ETH Price: $2,657.98 (+2.74%)

Transaction Decoder

Block:
11832989 at Feb-11-2021 03:57:56 AM +UTC
Transaction Fee:
0.008433537 ETH $22.42
Gas Used:
81,879 Gas / 103 Gwei

Emitted Events:

75 Uni.Transfer( from=[Receiver] MerkleDistributor, to=[Sender] 0x9d1266cc8b073e52e342b6fea5c70a6b0e2051cf, amount=400000000000000000000 )
76 MerkleDistributor.Claimed( index=157007, account=[Sender] 0x9d1266cc8b073e52e342b6fea5c70a6b0e2051cf, amount=400000000000000000000 )

Account State Difference:

  Address   Before After State Difference Code
0x090D4613...0821D256e
(Uniswap: Token Distributor)
0x1f9840a8...C4201F984
(EzilPool 2)
186.160699634542316783 Eth186.169133171542316783 Eth0.008433537
0x9d1266cc...B0E2051CF
0.021461274 Eth
Nonce: 7
0.013027737 Eth
Nonce: 8
0.008433537

Execution Trace

MerkleDistributor.claim( )
  • Uni.transfer( dst=0x9d1266cc8B073E52e342B6FEa5c70A6B0E2051CF, rawAmount=400000000000000000000 ) => ( True )
    File 1 of 2: MerkleDistributor
    // SPDX-License-Identifier: UNLICENSED
    pragma solidity =0.6.11;
    
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
    
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
    
        /**
         * @dev Moves `amount` tokens from the caller's account to `recipient`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
    
        /**
         * @dev Moves `amount` tokens from `sender` to `recipient` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
    
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    }
    
    /**
     * @dev These functions deal with verification of Merkle trees (hash trees),
     */
    library MerkleProof {
        /**
         * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
         * defined by `root`. For this, a `proof` must be provided, containing
         * sibling hashes on the branch from the leaf to the root of the tree. Each
         * pair of leaves and each pair of pre-images are assumed to be sorted.
         */
        function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
            bytes32 computedHash = leaf;
    
            for (uint256 i = 0; i < proof.length; i++) {
                bytes32 proofElement = proof[i];
    
                if (computedHash <= proofElement) {
                    // Hash(current computed hash + current element of the proof)
                    computedHash = keccak256(abi.encodePacked(computedHash, proofElement));
                } else {
                    // Hash(current element of the proof + current computed hash)
                    computedHash = keccak256(abi.encodePacked(proofElement, computedHash));
                }
            }
    
            // Check if the computed hash (root) is equal to the provided root
            return computedHash == root;
        }
    }
    
    // Allows anyone to claim a token if they exist in a merkle root.
    interface IMerkleDistributor {
        // Returns the address of the token distributed by this contract.
        function token() external view returns (address);
        // Returns the merkle root of the merkle tree containing account balances available to claim.
        function merkleRoot() external view returns (bytes32);
        // Returns true if the index has been marked claimed.
        function isClaimed(uint256 index) external view returns (bool);
        // Claim the given amount of the token to the given address. Reverts if the inputs are invalid.
        function claim(uint256 index, address account, uint256 amount, bytes32[] calldata merkleProof) external;
    
        // This event is triggered whenever a call to #claim succeeds.
        event Claimed(uint256 index, address account, uint256 amount);
    }
    
    contract MerkleDistributor is IMerkleDistributor {
        address public immutable override token;
        bytes32 public immutable override merkleRoot;
    
