ETH Price: $2,519.99 (-0.56%)
Gas: 0.48 Gwei

Transaction Decoder

Block:
18384843 at Oct-19-2023 02:02:59 PM +UTC
Transaction Fee:
0.0027735388265201 ETH $6.99
Gas Used:
146,396 Gas / 18.945454975 Gwei

Emitted Events:

332 0x9266cf46786c650ec01652f8504cf4849e7b7e4b.0x9923b4306c6c030f2bdfbf156517d5983b87e15b96176da122cd4f2effa4ba7b( 0x9923b4306c6c030f2bdfbf156517d5983b87e15b96176da122cd4f2effa4ba7b, 0x000000000000000000000000a23eb784c87bbd39be5843cf1d1422fdfe5a50ba, 0x0000000000000000000000000000000000000000000000000000000000000001, 000000000000000000000000000000000000000000027b46536c66c8e3000000 )
333 ERC1967Proxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x0000000000000000000000009266cf46786c650ec01652f8504cf4849e7b7e4b, 0x000000000000000000000000a23eb784c87bbd39be5843cf1d1422fdfe5a50ba, 000000000000000000000000000000000000000000027b46536c66c8e3000000 )

Account State Difference:

  Address   Before After State Difference Code
0x534D1F5E...9AF776A5e
0x9266cf46...49E7b7e4b
(beaverbuild)
20.008694054624347887 Eth20.008708694224347887 Eth0.0000146396
0xA23Eb784...DFe5a50BA
14.507353011435514308 Eth
Nonce: 16
14.504579472608994208 Eth
Nonce: 17
0.0027735388265201

Execution Trace

0x9266cf46786c650ec01652f8504cf4849e7b7e4b.1e83409a( )
  • 0xed2909587fcb223727ba2a368680a4fdb83703d8.STATICCALL( )
  • 0x442ee2a70c1466bf95f9e112e34796fea583057a.1e83409a( )
    • ERC1967Proxy.STATICCALL( )
      • 0x98c47ac224d5c7d5bb45bda70e0f83ab08fb5ca0.DELEGATECALL( )
      • ERC1967Proxy.a9059cbb( )
        • Token.transfer( to=0xA23Eb784c87bBd39Be5843cF1D1422fDFe5a50BA, amount=3000000000000000000000000 ) => ( True )
          File 1 of 3: ERC1967Proxy
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          
          /**
           * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
           * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
           * be specified by overriding the virtual {_implementation} function.
           *
           * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
           * different contract through the {_delegate} function.
           *
           * The success and return data of the delegated call will be returned back to the caller of the proxy.
           */
          abstract contract Proxy {
              /**
               * @dev Delegates the current call to `implementation`.
               *
               * This function does not return to its internall call site, it will return directly to the external caller.
               */
              function _delegate(address implementation) internal virtual {
                  // solhint-disable-next-line no-inline-assembly
                  assembly {
                  // Copy msg.data. We take full control of memory in this inline assembly
                  // block because it will not return to Solidity code. We overwrite the
                  // Solidity scratch pad at memory position 0.
                      calldatacopy(0, 0, calldatasize())
          
                  // Call the implementation.
                  // out and outsize are 0 because we don't know the size yet.
                      let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
          
                  // Copy the returned data.
                      returndatacopy(0, 0, returndatasize())
          
                      switch result
                      // delegatecall returns 0 on error.
                      case 0 { revert(0, returndatasize()) }
                      default { return(0, returndatasize()) }
                  }
              }
          
              /**
               * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function
               * and {_fallback} should delegate.
               */
              function _implementation() internal view virtual returns (address);
          
              /**
               * @dev Delegates the current call to the address returned by `_implementation()`.
               *
               * This function does not return to its internall call site, it will return directly to the external caller.
               */
              function _fallback() internal virtual {
                  _beforeFallback();
                  _delegate(_implementation());
              }
          
              /**
               * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
               * function in the contract matches the call data.
               */
              fallback () external payable virtual {
                  _fallback();
              }
          
              /**
               * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
               * is empty.
               */
              receive () external payable virtual {
                  _fallback();
              }
          
              /**
               * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
               * call, or as part of the Solidity `fallback` or `receive` functions.
               *
               * If overriden should call `super._beforeFallback()`.
               */
              function _beforeFallback() internal virtual {
              }
          }
          
          
          /**
           * @dev This abstract contract provides getters and event emitting update functions for
           * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
           *
           * _Available since v4.1._
           *
           */
          abstract contract ERC1967Upgrade {
              // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
              bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
          
              /**
               * @dev Storage slot with the address of the current implementation.
               * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
               * validated in the constructor.
               */
              bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
          
              /**
               * @dev Emitted when the implementation is upgraded.
               */
              event Upgraded(address indexed implementation);
          
              /**
               * @dev Returns the current implementation address.
               */
              function _getImplementation() internal view returns (address) {
                  return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
              }
          
              /**
               * @dev Stores a new address in the EIP1967 implementation slot.
               */
              function _setImplementation(address newImplementation) private {
                  require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                  StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
              }
          
              /**
               * @dev Perform implementation upgrade
               *
               * Emits an {Upgraded} event.
               */
              function _upgradeTo(address newImplementation) internal {
                  _setImplementation(newImplementation);
                  emit Upgraded(newImplementation);
              }
          
              /**
               * @dev Perform implementation upgrade with additional setup call.
               *
               * Emits an {Upgraded} event.
               */
              function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {
                  _setImplementation(newImplementation);
                  emit Upgraded(newImplementation);
                  if (data.length > 0 || forceCall) {
                      Address.functionDelegateCall(newImplementation, data);
                  }
              }
          
              /**
               * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
               *
               * Emits an {Upgraded} event.
               */
              function _upgradeToAndCallSecure(address newImplementation, bytes memory data, bool forceCall) internal {
                  address oldImplementation = _getImplementation();
          
                  // Initial upgrade and setup call
                  _setImplementation(newImplementation);
                  if (data.length > 0 || forceCall) {
                      Address.functionDelegateCall(newImplementation, data);
                  }
          
                  // Perform rollback test if not already in progress
                  StorageSlot.BooleanSlot storage rollbackTesting = StorageSlot.getBooleanSlot(_ROLLBACK_SLOT);
                  if (!rollbackTesting.value) {
                      // Trigger rollback using upgradeTo from the new implementation
                      rollbackTesting.value = true;
                      Address.functionDelegateCall(
                          newImplementation,
                          abi.encodeWithSignature(
                              "upgradeTo(address)",
                              oldImplementation
                          )
                      );
                      rollbackTesting.value = false;
                      // Check rollback was effective
                      require(oldImplementation == _getImplementation(), "ERC1967Upgrade: upgrade breaks further upgrades");
                      // Finally reset to the new implementation and log the upgrade
                      _setImplementation(newImplementation);
                      emit Upgraded(newImplementation);
                  }
              }
          
              /**
               * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
               * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
               *
               * Emits a {BeaconUpgraded} event.
               */
              function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal {
                  _setBeacon(newBeacon);
                  emit BeaconUpgraded(newBeacon);
                  if (data.length > 0 || forceCall) {
                      Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
                  }
              }
          
              /**
               * @dev Storage slot with the admin of the contract.
               * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
               * validated in the constructor.
               */
              bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
          
              /**
               * @dev Emitted when the admin account has changed.
               */
              event AdminChanged(address previousAdmin, address newAdmin);
          
              /**
               * @dev Returns the current admin.
               */
              function _getAdmin() internal view returns (address) {
                  return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
              }
          
              /**
               * @dev Stores a new address in the EIP1967 admin slot.
               */
              function _setAdmin(address newAdmin) private {
                  require(newAdmin != address(0), "ERC1967: new admin is the zero address");
                  StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
              }
          
              /**
               * @dev Changes the admin of the proxy.
               *
               * Emits an {AdminChanged} event.
               */
              function _changeAdmin(address newAdmin) internal {
                  emit AdminChanged(_getAdmin(), newAdmin);
                  _setAdmin(newAdmin);
              }
          
              /**
               * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
               * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
               */
              bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
          
              /**
               * @dev Emitted when the beacon is upgraded.
               */
              event BeaconUpgraded(address indexed beacon);
          
              /**
               * @dev Returns the current beacon.
               */
              function _getBeacon() internal view returns (address) {
                  return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
              }
          
              /**
               * @dev Stores a new beacon in the EIP1967 beacon slot.
               */
              function _setBeacon(address newBeacon) private {
                  require(
                      Address.isContract(newBeacon),
                      "ERC1967: new beacon is not a contract"
                  );
                  require(
                      Address.isContract(IBeacon(newBeacon).implementation()),
                      "ERC1967: beacon implementation is not a contract"
                  );
                  StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;
              }
          }
          
          /**
           * @dev This is the interface that {BeaconProxy} expects of its beacon.
           */
          interface IBeacon {
              /**
               * @dev Must return an address that can be used as a delegate call target.
               *
               * {BeaconProxy} will check that this address is a contract.
               */
              function implementation() external view returns (address);
          }
          
          /**
           * @dev Collection of functions related to the address type
           */
          library Address {
              /**
               * @dev Returns true if `account` is a contract.
               *
               * [IMPORTANT]
               * ====
               * It is unsafe to assume that an address for which this function returns
               * false is an externally-owned account (EOA) and not a contract.
               *
               * Among others, `isContract` will return false for the following
               * types of addresses:
               *
               *  - an externally-owned account
               *  - a contract in construction
               *  - an address where a contract will be created
               *  - an address where a contract lived, but was destroyed
               * ====
               */
              function isContract(address account) internal view returns (bool) {
                  // This method relies on extcodesize, which returns 0 for contracts in
                  // construction, since the code is only stored at the end of the
                  // constructor execution.
          
                  uint256 size;
                  // solhint-disable-next-line no-inline-assembly
                  assembly { size := extcodesize(account) }
                  return size > 0;
              }
          
              /**
               * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
               * `recipient`, forwarding all available gas and reverting on errors.
               *
               * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
               * of certain opcodes, possibly making contracts go over the 2300 gas limit
               * imposed by `transfer`, making them unable to receive funds via
               * `transfer`. {sendValue} removes this limitation.
               *
               * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
               *
               * IMPORTANT: because control is transferred to `recipient`, care must be
               * taken to not create reentrancy vulnerabilities. Consider using
               * {ReentrancyGuard} or the
               * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
               */
              function sendValue(address payable recipient, uint256 amount) internal {
                  require(address(this).balance >= amount, "Address: insufficient balance");
          
                  // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
                  (bool success, ) = recipient.call{ value: amount }("");
                  require(success, "Address: unable to send value, recipient may have reverted");
              }
          
              /**
               * @dev Performs a Solidity function call using a low level `call`. A
               * plain`call` is an unsafe replacement for a function call: use this
               * function instead.
               *
               * If `target` reverts with a revert reason, it is bubbled up by this
               * function (like regular Solidity function calls).
               *
               * Returns the raw returned data. To convert to the expected return value,
               * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
               *
               * Requirements:
               *
               * - `target` must be a contract.
               * - calling `target` with `data` must not revert.
               *
               * _Available since v3.1._
               */
              function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionCall(target, data, "Address: low-level call failed");
              }
          
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
               * `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0, errorMessage);
              }
          
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but also transferring `value` wei to `target`.
               *
               * Requirements:
               *
               * - the calling contract must have an ETH balance of at least `value`.
               * - the called Solidity function must be `payable`.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
              }
          
              /**
               * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
               * with `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
                  require(address(this).balance >= value, "Address: insufficient balance for call");
                  require(isContract(target), "Address: call to non-contract");
          
                  // solhint-disable-next-line avoid-low-level-calls
                  (bool success, bytes memory returndata) = target.call{ value: value }(data);
                  return _verifyCallResult(success, returndata, errorMessage);
              }
          
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                  return functionStaticCall(target, data, "Address: low-level static call failed");
              }
          
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
                  require(isContract(target), "Address: static call to non-contract");
          
                  // solhint-disable-next-line avoid-low-level-calls
                  (bool success, bytes memory returndata) = target.staticcall(data);
                  return _verifyCallResult(success, returndata, errorMessage);
              }
          
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionDelegateCall(target, data, "Address: low-level delegate call failed");
              }
          
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                  require(isContract(target), "Address: delegate call to non-contract");
          
                  // solhint-disable-next-line avoid-low-level-calls
                  (bool success, bytes memory returndata) = target.delegatecall(data);
                  return _verifyCallResult(success, returndata, errorMessage);
              }
          
              function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
                  if (success) {
                      return returndata;
                  } else {
                      // Look for revert reason and bubble it up if present
                      if (returndata.length > 0) {
                          // The easiest way to bubble the revert reason is using memory via assembly
          
                          // solhint-disable-next-line no-inline-assembly
                          assembly {
                              let returndata_size := mload(returndata)
                              revert(add(32, returndata), returndata_size)
                          }
                      } else {
                          revert(errorMessage);
                      }
                  }
              }
          }
          
          /**
           * @dev Library for reading and writing primitive types to specific storage slots.
           *
           * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
           * This library helps with reading and writing to such slots without the need for inline assembly.
           *
           * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
           *
           * Example usage to set ERC1967 implementation slot:
           * ```
           * contract ERC1967 {
           *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
           *
           *     function _getImplementation() internal view returns (address) {
           *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
           *     }
           *
           *     function _setImplementation(address newImplementation) internal {
           *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
           *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
           *     }
           * }
           * ```
           *
           * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._
           */
          library StorageSlot {
              struct AddressSlot {
                  address value;
              }
          
              struct BooleanSlot {
                  bool value;
              }
          
              struct Bytes32Slot {
                  bytes32 value;
              }
          
              struct Uint256Slot {
                  uint256 value;
              }
          
              /**
               * @dev Returns an `AddressSlot` with member `value` located at `slot`.
               */
              function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                  assembly {
                      r.slot := slot
                  }
              }
          
              /**
               * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
               */
              function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                  assembly {
                      r.slot := slot
                  }
              }
          
              /**
               * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
               */
              function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                  assembly {
                      r.slot := slot
                  }
              }
          
              /**
               * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
               */
              function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                  assembly {
                      r.slot := slot
                  }
              }
          }
          
