_nibbles, nibblesLength)
                          // Store the memory offset of the _bytes array's contents on the stack
                          let bytesStart := add(_bytes, 0x20)
                          // Store the memory offset of the nibbles array's contents on the stack
                          let nibblesStart := add(_nibbles, 0x20)
                          // Loop through each byte in the input array
                          for { let i := 0x00 } lt(i, bytesLength) { i := add(i, 0x01) } {
                              // Get the starting offset of the next 2 bytes in the nibbles array
                              let offset := add(nibblesStart, shl(0x01, i))
                              // Load the byte at the current index within the `_bytes` array
                              let b := byte(0x00, mload(add(bytesStart, i)))
                              // Pull out the first nibble and store it in the new array
                              mstore8(offset, shr(0x04, b))
                              // Pull out the second nibble and store it in the new array
                              mstore8(add(offset, 0x01), and(b, 0x0F))
                          }
                      }
                      return _nibbles;
                  }
                  /// @notice Compares two byte arrays by comparing their keccak256 hashes.
                  /// @param _bytes First byte array to compare.
                  /// @param _other Second byte array to compare.
                  /// @return True if the two byte arrays are equal, false otherwise.
                  function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) {
                      return keccak256(_bytes) == keccak256(_other);
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.8;
              // Libraries
              import {
                  EmptyItem,
                  UnexpectedString,
                  InvalidDataRemainder,
                  ContentLengthMismatch,
                  InvalidHeader,
                  UnexpectedList
              } from "src/libraries/rlp/RLPErrors.sol";
              /// @custom:attribution https://github.com/hamdiallam/Solidity-RLP
              /// @title RLPReader
              /// @notice RLPReader is a library for parsing RLP-encoded byte arrays into Solidity types. Adapted
              ///         from Solidity-RLP (https://github.com/hamdiallam/Solidity-RLP) by Hamdi Allam with
              ///         various tweaks to improve readability.
              library RLPReader {
                  /// @notice Custom pointer type to avoid confusion between pointers and uint256s.
                  type MemoryPointer is uint256;
                  /// @notice RLP item types.
                  /// @custom:value DATA_ITEM Represents an RLP data item (NOT a list).
                  /// @custom:value LIST_ITEM Represents an RLP list item.
                  enum RLPItemType {
                      DATA_ITEM,
                      LIST_ITEM
                  }
                  /// @notice Struct representing an RLP item.
                  /// @custom:field length Length of the RLP item.
                  /// @custom:field ptr    Pointer to the RLP item in memory.
                  struct RLPItem {
                      uint256 length;
                      MemoryPointer ptr;
                  }
                  /// @notice Max list length that this library will accept.
                  uint256 internal constant MAX_LIST_LENGTH = 32;
                  /// @notice Converts bytes to a reference to memory position and length.
                  /// @param _in Input bytes to convert.
                  /// @return out_ Output memory reference.
                  function toRLPItem(bytes memory _in) internal pure returns (RLPItem memory out_) {
                      // Empty arrays are not RLP items.
                      if (_in.length == 0) revert EmptyItem();
                      MemoryPointer ptr;
                      assembly {
                          ptr := add(_in, 32)
                      }
                      out_ = RLPItem({ length: _in.length, ptr: ptr });
                  }
                  /// @notice Reads an RLP list value into a list of RLP items.
                  /// @param _in RLP list value.
                  /// @return out_ Decoded RLP list items.
                  function readList(RLPItem memory _in) internal pure returns (RLPItem[] memory out_) {
                      (uint256 listOffset, uint256 listLength, RLPItemType itemType) = _decodeLength(_in);
                      if (itemType != RLPItemType.LIST_ITEM) revert UnexpectedString();
                      if (listOffset + listLength != _in.length) revert InvalidDataRemainder();
                      // Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by
                      // writing to the length. Since we can't know the number of RLP items without looping over
                      // the entire input, we'd have to loop twice to accurately size this array. It's easier to
                      // simply set a reasonable maximum list length and decrease the size before we finish.
                      out_ = new RLPItem[](MAX_LIST_LENGTH);
                      uint256 itemCount = 0;
                      uint256 offset = listOffset;
                      while (offset < _in.length) {
                          (uint256 itemOffset, uint256 itemLength,) = _decodeLength(
                              RLPItem({ length: _in.length - offset, ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset) })
                          );
                          // We don't need to check itemCount < out.length explicitly because Solidity already
                          // handles this check on our behalf, we'd just be wasting gas.
