ETH Price: $2,529.37 (-0.04%)
Gas: 0.35 Gwei

Transaction Decoder

Block:
18744285 at Dec-08-2023 09:42:23 PM +UTC
Transaction Fee:
0.008003741028291316 ETH $20.24
Gas Used:
191,873 Gas / 41.713743092 Gwei

Emitted Events:

Account State Difference:

  Address   Before After State Difference Code
1.852894451099702118 Eth1.852913638399702118 Eth0.0000191873
0x4caDFE63...f2593156d
0.049531538657714 Eth
Nonce: 11111
0.041527797629422684 Eth
Nonce: 11112
0.008003741028291316
0x799Db4FE...37859a34b
0xC02Ad364...fD31fFaA5

Execution Trace

ClaimAITNFT.claim( signature=0x904F84796AEF03DC544F2A63097CFE2ED7E51D69D52DA9B2C89D8D0A367964FF174DABE6C3111DCC7963B26C3E0C2EF87B63B9AA335A81ACF768F40396EBB7571C )
  • Null: 0x000...001.291441a6( )
  • AITNFT.mint( to=0x4caDFE63af96404BcB3FbEF877Dc7AAf2593156d )
    File 1 of 2: ClaimAITNFT
    // Sources flattened with hardhat v2.19.1 https://hardhat.org
    
    // SPDX-License-Identifier: MIT
    
    // File @openzeppelin/contracts/utils/math/[email protected]
    
    // Original license: SPDX_License_Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Standard math utilities missing in the Solidity language.
     */
    library Math {
        enum Rounding {
            Down, // Toward negative infinity
            Up, // Toward infinity
            Zero // Toward zero
        }
    
        /**
         * @dev Returns the largest of two numbers.
         */
        function max(uint256 a, uint256 b) internal pure returns (uint256) {
            return a > b ? a : b;
        }
    
        /**
         * @dev Returns the smallest of two numbers.
         */
        function min(uint256 a, uint256 b) internal pure returns (uint256) {
            return a < b ? a : b;
        }
    
        /**
         * @dev Returns the average of two numbers. The result is rounded towards
         * zero.
         */
        function average(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b) / 2 can overflow.
            return (a & b) + (a ^ b) / 2;
        }
    
        /**
         * @dev Returns the ceiling of the division of two numbers.
         *
         * This differs from standard division with `/` in that it rounds up instead
         * of rounding down.
         */
        function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b - 1) / b can overflow on addition, so we distribute.
            return a == 0 ? 0 : (a - 1) / b + 1;
        }
    
        /**
         * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
         * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
         * with further edits by Uniswap Labs also under MIT license.
         */
        function mulDiv(
            uint256 x,
            uint256 y,
            uint256 denominator
        ) internal pure returns (uint256 result) {
            unchecked {
                // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                // variables such that product = prod1 * 2^256 + prod0.
                uint256 prod0; // Least significant 256 bits of the product
                uint256 prod1; // Most significant 256 bits of the product
                assembly {
                    let mm := mulmod(x, y, not(0))
                    prod0 := mul(x, y)
                    prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                }
    
                // Handle non-overflow cases, 256 by 256 division.
                if (prod1 == 0) {
                    return prod0 / denominator;
                }
    
                // Make sure the result is less than 2^256. Also prevents denominator == 0.
                require(denominator > prod1);
    
                ///////////////////////////////////////////////
                // 512 by 256 division.
                ///////////////////////////////////////////////
    
                // Make division exact by subtracting the remainder from [prod1 prod0].
                uint256 remainder;
                assembly {
                    // Compute remainder using mulmod.
                    remainder := mulmod(x, y, denominator)
    
                    // Subtract 256 bit number from 512 bit number.
                    prod1 := sub(prod1, gt(remainder, prod0))
                    prod0 := sub(prod0, remainder)
                }
    
                // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                // See https://cs.stackexchange.com/q/138556/92363.
    
                // Does not overflow because the denominator cannot be zero at this stage in the function.
                uint256 twos = denominator & (~denominator + 1);
                assembly {
                    // Divide denominator by twos.
                    denominator := div(denominator, twos)
    
                    // Divide [prod1 prod0] by twos.
                    prod0 := div(prod0, twos)
    
                    // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                    twos := add(div(sub(0, twos), twos), 1)
                }
    
                // Shift in bits from prod1 into prod0.
                prod0 |= prod1 * twos;
    
                // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                // four bits. That is, denominator * inv = 1 mod 2^4.
                uint256 inverse = (3 * denominator) ^ 2;
    
                // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                // in modular arithmetic, doubling the correct bits in each step.
                inverse *= 2 - denominator * inverse; // inverse mod 2^8
                inverse *= 2 - denominator * inverse; // inverse mod 2^16
                inverse *= 2 - denominator * inverse; // inverse mod 2^32
                inverse *= 2 - denominator * inverse; // inverse mod 2^64
                inverse *= 2 - denominator * inverse; // inverse mod 2^128
                inverse *= 2 - denominator * inverse; // inverse mod 2^256
    
                // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                // is no longer required.
                result = prod0 * inverse;
                return result;
            }
        }
    
        /**
         * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
         */
        function mulDiv(
            uint256 x,
            uint256 y,
            uint256 denominator,
            Rounding rounding
        ) internal pure returns (uint256) {
            uint256 result = mulDiv(x, y, denominator);
            if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                result += 1;
            }
            return result;
        }
    
        /**
         * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
         *
         * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
         */
        function sqrt(uint256 a) internal pure returns (uint256) {
            if (a == 0) {
                return 0;
            }
    
            // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
            //
            // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
            // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
            //
            // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
            // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
            // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
            //
            // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
            uint256 result = 1 << (log2(a) >> 1);
    
            // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
            // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
            // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
            // into the expected uint128 result.
            unchecked {
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                return min(result, a / result);
            }
        }
    
        /**
         * @notice Calculates sqrt(a), following the selected rounding direction.
         */
        function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = sqrt(a);
                return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
            }
        }
    
        /**
         * @dev Return the log in base 2, rounded down, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 128;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 64;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 32;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 16;
                }
                if (value >> 8 > 0) {
                    value >>= 8;
                    result += 8;
                }
                if (value >> 4 > 0) {
                    value >>= 4;
                    result += 4;
                }
                if (value >> 2 > 0) {
                    value >>= 2;
                    result += 2;
                }
                if (value >> 1 > 0) {
                    result += 1;
                }
            }
            return result;
        }
    
        /**
         * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log2(value);
                return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
            }
        }
    
        /**
         * @dev Return the log in base 10, rounded down, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >= 10**64) {
                    value /= 10**64;
                    result += 64;
                }
                if (value >= 10**32) {
                    value /= 10**32;
                    result += 32;
                }
                if (value >= 10**16) {
                    value /= 10**16;
                    result += 16;
                }
                if (value >= 10**8) {
                    value /= 10**8;
                    result += 8;
                }
                if (value >= 10**4) {
                    value /= 10**4;
                    result += 4;
                }
                if (value >= 10**2) {
                    value /= 10**2;
                    result += 2;
                }
                if (value >= 10**1) {
                    result += 1;
                }
            }
            return result;
        }
    
        /**
         * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log10(value);
                return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
            }
        }
    
        /**
         * @dev Return the log in base 256, rounded down, of a positive value.
         * Returns 0 if given 0.
         *
         * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
         */
        function log256(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 16;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 8;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 4;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 2;
                }
                if (value >> 8 > 0) {
                    result += 1;
                }
            }
            return result;
        }
    
        /**
         * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log256(value);
                return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
            }
        }
    }
    
    
    // File @openzeppelin/contracts/utils/[email protected]
    
    // Original license: SPDX_License_Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev String operations.
     */
    library Strings {
        bytes16 private constant _SYMBOLS = "0123456789abcdef";
        uint8 private constant _ADDRESS_LENGTH = 20;
    
        /**
         * @dev Converts a `uint256` to its ASCII `string` decimal representation.
         */
        function toString(uint256 value) internal pure returns (string memory) {
            unchecked {
                uint256 length = Math.log10(value) + 1;
                string memory buffer = new string(length);
                uint256 ptr;
                /// @solidity memory-safe-assembly
                assembly {
                    ptr := add(buffer, add(32, length))
                }
                while (true) {
                    ptr--;
                    /// @solidity memory-safe-assembly
                    assembly {
                        mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                    }
                    value /= 10;
                    if (value == 0) break;
                }
                return buffer;
            }
        }
    
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
         */
        function toHexString(uint256 value) internal pure returns (string memory) {
            unchecked {
                return toHexString(value, Math.log256(value) + 1);
            }
        }
    
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
         */
        function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
            bytes memory buffer = new bytes(2 * length + 2);
            buffer[0] = "0";
            buffer[1] = "x";
            for (uint256 i = 2 * length + 1; i > 1; --i) {
                buffer[i] = _SYMBOLS[value & 0xf];
                value >>= 4;
            }
            require(value == 0, "Strings: hex length insufficient");
            return string(buffer);
        }
    
        /**
         * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
         */
        function toHexString(address addr) internal pure returns (string memory) {
            return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
        }
    }
    
    
    // File @openzeppelin/contracts/utils/cryptography/[email protected]
    
    // Original license: SPDX_License_Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
     *
     * These functions can be used to verify that a message was signed by the holder
     * of the private keys of a given address.
     */
    library ECDSA {
        enum RecoverError {
            NoError,
            InvalidSignature,
            InvalidSignatureLength,
            InvalidSignatureS,
            InvalidSignatureV // Deprecated in v4.8
        }
    
        function _throwError(RecoverError error) private pure {
            if (error == RecoverError.NoError) {
                return; // no error: do nothing
            } else if (error == RecoverError.InvalidSignature) {
                revert("ECDSA: invalid signature");
            } else if (error == RecoverError.InvalidSignatureLength) {
                revert("ECDSA: invalid signature length");
            } else if (error == RecoverError.InvalidSignatureS) {
                revert("ECDSA: invalid signature 's' value");
            }
        }
    
        /**
         * @dev Returns the address that signed a hashed message (`hash`) with
         * `signature` or error string. This address can then be used for verification purposes.
         *
         * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
         * this function rejects them by requiring the `s` value to be in the lower
         * half order, and the `v` value to be either 27 or 28.
         *
         * IMPORTANT: `hash` _must_ be the result of a hash operation for the
         * verification to be secure: it is possible to craft signatures that
         * recover to arbitrary addresses for non-hashed data. A safe way to ensure
         * this is by receiving a hash of the original message (which may otherwise
         * be too long), and then calling {toEthSignedMessageHash} on it.
         *
         * Documentation for signature generation:
         * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
         * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
         *
         * _Available since v4.3._
         */
        function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
            if (signature.length == 65) {
                bytes32 r;
                bytes32 s;
                uint8 v;
                // ecrecover takes the signature parameters, and the only way to get them
                // currently is to use assembly.
                /// @solidity memory-safe-assembly
                assembly {
                    r := mload(add(signature, 0x20))
                    s := mload(add(signature, 0x40))
                    v := byte(0, mload(add(signature, 0x60)))
                }
                return tryRecover(hash, v, r, s);
            } else {
                return (address(0), RecoverError.InvalidSignatureLength);
            }
        }
    
        /**
         * @dev Returns the address that signed a hashed message (`hash`) with
         * `signature`. This address can then be used for verification purposes.
         *
         * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
         * this function rejects them by requiring the `s` value to be in the lower
         * half order, and the `v` value to be either 27 or 28.
         *
         * IMPORTANT: `hash` _must_ be the result of a hash operation for the
         * verification to be secure: it is possible to craft signatures that
         * recover to arbitrary addresses for non-hashed data. A safe way to ensure
         * this is by receiving a hash of the original message (which may otherwise
         * be too long), and then calling {toEthSignedMessageHash} on it.
         */
        function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
            (address recovered, RecoverError error) = tryRecover(hash, signature);
            _throwError(error);
            return recovered;
        }
    
        /**
         * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
         *
         * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
         *
         * _Available since v4.3._
         */
        function tryRecover(
            bytes32 hash,
            bytes32 r,
            bytes32 vs
        ) internal pure returns (address, RecoverError) {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    
        /**
         * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
         *
         * _Available since v4.2._
         */
        function recover(
            bytes32 hash,
            bytes32 r,
            bytes32 vs
        ) internal pure returns (address) {
            (address recovered, RecoverError error) = tryRecover(hash, r, vs);
            _throwError(error);
            return recovered;
        }
    
        /**
         * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
         * `r` and `s` signature fields separately.
         *
         * _Available since v4.3._
         */
        function tryRecover(
            bytes32 hash,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) internal pure returns (address, RecoverError) {
            // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
            // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
            // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
            // signatures from current libraries generate a unique signature with an s-value in the lower half order.
            //
            // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
            // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
            // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
            // these malleable signatures as well.
            if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
                return (address(0), RecoverError.InvalidSignatureS);
            }
    
            // If the signature is valid (and not malleable), return the signer address
            address signer = ecrecover(hash, v, r, s);
            if (signer == address(0)) {
                return (address(0), RecoverError.InvalidSignature);
            }
    
            return (signer, RecoverError.NoError);
        }
    
        /**
         * @dev Overload of {ECDSA-recover} that receives the `v`,
         * `r` and `s` signature fields separately.
         */
        function recover(
            bytes32 hash,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) internal pure returns (address) {
            (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
            _throwError(error);
            return recovered;
        }
    