          /*
           * @dev Provides information about the current execution context, including the
           * sender of the transaction and its data. While these are generally available
           * via msg.sender and msg.data, they should not be accessed in such a direct
           * manner, since when dealing with meta-transactions the account sending and
           * paying for execution may not be the actual sender (as far as an application
           * is concerned).
           *
           * This contract is only required for intermediate, library-like contracts.
           */
          abstract contract Context {
              function _msgSender() internal view virtual returns (address) {
                  return msg.sender;
              }
          
              function _msgData() internal view virtual returns (bytes calldata) {
                  this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
                  return msg.data;
              }
          }
          
          /**
           * @dev Contract module which provides a basic access control mechanism, where
           * there is an account (an owner) that can be granted exclusive access to
           * specific functions.
           *
           * By default, the owner account will be the one that deploys the contract. This
           * can later be changed with {transferOwnership}.
           *
           * This module is used through inheritance. It will make available the modifier
           * `onlyOwner`, which can be applied to your functions to restrict their use to
           * the owner.
           */
          abstract contract Ownable is Context {
              address private _owner;
          
              event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
          
              /**
               * @dev Initializes the contract setting the deployer as the initial owner.
               */
              constructor () {
                  address msgSender = _msgSender();
                  _owner = msgSender;
                  emit OwnershipTransferred(address(0), msgSender);
              }
          
              /**
               * @dev Returns the address of the current owner.
               */
              function owner() public view virtual returns (address) {
                  return _owner;
              }
          
              /**
               * @dev Throws if called by any account other than the owner.
               */
              modifier onlyOwner() {
                  require(owner() == _msgSender(), "Ownable: caller is not the owner");
                  _;
              }
          
              /**
               * @dev Leaves the contract without owner. It will not be possible to call
               * `onlyOwner` functions anymore. Can only be called by the current owner.
               *
               * NOTE: Renouncing ownership will leave the contract without an owner,
               * thereby removing any functionality that is only available to the owner.
               */
              function renounceOwnership() public virtual onlyOwner {
                  emit OwnershipTransferred(_owner, address(0));
                  _owner = address(0);
              }
          
              /**
               * @dev Transfers ownership of the contract to a new account (`newOwner`).
               * Can only be called by the current owner.
               */
              function transferOwnership(address newOwner) public virtual onlyOwner {
                  require(newOwner != address(0), "Ownable: new owner is the zero address");
                  emit OwnershipTransferred(_owner, newOwner);
                  _owner = newOwner;
              }
          }
          
          /**
           * @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an
           * explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}.
           */
          contract ProxyAdmin is Ownable {
          
              /**
               * @dev Returns the current implementation of `proxy`.
               *
               * Requirements:
               *
               * - This contract must be the admin of `proxy`.
               */
              function getProxyImplementation(TransparentUpgradeableProxy proxy) public view virtual returns (address) {
                  // We need to manually run the static call since the getter cannot be flagged as view
                  // bytes4(keccak256("implementation()")) == 0x5c60da1b
                  (bool success, bytes memory returndata) = address(proxy).staticcall(hex"5c60da1b");
                  require(success);
                  return abi.decode(returndata, (address));
              }
          
              /**
               * @dev Returns the current admin of `proxy`.
               *
               * Requirements:
               *
               * - This contract must be the admin of `proxy`.
               */
              function getProxyAdmin(TransparentUpgradeableProxy proxy) public view virtual returns (address) {
                  // We need to manually run the static call since the getter cannot be flagged as view
                  // bytes4(keccak256("admin()")) == 0xf851a440
                  (bool success, bytes memory returndata) = address(proxy).staticcall(hex"f851a440");
                  require(success);
                  return abi.decode(returndata, (address));
              }
          
              /**
               * @dev Changes the admin of `proxy` to `newAdmin`.
               *
               * Requirements:
               *
               * - This contract must be the current admin of `proxy`.
               */
              function changeProxyAdmin(TransparentUpgradeableProxy proxy, address newAdmin) public virtual onlyOwner {
                  proxy.changeAdmin(newAdmin);
              }
          
              /**
               * @dev Upgrades `proxy` to `implementation`. See {TransparentUpgradeableProxy-upgradeTo}.
               *
               * Requirements:
               *
               * - This contract must be the admin of `proxy`.
               */
              function upgrade(TransparentUpgradeableProxy proxy, address implementation) public virtual onlyOwner {
                  proxy.upgradeTo(implementation);
              }
          
              /**
               * @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation. See
               * {TransparentUpgradeableProxy-upgradeToAndCall}.
               *
               * Requirements:
               *
               * - This contract must be the admin of `proxy`.
               */
              function upgradeAndCall(TransparentUpgradeableProxy proxy, address implementation, bytes memory data) public payable virtual onlyOwner {
                  proxy.upgradeToAndCall{value: msg.value}(implementation, data);
              }
          }
          
          
          /**
           * @dev Base contract for building openzeppelin-upgrades compatible implementations for the {ERC1967Proxy}. It includes
           * publicly available upgrade functions that are called by the plugin and by the secure upgrade mechanism to verify
           * continuation of the upgradability.
           *
           * The {_authorizeUpgrade} function MUST be overridden to include access restriction to the upgrade mechanism.
           *
           * _Available since v4.1._
           */
          abstract contract UUPSUpgradeable is ERC1967Upgrade {
              function upgradeTo(address newImplementation) external virtual {
                  _authorizeUpgrade(newImplementation);
                  _upgradeToAndCallSecure(newImplementation, bytes(""), false);
              }
          
              function upgradeToAndCall(address newImplementation, bytes memory data) external payable virtual {
                  _authorizeUpgrade(newImplementation);
                  _upgradeToAndCallSecure(newImplementation, data, true);
              }
          
              function _authorizeUpgrade(address newImplementation) internal virtual;
          }
          
          
          abstract contract Proxiable is UUPSUpgradeable {
              function _authorizeUpgrade(address newImplementation) internal override {
                  _beforeUpgrade(newImplementation);
              }
          
              function _beforeUpgrade(address newImplementation) internal virtual;
          }
          
          contract ChildOfProxiable is Proxiable {
              function _beforeUpgrade(address newImplementation) internal virtual override {}
          }
          
          
          /**
           * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
           * implementation address that can be changed. This address is stored in storage in the location specified by
           * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
           * implementation behind the proxy.
           */
          contract ERC1967Proxy is Proxy, ERC1967Upgrade {
              /**
               * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
               *
               * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
               * function call, and allows initializating the storage of the proxy like a Solidity constructor.
               */
              constructor(address _logic, bytes memory _data) payable {
                  assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1));
                  _upgradeToAndCall(_logic, _data, false);
              }
          
              /**
               * @dev Returns the current implementation address.
               */
              function _implementation() internal view virtual override returns (address impl) {
                  return ERC1967Upgrade._getImplementation();
              }
          }
          
          /**
           * @dev This contract implements a proxy that is upgradeable by an admin.
           *
           * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
           * clashing], which can potentially be used in an attack, this contract uses the
           * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
           * things that go hand in hand:
           *
           * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
           * that call matches one of the admin functions exposed by the proxy itself.
           * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the
           * implementation. If the admin tries to call a function on the implementation it will fail with an error that says
           * "admin cannot fallback to proxy target".
           *
           * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing
           * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due
           * to sudden errors when trying to call a function from the proxy implementation.
           *
           * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way,
           * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy.
           */
          contract TransparentUpgradeableProxy is ERC1967Proxy {
              /**
               * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
               * optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}.
               */
              constructor(address _logic, address admin_, bytes memory _data) payable ERC1967Proxy(_logic, _data) {
                  assert(_ADMIN_SLOT == bytes32(uint256(keccak256("eip1967.proxy.admin")) - 1));
                  _changeAdmin(admin_);
              }
          
              /**
               * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
               */
              modifier ifAdmin() {
                  if (msg.sender == _getAdmin()) {
                      _;
                  } else {
                      _fallback();
                  }
              }
          
              /**
               * @dev Returns the current admin.
               *
               * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyAdmin}.
               *
               * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
               * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
               * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
               */
              function admin() external ifAdmin returns (address admin_) {
                  admin_ = _getAdmin();
              }
          
              /**
               * @dev Returns the current implementation.
               *
               * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyImplementation}.
               *
               * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
               * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
               * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
               */
              function implementation() external ifAdmin returns (address implementation_) {
                  implementation_ = _implementation();
              }
          
              /**
               * @dev Changes the admin of the proxy.
               *
               * Emits an {AdminChanged} event.
               *
               * NOTE: Only the admin can call this function. See {ProxyAdmin-changeProxyAdmin}.
               */
              function changeAdmin(address newAdmin) external virtual ifAdmin {
                  _changeAdmin(newAdmin);
              }
          
              /**
               * @dev Upgrade the implementation of the proxy.
               *
               * NOTE: Only the admin can call this function. See {ProxyAdmin-upgrade}.
               */
              function upgradeTo(address newImplementation) external ifAdmin {
                  _upgradeToAndCall(newImplementation, bytes(""), false);
              }
          
              /**
               * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
               * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
               * proxied contract.
               *
               * NOTE: Only the admin can call this function. See {ProxyAdmin-upgradeAndCall}.
               */
              function upgradeToAndCall(address newImplementation, bytes calldata data) external payable ifAdmin {
                  _upgradeToAndCall(newImplementation, data, true);
              }
          
              /**
               * @dev Returns the current admin.
               */
              function _admin() internal view virtual returns (address) {
                  return _getAdmin();
              }
          
              /**
               * @dev Makes sure the admin cannot access the fallback function. See {Proxy-_beforeFallback}.
               */
              function _beforeFallback() internal virtual override {
                  require(msg.sender != _getAdmin(), "TransparentUpgradeableProxy: admin cannot fallback to proxy target");
                  super._beforeFallback();
              }
          }
          
          
          // Kept for backwards compatibility with older versions of Hardhat and Truffle plugins.
          contract AdminUpgradeabilityProxy is TransparentUpgradeableProxy {
              constructor(address logic, address admin, bytes memory data) payable TransparentUpgradeableProxy(logic, admin, data) {}
          }

          File 2 of 3: ERC1967Proxy
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          
          /**
           * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
           * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
           * be specified by overriding the virtual {_implementation} function.
           *
           * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
           * different contract through the {_delegate} function.
           *
           * The success and return data of the delegated call will be returned back to the caller of the proxy.
           */
          abstract contract Proxy {
              /**
               * @dev Delegates the current call to `implementation`.
               *
               * This function does not return to its internall call site, it will return directly to the external caller.
               */
              function _delegate(address implementation) internal virtual {
                  // solhint-disable-next-line no-inline-assembly
                  assembly {
                  // Copy msg.data. We take full control of memory in this inline assembly
                  // block because it will not return to Solidity code. We overwrite the
                  // Solidity scratch pad at memory position 0.
                      calldatacopy(0, 0, calldatasize())
          
                  // Call the implementation.
                  // out and outsize are 0 because we don't know the size yet.
                      let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
          
                  // Copy the returned data.
                      returndatacopy(0, 0, returndatasize())
          
                      switch result
                      // delegatecall returns 0 on error.
                      case 0 { revert(0, returndatasize()) }
                      default { return(0, returndatasize()) }
                  }
              }
          
              /**
               * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function
               * and {_fallback} should delegate.
               */
              function _implementation() internal view virtual returns (address);
          
              /**
               * @dev Delegates the current call to the address returned by `_implementation()`.
               *
               * This function does not return to its internall call site, it will return directly to the external caller.
               */
              function _fallback() internal virtual {
                  _beforeFallback();
                  _delegate(_implementation());
              }
          
              /**
               * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
               * function in the contract matches the call data.
               */
              fallback () external payable virtual {
                  _fallback();
              }
          
              /**
               * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
               * is empty.
               */
              receive () external payable virtual {
                  _fallback();
              }
          
              /**
               * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
               * call, or as part of the Solidity `fallback` or `receive` functions.
               *
               * If overriden should call `super._beforeFallback()`.
               */
              function _beforeFallback() internal virtual {
              }
          }
          
          
          /**
           * @dev This abstract contract provides getters and event emitting update functions for
           * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
           *
           * _Available since v4.1._
           *
           */
          abstract contract ERC1967Upgrade {
              // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
              bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
          
              /**
               * @dev Storage slot with the address of the current implementation.
               * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
               * validated in the constructor.
               */
              bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
          
              /**
               * @dev Emitted when the implementation is upgraded.
               */
              event Upgraded(address indexed implementation);
          
              /**
               * @dev Returns the current implementation address.
               */
              function _getImplementation() internal view returns (address) {
                  return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
              }
          
              /**
               * @dev Stores a new address in the EIP1967 implementation slot.
               */
              function _setImplementation(address newImplementation) private {
                  require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                  StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
              }
          
              /**
               * @dev Perform implementation upgrade
               *
               * Emits an {Upgraded} event.
               */
              function _upgradeTo(address newImplementation) internal {
                  _setImplementation(newImplementation);
                  emit Upgraded(newImplementation);
              }
          
              /**
               * @dev Perform implementation upgrade with additional setup call.
               *
               * Emits an {Upgraded} event.
               */
              function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {
                  _setImplementation(newImplementation);
                  emit Upgraded(newImplementation);
                  if (data.length > 0 || forceCall) {
                      Address.functionDelegateCall(newImplementation, data);
                  }
              }
          
              /**
               * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
               *
               * Emits an {Upgraded} event.
               */
              function _upgradeToAndCallSecure(address newImplementation, bytes memory data, bool forceCall) internal {
                  address oldImplementation = _getImplementation();
          
                  // Initial upgrade and setup call
                  _setImplementation(newImplementation);
                  if (data.length > 0 || forceCall) {
                      Address.functionDelegateCall(newImplementation, data);
                  }
          
                  // Perform rollback test if not already in progress
                  StorageSlot.BooleanSlot storage rollbackTesting = StorageSlot.getBooleanSlot(_ROLLBACK_SLOT);
                  if (!rollbackTesting.value) {
                      // Trigger rollback using upgradeTo from the new implementation
                      rollbackTesting.value = true;
                      Address.functionDelegateCall(
                          newImplementation,
                          abi.encodeWithSignature(
                              "upgradeTo(address)",
                              oldImplementation
                          )
                      );
                      rollbackTesting.value = false;
                      // Check rollback was effective
                      require(oldImplementation == _getImplementation(), "ERC1967Upgrade: upgrade breaks further upgrades");
                      // Finally reset to the new implementation and log the upgrade
                      _setImplementation(newImplementation);
                      emit Upgraded(newImplementation);
                  }
              }
          
