ETH Price: $2,520.13 (-0.34%)
Gas: 0.56 Gwei

Transaction Decoder

Block:
18216586 at Sep-26-2023 01:10:11 AM +UTC
Transaction Fee:
0.00107657637044904 ETH $2.71
Gas Used:
121,448 Gas / 8.86450473 Gwei

Emitted Events:

69 OptimismPortal.TransactionDeposited( from=[Sender] 0x5a993357be53e26b13b70a0dce67d46514e69148, to=[Sender] 0x5a993357be53e26b13b70a0dce67d46514e69148, version=0, opaqueData=0x00000000000000000000000000000000000000000000000000005C14B6104B9F00000000000000000000000000000000000000000000000000005C14B6104B9F00000000000AFC800000 )

Account State Difference:

  Address   Before After State Difference Code
0x43260ee5...cC650BA4A 0.0003 Eth0.000401244023622559 Eth0.000101244023622559
(Faith Builder)
2.971567468227095821 Eth2.971749640227095821 Eth0.000182172
0x5A993357...514e69148
0.03 Eth
Nonce: 0
0.028822179605928401 Eth
Nonce: 1
0.001177820394071599

Execution Trace

ETH 0.000101244023622559 OptimismPortal.depositTransaction( _to=0x5A993357be53e26B13B70A0dcE67d46514e69148, _value=101244023622559, _gasLimit=720000, _isCreation=False, _data=0x00 )
  • Proxy.STATICCALL( )
    • SystemConfig.DELEGATECALL( )
      File 1 of 3: OptimismPortal
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.15;
      import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
      import { Semver } from "../universal/Semver.sol";
      import { Types } from "../libraries/Types.sol";
      /**
       * @custom:proxied
       * @title L2OutputOracle
       * @notice The L2OutputOracle contains an array of L2 state outputs, where each output is a
       *         commitment to the state of the L2 chain. Other contracts like the OptimismPortal use
       *         these outputs to verify information about the state of L2.
       */
      contract L2OutputOracle is Initializable, Semver {
          /**
           * @notice The interval in L2 blocks at which checkpoints must be submitted. Although this is
           *         immutable, it can safely be modified by upgrading the implementation contract.
           */
          uint256 public immutable SUBMISSION_INTERVAL;
          /**
           * @notice The time between L2 blocks in seconds. Once set, this value MUST NOT be modified.
           */
          uint256 public immutable L2_BLOCK_TIME;
          /**
           * @notice The address of the challenger. Can be updated via upgrade.
           */
          address public immutable CHALLENGER;
          /**
           * @notice The address of the proposer. Can be updated via upgrade.
           */
          address public immutable PROPOSER;
          /**
           * @notice Minimum time (in seconds) that must elapse before a withdrawal can be finalized.
           */
          uint256 public immutable FINALIZATION_PERIOD_SECONDS;
          /**
           * @notice The number of the first L2 block recorded in this contract.
           */
          uint256 public startingBlockNumber;
          /**
           * @notice The timestamp of the first L2 block recorded in this contract.
           */
          uint256 public startingTimestamp;
          /**
           * @notice Array of L2 output proposals.
           */
          Types.OutputProposal[] internal l2Outputs;
          /**
           * @notice Emitted when an output is proposed.
           *
           * @param outputRoot    The output root.
           * @param l2OutputIndex The index of the output in the l2Outputs array.
           * @param l2BlockNumber The L2 block number of the output root.
           * @param l1Timestamp   The L1 timestamp when proposed.
           */
          event OutputProposed(
              bytes32 indexed outputRoot,
              uint256 indexed l2OutputIndex,
              uint256 indexed l2BlockNumber,
              uint256 l1Timestamp
          );
          /**
           * @notice Emitted when outputs are deleted.
           *
           * @param prevNextOutputIndex Next L2 output index before the deletion.
           * @param newNextOutputIndex  Next L2 output index after the deletion.
           */
          event OutputsDeleted(uint256 indexed prevNextOutputIndex, uint256 indexed newNextOutputIndex);
          /**
           * @custom:semver 1.3.0
           *
           * @param _submissionInterval  Interval in blocks at which checkpoints must be submitted.
           * @param _l2BlockTime         The time per L2 block, in seconds.
           * @param _startingBlockNumber The number of the first L2 block.
           * @param _startingTimestamp   The timestamp of the first L2 block.
           * @param _proposer            The address of the proposer.
           * @param _challenger          The address of the challenger.
           */
          constructor(
              uint256 _submissionInterval,
              uint256 _l2BlockTime,
              uint256 _startingBlockNumber,
              uint256 _startingTimestamp,
              address _proposer,
              address _challenger,
              uint256 _finalizationPeriodSeconds
          ) Semver(1, 3, 0) {
              require(_l2BlockTime > 0, "L2OutputOracle: L2 block time must be greater than 0");
              require(
                  _submissionInterval > 0,
                  "L2OutputOracle: submission interval must be greater than 0"
              );
              SUBMISSION_INTERVAL = _submissionInterval;
              L2_BLOCK_TIME = _l2BlockTime;
              PROPOSER = _proposer;
              CHALLENGER = _challenger;
              FINALIZATION_PERIOD_SECONDS = _finalizationPeriodSeconds;
              initialize(_startingBlockNumber, _startingTimestamp);
          }
          /**
           * @notice Initializer.
           *
           * @param _startingBlockNumber Block number for the first recoded L2 block.
           * @param _startingTimestamp   Timestamp for the first recoded L2 block.
           */
          function initialize(uint256 _startingBlockNumber, uint256 _startingTimestamp)
              public
              initializer
          {
              require(
                  _startingTimestamp <= block.timestamp,
                  "L2OutputOracle: starting L2 timestamp must be less than current time"
              );
              startingTimestamp = _startingTimestamp;
              startingBlockNumber = _startingBlockNumber;
          }
          /**
           * @notice Deletes all output proposals after and including the proposal that corresponds to
           *         the given output index. Only the challenger address can delete outputs.
           *
           * @param _l2OutputIndex Index of the first L2 output to be deleted. All outputs after this
           *                       output will also be deleted.
           */
          // solhint-disable-next-line ordering
          function deleteL2Outputs(uint256 _l2OutputIndex) external {
              require(
                  msg.sender == CHALLENGER,
                  "L2OutputOracle: only the challenger address can delete outputs"
              );
              // Make sure we're not *increasing* the length of the array.
              require(
                  _l2OutputIndex < l2Outputs.length,
                  "L2OutputOracle: cannot delete outputs after the latest output index"
              );
              // Do not allow deleting any outputs that have already been finalized.
              require(
                  block.timestamp - l2Outputs[_l2OutputIndex].timestamp < FINALIZATION_PERIOD_SECONDS,
                  "L2OutputOracle: cannot delete outputs that have already been finalized"
              );
              uint256 prevNextL2OutputIndex = nextOutputIndex();
              // Use assembly to delete the array elements because Solidity doesn't allow it.
              assembly {
                  sstore(l2Outputs.slot, _l2OutputIndex)
              }
              emit OutputsDeleted(prevNextL2OutputIndex, _l2OutputIndex);
          }
          /**
           * @notice Accepts an outputRoot and the timestamp of the corresponding L2 block. The timestamp
           *         must be equal to the current value returned by `nextTimestamp()` in order to be
           *         accepted. This function may only be called by the Proposer.
           *
           * @param _outputRoot    The L2 output of the checkpoint block.
           * @param _l2BlockNumber The L2 block number that resulted in _outputRoot.
           * @param _l1BlockHash   A block hash which must be included in the current chain.
           * @param _l1BlockNumber The block number with the specified block hash.
           */
          function proposeL2Output(
              bytes32 _outputRoot,
              uint256 _l2BlockNumber,
              bytes32 _l1BlockHash,
              uint256 _l1BlockNumber
          ) external payable {
              require(
                  msg.sender == PROPOSER,
                  "L2OutputOracle: only the proposer address can propose new outputs"
              );
              require(
                  _l2BlockNumber == nextBlockNumber(),
                  "L2OutputOracle: block number must be equal to next expected block number"
              );
              require(
                  computeL2Timestamp(_l2BlockNumber) < block.timestamp,
                  "L2OutputOracle: cannot propose L2 output in the future"
              );
              require(
                  _outputRoot != bytes32(0),
                  "L2OutputOracle: L2 output proposal cannot be the zero hash"
              );
              if (_l1BlockHash != bytes32(0)) {
                  // This check allows the proposer to propose an output based on a given L1 block,
                  // without fear that it will be reorged out.
                  // It will also revert if the blockheight provided is more than 256 blocks behind the
                  // chain tip (as the hash will return as zero). This does open the door to a griefing
                  // attack in which the proposer's submission is censored until the block is no longer
                  // retrievable, if the proposer is experiencing this attack it can simply leave out the
                  // blockhash value, and delay submission until it is confident that the L1 block is
                  // finalized.
                  require(
                      blockhash(_l1BlockNumber) == _l1BlockHash,
                      "L2OutputOracle: block hash does not match the hash at the expected height"
                  );
              }
              emit OutputProposed(_outputRoot, nextOutputIndex(), _l2BlockNumber, block.timestamp);
              l2Outputs.push(
                  Types.OutputProposal({
                      outputRoot: _outputRoot,
                      timestamp: uint128(block.timestamp),
                      l2BlockNumber: uint128(_l2BlockNumber)
                  })
              );
          }
          /**
           * @notice Returns an output by index. Exists because Solidity's array access will return a
           *         tuple instead of a struct.
           *
           * @param _l2OutputIndex Index of the output to return.
           *
           * @return The output at the given index.
           */
          function getL2Output(uint256 _l2OutputIndex)
              external
              view
              returns (Types.OutputProposal memory)
          {
              return l2Outputs[_l2OutputIndex];
          }
          /**
           * @notice Returns the index of the L2 output that checkpoints a given L2 block number. Uses a
           *         binary search to find the first output greater than or equal to the given block.
           *
           * @param _l2BlockNumber L2 block number to find a checkpoint for.
           *
           * @return Index of the first checkpoint that commits to the given L2 block number.
           */
          function getL2OutputIndexAfter(uint256 _l2BlockNumber) public view returns (uint256) {
              // Make sure an output for this block number has actually been proposed.
              require(
                  _l2BlockNumber <= latestBlockNumber(),
                  "L2OutputOracle: cannot get output for a block that has not been proposed"
              );
              // Make sure there's at least one output proposed.
              require(
                  l2Outputs.length > 0,
                  "L2OutputOracle: cannot get output as no outputs have been proposed yet"
              );
              // Find the output via binary search, guaranteed to exist.
              uint256 lo = 0;
              uint256 hi = l2Outputs.length;
              while (lo < hi) {
                  uint256 mid = (lo + hi) / 2;
                  if (l2Outputs[mid].l2BlockNumber < _l2BlockNumber) {
                      lo = mid + 1;
                  } else {
                      hi = mid;
                  }
              }
              return lo;
          }
          /**
           * @notice Returns the L2 output proposal that checkpoints a given L2 block number. Uses a
           *         binary search to find the first output greater than or equal to the given block.
           *
           * @param _l2BlockNumber L2 block number to find a checkpoint for.
           *
           * @return First checkpoint that commits to the given L2 block number.
           */
          function getL2OutputAfter(uint256 _l2BlockNumber)
              external
              view
              returns (Types.OutputProposal memory)
          {
              return l2Outputs[getL2OutputIndexAfter(_l2BlockNumber)];
          }
          /**
           * @notice Returns the number of outputs that have been proposed. Will revert if no outputs
           *         have been proposed yet.
           *
           * @return The number of outputs that have been proposed.
           */
          function latestOutputIndex() external view returns (uint256) {
              return l2Outputs.length - 1;
          }
          /**
           * @notice Returns the index of the next output to be proposed.
           *
           * @return The index of the next output to be proposed.
           */
          function nextOutputIndex() public view returns (uint256) {
              return l2Outputs.length;
          }
          /**
           * @notice Returns the block number of the latest submitted L2 output proposal. If no proposals
           *         been submitted yet then this function will return the starting block number.
           *
           * @return Latest submitted L2 block number.
           */
          function latestBlockNumber() public view returns (uint256) {
              return
                  l2Outputs.length == 0
                      ? startingBlockNumber
                      : l2Outputs[l2Outputs.length - 1].l2BlockNumber;
          }
          /**
           * @notice Computes the block number of the next L2 block that needs to be checkpointed.
           *
           * @return Next L2 block number.
           */
          function nextBlockNumber() public view returns (uint256) {
              return latestBlockNumber() + SUBMISSION_INTERVAL;
          }
          /**
           * @notice Returns the L2 timestamp corresponding to a given L2 block number.
           *
           * @param _l2BlockNumber The L2 block number of the target block.
           *
           * @return L2 timestamp of the given block.
           */
          function computeL2Timestamp(uint256 _l2BlockNumber) public view returns (uint256) {
              return startingTimestamp + ((_l2BlockNumber - startingBlockNumber) * L2_BLOCK_TIME);
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.15;
      import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
      import { SafeCall } from "../libraries/SafeCall.sol";
      import { L2OutputOracle } from "./L2OutputOracle.sol";
      import { SystemConfig } from "./SystemConfig.sol";
      import { Constants } from "../libraries/Constants.sol";
      import { Types } from "../libraries/Types.sol";
      import { Hashing } from "../libraries/Hashing.sol";
      import { SecureMerkleTrie } from "../libraries/trie/SecureMerkleTrie.sol";
      import { AddressAliasHelper } from "../vendor/AddressAliasHelper.sol";
      import { ResourceMetering } from "./ResourceMetering.sol";
      import { Semver } from "../universal/Semver.sol";
      /**
       * @custom:proxied
       * @title OptimismPortal
       * @notice The OptimismPortal is a low-level contract responsible for passing messages between L1
       *         and L2. Messages sent directly to the OptimismPortal have no form of replayability.
       *         Users are encouraged to use the L1CrossDomainMessenger for a higher-level interface.
       */
      contract OptimismPortal is Initializable, ResourceMetering, Semver {
          /**
           * @notice Represents a proven withdrawal.
           *
           * @custom:field outputRoot    Root of the L2 output this was proven against.
           * @custom:field timestamp     Timestamp at whcih the withdrawal was proven.
           * @custom:field l2OutputIndex Index of the output this was proven against.
           */
          struct ProvenWithdrawal {
              bytes32 outputRoot;
              uint128 timestamp;
              uint128 l2OutputIndex;
          }
          /**
           * @notice Version of the deposit event.
           */
          uint256 internal constant DEPOSIT_VERSION = 0;
          /**
           * @notice The L2 gas limit set when eth is deposited using the receive() function.
           */
          uint64 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000;
          /**
           * @notice Address of the L2OutputOracle contract.
           */
          L2OutputOracle public immutable L2_ORACLE;
          /**
           * @notice Address of the SystemConfig contract.
           */
          SystemConfig public immutable SYSTEM_CONFIG;
          /**
           * @notice Address that has the ability to pause and unpause withdrawals.
           */
          address public immutable GUARDIAN;
          /**
           * @notice Address of the L2 account which initiated a withdrawal in this transaction. If the
           *         of this variable is the default L2 sender address, then we are NOT inside of a call
           *         to finalizeWithdrawalTransaction.
           */
          address public l2Sender;
          /**
           * @notice A list of withdrawal hashes which have been successfully finalized.
           */
          mapping(bytes32 => bool) public finalizedWithdrawals;
          /**
           * @notice A mapping of withdrawal hashes to `ProvenWithdrawal` data.
           */
          mapping(bytes32 => ProvenWithdrawal) public provenWithdrawals;
          /**
           * @notice Determines if cross domain messaging is paused. When set to true,
           *         withdrawals are paused. This may be removed in the future.
           */
          bool public paused;
          /**
           * @notice Emitted when a transaction is deposited from L1 to L2. The parameters of this event
           *         are read by the rollup node and used to derive deposit transactions on L2.
           *
           * @param from       Address that triggered the deposit transaction.
           * @param to         Address that the deposit transaction is directed to.
           * @param version    Version of this deposit transaction event.
           * @param opaqueData ABI encoded deposit data to be parsed off-chain.
           */
          event TransactionDeposited(
              address indexed from,
              address indexed to,
              uint256 indexed version,
              bytes opaqueData
          );
          /**
           * @notice Emitted when a withdrawal transaction is proven.
           *
           * @param withdrawalHash Hash of the withdrawal transaction.
           */
          event WithdrawalProven(
              bytes32 indexed withdrawalHash,
              address indexed from,
              address indexed to
          );
          /**
           * @notice Emitted when a withdrawal transaction is finalized.
           *
           * @param withdrawalHash Hash of the withdrawal transaction.
           * @param success        Whether the withdrawal transaction was successful.
           */
          event WithdrawalFinalized(bytes32 indexed withdrawalHash, bool success);
          /**
           * @notice Emitted when the pause is triggered.
           *
           * @param account Address of the account triggering the pause.
           */
          event Paused(address account);
          /**
           * @notice Emitted when the pause is lifted.
           *
           * @param account Address of the account triggering the unpause.
           */
          event Unpaused(address account);
          /**
           * @notice Reverts when paused.
           */
          modifier whenNotPaused() {
              require(paused == false, "OptimismPortal: paused");
              _;
          }
          /**
           * @custom:semver 1.6.0
           *
           * @param _l2Oracle                  Address of the L2OutputOracle contract.
           * @param _guardian                  Address that can pause deposits and withdrawals.
           * @param _paused                    Sets the contract's pausability state.
           * @param _config                    Address of the SystemConfig contract.
           */
          constructor(
              L2OutputOracle _l2Oracle,
              address _guardian,
              bool _paused,
              SystemConfig _config
          ) Semver(1, 6, 0) {
              L2_ORACLE = _l2Oracle;
              GUARDIAN = _guardian;
              SYSTEM_CONFIG = _config;
              initialize(_paused);
          }
          /**
           * @notice Initializer.
           */
          function initialize(bool _paused) public initializer {
              l2Sender = Constants.DEFAULT_L2_SENDER;
              paused = _paused;
              __ResourceMetering_init();
          }
          /**
           * @notice Pause deposits and withdrawals.
           */
          function pause() external {
              require(msg.sender == GUARDIAN, "OptimismPortal: only guardian can pause");
              paused = true;
              emit Paused(msg.sender);
          }
          /**
           * @notice Unpause deposits and withdrawals.
           */
          function unpause() external {
              require(msg.sender == GUARDIAN, "OptimismPortal: only guardian can unpause");
              paused = false;
              emit Unpaused(msg.sender);
          }
          /**
           * @notice Computes the minimum gas limit for a deposit. The minimum gas limit
           *         linearly increases based on the size of the calldata. This is to prevent
           *         users from creating L2 resource usage without paying for it. This function
           *         can be used when interacting with the portal to ensure forwards compatibility.
           *
           */
          function minimumGasLimit(uint64 _byteCount) public pure returns (uint64) {
              return _byteCount * 16 + 21000;
          }
          /**
           * @notice Accepts value so that users can send ETH directly to this contract and have the
           *         funds be deposited to their address on L2. This is intended as a convenience
           *         function for EOAs. Contracts should call the depositTransaction() function directly
           *         otherwise any deposited funds will be lost due to address aliasing.
           */
          // solhint-disable-next-line ordering
          receive() external payable {
              depositTransaction(msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, false, bytes(""));
          }
          /**
           * @notice Accepts ETH value without triggering a deposit to L2. This function mainly exists
           *         for the sake of the migration between the legacy Optimism system and Bedrock.
           */
          function donateETH() external payable {
              // Intentionally empty.
          }
          /**
           * @notice Getter for the resource config. Used internally by the ResourceMetering
           *         contract. The SystemConfig is the source of truth for the resource config.
           *
           * @return ResourceMetering.ResourceConfig
           */
          function _resourceConfig()
              internal
              view
              override
              returns (ResourceMetering.ResourceConfig memory)
          {
              return SYSTEM_CONFIG.resourceConfig();
          }
          /**
           * @notice Proves a withdrawal transaction.
           *
           * @param _tx              Withdrawal transaction to finalize.
           * @param _l2OutputIndex   L2 output index to prove against.
           * @param _outputRootProof Inclusion proof of the L2ToL1MessagePasser contract's storage root.
           * @param _withdrawalProof Inclusion proof of the withdrawal in L2ToL1MessagePasser contract.
           */
          function proveWithdrawalTransaction(
              Types.WithdrawalTransaction memory _tx,
              uint256 _l2OutputIndex,
              Types.OutputRootProof calldata _outputRootProof,
              bytes[] calldata _withdrawalProof
          ) external whenNotPaused {
              // Prevent users from creating a deposit transaction where this address is the message
              // sender on L2. Because this is checked here, we do not need to check again in
              // `finalizeWithdrawalTransaction`.
              require(
                  _tx.target != address(this),
                  "OptimismPortal: you cannot send messages to the portal contract"
              );
              // Get the output root and load onto the stack to prevent multiple mloads. This will
              // revert if there is no output root for the given block number.
              bytes32 outputRoot = L2_ORACLE.getL2Output(_l2OutputIndex).outputRoot;
              // Verify that the output root can be generated with the elements in the proof.
              require(
                  outputRoot == Hashing.hashOutputRootProof(_outputRootProof),
                  "OptimismPortal: invalid output root proof"
              );
              // Load the ProvenWithdrawal into memory, using the withdrawal hash as a unique identifier.
              bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
              ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash];
              // We generally want to prevent users from proving the same withdrawal multiple times
              // because each successive proof will update the timestamp. A malicious user can take
              // advantage of this to prevent other users from finalizing their withdrawal. However,
              // since withdrawals are proven before an output root is finalized, we need to allow users
              // to re-prove their withdrawal only in the case that the output root for their specified
              // output index has been updated.
              require(
                  provenWithdrawal.timestamp == 0 ||
                      L2_ORACLE.getL2Output(provenWithdrawal.l2OutputIndex).outputRoot !=
                      provenWithdrawal.outputRoot,
                  "OptimismPortal: withdrawal hash has already been proven"
              );
              // Compute the storage slot of the withdrawal hash in the L2ToL1MessagePasser contract.
              // Refer to the Solidity documentation for more information on how storage layouts are
              // computed for mappings.
              bytes32 storageKey = keccak256(
                  abi.encode(
                      withdrawalHash,
                      uint256(0) // The withdrawals mapping is at the first slot in the layout.