        /**
         * @dev Returns an Ethereum Signed Message, created from a `hash`. This
         * produces hash corresponding to the one signed with the
         * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
         * JSON-RPC method as part of EIP-191.
         *
         * See {recover}.
         */
        function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
            // 32 is the length in bytes of hash,
            // enforced by the type signature above
            return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
        }
    
        /**
         * @dev Returns an Ethereum Signed Message, created from `s`. This
         * produces hash corresponding to the one signed with the
         * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
         * JSON-RPC method as part of EIP-191.
         *
         * See {recover}.
         */
        function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
            return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
        }
    
        /**
         * @dev Returns an Ethereum Signed Typed Data, created from a
         * `domainSeparator` and a `structHash`. This produces hash corresponding
         * to the one signed with the
         * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
         * JSON-RPC method as part of EIP-712.
         *
         * See {recover}.
         */
        function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
            return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
        }
    }
    
    
    // File contracts/ClaimAITNFT.sol
    
    // Sources flattened with hardhat v2.10.1 https://hardhat.org
    
    // File @openzeppelin/contracts/utils/[email protected]
    
    // Original license: SPDX_License_Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
    
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    
    
    // File @openzeppelin/contracts/access/[email protected]
    
     
    // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
    
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor() {
            _transferOwnership(_msgSender());
        }
    
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
    
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
    
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            require(owner() == _msgSender(), "Ownable: caller is not the owner");
        }
    
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions anymore. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            _transferOwnership(newOwner);
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }
    
    
    // File contracts/ClaimAITONFT.sol
    
    pragma solidity ^0.8.0;
    
    interface IAITNFT {
        function mint(address to) external;
    }   
    
    contract ClaimAITNFT is Ownable{
        
        address public AITNFT;
        bool public claimEnabled = true;
    
        mapping(address => bool) public isClaimed;
        mapping(address => bool) public admin;
    
        constructor(address _AITNFT) { 
            AITNFT = _AITNFT;
        }
    
        event Claim(
            address user,
            uint blockTime
        );
    
        event ChangeStatus(
            bool status,
            uint blockTime
        );
    
        event SetAdmin(
            address admin,
            bool status,
            uint blockTime
        );
    
        function changeStatus(bool _status) external onlyOwner() {
            claimEnabled = _status;
            emit ChangeStatus(_status, block.timestamp);
        }
    
        function setAdmin(address _admin, bool _status) external onlyOwner() {
            admin[_admin] =  _status;
            emit SetAdmin(_admin, _status, block.timestamp);
        }
    
        function getChainId() public view returns (uint256) {
            uint256 chainId;
            assembly {
                chainId := chainid()
            }
            return chainId;
        }
    
        function claim(bytes calldata signature) external {
            require(claimEnabled, "CLAIM: WAITING_FOR_CLAIM_TO_BE_OPENED");
            require(!isClaimed[msg.sender]);
            bytes32 criteriaMessageHash = getMessageHash(msg.sender);
            bytes32 ethSignedMessageHash = ECDSA.toEthSignedMessageHash(criteriaMessageHash);
            require(admin[ECDSA.recover(ethSignedMessageHash, signature)],"Claim: invalid signature");
            IAITNFT(AITNFT).mint(msg.sender);
            isClaimed[msg.sender] = true;
            emit Claim(msg.sender, block.timestamp);
        }
    
        function getMessageHash(
            address _user
        ) public view returns (bytes32) {
            uint256 chainId = getChainId();
             return
                keccak256(
                    abi.encodePacked(
                        _user,
                        chainId
                    )
                );
        }
    
    }

    File 2 of 2: AITNFT
    // Sources flattened with hardhat v2.10.1 https://hardhat.org
    
    // File @openzeppelin/contracts/utils/introspection/[email protected]
    
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Interface of the ERC165 standard, as defined in the
     * https://eips.ethereum.org/EIPS/eip-165[EIP].
     *
     * Implementers can declare support of contract interfaces, which can then be
     * queried by others ({ERC165Checker}).
     *
     * For an implementation, see {ERC165}.
     */
    interface IERC165 {
        /**
         * @dev Returns true if this contract implements the interface defined by
         * `interfaceId`. See the corresponding
         * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
         * to learn more about how these ids are created.
         *
         * This function call must use less than 30 000 gas.
         */
        function supportsInterface(bytes4 interfaceId) external view returns (bool);
    }
    
    
    // File contracts/token/onft/IONFT721Core.sol
    
     
    
    pragma solidity >=0.5.0;
    
    /**
     * @dev Interface of the ONFT Core standard
     */
    interface IONFT721Core is IERC165 {
        /**
         * @dev Emitted when `_tokenIds[]` are moved from the `_sender` to (`_dstChainId`, `_toAddress`)
         * `_nonce` is the outbound nonce from
         */
        event SendToChain(uint16 indexed _dstChainId, address indexed _from, bytes indexed _toAddress, uint[] _tokenIds);
        event ReceiveFromChain(uint16 indexed _srcChainId, bytes indexed _srcAddress, address indexed _toAddress, uint[] _tokenIds);
    
        /**
         * @dev Emitted when `_payload` was received from lz, but not enough gas to deliver all tokenIds
         */
        event CreditStored(bytes32 _hashedPayload, bytes _payload);
        /**
         * @dev Emitted when `_hashedPayload` has been completely delivered
         */
        event CreditCleared(bytes32 _hashedPayload);
    
        /**
         * @dev send token `_tokenId` to (`_dstChainId`, `_toAddress`) from `_from`
         * `_toAddress` can be any size depending on the `dstChainId`.
         * `_zroPaymentAddress` set to address(0x0) if not paying in ZRO (LayerZero Token)
         * `_adapterParams` is a flexible bytes array to indicate messaging adapter services
         */
        function sendFrom(address _from, uint16 _dstChainId, bytes calldata _toAddress, uint _tokenId, address payable _refundAddress, address _zroPaymentAddress, bytes calldata _adapterParams) external payable;
        /**
         * @dev send tokens `_tokenIds[]` to (`_dstChainId`, `_toAddress`) from `_from`
         * `_toAddress` can be any size depending on the `dstChainId`.
         * `_zroPaymentAddress` set to address(0x0) if not paying in ZRO (LayerZero Token)
         * `_adapterParams` is a flexible bytes array to indicate messaging adapter services
         */
        function sendBatchFrom(address _from, uint16 _dstChainId, bytes calldata _toAddress, uint[] calldata _tokenIds, address payable _refundAddress, address _zroPaymentAddress, bytes calldata _adapterParams) external payable;
    
        /**
         * @dev estimate send token `_tokenId` to (`_dstChainId`, `_toAddress`)
         * _dstChainId - L0 defined chain id to send tokens too
         * _toAddress - dynamic bytes array which contains the address to whom you are sending tokens to on the dstChain
         * _tokenId - token Id to transfer
         * _useZro - indicates to use zro to pay L0 fees
         * _adapterParams - flexible bytes array to indicate messaging adapter services in L0
         */
        function estimateSendFee(uint16 _dstChainId, bytes calldata _toAddress, uint _tokenId, bool _useZro, bytes calldata _adapterParams) external view returns (uint nativeFee, uint zroFee);
        /**
         * @dev estimate send token `_tokenId` to (`_dstChainId`, `_toAddress`)
         * _dstChainId - L0 defined chain id to send tokens too
         * _toAddress - dynamic bytes array which contains the address to whom you are sending tokens to on the dstChain
         * _tokenIds[] - token Ids to transfer
         * _useZro - indicates to use zro to pay L0 fees
         * _adapterParams - flexible bytes array to indicate messaging adapter services in L0
         */
        function estimateSendBatchFee(uint16 _dstChainId, bytes calldata _toAddress, uint[] calldata _tokenIds, bool _useZro, bytes calldata _adapterParams) external view returns (uint nativeFee, uint zroFee);
    }
    
    
    // File @openzeppelin/contracts/token/ERC721/[email protected]
    
     
    // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC721/IERC721.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Required interface of an ERC721 compliant contract.
     */
    interface IERC721 is IERC165 {
        /**
         * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
         */
        event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
    
        /**
         * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
         */
        event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
    
        /**
         * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
         */
        event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
    
        /**
         * @dev Returns the number of tokens in ``owner``'s account.
         */
        function balanceOf(address owner) external view returns (uint256 balance);
    
        /**
         * @dev Returns the owner of the `tokenId` token.
         *
         * Requirements:
         *
         * - `tokenId` must exist.
         */
        function ownerOf(uint256 tokenId) external view returns (address owner);
    
        /**
         * @dev Safely transfers `tokenId` token from `from` to `to`.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `tokenId` token must exist and be owned by `from`.
         * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
         * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
         *
         * Emits a {Transfer} event.
         */
        function safeTransferFrom(
            address from,
            address to,
            uint256 tokenId,
            bytes calldata data
        ) external;
    
        /**
         * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
         * are aware of the ERC721 protocol to prevent tokens from being forever locked.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `tokenId` token must exist and be owned by `from`.
         * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
         * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
         *
         * Emits a {Transfer} event.
         */
        function safeTransferFrom(
            address from,
            address to,
            uint256 tokenId
        ) external;
    
        /**
         * @dev Transfers `tokenId` token from `from` to `to`.
         *
         * WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `tokenId` token must be owned by `from`.
         * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address from,
            address to,
            uint256 tokenId
        ) external;
    
        /**
         * @dev Gives permission to `to` to transfer `tokenId` token to another account.
         * The approval is cleared when the token is transferred.
         *
         * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
         *
         * Requirements:
         *
         * - The caller must own the token or be an approved operator.
         * - `tokenId` must exist.
         *
         * Emits an {Approval} event.
         */
        function approve(address to, uint256 tokenId) external;
    
        /**
         * @dev Approve or remove `operator` as an operator for the caller.
         * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
         *
         * Requirements:
         *
         * - The `operator` cannot be the caller.
         *
         * Emits an {ApprovalForAll} event.
         */
        function setApprovalForAll(address operator, bool _approved) external;
    
        /**
         * @dev Returns the account approved for `tokenId` token.
         *
         * Requirements:
         *
         * - `tokenId` must exist.
         */
        function getApproved(uint256 tokenId) external view returns (address operator);
    
        /**
         * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
         *
         * See {setApprovalForAll}
         */
        function isApprovedForAll(address owner, address operator) external view returns (bool);
    }
    
    
    // File contracts/token/onft/IONFT721.sol
    
     
    
    pragma solidity >=0.5.0;
    
    
    /**
     * @dev Interface of the ONFT standard
     */
    interface IONFT721 is IONFT721Core, IERC721 {
    
    }
    
    
    // File @openzeppelin/contracts/utils/[email protected]
    
     
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
    
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    
    
    // File @openzeppelin/contracts/access/[email protected]
    
     
    // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
    
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor() {
            _transferOwnership(_msgSender());
        }
    
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
    
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
    
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            require(owner() == _msgSender(), "Ownable: caller is not the owner");
        }
    
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions anymore. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            _transferOwnership(newOwner);
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }
    
    
    // File contracts/interfaces/ILayerZeroReceiver.sol
    
     
    
    pragma solidity >=0.5.0;
    
    interface ILayerZeroReceiver {
        // @notice LayerZero endpoint will invoke this function to deliver the message on the destination
        // @param _srcChainId - the source endpoint identifier
        // @param _srcAddress - the source sending contract address from the source chain
        // @param _nonce - the ordered message nonce
        // @param _payload - the signed payload is the UA bytes has encoded to be sent
        function lzReceive(uint16 _srcChainId, bytes calldata _srcAddress, uint64 _nonce, bytes calldata _payload) external;
    }
    
    
    // File contracts/interfaces/ILayerZeroUserApplicationConfig.sol
    
     
    
    pragma solidity >=0.5.0;
    
    interface ILayerZeroUserApplicationConfig {
        // @notice set the configuration of the LayerZero messaging library of the specified version
        // @param _version - messaging library version
        // @param _chainId - the chainId for the pending config change
        // @param _configType - type of configuration. every messaging library has its own convention.
        // @param _config - configuration in the bytes. can encode arbitrary content.
        function setConfig(uint16 _version, uint16 _chainId, uint _configType, bytes calldata _config) external;
    
        // @notice set the send() LayerZero messaging library version to _version
        // @param _version - new messaging library version
        function setSendVersion(uint16 _version) external;
    
        // @notice set the lzReceive() LayerZero messaging library version to _version
        // @param _version - new messaging library version
        function setReceiveVersion(uint16 _version) external;
    
        // @notice Only when the UA needs to resume the message flow in blocking mode and clear the stored payload
        // @param _srcChainId - the chainId of the source chain
        // @param _srcAddress - the contract address of the source contract at the source chain
        function forceResumeReceive(uint16 _srcChainId, bytes calldata _srcAddress) external;
    }
    