                          out_[itemCount] = RLPItem({
                              length: itemLength + itemOffset,
                              ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset)
                          });
                          itemCount += 1;
                          offset += itemOffset + itemLength;
                      }
                      // Decrease the array size to match the actual item count.
                      assembly {
                          mstore(out_, itemCount)
                      }
                  }
                  /// @notice Reads an RLP list value into a list of RLP items.
                  /// @param _in RLP list value.
                  /// @return out_ Decoded RLP list items.
                  function readList(bytes memory _in) internal pure returns (RLPItem[] memory out_) {
                      out_ = readList(toRLPItem(_in));
                  }
                  /// @notice Reads an RLP bytes value into bytes.
                  /// @param _in RLP bytes value.
                  /// @return out_ Decoded bytes.
                  function readBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
                      (uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in);
                      if (itemType != RLPItemType.DATA_ITEM) revert UnexpectedList();
                      if (_in.length != itemOffset + itemLength) revert InvalidDataRemainder();
                      out_ = _copy(_in.ptr, itemOffset, itemLength);
                  }
                  /// @notice Reads an RLP bytes value into bytes.
                  /// @param _in RLP bytes value.
                  /// @return out_ Decoded bytes.
                  function readBytes(bytes memory _in) internal pure returns (bytes memory out_) {
                      out_ = readBytes(toRLPItem(_in));
                  }
                  /// @notice Reads the raw bytes of an RLP item.
                  /// @param _in RLP item to read.
                  /// @return out_ Raw RLP bytes.
                  function readRawBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
                      out_ = _copy(_in.ptr, 0, _in.length);
                  }
                  /// @notice Decodes the length of an RLP item.
                  /// @param _in RLP item to decode.
                  /// @return offset_ Offset of the encoded data.
                  /// @return length_ Length of the encoded data.
                  /// @return type_ RLP item type (LIST_ITEM or DATA_ITEM).
                  function _decodeLength(RLPItem memory _in)
                      private
                      pure
                      returns (uint256 offset_, uint256 length_, RLPItemType type_)
                  {
                      // Short-circuit if there's nothing to decode, note that we perform this check when
                      // the user creates an RLP item via toRLPItem, but it's always possible for them to bypass
                      // that function and create an RLP item directly. So we need to check this anyway.
                      if (_in.length == 0) revert EmptyItem();
                      MemoryPointer ptr = _in.ptr;
                      uint256 prefix;
                      assembly {
                          prefix := byte(0, mload(ptr))
                      }
                      if (prefix <= 0x7f) {
                          // Single byte.
                          return (0, 1, RLPItemType.DATA_ITEM);
                      } else if (prefix <= 0xb7) {
                          // Short string.
                          // slither-disable-next-line variable-scope
                          uint256 strLen = prefix - 0x80;
                          if (_in.length <= strLen) revert ContentLengthMismatch();
                          bytes1 firstByteOfContent;
                          assembly {
                              firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                          }
                          if (strLen == 1 && firstByteOfContent < 0x80) revert InvalidHeader();
                          return (1, strLen, RLPItemType.DATA_ITEM);
                      } else if (prefix <= 0xbf) {
                          // Long string.
                          uint256 lenOfStrLen = prefix - 0xb7;
                          if (_in.length <= lenOfStrLen) revert ContentLengthMismatch();
                          bytes1 firstByteOfContent;
                          assembly {
                              firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                          }
                          if (firstByteOfContent == 0x00) revert InvalidHeader();
                          uint256 strLen;
                          assembly {
                              strLen := shr(sub(256, mul(8, lenOfStrLen)), mload(add(ptr, 1)))
                          }
                          if (strLen <= 55) revert InvalidHeader();
                          if (_in.length <= lenOfStrLen + strLen) revert ContentLengthMismatch();
                          return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM);
                      } else if (prefix <= 0xf7) {
                          // Short list.
                          // slither-disable-next-line variable-scope
                          uint256 listLen = prefix - 0xc0;
                          if (_in.length <= listLen) revert ContentLengthMismatch();
                          return (1, listLen, RLPItemType.LIST_ITEM);
                      } else {
                          // Long list.
