Transaction Hash:
Block:
19672190 at Apr-17-2024 02:24:47 AM +UTC
Transaction Fee:
0.000279276630551798 ETH
$0.71
Gas Used:
27,322 Gas / 10.221675959 Gwei
Emitted Events:
5 |
0xfd2087e30a9e7e9de6c4cc68e6e849c11f8724a7.0x3d0ce9bfc3ed7d6862dbb28b2dea94561fe714a1b4d019aa8af39730d1ad7c3d( 0x3d0ce9bfc3ed7d6862dbb28b2dea94561fe714a1b4d019aa8af39730d1ad7c3d, 0x000000000000000000000000a7efae728d2936e78bda97dc267687568dd593f3, 000000000000000000000000000000000000000000000000006c5b96a1a64000 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x9d4C3166...903a1d6Fc
Miner
| (Stader Labs: Permissioned Socializing Pool) | 58.388360582042496016 Eth | 58.388415226042496016 Eth | 0.000054644 | |
0xA7EFAe72...68dD593f3 | (OKX 3) |
66,934.997790149263844041 Eth
Nonce: 2107608
|
66,934.967010872633292243 Eth
Nonce: 2107609
| 0.030779276630551798 | |
0xfD2087E3...11f8724A7 | 0.000671919444967364 Eth | 0.031171919444967364 Eth | 0.0305 |
Execution Trace
ETH 0.0305
0xfd2087e30a9e7e9de6c4cc68e6e849c11f8724a7.CALL( )
- ETH 0.0305
SmartAccountV2.DELEGATECALL( )
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) { // 32 is the length in bytes of hash, // enforced by the type signature above /// @solidity memory-safe-assembly assembly { mstore(0x00, "\\x19Ethereum Signed Message:\ 32") mstore(0x1c, hash) message := keccak256(0x00, 0x3c) } } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\ ", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, "\\x19\\x01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) data := keccak256(ptr, 0x42) } } /** * @dev Returns an Ethereum Signed Data with intended validator, created from a * `validator` and `data` according to the version 0 of EIP-191. * * See {recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\\x19\\x00", validator, data)); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; import "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toString(int256 value) internal pure returns (string memory) { return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return keccak256(bytes(a)) == keccak256(bytes(b)); } } // SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; /* solhint-disable avoid-low-level-calls */ /* solhint-disable no-empty-blocks */ import "../interfaces/IAccount.sol"; import "../interfaces/IEntryPoint.sol"; import "./Helpers.sol"; /** * Basic account implementation. * this contract provides the basic logic for implementing the IAccount interface - validateUserOp * specific account implementation should inherit it and provide the account-specific logic */ abstract contract BaseAccount is IAccount { using UserOperationLib for UserOperation; //return value in case of signature failure, with no time-range. // equivalent to _packValidationData(true,0,0); uint256 constant internal SIG_VALIDATION_FAILED = 1; /** * Return the account nonce. * This method returns the next sequential nonce. * For a nonce of a specific key, use `entrypoint.getNonce(account, key)` */ function getNonce() public view virtual returns (uint256) { return entryPoint().getNonce(address(this), 0); } /** * return the entryPoint used by this account. * subclass should return the current entryPoint used by this account. */ function entryPoint() public view virtual returns (IEntryPoint); /** * Validate user's signature and nonce. * subclass doesn't need to override this method. Instead, it should override the specific internal validation methods. */ function validateUserOp(UserOperation calldata userOp, bytes32 userOpHash, uint256 missingAccountFunds) external override virtual returns (uint256 validationData) { _requireFromEntryPoint(); validationData = _validateSignature(userOp, userOpHash); _validateNonce(userOp.nonce); _payPrefund(missingAccountFunds); } /** * ensure the request comes from the known entrypoint. */ function _requireFromEntryPoint() internal virtual view { require(msg.sender == address(entryPoint()), "account: not from EntryPoint"); } /** * validate the signature is valid for this message. * @param userOp validate the userOp.signature field * @param userOpHash convenient field: the hash of the request, to check the signature against * (also hashes the entrypoint and chain id) * @return validationData signature and time-range of this operation * <20-byte> sigAuthorizer - 0 for valid signature, 1 to mark signature failure, * otherwise, an address of an "authorizer" contract. * <6-byte> validUntil - last timestamp this operation is valid. 0 for "indefinite" * <6-byte> validAfter - first timestamp this operation is valid * If the account doesn't use time-range, it is enough to return SIG_VALIDATION_FAILED value (1) for signature failure. * Note that the validation code cannot use block.timestamp (or block.number) directly. */ function _validateSignature(UserOperation calldata userOp, bytes32 userOpHash) internal virtual returns (uint256 validationData); /** * Validate the nonce of the UserOperation. * This method may validate the nonce requirement of this account. * e.g. * To limit the nonce to use sequenced UserOps only (no "out of order" UserOps): * `require(nonce < type(uint64).max)` * For a hypothetical account that *requires* the nonce to be out-of-order: * `require(nonce & type(uint64).max == 0)` * * The actual nonce uniqueness is managed by the EntryPoint, and thus no other * action is needed by the account itself. * * @param nonce to validate * * solhint-disable-next-line no-empty-blocks */ function _validateNonce(uint256 nonce) internal view virtual { } /** * sends to the entrypoint (msg.sender) the missing funds for this transaction. * subclass MAY override this method for better funds management * (e.g. send to the entryPoint more than the minimum required, so that in future transactions * it will not be required to send again) * @param missingAccountFunds the minimum value this method should send the entrypoint. * this value MAY be zero, in case there is enough deposit, or the userOp has a paymaster. */ function _payPrefund(uint256 missingAccountFunds) internal virtual { if (missingAccountFunds != 0) { (bool success,) = payable(msg.sender).call{value : missingAccountFunds, gas : type(uint256).max}(""); (success); //ignore failure (its EntryPoint's job to verify, not account.) } } } // SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; /* solhint-disable no-inline-assembly */ /** * returned data from validateUserOp. * validateUserOp returns a uint256, with is created by `_packedValidationData` and parsed by `_parseValidationData` * @param aggregator - address(0) - the account validated the signature by itself. * address(1) - the account failed to validate the signature. * otherwise - this is an address of a signature aggregator that must be used