    
    // File contracts/interfaces/ILayerZeroEndpoint.sol
    
     
    
    pragma solidity >=0.5.0;
    
    interface ILayerZeroEndpoint is ILayerZeroUserApplicationConfig {
        // @notice send a LayerZero message to the specified address at a LayerZero endpoint.
        // @param _dstChainId - the destination chain identifier
        // @param _destination - the address on destination chain (in bytes). address length/format may vary by chains
        // @param _payload - a custom bytes payload to send to the destination contract
        // @param _refundAddress - if the source transaction is cheaper than the amount of value passed, refund the additional amount to this address
        // @param _zroPaymentAddress - the address of the ZRO token holder who would pay for the transaction
        // @param _adapterParams - parameters for custom functionality. e.g. receive airdropped native gas from the relayer on destination
        function send(uint16 _dstChainId, bytes calldata _destination, bytes calldata _payload, address payable _refundAddress, address _zroPaymentAddress, bytes calldata _adapterParams) external payable;
    
        // @notice used by the messaging library to publish verified payload
        // @param _srcChainId - the source chain identifier
        // @param _srcAddress - the source contract (as bytes) at the source chain
        // @param _dstAddress - the address on destination chain
        // @param _nonce - the unbound message ordering nonce
        // @param _gasLimit - the gas limit for external contract execution
        // @param _payload - verified payload to send to the destination contract
        function receivePayload(uint16 _srcChainId, bytes calldata _srcAddress, address _dstAddress, uint64 _nonce, uint _gasLimit, bytes calldata _payload) external;
    
        // @notice get the inboundNonce of a lzApp from a source chain which could be EVM or non-EVM chain
        // @param _srcChainId - the source chain identifier
        // @param _srcAddress - the source chain contract address
        function getInboundNonce(uint16 _srcChainId, bytes calldata _srcAddress) external view returns (uint64);
    
        // @notice get the outboundNonce from this source chain which, consequently, is always an EVM
        // @param _srcAddress - the source chain contract address
        function getOutboundNonce(uint16 _dstChainId, address _srcAddress) external view returns (uint64);
    
        // @notice gets a quote in source native gas, for the amount that send() requires to pay for message delivery
        // @param _dstChainId - the destination chain identifier
        // @param _userApplication - the user app address on this EVM chain
        // @param _payload - the custom message to send over LayerZero
        // @param _payInZRO - if false, user app pays the protocol fee in native token
        // @param _adapterParam - parameters for the adapter service, e.g. send some dust native token to dstChain
        function estimateFees(uint16 _dstChainId, address _userApplication, bytes calldata _payload, bool _payInZRO, bytes calldata _adapterParam) external view returns (uint nativeFee, uint zroFee);
    
        // @notice get this Endpoint's immutable source identifier
        function getChainId() external view returns (uint16);
    
        // @notice the interface to retry failed message on this Endpoint destination
        // @param _srcChainId - the source chain identifier
        // @param _srcAddress - the source chain contract address
        // @param _payload - the payload to be retried
        function retryPayload(uint16 _srcChainId, bytes calldata _srcAddress, bytes calldata _payload) external;
    
        // @notice query if any STORED payload (message blocking) at the endpoint.
        // @param _srcChainId - the source chain identifier
        // @param _srcAddress - the source chain contract address
        function hasStoredPayload(uint16 _srcChainId, bytes calldata _srcAddress) external view returns (bool);
    
        // @notice query if the _libraryAddress is valid for sending msgs.
        // @param _userApplication - the user app address on this EVM chain
        function getSendLibraryAddress(address _userApplication) external view returns (address);
    
        // @notice query if the _libraryAddress is valid for receiving msgs.
        // @param _userApplication - the user app address on this EVM chain
        function getReceiveLibraryAddress(address _userApplication) external view returns (address);
    
        // @notice query if the non-reentrancy guard for send() is on
        // @return true if the guard is on. false otherwise
        function isSendingPayload() external view returns (bool);
    
        // @notice query if the non-reentrancy guard for receive() is on
        // @return true if the guard is on. false otherwise
        function isReceivingPayload() external view returns (bool);
    
        // @notice get the configuration of the LayerZero messaging library of the specified version
        // @param _version - messaging library version
        // @param _chainId - the chainId for the pending config change
        // @param _userApplication - the contract address of the user application
        // @param _configType - type of configuration. every messaging library has its own convention.
        function getConfig(uint16 _version, uint16 _chainId, address _userApplication, uint _configType) external view returns (bytes memory);
    
        // @notice get the send() LayerZero messaging library version
        // @param _userApplication - the contract address of the user application
        function getSendVersion(address _userApplication) external view returns (uint16);
    
        // @notice get the lzReceive() LayerZero messaging library version
        // @param _userApplication - the contract address of the user application
        function getReceiveVersion(address _userApplication) external view returns (uint16);
    }
    
    
    // File contracts/util/BytesLib.sol
    
    /*
     * @title Solidity Bytes Arrays Utils
     * @author Gonçalo Sá <[email protected]>
     *
     * @dev Bytes tightly packed arrays utility library for ethereum contracts written in Solidity.
     *      The library lets you concatenate, slice and type cast bytes arrays both in memory and storage.
     */
    pragma solidity >=0.8.0 <0.9.0;
    
    
    library BytesLib {
        function concat(
            bytes memory _preBytes,
            bytes memory _postBytes
        )
        internal
        pure
        returns (bytes memory)
        {
            bytes memory tempBytes;
    
            assembly {
            // Get a location of some free memory and store it in tempBytes as
            // Solidity does for memory variables.
                tempBytes := mload(0x40)
    
            // Store the length of the first bytes array at the beginning of
            // the memory for tempBytes.
                let length := mload(_preBytes)
                mstore(tempBytes, length)
    
            // Maintain a memory counter for the current write location in the
            // temp bytes array by adding the 32 bytes for the array length to
            // the starting location.
                let mc := add(tempBytes, 0x20)
            // Stop copying when the memory counter reaches the length of the
            // first bytes array.
                let end := add(mc, length)
    
                for {
                // Initialize a copy counter to the start of the _preBytes data,
                // 32 bytes into its memory.
                    let cc := add(_preBytes, 0x20)
                } lt(mc, end) {
                // Increase both counters by 32 bytes each iteration.
                    mc := add(mc, 0x20)
                    cc := add(cc, 0x20)
                } {
                // Write the _preBytes data into the tempBytes memory 32 bytes
                // at a time.
                    mstore(mc, mload(cc))
                }
    
            // Add the length of _postBytes to the current length of tempBytes
            // and store it as the new length in the first 32 bytes of the
            // tempBytes memory.
                length := mload(_postBytes)
                mstore(tempBytes, add(length, mload(tempBytes)))
    
            // Move the memory counter back from a multiple of 0x20 to the
            // actual end of the _preBytes data.
                mc := end
            // Stop copying when the memory counter reaches the new combined
            // length of the arrays.
                end := add(mc, length)
    
                for {
                    let cc := add(_postBytes, 0x20)
                } lt(mc, end) {
                    mc := add(mc, 0x20)
                    cc := add(cc, 0x20)
                } {
                    mstore(mc, mload(cc))
                }
    
            // Update the free-memory pointer by padding our last write location
            // to 32 bytes: add 31 bytes to the end of tempBytes to move to the
            // next 32 byte block, then round down to the nearest multiple of
            // 32. If the sum of the length of the two arrays is zero then add
            // one before rounding down to leave a blank 32 bytes (the length block with 0).
                mstore(0x40, and(
                add(add(end, iszero(add(length, mload(_preBytes)))), 31),
                not(31) // Round down to the nearest 32 bytes.
                ))
            }
    
            return tempBytes;
        }
    
        function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal {
            assembly {
            // Read the first 32 bytes of _preBytes storage, which is the length
            // of the array. (We don't need to use the offset into the slot
            // because arrays use the entire slot.)
                let fslot := sload(_preBytes.slot)
            // Arrays of 31 bytes or less have an even value in their slot,
            // while longer arrays have an odd value. The actual length is
            // the slot divided by two for odd values, and the lowest order
            // byte divided by two for even values.
            // If the slot is even, bitwise and the slot with 255 and divide by
            // two to get the length. If the slot is odd, bitwise and the slot
            // with -1 and divide by two.
                let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
                let mlength := mload(_postBytes)
                let newlength := add(slength, mlength)
            // slength can contain both the length and contents of the array
            // if length < 32 bytes so let's prepare for that
            // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                switch add(lt(slength, 32), lt(newlength, 32))
                case 2 {
                // Since the new array still fits in the slot, we just need to
                // update the contents of the slot.
                // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
                    sstore(
                    _preBytes.slot,
                    // all the modifications to the slot are inside this
                    // next block
                    add(
                    // we can just add to the slot contents because the
                    // bytes we want to change are the LSBs
                    fslot,
                    add(
                    mul(
                    div(
                    // load the bytes from memory
                    mload(add(_postBytes, 0x20)),
                    // zero all bytes to the right
                    exp(0x100, sub(32, mlength))
                    ),
                    // and now shift left the number of bytes to
                    // leave space for the length in the slot
                    exp(0x100, sub(32, newlength))
                    ),
                    // increase length by the double of the memory
                    // bytes length
                    mul(mlength, 2)
                    )
                    )
                    )
                }
                case 1 {
                // The stored value fits in the slot, but the combined value
                // will exceed it.
                // get the keccak hash to get the contents of the array
                    mstore(0x0, _preBytes.slot)
                    let sc := add(keccak256(0x0, 0x20), div(slength, 32))
    
                // save new length
                    sstore(_preBytes.slot, add(mul(newlength, 2), 1))
    
                // The contents of the _postBytes array start 32 bytes into
                // the structure. Our first read should obtain the `submod`
                // bytes that can fit into the unused space in the last word
                // of the stored array. To get this, we read 32 bytes starting
                // from `submod`, so the data we read overlaps with the array
                // contents by `submod` bytes. Masking the lowest-order
                // `submod` bytes allows us to add that value directly to the
                // stored value.
    
                    let submod := sub(32, slength)
                    let mc := add(_postBytes, submod)
                    let end := add(_postBytes, mlength)
                    let mask := sub(exp(0x100, submod), 1)
    
                    sstore(
                    sc,
                    add(
                    and(
                    fslot,
                    0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00
                    ),
                    and(mload(mc), mask)
                    )
                    )
    
                    for {
                        mc := add(mc, 0x20)
                        sc := add(sc, 1)
                    } lt(mc, end) {
                        sc := add(sc, 1)
                        mc := add(mc, 0x20)
                    } {
                        sstore(sc, mload(mc))
                    }
    
                    mask := exp(0x100, sub(mc, end))
    
                    sstore(sc, mul(div(mload(mc), mask), mask))
                }
                default {
                // get the keccak hash to get the contents of the array
                    mstore(0x0, _preBytes.slot)
                // Start copying to the last used word of the stored array.
                    let sc := add(keccak256(0x0, 0x20), div(slength, 32))
    
                // save new length
                    sstore(_preBytes.slot, add(mul(newlength, 2), 1))
    
                // Copy over the first `submod` bytes of the new data as in
                // case 1 above.
                    let slengthmod := mod(slength, 32)
                    let mlengthmod := mod(mlength, 32)
                    let submod := sub(32, slengthmod)
                    let mc := add(_postBytes, submod)
                    let end := add(_postBytes, mlength)
                    let mask := sub(exp(0x100, submod), 1)
    
                    sstore(sc, add(sload(sc), and(mload(mc), mask)))
    
                    for {
                        sc := add(sc, 1)
                        mc := add(mc, 0x20)
                    } lt(mc, end) {
                        sc := add(sc, 1)
                        mc := add(mc, 0x20)
                    } {
                        sstore(sc, mload(mc))
                    }
    
                    mask := exp(0x100, sub(mc, end))
    
                    sstore(sc, mul(div(mload(mc), mask), mask))
                }
            }
        }
    
        function slice(
            bytes memory _bytes,
            uint256 _start,
            uint256 _length
        )
        internal
        pure
        returns (bytes memory)
        {
            require(_length + 31 >= _length, "slice_overflow");
            require(_bytes.length >= _start + _length, "slice_outOfBounds");
    
            bytes memory tempBytes;
    
            assembly {
                switch iszero(_length)
                case 0 {
                // Get a location of some free memory and store it in tempBytes as
                // Solidity does for memory variables.
                    tempBytes := mload(0x40)
    
                // The first word of the slice result is potentially a partial
                // word read from the original array. To read it, we calculate
                // the length of that partial word and start copying that many
                // bytes into the array. The first word we copy will start with
                // data we don't care about, but the last `lengthmod` bytes will
                // land at the beginning of the contents of the new array. When
                // we're done copying, we overwrite the full first word with
                // the actual length of the slice.
                    let lengthmod := and(_length, 31)
    
                // The multiplication in the next line is necessary
                // because when slicing multiples of 32 bytes (lengthmod == 0)
                // the following copy loop was copying the origin's length
                // and then ending prematurely not copying everything it should.
                    let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                    let end := add(mc, _length)
    
                    for {
                    // The multiplication in the next line has the same exact purpose
                    // as the one above.
                        let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                    } lt(mc, end) {
                        mc := add(mc, 0x20)
                        cc := add(cc, 0x20)
                    } {
                        mstore(mc, mload(cc))
                    }
    
                    mstore(tempBytes, _length)
    