                  )
              );
              // Verify that the hash of this withdrawal was stored in the L2toL1MessagePasser contract
              // on L2. If this is true, under the assumption that the SecureMerkleTrie does not have
              // bugs, then we know that this withdrawal was actually triggered on L2 and can therefore
              // be relayed on L1.
              require(
                  SecureMerkleTrie.verifyInclusionProof(
                      abi.encode(storageKey),
                      hex"01",
                      _withdrawalProof,
                      _outputRootProof.messagePasserStorageRoot
                  ),
                  "OptimismPortal: invalid withdrawal inclusion proof"
              );
              // Designate the withdrawalHash as proven by storing the `outputRoot`, `timestamp`, and
              // `l2BlockNumber` in the `provenWithdrawals` mapping. A `withdrawalHash` can only be
              // proven once unless it is submitted again with a different outputRoot.
              provenWithdrawals[withdrawalHash] = ProvenWithdrawal({
                  outputRoot: outputRoot,
                  timestamp: uint128(block.timestamp),
                  l2OutputIndex: uint128(_l2OutputIndex)
              });
              // Emit a `WithdrawalProven` event.
              emit WithdrawalProven(withdrawalHash, _tx.sender, _tx.target);
          }
          /**
           * @notice Finalizes a withdrawal transaction.
           *
           * @param _tx Withdrawal transaction to finalize.
           */
          function finalizeWithdrawalTransaction(Types.WithdrawalTransaction memory _tx)
              external
              whenNotPaused
          {
              // Make sure that the l2Sender has not yet been set. The l2Sender is set to a value other
              // than the default value when a withdrawal transaction is being finalized. This check is
              // a defacto reentrancy guard.
              require(
                  l2Sender == Constants.DEFAULT_L2_SENDER,
                  "OptimismPortal: can only trigger one withdrawal per transaction"
              );
              // Grab the proven withdrawal from the `provenWithdrawals` map.
              bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
              ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash];
              // A withdrawal can only be finalized if it has been proven. We know that a withdrawal has
              // been proven at least once when its timestamp is non-zero. Unproven withdrawals will have
              // a timestamp of zero.
              require(
                  provenWithdrawal.timestamp != 0,
                  "OptimismPortal: withdrawal has not been proven yet"
              );
              // As a sanity check, we make sure that the proven withdrawal's timestamp is greater than
              // starting timestamp inside the L2OutputOracle. Not strictly necessary but extra layer of
              // safety against weird bugs in the proving step.
              require(
                  provenWithdrawal.timestamp >= L2_ORACLE.startingTimestamp(),
                  "OptimismPortal: withdrawal timestamp less than L2 Oracle starting timestamp"
              );
              // A proven withdrawal must wait at least the finalization period before it can be
              // finalized. This waiting period can elapse in parallel with the waiting period for the
              // output the withdrawal was proven against. In effect, this means that the minimum
              // withdrawal time is proposal submission time + finalization period.
              require(
                  _isFinalizationPeriodElapsed(provenWithdrawal.timestamp),
                  "OptimismPortal: proven withdrawal finalization period has not elapsed"
              );
              // Grab the OutputProposal from the L2OutputOracle, will revert if the output that
              // corresponds to the given index has not been proposed yet.
              Types.OutputProposal memory proposal = L2_ORACLE.getL2Output(
                  provenWithdrawal.l2OutputIndex
              );
              // Check that the output root that was used to prove the withdrawal is the same as the
              // current output root for the given output index. An output root may change if it is
              // deleted by the challenger address and then re-proposed.
              require(
                  proposal.outputRoot == provenWithdrawal.outputRoot,
                  "OptimismPortal: output root proven is not the same as current output root"
              );
              // Check that the output proposal has also been finalized.
              require(
                  _isFinalizationPeriodElapsed(proposal.timestamp),
                  "OptimismPortal: output proposal finalization period has not elapsed"
              );
              // Check that this withdrawal has not already been finalized, this is replay protection.
              require(
                  finalizedWithdrawals[withdrawalHash] == false,
                  "OptimismPortal: withdrawal has already been finalized"
              );
              // Mark the withdrawal as finalized so it can't be replayed.
              finalizedWithdrawals[withdrawalHash] = true;
              // Set the l2Sender so contracts know who triggered this withdrawal on L2.
              l2Sender = _tx.sender;
              // Trigger the call to the target contract. We use a custom low level method
              // SafeCall.callWithMinGas to ensure two key properties
              //   1. Target contracts cannot force this call to run out of gas by returning a very large
              //      amount of data (and this is OK because we don't care about the returndata here).
              //   2. The amount of gas provided to the execution context of the target is at least the
              //      gas limit specified by the user. If there is not enough gas in the current context
              //      to accomplish this, `callWithMinGas` will revert.
              bool success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, _tx.value, _tx.data);
              // Reset the l2Sender back to the default value.
              l2Sender = Constants.DEFAULT_L2_SENDER;
              // All withdrawals are immediately finalized. Replayability can
              // be achieved through contracts built on top of this contract
              emit WithdrawalFinalized(withdrawalHash, success);
              // Reverting here is useful for determining the exact gas cost to successfully execute the
              // sub call to the target contract if the minimum gas limit specified by the user would not
              // be sufficient to execute the sub call.
              if (success == false && tx.origin == Constants.ESTIMATION_ADDRESS) {
                  revert("OptimismPortal: withdrawal failed");
              }
          }
          /**
           * @notice Accepts deposits of ETH and data, and emits a TransactionDeposited event for use in
           *         deriving deposit transactions. Note that if a deposit is made by a contract, its
           *         address will be aliased when retrieved using `tx.origin` or `msg.sender`. Consider
           *         using the CrossDomainMessenger contracts for a simpler developer experience.
           *
           * @param _to         Target address on L2.
           * @param _value      ETH value to send to the recipient.
           * @param _gasLimit   Minimum L2 gas limit (can be greater than or equal to this value).
           * @param _isCreation Whether or not the transaction is a contract creation.
           * @param _data       Data to trigger the recipient with.
           */
          function depositTransaction(
              address _to,
              uint256 _value,
              uint64 _gasLimit,
              bool _isCreation,
              bytes memory _data
          ) public payable metered(_gasLimit) {
              // Just to be safe, make sure that people specify address(0) as the target when doing
              // contract creations.
              if (_isCreation) {
                  require(
                      _to == address(0),
                      "OptimismPortal: must send to address(0) when creating a contract"
                  );
              }
              // Prevent depositing transactions that have too small of a gas limit. Users should pay
              // more for more resource usage.
              require(
                  _gasLimit >= minimumGasLimit(uint64(_data.length)),
                  "OptimismPortal: gas limit too small"
              );
              // Prevent the creation of deposit transactions that have too much calldata. This gives an
              // upper limit on the size of unsafe blocks over the p2p network. 120kb is chosen to ensure
              // that the transaction can fit into the p2p network policy of 128kb even though deposit
              // transactions are not gossipped over the p2p network.
              require(_data.length <= 120_000, "OptimismPortal: data too large");
              // Transform the from-address to its alias if the caller is a contract.
              address from = msg.sender;
              if (msg.sender != tx.origin) {
                  from = AddressAliasHelper.applyL1ToL2Alias(msg.sender);
              }
              // Compute the opaque data that will be emitted as part of the TransactionDeposited event.
              // We use opaque data so that we can update the TransactionDeposited event in the future
              // without breaking the current interface.
              bytes memory opaqueData = abi.encodePacked(
                  msg.value,
                  _value,
                  _gasLimit,
                  _isCreation,
                  _data
              );
              // Emit a TransactionDeposited event so that the rollup node can derive a deposit
              // transaction for this deposit.
              emit TransactionDeposited(from, _to, DEPOSIT_VERSION, opaqueData);
          }
          /**
           * @notice Determine if a given output is finalized. Reverts if the call to
           *         L2_ORACLE.getL2Output reverts. Returns a boolean otherwise.
           *
           * @param _l2OutputIndex Index of the L2 output to check.
           *
           * @return Whether or not the output is finalized.
           */
          function isOutputFinalized(uint256 _l2OutputIndex) external view returns (bool) {
              return _isFinalizationPeriodElapsed(L2_ORACLE.getL2Output(_l2OutputIndex).timestamp);
          }
          /**
           * @notice Determines whether the finalization period has elapsed w/r/t a given timestamp.
           *
           * @param _timestamp Timestamp to check.
           *
           * @return Whether or not the finalization period has elapsed.
           */
          function _isFinalizationPeriodElapsed(uint256 _timestamp) internal view returns (bool) {
              return block.timestamp > _timestamp + L2_ORACLE.FINALIZATION_PERIOD_SECONDS();
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.15;
      import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
      import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
      import { Burn } from "../libraries/Burn.sol";
      import { Arithmetic } from "../libraries/Arithmetic.sol";
      /**
       * @custom:upgradeable
       * @title ResourceMetering
       * @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
       *         updates automatically based on current demand.
       */
      abstract contract ResourceMetering is Initializable {
          /**
           * @notice Represents the various parameters that control the way in which resources are
           *         metered. Corresponds to the EIP-1559 resource metering system.
           *
           * @custom:field prevBaseFee   Base fee from the previous block(s).
           * @custom:field prevBoughtGas Amount of gas bought so far in the current block.
           * @custom:field prevBlockNum  Last block number that the base fee was updated.
           */
          struct ResourceParams {
              uint128 prevBaseFee;
              uint64 prevBoughtGas;
              uint64 prevBlockNum;
          }
          /**
           * @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
           *         market. These values should be set with care as it is possible to set them in
           *         a way that breaks the deposit gas market. The target resource limit is defined as
           *         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
           *         single word. There is additional space for additions in the future.
           *
           * @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
           *                                            can be purchased per block.
           * @custom:field elasticityMultiplier         Determines the target resource limit along with
           *                                            the resource limit.
           * @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
           * @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
           *                                            value.
           * @custom:field systemTxMaxGas               The amount of gas supplied to the system
           *                                            transaction. This should be set to the same number
           *                                            that the op-node sets as the gas limit for the
           *                                            system transaction.
           * @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
           *                                            value.
           */
          struct ResourceConfig {
              uint32 maxResourceLimit;
              uint8 elasticityMultiplier;
              uint8 baseFeeMaxChangeDenominator;
              uint32 minimumBaseFee;
              uint32 systemTxMaxGas;
              uint128 maximumBaseFee;
          }
          /**
           * @notice EIP-1559 style gas parameters.
           */
          ResourceParams public params;
          /**
           * @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
           */
          uint256[48] private __gap;
          /**
           * @notice Meters access to a function based an amount of a requested resource.
           *
           * @param _amount Amount of the resource requested.
           */
          modifier metered(uint64 _amount) {
              // Record initial gas amount so we can refund for it later.
              uint256 initialGas = gasleft();
              // Run the underlying function.
              _;
              // Run the metering function.
              _metered(_amount, initialGas);
          }
          /**
           * @notice An internal function that holds all of the logic for metering a resource.
           *
           * @param _amount     Amount of the resource requested.
           * @param _initialGas The amount of gas before any modifier execution.
           */
          function _metered(uint64 _amount, uint256 _initialGas) internal {
              // Update block number and base fee if necessary.
              uint256 blockDiff = block.number - params.prevBlockNum;
              ResourceConfig memory config = _resourceConfig();
              int256 targetResourceLimit = int256(uint256(config.maxResourceLimit)) /
                  int256(uint256(config.elasticityMultiplier));
              if (blockDiff > 0) {
                  // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                  // at which deposits can be created and therefore limit the potential for deposits to
                  // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                  int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                  int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta) /
                      (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                  // Update base fee by adding the base fee delta and clamp the resulting value between
                  // min and max.
                  int256 newBaseFee = Arithmetic.clamp({
                      _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                      _min: int256(uint256(config.minimumBaseFee)),
                      _max: int256(uint256(config.maximumBaseFee))
                  });
                  // If we skipped more than one block, we also need to account for every empty block.
                  // Empty block means there was no demand for deposits in that block, so we should
                  // reflect this lack of demand in the fee.
                  if (blockDiff > 1) {
                      // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                      // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                      // between min and max.
                      newBaseFee = Arithmetic.clamp({
                          _value: Arithmetic.cdexp({
                              _coefficient: newBaseFee,
                              _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                              _exponent: int256(blockDiff - 1)
                          }),
                          _min: int256(uint256(config.minimumBaseFee)),
                          _max: int256(uint256(config.maximumBaseFee))
                      });
                  }
                  // Update new base fee, reset bought gas, and update block number.
                  params.prevBaseFee = uint128(uint256(newBaseFee));
                  params.prevBoughtGas = 0;
                  params.prevBlockNum = uint64(block.number);
              }
              // Make sure we can actually buy the resource amount requested by the user.
              params.prevBoughtGas += _amount;
              require(
                  int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                  "ResourceMetering: cannot buy more gas than available gas limit"
              );
              // Determine the amount of ETH to be paid.
              uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
              // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
              // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
              // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
              // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
              // during any 1 day period in the last 5 years, so should be fine.
              uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
              // Give the user a refund based on the amount of gas they used to do all of the work up to
              // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
              // effectively like a dynamic stipend (with a minimum value).
              uint256 usedGas = _initialGas - gasleft();
              if (gasCost > usedGas) {
                  Burn.gas(gasCost - usedGas);
              }
          }
          /**
           * @notice Virtual function that returns the resource config. Contracts that inherit this
           *         contract must implement this function.
           *
           * @return ResourceConfig
           */
          function _resourceConfig() internal virtual returns (ResourceConfig memory);
          /**
           * @notice Sets initial resource parameter values. This function must either be called by the
           *         initializer function of an upgradeable child contract.
           */
          // solhint-disable-next-line func-name-mixedcase
          function __ResourceMetering_init() internal onlyInitializing {
              params = ResourceParams({
                  prevBaseFee: 1 gwei,
                  prevBoughtGas: 0,
                  prevBlockNum: uint64(block.number)
              });
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.15;
      import {
          OwnableUpgradeable
      } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
      import { Semver } from "../universal/Semver.sol";
      import { ResourceMetering } from "./ResourceMetering.sol";
      /**
       * @title SystemConfig
       * @notice The SystemConfig contract is used to manage configuration of an Optimism network. All
       *         configuration is stored on L1 and picked up by L2 as part of the derviation of the L2
       *         chain.
       */
      contract SystemConfig is OwnableUpgradeable, Semver {
          /**
           * @notice Enum representing different types of updates.
           *
           * @custom:value BATCHER              Represents an update to the batcher hash.
           * @custom:value GAS_CONFIG           Represents an update to txn fee config on L2.
           * @custom:value GAS_LIMIT            Represents an update to gas limit on L2.
           * @custom:value UNSAFE_BLOCK_SIGNER  Represents an update to the signer key for unsafe
           *                                    block distrubution.
           */
          enum UpdateType {
              BATCHER,
              GAS_CONFIG,
              GAS_LIMIT,
              UNSAFE_BLOCK_SIGNER
          }
          /**
           * @notice Version identifier, used for upgrades.
           */
          uint256 public constant VERSION = 0;
          /**
           * @notice Storage slot that the unsafe block signer is stored at. Storing it at this
           *         deterministic storage slot allows for decoupling the storage layout from the way
           *         that `solc` lays out storage. The `op-node` uses a storage proof to fetch this value.
           */
          bytes32 public constant UNSAFE_BLOCK_SIGNER_SLOT = keccak256("systemconfig.unsafeblocksigner");
          /**
           * @notice Fixed L2 gas overhead. Used as part of the L2 fee calculation.
           */
          uint256 public overhead;
          /**
           * @notice Dynamic L2 gas overhead. Used as part of the L2 fee calculation.
           */
          uint256 public scalar;
          /**
           * @notice Identifier for the batcher. For version 1 of this configuration, this is represented
           *         as an address left-padded with zeros to 32 bytes.
           */
          bytes32 public batcherHash;
          /**
           * @notice L2 block gas limit.
           */
          uint64 public gasLimit;
          /**
           * @notice The configuration for the deposit fee market. Used by the OptimismPortal
           *         to meter the cost of buying L2 gas on L1. Set as internal and wrapped with a getter
           *         so that the struct is returned instead of a tuple.
           */
          ResourceMetering.ResourceConfig internal _resourceConfig;
          /**
           * @notice Emitted when configuration is updated
           *
           * @param version    SystemConfig version.
           * @param updateType Type of update.
           * @param data       Encoded update data.
           */
          event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);
          /**
           * @custom:semver 1.3.0
           *
           * @param _owner             Initial owner of the contract.
           * @param _overhead          Initial overhead value.
           * @param _scalar            Initial scalar value.
           * @param _batcherHash       Initial batcher hash.
           * @param _gasLimit          Initial gas limit.
           * @param _unsafeBlockSigner Initial unsafe block signer address.
           * @param _config            Initial resource config.
           */
          constructor(
              address _owner,
              uint256 _overhead,
              uint256 _scalar,
              bytes32 _batcherHash,
              uint64 _gasLimit,
              address _unsafeBlockSigner,
              ResourceMetering.ResourceConfig memory _config
          ) Semver(1, 3, 0) {
              initialize({
                  _owner: _owner,
                  _overhead: _overhead,
                  _scalar: _scalar,
                  _batcherHash: _batcherHash,
                  _gasLimit: _gasLimit,
                  _unsafeBlockSigner: _unsafeBlockSigner,
                  _config: _config
              });
          }
          /**
           * @notice Initializer. The resource config must be set before the
           *         require check.
           *
           * @param _owner             Initial owner of the contract.
           * @param _overhead          Initial overhead value.
           * @param _scalar            Initial scalar value.
           * @param _batcherHash       Initial batcher hash.
           * @param _gasLimit          Initial gas limit.
           * @param _unsafeBlockSigner Initial unsafe block signer address.
           * @param _config            Initial ResourceConfig.
           */
          function initialize(
              address _owner,
              uint256 _overhead,
              uint256 _scalar,
              bytes32 _batcherHash,
              uint64 _gasLimit,
              address _unsafeBlockSigner,
              ResourceMetering.ResourceConfig memory _config
          ) public initializer {
              __Ownable_init();
              transferOwnership(_owner);
              overhead = _overhead;
              scalar = _scalar;
              batcherHash = _batcherHash;
              gasLimit = _gasLimit;
              _setUnsafeBlockSigner(_unsafeBlockSigner);
              _setResourceConfig(_config);
              require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
          }
          /**
           * @notice Returns the minimum L2 gas limit that can be safely set for the system to
           *         operate. The L2 gas limit must be larger than or equal to the amount of
           *         gas that is allocated for deposits per block plus the amount of gas that
           *         is allocated for the system transaction.
           *         This function is used to determine if changes to parameters are safe.
           *
           * @return uint64
           */
          function minimumGasLimit() public view returns (uint64) {
              return uint64(_resourceConfig.maxResourceLimit) + uint64(_resourceConfig.systemTxMaxGas);
          }
          /**
           * @notice High level getter for the unsafe block signer address. Unsafe blocks can be
           *         propagated across the p2p network if they are signed by the key corresponding to
           *         this address.
           *
           * @return Address of the unsafe block signer.
           */
          // solhint-disable-next-line ordering
          function unsafeBlockSigner() external view returns (address) {
              address addr;
              bytes32 slot = UNSAFE_BLOCK_SIGNER_SLOT;
              assembly {
                  addr := sload(slot)
              }
              return addr;
          }
          /**
           * @notice Updates the unsafe block signer address.
           *
           * @param _unsafeBlockSigner New unsafe block signer address.
           */
          function setUnsafeBlockSigner(address _unsafeBlockSigner) external onlyOwner {
              _setUnsafeBlockSigner(_unsafeBlockSigner);
              bytes memory data = abi.encode(_unsafeBlockSigner);
              emit ConfigUpdate(VERSION, UpdateType.UNSAFE_BLOCK_SIGNER, data);
          }
          /**
           * @notice Updates the batcher hash.
           *
           * @param _batcherHash New batcher hash.
           */
          function setBatcherHash(bytes32 _batcherHash) external onlyOwner {
              batcherHash = _batcherHash;
              bytes memory data = abi.encode(_batcherHash);
              emit ConfigUpdate(VERSION, UpdateType.BATCHER, data);
          }
          /**
           * @notice Updates gas config.
           *
           * @param _overhead New overhead value.
           * @param _scalar   New scalar value.
           */
          function setGasConfig(uint256 _overhead, uint256 _scalar) external onlyOwner {
              overhead = _overhead;
              scalar = _scalar;
              bytes memory data = abi.encode(_overhead, _scalar);
              emit ConfigUpdate(VERSION, UpdateType.GAS_CONFIG, data);
          }
          /**
           * @notice Updates the L2 gas limit.
           *
           * @param _gasLimit New gas limit.
           */
          function setGasLimit(uint64 _gasLimit) external onlyOwner {
              require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
              gasLimit = _gasLimit;
              bytes memory data = abi.encode(_gasLimit);
              emit ConfigUpdate(VERSION, UpdateType.GAS_LIMIT, data);
          }
          /**
           * @notice Low level setter for the unsafe block signer address. This function exists to
           *         deduplicate code around storing the unsafeBlockSigner address in storage.
           *
           * @param _unsafeBlockSigner New unsafeBlockSigner value.
           */
          function _setUnsafeBlockSigner(address _unsafeBlockSigner) internal {
              bytes32 slot = UNSAFE_BLOCK_SIGNER_SLOT;
              assembly {
                  sstore(slot, _unsafeBlockSigner)
              }
          }
          /**
           * @notice A getter for the resource config. Ensures that the struct is
           *         returned instead of a tuple.
           *
           * @return ResourceConfig
           */
          function resourceConfig() external view returns (ResourceMetering.ResourceConfig memory) {
              return _resourceConfig;
          }
          /**
           * @notice An external setter for the resource config. In the future, this
           *         method may emit an event that the `op-node` picks up for when the
           *         resource config is changed.
           *
           * @param _config The new resource config values.
           */
          function setResourceConfig(ResourceMetering.ResourceConfig memory _config) external onlyOwner {
              _setResourceConfig(_config);
          }
          /**
           * @notice An internal setter for the resource config. Ensures that the
           *         config is sane before storing it by checking for invariants.
           *
           * @param _config The new resource config.
