Transaction Hash:
Block:
18508850 at Nov-05-2023 10:43:35 PM +UTC
Transaction Fee:
0.00235782466435863 ETH
$5.93
Gas Used:
152,886 Gas / 15.422109705 Gwei
Emitted Events:
272 |
RafldexCryptoCoins_V1_2.EntryBought( raffleId=53, buyer=[Sender] 0xf7e8bd74a806add8677a5860508861a18101c043, currentSize=14, numberEntries=1 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x10DFBCfC...b54EFcab7 | |||||
0x95222290...5CC4BAfe5
Miner
| (beaverbuild) | 15.927886705664529268 Eth | 15.927901994264529268 Eth | 0.0000152886 | |
0xF7e8BD74...18101c043 |
0.033784122585120838 Eth
Nonce: 365
|
0.031426297920762208 Eth
Nonce: 366
| 0.00235782466435863 |
Execution Trace
RafldexCryptoCoins_V1_2.buyEntry( )
buyEntry[RafldexCryptoCoins_V1_2 (ln:504)]
getCurrentTime[RafldexCryptoCoins_V1_2 (ln:510)]
isValid[RafldexCryptoCoins_V1_2 (ln:524)]
verify[RafldexCryptoCoins_V1_2 (ln:1001)]
processProof[MerkleProof (ln:1036)]
_efficientHash[MerkleProof (ln:1052)]
_efficientHash[MerkleProof (ln:1055)]
transferFrom[RafldexCryptoCoins_V1_2 (ln:539)]
encode[RafldexCryptoCoins_V1_2 (ln:545)]
EntriesBought[RafldexCryptoCoins_V1_2 (ln:551)]
push[RafldexCryptoCoins_V1_2 (ln:556)]
EntryBought[RafldexCryptoCoins_V1_2 (ln:558)]
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.12; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@openzeppelin/contracts/security/ReentrancyGuard.sol"; import "@openzeppelin/contracts/utils/math/Math.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; import "@chainlink/contracts/src/v0.8/interfaces/LinkTokenInterface.sol"; import "@chainlink/contracts/src/v0.8/interfaces/VRFCoordinatorV2Interface.sol"; import "@chainlink/contracts/src/v0.8/VRFConsumerBaseV2.sol"; import "@openzeppelin/contracts/utils/Strings.sol"; import "@openzeppelin/contracts/token/ERC721/IERC721.sol"; import "@openzeppelin/[email protected]/utils/cryptography/MerkleProof.sol"; contract RafldexCryptoCoins_V1_2 is Ownable, ReentrancyGuard, VRFConsumerBaseV2 { VRFCoordinatorV2Interface COORDINATOR; LinkTokenInterface LINKTOKEN; address constant vrfCoordinator = 0x271682DEB8C4E0901D1a1550aD2e64D568E69909; address constant link_token_contract = 0x514910771AF9Ca656af840dff83E8264EcF986CA; bytes32 private keyHash = 0x8af398995b04c28e9951adb9721ef74c74f93e6a478f39e7e0777be13527e7ef; uint16 private requestConfirmations = 3; uint32 private callbackGasLimit = 2500000; uint32 private numWords = 1; uint64 private subscriptionId = 810; struct RandomResult { uint256 randomNumber; uint256 nomalizedRandomNumber; } struct RaffleInfo { uint256 id; uint256 size; } mapping(uint256 => RandomResult) public requests; mapping(uint256 => RaffleInfo) public chainlinkRaffleInfo; event TokenAdded(address _address); event CollectionWhitelisted(address _collection, uint256 _rafflesnumber); event UserBlacklisted(address _address); event AddedTokenPayment(address _address); event RequestFulfilled( uint256 requestId, uint256 randomNumber, uint256 indexed raffleId ); event RequestSent(uint256 requestId, uint32 numWords); event RaffleCreated( uint256 indexed raffleId // address[] coinAddress, // uint256[] amount ); event RaffleDrawn( uint256 indexed raffleId, address indexed winner, uint256 amountRaised, uint256 randomNumber ); event EntryBought( uint256 indexed raffleId, address indexed buyer, uint256 currentSize, uint256 numberEntries ); event EntryGifted( uint256 indexed raffleId, address indexed gifter, address indexed buyer, uint256 currentSize, uint256 numberEntries ); event RaffleSetNotToCancel(uint256 indexed raffleId, address creator); event RaffleCancelled(uint256 indexed raffleId, uint256 amountRaised); event SetWinnerTriggered(uint256 indexed raffleId, uint256 amountRaised); event RaffleRootChanged(uint256 indexed raffleId, bytes32 root); struct EntriesBought { address player; uint256 currentEntriesLength; uint256 entries; } mapping(uint256 => EntriesBought[]) public entriesList; enum STATUS { CREATED, PENDING_DRAW, DRAWING, DRAWN, CANCELLED } struct RaffleStruct { STATUS status; uint256 endTime; address[] collateralAddress; uint256[] collateralAmount; uint256 entriesSupply; uint256 pricePerEntry; uint256 maxEntriesUser; address winner; uint256 randomNumber; address creator; uint256 platformPercentage; address tokenPayment; uint256 entriesSold; bool canCancel; bytes32 root; } RaffleStruct[] public raffles; struct RaffleCreationHolder { uint256 startTime; uint256 endTime; uint256 countRaffles; } mapping(bytes32 => RaffleCreationHolder) public raffleCreationData; mapping(address => uint256) public numberRafflesMonthCollection; mapping(bytes32 => uint256) public entriesInfo; bytes32 public constant OPERATOR_ROLE = keccak256("OPERATOR"); bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00; address payable private platformWallet = payable(0x2300Ae69d7D1Ea0457aD79e822422888e3Ee3e87); uint256 public CHAINLINK_RAFFLE_FEE = 0.015 ether; uint256 public HOLDER_CREATE_RAFFLE_FEE = 0.02 ether; uint256 public HOLDER_CREATE_RAFFLE_FEE_DISCOUNT = 0.01 ether; uint256 public CANCELATION_RAFFLE_FEE_BASE = 0 ether; uint256 public SUBSCRIPTION_PRICE = 0.5 ether; uint256 public COMMISSION_HOLDERS = 500; //5 % uint256 public COMMISSION_HOLDERS_DISCOUNT = 350; //3.5% uint256 public COMMISSION_SUBSCRIBERS = 300; //3% uint256 public COMMISSION_SUBSCRIBERS_DISCOUNT = 150; //1.5% mapping(address => bool) public TokenAddresses; mapping(address => bool) public TokenPaymentAddresses; mapping(address => bool) public DiscountTokenPayments; bool public createEnabledHolders = true; bool public createEnabledSubscribers = true; struct RoleData { mapping(address => bool) members; bytes32 adminRole; } mapping(bytes32 => RoleData) private _roles; constructor() VRFConsumerBaseV2(vrfCoordinator) { COORDINATOR = VRFCoordinatorV2Interface(vrfCoordinator); LINKTOKEN = LinkTokenInterface(link_token_contract); _setupRole(OPERATOR_ROLE, msg.sender); _setupRole(DEFAULT_ADMIN_ROLE, msg.sender); } modifier onlyRole(bytes32 role, address account) { _checkRole(role, account); _; } function createRaffleOperator( uint256 _endTime, address[] memory _collateralAddress, uint256[] memory _collateralAmount, address _tokenPayment, uint256 _pricePerEntry, uint256 _maxEntriesRaffle, uint256 _maxEntriesUser, bytes32 _root ) external payable onlyRole(OPERATOR_ROLE, msg.sender) returns (uint256) { require( _endTime > getCurrentTime(), "End time can't be < as current time." ); require(_maxEntriesRaffle > 0, "No entries"); require( _maxEntriesUser > 0 && _maxEntriesUser <= _maxEntriesRaffle, "Min entries user > 0 and <= max entries raffle" ); require( _collateralAddress.length == _collateralAmount.length, "Require same length" ); if (_tokenPayment != address(0)) { require( TokenPaymentAddresses[_tokenPayment], "Token Address not added " ); } uint256 totalEth; for (uint256 i = 0; i < _collateralAddress.length; i++) { require(_collateralAmount[i] > 0, "Amount can't be null"); if (_collateralAddress[i] == address(0)) { totalEth += _collateralAmount[i]; } else { require( TokenAddresses[_collateralAddress[i]], "Token Address not added " ); /* require( IERC20(_collateralAddress[i]).balanceOf(msg.sender) >= _collateralAmount[i], "Need to have in wallet equal or more than ERC20 Token price" );*/ safeTransferFrom( msg.sender, address(this), _collateralAddress[i], _collateralAmount[i] ); } } require(msg.value == totalEth, "Total mismatched"); uint256 _commissionInBasicPoints = 0; RaffleStruct memory raffle = RaffleStruct({ status: STATUS.CREATED, endTime: _endTime, collateralAddress: _collateralAddress, collateralAmount: _collateralAmount, pricePerEntry: _pricePerEntry, entriesSupply: _maxEntriesRaffle, maxEntriesUser: _maxEntriesUser, winner: address(0), randomNumber: 0, creator: msg.sender, platformPercentage: _commissionInBasicPoints, tokenPayment: _tokenPayment, entriesSold: 0, canCancel: true, root: _root }); raffles.push(raffle); uint256 idRaffle = raffles.length - 1; EntriesBought memory entryBought = EntriesBought({ player: address(0), currentEntriesLength: 0, entries: 0 }); entriesList[idRaffle].push(entryBought); delete entriesList[idRaffle][0]; emit RaffleCreated(idRaffle); return idRaffle; } function createRaffleSubscriber( uint256 _endTime, address[] memory _collateralAddress, uint256[] memory _collateralAmount, address _tokenPayment, uint256 _pricePerEntry, uint256 _maxEntriesRaffle, uint256 _maxEntriesUser, bytes32 _root ) external payable nonReentrant returns (uint256) { require( _endTime > getCurrentTime(), "End time can't be < as current time." ); require( createEnabledSubscribers, "Create raffle noot set for subscribers." ); require(msg.value >= CHAINLINK_RAFFLE_FEE, "Invalid funds provided"); require(_maxEntriesRaffle > 0, "No entries"); require( _maxEntriesUser > 0 && _maxEntriesUser <= _maxEntriesRaffle, "Min entries user > 0 and <= max entries raffle" ); require( _collateralAddress.length == _collateralAmount.length, "Require same length" ); if (_tokenPayment != address(0)) { require( TokenPaymentAddresses[_tokenPayment], "Token Address not added " ); } uint256 totalEth; for (uint256 i = 0; i < _collateralAddress.length; i++) { require(_collateralAmount[i] > 0, "Amount can't be null"); if (_collateralAddress[i] == address(0)) { totalEth += _collateralAmount[i]; } else { require( TokenAddresses[_collateralAddress[i]], "Token Address not added " ); safeTransferFrom( msg.sender, address(this), _collateralAddress[i], _collateralAmount[i] ); } } require(msg.value >= totalEth + CHAINLINK_RAFFLE_FEE , "Total mismatched"); uint256 _commissionInBasicPoints = 0; if (DiscountTokenPayments[_tokenPayment]) { _commissionInBasicPoints = COMMISSION_SUBSCRIBERS_DISCOUNT; } else { _commissionInBasicPoints = COMMISSION_SUBSCRIBERS; } platformWallet.transfer(CHAINLINK_RAFFLE_FEE); RaffleStruct memory raffle = RaffleStruct({ status: STATUS.CREATED, endTime: _endTime, collateralAddress: _collateralAddress, collateralAmount: _collateralAmount, pricePerEntry: _pricePerEntry, entriesSupply: _maxEntriesRaffle, maxEntriesUser: _maxEntriesUser, winner: address(0), randomNumber: 0, creator: msg.sender, platformPercentage: _commissionInBasicPoints, tokenPayment: _tokenPayment, entriesSold: 0, canCancel: true, root: _root }); raffles.push(raffle); uint256 idRaffle = raffles.length - 1; EntriesBought memory entryBought = EntriesBought({ player: address(0), currentEntriesLength: 0, entries: 0 }); entriesList[idRaffle].push(entryBought); delete entriesList[idRaffle][0]; emit RaffleCreated(idRaffle); return idRaffle; } function createRaffleHolder( address createRaffleCollection, uint256 createRaffleTokenId, uint256 _endTime, address[] memory _collateralAddress, uint256[] memory _collateralAmount, address _tokenPayment, uint256 _pricePerEntry, uint256 _maxEntriesRaffle, uint256 _maxEntriesUser ) external payable nonReentrant returns (uint256) { require( _endTime > getCurrentTime(), "End time can't be < as current time." ); require(createEnabledHolders, "Create raffle not set for holders."); require(_maxEntriesRaffle > 0, "No entries"); require( _maxEntriesUser > 0 && _maxEntriesUser <= _maxEntriesRaffle, "Min entries user > 0 and <= max entries raffle" ); require( _collateralAddress.length == _collateralAmount.length, "Require same length" ); if (_tokenPayment != address(0)) { require( TokenPaymentAddresses[_tokenPayment], "Token Address not added " ); } IERC721 createraffleNFT = IERC721(createRaffleCollection); require( createraffleNFT.ownerOf(createRaffleTokenId) == msg.sender, "Not the owner of tokenId" ); bytes32 hash = keccak256( abi.encode(createRaffleCollection, createRaffleTokenId) ); if (raffleCreationData[hash].endTime > getCurrentTime()) { require( numberRafflesRemainingPerNFT( createRaffleCollection, createRaffleTokenId ) > 0, "Created too many raffles with your NFT you hold." ); raffleCreationData[hash].countRaffles++; } else { raffleCreationData[hash].startTime = getCurrentTime(); raffleCreationData[hash].endTime = getCurrentTime() + 30 days; raffleCreationData[hash].countRaffles = 1; } uint256 totalEth; for (uint256 i = 0; i < _collateralAddress.length; i++) { require(_collateralAmount[i] > 0, "Amount can't be null"); if (_collateralAddress[i] == address(0)) { totalEth += _collateralAmount[i]; } else { require( TokenAddresses[_collateralAddress[i]], "Token Address not added " ); safeTransferFrom( msg.sender, address(this), _collateralAddress[i], _collateralAmount[i] ); } } uint256 _commissionInBasicPoints = 0; if (DiscountTokenPayments[_tokenPayment]) { require( msg.value >= HOLDER_CREATE_RAFFLE_FEE_DISCOUNT + CHAINLINK_RAFFLE_FEE + totalEth, "Invalid funds provided" ); platformWallet.transfer(HOLDER_CREATE_RAFFLE_FEE_DISCOUNT + CHAINLINK_RAFFLE_FEE); _commissionInBasicPoints = COMMISSION_HOLDERS_DISCOUNT; } else { require( msg.value >= HOLDER_CREATE_RAFFLE_FEE + CHAINLINK_RAFFLE_FEE + totalEth, "Invalid funds provided" ); platformWallet.transfer(HOLDER_CREATE_RAFFLE_FEE + CHAINLINK_RAFFLE_FEE); _commissionInBasicPoints = COMMISSION_HOLDERS; } RaffleStruct memory raffle = RaffleStruct({ status: STATUS.CREATED, endTime: _endTime, collateralAddress: _collateralAddress, collateralAmount: _collateralAmount, pricePerEntry: _pricePerEntry, entriesSupply: _maxEntriesRaffle, maxEntriesUser: _maxEntriesUser, winner: address(0), randomNumber: 0, creator: msg.sender, platformPercentage: _commissionInBasicPoints, tokenPayment: _tokenPayment, entriesSold: 0, canCancel: true, root: bytes32(0) }); raffles.push(raffle); uint256 idRaffle = raffles.length - 1; EntriesBought memory entryBought = EntriesBought({ player: address(0), currentEntriesLength: 0, entries: 0 }); entriesList[idRaffle].push(entryBought); delete entriesList[idRaffle][0]; emit RaffleCreated(idRaffle); return idRaffle; } function giftEntry( uint256 _raffleId, uint256 _numberEntries, address _user, bytes32[] memory proof ) external payable { RaffleStruct storage raffle = raffles[_raffleId]; require(raffle.endTime > getCurrentTime(), "Raffle Closed on time"); require(raffle.status == STATUS.CREATED, "Raffle is not in CREATED"); if (raffle.root != bytes32(0)) { require( isValid( proof, raffle.root, keccak256(abi.encodePacked(msg.sender)) ), "Not part of Whitelist" ); } require( _numberEntries > 0 && _numberEntries <= raffle.maxEntriesUser, "Number entries can't be 0 or more than max entries per user." ); require( _user != address(0) && _user != msg.sender, "Address cant't be null address / msg sender" ); require( raffle.entriesSold + _numberEntries <= raffles[_raffleId].entriesSupply, "Raffle has reached max entries" ); if (raffle.tokenPayment == address(0)) { require( msg.value == raffle.pricePerEntry * _numberEntries, "msg.value must be equal to the price" ); } else { IERC20(raffle.tokenPayment).transferFrom( msg.sender, address(this), raffle.pricePerEntry * _numberEntries ); } bytes32 hash = keccak256(abi.encode(msg.sender, _raffleId)); require( entriesInfo[hash] + _numberEntries <= raffle.maxEntriesUser, "Max entries user reached." ); entriesInfo[hash] += _numberEntries; EntriesBought memory entryBought = EntriesBought({ player: _user, currentEntriesLength: uint256(raffle.entriesSold + _numberEntries), entries: _numberEntries }); entriesList[_raffleId].push(entryBought); raffle.entriesSold += _numberEntries; emit EntryGifted( _raffleId, msg.sender, _user, raffle.entriesSold, _numberEntries ); } function buyEntry( uint256 _raffleId, uint256 _numberEntries, bytes32[] memory proof ) external payable { RaffleStruct storage raffle = raffles[_raffleId]; require(raffle.endTime > getCurrentTime(), "Raffle Closed on time"); require(raffle.status == STATUS.CREATED, "Raffle is not in CREATED"); require( _numberEntries > 0 && _numberEntries <= raffle.maxEntriesUser, "Number entries can't be 0 or more than max entries per user." ); require(msg.sender != address(0), "Address cant't be null address"); require( raffle.entriesSold + _numberEntries <= raffles[_raffleId].entriesSupply, "Raffle has reached max entries" ); if (raffle.root != bytes32(0)) { require( isValid( proof, raffle.root, keccak256(abi.encodePacked(msg.sender)) ), "Not part of