                //update free-memory pointer
                //allocating the array padded to 32 bytes like the compiler does now
                    mstore(0x40, and(add(mc, 31), not(31)))
                }
                //if we want a zero-length slice let's just return a zero-length array
                default {
                    tempBytes := mload(0x40)
                //zero out the 32 bytes slice we are about to return
                //we need to do it because Solidity does not garbage collect
                    mstore(tempBytes, 0)
    
                    mstore(0x40, add(tempBytes, 0x20))
                }
            }
    
            return tempBytes;
        }
    
        function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
            require(_bytes.length >= _start + 20, "toAddress_outOfBounds");
            address tempAddress;
    
            assembly {
                tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
            }
    
            return tempAddress;
        }
    
        function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) {
            require(_bytes.length >= _start + 1 , "toUint8_outOfBounds");
            uint8 tempUint;
    
            assembly {
                tempUint := mload(add(add(_bytes, 0x1), _start))
            }
    
            return tempUint;
        }
    
        function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) {
            require(_bytes.length >= _start + 2, "toUint16_outOfBounds");
            uint16 tempUint;
    
            assembly {
                tempUint := mload(add(add(_bytes, 0x2), _start))
            }
    
            return tempUint;
        }
    
        function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) {
            require(_bytes.length >= _start + 4, "toUint32_outOfBounds");
            uint32 tempUint;
    
            assembly {
                tempUint := mload(add(add(_bytes, 0x4), _start))
            }
    
            return tempUint;
        }
    
        function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) {
            require(_bytes.length >= _start + 8, "toUint64_outOfBounds");
            uint64 tempUint;
    
            assembly {
                tempUint := mload(add(add(_bytes, 0x8), _start))
            }
    
            return tempUint;
        }
    
        function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) {
            require(_bytes.length >= _start + 12, "toUint96_outOfBounds");
            uint96 tempUint;
    
            assembly {
                tempUint := mload(add(add(_bytes, 0xc), _start))
            }
    
            return tempUint;
        }
    
        function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) {
            require(_bytes.length >= _start + 16, "toUint128_outOfBounds");
            uint128 tempUint;
    
            assembly {
                tempUint := mload(add(add(_bytes, 0x10), _start))
            }
    
            return tempUint;
        }
    
        function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) {
            require(_bytes.length >= _start + 32, "toUint256_outOfBounds");
            uint256 tempUint;
    
            assembly {
                tempUint := mload(add(add(_bytes, 0x20), _start))
            }
    
            return tempUint;
        }
    
        function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) {
            require(_bytes.length >= _start + 32, "toBytes32_outOfBounds");
            bytes32 tempBytes32;
    
            assembly {
                tempBytes32 := mload(add(add(_bytes, 0x20), _start))
            }
    
            return tempBytes32;
        }
    
        function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) {
            bool success = true;
    
            assembly {
                let length := mload(_preBytes)
    
            // if lengths don't match the arrays are not equal
                switch eq(length, mload(_postBytes))
                case 1 {
                // cb is a circuit breaker in the for loop since there's
                //  no said feature for inline assembly loops
                // cb = 1 - don't breaker
                // cb = 0 - break
                    let cb := 1
    
                    let mc := add(_preBytes, 0x20)
                    let end := add(mc, length)
    
                    for {
                        let cc := add(_postBytes, 0x20)
                    // the next line is the loop condition:
                    // while(uint256(mc < end) + cb == 2)
                    } eq(add(lt(mc, end), cb), 2) {
                        mc := add(mc, 0x20)
                        cc := add(cc, 0x20)
                    } {
                    // if any of these checks fails then arrays are not equal
                        if iszero(eq(mload(mc), mload(cc))) {
                        // unsuccess:
                            success := 0
                            cb := 0
                        }
                    }
                }
                default {
                // unsuccess:
                    success := 0
                }
            }
    
            return success;
        }
    
        function equalStorage(
            bytes storage _preBytes,
            bytes memory _postBytes
        )
        internal
        view
        returns (bool)
        {
            bool success = true;
    
            assembly {
            // we know _preBytes_offset is 0
                let fslot := sload(_preBytes.slot)
            // Decode the length of the stored array like in concatStorage().
                let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
                let mlength := mload(_postBytes)
    
            // if lengths don't match the arrays are not equal
                switch eq(slength, mlength)
                case 1 {
                // slength can contain both the length and contents of the array
                // if length < 32 bytes so let's prepare for that
                // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                    if iszero(iszero(slength)) {
                        switch lt(slength, 32)
                        case 1 {
                        // blank the last byte which is the length
                            fslot := mul(div(fslot, 0x100), 0x100)
    
                            if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
                            // unsuccess:
                                success := 0
                            }
                        }
                        default {
                        // cb is a circuit breaker in the for loop since there's
                        //  no said feature for inline assembly loops
                        // cb = 1 - don't breaker
                        // cb = 0 - break
                            let cb := 1
    
                        // get the keccak hash to get the contents of the array
                            mstore(0x0, _preBytes.slot)
                            let sc := keccak256(0x0, 0x20)
    
                            let mc := add(_postBytes, 0x20)
                            let end := add(mc, mlength)
    
                        // the next line is the loop condition:
                        // while(uint256(mc < end) + cb == 2)
                            for {} eq(add(lt(mc, end), cb), 2) {
                                sc := add(sc, 1)
                                mc := add(mc, 0x20)
                            } {
                                if iszero(eq(sload(sc), mload(mc))) {
                                // unsuccess:
                                    success := 0
                                    cb := 0
                                }
                            }
                        }
                    }
                }
                default {
                // unsuccess:
                    success := 0
                }
            }
    
            return success;
        }
    }
    
    
    // File contracts/lzApp/LzApp.sol
    
     
    
    pragma solidity ^0.8.0;
    
    
    
    
    
    /*
     * a generic LzReceiver implementation
     */
    abstract contract LzApp is Ownable, ILayerZeroReceiver, ILayerZeroUserApplicationConfig {
        using BytesLib for bytes;
    
        // ua can not send payload larger than this by default, but it can be changed by the ua owner
        uint constant public DEFAULT_PAYLOAD_SIZE_LIMIT = 10000;
    
        ILayerZeroEndpoint public immutable lzEndpoint;
        mapping(uint16 => bytes) public trustedRemoteLookup;
        mapping(uint16 => mapping(uint16 => uint)) public minDstGasLookup;
        mapping(uint16 => uint) public payloadSizeLimitLookup;
        address public precrime;
    
        event SetPrecrime(address precrime);
        event SetTrustedRemote(uint16 _remoteChainId, bytes _path);
        event SetTrustedRemoteAddress(uint16 _remoteChainId, bytes _remoteAddress);
        event SetMinDstGas(uint16 _dstChainId, uint16 _type, uint _minDstGas);
    
        constructor(address _endpoint) {
            lzEndpoint = ILayerZeroEndpoint(_endpoint);
        }
    
        function lzReceive(uint16 _srcChainId, bytes calldata _srcAddress, uint64 _nonce, bytes calldata _payload) public virtual override {
            // lzReceive must be called by the endpoint for security
            require(_msgSender() == address(lzEndpoint), "LzApp: invalid endpoint caller");
    
            bytes memory trustedRemote = trustedRemoteLookup[_srcChainId];
            // if will still block the message pathway from (srcChainId, srcAddress). should not receive message from untrusted remote.
            require(_srcAddress.length == trustedRemote.length && trustedRemote.length > 0 && keccak256(_srcAddress) == keccak256(trustedRemote), "LzApp: invalid source sending contract");
    
            _blockingLzReceive(_srcChainId, _srcAddress, _nonce, _payload);
        }
    
        // abstract function - the default behaviour of LayerZero is blocking. See: NonblockingLzApp if you dont need to enforce ordered messaging
        function _blockingLzReceive(uint16 _srcChainId, bytes memory _srcAddress, uint64 _nonce, bytes memory _payload) internal virtual;
    
        function _lzSend(uint16 _dstChainId, bytes memory _payload, address payable _refundAddress, address _zroPaymentAddress, bytes memory _adapterParams, uint _nativeFee) internal virtual {
            bytes memory trustedRemote = trustedRemoteLookup[_dstChainId];
            require(trustedRemote.length != 0, "LzApp: destination chain is not a trusted source");
            _checkPayloadSize(_dstChainId, _payload.length);
            lzEndpoint.send{value: _nativeFee}(_dstChainId, trustedRemote, _payload, _refundAddress, _zroPaymentAddress, _adapterParams);
        }
    
        function _checkGasLimit(uint16 _dstChainId, uint16 _type, bytes memory _adapterParams, uint _extraGas) internal view virtual {
            uint providedGasLimit = _getGasLimit(_adapterParams);
            uint minGasLimit = minDstGasLookup[_dstChainId][_type] + _extraGas;
            require(minGasLimit > 0, "LzApp: minGasLimit not set");
            require(providedGasLimit >= minGasLimit, "LzApp: gas limit is too low");
        }
    
        function _getGasLimit(bytes memory _adapterParams) internal pure virtual returns (uint gasLimit) {
            require(_adapterParams.length >= 34, "LzApp: invalid adapterParams");
            assembly {
                gasLimit := mload(add(_adapterParams, 34))
            }
        }
    
        function _checkPayloadSize(uint16 _dstChainId, uint _payloadSize) internal view virtual {
            uint payloadSizeLimit = payloadSizeLimitLookup[_dstChainId];
            if (payloadSizeLimit == 0) { // use default if not set
                payloadSizeLimit = DEFAULT_PAYLOAD_SIZE_LIMIT;
            }
            require(_payloadSize <= payloadSizeLimit, "LzApp: payload size is too large");
        }
    
        //---------------------------UserApplication config----------------------------------------
        function getConfig(uint16 _version, uint16 _chainId, address, uint _configType) external view returns (bytes memory) {
            return lzEndpoint.getConfig(_version, _chainId, address(this), _configType);
        }
    
        // generic config for LayerZero user Application
        function setConfig(uint16 _version, uint16 _chainId, uint _configType, bytes calldata _config) external override onlyOwner {
            lzEndpoint.setConfig(_version, _chainId, _configType, _config);
        }
    
        function setSendVersion(uint16 _version) external override onlyOwner {
            lzEndpoint.setSendVersion(_version);
        }
    
        function setReceiveVersion(uint16 _version) external override onlyOwner {
            lzEndpoint.setReceiveVersion(_version);
        }
    
        function forceResumeReceive(uint16 _srcChainId, bytes calldata _srcAddress) external override onlyOwner {
            lzEndpoint.forceResumeReceive(_srcChainId, _srcAddress);
        }
    
        // _path = abi.encodePacked(remoteAddress, localAddress)
        // this function set the trusted path for the cross-chain communication
        function setTrustedRemote(uint16 _srcChainId, bytes calldata _path) external onlyOwner {
            trustedRemoteLookup[_srcChainId] = _path;
            emit SetTrustedRemote(_srcChainId, _path);
        }
    
        function setTrustedRemoteAddress(uint16 _remoteChainId, bytes calldata _remoteAddress) external onlyOwner {
            trustedRemoteLookup[_remoteChainId] = abi.encodePacked(_remoteAddress, address(this));
            emit SetTrustedRemoteAddress(_remoteChainId, _remoteAddress);
        }
    
        function getTrustedRemoteAddress(uint16 _remoteChainId) external view returns (bytes memory) {
            bytes memory path = trustedRemoteLookup[_remoteChainId];
            require(path.length != 0, "LzApp: no trusted path record");
            return path.slice(0, path.length - 20); // the last 20 bytes should be address(this)
        }
    
        function setPrecrime(address _precrime) external onlyOwner {
            precrime = _precrime;
            emit SetPrecrime(_precrime);
        }
    
        function setMinDstGas(uint16 _dstChainId, uint16 _packetType, uint _minGas) external onlyOwner {
            require(_minGas > 0, "LzApp: invalid minGas");
            minDstGasLookup[_dstChainId][_packetType] = _minGas;
            emit SetMinDstGas(_dstChainId, _packetType, _minGas);
        }
    
        // if the size is 0, it means default size limit
        function setPayloadSizeLimit(uint16 _dstChainId, uint _size) external onlyOwner {
            payloadSizeLimitLookup[_dstChainId] = _size;
        }
    
        //--------------------------- VIEW FUNCTION ----------------------------------------
        function isTrustedRemote(uint16 _srcChainId, bytes calldata _srcAddress) external view returns (bool) {
            bytes memory trustedSource = trustedRemoteLookup[_srcChainId];
            return keccak256(trustedSource) == keccak256(_srcAddress);
        }
    }
    
    
    // File contracts/util/ExcessivelySafeCall.sol
    
    //   OR Apache-2.0
    pragma solidity >=0.7.6;
    
    library ExcessivelySafeCall {
        uint256 constant LOW_28_MASK =
        0x00000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffff;
    