to validate the signature. * @param validAfter - this UserOp is valid only after this timestamp. * @param validaUntil - this UserOp is valid only up to this timestamp. */ struct ValidationData { address aggregator; uint48 validAfter; uint48 validUntil; } //extract sigFailed, validAfter, validUntil. // also convert zero validUntil to type(uint48).max function _parseValidationData(uint validationData) pure returns (ValidationData memory data) { address aggregator = address(uint160(validationData)); uint48 validUntil = uint48(validationData >> 160); if (validUntil == 0) { validUntil = type(uint48).max; } uint48 validAfter = uint48(validationData >> (48 + 160)); return ValidationData(aggregator, validAfter, validUntil); } // intersect account and paymaster ranges. function _intersectTimeRange(uint256 validationData, uint256 paymasterValidationData) pure returns (ValidationData memory) { ValidationData memory accountValidationData = _parseValidationData(validationData); ValidationData memory pmValidationData = _parseValidationData(paymasterValidationData); address aggregator = accountValidationData.aggregator; if (aggregator == address(0)) { aggregator = pmValidationData.aggregator; } uint48 validAfter = accountValidationData.validAfter; uint48 validUntil = accountValidationData.validUntil; uint48 pmValidAfter = pmValidationData.validAfter; uint48 pmValidUntil = pmValidationData.validUntil; if (validAfter < pmValidAfter) validAfter = pmValidAfter; if (validUntil > pmValidUntil) validUntil = pmValidUntil; return ValidationData(aggregator, validAfter, validUntil); } /** * helper to pack the return value for validateUserOp * @param data - the ValidationData to pack */ function _packValidationData(ValidationData memory data) pure returns (uint256) { return uint160(data.aggregator) | (uint256(data.validUntil) << 160) | (uint256(data.validAfter) << (160 + 48)); } /** * helper to pack the return value for validateUserOp, when not using an aggregator * @param sigFailed - true for signature failure, false for success * @param validUntil last timestamp this UserOperation is valid (or zero for infinite) * @param validAfter first timestamp this UserOperation is valid */ function _packValidationData(bool sigFailed, uint48 validUntil, uint48 validAfter) pure returns (uint256) { return (sigFailed ? 1 : 0) | (uint256(validUntil) << 160) | (uint256(validAfter) << (160 + 48)); } /** * keccak function over calldata. * @dev copy calldata into memory, do keccak and drop allocated memory. Strangely, this is more efficient than letting solidity do it. */ function calldataKeccak(bytes calldata data) pure returns (bytes32 ret) { assembly { let mem := mload(0x40) let len := data.length calldatacopy(mem, data.offset, len) ret := keccak256(mem, len) } } // SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; import "./UserOperation.sol"; interface IAccount { /** * Validate user's signature and nonce * the entryPoint will make the call to the recipient only if this validation call returns successfully. * signature failure should be reported by returning SIG_VALIDATION_FAILED (1). * This allows making a "simulation call" without a valid signature * Other failures (e.g. nonce mismatch, or invalid signature format) should still revert to signal failure. * * @dev Must validate caller is the entryPoint. * Must validate the signature and nonce * @param userOp the operation that is about to be executed. * @param userOpHash hash of the user's request data. can be used as the basis for signature. * @param missingAccountFunds missing funds on the account's deposit in the entrypoint. * This is the minimum amount to transfer to the sender(entryPoint) to be able to make the call. * The excess is left as a deposit in the entrypoint, for future calls. * can be withdrawn anytime using "entryPoint.withdrawTo()" * In case there is a paymaster in the request (or the current deposit is high enough), this value will be zero. * @return validationData packaged ValidationData structure. use `_packValidationData` and `_unpackValidationData` to encode and decode * <20-byte> sigAuthorizer - 0 for valid signature, 1 to mark signature failure, * otherwise, an address of an "authorizer" contract. * <6-byte> validUntil - last timestamp this operation is valid. 0 for "indefinite" * <6-byte> validAfter - first timestamp this operation is valid * If an account doesn't use time-range, it is enough to return SIG_VALIDATION_FAILED value (1) for signature failure. * Note that the validation code cannot use block.timestamp (or block.number) directly. */ function validateUserOp(UserOperation calldata userOp, bytes32 userOpHash, uint256 missingAccountFunds) external returns (uint256 validationData); } // SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; import "./UserOperation.sol"; /** * Aggregated Signatures validator. */ interface IAggregator { /** * validate aggregated signature. * revert if the aggregated signature does not match the given list of operations. */ function validateSignatures(UserOperation[] calldata userOps, bytes calldata signature) external view; /** * validate signature of a single userOp * This method is should be called by bundler after EntryPoint.simulateValidation() returns (reverts) with ValidationResultWithAggregation * First it validates the signature over the userOp. Then it returns data to be used when creating the handleOps. * @param userOp the userOperation received from the user. * @return sigForUserOp the value to put into the signature field of the userOp when calling handleOps. * (usually empty, unless account and aggregator support some kind of "multisig" */ function validateUserOpSignature(UserOperation calldata userOp) external view returns (bytes memory sigForUserOp); /** * aggregate multiple signatures into a single value. * This method is called off-chain to calculate the signature to pass with handleOps() * bundler MAY use optimized custom code perform this aggregation * @param userOps array of UserOperations to collect the signatures from. * @return aggregatedSignature the aggregated signature */ function aggregateSignatures(UserOperation[] calldata userOps) external view returns (bytes memory aggregatedSignature); } /** ** Account-Abstraction (EIP-4337) singleton EntryPoint implementation. ** Only one instance required on each chain. **/ // SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; /* solhint-disable avoid-low-level-calls */ /* solhint-disable no-inline-assembly */ /* solhint-disable reason-string */ import "./UserOperation.sol"; import "./IStakeManager.sol"; import "./IAggregator.sol"; import "./INonceManager.sol"; interface IEntryPoint is IStakeManager, INonceManager { /*** * An event emitted