        // This is a packed array of booleans.
        mapping(uint256 => uint256) private claimedBitMap;
    
        constructor(address token_, bytes32 merkleRoot_) public {
            token = token_;
            merkleRoot = merkleRoot_;
        }
    
        function isClaimed(uint256 index) public view override returns (bool) {
            uint256 claimedWordIndex = index / 256;
            uint256 claimedBitIndex = index % 256;
            uint256 claimedWord = claimedBitMap[claimedWordIndex];
            uint256 mask = (1 << claimedBitIndex);
            return claimedWord & mask == mask;
        }
    
        function _setClaimed(uint256 index) private {
            uint256 claimedWordIndex = index / 256;
            uint256 claimedBitIndex = index % 256;
            claimedBitMap[claimedWordIndex] = claimedBitMap[claimedWordIndex] | (1 << claimedBitIndex);
        }
    
        function claim(uint256 index, address account, uint256 amount, bytes32[] calldata merkleProof) external override {
            require(!isClaimed(index), 'MerkleDistributor: Drop already claimed.');
    
            // Verify the merkle proof.
            bytes32 node = keccak256(abi.encodePacked(index, account, amount));
            require(MerkleProof.verify(merkleProof, merkleRoot, node), 'MerkleDistributor: Invalid proof.');
    
            // Mark it claimed and send the token.
            _setClaimed(index);
            require(IERC20(token).transfer(account, amount), 'MerkleDistributor: Transfer failed.');
    
            emit Claimed(index, account, amount);
        }
    }

    File 2 of 2: Uni
    /**
     *Submitted for verification at Etherscan.io on 2020-09-15
    */
    
    pragma solidity ^0.5.16;
    pragma experimental ABIEncoderV2;
    
    // From https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/Math.sol
    // Subject to the MIT license.
    
    /**
     * @dev Wrappers over Solidity's arithmetic operations with added overflow
     * checks.
     *
     * Arithmetic operations in Solidity wrap on overflow. This can easily result
     * in bugs, because programmers usually assume that an overflow raises an
     * error, which is the standard behavior in high level programming languages.
     * `SafeMath` restores this intuition by reverting the transaction when an
     * operation overflows.
     *
     * Using this library instead of the unchecked operations eliminates an entire
     * class of bugs, so it's recommended to use it always.
     */
    library SafeMath {
        /**
         * @dev Returns the addition of two unsigned integers, reverting on overflow.
         *
         * Counterpart to Solidity's `+` operator.
         *
         * Requirements:
         * - Addition cannot overflow.
         */
        function add(uint256 a, uint256 b) internal pure returns (uint256) {
            uint256 c = a + b;
            require(c >= a, "SafeMath: addition overflow");
    
            return c;
        }
    
        /**
         * @dev Returns the addition of two unsigned integers, reverting with custom message on overflow.
         *
         * Counterpart to Solidity's `+` operator.
         *
         * Requirements:
         * - Addition cannot overflow.
         */
        function add(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            uint256 c = a + b;
            require(c >= a, errorMessage);
    
            return c;
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting on underflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         * - Subtraction cannot underflow.
         */
        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
            return sub(a, b, "SafeMath: subtraction underflow");
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting with custom message on underflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         * - Subtraction cannot underflow.
         */
        function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b <= a, errorMessage);
            uint256 c = a - b;
    
            return c;
        }
    
        /**
         * @dev Returns the multiplication of two unsigned integers, reverting on overflow.
         *
         * Counterpart to Solidity's `*` operator.
         *
         * Requirements:
         * - Multiplication cannot overflow.
         */
        function mul(uint256 a, uint256 b) internal pure returns (uint256) {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) {
                return 0;
            }
    
            uint256 c = a * b;
            require(c / a == b, "SafeMath: multiplication overflow");
    
            return c;
        }
    
        /**
         * @dev Returns the multiplication of two unsigned integers, reverting on overflow.
         *
         * Counterpart to Solidity's `*` operator.
         *
         * Requirements:
         * - Multiplication cannot overflow.
         */
        function mul(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) {
                return 0;
            }
    
            uint256 c = a * b;
            require(c / a == b, errorMessage);
    
            return c;
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers.
         * Reverts on division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b) internal pure returns (uint256) {
            return div(a, b, "SafeMath: division by zero");
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers.
         * Reverts with custom message on division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            // Solidity only automatically asserts when dividing by 0
            require(b > 0, errorMessage);
            uint256 c = a / b;
            // assert(a == b * c + a % b); // There is no case in which this doesn't hold
    
            return c;
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b) internal pure returns (uint256) {
            return mod(a, b, "SafeMath: modulo by zero");
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts with custom message when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b != 0, errorMessage);
            return a % b;
        }
    }
    
    contract Uni {
        /// @notice EIP-20 token name for this token
        string public constant name = "Uniswap";
    