        /// @notice Use when you _really_ really _really_ don't trust the called
        /// contract. This prevents the called contract from causing reversion of
        /// the caller in as many ways as we can.
        /// @dev The main difference between this and a solidity low-level call is
        /// that we limit the number of bytes that the callee can cause to be
        /// copied to caller memory. This prevents stupid things like malicious
        /// contracts returning 10,000,000 bytes causing a local OOG when copying
        /// to memory.
        /// @param _target The address to call
        /// @param _gas The amount of gas to forward to the remote contract
        /// @param _maxCopy The maximum number of bytes of returndata to copy
        /// to memory.
        /// @param _calldata The data to send to the remote contract
        /// @return success and returndata, as `.call()`. Returndata is capped to
        /// `_maxCopy` bytes.
        function excessivelySafeCall(
            address _target,
            uint256 _gas,
            uint16 _maxCopy,
            bytes memory _calldata
        ) internal returns (bool, bytes memory) {
            // set up for assembly call
            uint256 _toCopy;
            bool _success;
            bytes memory _returnData = new bytes(_maxCopy);
            // dispatch message to recipient
            // by assembly calling "handle" function
            // we call via assembly to avoid memcopying a very large returndata
            // returned by a malicious contract
            assembly {
                _success := call(
                _gas, // gas
                _target, // recipient
                0, // ether value
                add(_calldata, 0x20), // inloc
                mload(_calldata), // inlen
                0, // outloc
                0 // outlen
                )
            // limit our copy to 256 bytes
                _toCopy := returndatasize()
                if gt(_toCopy, _maxCopy) {
                    _toCopy := _maxCopy
                }
            // Store the length of the copied bytes
                mstore(_returnData, _toCopy)
            // copy the bytes from returndata[0:_toCopy]
                returndatacopy(add(_returnData, 0x20), 0, _toCopy)
            }
            return (_success, _returnData);
        }
    
        /// @notice Use when you _really_ really _really_ don't trust the called
        /// contract. This prevents the called contract from causing reversion of
        /// the caller in as many ways as we can.
        /// @dev The main difference between this and a solidity low-level call is
        /// that we limit the number of bytes that the callee can cause to be
        /// copied to caller memory. This prevents stupid things like malicious
        /// contracts returning 10,000,000 bytes causing a local OOG when copying
        /// to memory.
        /// @param _target The address to call
        /// @param _gas The amount of gas to forward to the remote contract
        /// @param _maxCopy The maximum number of bytes of returndata to copy
        /// to memory.
        /// @param _calldata The data to send to the remote contract
        /// @return success and returndata, as `.call()`. Returndata is capped to
        /// `_maxCopy` bytes.
        function excessivelySafeStaticCall(
            address _target,
            uint256 _gas,
            uint16 _maxCopy,
            bytes memory _calldata
        ) internal view returns (bool, bytes memory) {
            // set up for assembly call
            uint256 _toCopy;
            bool _success;
            bytes memory _returnData = new bytes(_maxCopy);
            // dispatch message to recipient
            // by assembly calling "handle" function
            // we call via assembly to avoid memcopying a very large returndata
            // returned by a malicious contract
            assembly {
                _success := staticcall(
                _gas, // gas
                _target, // recipient
                add(_calldata, 0x20), // inloc
                mload(_calldata), // inlen
                0, // outloc
                0 // outlen
                )
            // limit our copy to 256 bytes
                _toCopy := returndatasize()
                if gt(_toCopy, _maxCopy) {
                    _toCopy := _maxCopy
                }
            // Store the length of the copied bytes
                mstore(_returnData, _toCopy)
            // copy the bytes from returndata[0:_toCopy]
                returndatacopy(add(_returnData, 0x20), 0, _toCopy)
            }
            return (_success, _returnData);
        }
    
        /**
         * @notice Swaps function selectors in encoded contract calls
         * @dev Allows reuse of encoded calldata for functions with identical
         * argument types but different names. It simply swaps out the first 4 bytes
         * for the new selector. This function modifies memory in place, and should
         * only be used with caution.
         * @param _newSelector The new 4-byte selector
         * @param _buf The encoded contract args
         */
        function swapSelector(bytes4 _newSelector, bytes memory _buf)
        internal
        pure
        {
            require(_buf.length >= 4);
            uint256 _mask = LOW_28_MASK;
            assembly {
            // load the first word of
                let _word := mload(add(_buf, 0x20))
            // mask out the top 4 bytes
            // /x
                _word := and(_word, _mask)
                _word := or(_newSelector, _word)
                mstore(add(_buf, 0x20), _word)
            }
        }
    }
    
    
    // File contracts/lzApp/NonblockingLzApp.sol
    
     
    
    pragma solidity ^0.8.0;
    
    
    /*
     * the default LayerZero messaging behaviour is blocking, i.e. any failed message will block the channel
     * this abstract class try-catch all fail messages and store locally for future retry. hence, non-blocking
     * NOTE: if the srcAddress is not configured properly, it will still block the message pathway from (srcChainId, srcAddress)
     */
    abstract contract NonblockingLzApp is LzApp {
        using ExcessivelySafeCall for address;
    
        constructor(address _endpoint) LzApp(_endpoint) {}
    
        mapping(uint16 => mapping(bytes => mapping(uint64 => bytes32))) public failedMessages;
    
        event MessageFailed(uint16 _srcChainId, bytes _srcAddress, uint64 _nonce, bytes _payload, bytes _reason);
        event RetryMessageSuccess(uint16 _srcChainId, bytes _srcAddress, uint64 _nonce, bytes32 _payloadHash);
    
        // overriding the virtual function in LzReceiver
        function _blockingLzReceive(uint16 _srcChainId, bytes memory _srcAddress, uint64 _nonce, bytes memory _payload) internal virtual override {
            (bool success, bytes memory reason) = address(this).excessivelySafeCall(gasleft(), 150, abi.encodeWithSelector(this.nonblockingLzReceive.selector, _srcChainId, _srcAddress, _nonce, _payload));
            // try-catch all errors/exceptions
            if (!success) {
                _storeFailedMessage(_srcChainId, _srcAddress, _nonce, _payload, reason);
            }
        }
    
        function _storeFailedMessage(uint16 _srcChainId, bytes memory _srcAddress, uint64 _nonce, bytes memory _payload, bytes memory _reason) internal virtual {
            failedMessages[_srcChainId][_srcAddress][_nonce] = keccak256(_payload);
            emit MessageFailed(_srcChainId, _srcAddress, _nonce, _payload, _reason);
        }
    
        function nonblockingLzReceive(uint16 _srcChainId, bytes calldata _srcAddress, uint64 _nonce, bytes calldata _payload) public virtual {
            // only internal transaction
            require(_msgSender() == address(this), "NonblockingLzApp: caller must be LzApp");
            _nonblockingLzReceive(_srcChainId, _srcAddress, _nonce, _payload);
        }
    
        //@notice override this function
        function _nonblockingLzReceive(uint16 _srcChainId, bytes memory _srcAddress, uint64 _nonce, bytes memory _payload) internal virtual;
    
        function retryMessage(uint16 _srcChainId, bytes calldata _srcAddress, uint64 _nonce, bytes calldata _payload) public payable virtual {
            // assert there is message to retry
            bytes32 payloadHash = failedMessages[_srcChainId][_srcAddress][_nonce];
            require(payloadHash != bytes32(0), "NonblockingLzApp: no stored message");
            require(keccak256(_payload) == payloadHash, "NonblockingLzApp: invalid payload");
            // clear the stored message
            failedMessages[_srcChainId][_srcAddress][_nonce] = bytes32(0);
            // execute the message. revert if it fails again
            _nonblockingLzReceive(_srcChainId, _srcAddress, _nonce, _payload);
            emit RetryMessageSuccess(_srcChainId, _srcAddress, _nonce, payloadHash);
        }
    }
    
    
    // File @openzeppelin/contracts/utils/introspection/[email protected]
    
     
    // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Implementation of the {IERC165} interface.
     *
     * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
     * for the additional interface id that will be supported. For example:
     *
     * ```solidity
     * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
     *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
     * }
     * ```
     *
     * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
     */
    abstract contract ERC165 is IERC165 {
        /**
         * @dev See {IERC165-supportsInterface}.
         */
        function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
            return interfaceId == type(IERC165).interfaceId;
        }
    }
    
    
    // File contracts/token/onft/ONFT721Core.sol
    
     
    
    pragma solidity ^0.8.0;
    
    
    
    abstract contract ONFT721Core is NonblockingLzApp, ERC165, IONFT721Core {
        uint16 public constant FUNCTION_TYPE_SEND = 1;
    
        struct StoredCredit {
            uint16 srcChainId;
            address toAddress;
            uint256 index; // which index of the tokenIds remain
            bool creditsRemain;
        }
    
        uint256 public minGasToTransferAndStore; // min amount of gas required to transfer, and also store the payload
        mapping(uint16 => uint256) public dstChainIdToBatchLimit;
        mapping(uint16 => uint256) public dstChainIdToTransferGas; // per transfer amount of gas required to mint/transfer on the dst
        mapping(bytes32 => StoredCredit) public storedCredits;
    
        constructor(uint256 _minGasToTransferAndStore, address _lzEndpoint) NonblockingLzApp(_lzEndpoint) {
            require(_minGasToTransferAndStore > 0, "ONFT721: minGasToTransferAndStore must be > 0");
            minGasToTransferAndStore = _minGasToTransferAndStore;
        }
    
        function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
            return interfaceId == type(IONFT721Core).interfaceId || super.supportsInterface(interfaceId);
        }
    
        function estimateSendFee(uint16 _dstChainId, bytes memory _toAddress, uint _tokenId, bool _useZro, bytes memory _adapterParams) public view virtual override returns (uint nativeFee, uint zroFee) {
            return estimateSendBatchFee(_dstChainId, _toAddress, _toSingletonArray(_tokenId), _useZro, _adapterParams);
        }
    
        function estimateSendBatchFee(uint16 _dstChainId, bytes memory _toAddress, uint[] memory _tokenIds, bool _useZro, bytes memory _adapterParams) public view virtual override returns (uint nativeFee, uint zroFee) {
            bytes memory payload = abi.encode(_toAddress, _tokenIds);
            return lzEndpoint.estimateFees(_dstChainId, address(this), payload, _useZro, _adapterParams);
        }
    
        function sendFrom(address _from, uint16 _dstChainId, bytes memory _toAddress, uint _tokenId, address payable _refundAddress, address _zroPaymentAddress, bytes memory _adapterParams) public payable virtual override {
            _send(_from, _dstChainId, _toAddress, _toSingletonArray(_tokenId), _refundAddress, _zroPaymentAddress, _adapterParams);
        }
    
        function sendBatchFrom(address _from, uint16 _dstChainId, bytes memory _toAddress, uint[] memory _tokenIds, address payable _refundAddress, address _zroPaymentAddress, bytes memory _adapterParams) public payable virtual override {
            _send(_from, _dstChainId, _toAddress, _tokenIds, _refundAddress, _zroPaymentAddress, _adapterParams);
        }
    
        function _send(address _from, uint16 _dstChainId, bytes memory _toAddress, uint[] memory _tokenIds, address payable _refundAddress, address _zroPaymentAddress, bytes memory _adapterParams) internal virtual {
            // allow 1 by default
            require(_tokenIds.length > 0, "LzApp: tokenIds[] is empty");
            require(_tokenIds.length == 1 || _tokenIds.length <= dstChainIdToBatchLimit[_dstChainId], "ONFT721: batch size exceeds dst batch limit");
    
            for (uint i = 0; i < _tokenIds.length; i++) {
                _debitFrom(_from, _dstChainId, _toAddress, _tokenIds[i]);
            }
    
            bytes memory payload = abi.encode(_toAddress, _tokenIds);
    
            _checkGasLimit(_dstChainId, FUNCTION_TYPE_SEND, _adapterParams, dstChainIdToTransferGas[_dstChainId] * _tokenIds.length);
            _lzSend(_dstChainId, payload, _refundAddress, _zroPaymentAddress, _adapterParams, msg.value);
            emit SendToChain(_dstChainId, _from, _toAddress, _tokenIds);
        }
    
        function _nonblockingLzReceive(
            uint16 _srcChainId,
            bytes memory _srcAddress,
            uint64, /*_nonce*/
            bytes memory _payload
        ) internal virtual override {
            // decode and load the toAddress
            (bytes memory toAddressBytes, uint[] memory tokenIds) = abi.decode(_payload, (bytes, uint[]));
    
            address toAddress;
            assembly {
                toAddress := mload(add(toAddressBytes, 20))
            }
    
            uint nextIndex = _creditTill(_srcChainId, toAddress, 0, tokenIds);
            if (nextIndex < tokenIds.length) {
                // not enough gas to complete transfers, store to be cleared in another tx
                bytes32 hashedPayload = keccak256(_payload);
                storedCredits[hashedPayload] = StoredCredit(_srcChainId, toAddress, nextIndex, true);
                emit CreditStored(hashedPayload, _payload);
            }
    
            emit ReceiveFromChain(_srcChainId, _srcAddress, toAddress, tokenIds);
        }
    
        // Public function for anyone to clear and deliver the remaining batch sent tokenIds
        function clearCredits(bytes memory _payload) external {
            bytes32 hashedPayload = keccak256(_payload);
            require(storedCredits[hashedPayload].creditsRemain, "ONFT721: no credits stored");
    
            (, uint[] memory tokenIds) = abi.decode(_payload, (bytes, uint[]));
    
            uint nextIndex = _creditTill(storedCredits[hashedPayload].srcChainId, storedCredits[hashedPayload].toAddress, storedCredits[hashedPayload].index, tokenIds);
            require(nextIndex > storedCredits[hashedPayload].index, "ONFT721: not enough gas to process credit transfer");
    
            if (nextIndex == tokenIds.length) {
                // cleared the credits, delete the element
                delete storedCredits[hashedPayload];
                emit CreditCleared(hashedPayload);
            } else {
                // store the next index to mint
                storedCredits[hashedPayload] = StoredCredit(storedCredits[hashedPayload].srcChainId, storedCredits[hashedPayload].toAddress, nextIndex, true);
            }
        }
    