              /**
               * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
               * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
               *
               * Emits a {BeaconUpgraded} event.
               */
              function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal {
                  _setBeacon(newBeacon);
                  emit BeaconUpgraded(newBeacon);
                  if (data.length > 0 || forceCall) {
                      Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
                  }
              }
          
              /**
               * @dev Storage slot with the admin of the contract.
               * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
               * validated in the constructor.
               */
              bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
          
              /**
               * @dev Emitted when the admin account has changed.
               */
              event AdminChanged(address previousAdmin, address newAdmin);
          
              /**
               * @dev Returns the current admin.
               */
              function _getAdmin() internal view returns (address) {
                  return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
              }
          
              /**
               * @dev Stores a new address in the EIP1967 admin slot.
               */
              function _setAdmin(address newAdmin) private {
                  require(newAdmin != address(0), "ERC1967: new admin is the zero address");
                  StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
              }
          
              /**
               * @dev Changes the admin of the proxy.
               *
               * Emits an {AdminChanged} event.
               */
              function _changeAdmin(address newAdmin) internal {
                  emit AdminChanged(_getAdmin(), newAdmin);
                  _setAdmin(newAdmin);
              }
          
              /**
               * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
               * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
               */
              bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
          
              /**
               * @dev Emitted when the beacon is upgraded.
               */
              event BeaconUpgraded(address indexed beacon);
          
              /**
               * @dev Returns the current beacon.
               */
              function _getBeacon() internal view returns (address) {
                  return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
              }
          
              /**
               * @dev Stores a new beacon in the EIP1967 beacon slot.
               */
              function _setBeacon(address newBeacon) private {
                  require(
                      Address.isContract(newBeacon),
                      "ERC1967: new beacon is not a contract"
                  );
                  require(
                      Address.isContract(IBeacon(newBeacon).implementation()),
                      "ERC1967: beacon implementation is not a contract"
                  );
                  StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;
              }
          }
          
          /**
           * @dev This is the interface that {BeaconProxy} expects of its beacon.
           */
          interface IBeacon {
              /**
               * @dev Must return an address that can be used as a delegate call target.
               *
               * {BeaconProxy} will check that this address is a contract.
               */
              function implementation() external view returns (address);
          }
          
          /**
           * @dev Collection of functions related to the address type
           */
          library Address {
              /**
               * @dev Returns true if `account` is a contract.
               *
               * [IMPORTANT]
               * ====
               * It is unsafe to assume that an address for which this function returns
               * false is an externally-owned account (EOA) and not a contract.
               *
               * Among others, `isContract` will return false for the following
               * types of addresses:
               *
               *  - an externally-owned account
               *  - a contract in construction
               *  - an address where a contract will be created
               *  - an address where a contract lived, but was destroyed
               * ====
               */
              function isContract(address account) internal view returns (bool) {
                  // This method relies on extcodesize, which returns 0 for contracts in
                  // construction, since the code is only stored at the end of the
                  // constructor execution.
          
                  uint256 size;
                  // solhint-disable-next-line no-inline-assembly
                  assembly { size := extcodesize(account) }
                  return size > 0;
              }
          
              /**
               * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
               * `recipient`, forwarding all available gas and reverting on errors.
               *
               * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
               * of certain opcodes, possibly making contracts go over the 2300 gas limit
               * imposed by `transfer`, making them unable to receive funds via
               * `transfer`. {sendValue} removes this limitation.
               *
               * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
               *
               * IMPORTANT: because control is transferred to `recipient`, care must be
               * taken to not create reentrancy vulnerabilities. Consider using
               * {ReentrancyGuard} or the
               * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
               */
              function sendValue(address payable recipient, uint256 amount) internal {
                  require(address(this).balance >= amount, "Address: insufficient balance");
          
                  // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
                  (bool success, ) = recipient.call{ value: amount }("");
                  require(success, "Address: unable to send value, recipient may have reverted");
              }
          
              /**
               * @dev Performs a Solidity function call using a low level `call`. A
               * plain`call` is an unsafe replacement for a function call: use this
               * function instead.
               *
               * If `target` reverts with a revert reason, it is bubbled up by this
               * function (like regular Solidity function calls).
               *
               * Returns the raw returned data. To convert to the expected return value,
               * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
               *
               * Requirements:
               *
               * - `target` must be a contract.
               * - calling `target` with `data` must not revert.
               *
               * _Available since v3.1._
               */
              function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionCall(target, data, "Address: low-level call failed");
              }
          
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
               * `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0, errorMessage);
              }
          
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but also transferring `value` wei to `target`.
               *
               * Requirements:
               *
               * - the calling contract must have an ETH balance of at least `value`.
               * - the called Solidity function must be `payable`.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
              }
          
              /**
               * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
               * with `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
                  require(address(this).balance >= value, "Address: insufficient balance for call");
                  require(isContract(target), "Address: call to non-contract");
          
                  // solhint-disable-next-line avoid-low-level-calls
                  (bool success, bytes memory returndata) = target.call{ value: value }(data);
                  return _verifyCallResult(success, returndata, errorMessage);
              }
          
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                  return functionStaticCall(target, data, "Address: low-level static call failed");
              }
          
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
                  require(isContract(target), "Address: static call to non-contract");
          
                  // solhint-disable-next-line avoid-low-level-calls
                  (bool success, bytes memory returndata) = target.staticcall(data);
                  return _verifyCallResult(success, returndata, errorMessage);
              }
          
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionDelegateCall(target, data, "Address: low-level delegate call failed");
              }
          
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                  require(isContract(target), "Address: delegate call to non-contract");
          
                  // solhint-disable-next-line avoid-low-level-calls
                  (bool success, bytes memory returndata) = target.delegatecall(data);
                  return _verifyCallResult(success, returndata, errorMessage);
              }
          
              function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
                  if (success) {
                      return returndata;
                  } else {
                      // Look for revert reason and bubble it up if present
                      if (returndata.length > 0) {
                          // The easiest way to bubble the revert reason is using memory via assembly
          
                          // solhint-disable-next-line no-inline-assembly
                          assembly {
                              let returndata_size := mload(returndata)
                              revert(add(32, returndata), returndata_size)
                          }
                      } else {
                          revert(errorMessage);
                      }
                  }
              }
          }
          
          /**
           * @dev Library for reading and writing primitive types to specific storage slots.
           *
           * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
           * This library helps with reading and writing to such slots without the need for inline assembly.
           *
           * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
           *
           * Example usage to set ERC1967 implementation slot:
           * ```
           * contract ERC1967 {
           *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
           *
           *     function _getImplementation() internal view returns (address) {
           *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
           *     }
           *
           *     function _setImplementation(address newImplementation) internal {
           *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
           *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
           *     }
           * }
           * ```
           *
           * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._
           */
          library StorageSlot {
              struct AddressSlot {
                  address value;
              }
          
              struct BooleanSlot {
                  bool value;
              }
          
              struct Bytes32Slot {
                  bytes32 value;
              }
          
              struct Uint256Slot {
                  uint256 value;
              }
          
              /**
               * @dev Returns an `AddressSlot` with member `value` located at `slot`.
               */
              function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                  assembly {
                      r.slot := slot
                  }
              }
          
              /**
               * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
               */
              function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                  assembly {
                      r.slot := slot
                  }
              }
          
              /**
               * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
               */
              function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                  assembly {
                      r.slot := slot
                  }
              }
          
              /**
               * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
               */
              function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                  assembly {
                      r.slot := slot
                  }
              }
          }
          
          /*
           * @dev Provides information about the current execution context, including the
           * sender of the transaction and its data. While these are generally available
           * via msg.sender and msg.data, they should not be accessed in such a direct
           * manner, since when dealing with meta-transactions the account sending and
           * paying for execution may not be the actual sender (as far as an application
           * is concerned).
           *
           * This contract is only required for intermediate, library-like contracts.
           */
          abstract contract Context {
              function _msgSender() internal view virtual returns (address) {
                  return msg.sender;
              }
          
              function _msgData() internal view virtual returns (bytes calldata) {
                  this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
                  return msg.data;
              }
          }
          
          /**
           * @dev Contract module which provides a basic access control mechanism, where
           * there is an account (an owner) that can be granted exclusive access to
           * specific functions.
           *
           * By default, the owner account will be the one that deploys the contract. This
           * can later be changed with {transferOwnership}.
           *
           * This module is used through inheritance. It will make available the modifier
           * `onlyOwner`, which can be applied to your functions to restrict their use to
           * the owner.
           */
          abstract contract Ownable is Context {
              address private _owner;
          
              event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
          
              /**
               * @dev Initializes the contract setting the deployer as the initial owner.
               */
              constructor () {
                  address msgSender = _msgSender();
                  _owner = msgSender;
                  emit OwnershipTransferred(address(0), msgSender);
              }
          
              /**
               * @dev Returns the address of the current owner.
               */
              function owner() public view virtual returns (address) {
                  return _owner;
              }
          
              /**
               * @dev Throws if called by any account other than the owner.
               */
              modifier onlyOwner() {
                  require(owner() == _msgSender(), "Ownable: caller is not the owner");
                  _;
              }
          
              /**
               * @dev Leaves the contract without owner. It will not be possible to call
               * `onlyOwner` functions anymore. Can only be called by the current owner.
               *
               * NOTE: Renouncing ownership will leave the contract without an owner,
               * thereby removing any functionality that is only available to the owner.
               */
              function renounceOwnership() public virtual onlyOwner {
                  emit OwnershipTransferred(_owner, address(0));
                  _owner = address(0);
              }
          
              /**
               * @dev Transfers ownership of the contract to a new account (`newOwner`).
               * Can only be called by the current owner.
               */
              function transferOwnership(address newOwner) public virtual onlyOwner {
                  require(newOwner != address(0), "Ownable: new owner is the zero address");
                  emit OwnershipTransferred(_owner, newOwner);
                  _owner = newOwner;
              }
          }
          
          /**
           * @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an
           * explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}.
           */
          contract ProxyAdmin is Ownable {
          
              /**
               * @dev Returns the current implementation of `proxy`.
               *
               * Requirements:
               *
               * - This contract must be the admin of `proxy`.
               */
              function getProxyImplementation(TransparentUpgradeableProxy proxy) public view virtual returns (address) {
                  // We need to manually run the static call since the getter cannot be flagged as view
                  // bytes4(keccak256("implementation()")) == 0x5c60da1b
                  (bool success, bytes memory returndata) = address(proxy).staticcall(hex"5c60da1b");
                  require(success);
                  return abi.decode(returndata, (address));
              }
          
              /**
               * @dev Returns the current admin of `proxy`.
               *
               * Requirements:
               *
               * - This contract must be the admin of `proxy`.
               */
              function getProxyAdmin(TransparentUpgradeableProxy proxy) public view virtual returns (address) {
                  // We need to manually run the static call since the getter cannot be flagged as view
                  // bytes4(keccak256("admin()")) == 0xf851a440
                  (bool success, bytes memory returndata) = address(proxy).staticcall(hex"f851a440");
                  require(success);
                  return abi.decode(returndata, (address));
              }
          
              /**
               * @dev Changes the admin of `proxy` to `newAdmin`.
               *
               * Requirements:
               *
               * - This contract must be the current admin of `proxy`.
               */
              function changeProxyAdmin(TransparentUpgradeableProxy proxy, address newAdmin) public virtual onlyOwner {
                  proxy.changeAdmin(newAdmin);
              }
          
              /**
               * @dev Upgrades `proxy` to `implementation`. See {TransparentUpgradeableProxy-upgradeTo}.
               *
               * Requirements:
               *
               * - This contract must be the admin of `proxy`.
               */
              function upgrade(TransparentUpgradeableProxy proxy, address implementation) public virtual onlyOwner {
                  proxy.upgradeTo(implementation);
              }
          
              /**
               * @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation. See
               * {TransparentUpgradeableProxy-upgradeToAndCall}.
               *
               * Requirements:
               *
               * - This contract must be the admin of `proxy`.
               */
              function upgradeAndCall(TransparentUpgradeableProxy proxy, address implementation, bytes memory data) public payable virtual onlyOwner {
                  proxy.upgradeToAndCall{value: msg.value}(implementation, data);
              }
          }
          
          
          /**
           * @dev Base contract for building openzeppelin-upgrades compatible implementations for the {ERC1967Proxy}. It includes
           * publicly available upgrade functions that are called by the plugin and by the secure upgrade mechanism to verify
           * continuation of the upgradability.
           *
           * The {_authorizeUpgrade} function MUST be overridden to include access restriction to the upgrade mechanism.
           *
           * _Available since v4.1._
           */
          abstract contract UUPSUpgradeable is ERC1967Upgrade {
              function upgradeTo(address newImplementation) external virtual {
                  _authorizeUpgrade(newImplementation);
                  _upgradeToAndCallSecure(newImplementation, bytes(""), false);
              }
          
              function upgradeToAndCall(address newImplementation, bytes memory data) external payable virtual {
                  _authorizeUpgrade(newImplementation);
                  _upgradeToAndCallSecure(newImplementation, data, true);
              }
          
              function _authorizeUpgrade(address newImplementation) internal virtual;
          }
          
          
          abstract contract Proxiable is UUPSUpgradeable {
              function _authorizeUpgrade(address newImplementation) internal override {
                  _beforeUpgrade(newImplementation);
              }
          
              function _beforeUpgrade(address newImplementation) internal virtual;
          }
          
          contract ChildOfProxiable is Proxiable {
              function _beforeUpgrade(address newImplementation) internal virtual override {}
          }
          
          
          /**
           * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
           * implementation address that can be changed. This address is stored in storage in the location specified by
           * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
           * implementation behind the proxy.
           */
          contract ERC1967Proxy is Proxy, ERC1967Upgrade {
              /**
               * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
               *
               * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
               * function call, and allows initializating the storage of the proxy like a Solidity constructor.
               */
              constructor(address _logic, bytes memory _data) payable {
                  assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1));
                  _upgradeToAndCall(_logic, _data, false);
              }
          
              /**
               * @dev Returns the current implementation address.
               */
              function _implementation() internal view virtual override returns (address impl) {
                  return ERC1967Upgrade._getImplementation();
              }
          }
          