        /// @notice EIP-20 token symbol for this token
        string public constant symbol = "UNI";
    
        /// @notice EIP-20 token decimals for this token
        uint8 public constant decimals = 18;
    
        /// @notice Total number of tokens in circulation
        uint public totalSupply = 1_000_000_000e18; // 1 billion Uni
    
        /// @notice Address which may mint new tokens
        address public minter;
    
        /// @notice The timestamp after which minting may occur
        uint public mintingAllowedAfter;
    
        /// @notice Minimum time between mints
        uint32 public constant minimumTimeBetweenMints = 1 days * 365;
    
        /// @notice Cap on the percentage of totalSupply that can be minted at each mint
        uint8 public constant mintCap = 2;
    
        /// @notice Allowance amounts on behalf of others
        mapping (address => mapping (address => uint96)) internal allowances;
    
        /// @notice Official record of token balances for each account
        mapping (address => uint96) internal balances;
    
        /// @notice A record of each accounts delegate
        mapping (address => address) public delegates;
    
        /// @notice A checkpoint for marking number of votes from a given block
        struct Checkpoint {
            uint32 fromBlock;
            uint96 votes;
        }
    
        /// @notice A record of votes checkpoints for each account, by index
        mapping (address => mapping (uint32 => Checkpoint)) public checkpoints;
    
        /// @notice The number of checkpoints for each account
        mapping (address => uint32) public numCheckpoints;
    
        /// @notice The EIP-712 typehash for the contract's domain
        bytes32 public constant DOMAIN_TYPEHASH = keccak256("EIP712Domain(string name,uint256 chainId,address verifyingContract)");
    
        /// @notice The EIP-712 typehash for the delegation struct used by the contract
        bytes32 public constant DELEGATION_TYPEHASH = keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)");
    
        /// @notice The EIP-712 typehash for the permit struct used by the contract
        bytes32 public constant PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
    
        /// @notice A record of states for signing / validating signatures
        mapping (address => uint) public nonces;
    
        /// @notice An event thats emitted when the minter address is changed
        event MinterChanged(address minter, address newMinter);
    
        /// @notice An event thats emitted when an account changes its delegate
        event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);
    
        /// @notice An event thats emitted when a delegate account's vote balance changes
        event DelegateVotesChanged(address indexed delegate, uint previousBalance, uint newBalance);
    
        /// @notice The standard EIP-20 transfer event
        event Transfer(address indexed from, address indexed to, uint256 amount);
    
        /// @notice The standard EIP-20 approval event
        event Approval(address indexed owner, address indexed spender, uint256 amount);
    
        /**
         * @notice Construct a new Uni token
         * @param account The initial account to grant all the tokens
         * @param minter_ The account with minting ability
         * @param mintingAllowedAfter_ The timestamp after which minting may occur
         */
        constructor(address account, address minter_, uint mintingAllowedAfter_) public {
            require(mintingAllowedAfter_ >= block.timestamp, "Uni::constructor: minting can only begin after deployment");
    
            balances[account] = uint96(totalSupply);
            emit Transfer(address(0), account, totalSupply);
            minter = minter_;
            emit MinterChanged(address(0), minter);
            mintingAllowedAfter = mintingAllowedAfter_;
        }
    
        /**
         * @notice Change the minter address
         * @param minter_ The address of the new minter
         */
        function setMinter(address minter_) external {
            require(msg.sender == minter, "Uni::setMinter: only the minter can change the minter address");
            emit MinterChanged(minter, minter_);
            minter = minter_;
        }
    