after each successful request * @param userOpHash - unique identifier for the request (hash its entire content, except signature). * @param sender - the account that generates this request. * @param paymaster - if non-null, the paymaster that pays for this request. * @param nonce - the nonce value from the request. * @param success - true if the sender transaction succeeded, false if reverted. * @param actualGasCost - actual amount paid (by account or paymaster) for this UserOperation. * @param actualGasUsed - total gas used by this UserOperation (including preVerification, creation, validation and execution). */ event UserOperationEvent(bytes32 indexed userOpHash, address indexed sender, address indexed paymaster, uint256 nonce, bool success, uint256 actualGasCost, uint256 actualGasUsed); /** * account "sender" was deployed. * @param userOpHash the userOp that deployed this account. UserOperationEvent will follow. * @param sender the account that is deployed * @param factory the factory used to deploy this account (in the initCode) * @param paymaster the paymaster used by this UserOp */ event AccountDeployed(bytes32 indexed userOpHash, address indexed sender, address factory, address paymaster); /** * An event emitted if the UserOperation "callData" reverted with non-zero length * @param userOpHash the request unique identifier. * @param sender the sender of this request * @param nonce the nonce used in the request * @param revertReason - the return bytes from the (reverted) call to "callData". */ event UserOperationRevertReason(bytes32 indexed userOpHash, address indexed sender, uint256 nonce, bytes revertReason); /** * an event emitted by handleOps(), before starting the execution loop. * any event emitted before this event, is part of the validation. */ event BeforeExecution(); /** * signature aggregator used by the following UserOperationEvents within this bundle. */ event SignatureAggregatorChanged(address indexed aggregator); /** * a custom revert error of handleOps, to identify the offending op. * NOTE: if simulateValidation passes successfully, there should be no reason for handleOps to fail on it. * @param opIndex - index into the array of ops to the failed one (in simulateValidation, this is always zero) * @param reason - revert reason * The string starts with a unique code "AAmn", where "m" is "1" for factory, "2" for account and "3" for paymaster issues, * so a failure can be attributed to the correct entity. * Should be caught in off-chain handleOps simulation and not happen on-chain. * Useful for mitigating DoS attempts against batchers or for troubleshooting of factory/account/paymaster reverts. */ error FailedOp(uint256 opIndex, string reason); /** * error case when a signature aggregator fails to verify the aggregated signature it had created. */ error SignatureValidationFailed(address aggregator); /** * Successful result from simulateValidation. * @param returnInfo gas and time-range returned values * @param senderInfo stake information about the sender * @param factoryInfo stake information about the factory (if any) * @param paymasterInfo stake information about the paymaster (if any) */ error ValidationResult(ReturnInfo returnInfo, StakeInfo senderInfo, StakeInfo factoryInfo, StakeInfo paymasterInfo); /** * Successful result from simulateValidation, if the account returns a signature aggregator * @param returnInfo gas and time-range returned values * @param senderInfo stake information about the sender * @param factoryInfo stake information about the factory (if any) * @param paymasterInfo stake information about the paymaster (if any) * @param aggregatorInfo signature aggregation info (if the account requires signature aggregator) * bundler MUST use it to verify the signature, or reject the UserOperation */ error ValidationResultWithAggregation(ReturnInfo returnInfo, StakeInfo senderInfo, StakeInfo factoryInfo, StakeInfo paymasterInfo, AggregatorStakeInfo aggregatorInfo); /** * return value of getSenderAddress */ error SenderAddressResult(address sender); /** * return value of simulateHandleOp */ error ExecutionResult(uint256 preOpGas, uint256 paid, uint48 validAfter, uint48 validUntil, bool targetSuccess, bytes targetResult); //UserOps handled, per aggregator struct UserOpsPerAggregator { UserOperation[] userOps; // aggregator address IAggregator aggregator; // aggregated signature bytes signature; } /** * Execute a batch of UserOperation. * no signature aggregator is used. * if any account requires an aggregator (that is, it returned an aggregator when * performing simulateValidation), then handleAggregatedOps() must be used instead. * @param ops the operations to execute * @param beneficiary the address to receive the fees */ function handleOps(UserOperation[] calldata ops, address payable beneficiary) external; /** * Execute a batch of UserOperation with Aggregators * @param opsPerAggregator the operations to execute, grouped by aggregator (or address(0) for no-aggregator accounts) * @param beneficiary the address to receive the fees */ function handleAggregatedOps( UserOpsPerAggregator[] calldata opsPerAggregator, address payable beneficiary ) external; /** * generate a request Id - unique identifier for this request. * the request ID is a hash over the content of the userOp (except the signature), the entrypoint and the chainid. */ function getUserOpHash(UserOperation calldata userOp) external view returns (bytes32); /** * Simulate a call to account.validateUserOp and paymaster.validatePaymasterUserOp. * @dev this method always revert. Successful result is ValidationResult error. other errors are failures. * @dev The node must also verify it doesn't use banned opcodes, and that it doesn't reference storage outside the account's data. * @param userOp the user operation to validate. */ function simulateValidation(UserOperation calldata userOp) external; /** * gas and return values during simulation * @param preOpGas the gas used for validation (including preValidationGas) * @param prefund the required prefund for this operation * @param sigFailed validateUserOp's (or paymaster's) signature check failed * @param validAfter - first timestamp this UserOp is valid (merging account and paymaster time-range) * @param validUntil - last timestamp this UserOp is valid (merging account and paymaster time-range) * @param paymasterContext returned by validatePaymasterUserOp (to be passed into postOp) */ struct ReturnInfo { uint256 preOpGas; uint256 prefund; bool sigFailed; uint48 validAfter; uint48 validUntil; bytes paymasterContext; } /** * returned aggregated signature info. * the aggregator returned by the account, and its current stake. */ struct AggregatorStakeInfo { address aggregator; StakeInfo stakeInfo; } /** * Get counterfactual sender address. * Calculate the sender contract address that will be generated by the initCode and salt in the UserOperation. * this method always revert, and returns the address in SenderAddressResult error * @param initCode the constructor code to be passed into the UserOperation. */ function getSenderAddress(bytes memory initCode) external; /** * simulate full execution of a UserOperation (including both validation and target execution) * this method will always revert with "ExecutionResult". * it performs full validation of the UserOperation, but ignores signature error. * an optional target address is called after the userop succeeds, and its value is returned * (before the entire call is reverted) * Note that in order to collect the the success/failure of the target call, it must be executed * with trace enabled to track the emitted events. * @param op the UserOperation to simulate * @param target if nonzero, a target address to call after userop simulation. If called, the targetSuccess and targetResult * are set to the return from that call. * @param targetCallData callData to pass to target address */ function simulateHandleOp(UserOperation calldata op, address target, bytes calldata targetCallData) external; } // SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; interface INonceManager { /** * Return the next nonce for this sender. * Within a given key, the nonce values are sequenced (starting with zero, and incremented by one on each userop) * But UserOp with different keys can come with arbitrary order. * * @param sender the account address * @param key the high 192 bit of the nonce * @return nonce a full nonce to pass for next UserOp with this sender. */ function getNonce(address sender, uint192 key) external view returns (uint256 nonce); /** * Manually increment the nonce of the sender. * This method is exposed just for completeness.. * Account does NOT need to call it, neither during validation, nor elsewhere, * as the EntryPoint will update the nonce regardless. * Possible use-case is call it with various keys to "initialize" their nonces to one, so that future * UserOperations will not pay extra for the first transaction with a given key. */ function incrementNonce(uint192 key) external; } // SPDX-License-Identifier: GPL-3.0-only pragma solidity ^0.8.12; /** * manage deposits and stakes. * deposit is just a balance used to pay for UserOperations (either by a paymaster or an account) * stake is value locked for at least "unstakeDelay" by the staked entity. */ interface IStakeManager { event Deposited( address indexed account, uint256 totalDeposit ); event Withdrawn( address indexed account, address withdrawAddress, uint256 amount ); /// Emitted when stake or unstake delay are modified event StakeLocked( address indexed account, uint256 totalStaked, uint256 unstakeDelaySec ); /// Emitted once a stake is scheduled for withdrawal event StakeUnlocked( address indexed account, uint256 withdrawTime ); event StakeWithdrawn( address indexed account, address withdrawAddress, uint256 amount ); /** * @param deposit the entity's deposit * @param staked true if this entity is staked. * @param stake actual amount of ether staked for this entity. * @param unstakeDelaySec minimum delay to withdraw the stake. * @param withdrawTime - first block timestamp where 'withdrawStake' will be callable, or zero if already locked * @dev sizes were chosen so that (deposit,staked, stake) fit into one cell (used during handleOps) * and the rest fit into a 2nd cell. * 112 bit allows for 10^15 eth * 48 bit for full timestamp * 32 bit allows 150 years for unstake delay */ struct DepositInfo { uint112 deposit; bool staked; uint112 stake; uint32 unstakeDelaySec; uint48 withdrawTime; } //API struct used by getStakeInfo and simulateValidation struct StakeInfo { uint256 stake; uint256 unstakeDelaySec; } /// @return info - full deposit information of given account function getDepositInfo(address account) external view returns (DepositInfo memory info); /// @return the deposit (for gas payment) of the account function balanceOf(address account) external view returns (uint256); /** * add to the deposit of the given account */ function depositTo(address account) external payable; /** * add to the account's stake - amount and delay * any pending unstake is first cancelled. * @param _unstakeDelaySec the new lock duration before the deposit can be withdrawn. */ function addStake(uint32 _unstakeDelaySec) external payable; /** * attempt to unlock the stake. * the value can be withdrawn (using withdrawStake) after the unstake delay. */ function unlockStake() external; /** * withdraw from the (unlocked) stake. * must first call unlockStake and wait for the unstakeDelay to pass * @param withdrawAddress the address to send withdrawn value. */ function withdrawStake(address payable withdrawAddress) external; /** * withdraw from the deposit. * @param withdrawAddress the address to send withdrawn value. * @param withdrawAmount the amount to withdraw. */ function withdrawTo(address payable withdrawAddress, uint256 withdrawAmount) external; } // SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; /* solhint-disable no-inline-assembly */ import {calldataKeccak} from "../core/Helpers.sol"; /** * User Operation struct * @param sender the sender account of this request. * @param nonce unique value the sender uses to verify it is not a replay. * @param initCode if set, the account contract will be created by this constructor/ * @param callData the method call to execute on this account. * @param callGasLimit the gas limit passed to the callData method call. * @param verificationGasLimit gas used for validateUserOp and validatePaymasterUserOp. * @param preVerificationGas gas not calculated by the handleOps method, but added to the gas paid. Covers batch overhead. * @param maxFeePerGas same as EIP-1559 gas parameter. * @param maxPriorityFeePerGas same as EIP-1559 gas parameter. * @param paymasterAndData if set, this field holds the paymaster address and paymaster-specific data. the paymaster will pay for the transaction instead of the sender. * @param signature sender-verified signature over the entire request, the EntryPoint address and the chain ID. */ struct UserOperation { address sender; uint256 nonce; bytes initCode; bytes callData; uint256 callGasLimit; uint256 verificationGasLimit; uint256 preVerificationGas; uint256 maxFeePerGas; uint256 maxPriorityFeePerGas; bytes paymasterAndData; bytes signature; } /** * Utility functions helpful when working with UserOperation structs. */ library UserOperationLib { function getSender(UserOperation calldata