          /**
           * @dev This contract implements a proxy that is upgradeable by an admin.
           *
           * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
           * clashing], which can potentially be used in an attack, this contract uses the
           * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
           * things that go hand in hand:
           *
           * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
           * that call matches one of the admin functions exposed by the proxy itself.
           * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the
           * implementation. If the admin tries to call a function on the implementation it will fail with an error that says
           * "admin cannot fallback to proxy target".
           *
           * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing
           * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due
           * to sudden errors when trying to call a function from the proxy implementation.
           *
           * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way,
           * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy.
           */
          contract TransparentUpgradeableProxy is ERC1967Proxy {
              /**
               * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
               * optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}.
               */
              constructor(address _logic, address admin_, bytes memory _data) payable ERC1967Proxy(_logic, _data) {
                  assert(_ADMIN_SLOT == bytes32(uint256(keccak256("eip1967.proxy.admin")) - 1));
                  _changeAdmin(admin_);
              }
          
              /**
               * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
               */
              modifier ifAdmin() {
                  if (msg.sender == _getAdmin()) {
                      _;
                  } else {
                      _fallback();
                  }
              }
          
              /**
               * @dev Returns the current admin.
               *
               * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyAdmin}.
               *
               * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
               * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
               * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
               */
              function admin() external ifAdmin returns (address admin_) {
                  admin_ = _getAdmin();
              }
          
              /**
               * @dev Returns the current implementation.
               *
               * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyImplementation}.
               *
               * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
               * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
               * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
               */
              function implementation() external ifAdmin returns (address implementation_) {
                  implementation_ = _implementation();
              }
          
              /**
               * @dev Changes the admin of the proxy.
               *
               * Emits an {AdminChanged} event.
               *
               * NOTE: Only the admin can call this function. See {ProxyAdmin-changeProxyAdmin}.
               */
              function changeAdmin(address newAdmin) external virtual ifAdmin {
                  _changeAdmin(newAdmin);
              }
          
              /**
               * @dev Upgrade the implementation of the proxy.
               *
               * NOTE: Only the admin can call this function. See {ProxyAdmin-upgrade}.
               */
              function upgradeTo(address newImplementation) external ifAdmin {
                  _upgradeToAndCall(newImplementation, bytes(""), false);
              }
          
              /**
               * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
               * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
               * proxied contract.
               *
               * NOTE: Only the admin can call this function. See {ProxyAdmin-upgradeAndCall}.
               */
              function upgradeToAndCall(address newImplementation, bytes calldata data) external payable ifAdmin {
                  _upgradeToAndCall(newImplementation, data, true);
              }
          
              /**
               * @dev Returns the current admin.
               */
              function _admin() internal view virtual returns (address) {
                  return _getAdmin();
              }
          
              /**
               * @dev Makes sure the admin cannot access the fallback function. See {Proxy-_beforeFallback}.
               */
              function _beforeFallback() internal virtual override {
                  require(msg.sender != _getAdmin(), "TransparentUpgradeableProxy: admin cannot fallback to proxy target");
                  super._beforeFallback();
              }
          }
          
          
          // Kept for backwards compatibility with older versions of Hardhat and Truffle plugins.
          contract AdminUpgradeabilityProxy is TransparentUpgradeableProxy {
              constructor(address logic, address admin, bytes memory data) payable TransparentUpgradeableProxy(logic, admin, data) {}
          }