        /**
         * @notice Mint new tokens
         * @param dst The address of the destination account
         * @param rawAmount The number of tokens to be minted
         */
        function mint(address dst, uint rawAmount) external {
            require(msg.sender == minter, "Uni::mint: only the minter can mint");
            require(block.timestamp >= mintingAllowedAfter, "Uni::mint: minting not allowed yet");
            require(dst != address(0), "Uni::mint: cannot transfer to the zero address");
    
            // record the mint
            mintingAllowedAfter = SafeMath.add(block.timestamp, minimumTimeBetweenMints);
    
            // mint the amount
            uint96 amount = safe96(rawAmount, "Uni::mint: amount exceeds 96 bits");
            require(amount <= SafeMath.div(SafeMath.mul(totalSupply, mintCap), 100), "Uni::mint: exceeded mint cap");
            totalSupply = safe96(SafeMath.add(totalSupply, amount), "Uni::mint: totalSupply exceeds 96 bits");
    
            // transfer the amount to the recipient
            balances[dst] = add96(balances[dst], amount, "Uni::mint: transfer amount overflows");
            emit Transfer(address(0), dst, amount);
    
            // move delegates
            _moveDelegates(address(0), delegates[dst], amount);
        }
    
        /**
         * @notice Get the number of tokens `spender` is approved to spend on behalf of `account`
         * @param account The address of the account holding the funds
         * @param spender The address of the account spending the funds
         * @return The number of tokens approved
         */
        function allowance(address account, address spender) external view returns (uint) {
            return allowances[account][spender];
        }
    
        /**
         * @notice Approve `spender` to transfer up to `amount` from `src`
         * @dev This will overwrite the approval amount for `spender`
         *  and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)
         * @param spender The address of the account which may transfer tokens
         * @param rawAmount The number of tokens that are approved (2^256-1 means infinite)
         * @return Whether or not the approval succeeded
         */
        function approve(address spender, uint rawAmount) external returns (bool) {
            uint96 amount;
            if (rawAmount == uint(-1)) {
                amount = uint96(-1);
            } else {
                amount = safe96(rawAmount, "Uni::approve: amount exceeds 96 bits");
            }
    
            allowances[msg.sender][spender] = amount;
    
            emit Approval(msg.sender, spender, amount);
            return true;
        }
    
        /**
         * @notice Triggers an approval from owner to spends
         * @param owner The address to approve from
         * @param spender The address to be approved
         * @param rawAmount The number of tokens that are approved (2^256-1 means infinite)
         * @param deadline The time at which to expire the signature
         * @param v The recovery byte of the signature
         * @param r Half of the ECDSA signature pair
         * @param s Half of the ECDSA signature pair
         */
        function permit(address owner, address spender, uint rawAmount, uint deadline, uint8 v, bytes32 r, bytes32 s) external {
            uint96 amount;
            if (rawAmount == uint(-1)) {
                amount = uint96(-1);
            } else {
                amount = safe96(rawAmount, "Uni::permit: amount exceeds 96 bits");
            }
    
            bytes32 domainSeparator = keccak256(abi.encode(DOMAIN_TYPEHASH, keccak256(bytes(name)), getChainId(), address(this)));
            bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, rawAmount, nonces[owner]++, deadline));
            bytes32 digest = keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
            address signatory = ecrecover(digest, v, r, s);
            require(signatory != address(0), "Uni::permit: invalid signature");
            require(signatory == owner, "Uni::permit: unauthorized");
            require(now <= deadline, "Uni::permit: signature expired");
    
            allowances[owner][spender] = amount;
    
            emit Approval(owner, spender, amount);
        }
    
        /**
         * @notice Get the number of tokens held by the `account`
         * @param account The address of the account to get the balance of
         * @return The number of tokens held
         */
        function balanceOf(address account) external view returns (uint) {
            return balances[account];
        }
    