userOp) internal pure returns (address) { address data; //read sender from userOp, which is first userOp member (saves 800 gas...) assembly {data := calldataload(userOp)} return address(uint160(data)); } //relayer/block builder might submit the TX with higher priorityFee, but the user should not // pay above what he signed for. function gasPrice(UserOperation calldata userOp) internal view returns (uint256) { unchecked { uint256 maxFeePerGas = userOp.maxFeePerGas; uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas; if (maxFeePerGas == maxPriorityFeePerGas) { //legacy mode (for networks that don't support basefee opcode) return maxFeePerGas; } return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee); } } function pack(UserOperation calldata userOp) internal pure returns (bytes memory ret) { address sender = getSender(userOp); uint256 nonce = userOp.nonce; bytes32 hashInitCode = calldataKeccak(userOp.initCode); bytes32 hashCallData = calldataKeccak(userOp.callData); uint256 callGasLimit = userOp.callGasLimit; uint256 verificationGasLimit = userOp.verificationGasLimit; uint256 preVerificationGas = userOp.preVerificationGas; uint256 maxFeePerGas = userOp.maxFeePerGas; uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas; bytes32 hashPaymasterAndData = calldataKeccak(userOp.paymasterAndData); return abi.encode( sender, nonce, hashInitCode, hashCallData, callGasLimit, verificationGasLimit, preVerificationGas, maxFeePerGas, maxPriorityFeePerGas, hashPaymasterAndData ); } function hash(UserOperation calldata userOp) internal pure returns (bytes32) { return keccak256(pack(userOp)); } function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } } // SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; interface IValidations { struct bundlerInformation { address bundler; uint256 registeTime; } event UnrestrictedBundlerSet(bool allowed); event UnrestrictedModuleSet(bool allowed); event WalletFactoryWhitelistSet(address walletProxyFactory); event BundlerWhitelistSet(address indexed bundler, bool allowed); event ModuleWhitelistSet(address indexed module, bool allowed); function officialBundlerWhiteList( address bundler ) external view returns (bool); function moduleWhiteList(address module) external view returns (bool); function setUnrestrictedBundler(bool allowed) external; function setUnrestrictedModule(bool allowed) external; function setBundlerOfficialWhitelist( address bundler, bool allowed ) external; function setWalletProxyFactoryWhitelist(address walletFactory) external; function setModuleWhitelist(address module, bool allowed) external; function validateBundlerWhiteList(address bundler) external view; function validateModuleWhitelist(address module) external; } // SPDX-License-Identifier: LGPL-3.0-only pragma solidity ^0.8.12; import "../common/Enum.sol"; /// @title Executor - A contract that can execute transactions contract Executor { struct ExecuteParams { bool allowFailed; address to; uint256 value; bytes data; bytes nestedCalls; // ExecuteParams encoded as bytes } event HandleSuccessExternalCalls(); event HandleFailedExternalCalls(bytes revertReason); function execute( ExecuteParams memory params, Enum.Operation operation, uint256 txGas ) internal returns (bool success) { bytes memory result; if (operation == Enum.Operation.DelegateCall) { // solhint-disable-next-line no-inline-assembly (success, result) = params.to.delegatecall{gas: txGas}(params.data); } else { // solhint-disable-next-line no-inline-assembly (success, result) = payable(params.to).call{ gas: txGas, value: params.value }(params.data); } if (!success) { if (!params.allowFailed) { assembly { revert(add(result, 32), mload(result)) } } } } } // SPDX-License-Identifier: LGPL-3.0-only pragma solidity ^0.8.12; import "../common/SelfAuthorized.sol"; /// @title Fallback Manager - A contract that manages fallback calls made to this contract contract FallbackManager is SelfAuthorized { event ChangedFallbackHandler(address handler); // keccak256("fallback_manager.handler.address") bytes32 internal constant FALLBACK_HANDLER_STORAGE_SLOT = 0x6c9a6c4a39284e37ed1cf53d337577d14212a4870fb976a4366c693b939918d5; function getFallbackHandler() public view returns (address fallbackHandler) { bytes32 slot = FALLBACK_HANDLER_STORAGE_SLOT; // solhint-disable-next-line no-inline-assembly assembly { let encoded := sload(slot) fallbackHandler := shr(96, encoded) } } /// @dev Allows to add a contract to handle fallback calls. /// Only fallback calls without value and with data will be forwarded. /// This can only be done via a Safe transaction. /// @param handler contract to handle fallbacks calls. function setFallbackHandler(address handler) external authorized { setFallbackHandler(handler, false); emit ChangedFallbackHandler(handler); } function setFallbackHandler(address handler, bool delegate) internal { require(handler != address(this), "handler illegal"); bytes32 slot = FALLBACK_HANDLER_STORAGE_SLOT; // solhint-disable-next-line no-inline-assembly assembly { let encoded := or(shl(96, handler), delegate) sstore(slot, encoded) } } function initializeFallbackHandler(address handler) internal { bytes32 slot = FALLBACK_HANDLER_STORAGE_SLOT; // solhint-disable-next-line no-inline-assembly assembly { let encoded := shl(96, handler) sstore(slot, encoded) } } // solhint-disable-next-line payable-fallback,no-complex-fallback fallback() external { assembly { // Load handler and delegate flag from storage let encoded := sload(FALLBACK_HANDLER_STORAGE_SLOT) let handler := shr(96, encoded) let delegate := and(encoded, 1) // Copy calldata to memory calldatacopy(0, 0, calldatasize()) // If delegate flag is set, delegate the call to the handler switch delegate case 0 { mstore(calldatasize(), shl(96, caller())) let success := call( gas(), handler, 0, 0, add(calldatasize(), 20), 0, 0 ) returndatacopy(0, 0, returndatasize()) if iszero(success) { revert(0, returndatasize()) } return(0, returndatasize()) } case 1 { let result := delegatecall( gas(), handler, 0, calldatasize(), 0, 0 ) returndatacopy(0, 0, returndatasize()) switch result case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } } } // SPDX-License-Identifier: LGPL-3.0-only pragma solidity ^0.8.12; import "../common/Enum.sol"; import "../common/SelfAuthorized.sol"; import "./Executor.sol"; interface Guard { function checkTransaction( address to, uint256 value, bytes memory data, Enum.Operation operation ) external; function checkAfterExecution(bool success) external; } /// @title Fallback Manager - A contract that manages fallback calls made to this contract contract GuardManager is SelfAuthorized, Executor { event ChangedGuard(address guard); // keccak256("guard_manager.guard.address") bytes32 