          File 3 of 3: Token
          pragma solidity 0.8.13;
          // SPDX-License-Identifier: MIT
          import "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol";
          import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/draft-ERC20PermitUpgradeable.sol";
          import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC20VotesUpgradeable.sol";
          import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
          import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
          import "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";
          /// @title Vanilla ERC20 token contract with upgradeability, EIP2612 permit approvals and compound style votes
          /// @dev Name, symbol and initial supply is decided on deploy so not fixed up front
          /// @dev This makes ZERO changes to the base OZ contract so is safe to use as is
          contract Token is Initializable, ERC20Upgradeable, ERC20PermitUpgradeable, ERC20VotesUpgradeable, OwnableUpgradeable, UUPSUpgradeable {
              /// @custom:oz-upgrades-unsafe-allow constructor
              constructor() initializer {}
              function init(
                  string calldata _name,
                  string calldata _symbol,
                  uint256 _initialSupply,
                  address _initialSupplyRecipient,
                  address _owner
              ) initializer external {
                  require(bytes(_name).length > 0, "Empty name");
                  require(bytes(_symbol).length > 0, "Empty symbol");
                  __ERC20_init(_name, _symbol);
                  __ERC20Permit_init(_name);
                  __ERC20Votes_init();
                  __Ownable_init();
                  __UUPSUpgradeable_init();
                  transferOwnership(_owner);
                  _mint(_initialSupplyRecipient, _initialSupply);
              }
              function _authorizeUpgrade(address newImplementation)
              internal
              onlyOwner
              override
              {}
              // The following functions are overrides required by Solidity.
              function _afterTokenTransfer(address from, address to, uint256 amount)
              internal
              override(ERC20Upgradeable, ERC20VotesUpgradeable)
              {
                  super._afterTokenTransfer(from, to, amount);
              }
              function _mint(address to, uint256 amount)
              internal
              override(ERC20Upgradeable, ERC20VotesUpgradeable)
              {
                  super._mint(to, amount);
              }
              function _burn(address account, uint256 amount)
              internal
              override(ERC20Upgradeable, ERC20VotesUpgradeable)
              {
                  super._burn(account, amount);
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/ERC20.sol)
          pragma solidity ^0.8.0;
          import "./IERC20Upgradeable.sol";
          import "./extensions/IERC20MetadataUpgradeable.sol";
          import "../../utils/ContextUpgradeable.sol";
          import "../../proxy/utils/Initializable.sol";
          /**
           * @dev Implementation of the {IERC20} interface.
           *
           * This implementation is agnostic to the way tokens are created. This means
           * that a supply mechanism has to be added in a derived contract using {_mint}.
           * For a generic mechanism see {ERC20PresetMinterPauser}.
           *
           * TIP: For a detailed writeup see our guide
           * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
           * to implement supply mechanisms].
           *
           * We have followed general OpenZeppelin Contracts guidelines: functions revert
           * instead returning `false` on failure. This behavior is nonetheless
           * conventional and does not conflict with the expectations of ERC20
           * applications.
           *
           * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
           * This allows applications to reconstruct the allowance for all accounts just
           * by listening to said events. Other implementations of the EIP may not emit
           * these events, as it isn't required by the specification.
           *
           * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
           * functions have been added to mitigate the well-known issues around setting
           * allowances. See {IERC20-approve}.
           */
          contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20Upgradeable, IERC20MetadataUpgradeable {
              mapping(address => uint256) private _balances;
              mapping(address => mapping(address => uint256)) private _allowances;
              uint256 private _totalSupply;
              string private _name;
              string private _symbol;
              /**
               * @dev Sets the values for {name} and {symbol}.
               *
               * The default value of {decimals} is 18. To select a different value for
               * {decimals} you should overload it.
               *
               * All two of these values are immutable: they can only be set once during
               * construction.
               */
              function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing {
                  __ERC20_init_unchained(name_, symbol_);
              }
              function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing {
                  _name = name_;
                  _symbol = symbol_;
              }
              /**
               * @dev Returns the name of the token.
               */
              function name() public view virtual override returns (string memory) {
                  return _name;
              }
              /**
               * @dev Returns the symbol of the token, usually a shorter version of the
               * name.
               */
              function symbol() public view virtual override returns (string memory) {
                  return _symbol;
              }
              /**
               * @dev Returns the number of decimals used to get its user representation.
               * For example, if `decimals` equals `2`, a balance of `505` tokens should
               * be displayed to a user as `5.05` (`505 / 10 ** 2`).
               *
               * Tokens usually opt for a value of 18, imitating the relationship between
               * Ether and Wei. This is the value {ERC20} uses, unless this function is
               * overridden;
               *
               * NOTE: This information is only used for _display_ purposes: it in
               * no way affects any of the arithmetic of the contract, including
               * {IERC20-balanceOf} and {IERC20-transfer}.
               */
              function decimals() public view virtual override returns (uint8) {
                  return 18;
              }
              /**
               * @dev See {IERC20-totalSupply}.
               */
              function totalSupply() public view virtual override returns (uint256) {
                  return _totalSupply;
              }
              /**
               * @dev See {IERC20-balanceOf}.
               */
              function balanceOf(address account) public view virtual override returns (uint256) {
                  return _balances[account];
              }
              /**
               * @dev See {IERC20-transfer}.
               *
               * Requirements:
               *
               * - `to` cannot be the zero address.
               * - the caller must have a balance of at least `amount`.
               */
              function transfer(address to, uint256 amount) public virtual override returns (bool) {
                  address owner = _msgSender();
                  _transfer(owner, to, amount);
                  return true;
              }
              /**
               * @dev See {IERC20-allowance}.
               */
              function allowance(address owner, address spender) public view virtual override returns (uint256) {
                  return _allowances[owner][spender];
              }
              /**
               * @dev See {IERC20-approve}.
               *
               * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
               * `transferFrom`. This is semantically equivalent to an infinite approval.
               *
               * Requirements:
               *
               * - `spender` cannot be the zero address.
               */
              function approve(address spender, uint256 amount) public virtual override returns (bool) {
                  address owner = _msgSender();
                  _approve(owner, spender, amount);
                  return true;
              }
              /**
               * @dev See {IERC20-transferFrom}.
               *
               * Emits an {Approval} event indicating the updated allowance. This is not
               * required by the EIP. See the note at the beginning of {ERC20}.
               *
               * NOTE: Does not update the allowance if the current allowance
               * is the maximum `uint256`.
               *
               * Requirements:
               *
               * - `from` and `to` cannot be the zero address.
               * - `from` must have a balance of at least `amount`.
               * - the caller must have allowance for ``from``'s tokens of at least
               * `amount`.
               */
              function transferFrom(
                  address from,
                  address to,
                  uint256 amount
              ) public virtual override returns (bool) {
                  address spender = _msgSender();
                  _spendAllowance(from, spender, amount);
                  _transfer(from, to, amount);
                  return true;
              }
              /**
               * @dev Atomically increases the allowance granted to `spender` by the caller.
               *
               * This is an alternative to {approve} that can be used as a mitigation for
               * problems described in {IERC20-approve}.
               *
               * Emits an {Approval} event indicating the updated allowance.
               *
               * Requirements:
               *
               * - `spender` cannot be the zero address.
               */
              function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
                  address owner = _msgSender();
                  _approve(owner, spender, _allowances[owner][spender] + addedValue);
                  return true;
              }
              /**
               * @dev Atomically decreases the allowance granted to `spender` by the caller.
               *
               * This is an alternative to {approve} that can be used as a mitigation for
               * problems described in {IERC20-approve}.
               *
               * Emits an {Approval} event indicating the updated allowance.
               *
               * Requirements:
               *
               * - `spender` cannot be the zero address.
               * - `spender` must have allowance for the caller of at least
               * `subtractedValue`.
               */
              function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
                  address owner = _msgSender();
                  uint256 currentAllowance = _allowances[owner][spender];
                  require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
                  unchecked {
                      _approve(owner, spender, currentAllowance - subtractedValue);
                  }
                  return true;
              }
              /**
               * @dev Moves `amount` of tokens from `sender` to `recipient`.
               *
               * This internal function is equivalent to {transfer}, and can be used to
               * e.g. implement automatic token fees, slashing mechanisms, etc.
               *
               * Emits a {Transfer} event.
               *
               * Requirements:
               *
               * - `from` cannot be the zero address.
               * - `to` cannot be the zero address.
               * - `from` must have a balance of at least `amount`.
               */
              function _transfer(
                  address from,
                  address to,
                  uint256 amount
              ) internal virtual {
                  require(from != address(0), "ERC20: transfer from the zero address");
                  require(to != address(0), "ERC20: transfer to the zero address");
                  _beforeTokenTransfer(from, to, amount);
                  uint256 fromBalance = _balances[from];
                  require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
                  unchecked {
                      _balances[from] = fromBalance - amount;
                  }
                  _balances[to] += amount;
                  emit Transfer(from, to, amount);
                  _afterTokenTransfer(from, to, amount);
              }
              /** @dev Creates `amount` tokens and assigns them to `account`, increasing
               * the total supply.
               *
               * Emits a {Transfer} event with `from` set to the zero address.
               *
               * Requirements:
               *
               * - `account` cannot be the zero address.
               */
              function _mint(address account, uint256 amount) internal virtual {
                  require(account != address(0), "ERC20: mint to the zero address");
                  _beforeTokenTransfer(address(0), account, amount);
                  _totalSupply += amount;
                  _balances[account] += amount;
                  emit Transfer(address(0), account, amount);
                  _afterTokenTransfer(address(0), account, amount);
              }
              /**
               * @dev Destroys `amount` tokens from `account`, reducing the
               * total supply.
               *
               * Emits a {Transfer} event with `to` set to the zero address.
               *
               * Requirements:
               *
               * - `account` cannot be the zero address.
               * - `account` must have at least `amount` tokens.
               */
              function _burn(address account, uint256 amount) internal virtual {
                  require(account != address(0), "ERC20: burn from the zero address");
                  _beforeTokenTransfer(account, address(0), amount);
                  uint256 accountBalance = _balances[account];
                  require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
                  unchecked {
                      _balances[account] = accountBalance - amount;
                  }
                  _totalSupply -= amount;
                  emit Transfer(account, address(0), amount);
                  _afterTokenTransfer(account, address(0), amount);
              }
              /**
               * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
               *
               * This internal function is equivalent to `approve`, and can be used to
               * e.g. set automatic allowances for certain subsystems, etc.
               *
               * Emits an {Approval} event.
               *
               * Requirements:
               *
               * - `owner` cannot be the zero address.
               * - `spender` cannot be the zero address.
               */
              function _approve(
                  address owner,
                  address spender,
                  uint256 amount
              ) internal virtual {
                  require(owner != address(0), "ERC20: approve from the zero address");
                  require(spender != address(0), "ERC20: approve to the zero address");
                  _allowances[owner][spender] = amount;
                  emit Approval(owner, spender, amount);
              }
              /**
               * @dev Spend `amount` form the allowance of `owner` toward `spender`.
               *
               * Does not update the allowance amount in case of infinite allowance.
               * Revert if not enough allowance is available.
               *
               * Might emit an {Approval} event.
               */
              function _spendAllowance(
                  address owner,
                  address spender,
                  uint256 amount
              ) internal virtual {
                  uint256 currentAllowance = allowance(owner, spender);
                  if (currentAllowance != type(uint256).max) {
                      require(currentAllowance >= amount, "ERC20: insufficient allowance");
                      unchecked {
                          _approve(owner, spender, currentAllowance - amount);
                      }
                  }
              }
              /**
               * @dev Hook that is called before any transfer of tokens. This includes
               * minting and burning.
               *
               * Calling conditions:
               *
               * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
               * will be transferred to `to`.
               * - when `from` is zero, `amount` tokens will be minted for `to`.
               * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
               * - `from` and `to` are never both zero.
               *
               * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
               */
              function _beforeTokenTransfer(
                  address from,
                  address to,
                  uint256 amount
              ) internal virtual {}
              /**
               * @dev Hook that is called after any transfer of tokens. This includes
               * minting and burning.
               *
               * Calling conditions:
               *
               * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
               * has been transferred to `to`.
               * - when `from` is zero, `amount` tokens have been minted for `to`.
               * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
               * - `from` and `to` are never both zero.
               *
               * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
               */
              function _afterTokenTransfer(
                  address from,
                  address to,
                  uint256 amount
              ) internal virtual {}
              /**
               * @dev This empty reserved space is put in place to allow future versions to add new
               * variables without shifting down storage in the inheritance chain.
               * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
               */
              uint256[45] private __gap;
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-ERC20Permit.sol)
          pragma solidity ^0.8.0;
          import "./draft-IERC20PermitUpgradeable.sol";
          import "../ERC20Upgradeable.sol";
          import "../../../utils/cryptography/draft-EIP712Upgradeable.sol";
          import "../../../utils/cryptography/ECDSAUpgradeable.sol";
          import "../../../utils/CountersUpgradeable.sol";
          import "../../../proxy/utils/Initializable.sol";
          /**
           * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
           * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
           *
           * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
           * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
           * need to send a transaction, and thus is not required to hold Ether at all.
           *
           * _Available since v3.4._
           */
          abstract contract ERC20PermitUpgradeable is Initializable, ERC20Upgradeable, IERC20PermitUpgradeable, EIP712Upgradeable {
              using CountersUpgradeable for CountersUpgradeable.Counter;
              mapping(address => CountersUpgradeable.Counter) private _nonces;
              // solhint-disable-next-line var-name-mixedcase
              bytes32 private _PERMIT_TYPEHASH;
              /**
               * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
               *
               * It's a good idea to use the same `name` that is defined as the ERC20 token name.
               */
              function __ERC20Permit_init(string memory name) internal onlyInitializing {
                  __EIP712_init_unchained(name, "1");
                  __ERC20Permit_init_unchained(name);
              }
              function __ERC20Permit_init_unchained(string memory) internal onlyInitializing {
                  _PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");}
              /**
               * @dev See {IERC20Permit-permit}.
               */
              function permit(
                  address owner,
                  address spender,
                  uint256 value,
                  uint256 deadline,
                  uint8 v,
                  bytes32 r,
                  bytes32 s
              ) public virtual override {
                  require(block.timestamp <= deadline, "ERC20Permit: expired deadline");
                  bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));
                  bytes32 hash = _hashTypedDataV4(structHash);
                  address signer = ECDSAUpgradeable.recover(hash, v, r, s);
                  require(signer == owner, "ERC20Permit: invalid signature");
                  _approve(owner, spender, value);
              }
              /**
               * @dev See {IERC20Permit-nonces}.
               */
              function nonces(address owner) public view virtual override returns (uint256) {
                  return _nonces[owner].current();
              }
              /**
               * @dev See {IERC20Permit-DOMAIN_SEPARATOR}.
               */
              // solhint-disable-next-line func-name-mixedcase
              function DOMAIN_SEPARATOR() external view override returns (bytes32) {
                  return _domainSeparatorV4();
              }
              /**
               * @dev "Consume a nonce": return the current value and increment.
               *
               * _Available since v4.1._
               */
              function _useNonce(address owner) internal virtual returns (uint256 current) {
                  CountersUpgradeable.Counter storage nonce = _nonces[owner];
                  current = nonce.current();
                  nonce.increment();
              }
              /**
               * @dev This empty reserved space is put in place to allow future versions to add new
               * variables without shifting down storage in the inheritance chain.
               * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
               */
              uint256[49] private __gap;
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/extensions/ERC20Votes.sol)
          pragma solidity ^0.8.0;
          import "./draft-ERC20PermitUpgradeable.sol";
          import "../../../utils/math/MathUpgradeable.sol";
          import "../../../governance/utils/IVotesUpgradeable.sol";
          import "../../../utils/math/SafeCastUpgradeable.sol";
          import "../../../utils/cryptography/ECDSAUpgradeable.sol";
          import "../../../proxy/utils/Initializable.sol";
          /**
           * @dev Extension of ERC20 to support Compound-like voting and delegation. This version is more generic than Compound's,
           * and supports token supply up to 2^224^ - 1, while COMP is limited to 2^96^ - 1.
           *
           * NOTE: If exact COMP compatibility is required, use the {ERC20VotesComp} variant of this module.
           *
           * This extension keeps a history (checkpoints) of each account's vote power. Vote power can be delegated either
           * by calling the {delegate} function directly, or by providing a signature to be used with {delegateBySig}. Voting
           * power can be queried through the public accessors {getVotes} and {getPastVotes}.
           *
           * By default, token balance does not account for voting power. This makes transfers cheaper. The downside is that it
           * requires users to delegate to themselves in order to activate checkpoints and have their voting power tracked.
           *
           * _Available since v4.2._
           */
          abstract contract ERC20VotesUpgradeable is Initializable, IVotesUpgradeable, ERC20PermitUpgradeable {
              function __ERC20Votes_init() internal onlyInitializing {
              }
              function __ERC20Votes_init_unchained() internal onlyInitializing {
              }
              struct Checkpoint {
                  uint32 fromBlock;
                  uint224 votes;
              }
              bytes32 private constant _DELEGATION_TYPEHASH =
                  keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)");
              mapping(address => address) private _delegates;
              mapping(address => Checkpoint[]) private _checkpoints;
              Checkpoint[] private _totalSupplyCheckpoints;
              /**
               * @dev Get the `pos`-th checkpoint for `account`.
               */
              function checkpoints(address account, uint32 pos) public view virtual returns (Checkpoint memory) {
                  return _checkpoints[account][pos];
              }
              /**
               * @dev Get number of checkpoints for `account`.
               */
              function numCheckpoints(address account) public view virtual returns (uint32) {
                  return SafeCastUpgradeable.toUint32(_checkpoints[account].length);
              }
              /**
               * @dev Get the address `account` is currently delegating to.
               */
              function delegates(address account) public view virtual override returns (address) {
                  return _delegates[account];
              }
              /**
               * @dev Gets the current votes balance for `account`
               */
              function getVotes(address account) public view virtual override returns (uint256) {
                  uint256 pos = _checkpoints[account].length;
                  return pos == 0 ? 0 : _checkpoints[account][pos - 1].votes;