           */
          function _setResourceConfig(ResourceMetering.ResourceConfig memory _config) internal {
              // Min base fee must be less than or equal to max base fee.
              require(
                  _config.minimumBaseFee <= _config.maximumBaseFee,
                  "SystemConfig: min base fee must be less than max base"
              );
              // Base fee change denominator must be greater than 1.
              require(
                  _config.baseFeeMaxChangeDenominator > 1,
                  "SystemConfig: denominator must be larger than 1"
              );
              // Max resource limit plus system tx gas must be less than or equal to the L2 gas limit.
              // The gas limit must be increased before these values can be increased.
              require(
                  _config.maxResourceLimit + _config.systemTxMaxGas <= gasLimit,
                  "SystemConfig: gas limit too low"
              );
              // Elasticity multiplier must be greater than 0.
              require(
                  _config.elasticityMultiplier > 0,
                  "SystemConfig: elasticity multiplier cannot be 0"
              );
              // No precision loss when computing target resource limit.
              require(
                  ((_config.maxResourceLimit / _config.elasticityMultiplier) *
                      _config.elasticityMultiplier) == _config.maxResourceLimit,
                  "SystemConfig: precision loss with target resource limit"
              );
              _resourceConfig = _config;
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.15;
      import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
      import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
      /**
       * @title Arithmetic
       * @notice Even more math than before.
       */
      library Arithmetic {
          /**
           * @notice Clamps a value between a minimum and maximum.
           *
           * @param _value The value to clamp.
           * @param _min   The minimum value.
           * @param _max   The maximum value.
           *
           * @return The clamped value.
           */
          function clamp(
              int256 _value,
              int256 _min,
              int256 _max
          ) internal pure returns (int256) {
              return SignedMath.min(SignedMath.max(_value, _min), _max);
          }
          /**
           * @notice (c)oefficient (d)enominator (exp)onentiation function.
           *         Returns the result of: c * (1 - 1/d)^exp.
           *
           * @param _coefficient Coefficient of the function.
           * @param _denominator Fractional denominator.
           * @param _exponent    Power function exponent.
           *
           * @return Result of c * (1 - 1/d)^exp.
           */
          function cdexp(
              int256 _coefficient,
              int256 _denominator,
              int256 _exponent
          ) internal pure returns (int256) {
              return
                  (_coefficient *
                      (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.15;
      /**
       * @title Burn
       * @notice Utilities for burning stuff.
       */
      library Burn {
          /**
           * Burns a given amount of ETH.
           *
           * @param _amount Amount of ETH to burn.
           */
          function eth(uint256 _amount) internal {
              new Burner{ value: _amount }();
          }
          /**
           * Burns a given amount of gas.
           *
           * @param _amount Amount of gas to burn.
           */
          function gas(uint256 _amount) internal view {
              uint256 i = 0;
              uint256 initialGas = gasleft();
              while (initialGas - gasleft() < _amount) {
                  ++i;
              }
          }
      }
      /**
       * @title Burner
       * @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
       *         the contract from the circulating supply. Self-destructing is the only way to remove ETH
       *         from the circulating supply.
       */
      contract Burner {
          constructor() payable {
              selfdestruct(payable(address(this)));
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      /**
       * @title Bytes
       * @notice Bytes is a library for manipulating byte arrays.
       */
      library Bytes {
          /**
           * @custom:attribution https://github.com/GNSPS/solidity-bytes-utils
           * @notice Slices a byte array with a given starting index and length. Returns a new byte array
           *         as opposed to a pointer to the original array. Will throw if trying to slice more
           *         bytes than exist in the array.
           *
           * @param _bytes Byte array to slice.
           * @param _start Starting index of the slice.
           * @param _length Length of the slice.
           *
           * @return Slice of the input byte array.
           */
          function slice(
              bytes memory _bytes,
              uint256 _start,
              uint256 _length
          ) internal pure returns (bytes memory) {
              unchecked {
                  require(_length + 31 >= _length, "slice_overflow");
                  require(_start + _length >= _start, "slice_overflow");
                  require(_bytes.length >= _start + _length, "slice_outOfBounds");
              }
              bytes memory tempBytes;
              assembly {
                  switch iszero(_length)
                  case 0 {
                      // Get a location of some free memory and store it in tempBytes as
                      // Solidity does for memory variables.
                      tempBytes := mload(0x40)
                      // The first word of the slice result is potentially a partial
                      // word read from the original array. To read it, we calculate
                      // the length of that partial word and start copying that many
                      // bytes into the array. The first word we copy will start with
                      // data we don't care about, but the last `lengthmod` bytes will
                      // land at the beginning of the contents of the new array. When
                      // we're done copying, we overwrite the full first word with
                      // the actual length of the slice.
                      let lengthmod := and(_length, 31)
                      // The multiplication in the next line is necessary
                      // because when slicing multiples of 32 bytes (lengthmod == 0)
                      // the following copy loop was copying the origin's length
                      // and then ending prematurely not copying everything it should.
                      let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                      let end := add(mc, _length)
                      for {
                          // The multiplication in the next line has the same exact purpose
                          // as the one above.
                          let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                      } lt(mc, end) {
                          mc := add(mc, 0x20)
                          cc := add(cc, 0x20)
                      } {
                          mstore(mc, mload(cc))
                      }
                      mstore(tempBytes, _length)
                      //update free-memory pointer
                      //allocating the array padded to 32 bytes like the compiler does now
                      mstore(0x40, and(add(mc, 31), not(31)))
                  }
                  //if we want a zero-length slice let's just return a zero-length array
                  default {
                      tempBytes := mload(0x40)
                      //zero out the 32 bytes slice we are about to return
                      //we need to do it because Solidity does not garbage collect
                      mstore(tempBytes, 0)
                      mstore(0x40, add(tempBytes, 0x20))
                  }
              }
              return tempBytes;
          }
          /**
           * @notice Slices a byte array with a given starting index up to the end of the original byte
           *         array. Returns a new array rathern than a pointer to the original.
           *
           * @param _bytes Byte array to slice.
           * @param _start Starting index of the slice.
           *
           * @return Slice of the input byte array.
           */
          function slice(bytes memory _bytes, uint256 _start) internal pure returns (bytes memory) {
              if (_start >= _bytes.length) {
                  return bytes("");
              }
              return slice(_bytes, _start, _bytes.length - _start);
          }
          /**
           * @notice Converts a byte array into a nibble array by splitting each byte into two nibbles.
           *         Resulting nibble array will be exactly twice as long as the input byte array.
           *
           * @param _bytes Input byte array to convert.
           *
           * @return Resulting nibble array.
           */
          function toNibbles(bytes memory _bytes) internal pure returns (bytes memory) {
              uint256 bytesLength = _bytes.length;
              bytes memory nibbles = new bytes(bytesLength * 2);
              bytes1 b;
              for (uint256 i = 0; i < bytesLength; ) {
                  b = _bytes[i];
                  nibbles[i * 2] = b >> 4;
                  nibbles[i * 2 + 1] = b & 0x0f;
                  unchecked {
                      ++i;
                  }
              }
              return nibbles;
          }
          /**
           * @notice Compares two byte arrays by comparing their keccak256 hashes.
           *
           * @param _bytes First byte array to compare.
           * @param _other Second byte array to compare.
           *
           * @return True if the two byte arrays are equal, false otherwise.
           */
          function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) {
              return keccak256(_bytes) == keccak256(_other);
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import { ResourceMetering } from "../L1/ResourceMetering.sol";
      /**
       * @title Constants
       * @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
       *         the stuff used in multiple contracts. Constants that only apply to a single contract
       *         should be defined in that contract instead.
       */
      library Constants {
          /**
           * @notice Special address to be used as the tx origin for gas estimation calls in the
           *         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
           *         the minimum gas limit specified by the user is not actually enough to execute the
           *         given message and you're attempting to estimate the actual necessary gas limit. We
           *         use address(1) because it's the ecrecover precompile and therefore guaranteed to
           *         never have any code on any EVM chain.
           */
          address internal constant ESTIMATION_ADDRESS = address(1);
          /**
           * @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
           *         CrossDomainMessenger contracts before an actual sender is set. This value is
           *         non-zero to reduce the gas cost of message passing transactions.
           */
          address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
          /**
           * @notice Returns the default values for the ResourceConfig. These are the recommended values
           *         for a production network.
           */
          function DEFAULT_RESOURCE_CONFIG()
              internal
              pure
              returns (ResourceMetering.ResourceConfig memory)
          {
              ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                  maxResourceLimit: 20_000_000,
                  elasticityMultiplier: 10,
                  baseFeeMaxChangeDenominator: 8,
                  minimumBaseFee: 1 gwei,
                  systemTxMaxGas: 1_000_000,
                  maximumBaseFee: type(uint128).max
              });
              return config;
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import { Types } from "./Types.sol";
      import { Hashing } from "./Hashing.sol";
      import { RLPWriter } from "./rlp/RLPWriter.sol";
      /**
       * @title Encoding
       * @notice Encoding handles Optimism's various different encoding schemes.
       */
      library Encoding {
          /**
           * @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
           *         to the L2 system. Useful for searching for a deposit in the L2 system. The
           *         transaction is prefixed with 0x7e to identify its EIP-2718 type.
           *
           * @param _tx User deposit transaction to encode.
           *
           * @return RLP encoded L2 deposit transaction.
           */
          function encodeDepositTransaction(Types.UserDepositTransaction memory _tx)
              internal
              pure
              returns (bytes memory)
          {
              bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
              bytes[] memory raw = new bytes[](8);
              raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
              raw[1] = RLPWriter.writeAddress(_tx.from);
              raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
              raw[3] = RLPWriter.writeUint(_tx.mint);
              raw[4] = RLPWriter.writeUint(_tx.value);
              raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
              raw[6] = RLPWriter.writeBool(false);
              raw[7] = RLPWriter.writeBytes(_tx.data);
              return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
          }
          /**
           * @notice Encodes the cross domain message based on the version that is encoded into the
           *         message nonce.
           *
           * @param _nonce    Message nonce with version encoded into the first two bytes.
           * @param _sender   Address of the sender of the message.
           * @param _target   Address of the target of the message.
           * @param _value    ETH value to send to the target.
           * @param _gasLimit Gas limit to use for the message.
           * @param _data     Data to send with the message.
           *
           * @return Encoded cross domain message.
           */
          function encodeCrossDomainMessage(
              uint256 _nonce,
              address _sender,
              address _target,
              uint256 _value,
              uint256 _gasLimit,
              bytes memory _data
          ) internal pure returns (bytes memory) {
              (, uint16 version) = decodeVersionedNonce(_nonce);
              if (version == 0) {
                  return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
              } else if (version == 1) {
                  return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
              } else {
                  revert("Encoding: unknown cross domain message version");
              }
          }
          /**
           * @notice Encodes a cross domain message based on the V0 (legacy) encoding.
           *
           * @param _target Address of the target of the message.
           * @param _sender Address of the sender of the message.
           * @param _data   Data to send with the message.
           * @param _nonce  Message nonce.
           *
           * @return Encoded cross domain message.
           */
          function encodeCrossDomainMessageV0(
              address _target,
              address _sender,
              bytes memory _data,
              uint256 _nonce
          ) internal pure returns (bytes memory) {
              return
                  abi.encodeWithSignature(
                      "relayMessage(address,address,bytes,uint256)",
                      _target,
                      _sender,
                      _data,
                      _nonce
                  );
          }
          /**
           * @notice Encodes a cross domain message based on the V1 (current) encoding.
           *
           * @param _nonce    Message nonce.
           * @param _sender   Address of the sender of the message.
           * @param _target   Address of the target of the message.
           * @param _value    ETH value to send to the target.
           * @param _gasLimit Gas limit to use for the message.
           * @param _data     Data to send with the message.
           *
           * @return Encoded cross domain message.
           */
          function encodeCrossDomainMessageV1(
              uint256 _nonce,
              address _sender,
              address _target,
              uint256 _value,
              uint256 _gasLimit,
              bytes memory _data
          ) internal pure returns (bytes memory) {
              return
                  abi.encodeWithSignature(
                      "relayMessage(uint256,address,address,uint256,uint256,bytes)",
                      _nonce,
                      _sender,
                      _target,
                      _value,
                      _gasLimit,
                      _data
                  );
          }
          /**
           * @notice Adds a version number into the first two bytes of a message nonce.
           *
           * @param _nonce   Message nonce to encode into.
           * @param _version Version number to encode into the message nonce.
           *
           * @return Message nonce with version encoded into the first two bytes.
           */
          function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
              uint256 nonce;
              assembly {
                  nonce := or(shl(240, _version), _nonce)
              }
              return nonce;
          }
          /**
           * @notice Pulls the version out of a version-encoded nonce.
           *
           * @param _nonce Message nonce with version encoded into the first two bytes.
           *
           * @return Nonce without encoded version.
           * @return Version of the message.
           */
          function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
              uint240 nonce;
              uint16 version;
              assembly {
                  nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
                  version := shr(240, _nonce)
              }
              return (nonce, version);
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import { Types } from "./Types.sol";
      import { Encoding } from "./Encoding.sol";
      /**
       * @title Hashing
       * @notice Hashing handles Optimism's various different hashing schemes.
       */
      library Hashing {
          /**
           * @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
           *         given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
           *         system.
           *
           * @param _tx User deposit transaction to hash.
           *
           * @return Hash of the RLP encoded L2 deposit transaction.
           */
          function hashDepositTransaction(Types.UserDepositTransaction memory _tx)
              internal
              pure
              returns (bytes32)
          {
              return keccak256(Encoding.encodeDepositTransaction(_tx));
          }
          /**
           * @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
           *         of the L2 transaction that corresponds to a deposit is unique and is
           *         deterministically generated from L1 transaction data.
           *
           * @param _l1BlockHash Hash of the L1 block where the deposit was included.
           * @param _logIndex    The index of the log that created the deposit transaction.
           *
           * @return Hash of the deposit transaction's "source hash".
           */
          function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex)
              internal
              pure
              returns (bytes32)
          {
              bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
              return keccak256(abi.encode(bytes32(0), depositId));
          }
          /**
           * @notice Hashes the cross domain message based on the version that is encoded into the
           *         message nonce.
           *
           * @param _nonce    Message nonce with version encoded into the first two bytes.
           * @param _sender   Address of the sender of the message.
           * @param _target   Address of the target of the message.
           * @param _value    ETH value to send to the target.
           * @param _gasLimit Gas limit to use for the message.
           * @param _data     Data to send with the message.
           *
           * @return Hashed cross domain message.
           */
          function hashCrossDomainMessage(
              uint256 _nonce,
              address _sender,
              address _target,
              uint256 _value,
              uint256 _gasLimit,
              bytes memory _data
          ) internal pure returns (bytes32) {
              (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
              if (version == 0) {
                  return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
              } else if (version == 1) {
                  return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
              } else {
                  revert("Hashing: unknown cross domain message version");
              }
          }
          /**
           * @notice Hashes a cross domain message based on the V0 (legacy) encoding.
           *
           * @param _target Address of the target of the message.
           * @param _sender Address of the sender of the message.
           * @param _data   Data to send with the message.
           * @param _nonce  Message nonce.
           *
           * @return Hashed cross domain message.
           */
          function hashCrossDomainMessageV0(
              address _target,
              address _sender,
              bytes memory _data,
              uint256 _nonce
          ) internal pure returns (bytes32) {
              return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
          }
          /**
           * @notice Hashes a cross domain message based on the V1 (current) encoding.
           *
           * @param _nonce    Message nonce.
           * @param _sender   Address of the sender of the message.
           * @param _target   Address of the target of the message.
           * @param _value    ETH value to send to the target.
           * @param _gasLimit Gas limit to use for the message.
           * @param _data     Data to send with the message.
           *
           * @return Hashed cross domain message.
           */
          function hashCrossDomainMessageV1(
              uint256 _nonce,
              address _sender,
              address _target,
              uint256 _value,
              uint256 _gasLimit,
              bytes memory _data
          ) internal pure returns (bytes32) {
              return
                  keccak256(
                      Encoding.encodeCrossDomainMessageV1(
                          _nonce,
                          _sender,
                          _target,
                          _value,
                          _gasLimit,
                          _data
                      )
                  );
          }
          /**
           * @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
           *
           * @param _tx Withdrawal transaction to hash.
           *
           * @return Hashed withdrawal transaction.
           */
          function hashWithdrawal(Types.WithdrawalTransaction memory _tx)
              internal
              pure
              returns (bytes32)
          {
              return
                  keccak256(
                      abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data)
                  );
          }
          /**
           * @notice Hashes the various elements of an output root proof into an output root hash which
           *         can be used to check if the proof is valid.
           *
           * @param _outputRootProof Output root proof which should hash to an output root.
           *
           * @return Hashed output root proof.
           */
          function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof)
              internal
              pure
              returns (bytes32)
          {
              return
                  keccak256(
                      abi.encode(
                          _outputRootProof.version,
                          _outputRootProof.stateRoot,
                          _outputRootProof.messagePasserStorageRoot,
                          _outputRootProof.latestBlockhash
                      )
                  );
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.15;
      /**
       * @title SafeCall
       * @notice Perform low level safe calls
       */
      library SafeCall {
          /**
           * @notice Performs a low level call without copying any returndata.
           * @dev Passes no calldata to the call context.
           *
           * @param _target   Address to call
           * @param _gas      Amount of gas to pass to the call
           * @param _value    Amount of value to pass to the call
           */
          function send(
              address _target,
              uint256 _gas,
              uint256 _value
          ) internal returns (bool) {
              bool _success;
              assembly {
                  _success := call(
                      _gas, // gas
                      _target, // recipient
                      _value, // ether value
                      0, // inloc
                      0, // inlen
                      0, // outloc
                      0 // outlen
                  )
              }
              return _success;
          }
          /**
           * @notice Perform a low level call without copying any returndata
           *
           * @param _target   Address to call
           * @param _gas      Amount of gas to pass to the call
           * @param _value    Amount of value to pass to the call
           * @param _calldata Calldata to pass to the call
           */
          function call(
              address _target,
              uint256 _gas,
              uint256 _value,
              bytes memory _calldata
          ) internal returns (bool) {
              bool _success;
              assembly {
                  _success := call(
                      _gas, // gas
                      _target, // recipient
                      _value, // ether value
                      add(_calldata, 32), // inloc
                      mload(_calldata), // inlen
                      0, // outloc
                      0 // outlen
                  )
              }
              return _success;
          }
          /**
           * @notice Helper function to determine if there is sufficient gas remaining within the context
           *         to guarantee that the minimum gas requirement for a call will be met as well as
           *         optionally reserving a specified amount of gas for after the call has concluded.
           * @param _minGas      The minimum amount of gas that may be passed to the target context.
           * @param _reservedGas Optional amount of gas to reserve for the caller after the execution
           *                     of the target context.
           * @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
           *         context as well as reserve `_reservedGas` for the caller after the execution of
           *         the target context.
           * @dev !!!!! FOOTGUN ALERT !!!!!
           *      1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
           *          `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
           *          `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
           *          still possible to self-rekt by initiating a withdrawal with a minimum gas limit
           *          that does not account for the `memory_expansion_cost` & `code_execution_cost`
           *          factors of the dynamic cost of the `CALL` opcode.
           *      2.) This function should *directly* precede the external call if possible. There is an
           *          added buffer to account for gas consumed between this check and the call, but it
           *          is only 5,700 gas.
           *      3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
           *          frame may be passed to a subcontext, we need to ensure that the gas will not be
           *          truncated.
           *      4.) Use wisely. This function is not a silver bullet.
           */
          function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
              bool _hasMinGas;
              assembly {
                  // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
                  _hasMinGas := iszero(
                      lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63)))
                  )
              }
              return _hasMinGas;
          }
          /**
           * @notice Perform a low level call without copying any returndata. This function
           *         will revert if the call cannot be performed with the specified minimum
           *         gas.
           *
           * @param _target   Address to call
           * @param _minGas   The minimum amount of gas that may be passed to the call
           * @param _value    Amount of value to pass to the call
           * @param _calldata Calldata to pass to the call
           */
          function callWithMinGas(
              address _target,
              uint256 _minGas,
              uint256 _value,
              bytes memory _calldata
          ) internal returns (bool) {
              bool _success;
              bool _hasMinGas = hasMinGas(_minGas, 0);
              assembly {
                  // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
                  if iszero(_hasMinGas) {
                      // Store the "Error(string)" selector in scratch space.
                      mstore(0, 0x08c379a0)
                      // Store the pointer to the string length in scratch space.
                      mstore(32, 32)
                      // Store the string.
                      //
                      // SAFETY:
                      // - We pad the beginning of the string with two zero bytes as well as the
                      // length (24) to ensure that we override the free memory pointer at offset
                      // 0x40. This is necessary because the free memory pointer is likely to
                      // be greater than 1 byte when this function is called, but it is incredibly
                      // unlikely that it will be greater than 3 bytes. As for the data within
                      // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                      // - It's fine to clobber the free memory pointer, we're reverting.
                      mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
                      // Revert with 'Error("SafeCall: Not enough gas")'
                      revert(28, 100)
                  }
                  // The call will be supplied at least ((_minGas * 64) / 63) gas due to the
                  // above assertion. This ensures that, in all circumstances (except for when the
                  // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
                  // factors of the dynamic cost of the `CALL` opcode), the call will receive at least
                  // the minimum amount of gas specified.
                  _success := call(
                      gas(), // gas
                      _target, // recipient
                      _value, // ether value
                      add(_calldata, 32), // inloc
                      mload(_calldata), // inlen
                      0x00, // outloc
                      0x00 // outlen
                  )
              }
              return _success;
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      /**
       * @title Types
       * @notice Contains various types used throughout the Optimism contract system.
       */
      library Types {
          /**
           * @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
           *         timestamp that the output root is posted. This timestamp is used to verify that the
           *         finalization period has passed since the output root was submitted.
           *
           * @custom:field outputRoot    Hash of the L2 output.
           * @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
           * @custom:field l2BlockNumber L2 block number that the output corresponds to.
           */
          struct OutputProposal {
              bytes32 outputRoot;
              uint128 timestamp;
              uint128 l2BlockNumber;
          }
          /**
           * @notice Struct representing the elements that are hashed together to generate an output root
           *         which itself represents a snapshot of the L2 state.
           *
           * @custom:field version                  Version of the output root.
           * @custom:field stateRoot                Root of the state trie at the block of this output.