internal constant GUARD_STORAGE_SLOT = 0x4a204f620c8c5ccdca3fd54d003badd85ba500436a431f0cbda4f558c93c34c8; function getGuard() public view returns (address guard) { bytes32 slot = GUARD_STORAGE_SLOT; // solhint-disable-next-line no-inline-assembly assembly { guard := sload(slot) } } function setGuard(address guard) external authorized { bytes32 slot = GUARD_STORAGE_SLOT; // solhint-disable-next-line no-inline-assembly assembly { sstore(slot, guard) } emit ChangedGuard(guard); } // execute from this contract function execTransactionBatch( bytes memory executeParamBytes ) external authorized { executeWithGuardBatch(abi.decode(executeParamBytes, (ExecuteParams[]))); } function execTransactionRevertOnFail( bytes memory executeParamBytes ) external authorized { execTransactionBatchRevertOnFail( abi.decode(executeParamBytes, (ExecuteParams[])) ); } function executeWithGuard( address to, uint256 value, bytes calldata data ) internal { address guard = getGuard(); if (guard != address(0)) { Guard(guard).checkTransaction(to, value, data, Enum.Operation.Call); Guard(guard).checkAfterExecution( execute( ExecuteParams(false, to, value, data, ""), Enum.Operation.Call, gasleft() ) ); } else { execute( ExecuteParams(false, to, value, data, ""), Enum.Operation.Call, gasleft() ); } } function execTransactionBatchRevertOnFail( ExecuteParams[] memory _params ) internal { address guard = getGuard(); uint256 length = _params.length; if (guard == address(0)) { for (uint256 i = 0; i < length; ) { ExecuteParams memory param = _params[i]; execute(param, Enum.Operation.Call, gasleft()); if (param.nestedCalls.length > 0) { try this.execTransactionRevertOnFail(param.nestedCalls) {} catch (bytes memory returnData) { revert(string(returnData)); } } unchecked { ++i; } } } else { for (uint256 i = 0; i < length; ) { ExecuteParams memory param = _params[i]; Guard(guard).checkTransaction( param.to, param.value, param.data, Enum.Operation.Call ); Guard(guard).checkAfterExecution( execute(param, Enum.Operation.Call, gasleft()) ); if (param.nestedCalls.length > 0) { try this.execTransactionRevertOnFail(param.nestedCalls) {} catch (bytes memory returnData) { revert(string(returnData)); } } unchecked { ++i; } } } } function executeWithGuardBatch(ExecuteParams[] memory _params) internal { address guard = getGuard(); uint256 length = _params.length; if (guard == address(0)) { for (uint256 i = 0; i < length; ) { ExecuteParams memory param = _params[i]; bool success = execute(param, Enum.Operation.Call, gasleft()); if (success) { emit HandleSuccessExternalCalls(); } if (param.nestedCalls.length > 0) { try this.execTransactionBatch(param.nestedCalls) {} catch ( bytes memory returnData ) { emit HandleFailedExternalCalls(returnData); } } unchecked { ++i; } } } else { for (uint256 i = 0; i < length; ) { ExecuteParams memory param = _params[i]; Guard(guard).checkTransaction( param.to, param.value, param.data, Enum.Operation.Call ); bool success = execute(param, Enum.Operation.Call, gasleft()); if (success) { emit HandleSuccessExternalCalls(); } Guard(guard).checkAfterExecution(success); if (param.nestedCalls.length > 0) { try this.execTransactionBatch(param.nestedCalls) {} catch ( bytes memory returnData ) { emit HandleFailedExternalCalls(returnData); } } unchecked { ++i; } } } } } // SPDX-License-Identifier: LGPL-3.0-only pragma solidity ^0.8.12; import "../common/Enum.sol"; import "../common/SelfAuthorized.sol"; import "./Executor.sol"; /// @title Module Manager - A contract that manages modules that can execute transactions via this contract contract ModuleManager is SelfAuthorized, Executor { event EnabledModule(address module); event DisabledModule(address module); event ExecutionFromModuleSuccess(address module); event ExecutionFromModuleFailure(address module); address internal constant SENTINEL_MODULES = address(0x1); mapping(address => address) internal modules; function initializeModules() internal { modules[SENTINEL_MODULES] = SENTINEL_MODULES; } function enableModule(address module) public authorized { // Module address cannot be null or sentinel. require(module != address(0) && module != SENTINEL_MODULES, "GS101"); // Module cannot be added twice. require(modules[module] == address(0), "GS102"); modules[module] = modules[SENTINEL_MODULES]; modules[SENTINEL_MODULES] = module; emit EnabledModule(module); } /// @dev Allows to remove a module from the whitelist. /// This can only be done via a Safe transaction. /// @notice Disables the module `module` for the Safe. /// @param prevModule Module that pointed to the module to be removed in the linked list /// @param module Module to be removed. function disableModule( address prevModule, address module ) public authorized { // Validate module address and check that it corresponds to module index. require(module != address(0) && module != SENTINEL_MODULES, "GS101"); require(modules[prevModule] == module, "GS103"); modules[prevModule] = modules[module]; modules[module] = address(0); emit DisabledModule(module); } /// @dev Returns if an module is enabled /// @return True if the module is enabled function isModuleEnabled(address module) public view returns (bool) { return SENTINEL_MODULES != module && modules[module] != address(0); } /// @dev Allows a Module to execute a Safe transaction without any further confirmations. /// @param to Destination address of module transaction. /// @param value Ether value of module transaction. /// @param data Data payload of module transaction. /// @param operation Operation type of module transaction. function execTransactionFromModule( address to, uint256 value, bytes calldata data, Enum.Operation operation ) public virtual { // Only whitelisted modules are allowed. require(modules[msg.sender] != address(0), "GS104"); // Execute transaction without further confirmations. if ( execute( ExecuteParams(false, to, value, data, ""), operation, gasleft() ) ) emit ExecutionFromModuleSuccess(msg.sender); else emit ExecutionFromModuleFailure(msg.sender); } /// @dev Allows a Module to execute a Safe transaction without any further confirmations and return data /// @param to Destination address of module transaction. /// @param value Ether value of module transaction. /// @param data Data payload of module transaction. /// @param operation Operation type of module transaction. function execTransactionFromModuleReturnData( address to, uint256 value, bytes calldata data, Enum.Operation operation ) public returns (bytes memory returnData) { execTransactionFromModule(to, value, data, operation); // solhint-disable-next-line no-inline-assembly assembly { // Load free memory location let ptr := mload(0x40) // We allocate memory for the return data by setting the