              }
              /**
               * @dev Retrieve the number of votes for `account` at the end of `blockNumber`.
               *
               * Requirements:
               *
               * - `blockNumber` must have been already mined
               */
              function getPastVotes(address account, uint256 blockNumber) public view virtual override returns (uint256) {
                  require(blockNumber < block.number, "ERC20Votes: block not yet mined");
                  return _checkpointsLookup(_checkpoints[account], blockNumber);
              }
              /**
               * @dev Retrieve the `totalSupply` at the end of `blockNumber`. Note, this value is the sum of all balances.
               * It is but NOT the sum of all the delegated votes!
               *
               * Requirements:
               *
               * - `blockNumber` must have been already mined
               */
              function getPastTotalSupply(uint256 blockNumber) public view virtual override returns (uint256) {
                  require(blockNumber < block.number, "ERC20Votes: block not yet mined");
                  return _checkpointsLookup(_totalSupplyCheckpoints, blockNumber);
              }
              /**
               * @dev Lookup a value in a list of (sorted) checkpoints.
               */
              function _checkpointsLookup(Checkpoint[] storage ckpts, uint256 blockNumber) private view returns (uint256) {
                  // We run a binary search to look for the earliest checkpoint taken after `blockNumber`.
                  //
                  // During the loop, the index of the wanted checkpoint remains in the range [low-1, high).
                  // With each iteration, either `low` or `high` is moved towards the middle of the range to maintain the invariant.
                  // - If the middle checkpoint is after `blockNumber`, we look in [low, mid)
                  // - If the middle checkpoint is before or equal to `blockNumber`, we look in [mid+1, high)
                  // Once we reach a single value (when low == high), we've found the right checkpoint at the index high-1, if not
                  // out of bounds (in which case we're looking too far in the past and the result is 0).
                  // Note that if the latest checkpoint available is exactly for `blockNumber`, we end up with an index that is
                  // past the end of the array, so we technically don't find a checkpoint after `blockNumber`, but it works out
                  // the same.
                  uint256 high = ckpts.length;
                  uint256 low = 0;
                  while (low < high) {
                      uint256 mid = MathUpgradeable.average(low, high);
                      if (ckpts[mid].fromBlock > blockNumber) {
                          high = mid;
                      } else {
                          low = mid + 1;
                      }
                  }
                  return high == 0 ? 0 : ckpts[high - 1].votes;
              }
              /**
               * @dev Delegate votes from the sender to `delegatee`.
               */
              function delegate(address delegatee) public virtual override {
                  _delegate(_msgSender(), delegatee);
              }
              /**
               * @dev Delegates votes from signer to `delegatee`
               */
              function delegateBySig(
                  address delegatee,
                  uint256 nonce,
                  uint256 expiry,
                  uint8 v,
                  bytes32 r,
                  bytes32 s
              ) public virtual override {
                  require(block.timestamp <= expiry, "ERC20Votes: signature expired");
                  address signer = ECDSAUpgradeable.recover(
                      _hashTypedDataV4(keccak256(abi.encode(_DELEGATION_TYPEHASH, delegatee, nonce, expiry))),
                      v,
                      r,
                      s
                  );
                  require(nonce == _useNonce(signer), "ERC20Votes: invalid nonce");
                  _delegate(signer, delegatee);
              }
              /**
               * @dev Maximum token supply. Defaults to `type(uint224).max` (2^224^ - 1).
               */
              function _maxSupply() internal view virtual returns (uint224) {
                  return type(uint224).max;
              }
              /**
               * @dev Snapshots the totalSupply after it has been increased.
               */
              function _mint(address account, uint256 amount) internal virtual override {
                  super._mint(account, amount);
                  require(totalSupply() <= _maxSupply(), "ERC20Votes: total supply risks overflowing votes");
                  _writeCheckpoint(_totalSupplyCheckpoints, _add, amount);
              }
              /**
               * @dev Snapshots the totalSupply after it has been decreased.
               */
              function _burn(address account, uint256 amount) internal virtual override {
                  super._burn(account, amount);
                  _writeCheckpoint(_totalSupplyCheckpoints, _subtract, amount);
              }
              /**
               * @dev Move voting power when tokens are transferred.
               *
               * Emits a {DelegateVotesChanged} event.
               */
              function _afterTokenTransfer(
                  address from,
                  address to,
                  uint256 amount
              ) internal virtual override {
                  super._afterTokenTransfer(from, to, amount);
                  _moveVotingPower(delegates(from), delegates(to), amount);
              }
              /**
               * @dev Change delegation for `delegator` to `delegatee`.
               *
               * Emits events {DelegateChanged} and {DelegateVotesChanged}.
               */
              function _delegate(address delegator, address delegatee) internal virtual {
                  address currentDelegate = delegates(delegator);
                  uint256 delegatorBalance = balanceOf(delegator);
                  _delegates[delegator] = delegatee;
                  emit DelegateChanged(delegator, currentDelegate, delegatee);
                  _moveVotingPower(currentDelegate, delegatee, delegatorBalance);
              }
              function _moveVotingPower(
                  address src,
                  address dst,
                  uint256 amount
              ) private {
                  if (src != dst && amount > 0) {
                      if (src != address(0)) {
                          (uint256 oldWeight, uint256 newWeight) = _writeCheckpoint(_checkpoints[src], _subtract, amount);
                          emit DelegateVotesChanged(src, oldWeight, newWeight);
                      }
                      if (dst != address(0)) {
                          (uint256 oldWeight, uint256 newWeight) = _writeCheckpoint(_checkpoints[dst], _add, amount);
                          emit DelegateVotesChanged(dst, oldWeight, newWeight);
                      }
                  }
              }
              function _writeCheckpoint(
                  Checkpoint[] storage ckpts,
                  function(uint256, uint256) view returns (uint256) op,
                  uint256 delta
              ) private returns (uint256 oldWeight, uint256 newWeight) {
                  uint256 pos = ckpts.length;
                  oldWeight = pos == 0 ? 0 : ckpts[pos - 1].votes;
                  newWeight = op(oldWeight, delta);
                  if (pos > 0 && ckpts[pos - 1].fromBlock == block.number) {
                      ckpts[pos - 1].votes = SafeCastUpgradeable.toUint224(newWeight);
                  } else {
                      ckpts.push(Checkpoint({fromBlock: SafeCastUpgradeable.toUint32(block.number), votes: SafeCastUpgradeable.toUint224(newWeight)}));
                  }
              }
              function _add(uint256 a, uint256 b) private pure returns (uint256) {
                  return a + b;
              }
              function _subtract(uint256 a, uint256 b) private pure returns (uint256) {
                  return a - b;
              }
              /**
               * @dev This empty reserved space is put in place to allow future versions to add new
               * variables without shifting down storage in the inheritance chain.
               * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
               */
              uint256[47] private __gap;
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.5.0) (proxy/utils/Initializable.sol)
          pragma solidity ^0.8.0;
          import "../../utils/AddressUpgradeable.sol";
          /**
           * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
           * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
           * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
           * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
           *
           * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
           * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
           *
           * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
           * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
           *
           * [CAUTION]
           * ====
           * Avoid leaving a contract uninitialized.
           *
           * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
           * contract, which may impact the proxy. To initialize the implementation contract, you can either invoke the
           * initializer manually, or you can include a constructor to automatically mark it as initialized when it is deployed:
           *
           * [.hljs-theme-light.nopadding]
           * ```
           * /// @custom:oz-upgrades-unsafe-allow constructor
           * constructor() initializer {}
           * ```
           * ====
           */
          abstract contract Initializable {
              /**
               * @dev Indicates that the contract has been initialized.
               */
              bool private _initialized;
              /**
               * @dev Indicates that the contract is in the process of being initialized.
               */
              bool private _initializing;
              /**
               * @dev Modifier to protect an initializer function from being invoked twice.
               */
              modifier initializer() {
                  // If the contract is initializing we ignore whether _initialized is set in order to support multiple
                  // inheritance patterns, but we only do this in the context of a constructor, because in other contexts the
                  // contract may have been reentered.
                  require(_initializing ? _isConstructor() : !_initialized, "Initializable: contract is already initialized");
                  bool isTopLevelCall = !_initializing;
                  if (isTopLevelCall) {
                      _initializing = true;
                      _initialized = true;
                  }
                  _;
                  if (isTopLevelCall) {
                      _initializing = false;
                  }
              }
              /**
               * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
               * {initializer} modifier, directly or indirectly.
               */
              modifier onlyInitializing() {
                  require(_initializing, "Initializable: contract is not initializing");
                  _;
              }
              function _isConstructor() private view returns (bool) {
                  return !AddressUpgradeable.isContract(address(this));
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts v4.4.1 (access/Ownable.sol)
          pragma solidity ^0.8.0;
          import "../utils/ContextUpgradeable.sol";
          import "../proxy/utils/Initializable.sol";
          /**
           * @dev Contract module which provides a basic access control mechanism, where
           * there is an account (an owner) that can be granted exclusive access to
           * specific functions.
           *
           * By default, the owner account will be the one that deploys the contract. This
           * can later be changed with {transferOwnership}.
           *
           * This module is used through inheritance. It will make available the modifier
           * `onlyOwner`, which can be applied to your functions to restrict their use to
           * the owner.
           */
          abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
              address private _owner;
              event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
              /**
               * @dev Initializes the contract setting the deployer as the initial owner.
               */
              function __Ownable_init() internal onlyInitializing {
                  __Ownable_init_unchained();
              }
              function __Ownable_init_unchained() internal onlyInitializing {
                  _transferOwnership(_msgSender());
              }
              /**
               * @dev Returns the address of the current owner.
               */
              function owner() public view virtual returns (address) {
                  return _owner;
              }
              /**
               * @dev Throws if called by any account other than the owner.
               */
              modifier onlyOwner() {
                  require(owner() == _msgSender(), "Ownable: caller is not the owner");
                  _;
              }
              /**
               * @dev Leaves the contract without owner. It will not be possible to call
               * `onlyOwner` functions anymore. Can only be called by the current owner.
               *
               * NOTE: Renouncing ownership will leave the contract without an owner,
               * thereby removing any functionality that is only available to the owner.
               */
              function renounceOwnership() public virtual onlyOwner {
                  _transferOwnership(address(0));
              }
              /**
               * @dev Transfers ownership of the contract to a new account (`newOwner`).
               * Can only be called by the current owner.
               */
              function transferOwnership(address newOwner) public virtual onlyOwner {
                  require(newOwner != address(0), "Ownable: new owner is the zero address");
                  _transferOwnership(newOwner);
              }
              /**
               * @dev Transfers ownership of the contract to a new account (`newOwner`).
               * Internal function without access restriction.
               */
              function _transferOwnership(address newOwner) internal virtual {
                  address oldOwner = _owner;
                  _owner = newOwner;
                  emit OwnershipTransferred(oldOwner, newOwner);
              }
              /**
               * @dev This empty reserved space is put in place to allow future versions to add new
               * variables without shifting down storage in the inheritance chain.
               * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
               */
              uint256[49] private __gap;
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.5.0) (proxy/utils/UUPSUpgradeable.sol)
          pragma solidity ^0.8.0;
          import "../../interfaces/draft-IERC1822Upgradeable.sol";
          import "../ERC1967/ERC1967UpgradeUpgradeable.sol";
          import "./Initializable.sol";
          /**
           * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
           * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
           *
           * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
           * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
           * `UUPSUpgradeable` with a custom implementation of upgrades.
           *
           * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
           *
           * _Available since v4.1._
           */
          abstract contract UUPSUpgradeable is Initializable, IERC1822ProxiableUpgradeable, ERC1967UpgradeUpgradeable {
              function __UUPSUpgradeable_init() internal onlyInitializing {
              }
              function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
              }
              /// @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
              address private immutable __self = address(this);
              /**
               * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
               * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case
               * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
               * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
               * fail.
               */
              modifier onlyProxy() {
                  require(address(this) != __self, "Function must be called through delegatecall");
                  require(_getImplementation() == __self, "Function must be called through active proxy");
                  _;
              }
              /**
               * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
               * callable on the implementing contract but not through proxies.
               */
              modifier notDelegated() {
                  require(address(this) == __self, "UUPSUpgradeable: must not be called through delegatecall");
                  _;
              }
              /**
               * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the
               * implementation. It is used to validate that the this implementation remains valid after an upgrade.
               *
               * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
               * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
               * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
               */
              function proxiableUUID() external view virtual override notDelegated returns (bytes32) {
                  return _IMPLEMENTATION_SLOT;
              }
              /**
               * @dev Upgrade the implementation of the proxy to `newImplementation`.
               *
               * Calls {_authorizeUpgrade}.
               *
               * Emits an {Upgraded} event.
               */
              function upgradeTo(address newImplementation) external virtual onlyProxy {
                  _authorizeUpgrade(newImplementation);
                  _upgradeToAndCallUUPS(newImplementation, new bytes(0), false);
              }
              /**
               * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
               * encoded in `data`.
               *
               * Calls {_authorizeUpgrade}.
               *
               * Emits an {Upgraded} event.
               */
              function upgradeToAndCall(address newImplementation, bytes memory data) external payable virtual onlyProxy {
                  _authorizeUpgrade(newImplementation);
                  _upgradeToAndCallUUPS(newImplementation, data, true);
              }
              /**
               * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
               * {upgradeTo} and {upgradeToAndCall}.
               *
               * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
               *
               * ```solidity
               * function _authorizeUpgrade(address) internal override onlyOwner {}
               * ```
               */
              function _authorizeUpgrade(address newImplementation) internal virtual;
              /**
               * @dev This empty reserved space is put in place to allow future versions to add new
               * variables without shifting down storage in the inheritance chain.
               * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
               */
              uint256[50] private __gap;
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/IERC20.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Interface of the ERC20 standard as defined in the EIP.
           */
          interface IERC20Upgradeable {
              /**
               * @dev Returns the amount of tokens in existence.
               */
              function totalSupply() external view returns (uint256);
              /**
               * @dev Returns the amount of tokens owned by `account`.
               */
              function balanceOf(address account) external view returns (uint256);
              /**
               * @dev Moves `amount` tokens from the caller's account to `to`.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * Emits a {Transfer} event.
               */
              function transfer(address to, uint256 amount) external returns (bool);
              /**
               * @dev Returns the remaining number of tokens that `spender` will be
               * allowed to spend on behalf of `owner` through {transferFrom}. This is
               * zero by default.
               *
               * This value changes when {approve} or {transferFrom} are called.
               */
              function allowance(address owner, address spender) external view returns (uint256);
              /**
               * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * IMPORTANT: Beware that changing an allowance with this method brings the risk
               * that someone may use both the old and the new allowance by unfortunate
               * transaction ordering. One possible solution to mitigate this race
               * condition is to first reduce the spender's allowance to 0 and set the
               * desired value afterwards:
               * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
               *
               * Emits an {Approval} event.
               */
              function approve(address spender, uint256 amount) external returns (bool);
              /**
               * @dev Moves `amount` tokens from `from` to `to` using the
               * allowance mechanism. `amount` is then deducted from the caller's
               * allowance.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * Emits a {Transfer} event.
               */
              function transferFrom(
                  address from,
                  address to,
                  uint256 amount
              ) external returns (bool);
              /**
               * @dev Emitted when `value` tokens are moved from one account (`from`) to
               * another (`to`).
               *
               * Note that `value` may be zero.
               */
              event Transfer(address indexed from, address indexed to, uint256 value);
              /**
               * @dev Emitted when the allowance of a `spender` for an `owner` is set by
               * a call to {approve}. `value` is the new allowance.
               */
              event Approval(address indexed owner, address indexed spender, uint256 value);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
          pragma solidity ^0.8.0;
          import "../IERC20Upgradeable.sol";
          /**
           * @dev Interface for the optional metadata functions from the ERC20 standard.
           *
           * _Available since v4.1._
           */
          interface IERC20MetadataUpgradeable is IERC20Upgradeable {
              /**
               * @dev Returns the name of the token.
               */
              function name() external view returns (string memory);
              /**
               * @dev Returns the symbol of the token.
               */
              function symbol() external view returns (string memory);
              /**
               * @dev Returns the decimals places of the token.
               */
              function decimals() external view returns (uint8);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
          pragma solidity ^0.8.0;
          import "../proxy/utils/Initializable.sol";
          /**
           * @dev Provides information about the current execution context, including the
           * sender of the transaction and its data. While these are generally available
           * via msg.sender and msg.data, they should not be accessed in such a direct
           * manner, since when dealing with meta-transactions the account sending and
           * paying for execution may not be the actual sender (as far as an application
           * is concerned).
           *
           * This contract is only required for intermediate, library-like contracts.
           */
          abstract contract ContextUpgradeable is Initializable {
              function __Context_init() internal onlyInitializing {
              }
              function __Context_init_unchained() internal onlyInitializing {
              }
              function _msgSender() internal view virtual returns (address) {
                  return msg.sender;
              }
              function _msgData() internal view virtual returns (bytes calldata) {
                  return msg.data;
              }
              /**
               * @dev This empty reserved space is put in place to allow future versions to add new
               * variables without shifting down storage in the inheritance chain.
               * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
               */
              uint256[50] private __gap;
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol)
          pragma solidity ^0.8.1;
          /**
           * @dev Collection of functions related to the address type
           */
          library AddressUpgradeable {
              /**
               * @dev Returns true if `account` is a contract.
               *
               * [IMPORTANT]
               * ====
               * It is unsafe to assume that an address for which this function returns
               * false is an externally-owned account (EOA) and not a contract.
               *
               * Among others, `isContract` will return false for the following
               * types of addresses:
               *
               *  - an externally-owned account
               *  - a contract in construction
               *  - an address where a contract will be created
               *  - an address where a contract lived, but was destroyed