        // When a srcChain has the ability to transfer more chainIds in a single tx than the dst can do.
        // Needs the ability to iterate and stop if the minGasToTransferAndStore is not met
        function _creditTill(uint16 _srcChainId, address _toAddress, uint _startIndex, uint[] memory _tokenIds) internal returns (uint256){
            uint i = _startIndex;
            while (i < _tokenIds.length) {
                // if not enough gas to process, store this index for next loop
                if (gasleft() < minGasToTransferAndStore) break;
    
                _creditTo(_srcChainId, _toAddress, _tokenIds[i]);
                i++;
            }
    
            // indicates the next index to send of tokenIds,
            // if i == tokenIds.length, we are finished
            return i;
        }
    
        function setMinGasToTransferAndStore(uint256 _minGasToTransferAndStore) external onlyOwner {
            require(_minGasToTransferAndStore > 0, "ONFT721: minGasToTransferAndStore must be > 0");
            minGasToTransferAndStore = _minGasToTransferAndStore;
        }
    
        // ensures enough gas in adapter params to handle batch transfer gas amounts on the dst
        function setDstChainIdToTransferGas(uint16 _dstChainId, uint256 _dstChainIdToTransferGas) external onlyOwner {
            require(_dstChainIdToTransferGas > 0, "ONFT721: dstChainIdToTransferGas must be > 0");
            dstChainIdToTransferGas[_dstChainId] = _dstChainIdToTransferGas;
        }
    
        // limit on src the amount of tokens to batch send
        function setDstChainIdToBatchLimit(uint16 _dstChainId, uint256 _dstChainIdToBatchLimit) external onlyOwner {
            require(_dstChainIdToBatchLimit > 0, "ONFT721: dstChainIdToBatchLimit must be > 0");
            dstChainIdToBatchLimit[_dstChainId] = _dstChainIdToBatchLimit;
        }
    
        function _debitFrom(address _from, uint16 _dstChainId, bytes memory _toAddress, uint _tokenId) internal virtual;
    
        function _creditTo(uint16 _srcChainId, address _toAddress, uint _tokenId) internal virtual;
    
        function _toSingletonArray(uint element) internal pure returns (uint[] memory) {
            uint[] memory array = new uint[](1);
            array[0] = element;
            return array;
        }
    }
    
    
    // File @openzeppelin/contracts/token/ERC721/[email protected]
    
     
    // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @title ERC721 token receiver interface
     * @dev Interface for any contract that wants to support safeTransfers
     * from ERC721 asset contracts.
     */
    interface IERC721Receiver {
        /**
         * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
         * by `operator` from `from`, this function is called.
         *
         * It must return its Solidity selector to confirm the token transfer.
         * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
         *
         * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
         */
        function onERC721Received(
            address operator,
            address from,
            uint256 tokenId,
            bytes calldata data
        ) external returns (bytes4);
    }
    
    
    // File @openzeppelin/contracts/token/ERC721/extensions/[email protected]
    
     
    // OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
     * @dev See https://eips.ethereum.org/EIPS/eip-721
     */
    interface IERC721Metadata is IERC721 {
        /**
         * @dev Returns the token collection name.
         */
        function name() external view returns (string memory);
    
        /**
         * @dev Returns the token collection symbol.
         */
        function symbol() external view returns (string memory);
    
        /**
         * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
         */
        function tokenURI(uint256 tokenId) external view returns (string memory);
    }
    
    
    // File @openzeppelin/contracts/utils/[email protected]
    
     
    // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
    
    pragma solidity ^0.8.1;
    
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         *
         * [IMPORTANT]
         * ====
         * You shouldn't rely on `isContract` to protect against flash loan attacks!
         *
         * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
         * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
         * constructor.
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize/address.code.length, which returns 0
            // for contracts in construction, since the code is only stored at the end
            // of the constructor execution.
    
            return account.code.length > 0;
        }
    
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
    
            (bool success, ) = recipient.call{value: amount}("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
    
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCall(target, data, "Address: low-level call failed");
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
    
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            require(isContract(target), "Address: call to non-contract");
    
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResult(success, returndata, errorMessage);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            require(isContract(target), "Address: static call to non-contract");
    
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResult(success, returndata, errorMessage);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(isContract(target), "Address: delegate call to non-contract");
    
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResult(success, returndata, errorMessage);
        }
    
        /**
         * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
         * revert reason using the provided one.
         *
         * _Available since v4.3._
         */
        function verifyCallResult(
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal pure returns (bytes memory) {
            if (success) {
                return returndata;
            } else {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    /// @solidity memory-safe-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
    }
    
    
    // File @openzeppelin/contracts/utils/[email protected]
    
     
    // OpenZeppelin Contracts (last updated v4.7.0) (utils/Strings.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev String operations.
     */
    library Strings {
        bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";
        uint8 private constant _ADDRESS_LENGTH = 20;
    
        /**
         * @dev Converts a `uint256` to its ASCII `string` decimal representation.
         */
        function toString(uint256 value) internal pure returns (string memory) {
            // Inspired by OraclizeAPI's implementation - MIT licence
            // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol
    
            if (value == 0) {
                return "0";
            }
            uint256 temp = value;
            uint256 digits;
            while (temp != 0) {
                digits++;
                temp /= 10;
            }
            bytes memory buffer = new bytes(digits);
            while (value != 0) {
                digits -= 1;
                buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
                value /= 10;
            }
            return string(buffer);
        }
    
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
         */
        function toHexString(uint256 value) internal pure returns (string memory) {
            if (value == 0) {
                return "0x00";
            }
            uint256 temp = value;
            uint256 length = 0;
            while (temp != 0) {
                length++;
                temp >>= 8;
            }
            return toHexString(value, length);
        }
    
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
         */
        function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
            bytes memory buffer = new bytes(2 * length + 2);
            buffer[0] = "0";
            buffer[1] = "x";
            for (uint256 i = 2 * length + 1; i > 1; --i) {
                buffer[i] = _HEX_SYMBOLS[value & 0xf];
                value >>= 4;
            }
            require(value == 0, "Strings: hex length insufficient");
            return string(buffer);
        }
    
        /**
         * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
         */
        function toHexString(address addr) internal pure returns (string memory) {
            return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
        }
    }
    
    
    // File @openzeppelin/contracts/token/ERC721/[email protected]
    
     
    // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC721/ERC721.sol)
    
    pragma solidity ^0.8.0;
    
    
    
    
    
    
    
    /**
     * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including
     * the Metadata extension, but not including the Enumerable extension, which is available separately as
     * {ERC721Enumerable}.
     */
    contract ERC721 is Context, ERC165, IERC721, IERC721Metadata {
        using Address for address;
        using Strings for uint256;
    
        // Token name
        string private _name;
    
        // Token symbol
        string private _symbol;
    
        // Mapping from token ID to owner address
        mapping(uint256 => address) private _owners;
    
        // Mapping owner address to token count
        mapping(address => uint256) private _balances;
    
        // Mapping from token ID to approved address
        mapping(uint256 => address) private _tokenApprovals;
    
        // Mapping from owner to operator approvals
        mapping(address => mapping(address => bool)) private _operatorApprovals;
    
        /**
         * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
         */
        constructor(string memory name_, string memory symbol_) {
            _name = name_;
            _symbol = symbol_;
        }
    
        /**
         * @dev See {IERC165-supportsInterface}.
         */
        function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
            return
                interfaceId == type(IERC721).interfaceId ||
                interfaceId == type(IERC721Metadata).interfaceId ||
                super.supportsInterface(interfaceId);
        }
    
        /**
         * @dev See {IERC721-balanceOf}.
         */
        function balanceOf(address owner) public view virtual override returns (uint256) {
            require(owner != address(0), "ERC721: address zero is not a valid owner");
            return _balances[owner];
        }
    
        /**
         * @dev See {IERC721-ownerOf}.
         */
        function ownerOf(uint256 tokenId) public view virtual override returns (address) {
            address owner = _owners[tokenId];
            require(owner != address(0), "ERC721: invalid token ID");
            return owner;
        }
    
        /**
         * @dev See {IERC721Metadata-name}.
         */
        function name() public view virtual override returns (string memory) {
            return _name;
        }
    
        /**
         * @dev See {IERC721Metadata-symbol}.
         */
        function symbol() public view virtual override returns (string memory) {
            return _symbol;
        }
    
        /**
         * @dev See {IERC721Metadata-tokenURI}.
         */
        function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
            _requireMinted(tokenId);
    
            string memory baseURI = _baseURI();
            return bytes(baseURI).length > 0 ? string(abi.encodePacked(baseURI, tokenId.toString())) : "";
        }
    
        /**
         * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
         * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
         * by default, can be overridden in child contracts.
         */
        function _baseURI() internal view virtual returns (string memory) {
            return "";
        }
    
        /**
         * @dev See {IERC721-approve}.
         */
        function approve(address to, uint256 tokenId) public virtual override {
            address owner = ERC721.ownerOf(tokenId);
            require(to != owner, "ERC721: approval to current owner");
    
            require(
                _msgSender() == owner || isApprovedForAll(owner, _msgSender()),
                "ERC721: approve caller is not token owner nor approved for all"
            );
    
            _approve(to, tokenId);
        }
    
        /**
         * @dev See {IERC721-getApproved}.
         */
        function getApproved(uint256 tokenId) public view virtual override returns (address) {
            _requireMinted(tokenId);
    
            return _tokenApprovals[tokenId];
        }
    
        /**
         * @dev See {IERC721-setApprovalForAll}.
         */
        function setApprovalForAll(address operator, bool approved) public virtual override {
            _setApprovalForAll(_msgSender(), operator, approved);
        }
    
        /**
         * @dev See {IERC721-isApprovedForAll}.
         */
        function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
            return _operatorApprovals[owner][operator];
        }
    
        /**
         * @dev See {IERC721-transferFrom}.
         */
        function transferFrom(
            address from,
            address to,
            uint256 tokenId
        ) public virtual override {
            //solhint-disable-next-line max-line-length
            require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner nor approved");
    
            _transfer(from, to, tokenId);
        }
    
        /**
         * @dev See {IERC721-safeTransferFrom}.
         */
        function safeTransferFrom(
            address from,
            address to,
            uint256 tokenId
        ) public virtual override {
            safeTransferFrom(from, to, tokenId, "");
        }
    
        /**
         * @dev See {IERC721-safeTransferFrom}.
         */
        function safeTransferFrom(
            address from,
            address to,
            uint256 tokenId,
            bytes memory data
        ) public virtual override {
            require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner nor approved");
            _safeTransfer(from, to, tokenId, data);
        }
    
        /**
         * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
         * are aware of the ERC721 protocol to prevent tokens from being forever locked.
         *
         * `data` is additional data, it has no specified format and it is sent in call to `to`.
         *
         * This internal function is equivalent to {safeTransferFrom}, and can be used to e.g.
         * implement alternative mechanisms to perform token transfer, such as signature-based.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `tokenId` token must exist and be owned by `from`.
         * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
         *
         * Emits a {Transfer} event.
         */
        function _safeTransfer(
            address from,
            address to,
            uint256 tokenId,
            bytes memory data
        ) internal virtual {
            _transfer(from, to, tokenId);
            require(_checkOnERC721Received(from, to, tokenId, data), "ERC721: transfer to non ERC721Receiver implementer");
        }
    
        /**
         * @dev Returns whether `tokenId` exists.
         *
         * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
         *
         * Tokens start existing when they are minted (`_mint`),
         * and stop existing when they are burned (`_burn`).
         */
        function _exists(uint256 tokenId) internal view virtual returns (bool) {
            return _owners[tokenId] != address(0);
        }
    
        /**
         * @dev Returns whether `spender` is allowed to manage `tokenId`.
         *
         * Requirements:
         *
         * - `tokenId` must exist.
         */
        function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) {
            address owner = ERC721.ownerOf(tokenId);
            return (spender == owner || isApprovedForAll(owner, spender) || getApproved(tokenId) == spender);
        }
    
        /**
         * @dev Safely mints `tokenId` and transfers it to `to`.
         *
         * Requirements:
         *
         * - `tokenId` must not exist.
         * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
         *
         * Emits a {Transfer} event.
         */
        function _safeMint(address to, uint256 tokenId) internal virtual {
            _safeMint(to, tokenId, "");
        }
    
        /**
         * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
         * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
         */
        function _safeMint(
            address to,
            uint256 tokenId,
            bytes memory data
        ) internal virtual {
            _mint(to, tokenId);
            require(
                _checkOnERC721Received(address(0), to, tokenId, data),
                "ERC721: transfer to non ERC721Receiver implementer"
            );
        }
    
        /**
         * @dev Mints `tokenId` and transfers it to `to`.
         *
         * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
         *
         * Requirements:
         *
         * - `tokenId` must not exist.
         * - `to` cannot be the zero address.
         *
         * Emits a {Transfer} event.
         */
        function _mint(address to, uint256 tokenId) internal virtual {
            require(to != address(0), "ERC721: mint to the zero address");
            require(!_exists(tokenId), "ERC721: token already minted");
    