        /**
         * @notice Transfer `amount` tokens from `msg.sender` to `dst`
         * @param dst The address of the destination account
         * @param rawAmount The number of tokens to transfer
         * @return Whether or not the transfer succeeded
         */
        function transfer(address dst, uint rawAmount) external returns (bool) {
            uint96 amount = safe96(rawAmount, "Uni::transfer: amount exceeds 96 bits");
            _transferTokens(msg.sender, dst, amount);
            return true;
        }
    
        /**
         * @notice Transfer `amount` tokens from `src` to `dst`
         * @param src The address of the source account
         * @param dst The address of the destination account
         * @param rawAmount The number of tokens to transfer
         * @return Whether or not the transfer succeeded
         */
        function transferFrom(address src, address dst, uint rawAmount) external returns (bool) {
            address spender = msg.sender;
            uint96 spenderAllowance = allowances[src][spender];
            uint96 amount = safe96(rawAmount, "Uni::approve: amount exceeds 96 bits");
    
            if (spender != src && spenderAllowance != uint96(-1)) {
                uint96 newAllowance = sub96(spenderAllowance, amount, "Uni::transferFrom: transfer amount exceeds spender allowance");
                allowances[src][spender] = newAllowance;
    
                emit Approval(src, spender, newAllowance);
            }
    
            _transferTokens(src, dst, amount);
            return true;
        }
    
        /**
         * @notice Delegate votes from `msg.sender` to `delegatee`
         * @param delegatee The address to delegate votes to
         */
        function delegate(address delegatee) public {
            return _delegate(msg.sender, delegatee);
        }
    
        /**
         * @notice Delegates votes from signatory to `delegatee`
         * @param delegatee The address to delegate votes to
         * @param nonce The contract state required to match the signature
         * @param expiry The time at which to expire the signature
         * @param v The recovery byte of the signature
         * @param r Half of the ECDSA signature pair
         * @param s Half of the ECDSA signature pair
         */
        function delegateBySig(address delegatee, uint nonce, uint expiry, uint8 v, bytes32 r, bytes32 s) public {
            bytes32 domainSeparator = keccak256(abi.encode(DOMAIN_TYPEHASH, keccak256(bytes(name)), getChainId(), address(this)));
            bytes32 structHash = keccak256(abi.encode(DELEGATION_TYPEHASH, delegatee, nonce, expiry));
            bytes32 digest = keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
            address signatory = ecrecover(digest, v, r, s);
            require(signatory != address(0), "Uni::delegateBySig: invalid signature");
            require(nonce == nonces[signatory]++, "Uni::delegateBySig: invalid nonce");
            require(now <= expiry, "Uni::delegateBySig: signature expired");
            return _delegate(signatory, delegatee);
        }
    
        /**
         * @notice Gets the current votes balance for `account`
         * @param account The address to get votes balance
         * @return The number of current votes for `account`
         */
        function getCurrentVotes(address account) external view returns (uint96) {
            uint32 nCheckpoints = numCheckpoints[account];
            return nCheckpoints > 0 ? checkpoints[account][nCheckpoints - 1].votes : 0;
        }
    
        /**
         * @notice Determine the prior number of votes for an account as of a block number
         * @dev Block number must be a finalized block or else this function will revert to prevent misinformation.
         * @param account The address of the account to check
         * @param blockNumber The block number to get the vote balance at
         * @return The number of votes the account had as of the given block
         */
        function getPriorVotes(address account, uint blockNumber) public view returns (uint96) {
            require(blockNumber < block.number, "Uni::getPriorVotes: not yet determined");
    
            uint32 nCheckpoints = numCheckpoints[account];
            if (nCheckpoints == 0) {
                return 0;
            }
    
            // First check most recent balance
            if (checkpoints[account][nCheckpoints - 1].fromBlock <= blockNumber) {
                return checkpoints[account][nCheckpoints - 1].votes;
            }
    