               * ====
               *
               * [IMPORTANT]
               * ====
               * You shouldn't rely on `isContract` to protect against flash loan attacks!
               *
               * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
               * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
               * constructor.
               * ====
               */
              function isContract(address account) internal view returns (bool) {
                  // This method relies on extcodesize/address.code.length, which returns 0
                  // for contracts in construction, since the code is only stored at the end
                  // of the constructor execution.
                  return account.code.length > 0;
              }
              /**
               * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
               * `recipient`, forwarding all available gas and reverting on errors.
               *
               * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
               * of certain opcodes, possibly making contracts go over the 2300 gas limit
               * imposed by `transfer`, making them unable to receive funds via
               * `transfer`. {sendValue} removes this limitation.
               *
               * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
               *
               * IMPORTANT: because control is transferred to `recipient`, care must be
               * taken to not create reentrancy vulnerabilities. Consider using
               * {ReentrancyGuard} or the
               * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
               */
              function sendValue(address payable recipient, uint256 amount) internal {
                  require(address(this).balance >= amount, "Address: insufficient balance");
                  (bool success, ) = recipient.call{value: amount}("");
                  require(success, "Address: unable to send value, recipient may have reverted");
              }
              /**
               * @dev Performs a Solidity function call using a low level `call`. A
               * plain `call` is an unsafe replacement for a function call: use this
               * function instead.
               *
               * If `target` reverts with a revert reason, it is bubbled up by this
               * function (like regular Solidity function calls).
               *
               * Returns the raw returned data. To convert to the expected return value,
               * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
               *
               * Requirements:
               *
               * - `target` must be a contract.
               * - calling `target` with `data` must not revert.
               *
               * _Available since v3.1._
               */
              function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionCall(target, data, "Address: low-level call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
               * `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but also transferring `value` wei to `target`.
               *
               * Requirements:
               *
               * - the calling contract must have an ETH balance of at least `value`.
               * - the called Solidity function must be `payable`.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
              }
              /**
               * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
               * with `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  require(address(this).balance >= value, "Address: insufficient balance for call");
                  require(isContract(target), "Address: call to non-contract");
                  (bool success, bytes memory returndata) = target.call{value: value}(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                  return functionStaticCall(target, data, "Address: low-level static call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal view returns (bytes memory) {
                  require(isContract(target), "Address: static call to non-contract");
                  (bool success, bytes memory returndata) = target.staticcall(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
               * revert reason using the provided one.
               *
               * _Available since v4.3._
               */
              function verifyCallResult(
                  bool success,
                  bytes memory returndata,
                  string memory errorMessage
              ) internal pure returns (bytes memory) {
                  if (success) {
                      return returndata;
                  } else {
                      // Look for revert reason and bubble it up if present
                      if (returndata.length > 0) {
                          // The easiest way to bubble the revert reason is using memory via assembly
                          assembly {
                              let returndata_size := mload(returndata)
                              revert(add(32, returndata), returndata_size)
                          }
                      } else {
                          revert(errorMessage);
                      }
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
           * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
           *
           * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
           * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
           * need to send a transaction, and thus is not required to hold Ether at all.
           */
          interface IERC20PermitUpgradeable {
              /**
               * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
               * given ``owner``'s signed approval.
               *
               * IMPORTANT: The same issues {IERC20-approve} has related to transaction
               * ordering also apply here.
               *
               * Emits an {Approval} event.
               *
               * Requirements:
               *
               * - `spender` cannot be the zero address.
               * - `deadline` must be a timestamp in the future.
               * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
               * over the EIP712-formatted function arguments.
               * - the signature must use ``owner``'s current nonce (see {nonces}).
               *
               * For more information on the signature format, see the
               * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
               * section].
               */
              function permit(
                  address owner,
                  address spender,
                  uint256 value,
                  uint256 deadline,
                  uint8 v,
                  bytes32 r,
                  bytes32 s
              ) external;
              /**
               * @dev Returns the current nonce for `owner`. This value must be
               * included whenever a signature is generated for {permit}.
               *
               * Every successful call to {permit} increases ``owner``'s nonce by one. This
               * prevents a signature from being used multiple times.
               */
              function nonces(address owner) external view returns (uint256);
              /**
               * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
               */
              // solhint-disable-next-line func-name-mixedcase
              function DOMAIN_SEPARATOR() external view returns (bytes32);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts v4.4.1 (utils/cryptography/draft-EIP712.sol)
          pragma solidity ^0.8.0;
          import "./ECDSAUpgradeable.sol";
          import "../../proxy/utils/Initializable.sol";
          /**
           * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
           *
           * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
           * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
           * they need in their contracts using a combination of `abi.encode` and `keccak256`.
           *
           * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
           * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
           * ({_hashTypedDataV4}).
           *
           * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
           * the chain id to protect against replay attacks on an eventual fork of the chain.
           *
           * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
           * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
           *
           * _Available since v3.4._
           */
          abstract contract EIP712Upgradeable is Initializable {
              /* solhint-disable var-name-mixedcase */
              bytes32 private _HASHED_NAME;
              bytes32 private _HASHED_VERSION;
              bytes32 private constant _TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
              /* solhint-enable var-name-mixedcase */
              /**
               * @dev Initializes the domain separator and parameter caches.
               *
               * The meaning of `name` and `version` is specified in
               * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
               *
               * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
               * - `version`: the current major version of the signing domain.
               *
               * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
               * contract upgrade].
               */
              function __EIP712_init(string memory name, string memory version) internal onlyInitializing {
                  __EIP712_init_unchained(name, version);
              }
              function __EIP712_init_unchained(string memory name, string memory version) internal onlyInitializing {
                  bytes32 hashedName = keccak256(bytes(name));
                  bytes32 hashedVersion = keccak256(bytes(version));
                  _HASHED_NAME = hashedName;
                  _HASHED_VERSION = hashedVersion;
              }
              /**
               * @dev Returns the domain separator for the current chain.
               */
              function _domainSeparatorV4() internal view returns (bytes32) {
                  return _buildDomainSeparator(_TYPE_HASH, _EIP712NameHash(), _EIP712VersionHash());
              }
              function _buildDomainSeparator(
                  bytes32 typeHash,
                  bytes32 nameHash,
                  bytes32 versionHash
              ) private view returns (bytes32) {
                  return keccak256(abi.encode(typeHash, nameHash, versionHash, block.chainid, address(this)));
              }
              /**
               * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
               * function returns the hash of the fully encoded EIP712 message for this domain.
               *
               * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
               *
               * ```solidity
               * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
               *     keccak256("Mail(address to,string contents)"),
               *     mailTo,
               *     keccak256(bytes(mailContents))
               * )));
               * address signer = ECDSA.recover(digest, signature);
               * ```
               */
              function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
                  return ECDSAUpgradeable.toTypedDataHash(_domainSeparatorV4(), structHash);
              }
              /**
               * @dev The hash of the name parameter for the EIP712 domain.
               *
               * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
               * are a concern.
               */
              function _EIP712NameHash() internal virtual view returns (bytes32) {
                  return _HASHED_NAME;
              }
              /**
               * @dev The hash of the version parameter for the EIP712 domain.
               *
               * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
               * are a concern.
               */
              function _EIP712VersionHash() internal virtual view returns (bytes32) {
                  return _HASHED_VERSION;
              }
              /**
               * @dev This empty reserved space is put in place to allow future versions to add new
               * variables without shifting down storage in the inheritance chain.
               * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
               */
              uint256[50] private __gap;
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.5.0) (utils/cryptography/ECDSA.sol)
          pragma solidity ^0.8.0;
          import "../StringsUpgradeable.sol";
          /**
           * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
           *
           * These functions can be used to verify that a message was signed by the holder
           * of the private keys of a given address.
           */
          library ECDSAUpgradeable {
              enum RecoverError {
                  NoError,
                  InvalidSignature,
                  InvalidSignatureLength,
                  InvalidSignatureS,
                  InvalidSignatureV
              }
              function _throwError(RecoverError error) private pure {
                  if (error == RecoverError.NoError) {
                      return; // no error: do nothing
                  } else if (error == RecoverError.InvalidSignature) {
                      revert("ECDSA: invalid signature");
                  } else if (error == RecoverError.InvalidSignatureLength) {
                      revert("ECDSA: invalid signature length");
                  } else if (error == RecoverError.InvalidSignatureS) {
                      revert("ECDSA: invalid signature 's' value");
                  } else if (error == RecoverError.InvalidSignatureV) {
                      revert("ECDSA: invalid signature 'v' value");
                  }
              }
              /**
               * @dev Returns the address that signed a hashed message (`hash`) with
               * `signature` or error string. This address can then be used for verification purposes.
               *
               * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
               * this function rejects them by requiring the `s` value to be in the lower
               * half order, and the `v` value to be either 27 or 28.
               *
               * IMPORTANT: `hash` _must_ be the result of a hash operation for the
               * verification to be secure: it is possible to craft signatures that
               * recover to arbitrary addresses for non-hashed data. A safe way to ensure
               * this is by receiving a hash of the original message (which may otherwise
               * be too long), and then calling {toEthSignedMessageHash} on it.
               *
               * Documentation for signature generation:
               * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
               * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
               *
               * _Available since v4.3._
               */
              function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
                  // Check the signature length
                  // - case 65: r,s,v signature (standard)
                  // - case 64: r,vs signature (cf https://eips.ethereum.org/EIPS/eip-2098) _Available since v4.1._
                  if (signature.length == 65) {
                      bytes32 r;
                      bytes32 s;
                      uint8 v;
                      // ecrecover takes the signature parameters, and the only way to get them
                      // currently is to use assembly.
                      assembly {
                          r := mload(add(signature, 0x20))
                          s := mload(add(signature, 0x40))
                          v := byte(0, mload(add(signature, 0x60)))
                      }
                      return tryRecover(hash, v, r, s);
                  } else if (signature.length == 64) {
                      bytes32 r;
                      bytes32 vs;
                      // ecrecover takes the signature parameters, and the only way to get them
                      // currently is to use assembly.
                      assembly {
                          r := mload(add(signature, 0x20))
                          vs := mload(add(signature, 0x40))
                      }
                      return tryRecover(hash, r, vs);
                  } else {
                      return (address(0), RecoverError.InvalidSignatureLength);
                  }
              }
              /**
               * @dev Returns the address that signed a hashed message (`hash`) with
               * `signature`. This address can then be used for verification purposes.
               *
               * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
               * this function rejects them by requiring the `s` value to be in the lower
               * half order, and the `v` value to be either 27 or 28.
               *
               * IMPORTANT: `hash` _must_ be the result of a hash operation for the
               * verification to be secure: it is possible to craft signatures that
               * recover to arbitrary addresses for non-hashed data. A safe way to ensure
               * this is by receiving a hash of the original message (which may otherwise
               * be too long), and then calling {toEthSignedMessageHash} on it.
               */
              function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
                  (address recovered, RecoverError error) = tryRecover(hash, signature);
                  _throwError(error);
                  return recovered;
              }
              /**
               * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
               *
               * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
               *
               * _Available since v4.3._
               */
              function tryRecover(
                  bytes32 hash,
                  bytes32 r,
                  bytes32 vs
              ) internal pure returns (address, RecoverError) {
                  bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
                  uint8 v = uint8((uint256(vs) >> 255) + 27);
                  return tryRecover(hash, v, r, s);
              }
              /**
               * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
               *
               * _Available since v4.2._
               */
              function recover(
                  bytes32 hash,
                  bytes32 r,
                  bytes32 vs
              ) internal pure returns (address) {
                  (address recovered, RecoverError error) = tryRecover(hash, r, vs);
                  _throwError(error);
                  return recovered;
              }
              /**
               * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
               * `r` and `s` signature fields separately.
               *
               * _Available since v4.3._
               */
              function tryRecover(
                  bytes32 hash,
                  uint8 v,
                  bytes32 r,
                  bytes32 s
              ) internal pure returns (address, RecoverError) {
                  // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
                  // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
                  // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
                  // signatures from current libraries generate a unique signature with an s-value in the lower half order.
                  //
                  // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
                  // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
                  // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
                  // these malleable signatures as well.
                  if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
                      return (address(0), RecoverError.InvalidSignatureS);
                  }
                  if (v != 27 && v != 28) {
                      return (address(0), RecoverError.InvalidSignatureV);
                  }
                  // If the signature is valid (and not malleable), return the signer address
                  address signer = ecrecover(hash, v, r, s);
                  if (signer == address(0)) {
                      return (address(0), RecoverError.InvalidSignature);
                  }
                  return (signer, RecoverError.NoError);
              }
              /**
               * @dev Overload of {ECDSA-recover} that receives the `v`,
               * `r` and `s` signature fields separately.
               */
              function recover(
                  bytes32 hash,
                  uint8 v,
                  bytes32 r,
                  bytes32 s
              ) internal pure returns (address) {
                  (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
                  _throwError(error);
                  return recovered;
              }
              /**
               * @dev Returns an Ethereum Signed Message, created from a `hash`. This
               * produces hash corresponding to the one signed with the
               * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
               * JSON-RPC method as part of EIP-191.
               *
               * See {recover}.
               */
              function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
                  // 32 is the length in bytes of hash,
                  // enforced by the type signature above
                  return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\
          32", hash));
              }
              /**
               * @dev Returns an Ethereum Signed Message, created from `s`. This
               * produces hash corresponding to the one signed with the
               * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
               * JSON-RPC method as part of EIP-191.
               *
               * See {recover}.
               */
              function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
                  return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\
          ", StringsUpgradeable.toString(s.length), s));
              }
              /**
               * @dev Returns an Ethereum Signed Typed Data, created from a
               * `domainSeparator` and a `structHash`. This produces hash corresponding
               * to the one signed with the
               * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
               * JSON-RPC method as part of EIP-712.
               *
               * See {recover}.
               */
              function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
                  return keccak256(abi.encodePacked("\\x19\\x01", domainSeparator, structHash));
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)
          pragma solidity ^0.8.0;
          /**
           * @title Counters
           * @author Matt Condon (@shrugs)
           * @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
           * of elements in a mapping, issuing ERC721 ids, or counting request ids.
           *
           * Include with `using Counters for Counters.Counter;`
           */
          library CountersUpgradeable {
              struct Counter {
                  // This variable should never be directly accessed by users of the library: interactions must be restricted to
                  // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
                  // this feature: see https://github.com/ethereum/solidity/issues/4637
                  uint256 _value; // default: 0
              }
              function current(Counter storage counter) internal view returns (uint256) {
                  return counter._value;
              }
              function increment(Counter storage counter) internal {
                  unchecked {
                      counter._value += 1;
                  }
              }
              function decrement(Counter storage counter) internal {
                  uint256 value = counter._value;
                  require(value > 0, "Counter: decrement overflow");
                  unchecked {
                      counter._value = value - 1;
                  }
              }
              function reset(Counter storage counter) internal {
                  counter._value = 0;
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts v4.4.1 (utils/Strings.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev String operations.
           */
          library StringsUpgradeable {
              bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";
              /**
               * @dev Converts a `uint256` to its ASCII `string` decimal representation.
               */
              function toString(uint256 value) internal pure returns (string memory) {
                  // Inspired by OraclizeAPI's implementation - MIT licence
                  // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol
                  if (value == 0) {
                      return "0";
                  }
                  uint256 temp = value;
                  uint256 digits;
                  while (temp != 0) {
                      digits++;
                      temp /= 10;
                  }
                  bytes memory buffer = new bytes(digits);
                  while (value != 0) {
                      digits -= 1;
                      buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
                      value /= 10;
                  }
                  return string(buffer);
              }
              /**
               * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
               */
              function toHexString(uint256 value) internal pure returns (string memory) {
                  if (value == 0) {
                      return "0x00";
                  }
                  uint256 temp = value;