            _beforeTokenTransfer(address(0), to, tokenId);
    
            _balances[to] += 1;
            _owners[tokenId] = to;
    
            emit Transfer(address(0), to, tokenId);
    
            _afterTokenTransfer(address(0), to, tokenId);
        }
    
        /**
         * @dev Destroys `tokenId`.
         * The approval is cleared when the token is burned.
         *
         * Requirements:
         *
         * - `tokenId` must exist.
         *
         * Emits a {Transfer} event.
         */
        function _burn(uint256 tokenId) internal virtual {
            address owner = ERC721.ownerOf(tokenId);
    
            _beforeTokenTransfer(owner, address(0), tokenId);
    
            // Clear approvals
            _approve(address(0), tokenId);
    
            _balances[owner] -= 1;
            delete _owners[tokenId];
    
            emit Transfer(owner, address(0), tokenId);
    
            _afterTokenTransfer(owner, address(0), tokenId);
        }
    
        /**
         * @dev Transfers `tokenId` from `from` to `to`.
         *  As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - `tokenId` token must be owned by `from`.
         *
         * Emits a {Transfer} event.
         */
        function _transfer(
            address from,
            address to,
            uint256 tokenId
        ) internal virtual {
            require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner");
            require(to != address(0), "ERC721: transfer to the zero address");
    
            _beforeTokenTransfer(from, to, tokenId);
    
            // Clear approvals from the previous owner
            _approve(address(0), tokenId);
    
            _balances[from] -= 1;
            _balances[to] += 1;
            _owners[tokenId] = to;
    
            emit Transfer(from, to, tokenId);
    
            _afterTokenTransfer(from, to, tokenId);
        }
    
        /**
         * @dev Approve `to` to operate on `tokenId`
         *
         * Emits an {Approval} event.
         */
        function _approve(address to, uint256 tokenId) internal virtual {
            _tokenApprovals[tokenId] = to;
            emit Approval(ERC721.ownerOf(tokenId), to, tokenId);
        }
    
        /**
         * @dev Approve `operator` to operate on all of `owner` tokens
         *
         * Emits an {ApprovalForAll} event.
         */
        function _setApprovalForAll(
            address owner,
            address operator,
            bool approved
        ) internal virtual {
            require(owner != operator, "ERC721: approve to caller");
            _operatorApprovals[owner][operator] = approved;
            emit ApprovalForAll(owner, operator, approved);
        }
    
        /**
         * @dev Reverts if the `tokenId` has not been minted yet.
         */
        function _requireMinted(uint256 tokenId) internal view virtual {
            require(_exists(tokenId), "ERC721: invalid token ID");
        }
    
        /**
         * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address.
         * The call is not executed if the target address is not a contract.
         *
         * @param from address representing the previous owner of the given token ID
         * @param to target address that will receive the tokens
         * @param tokenId uint256 ID of the token to be transferred
         * @param data bytes optional data to send along with the call
         * @return bool whether the call correctly returned the expected magic value
         */
        function _checkOnERC721Received(
            address from,
            address to,
            uint256 tokenId,
            bytes memory data
        ) private returns (bool) {
            if (to.isContract()) {
                try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, data) returns (bytes4 retval) {
                    return retval == IERC721Receiver.onERC721Received.selector;
                } catch (bytes memory reason) {
                    if (reason.length == 0) {
                        revert("ERC721: transfer to non ERC721Receiver implementer");
                    } else {
                        /// @solidity memory-safe-assembly
                        assembly {
                            revert(add(32, reason), mload(reason))
                        }
                    }
                }
            } else {
                return true;
            }
        }
    
        /**
         * @dev Hook that is called before any token transfer. This includes minting
         * and burning.
         *
         * Calling conditions:
         *
         * - When `from` and `to` are both non-zero, ``from``'s `tokenId` will be
         * transferred to `to`.
         * - When `from` is zero, `tokenId` will be minted for `to`.
         * - When `to` is zero, ``from``'s `tokenId` will be burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _beforeTokenTransfer(
            address from,
            address to,
            uint256 tokenId
        ) internal virtual {}
    
        /**
         * @dev Hook that is called after any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _afterTokenTransfer(
            address from,
            address to,
            uint256 tokenId
        ) internal virtual {}
    }
    
    
    // File @openzeppelin/contracts/token/ERC721/extensions/[email protected]
    
     
    // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC721/extensions/IERC721Enumerable.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
     * @dev See https://eips.ethereum.org/EIPS/eip-721
     */
    interface IERC721Enumerable is IERC721 {
        /**
         * @dev Returns the total amount of tokens stored by the contract.
         */
        function totalSupply() external view returns (uint256);
    
        /**
         * @dev Returns a token ID owned by `owner` at a given `index` of its token list.
         * Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
         */
        function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);
    
        /**
         * @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
         * Use along with {totalSupply} to enumerate all tokens.
         */
        function tokenByIndex(uint256 index) external view returns (uint256);
    }
    
    
    // File @openzeppelin/contracts/token/ERC721/extensions/[email protected]
    
     
    // OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/ERC721Enumerable.sol)
    
    pragma solidity ^0.8.0;
    
    
    /**
     * @dev This implements an optional extension of {ERC721} defined in the EIP that adds
     * enumerability of all the token ids in the contract as well as all token ids owned by each
     * account.
     */
    abstract contract ERC721Enumerable is ERC721, IERC721Enumerable {
        // Mapping from owner to list of owned token IDs
        mapping(address => mapping(uint256 => uint256)) private _ownedTokens;
    
        // Mapping from token ID to index of the owner tokens list
        mapping(uint256 => uint256) private _ownedTokensIndex;
    
        // Array with all token ids, used for enumeration
        uint256[] private _allTokens;
    
        // Mapping from token id to position in the allTokens array
        mapping(uint256 => uint256) private _allTokensIndex;
    
        /**
         * @dev See {IERC165-supportsInterface}.
         */
        function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC721) returns (bool) {
            return interfaceId == type(IERC721Enumerable).interfaceId || super.supportsInterface(interfaceId);
        }
    
        /**
         * @dev See {IERC721Enumerable-tokenOfOwnerByIndex}.
         */
        function tokenOfOwnerByIndex(address owner, uint256 index) public view virtual override returns (uint256) {
            require(index < ERC721.balanceOf(owner), "ERC721Enumerable: owner index out of bounds");
            return _ownedTokens[owner][index];
        }
    
        /**
         * @dev See {IERC721Enumerable-totalSupply}.
         */
        function totalSupply() public view virtual override returns (uint256) {
            return _allTokens.length;
        }
    
        /**
         * @dev See {IERC721Enumerable-tokenByIndex}.
         */
        function tokenByIndex(uint256 index) public view virtual override returns (uint256) {
            require(index < ERC721Enumerable.totalSupply(), "ERC721Enumerable: global index out of bounds");
            return _allTokens[index];
        }
    
        /**
         * @dev Hook that is called before any token transfer. This includes minting
         * and burning.
         *
         * Calling conditions:
         *
         * - When `from` and `to` are both non-zero, ``from``'s `tokenId` will be
         * transferred to `to`.
         * - When `from` is zero, `tokenId` will be minted for `to`.
         * - When `to` is zero, ``from``'s `tokenId` will be burned.
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _beforeTokenTransfer(
            address from,
            address to,
            uint256 tokenId
        ) internal virtual override {
            super._beforeTokenTransfer(from, to, tokenId);
    
            if (from == address(0)) {
                _addTokenToAllTokensEnumeration(tokenId);
            } else if (from != to) {
                _removeTokenFromOwnerEnumeration(from, tokenId);
            }
            if (to == address(0)) {
                _removeTokenFromAllTokensEnumeration(tokenId);
            } else if (to != from) {
                _addTokenToOwnerEnumeration(to, tokenId);
            }
        }
    
        /**
         * @dev Private function to add a token to this extension's ownership-tracking data structures.
         * @param to address representing the new owner of the given token ID
         * @param tokenId uint256 ID of the token to be added to the tokens list of the given address
         */
        function _addTokenToOwnerEnumeration(address to, uint256 tokenId) private {
            uint256 length = ERC721.balanceOf(to);
            _ownedTokens[to][length] = tokenId;
            _ownedTokensIndex[tokenId] = length;
        }
    
        /**
         * @dev Private function to add a token to this extension's token tracking data structures.
         * @param tokenId uint256 ID of the token to be added to the tokens list
         */
        function _addTokenToAllTokensEnumeration(uint256 tokenId) private {
            _allTokensIndex[tokenId] = _allTokens.length;
            _allTokens.push(tokenId);
        }
    
        /**
         * @dev Private function to remove a token from this extension's ownership-tracking data structures. Note that
         * while the token is not assigned a new owner, the `_ownedTokensIndex` mapping is _not_ updated: this allows for
         * gas optimizations e.g. when performing a transfer operation (avoiding double writes).
         * This has O(1) time complexity, but alters the order of the _ownedTokens array.
         * @param from address representing the previous owner of the given token ID
         * @param tokenId uint256 ID of the token to be removed from the tokens list of the given address
         */
        function _removeTokenFromOwnerEnumeration(address from, uint256 tokenId) private {
            // To prevent a gap in from's tokens array, we store the last token in the index of the token to delete, and
            // then delete the last slot (swap and pop).
    
            uint256 lastTokenIndex = ERC721.balanceOf(from) - 1;
            uint256 tokenIndex = _ownedTokensIndex[tokenId];
    
            // When the token to delete is the last token, the swap operation is unnecessary
            if (tokenIndex != lastTokenIndex) {
                uint256 lastTokenId = _ownedTokens[from][lastTokenIndex];
    
                _ownedTokens[from][tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token
                _ownedTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index
            }
    
            // This also deletes the contents at the last position of the array
            delete _ownedTokensIndex[tokenId];
            delete _ownedTokens[from][lastTokenIndex];
        }
    
        /**
         * @dev Private function to remove a token from this extension's token tracking data structures.
         * This has O(1) time complexity, but alters the order of the _allTokens array.
         * @param tokenId uint256 ID of the token to be removed from the tokens list
         */
        function _removeTokenFromAllTokensEnumeration(uint256 tokenId) private {
            // To prevent a gap in the tokens array, we store the last token in the index of the token to delete, and
            // then delete the last slot (swap and pop).
    
            uint256 lastTokenIndex = _allTokens.length - 1;
            uint256 tokenIndex = _allTokensIndex[tokenId];
    
            // When the token to delete is the last token, the swap operation is unnecessary. However, since this occurs so
            // rarely (when the last minted token is burnt) that we still do the swap here to avoid the gas cost of adding
            // an 'if' statement (like in _removeTokenFromOwnerEnumeration)
            uint256 lastTokenId = _allTokens[lastTokenIndex];
    
            _allTokens[tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token
            _allTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index
    
            // This also deletes the contents at the last position of the array
            delete _allTokensIndex[tokenId];
            _allTokens.pop();
        }
    }
    
    
    // File @openzeppelin/contracts/security/[email protected]
    
     
    // OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Contract module which allows children to implement an emergency stop
     * mechanism that can be triggered by an authorized account.
     *
     * This module is used through inheritance. It will make available the
     * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
     * the functions of your contract. Note that they will not be pausable by
     * simply including this module, only once the modifiers are put in place.
     */
    abstract contract Pausable is Context {
        /**
         * @dev Emitted when the pause is triggered by `account`.
         */
        event Paused(address account);
    
        /**
         * @dev Emitted when the pause is lifted by `account`.
         */
        event Unpaused(address account);
    
        bool private _paused;
    
        /**
         * @dev Initializes the contract in unpaused state.
         */
        constructor() {
            _paused = false;
        }
    
        /**
         * @dev Modifier to make a function callable only when the contract is not paused.
         *
         * Requirements:
         *
         * - The contract must not be paused.
         */
        modifier whenNotPaused() {
            _requireNotPaused();
            _;
        }
    
        /**
         * @dev Modifier to make a function callable only when the contract is paused.
         *
         * Requirements:
         *
         * - The contract must be paused.
         */
        modifier whenPaused() {
            _requirePaused();
            _;
        }
    
        /**
         * @dev Returns true if the contract is paused, and false otherwise.
         */
        function paused() public view virtual returns (bool) {
            return _paused;
        }
    
        /**
         * @dev Throws if the contract is paused.
         */
        function _requireNotPaused() internal view virtual {
            require(!paused(), "Pausable: paused");
        }
    
        /**
         * @dev Throws if the contract is not paused.
         */
        function _requirePaused() internal view virtual {
            require(paused(), "Pausable: not paused");
        }
    
        /**
         * @dev Triggers stopped state.
         *
         * Requirements:
         *
         * - The contract must not be paused.
         */
        function _pause() internal virtual whenNotPaused {
            _paused = true;
            emit Paused(_msgSender());
        }
    
        /**
         * @dev Returns to normal state.
         *
         * Requirements:
         *
         * - The contract must be paused.
         */
        function _unpause() internal virtual whenPaused {
            _paused = false;
            emit Unpaused(_msgSender());
        }
    }
    
    
    // File @openzeppelin/contracts/access/[email protected]
    