the Whitelist" ); } if (raffle.tokenPayment == address(0)) { require( msg.value == raffle.pricePerEntry * _numberEntries, "msg.value must be equal to the price" ); } else { IERC20(raffle.tokenPayment).transferFrom( msg.sender, address(this), raffle.pricePerEntry * _numberEntries ); } bytes32 hash = keccak256(abi.encode(msg.sender, _raffleId)); require( entriesInfo[hash] + _numberEntries <= raffle.maxEntriesUser, "Max entries user reached." ); entriesInfo[hash] += _numberEntries; EntriesBought memory entryBought = EntriesBought({ player: msg.sender, currentEntriesLength: uint256(raffle.entriesSold + _numberEntries), entries: _numberEntries }); entriesList[_raffleId].push(entryBought); raffle.entriesSold += _numberEntries; emit EntryBought(_raffleId, msg.sender, raffle.entriesSold, _numberEntries); } function getCurrentTime() public view returns (uint256) { return block.timestamp; } function addorRemoveTokens(address[] memory _addresses, bool _isAdded) external onlyRole(OPERATOR_ROLE, msg.sender) { for (uint256 i = 0; i < _addresses.length; i++) { TokenAddresses[_addresses[i]] = _isAdded; if (_isAdded == true) { emit TokenAdded(_addresses[i]); } } } function ChangeCancellationFeeBase(uint256 _fee) external onlyRole(OPERATOR_ROLE, msg.sender) { CANCELATION_RAFFLE_FEE_BASE = _fee; } function ChangeSubscriptionId(uint64 _id) external onlyRole(OPERATOR_ROLE, msg.sender) { subscriptionId = _id; } function ChangecallbackGasLimit(uint32 _number) external onlyRole(OPERATOR_ROLE, msg.sender) { callbackGasLimit = _number; } function ChangeKeyHash(bytes32 _hash) external onlyRole(OPERATOR_ROLE, msg.sender) { keyHash = _hash; } function setNumberRafflesCollectionWhitelistedPerMonth( address[] memory _collection, uint256[] memory _rafflesnumber ) external onlyRole(OPERATOR_ROLE, msg.sender) { require( _collection.length == _rafflesnumber.length, "Require same length" ); for (uint256 i = 0; i < _collection.length; i++) { numberRafflesMonthCollection[_collection[i]] = _rafflesnumber[i]; emit CollectionWhitelisted(_collection[i], _rafflesnumber[i]); } } function numberRafflesRemainingPerNFT( address _collectionaddress, uint256 _tokenid ) public view returns (uint256) { uint256 numberRafflesNFT = 0; if (numberRafflesMonthCollection[_collectionaddress] > 0) { bytes32 hashNFT = keccak256( abi.encode(_collectionaddress, _tokenid) ); numberRafflesNFT = numberRafflesMonthCollection[_collectionaddress] - raffleCreationData[hashNFT].countRaffles; } return numberRafflesNFT; } function changePlatformWalletAddress(address payable _address) external onlyOwner { platformWallet = _address; } function getEntriesBought(uint256 _raffleId) public view returns (EntriesBought[] memory) { return entriesList[_raffleId]; } function addTokenPayments(address[] memory _address, bool _isAdded) external onlyRole(OPERATOR_ROLE, msg.sender) { for (uint256 i = 0; i < _address.length; i++) { TokenPaymentAddresses[_address[i]] = _isAdded; if (_isAdded == true) { emit AddedTokenPayment(_address[i]); } } } function addDiscountTokenPayment(address _address, bool _isAdded) external onlyRole(OPERATOR_ROLE, msg.sender) { DiscountTokenPayments[_address] = _isAdded; } function toggleCreateHoldersEnabled() external onlyRole(OPERATOR_ROLE, msg.sender) { createEnabledHolders = !createEnabledHolders; } function toggleCreateSubscribersEnabled() external onlyRole(OPERATOR_ROLE, msg.sender) { createEnabledSubscribers = !createEnabledSubscribers; } function getWinnerAddressFromRandom( uint256 _raffleId, uint256 _normalizedRandomNumber ) public view returns (address) { address winner; EntriesBought[] storage entries = entriesList[_raffleId]; for (uint256 i = 0; i < entries.length; i++) { uint256 entriesIndex = entries[i].currentEntriesLength; if (entriesIndex >= _normalizedRandomNumber) { winner = entries[i].player; break; } } require(winner != address(0), "Winner not found"); return winner; } function requestRandomWords(uint256 _id, uint256 _entriesSold) internal returns (uint256 requestId) { requestId = COORDINATOR.requestRandomWords( keyHash, subscriptionId, requestConfirmations, callbackGasLimit, numWords ); chainlinkRaffleInfo[requestId] = RaffleInfo({ id: _id, size: _entriesSold }); RaffleStruct storage raffle = raffles[_id]; raffle.status = STATUS.DRAWING; emit RequestSent(requestId, numWords); return requestId; } function requestRandomWordsRetry(uint256 _id) external onlyRole(OPERATOR_ROLE, msg.sender) returns (uint256 requestId) { RaffleStruct storage raffle = raffles[_id]; requestId = COORDINATOR.requestRandomWords( keyHash, subscriptionId, requestConfirmations, callbackGasLimit, numWords ); chainlinkRaffleInfo[requestId] = RaffleInfo({ id: _id, size: raffle.entriesSold }); raffle.status = STATUS.DRAWING; emit RequestSent(requestId, numWords); return requestId; } function transferNFTsAndFunds( uint256 _raffleId, uint256 _normalizedRandomNumber ) internal nonReentrant { RaffleStruct storage raffle = raffles[_raffleId]; raffle.randomNumber = _normalizedRandomNumber; raffle.winner = (raffle.entriesSold == 0) ? raffle.creator : getWinnerAddressFromRandom(_raffleId, _normalizedRandomNumber); safeMultipleTransfersFrom( address(this), raffle.winner, raffle.collateralAddress, raffle.collateralAmount ); uint256 amountRaised = raffle.entriesSold * raffle.pricePerEntry; uint256 amountForPlatform = (amountRaised * raffle.platformPercentage) / 10000; uint256 amountForSeller = amountRaised - amountForPlatform; if (raffle.tokenPayment == address(0)) { (bool sent, ) = raffle.creator.call{value: amountForSeller}(""); require(sent, "Failed to send Eth"); (bool sent2, ) = platformWallet.call{value: amountForPlatform}(""); require(sent2, "Failed send Eth to Platform"); } else { IERC20(raffle.tokenPayment).approve(address(this), amountRaised); bool sent = IERC20(raffle.tokenPayment).transferFrom( address(this), raffle.creator, amountForSeller ); require(sent, "Failed to send ERC20 Token"); bool sent2 = IERC20(raffle.tokenPayment).transferFrom( address(this), platformWallet, amountForPlatform ); require(sent2, "Failed to send ERC20 Token to platform"); } raffle.status = STATUS.DRAWN; emit RaffleDrawn( _raffleId, raffle.winner, amountRaised, raffle.randomNumber ); } function fulfillRandomWords( uint256 _requestId, uint256[] memory _randomWords ) internal override { uint256 normalizedRandomNumber = (_randomWords[0] % chainlinkRaffleInfo[_requestId].size) + 1; RaffleStruct storage raffle = raffles[ chainlinkRaffleInfo[_requestId].id ]; raffle.randomNumber = normalizedRandomNumber; RandomResult memory result = RandomResult({ randomNumber: _randomWords[0], nomalizedRandomNumber: normalizedRandomNumber }); requests[chainlinkRaffleInfo[_requestId].id] = result; emit RequestFulfilled( _requestId, normalizedRandomNumber, chainlinkRaffleInfo[_requestId].id ); transferNFTsAndFunds( chainlinkRaffleInfo[_requestId].id, normalizedRandomNumber ); } function setWinnerRaffle(uint256 _raffleId) external nonReentrant { RaffleStruct storage raffle = raffles[_raffleId]; require( raffle.creator == msg.sender || hasRole(OPERATOR_ROLE, msg.sender), "Not raffle creator or operator." ); if ( hasRole(OPERATOR_ROLE, msg.sender) && raffle.creator != msg.sender ) { require( raffle.entriesSold == raffle.entriesSupply || raffle.endTime <= getCurrentTime(), "Raffle still opened or not sold out" ); } require(raffle.status == STATUS.CREATED, "Raffle in wrong status"); raffle.status = STATUS.PENDING_DRAW; uint256 entriesSold = raffle.entriesSold; uint256 amountRaised = entriesSold * raffle.pricePerEntry; if (entriesSold == 0) { raffle.status = STATUS.DRAWING; transferNFTsAndFunds(_raffleId, raffle.randomNumber); } else { requestRandomWords(_raffleId, entriesSold); } emit SetWinnerTriggered(_raffleId, amountRaised); } function setWinnerRaffleEmergency(uint256 _raffleId) external onlyRole(OPERATOR_ROLE, msg.sender) { //function in case that chainlink vrf2 doesnt work RaffleStruct storage raffle = raffles[_raffleId]; if ( raffle.creator != msg.sender ) { require( raffle.entriesSold == raffle.entriesSupply || raffle.endTime <= getCurrentTime(), "Raffle still opened or not sold out" ); } uint256 entriesSold = raffle.entriesSold; bytes32 baseHash = keccak256( abi.encodePacked( block.number, block.timestamp, block.gaslimit, block.coinbase ) ); uint256 normalizedRandomNumber = (uint256(baseHash) % entriesSold) + 1; raffle.randomNumber = normalizedRandomNumber; transferNFTsAndFunds(_raffleId, normalizedRandomNumber); } function cancelRaffle(uint256 _raffleId) external payable nonReentrant { RaffleStruct storage raffle = raffles[_raffleId]; require( raffle.creator == msg.sender || hasRole(OPERATOR_ROLE, msg.sender), "Not raffle creator or Operator." ); require( raffle.endTime > getCurrentTime(), "End time can't be < as current time." ); require(raffle.status == STATUS.CREATED, "Wrong status"); if (!hasRole(OPERATOR_ROLE, msg.sender)) { require(raffle.canCancel, "User Can't cancel"); if (raffle.entriesSold == 0) { require(msg.value == 0, "Not cancelation fee value."); } else { require( msg.value >= CANCELATION_RAFFLE_FEE_BASE, "Not cancelation fee value." ); platformWallet.transfer(CANCELATION_RAFFLE_FEE_BASE); } } uint256 txLength = entriesList[_raffleId].length; require( txLength <= 200, "Not cancelation available when it's more than 200 txs." ); uint256 amountRaised = raffle.entriesSold * raffle.pricePerEntry; if (raffle.tokenPayment == address(0)) { for (uint256 i = 0; i < txLength; i++) { address user = entriesList[_raffleId][i].player; if (user != address(0)) { uint256 amountToSend = raffle.pricePerEntry * entriesList[_raffleId][i].entries; payable(user).transfer(amountToSend); } } } else { IERC20(raffle.tokenPayment).approve(address(this), amountRaised); for (uint256 i = 0; i < txLength; i++) { address user = entriesList[_raffleId][i].player; if (user != address(0)) { uint256 amountToSend = raffle.pricePerEntry * entriesList[_raffleId][i].entries; IERC20(raffle.tokenPayment).transferFrom( address(this), user, amountToSend ); } } } safeMultipleTransfersFrom( address(this), raffle.creator, raffle.collateralAddress, raffle.collateralAmount ); raffle.status = STATUS.CANCELLED; emit RaffleCancelled(_raffleId, amountRaised); } function safeMultipleTransfersFrom( address from, address to, address[] memory tokenAddresses, uint256[] memory tokenAmounts ) internal virtual { for (uint256 i = 0; i < tokenAddresses.length; i++) { safeTransferFrom(from, to, tokenAddresses[i], tokenAmounts[i]); } } function safeTransferFrom( address from, address to, address tokenAddress, uint256 tokenAmount ) internal virtual { if (tokenAddress == address(0)) { payable(to).transfer(tokenAmount); } else { if (from == address(this)) { IERC20(tokenAddress).approve(address(this), tokenAmount); } IERC20(tokenAddress).transferFrom(from, to, tokenAmount); } } function setRaffleToNotCancel(uint256 _raffleId) external nonReentrant { RaffleStruct storage raffle = raffles[_raffleId]; require(raffle.creator == msg.sender, "Not raffle creator."); if (raffle.canCancel == true) { raffle.canCancel = false; emit RaffleSetNotToCancel(_raffleId, msg.sender); } } function _setupRole(bytes32 role, address account) internal virtual { _grantRole(role, account); } function hasRole(bytes32 role, address account) public view virtual returns (bool) { return _roles[role].members[account]; } function _checkRole(bytes32 role, address account) internal view virtual { if (!hasRole(role, account)) { revert( string( abi.encodePacked( "AccessControl: account ", Strings.toHexString(account), " is missing role ", Strings.toHexString(uint256(role), 32) ) ) ); } } function grantRole(bytes32 role, address account) public virtual onlyRole(OPERATOR_ROLE, msg.sender) { _grantRole(role, account); } function revokeRole(bytes32 role, address account) public virtual onlyRole(OPERATOR_ROLE, msg.sender) { _revokeRole(role, account); } function _revokeRole(bytes32 role, address account) internal virtual { if (hasRole(role, account)) { _roles[role].members[account] = false; } } function _grantRole(bytes32 role, address account) internal virtual { if (!hasRole(role, account)) { _roles[role].members[account] = true; } } function isValid( bytes32[] memory proof, bytes32 root, bytes32 leaf ) public view virtual returns (bool) { return MerkleProof.verify(proof, root, leaf); } function changeRootRaffle(uint256 _raffleId, bytes32 _root) external nonReentrant { RaffleStruct storage raffle = raffles[_raffleId]; require(raffle.creator == msg.sender, "Not raffle creator."); raffle.root = _root; emit RaffleRootChanged(_raffleId, _root); } }// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (utils/cryptography/MerkleProof.sol) pragma solidity ^0.8.0; /** * @dev These functions deal with verification of Merkle Trees proofs. * * The proofs can be generated using the JavaScript library * https://github.com/miguelmota/merkletreejs[merkletreejs]. * Note: the hashing algorithm should be keccak256 and pair sorting should be enabled. * * See `test/utils/cryptography/MerkleProof.test.js` for some examples. */ library MerkleProof { /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. */ function verify( bytes32[] memory proof, bytes32 root, bytes32 leaf ) internal pure returns (bool) { return processProof(proof, leaf) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merklee tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leafs & pre-images are assumed to be sorted. * * _Available since v4.4._ */ function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { bytes32 proofElement = proof[i]; if (computedHash <= proofElement) { // Hash(current computed hash + current element of the proof) computedHash = _efficientHash(computedHash, proofElement); } else { // Hash(current element of the proof + current computed hash) computedHash = _efficientHash(proofElement, computedHash); } } return computedHash; } function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) { assembly { mstore(0x00, a) mstore(0x20, b) value := keccak256(0x00, 0x40) } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.0; import "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 tokenId) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; import "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toString(int256 value) internal pure returns (string memory) { return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return keccak256(bytes(a)) == keccak256(bytes(b)); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /** **************************************************************************** * @notice Interface for contracts using VRF randomness * ***************************************************************************** * @dev PURPOSE * * @dev Reggie the Random Oracle (not his real job) wants to provide randomness * @dev to Vera the verifier in such a way that Vera can be sure he's not * @dev making his output up to suit himself. Reggie provides Vera a public key * @dev to which he knows the secret key. Each time Vera provides a seed to * @dev Reggie, he gives back a value which is computed completely * @dev deterministically from the seed and the secret key. * * @dev Reggie provides a proof by which Vera can verify that the output was * @dev correctly computed once Reggie tells it to her, but without that proof, * @dev the output is indistinguishable to her from a uniform random sample * @dev from the output space. * * @dev The purpose of this contract is to make it easy for unrelated contracts * @dev to talk to Vera the verifier about the work Reggie is doing, to provide * @dev simple access to a verifiable source of randomness. It ensures 2 things: * @dev 1. The fulfillment came from the VRFCoordinator * @dev 2. The consumer contract implements fulfillRandomWords. * ***************************************************************************** * @dev USAGE * * @dev Calling contracts must inherit from VRFConsumerBase, and can * @dev initialize VRFConsumerBase's attributes in their constructor as * @dev shown: * * @dev contract VRFConsumer { * @dev constructor(<other