                  uint256 length = 0;
                  while (temp != 0) {
                      length++;
                      temp >>= 8;
                  }
                  return toHexString(value, length);
              }
              /**
               * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
               */
              function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
                  bytes memory buffer = new bytes(2 * length + 2);
                  buffer[0] = "0";
                  buffer[1] = "x";
                  for (uint256 i = 2 * length + 1; i > 1; --i) {
                      buffer[i] = _HEX_SYMBOLS[value & 0xf];
                      value >>= 4;
                  }
                  require(value == 0, "Strings: hex length insufficient");
                  return string(buffer);
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/Math.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Standard math utilities missing in the Solidity language.
           */
          library MathUpgradeable {
              /**
               * @dev Returns the largest of two numbers.
               */
              function max(uint256 a, uint256 b) internal pure returns (uint256) {
                  return a >= b ? a : b;
              }
              /**
               * @dev Returns the smallest of two numbers.
               */
              function min(uint256 a, uint256 b) internal pure returns (uint256) {
                  return a < b ? a : b;
              }
              /**
               * @dev Returns the average of two numbers. The result is rounded towards
               * zero.
               */
              function average(uint256 a, uint256 b) internal pure returns (uint256) {
                  // (a + b) / 2 can overflow.
                  return (a & b) + (a ^ b) / 2;
              }
              /**
               * @dev Returns the ceiling of the division of two numbers.
               *
               * This differs from standard division with `/` in that it rounds up instead
               * of rounding down.
               */
              function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                  // (a + b - 1) / b can overflow on addition, so we distribute.
                  return a / b + (a % b == 0 ? 0 : 1);
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.5.0) (governance/utils/IVotes.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Common interface for {ERC20Votes}, {ERC721Votes}, and other {Votes}-enabled contracts.
           *
           * _Available since v4.5._
           */
          interface IVotesUpgradeable {
              /**
               * @dev Emitted when an account changes their delegate.
               */
              event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);
              /**
               * @dev Emitted when a token transfer or delegate change results in changes to a delegate's number of votes.
               */
              event DelegateVotesChanged(address indexed delegate, uint256 previousBalance, uint256 newBalance);
              /**
               * @dev Returns the current amount of votes that `account` has.
               */
              function getVotes(address account) external view returns (uint256);
              /**
               * @dev Returns the amount of votes that `account` had at the end of a past block (`blockNumber`).
               */
              function getPastVotes(address account, uint256 blockNumber) external view returns (uint256);
              /**
               * @dev Returns the total supply of votes available at the end of a past block (`blockNumber`).
               *
               * NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes.
               * Votes that have not been delegated are still part of total supply, even though they would not participate in a
               * vote.
               */
              function getPastTotalSupply(uint256 blockNumber) external view returns (uint256);
              /**
               * @dev Returns the delegate that `account` has chosen.
               */
              function delegates(address account) external view returns (address);
              /**
               * @dev Delegates votes from the sender to `delegatee`.
               */
              function delegate(address delegatee) external;
              /**
               * @dev Delegates votes from signer to `delegatee`.
               */
              function delegateBySig(
                  address delegatee,
                  uint256 nonce,
                  uint256 expiry,
                  uint8 v,
                  bytes32 r,
                  bytes32 s
              ) external;
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts v4.4.1 (utils/math/SafeCast.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
           * checks.
           *
           * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
           * easily result in undesired exploitation or bugs, since developers usually
           * assume that overflows raise errors. `SafeCast` restores this intuition by
           * reverting the transaction when such an operation overflows.
           *
           * Using this library instead of the unchecked operations eliminates an entire
           * class of bugs, so it's recommended to use it always.
           *
           * Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
           * all math on `uint256` and `int256` and then downcasting.
           */
          library SafeCastUpgradeable {
              /**
               * @dev Returns the downcasted uint224 from uint256, reverting on
               * overflow (when the input is greater than largest uint224).
               *
               * Counterpart to Solidity's `uint224` operator.
               *
               * Requirements:
               *
               * - input must fit into 224 bits
               */
              function toUint224(uint256 value) internal pure returns (uint224) {
                  require(value <= type(uint224).max, "SafeCast: value doesn't fit in 224 bits");
                  return uint224(value);
              }
              /**
               * @dev Returns the downcasted uint128 from uint256, reverting on
               * overflow (when the input is greater than largest uint128).
               *
               * Counterpart to Solidity's `uint128` operator.
               *
               * Requirements:
               *
               * - input must fit into 128 bits
               */
              function toUint128(uint256 value) internal pure returns (uint128) {
                  require(value <= type(uint128).max, "SafeCast: value doesn't fit in 128 bits");
                  return uint128(value);
              }
              /**
               * @dev Returns the downcasted uint96 from uint256, reverting on
               * overflow (when the input is greater than largest uint96).
               *
               * Counterpart to Solidity's `uint96` operator.
               *
               * Requirements:
               *
               * - input must fit into 96 bits
               */
              function toUint96(uint256 value) internal pure returns (uint96) {
                  require(value <= type(uint96).max, "SafeCast: value doesn't fit in 96 bits");
                  return uint96(value);
              }
              /**
               * @dev Returns the downcasted uint64 from uint256, reverting on
               * overflow (when the input is greater than largest uint64).
               *
               * Counterpart to Solidity's `uint64` operator.
               *
               * Requirements:
               *
               * - input must fit into 64 bits
               */
              function toUint64(uint256 value) internal pure returns (uint64) {
                  require(value <= type(uint64).max, "SafeCast: value doesn't fit in 64 bits");
                  return uint64(value);
              }
              /**
               * @dev Returns the downcasted uint32 from uint256, reverting on
               * overflow (when the input is greater than largest uint32).
               *
               * Counterpart to Solidity's `uint32` operator.
               *
               * Requirements:
               *
               * - input must fit into 32 bits
               */
              function toUint32(uint256 value) internal pure returns (uint32) {
                  require(value <= type(uint32).max, "SafeCast: value doesn't fit in 32 bits");
                  return uint32(value);
              }
              /**
               * @dev Returns the downcasted uint16 from uint256, reverting on
               * overflow (when the input is greater than largest uint16).
               *
               * Counterpart to Solidity's `uint16` operator.
               *
               * Requirements:
               *
               * - input must fit into 16 bits
               */
              function toUint16(uint256 value) internal pure returns (uint16) {
                  require(value <= type(uint16).max, "SafeCast: value doesn't fit in 16 bits");
                  return uint16(value);
              }
              /**
               * @dev Returns the downcasted uint8 from uint256, reverting on
               * overflow (when the input is greater than largest uint8).
               *
               * Counterpart to Solidity's `uint8` operator.
               *
               * Requirements:
               *
               * - input must fit into 8 bits.
               */
              function toUint8(uint256 value) internal pure returns (uint8) {
                  require(value <= type(uint8).max, "SafeCast: value doesn't fit in 8 bits");
                  return uint8(value);
              }
              /**
               * @dev Converts a signed int256 into an unsigned uint256.
               *
               * Requirements:
               *
               * - input must be greater than or equal to 0.
               */
              function toUint256(int256 value) internal pure returns (uint256) {
                  require(value >= 0, "SafeCast: value must be positive");
                  return uint256(value);
              }
              /**
               * @dev Returns the downcasted int128 from int256, reverting on
               * overflow (when the input is less than smallest int128 or
               * greater than largest int128).
               *
               * Counterpart to Solidity's `int128` operator.
               *
               * Requirements:
               *
               * - input must fit into 128 bits
               *
               * _Available since v3.1._
               */
              function toInt128(int256 value) internal pure returns (int128) {
                  require(value >= type(int128).min && value <= type(int128).max, "SafeCast: value doesn't fit in 128 bits");
                  return int128(value);
              }
              /**
               * @dev Returns the downcasted int64 from int256, reverting on
               * overflow (when the input is less than smallest int64 or
               * greater than largest int64).
               *
               * Counterpart to Solidity's `int64` operator.
               *
               * Requirements:
               *
               * - input must fit into 64 bits
               *
               * _Available since v3.1._
               */
              function toInt64(int256 value) internal pure returns (int64) {
                  require(value >= type(int64).min && value <= type(int64).max, "SafeCast: value doesn't fit in 64 bits");
                  return int64(value);
              }
              /**
               * @dev Returns the downcasted int32 from int256, reverting on
               * overflow (when the input is less than smallest int32 or
               * greater than largest int32).
               *
               * Counterpart to Solidity's `int32` operator.
               *
               * Requirements:
               *
               * - input must fit into 32 bits
               *
               * _Available since v3.1._
               */
              function toInt32(int256 value) internal pure returns (int32) {
                  require(value >= type(int32).min && value <= type(int32).max, "SafeCast: value doesn't fit in 32 bits");
                  return int32(value);
              }
              /**
               * @dev Returns the downcasted int16 from int256, reverting on
               * overflow (when the input is less than smallest int16 or
               * greater than largest int16).
               *
               * Counterpart to Solidity's `int16` operator.
               *
               * Requirements:
               *
               * - input must fit into 16 bits
               *
               * _Available since v3.1._
               */
              function toInt16(int256 value) internal pure returns (int16) {
                  require(value >= type(int16).min && value <= type(int16).max, "SafeCast: value doesn't fit in 16 bits");
                  return int16(value);
              }
              /**
               * @dev Returns the downcasted int8 from int256, reverting on
               * overflow (when the input is less than smallest int8 or
               * greater than largest int8).
               *
               * Counterpart to Solidity's `int8` operator.
               *
               * Requirements:
               *
               * - input must fit into 8 bits.
               *
               * _Available since v3.1._
               */
              function toInt8(int256 value) internal pure returns (int8) {
                  require(value >= type(int8).min && value <= type(int8).max, "SafeCast: value doesn't fit in 8 bits");
                  return int8(value);
              }
              /**
               * @dev Converts an unsigned uint256 into a signed int256.
               *
               * Requirements:
               *
               * - input must be less than or equal to maxInt256.
               */
              function toInt256(uint256 value) internal pure returns (int256) {
                  // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
                  require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an int256");
                  return int256(value);
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
           * proxy whose upgrades are fully controlled by the current implementation.
           */
          interface IERC1822ProxiableUpgradeable {
              /**
               * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
               * address.
               *
               * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
               * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
               * function revert if invoked through a proxy.
               */
              function proxiableUUID() external view returns (bytes32);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.5.0) (proxy/ERC1967/ERC1967Upgrade.sol)
          pragma solidity ^0.8.2;
          import "../beacon/IBeaconUpgradeable.sol";
          import "../../interfaces/draft-IERC1822Upgradeable.sol";
          import "../../utils/AddressUpgradeable.sol";
          import "../../utils/StorageSlotUpgradeable.sol";
          import "../utils/Initializable.sol";
          /**
           * @dev This abstract contract provides getters and event emitting update functions for
           * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
           *
           * _Available since v4.1._
           *
           * @custom:oz-upgrades-unsafe-allow delegatecall
           */
          abstract contract ERC1967UpgradeUpgradeable is Initializable {
              function __ERC1967Upgrade_init() internal onlyInitializing {
              }
              function __ERC1967Upgrade_init_unchained() internal onlyInitializing {
              }
              // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
              bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
              /**
               * @dev Storage slot with the address of the current implementation.
               * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
               * validated in the constructor.
               */
              bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
              /**
               * @dev Emitted when the implementation is upgraded.
               */
              event Upgraded(address indexed implementation);
              /**
               * @dev Returns the current implementation address.
               */
              function _getImplementation() internal view returns (address) {
                  return StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value;
              }
              /**
               * @dev Stores a new address in the EIP1967 implementation slot.
               */
              function _setImplementation(address newImplementation) private {
                  require(AddressUpgradeable.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                  StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
              }
              /**
               * @dev Perform implementation upgrade
               *
               * Emits an {Upgraded} event.
               */
              function _upgradeTo(address newImplementation) internal {
                  _setImplementation(newImplementation);
                  emit Upgraded(newImplementation);
              }
              /**
               * @dev Perform implementation upgrade with additional setup call.
               *
               * Emits an {Upgraded} event.
               */
              function _upgradeToAndCall(
                  address newImplementation,
                  bytes memory data,
                  bool forceCall
              ) internal {
                  _upgradeTo(newImplementation);
                  if (data.length > 0 || forceCall) {
                      _functionDelegateCall(newImplementation, data);
                  }
              }
              /**
               * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
               *
               * Emits an {Upgraded} event.
               */
              function _upgradeToAndCallUUPS(
                  address newImplementation,
                  bytes memory data,
                  bool forceCall
              ) internal {
                  // Upgrades from old implementations will perform a rollback test. This test requires the new
                  // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
                  // this special case will break upgrade paths from old UUPS implementation to new ones.
                  if (StorageSlotUpgradeable.getBooleanSlot(_ROLLBACK_SLOT).value) {
                      _setImplementation(newImplementation);
                  } else {
                      try IERC1822ProxiableUpgradeable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                          require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
                      } catch {
                          revert("ERC1967Upgrade: new implementation is not UUPS");
                      }
                      _upgradeToAndCall(newImplementation, data, forceCall);
                  }
              }
              /**
               * @dev Storage slot with the admin of the contract.
               * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
               * validated in the constructor.
               */
              bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
              /**
               * @dev Emitted when the admin account has changed.
               */
              event AdminChanged(address previousAdmin, address newAdmin);
              /**
               * @dev Returns the current admin.
               */
              function _getAdmin() internal view returns (address) {
                  return StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value;
              }
              /**
               * @dev Stores a new address in the EIP1967 admin slot.
               */
              function _setAdmin(address newAdmin) private {
                  require(newAdmin != address(0), "ERC1967: new admin is the zero address");
                  StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
              }
              /**
               * @dev Changes the admin of the proxy.
               *
               * Emits an {AdminChanged} event.
               */
              function _changeAdmin(address newAdmin) internal {
                  emit AdminChanged(_getAdmin(), newAdmin);
                  _setAdmin(newAdmin);
              }
              /**
               * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
               * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
               */
              bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
              /**
               * @dev Emitted when the beacon is upgraded.
               */
              event BeaconUpgraded(address indexed beacon);
              /**
               * @dev Returns the current beacon.
               */
              function _getBeacon() internal view returns (address) {
                  return StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value;
              }
              /**
               * @dev Stores a new beacon in the EIP1967 beacon slot.
               */
              function _setBeacon(address newBeacon) private {
                  require(AddressUpgradeable.isContract(newBeacon), "ERC1967: new beacon is not a contract");
                  require(
                      AddressUpgradeable.isContract(IBeaconUpgradeable(newBeacon).implementation()),
                      "ERC1967: beacon implementation is not a contract"
                  );
                  StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value = newBeacon;
              }
              /**
               * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
               * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
               *
               * Emits a {BeaconUpgraded} event.
               */
              function _upgradeBeaconToAndCall(
                  address newBeacon,
                  bytes memory data,
                  bool forceCall
              ) internal {
                  _setBeacon(newBeacon);
                  emit BeaconUpgraded(newBeacon);
                  if (data.length > 0 || forceCall) {
                      _functionDelegateCall(IBeaconUpgradeable(newBeacon).implementation(), data);
                  }
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function _functionDelegateCall(address target, bytes memory data) private returns (bytes memory) {
                  require(AddressUpgradeable.isContract(target), "Address: delegate call to non-contract");
                  // solhint-disable-next-line avoid-low-level-calls
                  (bool success, bytes memory returndata) = target.delegatecall(data);
                  return AddressUpgradeable.verifyCallResult(success, returndata, "Address: low-level delegate call failed");
              }
              /**
               * @dev This empty reserved space is put in place to allow future versions to add new
               * variables without shifting down storage in the inheritance chain.
               * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
               */
              uint256[50] private __gap;
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev This is the interface that {BeaconProxy} expects of its beacon.
           */
          interface IBeaconUpgradeable {
              /**
               * @dev Must return an address that can be used as a delegate call target.
               *
               * {BeaconProxy} will check that this address is a contract.
               */
              function implementation() external view returns (address);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts v4.4.1 (utils/StorageSlot.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Library for reading and writing primitive types to specific storage slots.
           *
           * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
           * This library helps with reading and writing to such slots without the need for inline assembly.
           *
           * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
           *
           * Example usage to set ERC1967 implementation slot:
           * ```
           * contract ERC1967 {
           *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
           *
           *     function _getImplementation() internal view returns (address) {
           *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
           *     }
           *
           *     function _setImplementation(address newImplementation) internal {
           *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
           *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
           *     }
           * }
           * ```
           *
           * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._
           */
          library StorageSlotUpgradeable {
              struct AddressSlot {
                  address value;
              }
              struct BooleanSlot {
                  bool value;
              }
              struct Bytes32Slot {
                  bytes32 value;
              }
              struct Uint256Slot {
                  uint256 value;
              }
              /**
               * @dev Returns an `AddressSlot` with member `value` located at `slot`.
               */
              function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
               */
              function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
               */
              function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
               */
              function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                  assembly {
                      r.slot := slot
                  }
              }
          }