                          uint256 lenOfListLen = prefix - 0xf7;
                          if (_in.length <= lenOfListLen) revert ContentLengthMismatch();
                          bytes1 firstByteOfContent;
                          assembly {
                              firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                          }
                          if (firstByteOfContent == 0x00) revert InvalidHeader();
                          uint256 listLen;
                          assembly {
                              listLen := shr(sub(256, mul(8, lenOfListLen)), mload(add(ptr, 1)))
                          }
                          if (listLen <= 55) revert InvalidHeader();
                          if (_in.length <= lenOfListLen + listLen) revert ContentLengthMismatch();
                          return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM);
                      }
                  }
                  /// @notice Copies the bytes from a memory location.
                  /// @param _src    Pointer to the location to read from.
                  /// @param _offset Offset to start reading from.
                  /// @param _length Number of bytes to read.
                  /// @return out_ Copied bytes.
                  function _copy(MemoryPointer _src, uint256 _offset, uint256 _length) private pure returns (bytes memory out_) {
                      out_ = new bytes(_length);
                      if (_length == 0) {
                          return out_;
                      }
                      // Mostly based on Solidity's copy_memory_to_memory:
                      // https://github.com/ethereum/solidity/blob/34dd30d71b4da730488be72ff6af7083cf2a91f6/libsolidity/codegen/YulUtilFunctions.cpp#L102-L114
                      uint256 src = MemoryPointer.unwrap(_src) + _offset;
                      assembly {
                          let dest := add(out_, 32)
                          let i := 0
                          for { } lt(i, _length) { i := add(i, 32) } { mstore(add(dest, i), mload(add(src, i))) }
                          if gt(i, _length) { mstore(add(dest, _length), 0) }
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.15;
              using LibPosition for Position global;
              /// @notice A `Position` represents a position of a claim within the game tree.
              /// @dev This is represented as a "generalized index" where the high-order bit
              /// is the level in the tree and the remaining bits is a unique bit pattern, allowing
              /// a unique identifier for each node in the tree. Mathematically, it is calculated
              /// as 2^{depth} + indexAtDepth.
              type Position is uint128;
              /// @title LibPosition
              /// @notice This library contains helper functions for working with the `Position` type.
              library LibPosition {
                  /// @notice the `MAX_POSITION_BITLEN` is the number of bits that the `Position` type, and the implementation of
                  ///         its behavior within this library, can safely support.
                  uint8 internal constant MAX_POSITION_BITLEN = 126;
                  /// @notice Computes a generalized index (2^{depth} + indexAtDepth).
                  /// @param _depth The depth of the position.
                  /// @param _indexAtDepth The index at the depth of the position.
                  /// @return position_ The computed generalized index.
                  function wrap(uint8 _depth, uint128 _indexAtDepth) internal pure returns (Position position_) {
                      assembly {
                          // gindex = 2^{_depth} + _indexAtDepth
                          position_ := add(shl(_depth, 1), _indexAtDepth)
                      }
                  }
                  /// @notice Pulls the `depth` out of a `Position` type.
                  /// @param _position The generalized index to get the `depth` of.
                  /// @return depth_ The `depth` of the `position` gindex.
                  /// @custom:attribution Solady <https://github.com/Vectorized/Solady>
                  function depth(Position _position) internal pure returns (uint8 depth_) {
                      // Return the most significant bit offset, which signifies the depth of the gindex.
                      assembly {
                          depth_ := or(depth_, shl(6, lt(0xffffffffffffffff, shr(depth_, _position))))
                          depth_ := or(depth_, shl(5, lt(0xffffffff, shr(depth_, _position))))
                          // For the remaining 32 bits, use a De Bruijn lookup.
                          _position := shr(depth_, _position)
                          _position := or(_position, shr(1, _position))
                          _position := or(_position, shr(2, _position))
                          _position := or(_position, shr(4, _position))
                          _position := or(_position, shr(8, _position))
                          _position := or(_position, shr(16, _position))
                          depth_ :=
                              or(
                                  depth_,
                                  byte(
                                      shr(251, mul(_position, shl(224, 0x07c4acdd))),
                                      0x0009010a0d15021d0b0e10121619031e080c141c0f111807131b17061a05041f
                                  )
                              )
                      }
                  }
                  /// @notice Pulls the `indexAtDepth` out of a `Position` type.