arguments>, address _vrfCoordinator, address _link) * @dev VRFConsumerBase(_vrfCoordinator) public { * @dev <initialization with other arguments goes here> * @dev } * @dev } * * @dev The oracle will have given you an ID for the VRF keypair they have * @dev committed to (let's call it keyHash). Create subscription, fund it * @dev and your consumer contract as a consumer of it (see VRFCoordinatorInterface * @dev subscription management functions). * @dev Call requestRandomWords(keyHash, subId, minimumRequestConfirmations, * @dev callbackGasLimit, numWords), * @dev see (VRFCoordinatorInterface for a description of the arguments). * * @dev Once the VRFCoordinator has received and validated the oracle's response * @dev to your request, it will call your contract's fulfillRandomWords method. * * @dev The randomness argument to fulfillRandomWords is a set of random words * @dev generated from your requestId and the blockHash of the request. * * @dev If your contract could have concurrent requests open, you can use the * @dev requestId returned from requestRandomWords to track which response is associated * @dev with which randomness request. * @dev See "SECURITY CONSIDERATIONS" for principles to keep in mind, * @dev if your contract could have multiple requests in flight simultaneously. * * @dev Colliding `requestId`s are cryptographically impossible as long as seeds * @dev differ. * * ***************************************************************************** * @dev SECURITY CONSIDERATIONS * * @dev A method with the ability to call your fulfillRandomness method directly * @dev could spoof a VRF response with any random value, so it's critical that * @dev it cannot be directly called by anything other than this base contract * @dev (specifically, by the VRFConsumerBase.rawFulfillRandomness method). * * @dev For your users to trust that your contract's random behavior is free * @dev from malicious interference, it's best if you can write it so that all * @dev behaviors implied by a VRF response are executed *during* your * @dev fulfillRandomness method. If your contract must store the response (or * @dev anything derived from it) and use it later, you must ensure that any * @dev user-significant behavior which depends on that stored value cannot be * @dev manipulated by a subsequent VRF request. * * @dev Similarly, both miners and the VRF oracle itself have some influence * @dev over the order in which VRF responses appear on the blockchain, so if * @dev your contract could have multiple VRF requests in flight simultaneously, * @dev you must ensure that the order in which the VRF responses arrive cannot * @dev be used to manipulate your contract's user-significant behavior. * * @dev Since the block hash of the block which contains the requestRandomness * @dev call is mixed into the input to the VRF *last*, a sufficiently powerful * @dev miner could, in principle, fork the blockchain to evict the block * @dev containing the request, forcing the request to be included in a * @dev different block with a different hash, and therefore a different input * @dev to the VRF. However, such an attack would incur a substantial economic * @dev cost. This cost scales with the number of blocks the VRF oracle waits * @dev until it calls responds to a request. It is for this reason that * @dev that you can signal to an oracle you'd like them to wait longer before * @dev responding to the request (however this is not enforced in the contract * @dev and so remains effective only in the case of unmodified oracle software). */ abstract contract VRFConsumerBaseV2 { error OnlyCoordinatorCanFulfill(address have, address want); address private immutable vrfCoordinator; /** * @param _vrfCoordinator address of VRFCoordinator contract */ constructor(address _vrfCoordinator) { vrfCoordinator = _vrfCoordinator; } /** * @notice fulfillRandomness handles the VRF response. Your contract must * @notice implement it. See "SECURITY CONSIDERATIONS" above for important * @notice principles to keep in mind when implementing your fulfillRandomness * @notice method. * * @dev VRFConsumerBaseV2 expects its subcontracts to have a method with this * @dev signature, and will call it once it has verified the proof * @dev associated with the randomness. (It is triggered via a call to * @dev rawFulfillRandomness, below.) * * @param requestId The Id initially returned by requestRandomness * @param randomWords the VRF output expanded to the requested number of words */ function fulfillRandomWords(uint256 requestId, uint256[] memory randomWords) internal virtual; // rawFulfillRandomness is called by VRFCoordinator when it receives a valid VRF // proof. rawFulfillRandomness then calls fulfillRandomness, after validating // the origin of the call function rawFulfillRandomWords(uint256 requestId, uint256[] memory randomWords) external { if (msg.sender != vrfCoordinator) { revert OnlyCoordinatorCanFulfill(msg.sender, vrfCoordinator); } fulfillRandomWords(requestId, randomWords); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface VRFCoordinatorV2Interface { /** * @notice Get configuration relevant for making requests * @return minimumRequestConfirmations global min for request confirmations * @return maxGasLimit global max for request gas limit * @return s_provingKeyHashes list of registered key hashes */ function