           * @custom:field messagePasserStorageRoot Root of the message passer storage trie.
           * @custom:field latestBlockhash          Hash of the block this output was generated from.
           */
          struct OutputRootProof {
              bytes32 version;
              bytes32 stateRoot;
              bytes32 messagePasserStorageRoot;
              bytes32 latestBlockhash;
          }
          /**
           * @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
           *         user (as opposed to a system deposit transaction generated by the system).
           *
           * @custom:field from        Address of the sender of the transaction.
           * @custom:field to          Address of the recipient of the transaction.
           * @custom:field isCreation  True if the transaction is a contract creation.
           * @custom:field value       Value to send to the recipient.
           * @custom:field mint        Amount of ETH to mint.
           * @custom:field gasLimit    Gas limit of the transaction.
           * @custom:field data        Data of the transaction.
           * @custom:field l1BlockHash Hash of the block the transaction was submitted in.
           * @custom:field logIndex    Index of the log in the block the transaction was submitted in.
           */
          struct UserDepositTransaction {
              address from;
              address to;
              bool isCreation;
              uint256 value;
              uint256 mint;
              uint64 gasLimit;
              bytes data;
              bytes32 l1BlockHash;
              uint256 logIndex;
          }
          /**
           * @notice Struct representing a withdrawal transaction.
           *
           * @custom:field nonce    Nonce of the withdrawal transaction
           * @custom:field sender   Address of the sender of the transaction.
           * @custom:field target   Address of the recipient of the transaction.
           * @custom:field value    Value to send to the recipient.
           * @custom:field gasLimit Gas limit of the transaction.
           * @custom:field data     Data of the transaction.
           */
          struct WithdrawalTransaction {
              uint256 nonce;
              address sender;
              address target;
              uint256 value;
              uint256 gasLimit;
              bytes data;
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.8;
      /**
       * @custom:attribution https://github.com/hamdiallam/Solidity-RLP
       * @title RLPReader
       * @notice RLPReader is a library for parsing RLP-encoded byte arrays into Solidity types. Adapted
       *         from Solidity-RLP (https://github.com/hamdiallam/Solidity-RLP) by Hamdi Allam with
       *         various tweaks to improve readability.
       */
      library RLPReader {
          /**
           * Custom pointer type to avoid confusion between pointers and uint256s.
           */
          type MemoryPointer is uint256;
          /**
           * @notice RLP item types.
           *
           * @custom:value DATA_ITEM Represents an RLP data item (NOT a list).
           * @custom:value LIST_ITEM Represents an RLP list item.
           */
          enum RLPItemType {
              DATA_ITEM,
              LIST_ITEM
          }
          /**
           * @notice Struct representing an RLP item.
           *
           * @custom:field length Length of the RLP item.
           * @custom:field ptr    Pointer to the RLP item in memory.
           */
          struct RLPItem {
              uint256 length;
              MemoryPointer ptr;
          }
          /**
           * @notice Max list length that this library will accept.
           */
          uint256 internal constant MAX_LIST_LENGTH = 32;
          /**
           * @notice Converts bytes to a reference to memory position and length.
           *
           * @param _in Input bytes to convert.
           *
           * @return Output memory reference.
           */
          function toRLPItem(bytes memory _in) internal pure returns (RLPItem memory) {
              // Empty arrays are not RLP items.
              require(
                  _in.length > 0,
                  "RLPReader: length of an RLP item must be greater than zero to be decodable"
              );
              MemoryPointer ptr;
              assembly {
                  ptr := add(_in, 32)
              }
              return RLPItem({ length: _in.length, ptr: ptr });
          }
          /**
           * @notice Reads an RLP list value into a list of RLP items.
           *
           * @param _in RLP list value.
           *
           * @return Decoded RLP list items.
           */
          function readList(RLPItem memory _in) internal pure returns (RLPItem[] memory) {
              (uint256 listOffset, uint256 listLength, RLPItemType itemType) = _decodeLength(_in);
              require(
                  itemType == RLPItemType.LIST_ITEM,
                  "RLPReader: decoded item type for list is not a list item"
              );
              require(
                  listOffset + listLength == _in.length,
                  "RLPReader: list item has an invalid data remainder"
              );
              // Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by
              // writing to the length. Since we can't know the number of RLP items without looping over
              // the entire input, we'd have to loop twice to accurately size this array. It's easier to
              // simply set a reasonable maximum list length and decrease the size before we finish.
              RLPItem[] memory out = new RLPItem[](MAX_LIST_LENGTH);
              uint256 itemCount = 0;
              uint256 offset = listOffset;
              while (offset < _in.length) {
                  (uint256 itemOffset, uint256 itemLength, ) = _decodeLength(
                      RLPItem({
                          length: _in.length - offset,
                          ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset)
                      })
                  );
                  // We don't need to check itemCount < out.length explicitly because Solidity already
                  // handles this check on our behalf, we'd just be wasting gas.
                  out[itemCount] = RLPItem({
                      length: itemLength + itemOffset,
                      ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset)
                  });
                  itemCount += 1;
                  offset += itemOffset + itemLength;
              }
              // Decrease the array size to match the actual item count.
              assembly {
                  mstore(out, itemCount)
              }
              return out;
          }
          /**
           * @notice Reads an RLP list value into a list of RLP items.
           *
           * @param _in RLP list value.
           *
           * @return Decoded RLP list items.
           */
          function readList(bytes memory _in) internal pure returns (RLPItem[] memory) {
              return readList(toRLPItem(_in));
          }
          /**
           * @notice Reads an RLP bytes value into bytes.
           *
           * @param _in RLP bytes value.
           *
           * @return Decoded bytes.
           */
          function readBytes(RLPItem memory _in) internal pure returns (bytes memory) {
              (uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in);
              require(
                  itemType == RLPItemType.DATA_ITEM,
                  "RLPReader: decoded item type for bytes is not a data item"
              );
              require(
                  _in.length == itemOffset + itemLength,
                  "RLPReader: bytes value contains an invalid remainder"
              );
              return _copy(_in.ptr, itemOffset, itemLength);
          }
          /**
           * @notice Reads an RLP bytes value into bytes.
           *
           * @param _in RLP bytes value.
           *
           * @return Decoded bytes.
           */
          function readBytes(bytes memory _in) internal pure returns (bytes memory) {
              return readBytes(toRLPItem(_in));
          }
          /**
           * @notice Reads the raw bytes of an RLP item.
           *
           * @param _in RLP item to read.
           *
           * @return Raw RLP bytes.
           */
          function readRawBytes(RLPItem memory _in) internal pure returns (bytes memory) {
              return _copy(_in.ptr, 0, _in.length);
          }
          /**
           * @notice Decodes the length of an RLP item.
           *
           * @param _in RLP item to decode.
           *
           * @return Offset of the encoded data.
           * @return Length of the encoded data.
           * @return RLP item type (LIST_ITEM or DATA_ITEM).
           */
          function _decodeLength(RLPItem memory _in)
              private
              pure
              returns (
                  uint256,
                  uint256,
                  RLPItemType
              )
          {
              // Short-circuit if there's nothing to decode, note that we perform this check when
              // the user creates an RLP item via toRLPItem, but it's always possible for them to bypass
              // that function and create an RLP item directly. So we need to check this anyway.
              require(
                  _in.length > 0,
                  "RLPReader: length of an RLP item must be greater than zero to be decodable"
              );
              MemoryPointer ptr = _in.ptr;
              uint256 prefix;
              assembly {
                  prefix := byte(0, mload(ptr))
              }
              if (prefix <= 0x7f) {
                  // Single byte.
                  return (0, 1, RLPItemType.DATA_ITEM);
              } else if (prefix <= 0xb7) {
                  // Short string.
                  // slither-disable-next-line variable-scope
                  uint256 strLen = prefix - 0x80;
                  require(
                      _in.length > strLen,
                      "RLPReader: length of content must be greater than string length (short string)"
                  );
                  bytes1 firstByteOfContent;
                  assembly {
                      firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                  }
                  require(
                      strLen != 1 || firstByteOfContent >= 0x80,
                      "RLPReader: invalid prefix, single byte < 0x80 are not prefixed (short string)"
                  );
                  return (1, strLen, RLPItemType.DATA_ITEM);
              } else if (prefix <= 0xbf) {
                  // Long string.
                  uint256 lenOfStrLen = prefix - 0xb7;
                  require(
                      _in.length > lenOfStrLen,
                      "RLPReader: length of content must be > than length of string length (long string)"
                  );
                  bytes1 firstByteOfContent;
                  assembly {
                      firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                  }
                  require(
                      firstByteOfContent != 0x00,
                      "RLPReader: length of content must not have any leading zeros (long string)"
                  );
                  uint256 strLen;
                  assembly {
                      strLen := shr(sub(256, mul(8, lenOfStrLen)), mload(add(ptr, 1)))
                  }
                  require(
                      strLen > 55,
                      "RLPReader: length of content must be greater than 55 bytes (long string)"
                  );
                  require(
                      _in.length > lenOfStrLen + strLen,
                      "RLPReader: length of content must be greater than total length (long string)"
                  );
                  return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM);
              } else if (prefix <= 0xf7) {
                  // Short list.
                  // slither-disable-next-line variable-scope
                  uint256 listLen = prefix - 0xc0;
                  require(
                      _in.length > listLen,
                      "RLPReader: length of content must be greater than list length (short list)"
                  );
                  return (1, listLen, RLPItemType.LIST_ITEM);
              } else {
                  // Long list.
                  uint256 lenOfListLen = prefix - 0xf7;
                  require(
                      _in.length > lenOfListLen,
                      "RLPReader: length of content must be > than length of list length (long list)"
                  );
                  bytes1 firstByteOfContent;
                  assembly {
                      firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                  }
                  require(
                      firstByteOfContent != 0x00,
                      "RLPReader: length of content must not have any leading zeros (long list)"
                  );
                  uint256 listLen;
                  assembly {
                      listLen := shr(sub(256, mul(8, lenOfListLen)), mload(add(ptr, 1)))
                  }
                  require(
                      listLen > 55,
                      "RLPReader: length of content must be greater than 55 bytes (long list)"
                  );
                  require(
                      _in.length > lenOfListLen + listLen,
                      "RLPReader: length of content must be greater than total length (long list)"
                  );
                  return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM);
              }
          }
          /**
           * @notice Copies the bytes from a memory location.
           *
           * @param _src    Pointer to the location to read from.
           * @param _offset Offset to start reading from.
           * @param _length Number of bytes to read.
           *
           * @return Copied bytes.
           */
          function _copy(
              MemoryPointer _src,
              uint256 _offset,
              uint256 _length
          ) private pure returns (bytes memory) {
              bytes memory out = new bytes(_length);
              if (_length == 0) {
                  return out;
              }
              // Mostly based on Solidity's copy_memory_to_memory:
              // solhint-disable max-line-length
              // https://github.com/ethereum/solidity/blob/34dd30d71b4da730488be72ff6af7083cf2a91f6/libsolidity/codegen/YulUtilFunctions.cpp#L102-L114
              uint256 src = MemoryPointer.unwrap(_src) + _offset;
              assembly {
                  let dest := add(out, 32)
                  let i := 0
                  for {
                  } lt(i, _length) {
                      i := add(i, 32)
                  } {
                      mstore(add(dest, i), mload(add(src, i)))
                  }
                  if gt(i, _length) {
                      mstore(add(dest, _length), 0)
                  }
              }
              return out;
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      /**
       * @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
       * @title RLPWriter
       * @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
       *         RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
       *         modifications to improve legibility.
       */
      library RLPWriter {
          /**
           * @notice RLP encodes a byte string.
           *
           * @param _in The byte string to encode.
           *
           * @return The RLP encoded string in bytes.
           */
          function writeBytes(bytes memory _in) internal pure returns (bytes memory) {
              bytes memory encoded;
              if (_in.length == 1 && uint8(_in[0]) < 128) {
                  encoded = _in;
              } else {
                  encoded = abi.encodePacked(_writeLength(_in.length, 128), _in);
              }
              return encoded;
          }
          /**
           * @notice RLP encodes a list of RLP encoded byte byte strings.
           *
           * @param _in The list of RLP encoded byte strings.
           *
           * @return The RLP encoded list of items in bytes.
           */
          function writeList(bytes[] memory _in) internal pure returns (bytes memory) {
              bytes memory list = _flatten(_in);
              return abi.encodePacked(_writeLength(list.length, 192), list);
          }
          /**
           * @notice RLP encodes a string.
           *
           * @param _in The string to encode.
           *
           * @return The RLP encoded string in bytes.
           */
          function writeString(string memory _in) internal pure returns (bytes memory) {
              return writeBytes(bytes(_in));
          }
          /**
           * @notice RLP encodes an address.
           *
           * @param _in The address to encode.
           *
           * @return The RLP encoded address in bytes.
           */
          function writeAddress(address _in) internal pure returns (bytes memory) {
              return writeBytes(abi.encodePacked(_in));
          }
          /**
           * @notice RLP encodes a uint.
           *
           * @param _in The uint256 to encode.
           *
           * @return The RLP encoded uint256 in bytes.
           */
          function writeUint(uint256 _in) internal pure returns (bytes memory) {
              return writeBytes(_toBinary(_in));
          }
          /**
           * @notice RLP encodes a bool.
           *
           * @param _in The bool to encode.
           *
           * @return The RLP encoded bool in bytes.
           */
          function writeBool(bool _in) internal pure returns (bytes memory) {
              bytes memory encoded = new bytes(1);
              encoded[0] = (_in ? bytes1(0x01) : bytes1(0x80));
              return encoded;
          }
          /**
           * @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
           *
           * @param _len    The length of the string or the payload.
           * @param _offset 128 if item is string, 192 if item is list.
           *
           * @return RLP encoded bytes.
           */
          function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory) {
              bytes memory encoded;
              if (_len < 56) {
                  encoded = new bytes(1);
                  encoded[0] = bytes1(uint8(_len) + uint8(_offset));
              } else {
                  uint256 lenLen;
                  uint256 i = 1;
                  while (_len / i != 0) {
                      lenLen++;
                      i *= 256;
                  }
                  encoded = new bytes(lenLen + 1);
                  encoded[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
                  for (i = 1; i <= lenLen; i++) {
                      encoded[i] = bytes1(uint8((_len / (256**(lenLen - i))) % 256));
                  }
              }
              return encoded;
          }
          /**
           * @notice Encode integer in big endian binary form with no leading zeroes.
           *
           * @param _x The integer to encode.
           *
           * @return RLP encoded bytes.
           */
          function _toBinary(uint256 _x) private pure returns (bytes memory) {
              bytes memory b = abi.encodePacked(_x);
              uint256 i = 0;
              for (; i < 32; i++) {
                  if (b[i] != 0) {
                      break;
                  }
              }
              bytes memory res = new bytes(32 - i);
              for (uint256 j = 0; j < res.length; j++) {
                  res[j] = b[i++];
              }
              return res;
          }
          /**
           * @custom:attribution https://github.com/Arachnid/solidity-stringutils
           * @notice Copies a piece of memory to another location.
           *
           * @param _dest Destination location.
           * @param _src  Source location.
           * @param _len  Length of memory to copy.
           */
          function _memcpy(
              uint256 _dest,
              uint256 _src,
              uint256 _len
          ) private pure {
              uint256 dest = _dest;
              uint256 src = _src;
              uint256 len = _len;
              for (; len >= 32; len -= 32) {
                  assembly {
                      mstore(dest, mload(src))
                  }
                  dest += 32;
                  src += 32;
              }
              uint256 mask;
              unchecked {
                  mask = 256**(32 - len) - 1;
              }
              assembly {
                  let srcpart := and(mload(src), not(mask))
                  let destpart := and(mload(dest), mask)
                  mstore(dest, or(destpart, srcpart))
              }
          }
          /**
           * @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
           * @notice Flattens a list of byte strings into one byte string.
           *
           * @param _list List of byte strings to flatten.
           *
           * @return The flattened byte string.
           */
          function _flatten(bytes[] memory _list) private pure returns (bytes memory) {
              if (_list.length == 0) {
                  return new bytes(0);
              }
              uint256 len;
              uint256 i = 0;
              for (; i < _list.length; i++) {
                  len += _list[i].length;
              }
              bytes memory flattened = new bytes(len);
              uint256 flattenedPtr;
              assembly {
                  flattenedPtr := add(flattened, 0x20)
              }
              for (i = 0; i < _list.length; i++) {
                  bytes memory item = _list[i];
                  uint256 listPtr;
                  assembly {
                      listPtr := add(item, 0x20)
                  }
                  _memcpy(flattenedPtr, listPtr, item.length);
                  flattenedPtr += _list[i].length;
              }
              return flattened;
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import { Bytes } from "../Bytes.sol";
      import { RLPReader } from "../rlp/RLPReader.sol";
      /**
       * @title MerkleTrie
       * @notice MerkleTrie is a small library for verifying standard Ethereum Merkle-Patricia trie
       *         inclusion proofs. By default, this library assumes a hexary trie. One can change the
       *         trie radix constant to support other trie radixes.
       */
      library MerkleTrie {
          /**
           * @notice Struct representing a node in the trie.
           *
           * @custom:field encoded The RLP-encoded node.
           * @custom:field decoded The RLP-decoded node.
           */
          struct TrieNode {
              bytes encoded;
              RLPReader.RLPItem[] decoded;
          }
          /**
           * @notice Determines the number of elements per branch node.
           */
          uint256 internal constant TREE_RADIX = 16;
          /**
           * @notice Branch nodes have TREE_RADIX elements and one value element.
           */
          uint256 internal constant BRANCH_NODE_LENGTH = TREE_RADIX + 1;
          /**
           * @notice Leaf nodes and extension nodes have two elements, a `path` and a `value`.
           */
          uint256 internal constant LEAF_OR_EXTENSION_NODE_LENGTH = 2;
          /**
           * @notice Prefix for even-nibbled extension node paths.
           */
          uint8 internal constant PREFIX_EXTENSION_EVEN = 0;
          /**
           * @notice Prefix for odd-nibbled extension node paths.
           */
          uint8 internal constant PREFIX_EXTENSION_ODD = 1;
          /**
           * @notice Prefix for even-nibbled leaf node paths.
           */
          uint8 internal constant PREFIX_LEAF_EVEN = 2;
          /**
           * @notice Prefix for odd-nibbled leaf node paths.
           */
          uint8 internal constant PREFIX_LEAF_ODD = 3;
          /**
           * @notice Verifies a proof that a given key/value pair is present in the trie.
           *
           * @param _key   Key of the node to search for, as a hex string.
           * @param _value Value of the node to search for, as a hex string.
           * @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
           *               trees, this proof is executed top-down and consists of a list of RLP-encoded
           *               nodes that make a path down to the target node.
           * @param _root  Known root of the Merkle trie. Used to verify that the included proof is
           *               correctly constructed.
           *
           * @return Whether or not the proof is valid.
           */
          function verifyInclusionProof(
              bytes memory _key,
              bytes memory _value,
              bytes[] memory _proof,
              bytes32 _root
          ) internal pure returns (bool) {
              return Bytes.equal(_value, get(_key, _proof, _root));
          }
          /**
           * @notice Retrieves the value associated with a given key.
           *
           * @param _key   Key to search for, as hex bytes.
           * @param _proof Merkle trie inclusion proof for the key.
           * @param _root  Known root of the Merkle trie.
           *
           * @return Value of the key if it exists.
           */
          function get(
              bytes memory _key,
              bytes[] memory _proof,
              bytes32 _root
          ) internal pure returns (bytes memory) {
              require(_key.length > 0, "MerkleTrie: empty key");
              TrieNode[] memory proof = _parseProof(_proof);
              bytes memory key = Bytes.toNibbles(_key);
              bytes memory currentNodeID = abi.encodePacked(_root);
              uint256 currentKeyIndex = 0;
              // Proof is top-down, so we start at the first element (root).
              for (uint256 i = 0; i < proof.length; i++) {
                  TrieNode memory currentNode = proof[i];
                  // Key index should never exceed total key length or we'll be out of bounds.
                  require(
                      currentKeyIndex <= key.length,
                      "MerkleTrie: key index exceeds total key length"
                  );
                  if (currentKeyIndex == 0) {
                      // First proof element is always the root node.
                      require(
                          Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                          "MerkleTrie: invalid root hash"
                      );
                  } else if (currentNode.encoded.length >= 32) {
                      // Nodes 32 bytes or larger are hashed inside branch nodes.
                      require(
                          Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                          "MerkleTrie: invalid large internal hash"
                      );
                  } else {
                      // Nodes smaller than 32 bytes aren't hashed.
                      require(
                          Bytes.equal(currentNode.encoded, currentNodeID),
                          "MerkleTrie: invalid internal node hash"
                      );
                  }
                  if (currentNode.decoded.length == BRANCH_NODE_LENGTH) {
                      if (currentKeyIndex == key.length) {
                          // Value is the last element of the decoded list (for branch nodes). There's
                          // some ambiguity in the Merkle trie specification because bytes(0) is a
                          // valid value to place into the trie, but for branch nodes bytes(0) can exist
                          // even when the value wasn't explicitly placed there. Geth treats a value of
                          // bytes(0) as "key does not exist" and so we do the same.
                          bytes memory value = RLPReader.readBytes(currentNode.decoded[TREE_RADIX]);
                          require(
                              value.length > 0,
                              "MerkleTrie: value length must be greater than zero (branch)"
                          );
                          // Extra proof elements are not allowed.
                          require(
                              i == proof.length - 1,
                              "MerkleTrie: value node must be last node in proof (branch)"
                          );
                          return value;
                      } else {
                          // We're not at the end of the key yet.
                          // Figure out what the next node ID should be and continue.
                          uint8 branchKey = uint8(key[currentKeyIndex]);
                          RLPReader.RLPItem memory nextNode = currentNode.decoded[branchKey];
                          currentNodeID = _getNodeID(nextNode);
                          currentKeyIndex += 1;
                      }
                  } else if (currentNode.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) {
                      bytes memory path = _getNodePath(currentNode);
                      uint8 prefix = uint8(path[0]);
                      uint8 offset = 2 - (prefix % 2);
                      bytes memory pathRemainder = Bytes.slice(path, offset);
                      bytes memory keyRemainder = Bytes.slice(key, currentKeyIndex);
                      uint256 sharedNibbleLength = _getSharedNibbleLength(pathRemainder, keyRemainder);
                      // Whether this is a leaf node or an extension node, the path remainder MUST be a
                      // prefix of the key remainder (or be equal to the key remainder) or the proof is
                      // considered invalid.
                      require(
                          pathRemainder.length == sharedNibbleLength,
                          "MerkleTrie: path remainder must share all nibbles with key"
                      );
                      if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) {
                          // Prefix of 2 or 3 means this is a leaf node. For the leaf node to be valid,
                          // the key remainder must be exactly equal to the path remainder. We already
                          // did the necessary byte comparison, so it's more efficient here to check that
                          // the key remainder length equals the shared nibble length, which implies
                          // equality with the path remainder (since we already did the same check with
                          // the path remainder and the shared nibble length).
                          require(
                              keyRemainder.length == sharedNibbleLength,
                              "MerkleTrie: key remainder must be identical to path remainder"
                          );
                          // Our Merkle Trie is designed specifically for the purposes of the Ethereum
                          // state trie. Empty values are not allowed in the state trie, so we can safely
                          // say that if the value is empty, the key should not exist and the proof is
                          // invalid.
                          bytes memory value = RLPReader.readBytes(currentNode.decoded[1]);
                          require(
                              value.length > 0,
                              "MerkleTrie: value length must be greater than zero (leaf)"
                          );
                          // Extra proof elements are not allowed.
                          require(
                              i == proof.length - 1,
                              "MerkleTrie: value node must be last node in proof (leaf)"
                          );
                          return value;
                      } else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) {
                          // Prefix of 0 or 1 means this is an extension node. We move onto the next node
                          // in the proof and increment the key index by the length of the path remainder
                          // which is equal to the shared nibble length.
                          currentNodeID = _getNodeID(currentNode.decoded[1]);
                          currentKeyIndex += sharedNibbleLength;
                      } else {
                          revert("MerkleTrie: received a node with an unknown prefix");
                      }
                  } else {
                      revert("MerkleTrie: received an unparseable node");
                  }
              }
              revert("MerkleTrie: ran out of proof elements");
          }
          /**
           * @notice Parses an array of proof elements into a new array that contains both the original
           *         encoded element and the RLP-decoded element.
           *
           * @param _proof Array of proof elements to parse.
           *
           * @return Proof parsed into easily accessible structs.
           */
          function _parseProof(bytes[] memory _proof) private pure returns (TrieNode[] memory) {
              uint256 length = _proof.length;
              TrieNode[] memory proof = new TrieNode[](length);
              for (uint256 i = 0; i < length; ) {
                  proof[i] = TrieNode({ encoded: _proof[i], decoded: RLPReader.readList(_proof[i]) });
                  unchecked {
                      ++i;
                  }
              }
              return proof;
          }
          /**
           * @notice Picks out the ID for a node. Node ID is referred to as the "hash" within the
           *         specification, but nodes < 32 bytes are not actually hashed.
           *
           * @param _node Node to pull an ID for.
           *
           * @return ID for the node, depending on the size of its contents.
           */
          function _getNodeID(RLPReader.RLPItem memory _node) private pure returns (bytes memory) {
              return _node.length < 32 ? RLPReader.readRawBytes(_node) : RLPReader.readBytes(_node);
          }
          /**
           * @notice Gets the path for a leaf or extension node.
           *
           * @param _node Node to get a path for.
           *
           * @return Node path, converted to an array of nibbles.
           */
          function _getNodePath(TrieNode memory _node) private pure returns (bytes memory) {
              return Bytes.toNibbles(RLPReader.readBytes(_node.decoded[0]));
          }
          /**
           * @notice Utility; determines the number of nibbles shared between two nibble arrays.
           *
           * @param _a First nibble array.
           * @param _b Second nibble array.
           *
           * @return Number of shared nibbles.
           */
          function _getSharedNibbleLength(bytes memory _a, bytes memory _b)
              private
              pure
              returns (uint256)
          {
              uint256 shared;
              uint256 max = (_a.length < _b.length) ? _a.length : _b.length;
              for (; shared < max && _a[shared] == _b[shared]; ) {
                  unchecked {
                      ++shared;
                  }
              }
              return shared;
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      /* Library Imports */
      import { MerkleTrie } from "./MerkleTrie.sol";
      /**
       * @title SecureMerkleTrie
       * @notice SecureMerkleTrie is a thin wrapper around the MerkleTrie library that hashes the input
       *         keys. Ethereum's state trie hashes input keys before storing them.
       */
      library SecureMerkleTrie {
          /**
           * @notice Verifies a proof that a given key/value pair is present in the Merkle trie.
           *
           * @param _key   Key of the node to search for, as a hex string.
           * @param _value Value of the node to search for, as a hex string.
           * @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
           *               trees, this proof is executed top-down and consists of a list of RLP-encoded
           *               nodes that make a path down to the target node.
           * @param _root  Known root of the Merkle trie. Used to verify that the included proof is
           *               correctly constructed.
           *
           * @return Whether or not the proof is valid.
           */
          function verifyInclusionProof(
              bytes memory _key,
              bytes memory _value,
              bytes[] memory _proof,
              bytes32 _root
          ) internal pure returns (bool) {
              bytes memory key = _getSecureKey(_key);
              return MerkleTrie.verifyInclusionProof(key, _value, _proof, _root);
          }
          /**
           * @notice Retrieves the value associated with a given key.
           *
           * @param _key   Key to search for, as hex bytes.
           * @param _proof Merkle trie inclusion proof for the key.
           * @param _root  Known root of the Merkle trie.
           *
           * @return Value of the key if it exists.
           */
          function get(
              bytes memory _key,
              bytes[] memory _proof,
              bytes32 _root
          ) internal pure returns (bytes memory) {
              bytes memory key = _getSecureKey(_key);
              return MerkleTrie.get(key, _proof, _root);
          }
          /**
           * @notice Computes the hashed version of the input key.
           *
           * @param _key Key to hash.
           *
           * @return Hashed version of the key.
           */
          function _getSecureKey(bytes memory _key) private pure returns (bytes memory) {
              return abi.encodePacked(keccak256(_key));
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import { Strings } from "@openzeppelin/contracts/utils/Strings.sol";
      /**
       * @title Semver
       * @notice Semver is a simple contract for managing contract versions.
       */
      contract Semver {
          /**
           * @notice Contract version number (major).
           */
          uint256 private immutable MAJOR_VERSION;
          /**
           * @notice Contract version number (minor).
           */
          uint256 private immutable MINOR_VERSION;
          /**
           * @notice Contract version number (patch).
           */
          uint256 private immutable PATCH_VERSION;
          /**
           * @param _major Version number (major).
           * @param _minor Version number (minor).
           * @param _patch Version number (patch).
           */
          constructor(
              uint256 _major,
              uint256 _minor,
              uint256 _patch
          ) {
              MAJOR_VERSION = _major;
              MINOR_VERSION = _minor;
              PATCH_VERSION = _patch;
          }
          /**
           * @notice Returns the full semver contract version.
           *
           * @return Semver contract version as a string.
           */
          function version() public view returns (string memory) {
              return
                  string(
                      abi.encodePacked(
                          Strings.toString(MAJOR_VERSION),
                          ".",
                          Strings.toString(MINOR_VERSION),
                          ".",
                          Strings.toString(PATCH_VERSION)
                      )
                  );
          }
      }
      // SPDX-License-Identifier: Apache-2.0
      /*
       * Copyright 2019-2021, Offchain Labs, Inc.
       *
       * Licensed under the Apache License, Version 2.0 (the "License");
       * you may not use this file except in compliance with the License.
       * You may obtain a copy of the License at
       *
       *    http://www.apache.org/licenses/LICENSE-2.0
       *
       * Unless required by applicable law or agreed to in writing, software
       * distributed under the License is distributed on an "AS IS" BASIS,
       * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
       * See the License for the specific language governing permissions and
       * limitations under the License.
       */
      pragma solidity ^0.8.0;
      library AddressAliasHelper {
          uint160 constant offset = uint160(0x1111000000000000000000000000000000001111);
          /// @notice Utility function that converts the address in the L1 that submitted a tx to
          /// the inbox to the msg.sender viewed in the L2
          /// @param l1Address the address in the L1 that triggered the tx to L2
          /// @return l2Address L2 address as viewed in msg.sender
          function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) {
              unchecked {
                  l2Address = address(uint160(l1Address) + offset);
              }
          }
          /// @notice Utility function that converts the msg.sender viewed in the L2 to the
          /// address in the L1 that submitted a tx to the inbox
          /// @param l2Address L2 address as viewed in msg.sender
          /// @return l1Address the address in the L1 that triggered the tx to L2
          function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) {
              unchecked {
                  l1Address = address(uint160(l2Address) - offset);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
      pragma solidity ^0.8.2;
      import "../../utils/Address.sol";
      /**
       * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
       * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
       * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
       * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
       *
       * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
       * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
       * case an upgrade adds a module that needs to be initialized.
       *
       * For example:
       *
       * [.hljs-theme-light.nopadding]
       * ```
       * contract MyToken is ERC20Upgradeable {
       *     function initialize() initializer public {
       *         __ERC20_init("MyToken", "MTK");
       *     }
       * }
       * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
       *     function initializeV2() reinitializer(2) public {
       *         __ERC20Permit_init("MyToken");
       *     }
       * }
       * ```
       *
       * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
       * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
       *
       * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
       * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
       *
       * [CAUTION]
       * ====
       * Avoid leaving a contract uninitialized.
       *
       * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
       * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
       * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
       *
       * [.hljs-theme-light.nopadding]
       * ```
       * /// @custom:oz-upgrades-unsafe-allow constructor
       * constructor() {
       *     _disableInitializers();
       * }
       * ```
       * ====
       */
      abstract contract Initializable {
          /**
           * @dev Indicates that the contract has been initialized.
           * @custom:oz-retyped-from bool
           */
          uint8 private _initialized;
          /**
           * @dev Indicates that the contract is in the process of being initialized.
           */
          bool private _initializing;
          /**
           * @dev Triggered when the contract has been initialized or reinitialized.
           */
          event Initialized(uint8 version);
          /**
           * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
           * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
           */
          modifier initializer() {
              bool isTopLevelCall = !_initializing;
              require(
                  (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                  "Initializable: contract is already initialized"
              );
              _initialized = 1;
              if (isTopLevelCall) {
                  _initializing = true;
              }
              _;
              if (isTopLevelCall) {
                  _initializing = false;
                  emit Initialized(1);
              }
          }
          /**
           * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
           * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
           * used to initialize parent contracts.
           *
           * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
           * initialization step. This is essential to configure modules that are added through upgrades and that require
           * initialization.
           *
           * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
           * a contract, executing them in the right order is up to the developer or operator.
           */
          modifier reinitializer(uint8 version) {
              require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
              _initialized = version;
              _initializing = true;
              _;
              _initializing = false;
              emit Initialized(version);
          }
          /**
           * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
           * {initializer} and {reinitializer} modifiers, directly or indirectly.
           */
          modifier onlyInitializing() {
              require(_initializing, "Initializable: contract is not initializing");
              _;
          }
          /**
           * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
           * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
           * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
           * through proxies.
           */
          function _disableInitializers() internal virtual {
              require(!_initializing, "Initializable: contract is initializing");
              if (_initialized < type(uint8).max) {
                  _initialized = type(uint8).max;
                  emit Initialized(type(uint8).max);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
      pragma solidity ^0.8.1;
      /**
       * @dev Collection of functions related to the address type
       */
      library Address {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           * ====
           *
           * [IMPORTANT]
           * ====
           * You shouldn't rely on `isContract` to protect against flash loan attacks!
           *
           * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
           * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
           * constructor.
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // This method relies on extcodesize/address.code.length, which returns 0
              // for contracts in construction, since the code is only stored at the end
              // of the constructor execution.
              return account.code.length > 0;
          }
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              require(address(this).balance >= amount, "Address: insufficient balance");
              (bool success, ) = recipient.call{value: amount}("");
              require(success, "Address: unable to send value, recipient may have reverted");
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain `call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason, it is bubbled up by this
           * function (like regular Solidity function calls).
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCall(target, data, "Address: low-level call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
           * `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
          }
          /**
           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
           * with `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(address(this).balance >= value, "Address: insufficient balance for call");
              require(isContract(target), "Address: call to non-contract");
              (bool success, bytes memory returndata) = target.call{value: value}(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              return functionStaticCall(target, data, "Address: low-level static call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              require(isContract(target), "Address: static call to non-contract");
              (bool success, bytes memory returndata) = target.staticcall(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionDelegateCall(target, data, "Address: low-level delegate call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(isContract(target), "Address: delegate call to non-contract");
              (bool success, bytes memory returndata) = target.delegatecall(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
           * revert reason using the provided one.
           *
           * _Available since v4.3._
           */
          function verifyCallResult(
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal pure returns (bytes memory) {
              if (success) {
                  return returndata;
              } else {
                  // Look for revert reason and bubble it up if present
                  if (returndata.length > 0) {
                      // The easiest way to bubble the revert reason is using memory via assembly
                      /// @solidity memory-safe-assembly
                      assembly {
                          let returndata_size := mload(returndata)
                          revert(add(32, returndata), returndata_size)
                      }
                  } else {
                      revert(errorMessage);
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/Strings.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev String operations.
       */
      library Strings {
          bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";
          uint8 private constant _ADDRESS_LENGTH = 20;
          /**
           * @dev Converts a `uint256` to its ASCII `string` decimal representation.
           */
          function toString(uint256 value) internal pure returns (string memory) {
              // Inspired by OraclizeAPI's implementation - MIT licence
              // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol
              if (value == 0) {
                  return "0";
              }
              uint256 temp = value;
              uint256 digits;
              while (temp != 0) {
                  digits++;
                  temp /= 10;
              }
              bytes memory buffer = new bytes(digits);
              while (value != 0) {
                  digits -= 1;
                  buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
                  value /= 10;
              }
              return string(buffer);
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
           */
          function toHexString(uint256 value) internal pure returns (string memory) {
              if (value == 0) {
                  return "0x00";
              }
              uint256 temp = value;
              uint256 length = 0;
              while (temp != 0) {
                  length++;
                  temp >>= 8;
              }
              return toHexString(value, length);
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
           */
          function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
              bytes memory buffer = new bytes(2 * length + 2);
              buffer[0] = "0";
              buffer[1] = "x";
              for (uint256 i = 2 * length + 1; i > 1; --i) {
                  buffer[i] = _HEX_SYMBOLS[value & 0xf];
                  value >>= 4;
              }
              require(value == 0, "Strings: hex length insufficient");
              return string(buffer);
          }
          /**
           * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
           */
          function toHexString(address addr) internal pure returns (string memory) {
              return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Standard math utilities missing in the Solidity language.
       */
      library Math {
          enum Rounding {
              Down, // Toward negative infinity
              Up, // Toward infinity
              Zero // Toward zero
          }
          /**
           * @dev Returns the largest of two numbers.
           */
          function max(uint256 a, uint256 b) internal pure returns (uint256) {
              return a >= b ? a : b;
          }
          /**
           * @dev Returns the smallest of two numbers.
           */
          function min(uint256 a, uint256 b) internal pure returns (uint256) {
              return a < b ? a : b;
          }
          /**
           * @dev Returns the average of two numbers. The result is rounded towards
           * zero.
           */
          function average(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b) / 2 can overflow.
              return (a & b) + (a ^ b) / 2;
          }
          /**
           * @dev Returns the ceiling of the division of two numbers.
           *
           * This differs from standard division with `/` in that it rounds up instead
           * of rounding down.
           */
          function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b - 1) / b can overflow on addition, so we distribute.
              return a == 0 ? 0 : (a - 1) / b + 1;
          }
          /**
           * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
           * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
           * with further edits by Uniswap Labs also under MIT license.
           */
          function mulDiv(
              uint256 x,
              uint256 y,
              uint256 denominator
          ) internal pure returns (uint256 result) {
              unchecked {
                  // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                  // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                  // variables such that product = prod1 * 2^256 + prod0.
                  uint256 prod0; // Least significant 256 bits of the product
                  uint256 prod1; // Most significant 256 bits of the product
                  assembly {
                      let mm := mulmod(x, y, not(0))
                      prod0 := mul(x, y)
                      prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                  }
                  // Handle non-overflow cases, 256 by 256 division.
                  if (prod1 == 0) {
                      return prod0 / denominator;
                  }
                  // Make sure the result is less than 2^256. Also prevents denominator == 0.
                  require(denominator > prod1);
                  ///////////////////////////////////////////////
                  // 512 by 256 division.
                  ///////////////////////////////////////////////
                  // Make division exact by subtracting the remainder from [prod1 prod0].
                  uint256 remainder;
                  assembly {
                      // Compute remainder using mulmod.
                      remainder := mulmod(x, y, denominator)
                      // Subtract 256 bit number from 512 bit number.
                      prod1 := sub(prod1, gt(remainder, prod0))
                      prod0 := sub(prod0, remainder)
                  }
                  // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                  // See https://cs.stackexchange.com/q/138556/92363.
                  // Does not overflow because the denominator cannot be zero at this stage in the function.
                  uint256 twos = denominator & (~denominator + 1);
                  assembly {
                      // Divide denominator by twos.
                      denominator := div(denominator, twos)
                      // Divide [prod1 prod0] by twos.
                      prod0 := div(prod0, twos)
                      // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                      twos := add(div(sub(0, twos), twos), 1)
                  }
                  // Shift in bits from prod1 into prod0.
                  prod0 |= prod1 * twos;
                  // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                  // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                  // four bits. That is, denominator * inv = 1 mod 2^4.
                  uint256 inverse = (3 * denominator) ^ 2;
                  // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                  // in modular arithmetic, doubling the correct bits in each step.
                  inverse *= 2 - denominator * inverse; // inverse mod 2^8
                  inverse *= 2 - denominator * inverse; // inverse mod 2^16
                  inverse *= 2 - denominator * inverse; // inverse mod 2^32
                  inverse *= 2 - denominator * inverse; // inverse mod 2^64
                  inverse *= 2 - denominator * inverse; // inverse mod 2^128
                  inverse *= 2 - denominator * inverse; // inverse mod 2^256
                  // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                  // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                  // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                  // is no longer required.
                  result = prod0 * inverse;
                  return result;
              }
          }
          /**
           * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
           */
          function mulDiv(
              uint256 x,
              uint256 y,
              uint256 denominator,
              Rounding rounding
          ) internal pure returns (uint256) {
              uint256 result = mulDiv(x, y, denominator);
              if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                  result += 1;
              }
              return result;
          }
          /**
           * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
           *
           * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
           */
          function sqrt(uint256 a) internal pure returns (uint256) {
              if (a == 0) {
                  return 0;
              }
              // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
              // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
              // `msb(a) <= a < 2*msb(a)`.
              // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
              // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
              // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
              // good first aproximation of `sqrt(a)` with at least 1 correct bit.
              uint256 result = 1;
              uint256 x = a;
              if (x >> 128 > 0) {
                  x >>= 128;
                  result <<= 64;
              }
              if (x >> 64 > 0) {
                  x >>= 64;
                  result <<= 32;
              }
              if (x >> 32 > 0) {
                  x >>= 32;
                  result <<= 16;
              }
              if (x >> 16 > 0) {
                  x >>= 16;
                  result <<= 8;
              }
              if (x >> 8 > 0) {
                  x >>= 8;
                  result <<= 4;
              }
              if (x >> 4 > 0) {
                  x >>= 4;
                  result <<= 2;
              }
              if (x >> 2 > 0) {
                  result <<= 1;
              }
              // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
              // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
              // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
              // into the expected uint128 result.
              unchecked {
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  return min(result, a / result);
              }
          }
          /**
           * @notice Calculates sqrt(a), following the selected rounding direction.
           */
          function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
              uint256 result = sqrt(a);
              if (rounding == Rounding.Up && result * result < a) {
                  result += 1;
              }
              return result;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Standard signed math utilities missing in the Solidity language.
       */
      library SignedMath {
          /**
           * @dev Returns the largest of two signed numbers.
           */
          function max(int256 a, int256 b) internal pure returns (int256) {
              return a >= b ? a : b;
          }
          /**
           * @dev Returns the smallest of two signed numbers.
           */
          function min(int256 a, int256 b) internal pure returns (int256) {
              return a < b ? a : b;
          }
          /**
           * @dev Returns the average of two signed numbers without overflow.
           * The result is rounded towards zero.
           */
          function average(int256 a, int256 b) internal pure returns (int256) {
              // Formula from the book "Hacker's Delight"
              int256 x = (a & b) + ((a ^ b) >> 1);
              return x + (int256(uint256(x) >> 255) & (a ^ b));
          }
          /**
           * @dev Returns the absolute unsigned value of a signed value.
           */
          function abs(int256 n) internal pure returns (uint256) {
              unchecked {
                  // must be unchecked in order to support `n = type(int256).min`
                  return uint256(n >= 0 ? n : -n);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
      pragma solidity ^0.8.0;
      import "../utils/ContextUpgradeable.sol";
      import "../proxy/utils/Initializable.sol";
      /**
       * @dev Contract module which provides a basic access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * By default, the owner account will be the one that deploys the contract. This
       * can later be changed with {transferOwnership}.
       *
       * This module is used through inheritance. It will make available the modifier
       * `onlyOwner`, which can be applied to your functions to restrict their use to
       * the owner.
       */
      abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
          address private _owner;
          event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
          /**
           * @dev Initializes the contract setting the deployer as the initial owner.
           */
          function __Ownable_init() internal onlyInitializing {
              __Ownable_init_unchained();
          }
          function __Ownable_init_unchained() internal onlyInitializing {
              _transferOwnership(_msgSender());
          }
          /**
           * @dev Throws if called by any account other than the owner.
           */
          modifier onlyOwner() {
              _checkOwner();
              _;
          }
          /**
           * @dev Returns the address of the current owner.
           */
          function owner() public view virtual returns (address) {
              return _owner;
          }
          /**
           * @dev Throws if the sender is not the owner.
           */
          function _checkOwner() internal view virtual {
              require(owner() == _msgSender(), "Ownable: caller is not the owner");
          }
          /**
           * @dev Leaves the contract without owner. It will not be possible to call
           * `onlyOwner` functions anymore. Can only be called by the current owner.
           *
           * NOTE: Renouncing ownership will leave the contract without an owner,
           * thereby removing any functionality that is only available to the owner.