                  ///         The `indexAtDepth` is the left/right index of a position at a specific depth within
                  ///         the binary tree, starting from index 0. For example, at gindex 2, the `depth` = 1
                  ///         and the `indexAtDepth` = 0.
                  /// @param _position The generalized index to get the `indexAtDepth` of.
                  /// @return indexAtDepth_ The `indexAtDepth` of the `position` gindex.
                  function indexAtDepth(Position _position) internal pure returns (uint128 indexAtDepth_) {
                      // Return bits p_{msb-1}...p_{0}. This effectively pulls the 2^{depth} out of the gindex,
                      // leaving only the `indexAtDepth`.
                      uint256 msb = depth(_position);
                      assembly {
                          indexAtDepth_ := sub(_position, shl(msb, 1))
                      }
                  }
                  /// @notice Get the left child of `_position`.
                  /// @param _position The position to get the left position of.
                  /// @return left_ The position to the left of `position`.
                  function left(Position _position) internal pure returns (Position left_) {
                      assembly {
                          left_ := shl(1, _position)
                      }
                  }
                  /// @notice Get the right child of `_position`
                  /// @param _position The position to get the right position of.
                  /// @return right_ The position to the right of `position`.
                  function right(Position _position) internal pure returns (Position right_) {
                      assembly {
                          right_ := or(1, shl(1, _position))
                      }
                  }
                  /// @notice Get the parent position of `_position`.
                  /// @param _position The position to get the parent position of.
                  /// @return parent_ The parent position of `position`.
                  function parent(Position _position) internal pure returns (Position parent_) {
                      assembly {
                          parent_ := shr(1, _position)
                      }
                  }
                  /// @notice Get the deepest, right most gindex relative to the `position`. This is equivalent to
                  ///         calling `right` on a position until the maximum depth is reached.
                  /// @param _position The position to get the relative deepest, right most gindex of.
                  /// @param _maxDepth The maximum depth of the game.
                  /// @return rightIndex_ The deepest, right most gindex relative to the `position`.
                  function rightIndex(Position _position, uint256 _maxDepth) internal pure returns (Position rightIndex_) {
                      uint256 msb = depth(_position);
                      assembly {
                          let remaining := sub(_maxDepth, msb)
                          rightIndex_ := or(shl(remaining, _position), sub(shl(remaining, 1), 1))
                      }
                  }
                  /// @notice Get the deepest, right most trace index relative to the `position`. This is
                  ///         equivalent to calling `right` on a position until the maximum depth is reached and
                  ///         then finding its index at depth.
                  /// @param _position The position to get the relative trace index of.
                  /// @param _maxDepth The maximum depth of the game.
                  /// @return traceIndex_ The trace index relative to the `position`.
                  function traceIndex(Position _position, uint256 _maxDepth) internal pure returns (uint256 traceIndex_) {
                      uint256 msb = depth(_position);
                      assembly {
                          let remaining := sub(_maxDepth, msb)
                          traceIndex_ := sub(or(shl(remaining, _position), sub(shl(remaining, 1), 1)), shl(_maxDepth, 1))
                      }
                  }
                  /// @notice Gets the position of the highest ancestor of `_position` that commits to the same
                  ///         trace index.
                  /// @param _position The position to get the highest ancestor of.
                  /// @return ancestor_ The highest ancestor of `position` that commits to the same trace index.
                  function traceAncestor(Position _position) internal pure returns (Position ancestor_) {
                      // Create a field with only the lowest unset bit of `_position` set.
                      Position lsb;
                      assembly {
                          lsb := and(not(_position), add(_position, 1))
                      }
                      // Find the index of the lowest unset bit within the field.
                      uint256 msb = depth(lsb);
                      // The highest ancestor that commits to the same trace index is the original position
                      // shifted right by the index of the lowest unset bit.
                      assembly {
                          let a := shr(msb, _position)
                          // Bound the ancestor to the minimum gindex, 1.
                          ancestor_ := or(a, iszero(a))
                      }
                  }
                  /// @notice Gets the position of the highest ancestor of `_position` that commits to the same
                  ///         trace index, while still being below `_upperBoundExclusive`.
                  /// @param _position The position to get the highest ancestor of.
                  /// @param _upperBoundExclusive The exclusive upper depth bound, used to inform where to stop in order
                  ///                             to not escape a sub-tree.
                  /// @return ancestor_ The highest ancestor of `position` that commits to the same trace index.
                  function traceAncestorBounded(
                      Position _position,
                      uint256 _upperBoundExclusive
                  )
                      internal
                      pure
                      returns (Position ancestor_)
                  {
                      // This function only works for positions that are below the upper bound.
                      if (_position.depth() <= _upperBoundExclusive) {
                          assembly {
                              // Revert with `ClaimAboveSplit()`
                              mstore(0x00, 0xb34b5c22)
                              revert(0x1C, 0x04)
                          }
                      }
                      // Grab the global trace ancestor.
                      ancestor_ = traceAncestor(_position);
                      // If the ancestor is above or at the upper bound, shift it to be below the upper bound.
                      // This should be a special case that only covers positions that commit to the final leaf
                      // in a sub-tree.
                      if (ancestor_.depth() <= _upperBoundExclusive) {
                          ancestor_ = ancestor_.rightIndex(_upperBoundExclusive + 1);
                      }
                  }
                  /// @notice Get the move position of `_position`, which is the left child of:
                  ///         1. `_position` if `_isAttack` is true.
                  ///         2. `_position | 1` if `_isAttack` is false.
                  /// @param _position The position to get the relative attack/defense position of.
                  /// @param _isAttack Whether or not the move is an attack move.
                  /// @return move_ The move position relative to `position`.
                  function move(Position _position, bool _isAttack) internal pure returns (Position move_) {
                      assembly {
                          move_ := shl(1, or(iszero(_isAttack), _position))
                      }
                  }
                  /// @notice Get the value of a `Position` type in the form of the underlying uint128.
                  /// @param _position The position to get the value of.
                  /// @return raw_ The value of the `position` as a uint128 type.
                  function raw(Position _position) internal pure returns (uint128 raw_) {
                      assembly {
                          raw_ := _position
                      }
                  }
              }
              // SPDX-License-Identifier: MIT
              pragma solidity ^0.8.0;
              /// @notice The length of an RLP item must be greater than zero to be decodable
              error EmptyItem();
              /// @notice The decoded item type for list is not a list item
              error UnexpectedString();
              /// @notice The RLP item has an invalid data remainder
              error InvalidDataRemainder();
              /// @notice Decoded item type for bytes is not a string item
              error UnexpectedList();
              /// @notice The length of the content must be greater than the RLP item length
              error ContentLengthMismatch();
              /// @notice Invalid RLP header for RLP item
              error InvalidHeader();
              

              File 10 of 10: Proxy
              // SPDX-License-Identifier: MIT
              pragma solidity 0.8.15;
              /**
               * @title Proxy
               * @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
               *         if the caller is address(0), meaning that the call originated from an off-chain
               *         simulation.
               */
              contract Proxy {
                  /**
                   * @notice The storage slot that holds the address of the implementation.
                   *         bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
                   */
                  bytes32 internal constant IMPLEMENTATION_KEY =
                      0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                  /**
                   * @notice The storage slot that holds the address of the owner.
                   *         bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
                   */
                  bytes32 internal constant OWNER_KEY =
                      0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                  /**
                   * @notice An event that is emitted each time the implementation is changed. This event is part
                   *         of the EIP-1967 specification.
                   *
                   * @param implementation The address of the implementation contract
                   */
                  event Upgraded(address indexed implementation);
                  /**
                   * @notice An event that is emitted each time the owner is upgraded. This event is part of the
                   *         EIP-1967 specification.
                   *
                   * @param previousAdmin The previous owner of the contract
                   * @param newAdmin      The new owner of the contract
                   */
                  event AdminChanged(address previousAdmin, address newAdmin);
                  /**
                   * @notice A modifier that reverts if not called by the owner or by address(0) to allow
                   *         eth_call to interact with this proxy without needing to use low-level storage
                   *         inspection. We assume that nobody is able to trigger calls from address(0) during
                   *         normal EVM execution.
                   */
                  modifier proxyCallIfNotAdmin() {
                      if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                          _;
                      } else {
                          // This WILL halt the call frame on completion.