free memory location to // current free memory location + data size + 32 bytes for data size value mstore(0x40, add(ptr, add(returndatasize(), 0x20))) // Store the size mstore(ptr, returndatasize()) // Store the data returndatacopy(add(ptr, 0x20), 0, returndatasize()) // Point the return data to the correct memory location returnData := ptr } } } // SPDX-License-Identifier: LGPL-3.0-only pragma solidity ^0.8.12; contract OwnerManager { event AAOwnerSet(address owner); address internal owner; uint256 private nonce; modifier onlyOwner() { require(isOwner(msg.sender), "not call by owner"); _; } function initializeOwners(address _owner) internal { owner = _owner; emit AAOwnerSet(_owner); } function isOwner(address _owner) public view returns (bool) { return owner == _owner; } function getOwner() public view returns (address) { return owner; } } // SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "../../@eth-infinitism-v0.6/core/BaseAccount.sol"; import "../common/Enum.sol"; import "../common/SignatureDecoder.sol"; import "./OwnerManager.sol"; contract SignatureManager is BaseAccount, Enum, OwnerManager, SignatureDecoder { using UserOperationLib for UserOperation; IEntryPoint internal immutable ENTRYPOINT; bytes32 internal immutable HASH_NAME; bytes32 internal immutable HASH_VERSION; bytes32 internal immutable TYPE_HASH; address internal immutable ADDRESS_THIS; bytes32 internal immutable EIP712_ORDER_STRUCT_SCHEMA_HASH; // keccak256("isValidSignature(bytes32 _hash)") bytes32 public constant ERC1271_TYPE_HASH = 0x0c000213b8f2b5d6b75cba966002ab299d4108f2bf3d1dd73953ad6092f72e75; struct SignMessage { address sender; uint256 nonce; bytes initCode; bytes callData; uint256 callGasLimit; uint256 verificationGasLimit; uint256 preVerificationGas; uint256 maxFeePerGas; uint256 maxPriorityFeePerGas; bytes paymasterAndData; address EntryPoint; uint256 sigTime; } /* solhint-enable var-name-mixedcase */ constructor(address entrypoint, string memory name, string memory version) { ENTRYPOINT = IEntryPoint(entrypoint); HASH_NAME = keccak256(bytes(name)); HASH_VERSION = keccak256(bytes(version)); TYPE_HASH = keccak256( "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)" ); ADDRESS_THIS = address(this); EIP712_ORDER_STRUCT_SCHEMA_HASH = keccak256( abi.encodePacked( "SignMessage(", "address sender,", "uint256 nonce,", "bytes initCode,", "bytes callData,", "uint256 callGasLimit,", "uint256 verificationGasLimit,", "uint256 preVerificationGas,", "uint256 maxFeePerGas,", "uint256 maxPriorityFeePerGas,", "bytes paymasterAndData,", "address EntryPoint,", "uint256 sigTime", ")" ) ); } function getUOPHash( SignatureType sigType, address EntryPoint, UserOperation calldata userOp ) public view returns (bytes32) { return keccak256( abi.encode( sigType == SignatureType.EIP712Type ? EIP712_ORDER_STRUCT_SCHEMA_HASH : bytes32(block.chainid), userOp.getSender(), userOp.nonce, keccak256(userOp.initCode), keccak256(userOp.callData), userOp.callGasLimit, userOp.verificationGasLimit, userOp.preVerificationGas, userOp.maxFeePerGas, userOp.maxPriorityFeePerGas, keccak256(userOp.paymasterAndData), EntryPoint, uint256(bytes32(userOp.signature[1:33])) ) ); } function getUOPSignedHash( SignatureType sigType, address EntryPoint, UserOperation calldata userOp ) public view returns (bytes32) { return sigType == SignatureType.EIP712Type ? ECDSA.toTypedDataHash( keccak256( abi.encode( TYPE_HASH, HASH_NAME, HASH_VERSION, block.chainid, ADDRESS_THIS ) ), keccak256( abi.encode( EIP712_ORDER_STRUCT_SCHEMA_HASH, userOp.getSender(), userOp.nonce, keccak256(userOp.initCode), keccak256(userOp.callData), userOp.callGasLimit, userOp.verificationGasLimit, userOp.preVerificationGas, userOp.maxFeePerGas, userOp.maxPriorityFeePerGas, keccak256(userOp.paymasterAndData), EntryPoint, uint256(bytes32(userOp.signature[1:33])) ) ) ) : ECDSA.toEthSignedMessageHash( keccak256( abi.encode( bytes32(block.chainid), userOp.getSender(), userOp.nonce, keccak256(userOp.initCode), keccak256(userOp.callData), userOp.callGasLimit, userOp.verificationGasLimit, userOp.preVerificationGas, userOp.maxFeePerGas, userOp.maxPriorityFeePerGas, keccak256(userOp.paymasterAndData), EntryPoint, uint256(bytes32(userOp.signature[1:33])) ) ) ); } function validateUserOp( UserOperation calldata userOp, bytes32, uint256 missingAccountFunds ) public virtual override returns (uint256) { if (missingAccountFunds != 0) { payable(msg.sender).call{ value: missingAccountFunds, gas: type(uint256).max }(""); } return _validateSignature( userOp, getUOPSignedHash( SignatureType(uint8(bytes1(userOp.signature[0:1]))), msg.sender, userOp ) ); } function _validateSignature( UserOperation calldata userOp, bytes32 userOpHash ) internal virtual override returns (uint256 validationData) { uint256 sigTime = uint256(bytes32(userOp.signature[1:33])); uint formatSigTime = _formatSigtimeToValidationData(sigTime); if (ECDSA.recover(userOpHash, userOp.signature[33:]) != owner) { return SIG_VALIDATION_FAILED; } else { return formatSigTime; } } /// @dev format sigtime to validationData struct /// @param sigTime: 0x[address 20 bytes][after 6 bytes][until 6 bytes] /// @return data: ValidationData function _formatSigtimeToValidationData( uint256 sigTime ) private pure returns (uint256) { uint48 validUntil = uint48(sigTime); if (validUntil == 0) { validUntil = type(uint48).max; } uint48 validAfter = uint48(sigTime >> 48); address aggregator = address(uint160(sigTime >> (48 + 48))); return _packValidationData( ValidationData(aggregator, validAfter, validUntil) ); } function entryPoint() public view virtual override returns (IEntryPoint) { return ENTRYPOINT; } function getERC1271SignInfo() external view returns (bytes32, bytes32, bytes32) { return (HASH_NAME, HASH_VERSION, ERC1271_TYPE_HASH); } function isValidSignature( bytes32 _hash, bytes calldata _signature ) external view returns (bytes4) { bytes32 domainSeparator = keccak256(abi.encode( TYPE_HASH, HASH_NAME, HASH_VERSION, bytes32(block.chainid), address(this) )); bytes32 boundHash = keccak256(abi.encode( ERC1271_TYPE_HASH, _hash )); bytes32 digest = keccak256(abi.encodePacked( "\\x19\\x01", domainSeparator, boundHash )); address signer = ECDSA.recover(digest, _signature); if (isOwner(signer)) { return 0x1626ba7e; } else { return 0xffffffff; } } } // SPDX-License-Identifier: LGPL-3.0-only pragma solidity ^0.8.12; /// @title Enum - Collection of enums contract Enum { enum Operation { Call, DelegateCall } enum SignatureType { EIP712Type, EIP191Type } } // SPDX-License-Identifier: LGPL-3.0-only pragma solidity ^0.8.12; /// @title EtherPaymentFallback - A contract that has a fallback to accept ether payments /// @author Richard Meissner - <[email protected]> contract