           */
          function renounceOwnership() public virtual onlyOwner {
              _transferOwnership(address(0));
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual onlyOwner {
              require(newOwner != address(0), "Ownable: new owner is the zero address");
              _transferOwnership(newOwner);
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Internal function without access restriction.
           */
          function _transferOwnership(address newOwner) internal virtual {
              address oldOwner = _owner;
              _owner = newOwner;
              emit OwnershipTransferred(oldOwner, newOwner);
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[49] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
      pragma solidity ^0.8.2;
      import "../../utils/AddressUpgradeable.sol";
      /**
       * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
       * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
       * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
       * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
       *
       * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
       * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
       * case an upgrade adds a module that needs to be initialized.
       *
       * For example:
       *
       * [.hljs-theme-light.nopadding]
       * ```
       * contract MyToken is ERC20Upgradeable {
       *     function initialize() initializer public {
       *         __ERC20_init("MyToken", "MTK");
       *     }
       * }
       * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
       *     function initializeV2() reinitializer(2) public {
       *         __ERC20Permit_init("MyToken");
       *     }
       * }
       * ```
       *
       * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
       * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
       *
       * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
       * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
       *
       * [CAUTION]
       * ====
       * Avoid leaving a contract uninitialized.
       *
       * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
       * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
       * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
       *
       * [.hljs-theme-light.nopadding]
       * ```
       * /// @custom:oz-upgrades-unsafe-allow constructor
       * constructor() {
       *     _disableInitializers();
       * }
       * ```
       * ====
       */
      abstract contract Initializable {
          /**
           * @dev Indicates that the contract has been initialized.
           * @custom:oz-retyped-from bool
           */
          uint8 private _initialized;
          /**
           * @dev Indicates that the contract is in the process of being initialized.
           */
          bool private _initializing;
          /**
           * @dev Triggered when the contract has been initialized or reinitialized.
           */
          event Initialized(uint8 version);
          /**
           * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
           * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
           */
          modifier initializer() {
              bool isTopLevelCall = !_initializing;
              require(
                  (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                  "Initializable: contract is already initialized"
              );
              _initialized = 1;
              if (isTopLevelCall) {
                  _initializing = true;
              }
              _;
              if (isTopLevelCall) {
                  _initializing = false;
                  emit Initialized(1);
              }
          }
          /**
           * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
           * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
           * used to initialize parent contracts.
           *
           * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
           * initialization step. This is essential to configure modules that are added through upgrades and that require
           * initialization.
           *
           * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
           * a contract, executing them in the right order is up to the developer or operator.
           */
          modifier reinitializer(uint8 version) {
              require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
              _initialized = version;
              _initializing = true;
              _;
              _initializing = false;
              emit Initialized(version);
          }
          /**
           * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
           * {initializer} and {reinitializer} modifiers, directly or indirectly.
           */
          modifier onlyInitializing() {
              require(_initializing, "Initializable: contract is not initializing");
              _;
          }
          /**
           * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
           * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
           * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
           * through proxies.
           */
          function _disableInitializers() internal virtual {
              require(!_initializing, "Initializable: contract is initializing");
              if (_initialized < type(uint8).max) {
                  _initialized = type(uint8).max;
                  emit Initialized(type(uint8).max);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
      pragma solidity ^0.8.1;
      /**
       * @dev Collection of functions related to the address type
       */
      library AddressUpgradeable {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           * ====
           *
           * [IMPORTANT]
           * ====
           * You shouldn't rely on `isContract` to protect against flash loan attacks!
           *
           * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
           * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
           * constructor.
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // This method relies on extcodesize/address.code.length, which returns 0
              // for contracts in construction, since the code is only stored at the end
              // of the constructor execution.
              return account.code.length > 0;
          }
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              require(address(this).balance >= amount, "Address: insufficient balance");
              (bool success, ) = recipient.call{value: amount}("");
              require(success, "Address: unable to send value, recipient may have reverted");
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain `call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason, it is bubbled up by this
           * function (like regular Solidity function calls).
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCall(target, data, "Address: low-level call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
           * `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
          }
          /**
           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
           * with `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(address(this).balance >= value, "Address: insufficient balance for call");
              require(isContract(target), "Address: call to non-contract");
              (bool success, bytes memory returndata) = target.call{value: value}(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              return functionStaticCall(target, data, "Address: low-level static call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              require(isContract(target), "Address: static call to non-contract");
              (bool success, bytes memory returndata) = target.staticcall(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
           * revert reason using the provided one.
           *
           * _Available since v4.3._
           */
          function verifyCallResult(
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal pure returns (bytes memory) {
              if (success) {
                  return returndata;
              } else {
                  // Look for revert reason and bubble it up if present
                  if (returndata.length > 0) {
                      // The easiest way to bubble the revert reason is using memory via assembly
                      /// @solidity memory-safe-assembly
                      assembly {
                          let returndata_size := mload(returndata)
                          revert(add(32, returndata), returndata_size)
                      }
                  } else {
                      revert(errorMessage);
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
      pragma solidity ^0.8.0;
      import "../proxy/utils/Initializable.sol";
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract ContextUpgradeable is Initializable {
          function __Context_init() internal onlyInitializing {
          }
          function __Context_init_unchained() internal onlyInitializing {
          }
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[50] private __gap;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity >=0.8.0;
      /// @notice Arithmetic library with operations for fixed-point numbers.
      /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
      library FixedPointMathLib {
          /*//////////////////////////////////////////////////////////////
                          SIMPLIFIED FIXED POINT OPERATIONS
          //////////////////////////////////////////////////////////////*/
          uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
          function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
              return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
          }
          function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
              return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
          }
          function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
              return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
          }
          function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
              return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
          }
          function powWad(int256 x, int256 y) internal pure returns (int256) {
              // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
              return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
          }
          function expWad(int256 x) internal pure returns (int256 r) {
              unchecked {
                  // When the result is < 0.5 we return zero. This happens when
                  // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                  if (x <= -42139678854452767551) return 0;
                  // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                  // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                  if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                  // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                  // for more intermediate precision and a binary basis. This base conversion
                  // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                  x = (x << 78) / 5**18;
                  // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                  // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                  // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                  int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                  x = x - k * 54916777467707473351141471128;
                  // k is in the range [-61, 195].
                  // Evaluate using a (6, 7)-term rational approximation.
                  // p is made monic, we'll multiply by a scale factor later.
                  int256 y = x + 1346386616545796478920950773328;
                  y = ((y * x) >> 96) + 57155421227552351082224309758442;
                  int256 p = y + x - 94201549194550492254356042504812;
                  p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                  p = p * x + (4385272521454847904659076985693276 << 96);
                  // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                  int256 q = x - 2855989394907223263936484059900;
                  q = ((q * x) >> 96) + 50020603652535783019961831881945;
                  q = ((q * x) >> 96) - 533845033583426703283633433725380;
                  q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                  q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                  q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                  assembly {
                      // Div in assembly because solidity adds a zero check despite the unchecked.
                      // The q polynomial won't have zeros in the domain as all its roots are complex.
                      // No scaling is necessary because p is already 2**96 too large.
                      r := sdiv(p, q)
                  }
                  // r should be in the range (0.09, 0.25) * 2**96.
                  // We now need to multiply r by:
                  // * the scale factor s = ~6.031367120.
                  // * the 2**k factor from the range reduction.
                  // * the 1e18 / 2**96 factor for base conversion.
                  // We do this all at once, with an intermediate result in 2**213
                  // basis, so the final right shift is always by a positive amount.
                  r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
              }
          }
          function lnWad(int256 x) internal pure returns (int256 r) {
              unchecked {
                  require(x > 0, "UNDEFINED");
                  // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                  // We do this by multiplying by 2**96 / 10**18. But since
                  // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                  // and add ln(2**96 / 10**18) at the end.
                  // Reduce range of x to (1, 2) * 2**96
                  // ln(2^k * x) = k * ln(2) + ln(x)
                  int256 k = int256(log2(uint256(x))) - 96;
                  x <<= uint256(159 - k);
                  x = int256(uint256(x) >> 159);
                  // Evaluate using a (8, 8)-term rational approximation.
                  // p is made monic, we will multiply by a scale factor later.
                  int256 p = x + 3273285459638523848632254066296;
                  p = ((p * x) >> 96) + 24828157081833163892658089445524;
                  p = ((p * x) >> 96) + 43456485725739037958740375743393;
                  p = ((p * x) >> 96) - 11111509109440967052023855526967;
                  p = ((p * x) >> 96) - 45023709667254063763336534515857;
                  p = ((p * x) >> 96) - 14706773417378608786704636184526;
                  p = p * x - (795164235651350426258249787498 << 96);
                  // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                  // q is monic by convention.
                  int256 q = x + 5573035233440673466300451813936;
                  q = ((q * x) >> 96) + 71694874799317883764090561454958;
                  q = ((q * x) >> 96) + 283447036172924575727196451306956;
                  q = ((q * x) >> 96) + 401686690394027663651624208769553;
                  q = ((q * x) >> 96) + 204048457590392012362485061816622;
                  q = ((q * x) >> 96) + 31853899698501571402653359427138;
                  q = ((q * x) >> 96) + 909429971244387300277376558375;
                  assembly {
                      // Div in assembly because solidity adds a zero check despite the unchecked.
                      // The q polynomial is known not to have zeros in the domain.
                      // No scaling required because p is already 2**96 too large.
                      r := sdiv(p, q)
                  }
                  // r is in the range (0, 0.125) * 2**96
                  // Finalization, we need to:
                  // * multiply by the scale factor s = 5.549…
                  // * add ln(2**96 / 10**18)
                  // * add k * ln(2)
                  // * multiply by 10**18 / 2**96 = 5**18 >> 78
                  // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                  r *= 1677202110996718588342820967067443963516166;
                  // add ln(2) * k * 5e18 * 2**192
                  r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                  // add ln(2**96 / 10**18) * 5e18 * 2**192
                  r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                  // base conversion: mul 2**18 / 2**192
                  r >>= 174;
              }
          }
          /*//////////////////////////////////////////////////////////////
                          LOW LEVEL FIXED POINT OPERATIONS
          //////////////////////////////////////////////////////////////*/
          function mulDivDown(
              uint256 x,
              uint256 y,
              uint256 denominator
          ) internal pure returns (uint256 z) {
              assembly {
                  // Store x * y in z for now.
                  z := mul(x, y)
                  // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                  if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                      revert(0, 0)
                  }
                  // Divide z by the denominator.
                  z := div(z, denominator)
              }
          }
          function mulDivUp(
              uint256 x,
              uint256 y,
              uint256 denominator
          ) internal pure returns (uint256 z) {
              assembly {
                  // Store x * y in z for now.
                  z := mul(x, y)
                  // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                  if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                      revert(0, 0)
                  }
                  // First, divide z - 1 by the denominator and add 1.
                  // We allow z - 1 to underflow if z is 0, because we multiply the
                  // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                  z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
              }
          }
          function rpow(
              uint256 x,
              uint256 n,
              uint256 scalar
          ) internal pure returns (uint256 z) {
              assembly {
                  switch x
                  case 0 {
                      switch n
                      case 0 {
                          // 0 ** 0 = 1
                          z := scalar
                      }
                      default {
                          // 0 ** n = 0
                          z := 0
                      }
                  }
                  default {
                      switch mod(n, 2)
                      case 0 {
                          // If n is even, store scalar in z for now.
                          z := scalar
                      }
                      default {
                          // If n is odd, store x in z for now.
                          z := x
                      }
                      // Shifting right by 1 is like dividing by 2.
                      let half := shr(1, scalar)
                      for {
                          // Shift n right by 1 before looping to halve it.
                          n := shr(1, n)
                      } n {
                          // Shift n right by 1 each iteration to halve it.
                          n := shr(1, n)
                      } {
                          // Revert immediately if x ** 2 would overflow.
                          // Equivalent to iszero(eq(div(xx, x), x)) here.
                          if shr(128, x) {
                              revert(0, 0)
                          }
                          // Store x squared.
                          let xx := mul(x, x)
                          // Round to the nearest number.
                          let xxRound := add(xx, half)
                          // Revert if xx + half overflowed.
                          if lt(xxRound, xx) {
                              revert(0, 0)
                          }
                          // Set x to scaled xxRound.
                          x := div(xxRound, scalar)
                          // If n is even:
                          if mod(n, 2) {
                              // Compute z * x.
                              let zx := mul(z, x)
                              // If z * x overflowed:
                              if iszero(eq(div(zx, x), z)) {
                                  // Revert if x is non-zero.
                                  if iszero(iszero(x)) {
                                      revert(0, 0)
                                  }
                              }
                              // Round to the nearest number.
                              let zxRound := add(zx, half)
                              // Revert if zx + half overflowed.
                              if lt(zxRound, zx) {
                                  revert(0, 0)
                              }
                              // Return properly scaled zxRound.
                              z := div(zxRound, scalar)
                          }
                      }
                  }
              }
          }
          /*//////////////////////////////////////////////////////////////
                              GENERAL NUMBER UTILITIES
          //////////////////////////////////////////////////////////////*/
          function sqrt(uint256 x) internal pure returns (uint256 z) {
              assembly {
                  let y := x // We start y at x, which will help us make our initial estimate.
                  z := 181 // The "correct" value is 1, but this saves a multiplication later.
                  // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                  // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                  // We check y >= 2^(k + 8) but shift right by k bits
                  // each branch to ensure that if x >= 256, then y >= 256.
                  if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                      y := shr(128, y)
                      z := shl(64, z)
                  }
                  if iszero(lt(y, 0x1000000000000000000)) {
                      y := shr(64, y)
                      z := shl(32, z)
                  }
                  if iszero(lt(y, 0x10000000000)) {
                      y := shr(32, y)
                      z := shl(16, z)
                  }
                  if iszero(lt(y, 0x1000000)) {
                      y := shr(16, y)
                      z := shl(8, z)
                  }
                  // Goal was to get z*z*y within a small factor of x. More iterations could
                  // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                  // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                  // That's not possible if x < 256 but we can just verify those cases exhaustively.
                  // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                  // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                  // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                  // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                  // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                  // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                  // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                  // There is no overflow risk here since y < 2^136 after the first branch above.
                  z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                  // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  // If x+1 is a perfect square, the Babylonian method cycles between
                  // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                  // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                  // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                  // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                  z := sub(z, lt(div(x, z), z))
              }
          }
          function log2(uint256 x) internal pure returns (uint256 r) {
              require(x > 0, "UNDEFINED");
              assembly {
                  r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                  r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                  r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                  r := or(r, shl(4, lt(0xffff, shr(r, x))))
                  r := or(r, shl(3, lt(0xff, shr(r, x))))
                  r := or(r, shl(2, lt(0xf, shr(r, x))))
                  r := or(r, shl(1, lt(0x3, shr(r, x))))
                  r := or(r, lt(0x1, shr(r, x)))
              }
          }
      }
      

      File 2 of 3: Proxy
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.15;
      /**
       * @title Proxy
       * @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
       *         if the caller is address(0), meaning that the call originated from an off-chain
       *         simulation.
       */
      contract Proxy {
          /**
           * @notice The storage slot that holds the address of the implementation.
           *         bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
           */
          bytes32 internal constant IMPLEMENTATION_KEY =
              0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
          /**
           * @notice The storage slot that holds the address of the owner.
           *         bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
           */
          bytes32 internal constant OWNER_KEY =
              0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
          /**
           * @notice An event that is emitted each time the implementation is changed. This event is part
           *         of the EIP-1967 specification.
           *
           * @param implementation The address of the implementation contract
           */
          event Upgraded(address indexed implementation);
          /**
           * @notice An event that is emitted each time the owner is upgraded. This event is part of the
           *         EIP-1967 specification.
           *
           * @param previousAdmin The previous owner of the contract
           * @param newAdmin      The new owner of the contract
           */
          event AdminChanged(address previousAdmin, address newAdmin);
          /**
           * @notice A modifier that reverts if not called by the owner or by address(0) to allow
           *         eth_call to interact with this proxy without needing to use low-level storage
           *         inspection. We assume that nobody is able to trigger calls from address(0) during
           *         normal EVM execution.
           */
          modifier proxyCallIfNotAdmin() {
              if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                  _;
              } else {
                  // This WILL halt the call frame on completion.
                  _doProxyCall();
              }
          }
          /**
           * @notice Sets the initial admin during contract deployment. Admin address is stored at the
           *         EIP-1967 admin storage slot so that accidental storage collision with the
           *         implementation is not possible.
           *
           * @param _admin Address of the initial contract admin. Admin as the ability to access the
           *               transparent proxy interface.
           */
          constructor(address _admin) {
              _changeAdmin(_admin);
          }
          // slither-disable-next-line locked-ether
          receive() external payable {
              // Proxy call by default.
              _doProxyCall();
          }
          // slither-disable-next-line locked-ether
          fallback() external payable {
              // Proxy call by default.
              _doProxyCall();
          }
          /**
           * @notice Set the implementation contract address. The code at the given address will execute
           *         when this contract is called.
           *
           * @param _implementation Address of the implementation contract.
           */
          function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
              _setImplementation(_implementation);
          }
          /**
           * @notice Set the implementation and call a function in a single transaction. Useful to ensure
           *         atomic execution of initialization-based upgrades.
           *
           * @param _implementation Address of the implementation contract.
           * @param _data           Calldata to delegatecall the new implementation with.
           */
          function upgradeToAndCall(address _implementation, bytes calldata _data)
              public
              payable
              virtual
              proxyCallIfNotAdmin
              returns (bytes memory)
          {
              _setImplementation(_implementation);
              (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
              require(success, "Proxy: delegatecall to new implementation contract failed");
              return returndata;
          }
          /**
           * @notice Changes the owner of the proxy contract. Only callable by the owner.
           *
           * @param _admin New owner of the proxy contract.
           */
          function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
              _changeAdmin(_admin);
          }
          /**
           * @notice Gets the owner of the proxy contract.
           *
           * @return Owner address.
           */
          function admin() public virtual proxyCallIfNotAdmin returns (address) {
              return _getAdmin();
          }
          /**
           * @notice Queries the implementation address.
           *
           * @return Implementation address.
           */
          function implementation() public virtual proxyCallIfNotAdmin returns (address) {
              return _getImplementation();
          }
          /**
           * @notice Sets the implementation address.
           *
           * @param _implementation New implementation address.
           */
          function _setImplementation(address _implementation) internal {
              assembly {
                  sstore(IMPLEMENTATION_KEY, _implementation)
              }
              emit Upgraded(_implementation);
          }
          /**
           * @notice Changes the owner of the proxy contract.
           *
           * @param _admin New owner of the proxy contract.
           */
          function _changeAdmin(address _admin) internal {
              address previous = _getAdmin();
              assembly {
                  sstore(OWNER_KEY, _admin)
              }
              emit AdminChanged(previous, _admin);
          }
          /**
           * @notice Performs the proxy call via a delegatecall.
           */
          function _doProxyCall() internal {
              address impl = _getImplementation();
              require(impl != address(0), "Proxy: implementation not initialized");
              assembly {
                  // Copy calldata into memory at 0x0....calldatasize.
                  calldatacopy(0x0, 0x0, calldatasize())
                  // Perform the delegatecall, make sure to pass all available gas.
                  let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                  // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                  // overwrite the calldata that we just copied into memory but that doesn't really
                  // matter because we'll be returning in a second anyway.
                  returndatacopy(0x0, 0x0, returndatasize())
                  // Success == 0 means a revert. We'll revert too and pass the data up.
                  if iszero(success) {
                      revert(0x0, returndatasize())
                  }
                  // Otherwise we'll just return and pass the data up.
                  return(0x0, returndatasize())
              }
          }
          /**
           * @notice Queries the implementation address.
           *
           * @return Implementation address.
           */
          function _getImplementation() internal view returns (address) {
              address impl;
              assembly {
                  impl := sload(IMPLEMENTATION_KEY)
              }
              return impl;
          }
          /**
           * @notice Queries the owner of the proxy contract.
           *
           * @return Owner address.
           */
          function _getAdmin() internal view returns (address) {
              address owner;
              assembly {
                  owner := sload(OWNER_KEY)
              }
              return owner;
          }
      }
      

      File 3 of 3: SystemConfig
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.15;
      import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
      import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
      import { Burn } from "../libraries/Burn.sol";
      import { Arithmetic } from "../libraries/Arithmetic.sol";
      /**
       * @custom:upgradeable
       * @title ResourceMetering
       * @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
       *         updates automatically based on current demand.
       */
      abstract contract ResourceMetering is Initializable {
          /**
           * @notice Represents the various parameters that control the way in which resources are
           *         metered. Corresponds to the EIP-1559 resource metering system.
           *
           * @custom:field prevBaseFee   Base fee from the previous block(s).
           * @custom:field prevBoughtGas Amount of gas bought so far in the current block.
           * @custom:field prevBlockNum  Last block number that the base fee was updated.
           */
          struct ResourceParams {
              uint128 prevBaseFee;
              uint64 prevBoughtGas;
              uint64 prevBlockNum;
          }
          /**
           * @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
           *         market. These values should be set with care as it is possible to set them in
           *         a way that breaks the deposit gas market. The target resource limit is defined as
           *         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
           *         single word. There is additional space for additions in the future.
           *
           * @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
           *                                            can be purchased per block.
           * @custom:field elasticityMultiplier         Determines the target resource limit along with
           *                                            the resource limit.
           * @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
           * @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
           *                                            value.
           * @custom:field systemTxMaxGas               The amount of gas supplied to the system
           *                                            transaction. This should be set to the same number
           *                                            that the op-node sets as the gas limit for the
           *                                            system transaction.
           * @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
           *                                            value.
           */
          struct ResourceConfig {
              uint32 maxResourceLimit;
              uint8 elasticityMultiplier;
              uint8 baseFeeMaxChangeDenominator;
              uint32 minimumBaseFee;
              uint32 systemTxMaxGas;
              uint128 maximumBaseFee;
          }
          /**
           * @notice EIP-1559 style gas parameters.
           */
          ResourceParams public params;
          /**
           * @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
           */
          uint256[48] private __gap;
          /**
           * @notice Meters access to a function based an amount of a requested resource.
           *
           * @param _amount Amount of the resource requested.
           */
          modifier metered(uint64 _amount) {
              // Record initial gas amount so we can refund for it later.
              uint256 initialGas = gasleft();
              // Run the underlying function.