            // Next check implicit zero balance
            if (checkpoints[account][0].fromBlock > blockNumber) {
                return 0;
            }
    
            uint32 lower = 0;
            uint32 upper = nCheckpoints - 1;
            while (upper > lower) {
                uint32 center = upper - (upper - lower) / 2; // ceil, avoiding overflow
                Checkpoint memory cp = checkpoints[account][center];
                if (cp.fromBlock == blockNumber) {
                    return cp.votes;
                } else if (cp.fromBlock < blockNumber) {
                    lower = center;
                } else {
                    upper = center - 1;
                }
            }
            return checkpoints[account][lower].votes;
        }
    
        function _delegate(address delegator, address delegatee) internal {
            address currentDelegate = delegates[delegator];
            uint96 delegatorBalance = balances[delegator];
            delegates[delegator] = delegatee;
    
            emit DelegateChanged(delegator, currentDelegate, delegatee);
    
            _moveDelegates(currentDelegate, delegatee, delegatorBalance);
        }
    
        function _transferTokens(address src, address dst, uint96 amount) internal {
            require(src != address(0), "Uni::_transferTokens: cannot transfer from the zero address");
            require(dst != address(0), "Uni::_transferTokens: cannot transfer to the zero address");
    
            balances[src] = sub96(balances[src], amount, "Uni::_transferTokens: transfer amount exceeds balance");
            balances[dst] = add96(balances[dst], amount, "Uni::_transferTokens: transfer amount overflows");
            emit Transfer(src, dst, amount);
    
            _moveDelegates(delegates[src], delegates[dst], amount);
        }
    
        function _moveDelegates(address srcRep, address dstRep, uint96 amount) internal {
            if (srcRep != dstRep && amount > 0) {
                if (srcRep != address(0)) {
                    uint32 srcRepNum = numCheckpoints[srcRep];
                    uint96 srcRepOld = srcRepNum > 0 ? checkpoints[srcRep][srcRepNum - 1].votes : 0;
                    uint96 srcRepNew = sub96(srcRepOld, amount, "Uni::_moveVotes: vote amount underflows");
                    _writeCheckpoint(srcRep, srcRepNum, srcRepOld, srcRepNew);
                }
    
                if (dstRep != address(0)) {
                    uint32 dstRepNum = numCheckpoints[dstRep];
                    uint96 dstRepOld = dstRepNum > 0 ? checkpoints[dstRep][dstRepNum - 1].votes : 0;
                    uint96 dstRepNew = add96(dstRepOld, amount, "Uni::_moveVotes: vote amount overflows");
                    _writeCheckpoint(dstRep, dstRepNum, dstRepOld, dstRepNew);
                }
            }
        }
    
        function _writeCheckpoint(address delegatee, uint32 nCheckpoints, uint96 oldVotes, uint96 newVotes) internal {
          uint32 blockNumber = safe32(block.number, "Uni::_writeCheckpoint: block number exceeds 32 bits");
    
          if (nCheckpoints > 0 && checkpoints[delegatee][nCheckpoints - 1].fromBlock == blockNumber) {
              checkpoints[delegatee][nCheckpoints - 1].votes = newVotes;
          } else {
              checkpoints[delegatee][nCheckpoints] = Checkpoint(blockNumber, newVotes);
              numCheckpoints[delegatee] = nCheckpoints + 1;
          }
    
          emit DelegateVotesChanged(delegatee, oldVotes, newVotes);
        }
    
        function safe32(uint n, string memory errorMessage) internal pure returns (uint32) {
            require(n < 2**32, errorMessage);
            return uint32(n);
        }
    
        function safe96(uint n, string memory errorMessage) internal pure returns (uint96) {
            require(n < 2**96, errorMessage);
            return uint96(n);
        }
    
        function add96(uint96 a, uint96 b, string memory errorMessage) internal pure returns (uint96) {
            uint96 c = a + b;
            require(c >= a, errorMessage);
            return c;
        }
    
        function sub96(uint96 a, uint96 b, string memory errorMessage) internal pure returns (uint96) {
            require(b <= a, errorMessage);
            return a - b;
        }
    
        function getChainId() internal pure returns (uint) {
            uint256 chainId;
            assembly { chainId := chainid() }
            return chainId;
        }
    }