EtherPaymentFallback { event SafeReceived(address indexed sender, uint256 value); /// @dev Fallback function accepts Ether transactions. receive() external payable { emit SafeReceived(msg.sender, msg.value); } } // SPDX-License-Identifier: LGPL-3.0-only pragma solidity ^0.8.12; /// @title SecuredTokenTransfer - Secure token transfer /// @author Richard Meissner - <[email protected]> contract SecuredTokenTransfer { /// @dev Transfers a token and returns if it was a success /// @param token Token that should be transferred /// @param receiver Receiver to whom the token should be transferred /// @param amount The amount of tokens that should be transferred function transferToken( address token, address receiver, uint256 amount ) internal returns (bool transferred) { // 0xa9059cbb - keccack("transfer(address,uint256)") bytes memory data = abi.encodeWithSelector( 0xa9059cbb, receiver, amount ); // solhint-disable-next-line no-inline-assembly assembly { // We write the return value to scratch space. // See https://docs.soliditylang.org/en/v0.7.6/internals/layout_in_memory.html#layout-in-memory let success := call( sub(gas(), 10000), token, 0, add(data, 0x20), mload(data), 0, 0x20 ) switch returndatasize() case 0 { transferred := success } case 0x20 { transferred := iszero(or(iszero(success), iszero(mload(0)))) } default { transferred := 0 } } } } // SPDX-License-Identifier: LGPL-3.0-only pragma solidity ^0.8.12; /// @title SelfAuthorized - authorizes current contract to perform actions /// @author Richard Meissner - <[email protected]> contract SelfAuthorized { function requireSelfCall() private view { require(msg.sender == address(this), "GS031"); } modifier authorized() { // This is a function call as it minimized the bytecode size requireSelfCall(); _; } } // SPDX-License-Identifier: LGPL-3.0-only pragma solidity ^0.8.12; /// @title SignatureDecoder - Decodes signatures that a encoded as bytes /// @author Richard Meissner - <[email protected]> contract SignatureDecoder { /// @dev divides bytes signature into `uint8 v, bytes32 r, bytes32 s`. /// @notice Make sure to peform a bounds check for @param pos, to avoid out of bounds access on @param signatures /// @param pos which signature to read. A prior bounds check of this parameter should be performed, to avoid out of bounds access /// @param signatures concatenated rsv signatures function signatureSplit( bytes memory signatures, uint256 pos ) internal pure returns (uint8 v, bytes32 r, bytes32 s) { // The signature format is a compact form of: // {bytes32 r}{bytes32 s}{uint8 v} // Compact means, uint8 is not padded to 32 bytes. // solhint-disable-next-line no-inline-assembly assembly { let signaturePos := mul(0x41, pos) r := mload(add(signatures, add(signaturePos, 0x20))) s := mload(add(signatures, add(signaturePos, 0x40))) // Here we are loading the last 32 bytes, including 31 bytes // of 's'. There is no 'mload8' to do this. // // 'byte' is not working due to the Solidity parser, so lets // use the second best option, 'and' v := and(mload(add(signatures, add(signaturePos, 0x41))), 0xff) } } } // SPDX-License-Identifier: LGPL-3.0-only pragma solidity ^0.8.12; import "./SelfAuthorized.sol"; /// @title Singleton - Base for singleton contracts (should always be first super contract) /// This contract is tightly coupled to our proxy contract contract Singleton is SelfAuthorized { event ImplementUpdated(address indexed implement); address internal singleton; function updateImplement(address implement) external authorized { singleton = implement; emit ImplementUpdated(implement); } function updateImplementAndCall( address implement, bytes calldata data ) external authorized { singleton = implement; emit ImplementUpdated(implement); (bool success, ) = implement.delegatecall(data); require(success, "Update implementation failed"); } } // SPDX-License-Identifier: LGPL-3.0-only pragma solidity ^0.8.12; import "../../interfaces/IValidations.sol"; import "../base/SignatureManager.sol"; import "../base/ModuleManager.sol"; import "../base/OwnerManager.sol"; import "../base/FallbackManager.sol"; import "../base/GuardManager.sol"; import "../common/EtherPaymentFallback.sol"; import "../common/Singleton.sol"; import "../common/SignatureDecoder.sol"; import "../common/SecuredTokenTransfer.sol"; contract SmartAccountV2 is EtherPaymentFallback, Singleton, ModuleManager, OwnerManager, SignatureDecoder, SecuredTokenTransfer, FallbackManager, GuardManager, SignatureManager { IValidations public immutable VALIDATIONS; address public immutable FALLBACKHANDLER; constructor( address _entryPoint, address _fallbackHandler, address _validations, string memory _name, string memory _version ) SignatureManager(_entryPoint, _name, _version) { FALLBACKHANDLER = _fallbackHandler; VALIDATIONS = IValidations(_validations); } modifier onlyEntryPoint() { require(msg.sender == address(entryPoint()), "Not from entrypoint"); _; } modifier onlyWhiteListedBundler() { VALIDATIONS.validateBundlerWhiteList(tx.origin); _; } modifier onlyWhiteListedModule() { VALIDATIONS.validateModuleWhitelist(msg.sender); _; } function initialize( address creator, bytes memory /* place holder for future */ ) external { require(getOwner() == address(0), "account: have set up"); // set creator as owner by default. initializeOwners(creator); initializeFallbackHandler(FALLBACKHANDLER); initializeModules(); } function nonce() public view virtual returns (uint256) { return ENTRYPOINT.getNonce(address(this), 0); } function validateUserOp( UserOperation calldata userOp, bytes32 userOpHash, uint256 missingAccountFunds ) public override onlyEntryPoint onlyWhiteListedBundler returns (uint256 validationData) { validationData = super.validateUserOp( userOp, userOpHash, missingAccountFunds ); } function execTransactionFromEntrypoint( address to, uint256 value, bytes calldata data ) public onlyEntryPoint { executeWithGuard(to, value, data); } function execTransactionFromEntrypointBatch( ExecuteParams[] calldata _params ) external onlyEntryPoint { executeWithGuardBatch(_params); } function execTransactionFromEntrypointBatchRevertOnFail( ExecuteParams[] calldata _params ) external onlyEntryPoint { execTransactionBatchRevertOnFail(_params); } function execTransactionFromModule( address to, uint256 value, bytes calldata data, Enum.Operation operation ) public override onlyWhiteListedModule { if (operation == Enum.Operation.Call) { ModuleManager.execTransactionFromModule(to, value, data, operation); } else { address originalFallbackHandler = getFallbackHandler(); setFallbackHandler(msg.sender, true); ModuleManager.execTransactionFromModule(to, value, data, operation); setFallbackHandler(originalFallbackHandler, false); } } }