     
    // OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev External interface of AccessControl declared to support ERC165 detection.
     */
    interface IAccessControl {
        /**
         * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
         *
         * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
         * {RoleAdminChanged} not being emitted signaling this.
         *
         * _Available since v3.1._
         */
        event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
    
        /**
         * @dev Emitted when `account` is granted `role`.
         *
         * `sender` is the account that originated the contract call, an admin role
         * bearer except when using {AccessControl-_setupRole}.
         */
        event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
    
        /**
         * @dev Emitted when `account` is revoked `role`.
         *
         * `sender` is the account that originated the contract call:
         *   - if using `revokeRole`, it is the admin role bearer
         *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
         */
        event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
    
        /**
         * @dev Returns `true` if `account` has been granted `role`.
         */
        function hasRole(bytes32 role, address account) external view returns (bool);
    
        /**
         * @dev Returns the admin role that controls `role`. See {grantRole} and
         * {revokeRole}.
         *
         * To change a role's admin, use {AccessControl-_setRoleAdmin}.
         */
        function getRoleAdmin(bytes32 role) external view returns (bytes32);
    
        /**
         * @dev Grants `role` to `account`.
         *
         * If `account` had not been already granted `role`, emits a {RoleGranted}
         * event.
         *
         * Requirements:
         *
         * - the caller must have ``role``'s admin role.
         */
        function grantRole(bytes32 role, address account) external;
    
        /**
         * @dev Revokes `role` from `account`.
         *
         * If `account` had been granted `role`, emits a {RoleRevoked} event.
         *
         * Requirements:
         *
         * - the caller must have ``role``'s admin role.
         */
        function revokeRole(bytes32 role, address account) external;
    
        /**
         * @dev Revokes `role` from the calling account.
         *
         * Roles are often managed via {grantRole} and {revokeRole}: this function's
         * purpose is to provide a mechanism for accounts to lose their privileges
         * if they are compromised (such as when a trusted device is misplaced).
         *
         * If the calling account had been granted `role`, emits a {RoleRevoked}
         * event.
         *
         * Requirements:
         *
         * - the caller must be `account`.
         */
        function renounceRole(bytes32 role, address account) external;
    }
    
    
    // File @openzeppelin/contracts/access/[email protected]
    
     
    // OpenZeppelin Contracts (last updated v4.7.0) (access/AccessControl.sol)
    
    pragma solidity ^0.8.0;
    
    
    
    
    /**
     * @dev Contract module that allows children to implement role-based access
     * control mechanisms. This is a lightweight version that doesn't allow enumerating role
     * members except through off-chain means by accessing the contract event logs. Some
     * applications may benefit from on-chain enumerability, for those cases see
     * {AccessControlEnumerable}.
     *
     * Roles are referred to by their `bytes32` identifier. These should be exposed
     * in the external API and be unique. The best way to achieve this is by
     * using `public constant` hash digests:
     *
     * ```
     * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
     * ```
     *
     * Roles can be used to represent a set of permissions. To restrict access to a
     * function call, use {hasRole}:
     *
     * ```
     * function foo() public {
     *     require(hasRole(MY_ROLE, msg.sender));
     *     ...
     * }
     * ```
     *
     * Roles can be granted and revoked dynamically via the {grantRole} and
     * {revokeRole} functions. Each role has an associated admin role, and only
     * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
     *
     * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
     * that only accounts with this role will be able to grant or revoke other
     * roles. More complex role relationships can be created by using
     * {_setRoleAdmin}.
     *
     * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
     * grant and revoke this role. Extra precautions should be taken to secure
     * accounts that have been granted it.
     */
    abstract contract AccessControl is Context, IAccessControl, ERC165 {
        struct RoleData {
            mapping(address => bool) members;
            bytes32 adminRole;
        }
    
        mapping(bytes32 => RoleData) private _roles;
    
        bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
    
        /**
         * @dev Modifier that checks that an account has a specific role. Reverts
         * with a standardized message including the required role.
         *
         * The format of the revert reason is given by the following regular expression:
         *
         *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
         *
         * _Available since v4.1._
         */
        modifier onlyRole(bytes32 role) {
            _checkRole(role);
            _;
        }
    
        /**
         * @dev See {IERC165-supportsInterface}.
         */
        function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
            return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
        }
    
        /**
         * @dev Returns `true` if `account` has been granted `role`.
         */
        function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
            return _roles[role].members[account];
        }
    
        /**
         * @dev Revert with a standard message if `_msgSender()` is missing `role`.
         * Overriding this function changes the behavior of the {onlyRole} modifier.
         *
         * Format of the revert message is described in {_checkRole}.
         *
         * _Available since v4.6._
         */
        function _checkRole(bytes32 role) internal view virtual {
            _checkRole(role, _msgSender());
        }
    
        /**
         * @dev Revert with a standard message if `account` is missing `role`.
         *
         * The format of the revert reason is given by the following regular expression:
         *
         *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
         */
        function _checkRole(bytes32 role, address account) internal view virtual {
            if (!hasRole(role, account)) {
                revert(
                    string(
                        abi.encodePacked(
                            "AccessControl: account ",
                            Strings.toHexString(uint160(account), 20),
                            " is missing role ",
                            Strings.toHexString(uint256(role), 32)
                        )
                    )
                );
            }
        }
    
        /**
         * @dev Returns the admin role that controls `role`. See {grantRole} and
         * {revokeRole}.
         *
         * To change a role's admin, use {_setRoleAdmin}.
         */
        function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
            return _roles[role].adminRole;
        }
    
        /**
         * @dev Grants `role` to `account`.
         *
         * If `account` had not been already granted `role`, emits a {RoleGranted}
         * event.
         *
         * Requirements:
         *
         * - the caller must have ``role``'s admin role.
         *
         * May emit a {RoleGranted} event.
         */
        function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
            _grantRole(role, account);
        }
    
        /**
         * @dev Revokes `role` from `account`.
         *
         * If `account` had been granted `role`, emits a {RoleRevoked} event.
         *
         * Requirements:
         *
         * - the caller must have ``role``'s admin role.
         *
         * May emit a {RoleRevoked} event.
         */
        function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
            _revokeRole(role, account);
        }
    
        /**
         * @dev Revokes `role` from the calling account.
         *
         * Roles are often managed via {grantRole} and {revokeRole}: this function's
         * purpose is to provide a mechanism for accounts to lose their privileges
         * if they are compromised (such as when a trusted device is misplaced).
         *
         * If the calling account had been revoked `role`, emits a {RoleRevoked}
         * event.
         *
         * Requirements:
         *
         * - the caller must be `account`.
         *
         * May emit a {RoleRevoked} event.
         */
        function renounceRole(bytes32 role, address account) public virtual override {
            require(account == _msgSender(), "AccessControl: can only renounce roles for self");
    
            _revokeRole(role, account);
        }
    
        /**
         * @dev Grants `role` to `account`.
         *
         * If `account` had not been already granted `role`, emits a {RoleGranted}
         * event. Note that unlike {grantRole}, this function doesn't perform any
         * checks on the calling account.
         *
         * May emit a {RoleGranted} event.
         *
         * [WARNING]
         * ====
         * This function should only be called from the constructor when setting
         * up the initial roles for the system.
         *
         * Using this function in any other way is effectively circumventing the admin
         * system imposed by {AccessControl}.
         * ====
         *
         * NOTE: This function is deprecated in favor of {_grantRole}.
         */
        function _setupRole(bytes32 role, address account) internal virtual {
            _grantRole(role, account);
        }
    
        /**
         * @dev Sets `adminRole` as ``role``'s admin role.
         *
         * Emits a {RoleAdminChanged} event.
         */
        function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
            bytes32 previousAdminRole = getRoleAdmin(role);
            _roles[role].adminRole = adminRole;
            emit RoleAdminChanged(role, previousAdminRole, adminRole);
        }
    
        /**
         * @dev Grants `role` to `account`.
         *
         * Internal function without access restriction.
         *
         * May emit a {RoleGranted} event.
         */
        function _grantRole(bytes32 role, address account) internal virtual {
            if (!hasRole(role, account)) {
                _roles[role].members[account] = true;
                emit RoleGranted(role, account, _msgSender());
            }
        }
    
        /**
         * @dev Revokes `role` from `account`.
         *
         * Internal function without access restriction.
         *
         * May emit a {RoleRevoked} event.
         */
        function _revokeRole(bytes32 role, address account) internal virtual {
            if (hasRole(role, account)) {
                _roles[role].members[account] = false;
                emit RoleRevoked(role, account, _msgSender());
            }
        }
    }
    
    
    // File contracts/token/onft/ONFT721.sol
    
     
    
    pragma solidity ^0.8.0;
    
    
    
    
    
    // NOTE: this ONFT contract has no public minting logic.
    // must implement your own minting logic in child classes
    contract ONFT721 is ONFT721Core, ERC721, IONFT721, ERC721Enumerable, Pausable, AccessControl{
        constructor(string memory _name, string memory _symbol, uint256 _minGasToTransfer, address _lzEndpoint) ERC721(_name, _symbol) ONFT721Core(_minGasToTransfer, _lzEndpoint) {}
    
        function supportsInterface(bytes4 interfaceId) public view virtual override(ONFT721Core, ERC721, IERC165, ERC721Enumerable, AccessControl) returns (bool) {
            return interfaceId == type(IONFT721).interfaceId || super.supportsInterface(interfaceId);
        }
    
        function _debitFrom(address _from, uint16, bytes memory, uint _tokenId) internal virtual override {
            require(_isApprovedOrOwner(_msgSender(), _tokenId), "ONFT721: send caller is not owner nor approved");
            require(ERC721.ownerOf(_tokenId) == _from, "ONFT721: send from incorrect owner");
            _transfer(_from, address(this), _tokenId);
        }
    
        function _creditTo(uint16, address _toAddress, uint _tokenId) internal virtual override {
            require(!_exists(_tokenId) || (_exists(_tokenId) && ERC721.ownerOf(_tokenId) == address(this)));
            if (!_exists(_tokenId)) {
                _safeMint(_toAddress, _tokenId);
            } else {
                _transfer(address(this), _toAddress, _tokenId);
            }
        }
    
        function _beforeTokenTransfer(address from, address to, uint256 tokenId)
            internal
            whenNotPaused
            override(ERC721, ERC721Enumerable)
        {
            super._beforeTokenTransfer(from, to, tokenId);
        }
    }
    
    
    // File contracts/token/onft/extension/UniversalONFT721.sol
    
    
    
    pragma solidity ^0.8.0;
    
    
    /// @title Interface of the UniversalONFT standard
    contract UniversalONFT721 is ONFT721 {
        uint public nextMintId;
        uint public maxMintId;
        string baseURI = "http://meta.ait.tech/"; 
        mapping(address => bool) public admin;
        /// @notice Constructor for the UniversalONFT
        /// @param _name the name of the token
        /// @param _symbol the token symbol
        /// @param _layerZeroEndpoint handles message transmission across chains
        /// @param _startMintId the starting mint number on this chain
        /// @param _endMintId the max number of mints on this chain
        constructor(string memory _name, string memory _symbol, uint256 _minGasToTransfer, address _layerZeroEndpoint, uint _startMintId, uint _endMintId) ONFT721(_name, _symbol, _minGasToTransfer, _layerZeroEndpoint) {
            nextMintId = _startMintId;
            maxMintId = _endMintId;
        }
    
        event ChangeRangeTokenId(
            uint min,
            uint max,
            uint blockTime
        );
    
        event AddAdmin(
            address admin,
            uint blockTime
        );
    
        function _baseURI() internal view virtual override returns (string memory) {
            return baseURI;
        }
    
        function setBaseURI(string memory _baseUri) public onlyOwner() {
            baseURI = _baseUri;
        }
    
        function addAdmin(address _admin) external onlyOwner() {
            admin[_admin] = !admin[_admin];
            emit AddAdmin(_admin, block.timestamp);
        }
    
        function changeRangeTokenId(uint _min, uint _max) external onlyOwner() {
            require(maxMintId < _min && _min < _max, "NFT: RANGE_TOKEN_ID_WRONG");
            nextMintId = _min;
            maxMintId = _max;
            emit ChangeRangeTokenId(_min, _max, block.timestamp);
        }
        /// @notice Mint your ONFT
        function mint(address to) external {
            require(admin[msg.sender]);
            require(nextMintId <= maxMintId, "UniversalONFT721: max mint limit reached");
    
            uint newId = nextMintId;
            nextMintId++;
    
            _safeMint(to, newId);
        }
    }
    
    
    
    // File contracts/AITONFT.sol
    
    pragma solidity ^0.8.0;
    
    /// @title A LayerZero UniversalONFT example
    /// @notice You can use this to mint ONFT and send nftIds across chain.
    ///  Each contract deployed to a chain should carefully set a `_startMintIndex` and a `_maxMint`
    ///  value to set a range of allowed mintable nftIds (so that no two chains can mint the same id!)
    contract AITNFT is UniversalONFT721 {
        constructor(uint256 _minGasToStore, address _layerZeroEndpoint, uint _startMintId, uint _endMintId) UniversalONFT721("AIT iPASS NFT", "AITONFT", _minGasToStore, _layerZeroEndpoint, _startMintId, _endMintId) {}
    }