              _;
              // Run the metering function.
              _metered(_amount, initialGas);
          }
          /**
           * @notice An internal function that holds all of the logic for metering a resource.
           *
           * @param _amount     Amount of the resource requested.
           * @param _initialGas The amount of gas before any modifier execution.
           */
          function _metered(uint64 _amount, uint256 _initialGas) internal {
              // Update block number and base fee if necessary.
              uint256 blockDiff = block.number - params.prevBlockNum;
              ResourceConfig memory config = _resourceConfig();
              int256 targetResourceLimit = int256(uint256(config.maxResourceLimit)) /
                  int256(uint256(config.elasticityMultiplier));
              if (blockDiff > 0) {
                  // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                  // at which deposits can be created and therefore limit the potential for deposits to
                  // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                  int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                  int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta) /
                      (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                  // Update base fee by adding the base fee delta and clamp the resulting value between
                  // min and max.
                  int256 newBaseFee = Arithmetic.clamp({
                      _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                      _min: int256(uint256(config.minimumBaseFee)),
                      _max: int256(uint256(config.maximumBaseFee))
                  });
                  // If we skipped more than one block, we also need to account for every empty block.
                  // Empty block means there was no demand for deposits in that block, so we should
                  // reflect this lack of demand in the fee.
                  if (blockDiff > 1) {
                      // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                      // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                      // between min and max.
                      newBaseFee = Arithmetic.clamp({
                          _value: Arithmetic.cdexp({
                              _coefficient: newBaseFee,
                              _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                              _exponent: int256(blockDiff - 1)
                          }),
                          _min: int256(uint256(config.minimumBaseFee)),
                          _max: int256(uint256(config.maximumBaseFee))
                      });
                  }
                  // Update new base fee, reset bought gas, and update block number.
                  params.prevBaseFee = uint128(uint256(newBaseFee));
                  params.prevBoughtGas = 0;
                  params.prevBlockNum = uint64(block.number);
              }
              // Make sure we can actually buy the resource amount requested by the user.
              params.prevBoughtGas += _amount;
              require(
                  int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                  "ResourceMetering: cannot buy more gas than available gas limit"
              );
              // Determine the amount of ETH to be paid.
              uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
              // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
              // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
              // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
              // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
              // during any 1 day period in the last 5 years, so should be fine.
              uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
              // Give the user a refund based on the amount of gas they used to do all of the work up to
              // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
              // effectively like a dynamic stipend (with a minimum value).
              uint256 usedGas = _initialGas - gasleft();
              if (gasCost > usedGas) {
                  Burn.gas(gasCost - usedGas);
              }
          }
          /**
           * @notice Virtual function that returns the resource config. Contracts that inherit this
           *         contract must implement this function.
           *
           * @return ResourceConfig
           */
          function _resourceConfig() internal virtual returns (ResourceConfig memory);
          /**
           * @notice Sets initial resource parameter values. This function must either be called by the
           *         initializer function of an upgradeable child contract.
           */
          // solhint-disable-next-line func-name-mixedcase
          function __ResourceMetering_init() internal onlyInitializing {
              params = ResourceParams({
                  prevBaseFee: 1 gwei,
                  prevBoughtGas: 0,
                  prevBlockNum: uint64(block.number)
              });
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.15;
      import {
          OwnableUpgradeable
      } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
      import { Semver } from "../universal/Semver.sol";
      import { ResourceMetering } from "./ResourceMetering.sol";
      /**
       * @title SystemConfig
       * @notice The SystemConfig contract is used to manage configuration of an Optimism network. All
       *         configuration is stored on L1 and picked up by L2 as part of the derviation of the L2
       *         chain.
       */
      contract SystemConfig is OwnableUpgradeable, Semver {
          /**
           * @notice Enum representing different types of updates.
           *
           * @custom:value BATCHER              Represents an update to the batcher hash.
           * @custom:value GAS_CONFIG           Represents an update to txn fee config on L2.
           * @custom:value GAS_LIMIT            Represents an update to gas limit on L2.
           * @custom:value UNSAFE_BLOCK_SIGNER  Represents an update to the signer key for unsafe
           *                                    block distrubution.
           */
          enum UpdateType {
              BATCHER,
              GAS_CONFIG,
              GAS_LIMIT,
              UNSAFE_BLOCK_SIGNER
          }
          /**
           * @notice Version identifier, used for upgrades.
           */
          uint256 public constant VERSION = 0;
          /**
           * @notice Storage slot that the unsafe block signer is stored at. Storing it at this
           *         deterministic storage slot allows for decoupling the storage layout from the way
           *         that `solc` lays out storage. The `op-node` uses a storage proof to fetch this value.
           */
          bytes32 public constant UNSAFE_BLOCK_SIGNER_SLOT = keccak256("systemconfig.unsafeblocksigner");
          /**
           * @notice Fixed L2 gas overhead. Used as part of the L2 fee calculation.
           */
          uint256 public overhead;
          /**
           * @notice Dynamic L2 gas overhead. Used as part of the L2 fee calculation.
           */
          uint256 public scalar;
          /**
           * @notice Identifier for the batcher. For version 1 of this configuration, this is represented
           *         as an address left-padded with zeros to 32 bytes.
           */
          bytes32 public batcherHash;
          /**
           * @notice L2 block gas limit.
           */
          uint64 public gasLimit;
          /**
           * @notice The configuration for the deposit fee market. Used by the OptimismPortal
           *         to meter the cost of buying L2 gas on L1. Set as internal and wrapped with a getter
           *         so that the struct is returned instead of a tuple.
           */
          ResourceMetering.ResourceConfig internal _resourceConfig;
          /**
           * @notice Emitted when configuration is updated
           *
           * @param version    SystemConfig version.
           * @param updateType Type of update.
           * @param data       Encoded update data.
           */
          event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);
          /**
           * @custom:semver 1.3.0
           *
           * @param _owner             Initial owner of the contract.
           * @param _overhead          Initial overhead value.
           * @param _scalar            Initial scalar value.
           * @param _batcherHash       Initial batcher hash.
           * @param _gasLimit          Initial gas limit.
           * @param _unsafeBlockSigner Initial unsafe block signer address.
           * @param _config            Initial resource config.
           */
          constructor(
              address _owner,
              uint256 _overhead,
              uint256 _scalar,
              bytes32 _batcherHash,
              uint64 _gasLimit,
              address _unsafeBlockSigner,
              ResourceMetering.ResourceConfig memory _config
          ) Semver(1, 3, 0) {
              initialize({
                  _owner: _owner,
                  _overhead: _overhead,
                  _scalar: _scalar,
                  _batcherHash: _batcherHash,
                  _gasLimit: _gasLimit,
                  _unsafeBlockSigner: _unsafeBlockSigner,
                  _config: _config
              });
          }
          /**
           * @notice Initializer. The resource config must be set before the
           *         require check.
           *
           * @param _owner             Initial owner of the contract.
           * @param _overhead          Initial overhead value.
           * @param _scalar            Initial scalar value.
           * @param _batcherHash       Initial batcher hash.
           * @param _gasLimit          Initial gas limit.
           * @param _unsafeBlockSigner Initial unsafe block signer address.
           * @param _config            Initial ResourceConfig.
           */
          function initialize(
              address _owner,
              uint256 _overhead,
              uint256 _scalar,
              bytes32 _batcherHash,
              uint64 _gasLimit,
              address _unsafeBlockSigner,
              ResourceMetering.ResourceConfig memory _config
          ) public initializer {
              __Ownable_init();
              transferOwnership(_owner);
              overhead = _overhead;
              scalar = _scalar;
              batcherHash = _batcherHash;
              gasLimit = _gasLimit;
              _setUnsafeBlockSigner(_unsafeBlockSigner);
              _setResourceConfig(_config);
              require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
          }
          /**
           * @notice Returns the minimum L2 gas limit that can be safely set for the system to
           *         operate. The L2 gas limit must be larger than or equal to the amount of
           *         gas that is allocated for deposits per block plus the amount of gas that
           *         is allocated for the system transaction.
           *         This function is used to determine if changes to parameters are safe.
           *
           * @return uint64
           */
          function minimumGasLimit() public view returns (uint64) {
              return uint64(_resourceConfig.maxResourceLimit) + uint64(_resourceConfig.systemTxMaxGas);
          }
          /**
           * @notice High level getter for the unsafe block signer address. Unsafe blocks can be
           *         propagated across the p2p network if they are signed by the key corresponding to
           *         this address.
           *
           * @return Address of the unsafe block signer.
           */
          // solhint-disable-next-line ordering
          function unsafeBlockSigner() external view returns (address) {
              address addr;
              bytes32 slot = UNSAFE_BLOCK_SIGNER_SLOT;
              assembly {
                  addr := sload(slot)
              }
              return addr;
          }
          /**
           * @notice Updates the unsafe block signer address.
           *
           * @param _unsafeBlockSigner New unsafe block signer address.
           */
          function setUnsafeBlockSigner(address _unsafeBlockSigner) external onlyOwner {
              _setUnsafeBlockSigner(_unsafeBlockSigner);
              bytes memory data = abi.encode(_unsafeBlockSigner);
              emit ConfigUpdate(VERSION, UpdateType.UNSAFE_BLOCK_SIGNER, data);
          }
          /**
           * @notice Updates the batcher hash.
           *
           * @param _batcherHash New batcher hash.
           */
          function setBatcherHash(bytes32 _batcherHash) external onlyOwner {
              batcherHash = _batcherHash;
              bytes memory data = abi.encode(_batcherHash);
              emit ConfigUpdate(VERSION, UpdateType.BATCHER, data);
          }
          /**
           * @notice Updates gas config.
           *
           * @param _overhead New overhead value.
           * @param _scalar   New scalar value.
           */
          function setGasConfig(uint256 _overhead, uint256 _scalar) external onlyOwner {
              overhead = _overhead;
              scalar = _scalar;
              bytes memory data = abi.encode(_overhead, _scalar);
              emit ConfigUpdate(VERSION, UpdateType.GAS_CONFIG, data);
          }
          /**
           * @notice Updates the L2 gas limit.
           *
           * @param _gasLimit New gas limit.
           */
          function setGasLimit(uint64 _gasLimit) external onlyOwner {
              require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
              gasLimit = _gasLimit;
              bytes memory data = abi.encode(_gasLimit);
              emit ConfigUpdate(VERSION, UpdateType.GAS_LIMIT, data);
          }
          /**
           * @notice Low level setter for the unsafe block signer address. This function exists to
           *         deduplicate code around storing the unsafeBlockSigner address in storage.
           *
           * @param _unsafeBlockSigner New unsafeBlockSigner value.
           */
          function _setUnsafeBlockSigner(address _unsafeBlockSigner) internal {
              bytes32 slot = UNSAFE_BLOCK_SIGNER_SLOT;
              assembly {
                  sstore(slot, _unsafeBlockSigner)
              }
          }
          /**
           * @notice A getter for the resource config. Ensures that the struct is
           *         returned instead of a tuple.
           *
           * @return ResourceConfig
           */
          function resourceConfig() external view returns (ResourceMetering.ResourceConfig memory) {
              return _resourceConfig;
          }
          /**
           * @notice An external setter for the resource config. In the future, this
           *         method may emit an event that the `op-node` picks up for when the
           *         resource config is changed.
           *
           * @param _config The new resource config values.
           */
          function setResourceConfig(ResourceMetering.ResourceConfig memory _config) external onlyOwner {
              _setResourceConfig(_config);
          }
          /**
           * @notice An internal setter for the resource config. Ensures that the
           *         config is sane before storing it by checking for invariants.
           *
           * @param _config The new resource config.
           */
          function _setResourceConfig(ResourceMetering.ResourceConfig memory _config) internal {
              // Min base fee must be less than or equal to max base fee.
              require(
                  _config.minimumBaseFee <= _config.maximumBaseFee,
                  "SystemConfig: min base fee must be less than max base"
              );
              // Base fee change denominator must be greater than 1.
              require(
                  _config.baseFeeMaxChangeDenominator > 1,
                  "SystemConfig: denominator must be larger than 1"
              );
              // Max resource limit plus system tx gas must be less than or equal to the L2 gas limit.
              // The gas limit must be increased before these values can be increased.
              require(
                  _config.maxResourceLimit + _config.systemTxMaxGas <= gasLimit,
                  "SystemConfig: gas limit too low"
              );
              // Elasticity multiplier must be greater than 0.
              require(
                  _config.elasticityMultiplier > 0,
                  "SystemConfig: elasticity multiplier cannot be 0"
              );
              // No precision loss when computing target resource limit.
              require(
                  ((_config.maxResourceLimit / _config.elasticityMultiplier) *
                      _config.elasticityMultiplier) == _config.maxResourceLimit,
                  "SystemConfig: precision loss with target resource limit"
              );
              _resourceConfig = _config;
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.15;
      import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
      import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
      /**
       * @title Arithmetic
       * @notice Even more math than before.
       */
      library Arithmetic {
          /**
           * @notice Clamps a value between a minimum and maximum.
           *
           * @param _value The value to clamp.
           * @param _min   The minimum value.
           * @param _max   The maximum value.
           *
           * @return The clamped value.
           */
          function clamp(
              int256 _value,
              int256 _min,
              int256 _max
          ) internal pure returns (int256) {
              return SignedMath.min(SignedMath.max(_value, _min), _max);
          }
          /**
           * @notice (c)oefficient (d)enominator (exp)onentiation function.
           *         Returns the result of: c * (1 - 1/d)^exp.
           *
           * @param _coefficient Coefficient of the function.
           * @param _denominator Fractional denominator.
           * @param _exponent    Power function exponent.
           *
           * @return Result of c * (1 - 1/d)^exp.
           */
          function cdexp(
              int256 _coefficient,
              int256 _denominator,
              int256 _exponent
          ) internal pure returns (int256) {
              return
                  (_coefficient *
                      (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.15;
      /**
       * @title Burn
       * @notice Utilities for burning stuff.
       */
      library Burn {
          /**
           * Burns a given amount of ETH.
           *
           * @param _amount Amount of ETH to burn.
           */
          function eth(uint256 _amount) internal {
              new Burner{ value: _amount }();
          }
          /**
           * Burns a given amount of gas.
           *
           * @param _amount Amount of gas to burn.
           */
          function gas(uint256 _amount) internal view {
              uint256 i = 0;
              uint256 initialGas = gasleft();
              while (initialGas - gasleft() < _amount) {
                  ++i;
              }
          }
      }
      /**
       * @title Burner
       * @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
       *         the contract from the circulating supply. Self-destructing is the only way to remove ETH
       *         from the circulating supply.
       */
      contract Burner {
          constructor() payable {
              selfdestruct(payable(address(this)));
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import { Strings } from "@openzeppelin/contracts/utils/Strings.sol";
      /**
       * @title Semver
       * @notice Semver is a simple contract for managing contract versions.
       */
      contract Semver {
          /**
           * @notice Contract version number (major).
           */
          uint256 private immutable MAJOR_VERSION;
          /**
           * @notice Contract version number (minor).
           */
          uint256 private immutable MINOR_VERSION;
          /**
           * @notice Contract version number (patch).
           */
          uint256 private immutable PATCH_VERSION;
          /**
           * @param _major Version number (major).
           * @param _minor Version number (minor).
           * @param _patch Version number (patch).
           */
          constructor(
              uint256 _major,
              uint256 _minor,
              uint256 _patch
          ) {
              MAJOR_VERSION = _major;
              MINOR_VERSION = _minor;
              PATCH_VERSION = _patch;
          }
          /**
           * @notice Returns the full semver contract version.
           *
           * @return Semver contract version as a string.
           */
          function version() public view returns (string memory) {
              return
                  string(
                      abi.encodePacked(
                          Strings.toString(MAJOR_VERSION),
                          ".",
                          Strings.toString(MINOR_VERSION),
                          ".",
                          Strings.toString(PATCH_VERSION)
                      )
                  );
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
      pragma solidity ^0.8.2;
      import "../../utils/Address.sol";
      /**
       * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
       * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
       * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
       * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
       *
       * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
       * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
       * case an upgrade adds a module that needs to be initialized.
       *
       * For example:
       *
       * [.hljs-theme-light.nopadding]
       * ```
       * contract MyToken is ERC20Upgradeable {
       *     function initialize() initializer public {
       *         __ERC20_init("MyToken", "MTK");
       *     }
       * }
       * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
       *     function initializeV2() reinitializer(2) public {
       *         __ERC20Permit_init("MyToken");
       *     }
       * }
       * ```
       *
       * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
       * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
       *
       * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
       * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
       *
       * [CAUTION]
       * ====
       * Avoid leaving a contract uninitialized.
       *
       * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
       * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
       * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
       *
       * [.hljs-theme-light.nopadding]
       * ```
       * /// @custom:oz-upgrades-unsafe-allow constructor
       * constructor() {
       *     _disableInitializers();
       * }
       * ```
       * ====
       */
      abstract contract Initializable {
          /**
           * @dev Indicates that the contract has been initialized.
           * @custom:oz-retyped-from bool
           */
          uint8 private _initialized;
          /**
           * @dev Indicates that the contract is in the process of being initialized.
           */
          bool private _initializing;
          /**
           * @dev Triggered when the contract has been initialized or reinitialized.
           */
          event Initialized(uint8 version);
          /**
           * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
           * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
           */
          modifier initializer() {
              bool isTopLevelCall = !_initializing;
              require(
                  (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                  "Initializable: contract is already initialized"
              );
              _initialized = 1;
              if (isTopLevelCall) {
                  _initializing = true;
              }
              _;
              if (isTopLevelCall) {
                  _initializing = false;
                  emit Initialized(1);
              }
          }
          /**
           * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
           * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
           * used to initialize parent contracts.
           *
           * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
           * initialization step. This is essential to configure modules that are added through upgrades and that require
           * initialization.
           *
           * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
           * a contract, executing them in the right order is up to the developer or operator.
           */
          modifier reinitializer(uint8 version) {
              require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
              _initialized = version;
              _initializing = true;
              _;
              _initializing = false;
              emit Initialized(version);
          }
          /**
           * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
           * {initializer} and {reinitializer} modifiers, directly or indirectly.
           */
          modifier onlyInitializing() {
              require(_initializing, "Initializable: contract is not initializing");
              _;
          }
          /**
           * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
           * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
           * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
           * through proxies.
           */
          function _disableInitializers() internal virtual {
              require(!_initializing, "Initializable: contract is initializing");
              if (_initialized < type(uint8).max) {
                  _initialized = type(uint8).max;
                  emit Initialized(type(uint8).max);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
      pragma solidity ^0.8.1;
      /**
       * @dev Collection of functions related to the address type
       */
      library Address {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           * ====
           *
           * [IMPORTANT]
           * ====
           * You shouldn't rely on `isContract` to protect against flash loan attacks!
           *
           * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
           * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
           * constructor.
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // This method relies on extcodesize/address.code.length, which returns 0
              // for contracts in construction, since the code is only stored at the end
              // of the constructor execution.
              return account.code.length > 0;
          }
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              require(address(this).balance >= amount, "Address: insufficient balance");
              (bool success, ) = recipient.call{value: amount}("");
              require(success, "Address: unable to send value, recipient may have reverted");
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain `call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason, it is bubbled up by this
           * function (like regular Solidity function calls).
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCall(target, data, "Address: low-level call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
           * `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
          }
          /**
           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
           * with `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(address(this).balance >= value, "Address: insufficient balance for call");
              require(isContract(target), "Address: call to non-contract");
              (bool success, bytes memory returndata) = target.call{value: value}(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              return functionStaticCall(target, data, "Address: low-level static call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              require(isContract(target), "Address: static call to non-contract");
              (bool success, bytes memory returndata) = target.staticcall(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionDelegateCall(target, data, "Address: low-level delegate call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(isContract(target), "Address: delegate call to non-contract");
              (bool success, bytes memory returndata) = target.delegatecall(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
           * revert reason using the provided one.
           *
           * _Available since v4.3._
           */
          function verifyCallResult(
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal pure returns (bytes memory) {
              if (success) {
                  return returndata;
              } else {
                  // Look for revert reason and bubble it up if present
                  if (returndata.length > 0) {
                      // The easiest way to bubble the revert reason is using memory via assembly
                      /// @solidity memory-safe-assembly
                      assembly {
                          let returndata_size := mload(returndata)
                          revert(add(32, returndata), returndata_size)
                      }
                  } else {
                      revert(errorMessage);
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/Strings.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev String operations.
       */
      library Strings {
          bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";
          uint8 private constant _ADDRESS_LENGTH = 20;
          /**
           * @dev Converts a `uint256` to its ASCII `string` decimal representation.
           */
          function toString(uint256 value) internal pure returns (string memory) {
              // Inspired by OraclizeAPI's implementation - MIT licence
              // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol
              if (value == 0) {
                  return "0";
              }
              uint256 temp = value;
              uint256 digits;
              while (temp != 0) {
                  digits++;
                  temp /= 10;
              }
              bytes memory buffer = new bytes(digits);
              while (value != 0) {
                  digits -= 1;
                  buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
                  value /= 10;
              }
              return string(buffer);
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
           */
          function toHexString(uint256 value) internal pure returns (string memory) {
              if (value == 0) {
                  return "0x00";
              }
              uint256 temp = value;
              uint256 length = 0;
              while (temp != 0) {
                  length++;
                  temp >>= 8;
              }
              return toHexString(value, length);
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
           */
          function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
              bytes memory buffer = new bytes(2 * length + 2);
              buffer[0] = "0";
              buffer[1] = "x";
              for (uint256 i = 2 * length + 1; i > 1; --i) {
                  buffer[i] = _HEX_SYMBOLS[value & 0xf];
                  value >>= 4;
              }
              require(value == 0, "Strings: hex length insufficient");
              return string(buffer);
          }
          /**
           * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
           */
          function toHexString(address addr) internal pure returns (string memory) {
              return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Standard math utilities missing in the Solidity language.
       */
      library Math {
          enum Rounding {
              Down, // Toward negative infinity
              Up, // Toward infinity
              Zero // Toward zero
          }
          /**
           * @dev Returns the largest of two numbers.
           */
          function max(uint256 a, uint256 b) internal pure returns (uint256) {
              return a >= b ? a : b;
          }
          /**
           * @dev Returns the smallest of two numbers.
           */
          function min(uint256 a, uint256 b) internal pure returns (uint256) {
              return a < b ? a : b;
          }
          /**
           * @dev Returns the average of two numbers. The result is rounded towards
           * zero.
           */
          function average(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b) / 2 can overflow.
              return (a & b) + (a ^ b) / 2;
          }
          /**
           * @dev Returns the ceiling of the division of two numbers.
           *
           * This differs from standard division with `/` in that it rounds up instead
           * of rounding down.
           */
          function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b - 1) / b can overflow on addition, so we distribute.
              return a == 0 ? 0 : (a - 1) / b + 1;
          }
          /**
           * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
           * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
           * with further edits by Uniswap Labs also under MIT license.
           */
          function mulDiv(
              uint256 x,
              uint256 y,
              uint256 denominator
          ) internal pure returns (uint256 result) {
              unchecked {
                  // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                  // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                  // variables such that product = prod1 * 2^256 + prod0.
                  uint256 prod0; // Least significant 256 bits of the product
                  uint256 prod1; // Most significant 256 bits of the product
                  assembly {
                      let mm := mulmod(x, y, not(0))
                      prod0 := mul(x, y)
                      prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                  }
                  // Handle non-overflow cases, 256 by 256 division.
                  if (prod1 == 0) {
                      return prod0 / denominator;
                  }
                  // Make sure the result is less than 2^256. Also prevents denominator == 0.
                  require(denominator > prod1);
                  ///////////////////////////////////////////////
                  // 512 by 256 division.
                  ///////////////////////////////////////////////
                  // Make division exact by subtracting the remainder from [prod1 prod0].
                  uint256 remainder;
                  assembly {
                      // Compute remainder using mulmod.
                      remainder := mulmod(x, y, denominator)
                      // Subtract 256 bit number from 512 bit number.
                      prod1 := sub(prod1, gt(remainder, prod0))
                      prod0 := sub(prod0, remainder)
                  }
                  // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                  // See https://cs.stackexchange.com/q/138556/92363.
                  // Does not overflow because the denominator cannot be zero at this stage in the function.
                  uint256 twos = denominator & (~denominator + 1);
                  assembly {
                      // Divide denominator by twos.
                      denominator := div(denominator, twos)
                      // Divide [prod1 prod0] by twos.
                      prod0 := div(prod0, twos)
                      // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                      twos := add(div(sub(0, twos), twos), 1)
                  }
                  // Shift in bits from prod1 into prod0.
                  prod0 |= prod1 * twos;
                  // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                  // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                  // four bits. That is, denominator * inv = 1 mod 2^4.
                  uint256 inverse = (3 * denominator) ^ 2;
                  // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                  // in modular arithmetic, doubling the correct bits in each step.
                  inverse *= 2 - denominator * inverse; // inverse mod 2^8
                  inverse *= 2 - denominator * inverse; // inverse mod 2^16
                  inverse *= 2 - denominator * inverse; // inverse mod 2^32
                  inverse *= 2 - denominator * inverse; // inverse mod 2^64
                  inverse *= 2 - denominator * inverse; // inverse mod 2^128
                  inverse *= 2 - denominator * inverse; // inverse mod 2^256
                  // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                  // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                  // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                  // is no longer required.
                  result = prod0 * inverse;
                  return result;
              }
          }
          /**
           * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
           */
          function mulDiv(
              uint256 x,
              uint256 y,
              uint256 denominator,
              Rounding rounding
          ) internal pure returns (uint256) {
              uint256 result = mulDiv(x, y, denominator);
              if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                  result += 1;
              }
              return result;
          }
          /**
           * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
           *
           * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
           */
          function sqrt(uint256 a) internal pure returns (uint256) {
              if (a == 0) {
                  return 0;
              }
              // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
              // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
              // `msb(a) <= a < 2*msb(a)`.
              // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
              // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
              // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
              // good first aproximation of `sqrt(a)` with at least 1 correct bit.
              uint256 result = 1;
              uint256 x = a;
              if (x >> 128 > 0) {
                  x >>= 128;
                  result <<= 64;
              }
              if (x >> 64 > 0) {
                  x >>= 64;
                  result <<= 32;
              }
              if (x >> 32 > 0) {
                  x >>= 32;
                  result <<= 16;
              }
              if (x >> 16 > 0) {
                  x >>= 16;
                  result <<= 8;
              }
              if (x >> 8 > 0) {
                  x >>= 8;
                  result <<= 4;
              }
              if (x >> 4 > 0) {
                  x >>= 4;
                  result <<= 2;
              }
              if (x >> 2 > 0) {
                  result <<= 1;
              }
              // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
              // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
              // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
              // into the expected uint128 result.
              unchecked {
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  return min(result, a / result);
              }
          }
          /**
           * @notice Calculates sqrt(a), following the selected rounding direction.
           */
          function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
              uint256 result = sqrt(a);
              if (rounding == Rounding.Up && result * result < a) {
                  result += 1;
              }
              return result;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Standard signed math utilities missing in the Solidity language.
       */
      library SignedMath {
          /**
           * @dev Returns the largest of two signed numbers.
           */
          function max(int256 a, int256 b) internal pure returns (int256) {
              return a >= b ? a : b;
          }
          /**
           * @dev Returns the smallest of two signed numbers.
           */
          function min(int256 a, int256 b) internal pure returns (int256) {
              return a < b ? a : b;
          }
          /**
           * @dev Returns the average of two signed numbers without overflow.
           * The result is rounded towards zero.
           */
          function average(int256 a, int256 b) internal pure returns (int256) {
              // Formula from the book "Hacker's Delight"
              int256 x = (a & b) + ((a ^ b) >> 1);
              return x + (int256(uint256(x) >> 255) & (a ^ b));
          }
          /**
           * @dev Returns the absolute unsigned value of a signed value.
           */
          function abs(int256 n) internal pure returns (uint256) {
              unchecked {
                  // must be unchecked in order to support `n = type(int256).min`
                  return uint256(n >= 0 ? n : -n);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
      pragma solidity ^0.8.0;
      import "../utils/ContextUpgradeable.sol";
      import "../proxy/utils/Initializable.sol";
      /**
       * @dev Contract module which provides a basic access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * By default, the owner account will be the one that deploys the contract. This
       * can later be changed with {transferOwnership}.
       *
       * This module is used through inheritance. It will make available the modifier
       * `onlyOwner`, which can be applied to your functions to restrict their use to
       * the owner.
       */
      abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
          address private _owner;
          event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
          /**
           * @dev Initializes the contract setting the deployer as the initial owner.
           */
          function __Ownable_init() internal onlyInitializing {
              __Ownable_init_unchained();
          }
          function __Ownable_init_unchained() internal onlyInitializing {
              _transferOwnership(_msgSender());
          }
          /**
           * @dev Throws if called by any account other than the owner.
           */
          modifier onlyOwner() {
              _checkOwner();
              _;
          }
          /**
           * @dev Returns the address of the current owner.
           */
          function owner() public view virtual returns (address) {
              return _owner;
          }
          /**
           * @dev Throws if the sender is not the owner.
           */
          function _checkOwner() internal view virtual {
              require(owner() == _msgSender(), "Ownable: caller is not the owner");
          }
          /**
           * @dev Leaves the contract without owner. It will not be possible to call
           * `onlyOwner` functions anymore. Can only be called by the current owner.
           *
           * NOTE: Renouncing ownership will leave the contract without an owner,
           * thereby removing any functionality that is only available to the owner.
           */
          function renounceOwnership() public virtual onlyOwner {
              _transferOwnership(address(0));
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual onlyOwner {
              require(newOwner != address(0), "Ownable: new owner is the zero address");
              _transferOwnership(newOwner);
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Internal function without access restriction.
           */
          function _transferOwnership(address newOwner) internal virtual {
              address oldOwner = _owner;
              _owner = newOwner;
              emit OwnershipTransferred(oldOwner, newOwner);
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[49] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
      pragma solidity ^0.8.2;
      import "../../utils/AddressUpgradeable.sol";
      /**
       * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
       * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
       * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
       * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
       *
       * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
       * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
       * case an upgrade adds a module that needs to be initialized.
       *
       * For example:
       *
       * [.hljs-theme-light.nopadding]
       * ```
       * contract MyToken is ERC20Upgradeable {
       *     function initialize() initializer public {
       *         __ERC20_init("MyToken", "MTK");
       *     }
       * }
       * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
       *     function initializeV2() reinitializer(2) public {
       *         __ERC20Permit_init("MyToken");
       *     }
       * }
       * ```
       *
       * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
       * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
       *
       * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
       * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
       *
       * [CAUTION]
       * ====
       * Avoid leaving a contract uninitialized.
       *
       * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
       * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
       * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
       *
       * [.hljs-theme-light.nopadding]
       * ```
       * /// @custom:oz-upgrades-unsafe-allow constructor
       * constructor() {
       *     _disableInitializers();
       * }
       * ```
       * ====
       */
      abstract contract Initializable {
          /**
           * @dev Indicates that the contract has been initialized.
           * @custom:oz-retyped-from bool
           */
          uint8 private _initialized;
          /**
           * @dev Indicates that the contract is in the process of being initialized.
           */
          bool private _initializing;
          /**
           * @dev Triggered when the contract has been initialized or reinitialized.
           */
          event Initialized(uint8 version);
          /**
           * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
           * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
           */
          modifier initializer() {
              bool isTopLevelCall = !_initializing;
              require(
                  (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                  "Initializable: contract is already initialized"
              );
              _initialized = 1;
              if (isTopLevelCall) {
                  _initializing = true;
              }
              _;
              if (isTopLevelCall) {
                  _initializing = false;
                  emit Initialized(1);
              }
          }
          /**
           * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
           * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
           * used to initialize parent contracts.
           *
           * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
           * initialization step. This is essential to configure modules that are added through upgrades and that require
           * initialization.
           *
           * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
           * a contract, executing them in the right order is up to the developer or operator.
           */
          modifier reinitializer(uint8 version) {
              require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
              _initialized = version;
              _initializing = true;
              _;
              _initializing = false;
              emit Initialized(version);
          }
          /**
           * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
           * {initializer} and {reinitializer} modifiers, directly or indirectly.
           */
          modifier onlyInitializing() {
              require(_initializing, "Initializable: contract is not initializing");
              _;
          }
          /**
           * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
           * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
           * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
           * through proxies.
           */
          function _disableInitializers() internal virtual {
              require(!_initializing, "Initializable: contract is initializing");
              if (_initialized < type(uint8).max) {
                  _initialized = type(uint8).max;
                  emit Initialized(type(uint8).max);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
      pragma solidity ^0.8.1;
      /**
       * @dev Collection of functions related to the address type
       */
      library AddressUpgradeable {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           * ====
           *
           * [IMPORTANT]
           * ====
           * You shouldn't rely on `isContract` to protect against flash loan attacks!
           *
           * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
           * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
           * constructor.
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // This method relies on extcodesize/address.code.length, which returns 0
              // for contracts in construction, since the code is only stored at the end
              // of the constructor execution.
              return account.code.length > 0;
          }
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              require(address(this).balance >= amount, "Address: insufficient balance");
              (bool success, ) = recipient.call{value: amount}("");
              require(success, "Address: unable to send value, recipient may have reverted");
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain `call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason, it is bubbled up by this
           * function (like regular Solidity function calls).
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCall(target, data, "Address: low-level call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
           * `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
          }
          /**
           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
           * with `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(address(this).balance >= value, "Address: insufficient balance for call");
              require(isContract(target), "Address: call to non-contract");
              (bool success, bytes memory returndata) = target.call{value: value}(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              return functionStaticCall(target, data, "Address: low-level static call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              require(isContract(target), "Address: static call to non-contract");
              (bool success, bytes memory returndata) = target.staticcall(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
           * revert reason using the provided one.
           *
           * _Available since v4.3._
           */
          function verifyCallResult(
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal pure returns (bytes memory) {
              if (success) {
                  return returndata;
              } else {
                  // Look for revert reason and bubble it up if present
                  if (returndata.length > 0) {
                      // The easiest way to bubble the revert reason is using memory via assembly
                      /// @solidity memory-safe-assembly
                      assembly {
                          let returndata_size := mload(returndata)
                          revert(add(32, returndata), returndata_size)
                      }
                  } else {
                      revert(errorMessage);
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
      pragma solidity ^0.8.0;
      import "../proxy/utils/Initializable.sol";
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract ContextUpgradeable is Initializable {
          function __Context_init() internal onlyInitializing {
          }
          function __Context_init_unchained() internal onlyInitializing {
          }
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
          /**
           * @dev This empty reserved space is put in place to allow future versions to add new
           * variables without shifting down storage in the inheritance chain.
           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
           */
          uint256[50] private __gap;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity >=0.8.0;
      /// @notice Arithmetic library with operations for fixed-point numbers.
      /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
      library FixedPointMathLib {
          /*//////////////////////////////////////////////////////////////
                          SIMPLIFIED FIXED POINT OPERATIONS
          //////////////////////////////////////////////////////////////*/
          uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
          function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
              return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
          }
          function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
              return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
          }
          function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
              return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
          }
          function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
              return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
          }
          function powWad(int256 x, int256 y) internal pure returns (int256) {
              // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
              return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
          }
          function expWad(int256 x) internal pure returns (int256 r) {
              unchecked {
                  // When the result is < 0.5 we return zero. This happens when
                  // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                  if (x <= -42139678854452767551) return 0;
                  // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                  // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                  if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                  // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                  // for more intermediate precision and a binary basis. This base conversion
                  // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                  x = (x << 78) / 5**18;
                  // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                  // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                  // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                  int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                  x = x - k * 54916777467707473351141471128;
                  // k is in the range [-61, 195].
                  // Evaluate using a (6, 7)-term rational approximation.
                  // p is made monic, we'll multiply by a scale factor later.
                  int256 y = x + 1346386616545796478920950773328;
                  y = ((y * x) >> 96) + 57155421227552351082224309758442;
                  int256 p = y + x - 94201549194550492254356042504812;
                  p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                  p = p * x + (4385272521454847904659076985693276 << 96);
                  // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                  int256 q = x - 2855989394907223263936484059900;
                  q = ((q * x) >> 96) + 50020603652535783019961831881945;
                  q = ((q * x) >> 96) - 533845033583426703283633433725380;
                  q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                  q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                  q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                  assembly {
                      // Div in assembly because solidity adds a zero check despite the unchecked.
                      // The q polynomial won't have zeros in the domain as all its roots are complex.
                      // No scaling is necessary because p is already 2**96 too large.
                      r := sdiv(p, q)
                  }
                  // r should be in the range (0.09, 0.25) * 2**96.
                  // We now need to multiply r by:
                  // * the scale factor s = ~6.031367120.
                  // * the 2**k factor from the range reduction.
                  // * the 1e18 / 2**96 factor for base conversion.
                  // We do this all at once, with an intermediate result in 2**213
                  // basis, so the final right shift is always by a positive amount.
                  r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
              }
          }
          function lnWad(int256 x) internal pure returns (int256 r) {
              unchecked {
                  require(x > 0, "UNDEFINED");
                  // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                  // We do this by multiplying by 2**96 / 10**18. But since
                  // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                  // and add ln(2**96 / 10**18) at the end.
                  // Reduce range of x to (1, 2) * 2**96
                  // ln(2^k * x) = k * ln(2) + ln(x)
                  int256 k = int256(log2(uint256(x))) - 96;
                  x <<= uint256(159 - k);
                  x = int256(uint256(x) >> 159);
                  // Evaluate using a (8, 8)-term rational approximation.
                  // p is made monic, we will multiply by a scale factor later.
                  int256 p = x + 3273285459638523848632254066296;
                  p = ((p * x) >> 96) + 24828157081833163892658089445524;
                  p = ((p * x) >> 96) + 43456485725739037958740375743393;
                  p = ((p * x) >> 96) - 11111509109440967052023855526967;
                  p = ((p * x) >> 96) - 45023709667254063763336534515857;
                  p = ((p * x) >> 96) - 14706773417378608786704636184526;
                  p = p * x - (795164235651350426258249787498 << 96);
                  // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                  // q is monic by convention.
                  int256 q = x + 5573035233440673466300451813936;
                  q = ((q * x) >> 96) + 71694874799317883764090561454958;
                  q = ((q * x) >> 96) + 283447036172924575727196451306956;
                  q = ((q * x) >> 96) + 401686690394027663651624208769553;
                  q = ((q * x) >> 96) + 204048457590392012362485061816622;
                  q = ((q * x) >> 96) + 31853899698501571402653359427138;
                  q = ((q * x) >> 96) + 909429971244387300277376558375;
                  assembly {
                      // Div in assembly because solidity adds a zero check despite the unchecked.
                      // The q polynomial is known not to have zeros in the domain.
                      // No scaling required because p is already 2**96 too large.
                      r := sdiv(p, q)
                  }
                  // r is in the range (0, 0.125) * 2**96
                  // Finalization, we need to:
                  // * multiply by the scale factor s = 5.549…
                  // * add ln(2**96 / 10**18)
                  // * add k * ln(2)
                  // * multiply by 10**18 / 2**96 = 5**18 >> 78
                  // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                  r *= 1677202110996718588342820967067443963516166;
                  // add ln(2) * k * 5e18 * 2**192
                  r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                  // add ln(2**96 / 10**18) * 5e18 * 2**192
                  r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                  // base conversion: mul 2**18 / 2**192
                  r >>= 174;
              }
          }
          /*//////////////////////////////////////////////////////////////
                          LOW LEVEL FIXED POINT OPERATIONS
          //////////////////////////////////////////////////////////////*/
          function mulDivDown(
              uint256 x,
              uint256 y,
              uint256 denominator
          ) internal pure returns (uint256 z) {
              assembly {
                  // Store x * y in z for now.
                  z := mul(x, y)
                  // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                  if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                      revert(0, 0)
                  }
                  // Divide z by the denominator.
                  z := div(z, denominator)
              }
          }
          function mulDivUp(
              uint256 x,
              uint256 y,
              uint256 denominator
          ) internal pure returns (uint256 z) {
              assembly {
                  // Store x * y in z for now.
                  z := mul(x, y)
                  // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                  if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                      revert(0, 0)
                  }
                  // First, divide z - 1 by the denominator and add 1.
                  // We allow z - 1 to underflow if z is 0, because we multiply the
                  // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                  z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
              }
          }
          function rpow(
              uint256 x,
              uint256 n,
              uint256 scalar
          ) internal pure returns (uint256 z) {
              assembly {
                  switch x
                  case 0 {
                      switch n
                      case 0 {
                          // 0 ** 0 = 1
                          z := scalar
                      }
                      default {
                          // 0 ** n = 0
                          z := 0
                      }
                  }
                  default {
                      switch mod(n, 2)
                      case 0 {
                          // If n is even, store scalar in z for now.
                          z := scalar
                      }
                      default {
                          // If n is odd, store x in z for now.
                          z := x
                      }
                      // Shifting right by 1 is like dividing by 2.
                      let half := shr(1, scalar)
                      for {
                          // Shift n right by 1 before looping to halve it.
                          n := shr(1, n)
                      } n {
                          // Shift n right by 1 each iteration to halve it.
                          n := shr(1, n)
                      } {
                          // Revert immediately if x ** 2 would overflow.
                          // Equivalent to iszero(eq(div(xx, x), x)) here.
                          if shr(128, x) {
                              revert(0, 0)
                          }
                          // Store x squared.
                          let xx := mul(x, x)
                          // Round to the nearest number.
                          let xxRound := add(xx, half)
                          // Revert if xx + half overflowed.
                          if lt(xxRound, xx) {
                              revert(0, 0)
                          }
                          // Set x to scaled xxRound.
                          x := div(xxRound, scalar)
                          // If n is even:
                          if mod(n, 2) {
                              // Compute z * x.
                              let zx := mul(z, x)
                              // If z * x overflowed:
                              if iszero(eq(div(zx, x), z)) {
                                  // Revert if x is non-zero.
                                  if iszero(iszero(x)) {
                                      revert(0, 0)
                                  }
                              }
                              // Round to the nearest number.
                              let zxRound := add(zx, half)
                              // Revert if zx + half overflowed.
                              if lt(zxRound, zx) {
                                  revert(0, 0)
                              }
                              // Return properly scaled zxRound.
                              z := div(zxRound, scalar)
                          }
                      }
                  }
              }
          }
          /*//////////////////////////////////////////////////////////////
                              GENERAL NUMBER UTILITIES
          //////////////////////////////////////////////////////////////*/
          function sqrt(uint256 x) internal pure returns (uint256 z) {
              assembly {
                  let y := x // We start y at x, which will help us make our initial estimate.
                  z := 181 // The "correct" value is 1, but this saves a multiplication later.
                  // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                  // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                  // We check y >= 2^(k + 8) but shift right by k bits
                  // each branch to ensure that if x >= 256, then y >= 256.
                  if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                      y := shr(128, y)
                      z := shl(64, z)
                  }
                  if iszero(lt(y, 0x1000000000000000000)) {
                      y := shr(64, y)
                      z := shl(32, z)
                  }
                  if iszero(lt(y, 0x10000000000)) {
                      y := shr(32, y)
                      z := shl(16, z)
                  }
                  if iszero(lt(y, 0x1000000)) {
                      y := shr(16, y)
                      z := shl(8, z)
                  }
                  // Goal was to get z*z*y within a small factor of x. More iterations could
                  // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                  // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                  // That's not possible if x < 256 but we can just verify those cases exhaustively.
                  // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                  // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                  // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                  // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                  // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                  // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                  // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                  // There is no overflow risk here since y < 2^136 after the first branch above.
                  z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                  // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  z := shr(1, add(z, div(x, z)))
                  // If x+1 is a perfect square, the Babylonian method cycles between
                  // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                  // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                  // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                  // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                  z := sub(z, lt(div(x, z), z))
              }
          }
          function log2(uint256 x) internal pure returns (uint256 r) {
              require(x > 0, "UNDEFINED");
              assembly {
                  r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                  r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                  r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                  r := or(r, shl(4, lt(0xffff, shr(r, x))))
                  r := or(r, shl(3, lt(0xff, shr(r, x))))
                  r := or(r, shl(2, lt(0xf, shr(r, x))))
                  r := or(r, shl(1, lt(0x3, shr(r, x))))
                  r := or(r, lt(0x1, shr(r, x)))
              }
          }
      }