                          _doProxyCall();
                      }
                  }
                  /**
                   * @notice Sets the initial admin during contract deployment. Admin address is stored at the
                   *         EIP-1967 admin storage slot so that accidental storage collision with the
                   *         implementation is not possible.
                   *
                   * @param _admin Address of the initial contract admin. Admin as the ability to access the
                   *               transparent proxy interface.
                   */
                  constructor(address _admin) {
                      _changeAdmin(_admin);
                  }
                  // slither-disable-next-line locked-ether
                  receive() external payable {
                      // Proxy call by default.
                      _doProxyCall();
                  }
                  // slither-disable-next-line locked-ether
                  fallback() external payable {
                      // Proxy call by default.
                      _doProxyCall();
                  }
                  /**
                   * @notice Set the implementation contract address. The code at the given address will execute
                   *         when this contract is called.
                   *
                   * @param _implementation Address of the implementation contract.
                   */
                  function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
                      _setImplementation(_implementation);
                  }
                  /**
                   * @notice Set the implementation and call a function in a single transaction. Useful to ensure
                   *         atomic execution of initialization-based upgrades.
                   *
                   * @param _implementation Address of the implementation contract.
                   * @param _data           Calldata to delegatecall the new implementation with.
                   */
                  function upgradeToAndCall(address _implementation, bytes calldata _data)
                      public
                      payable
                      virtual
                      proxyCallIfNotAdmin
                      returns (bytes memory)
                  {
                      _setImplementation(_implementation);
                      (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
                      require(success, "Proxy: delegatecall to new implementation contract failed");
                      return returndata;
                  }
                  /**
                   * @notice Changes the owner of the proxy contract. Only callable by the owner.
                   *
                   * @param _admin New owner of the proxy contract.
                   */
                  function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
                      _changeAdmin(_admin);
                  }
                  /**
                   * @notice Gets the owner of the proxy contract.
                   *
                   * @return Owner address.
                   */
                  function admin() public virtual proxyCallIfNotAdmin returns (address) {
                      return _getAdmin();
                  }
                  /**
                   * @notice Queries the implementation address.
                   *
                   * @return Implementation address.
                   */
                  function implementation() public virtual proxyCallIfNotAdmin returns (address) {
                      return _getImplementation();
                  }
                  /**
                   * @notice Sets the implementation address.
                   *
                   * @param _implementation New implementation address.
                   */
                  function _setImplementation(address _implementation) internal {
                      assembly {
                          sstore(IMPLEMENTATION_KEY, _implementation)
                      }
                      emit Upgraded(_implementation);
                  }
                  /**
                   * @notice Changes the owner of the proxy contract.
                   *
                   * @param _admin New owner of the proxy contract.
                   */
                  function _changeAdmin(address _admin) internal {
                      address previous = _getAdmin();
                      assembly {
                          sstore(OWNER_KEY, _admin)
                      }
                      emit AdminChanged(previous, _admin);
                  }
                  /**
                   * @notice Performs the proxy call via a delegatecall.
                   */
                  function _doProxyCall() internal {
                      address impl = _getImplementation();
                      require(impl != address(0), "Proxy: implementation not initialized");
                      assembly {
                          // Copy calldata into memory at 0x0....calldatasize.
                          calldatacopy(0x0, 0x0, calldatasize())
                          // Perform the delegatecall, make sure to pass all available gas.
                          let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                          // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                          // overwrite the calldata that we just copied into memory but that doesn't really
                          // matter because we'll be returning in a second anyway.
                          returndatacopy(0x0, 0x0, returndatasize())
                          // Success == 0 means a revert. We'll revert too and pass the data up.
                          if iszero(success) {
                              revert(0x0, returndatasize())
                          }
                          // Otherwise we'll just return and pass the data up.
                          return(0x0, returndatasize())
                      }
                  }
                  /**
                   * @notice Queries the implementation address.
                   *
                   * @return Implementation address.
                   */
                  function _getImplementation() internal view returns (address) {
                      address impl;
                      assembly {
                          impl := sload(IMPLEMENTATION_KEY)
                      }
                      return impl;
                  }
                  /**
                   * @notice Queries the owner of the proxy contract.
                   *
                   * @return Owner address.
                   */
                  function _getAdmin() internal view returns (address) {
                      address owner;
                      assembly {
                          owner := sload(OWNER_KEY)
                      }
                      return owner;
                  }
              }