getRequestConfig() external view returns ( uint16, uint32, bytes32[] memory ); /** * @notice Request a set of random words. * @param keyHash - Corresponds to a particular oracle job which uses * that key for generating the VRF proof. Different keyHash's have different gas price * ceilings, so you can select a specific one to bound your maximum per request cost. * @param subId - The ID of the VRF subscription. Must be funded * with the minimum subscription balance required for the selected keyHash. * @param minimumRequestConfirmations - How many blocks you'd like the * oracle to wait before responding to the request. See SECURITY CONSIDERATIONS * for why you may want to request more. The acceptable range is * [minimumRequestBlockConfirmations, 200]. * @param callbackGasLimit - How much gas you'd like to receive in your * fulfillRandomWords callback. Note that gasleft() inside fulfillRandomWords * may be slightly less than this amount because of gas used calling the function * (argument decoding etc.), so you may need to request slightly more than you expect * to have inside fulfillRandomWords. The acceptable range is * [0, maxGasLimit] * @param numWords - The number of uint256 random values you'd like to receive * in your fulfillRandomWords callback. Note these numbers are expanded in a * secure way by the VRFCoordinator from a single random value supplied by the oracle. * @return requestId - A unique identifier of the request. Can be used to match * a request to a response in fulfillRandomWords. */ function requestRandomWords( bytes32 keyHash, uint64 subId, uint16 minimumRequestConfirmations, uint32 callbackGasLimit, uint32 numWords ) external returns (uint256 requestId); /** * @notice Create a VRF subscription. * @return subId - A unique subscription id. * @dev You can manage the consumer set dynamically with addConsumer/removeConsumer. * @dev Note to fund the subscription, use transferAndCall. For example * @dev LINKTOKEN.transferAndCall( * @dev address(COORDINATOR), * @dev amount, * @dev abi.encode(subId)); */ function createSubscription() external returns (uint64 subId); /** * @notice Get a VRF subscription. * @param subId - ID of the subscription * @return balance - LINK balance of the subscription in juels. * @return reqCount - number of requests for this subscription, determines fee tier. * @return owner - owner of the subscription. * @return consumers - list of consumer address which are able to use this subscription. */ function getSubscription(uint64 subId) external view returns ( uint96 balance, uint64 reqCount, address owner, address[] memory consumers ); /** * @notice Request subscription owner transfer. * @param subId - ID of the subscription * @param newOwner - proposed new owner of the subscription */ function requestSubscriptionOwnerTransfer(uint64 subId, address newOwner) external; /** * @notice Request subscription owner transfer. * @param subId - ID of the subscription * @dev will revert if original owner of subId has * not requested that msg.sender become the new owner. */ function acceptSubscriptionOwnerTransfer(uint64 subId) external; /** * @notice Add a consumer to a VRF subscription. * @param subId - ID of the subscription * @param consumer - New consumer which can use the subscription */ function addConsumer(uint64 subId, address consumer) external; /** * @notice Remove a consumer from a VRF subscription. * @param subId - ID of the subscription * @param consumer - Consumer to remove from the subscription */ function removeConsumer(uint64 subId, address consumer) external; /** * @notice Cancel a subscription * @param subId - ID of the subscription * @param to - Where to send the remaining LINK to */ function cancelSubscription(uint64 subId, address to) external; /* * @notice Check to see if there exists a request commitment consumers * for all consumers and keyhashes for a given sub. * @param subId - ID of the subscription * @return true if there exists at least one unfulfilled request for the subscription, false * otherwise. */ function pendingRequestExists(uint64 subId) external view returns (bool); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface LinkTokenInterface { function allowance(address owner, address spender) external view returns (uint256 remaining); function approve(address spender, uint256 value) external returns (bool success); function balanceOf(address owner) external view returns (uint256 balance); function decimals() external view returns (uint8 decimalPlaces); function decreaseApproval(address spender, uint256 addedValue) external returns (bool success); function increaseApproval(address spender, uint256 subtractedValue) external; function name() external view returns (string memory tokenName); function symbol() external view returns (string memory tokenSymbol); function totalSupply() external view returns (uint256 totalTokensIssued); function transfer(address to, uint256 value) external returns (bool success); function transferAndCall( address to, uint256 value, bytes calldata data ) external returns (bool success); function transferFrom( address from, address to, uint256 value ) external returns (bool success); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be _NOT_ENTERED require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == _ENTERED; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }