Transaction Hash:
Block:
18829583 at Dec-20-2023 08:46:47 PM +UTC
Transaction Fee:
0.009384010515868065 ETH
$25.32
Gas Used:
190,169 Gas / 49.345637385 Gwei
Emitted Events:
56 |
ERC1967Proxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x000000000000000000000000e0566fe5f58dcbdee20aa7d4899c677f5357d0cc, 0x0000000000000000000000000000000000000000000000000000000000000000, 00000000000000000000000000000000000000000000000029a2241af62c0000 )
|
57 |
AnarKey.Approval( owner=0x18e8caea3411b0b8208aacaba9a77fb48eba5a5e, approved=0x00000000...000000000, tokenId=1106 )
|
58 |
AnarKey.Transfer( from=0x18e8caea3411b0b8208aacaba9a77fb48eba5a5e, to=[Sender] 0xe0566fe5f58dcbdee20aa7d4899c677f5357d0cc, tokenId=1106 )
|
59 |
ERC1967Proxy.0x1d5e12b51dee5e4d34434576c3fb99714a85f57b0fd546ada4b0bddd736d12b2( 0x1d5e12b51dee5e4d34434576c3fb99714a85f57b0fd546ada4b0bddd736d12b2, ec1b8b44ce9fe0954e8d2e756abb0328b96b33f54565a30d851cab06f1ba004b, 00000000000000000004520018e8caea3411b0b8208aacaba9a77fb48eba5a5e, 0000000031f5c4ed27680000a88b82af76ecf08cf652846d10857eaeeca40c97 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x00000000...d351887Ac | 25,919.869950389425983501 Eth | 25,916.869950389425983501 Eth | 3 | ||
0x18e8CAEa...48ebA5A5e | 0.010225710831160034 Eth | 3.610225710831160034 Eth | 3.6 | ||
0x95222290...5CC4BAfe5
Miner
| (beaverbuild) | 9.521013283395094423 Eth | 9.521203452395094423 Eth | 0.000190169 | |
0xA88b82AF...eeCa40C97 | |||||
0xb2ecfE4E...e2410CEA5 | (Blur.io: Marketplace 3) | ||||
0xE0566FE5...F5357d0cC |
0.686950586369892345 Eth
Nonce: 2
|
0.07756657585402428 Eth
Nonce: 3
| 0.609384010515868065 |
Execution Trace
ETH 0.6
ERC1967Proxy.336d8206( )
ETH 0.6
BlurExchangeV2.takeAskSinglePool( )
ERC1967Proxy.9555a942( )
BlurPool.withdrawFrom( from=0xE0566FE5F58DCbDeE20aA7d4899C677F5357d0cC, to=0xb2ecfE4E4D61f8790bbb9DE2D1259B9e2410CEA5, amount=3000000000000000000 )
ETH 3
ERC1967Proxy.CALL( )
- ETH 3
BlurExchangeV2.DELEGATECALL( )
- ETH 3
-
Null: 0x000...001.28f21e8b( )
-
Null: 0x000...001.06dcd29d( )
Delegate.transfer( taker=0xE0566FE5F58DCbDeE20aA7d4899C677F5357d0cC, orderType=0, transfers=, length=1 ) => ( successful=[true] )
AnarKey.safeTransferFrom( from=0x18e8CAEa3411b0B8208AaCaBa9A77Fb48ebA5A5e, to=0xE0566FE5F58DCbDeE20aA7d4899C677F5357d0cC, tokenId=1106 )
-
OperatorFilterRegistry.isOperatorAllowed( registrant=0xA88b82AF76ecF08cf652846D10857eAeeCa40C97, operator=0x2f18F339620a63e43f0839Eeb18D7de1e1Be4DfB ) => ( True )
-
OperatorFilterRegistry.isOperatorAllowed( registrant=0xA88b82AF76ecF08cf652846D10857eAeeCa40C97, operator=0x2f18F339620a63e43f0839Eeb18D7de1e1Be4DfB ) => ( True )
-
- ETH 3.6
0x18e8caea3411b0b8208aacaba9a77fb48eba5a5e.CALL( )
takeAskSinglePool[BlurExchangeV2 (ln:192)]
_withdrawFromPool[BlurExchangeV2 (ln:197)]
takeAskSingle[BlurExchangeV2 (ln:198)]
_takeAskSingle[BlurExchangeV2 (ln:164)]
Fees[BlurExchangeV2 (ln:232)]
_validateOrderAndListing[BlurExchangeV2 (ln:236)]
InvalidOrder[BlurExchangeV2 (ln:237)]
_initializeSingleExecution[BlurExchangeV2 (ln:240)]
_insertNonfungibleTransfer[BlurExchangeV2 (ln:544)]
_executeNonfungibleTransfers[BlurExchangeV2 (ln:253)]
TokenTransferFailed[BlurExchangeV2 (ln:255)]
_computeFees[BlurExchangeV2 (ln:263)]
InsufficientFunds[BlurExchangeV2 (ln:267)]
_transferETH[BlurExchangeV2 (ln:271)]
_transferETH[BlurExchangeV2 (ln:272)]
_transferETH[BlurExchangeV2 (ln:273)]
_transferETH[BlurExchangeV2 (ln:275)]
_emitExecutionEvent[BlurExchangeV2 (ln:277)]
_transferETH[BlurExchangeV2 (ln:279)]
_hashCalldata[BlurExchangeV2 (ln:162)]
File 1 of 7: ERC1967Proxy
File 2 of 7: ERC1967Proxy
File 3 of 7: AnarKey
File 4 of 7: BlurExchangeV2
File 5 of 7: BlurPool
File 6 of 7: Delegate
File 7 of 7: OperatorFilterRegistry
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (proxy/ERC1967/ERC1967Proxy.sol) pragma solidity 0.8.17; import "lib/openzeppelin-contracts/contracts/proxy/Proxy.sol"; import "lib/openzeppelin-contracts/contracts/proxy/ERC1967/ERC1967Upgrade.sol"; /** * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an * implementation address that can be changed. This address is stored in storage in the location specified by * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the * implementation behind the proxy. */ contract ERC1967Proxy is Proxy, ERC1967Upgrade { /** * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`. * * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded * function call, and allows initializating the storage of the proxy like a Solidity constructor. */ constructor(address _logic, bytes memory _data) payable { assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1)); _upgradeToAndCall(_logic, _data, false); } /** * @dev Returns the current implementation address. */ function _implementation() internal view virtual override returns (address impl) { return ERC1967Upgrade._getImplementation(); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (proxy/Proxy.sol) pragma solidity ^0.8.0; /** * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to * be specified by overriding the virtual {_implementation} function. * * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a * different contract through the {_delegate} function. * * The success and return data of the delegated call will be returned back to the caller of the proxy. */ abstract contract Proxy { /** * @dev Delegates the current call to `implementation`. * * This function does not return to its internal call site, it will return directly to the external caller. */ function _delegate(address implementation) internal virtual { assembly { // Copy msg.data. We take full control of memory in this inline assembly // block because it will not return to Solidity code. We overwrite the // Solidity scratch pad at memory position 0. calldatacopy(0, 0, calldatasize()) // Call the implementation. // out and outsize are 0 because we don't know the size yet. let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0) // Copy the returned data. returndatacopy(0, 0, returndatasize()) switch result // delegatecall returns 0 on error. case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } /** * @dev This is a virtual function that should be overridden so it returns the address to which the fallback function * and {_fallback} should delegate. */ function _implementation() internal view virtual returns (address); /** * @dev Delegates the current call to the address returned by `_implementation()`. * * This function does not return to its internal call site, it will return directly to the external caller. */ function _fallback() internal virtual { _beforeFallback(); _delegate(_implementation()); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other * function in the contract matches the call data. */ fallback() external payable virtual { _fallback(); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data * is empty. */ receive() external payable virtual { _fallback(); } /** * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback` * call, or as part of the Solidity `fallback` or `receive` functions. * * If overridden should call `super._beforeFallback()`. */ function _beforeFallback() internal virtual {} } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.3) (proxy/ERC1967/ERC1967Upgrade.sol) pragma solidity ^0.8.2; import "../beacon/IBeacon.sol"; import "../../interfaces/IERC1967.sol"; import "../../interfaces/draft-IERC1822.sol"; import "../../utils/Address.sol"; import "../../utils/StorageSlot.sol"; /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots. * * _Available since v4.1._ */ abstract contract ERC1967Upgrade is IERC1967 { // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1 bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143; /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev Returns the current implementation address. */ function _getImplementation() internal view returns (address) { return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Perform implementation upgrade * * Emits an {Upgraded} event. */ function _upgradeTo(address newImplementation) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); } /** * @dev Perform implementation upgrade with additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal { _upgradeTo(newImplementation); if (data.length > 0 || forceCall) { Address.functionDelegateCall(newImplementation, data); } } /** * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCallUUPS(address newImplementation, bytes memory data, bool forceCall) internal { // Upgrades from old implementations will perform a rollback test. This test requires the new // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing // this special case will break upgrade paths from old UUPS implementation to new ones. if (StorageSlot.getBooleanSlot(_ROLLBACK_SLOT).value) { _setImplementation(newImplementation); } else { try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) { require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID"); } catch { revert("ERC1967Upgrade: new implementation is not UUPS"); } _upgradeToAndCall(newImplementation, data, forceCall); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Returns the current admin. */ function _getAdmin() internal view returns (address) { return StorageSlot.getAddressSlot(_ADMIN_SLOT).value; } /** * @dev Stores a new address in the EIP1967 admin slot. */ function _setAdmin(address newAdmin) private { require(newAdmin != address(0), "ERC1967: new admin is the zero address"); StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {AdminChanged} event. */ function _changeAdmin(address newAdmin) internal { emit AdminChanged(_getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor. */ bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Returns the current beacon. */ function _getBeacon() internal view returns (address) { return StorageSlot.getAddressSlot(_BEACON_SLOT).value; } /** * @dev Stores a new beacon in the EIP1967 beacon slot. */ function _setBeacon(address newBeacon) private { require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract"); require( Address.isContract(IBeacon(newBeacon).implementation()), "ERC1967: beacon implementation is not a contract" ); StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon; } /** * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that). * * Emits a {BeaconUpgraded} event. */ function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal { _setBeacon(newBeacon); emit BeaconUpgraded(newBeacon); if (data.length > 0 || forceCall) { Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol) pragma solidity ^0.8.0; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeacon { /** * @dev Must return an address that can be used as a delegate call target. * * {BeaconProxy} will check that this address is a contract. */ function implementation() external view returns (address); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC. * * _Available since v4.8.3._ */ interface IERC1967 { /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Emitted when the beacon is changed. */ event BeaconUpgraded(address indexed beacon); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol) pragma solidity ^0.8.0; /** * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified * proxy whose upgrades are fully controlled by the current implementation. */ interface IERC1822Proxiable { /** * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation * address. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. */ function proxiableUUID() external view returns (bytes32); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.0; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ```solidity * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._ * _Available since v4.9 for `string`, `bytes`._ */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } /** * @dev Returns an `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } }
File 2 of 7: ERC1967Proxy
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (proxy/ERC1967/ERC1967Proxy.sol) pragma solidity 0.8.17; // OpenZeppelin Contracts v4.4.1 (proxy/Proxy.sol) /** * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to * be specified by overriding the virtual {_implementation} function. * * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a * different contract through the {_delegate} function. * * The success and return data of the delegated call will be returned back to the caller of the proxy. */ abstract contract Proxy { /** * @dev Delegates the current call to `implementation`. * * This function does not return to its internall call site, it will return directly to the external caller. */ function _delegate(address implementation) internal virtual { assembly { // Copy msg.data. We take full control of memory in this inline assembly // block because it will not return to Solidity code. We overwrite the // Solidity scratch pad at memory position 0. calldatacopy(0, 0, calldatasize()) // Call the implementation. // out and outsize are 0 because we don't know the size yet. let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0) // Copy the returned data. returndatacopy(0, 0, returndatasize()) switch result // delegatecall returns 0 on error. case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } /** * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function * and {_fallback} should delegate. */ function _implementation() internal view virtual returns (address); /** * @dev Delegates the current call to the address returned by `_implementation()`. * * This function does not return to its internall call site, it will return directly to the external caller. */ function _fallback() internal virtual { _beforeFallback(); _delegate(_implementation()); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other * function in the contract matches the call data. */ fallback() external payable virtual { _fallback(); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data * is empty. */ receive() external payable virtual { _fallback(); } /** * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback` * call, or as part of the Solidity `fallback` or `receive` functions. * * If overriden should call `super._beforeFallback()`. */ function _beforeFallback() internal virtual {} } // OpenZeppelin Contracts v4.4.1 (proxy/ERC1967/ERC1967Upgrade.sol) /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots. * * _Available since v4.1._ * * @custom:oz-upgrades-unsafe-allow delegatecall */ abstract contract ERC1967Upgrade { // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1 bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143; /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Returns the current implementation address. */ function _getImplementation() internal view returns (address) { return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Perform implementation upgrade * * Emits an {Upgraded} event. */ function _upgradeTo(address newImplementation) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); } /** * @dev Perform implementation upgrade with additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCall( address newImplementation, bytes memory data, bool forceCall ) internal { _upgradeTo(newImplementation); if (data.length > 0 || forceCall) { Address.functionDelegateCall(newImplementation, data); } } /** * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCallSecure( address newImplementation, bytes memory data, bool forceCall ) internal { address oldImplementation = _getImplementation(); // Initial upgrade and setup call _setImplementation(newImplementation); if (data.length > 0 || forceCall) { Address.functionDelegateCall(newImplementation, data); } // Perform rollback test if not already in progress StorageSlot.BooleanSlot storage rollbackTesting = StorageSlot.getBooleanSlot(_ROLLBACK_SLOT); if (!rollbackTesting.value) { // Trigger rollback using upgradeTo from the new implementation rollbackTesting.value = true; Address.functionDelegateCall( newImplementation, abi.encodeWithSignature("upgradeTo(address)", oldImplementation) ); rollbackTesting.value = false; // Check rollback was effective require(oldImplementation == _getImplementation(), "ERC1967Upgrade: upgrade breaks further upgrades"); // Finally reset to the new implementation and log the upgrade _upgradeTo(newImplementation); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Returns the current admin. */ function _getAdmin() internal view returns (address) { return StorageSlot.getAddressSlot(_ADMIN_SLOT).value; } /** * @dev Stores a new address in the EIP1967 admin slot. */ function _setAdmin(address newAdmin) private { require(newAdmin != address(0), "ERC1967: new admin is the zero address"); StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {AdminChanged} event. */ function _changeAdmin(address newAdmin) internal { emit AdminChanged(_getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor. */ bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Emitted when the beacon is upgraded. */ event BeaconUpgraded(address indexed beacon); /** * @dev Returns the current beacon. */ function _getBeacon() internal view returns (address) { return StorageSlot.getAddressSlot(_BEACON_SLOT).value; } /** * @dev Stores a new beacon in the EIP1967 beacon slot. */ function _setBeacon(address newBeacon) private { require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract"); require( Address.isContract(IBeacon(newBeacon).implementation()), "ERC1967: beacon implementation is not a contract" ); StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon; } /** * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that). * * Emits a {BeaconUpgraded} event. */ function _upgradeBeaconToAndCall( address newBeacon, bytes memory data, bool forceCall ) internal { _setBeacon(newBeacon); emit BeaconUpgraded(newBeacon); if (data.length > 0 || forceCall) { Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data); } } } /** * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an * implementation address that can be changed. This address is stored in storage in the location specified by * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the * implementation behind the proxy. */ contract ERC1967Proxy is Proxy, ERC1967Upgrade { /** * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`. * * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded * function call, and allows initializating the storage of the proxy like a Solidity constructor. */ constructor(address _logic, bytes memory _data) payable { assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1)); _upgradeToAndCall(_logic, _data, false); } /** * @dev Returns the current implementation address. */ function _implementation() internal view virtual override returns (address impl) { return ERC1967Upgrade._getImplementation(); } } // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol) /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeacon { /** * @dev Must return an address that can be used as a delegate call target. * * {BeaconProxy} will check that this address is a contract. */ function implementation() external view returns (address); } // OpenZeppelin Contracts v4.4.1 (utils/Address.sol) pragma solidity ^0.8.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // OpenZeppelin Contracts v4.4.1 (utils/StorageSlot.sol) /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ``` * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._ */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { assembly { r.slot := slot } } }
File 3 of 7: AnarKey
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/interfaces/IERC2981.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "@openzeppelin/contracts/utils/math/SafeMath.sol"; import "@openzeppelin/contracts/security/Pausable.sol"; import {UpdatableOperatorFilterer} from "operator-filter-registry/src/UpdatableOperatorFilterer.sol"; import {RevokableDefaultOperatorFilterer} from "operator-filter-registry/src/RevokableDefaultOperatorFilterer.sol"; import "./erc721x/contracts/ERC721X.sol"; import "./libraries/TokenStake.sol"; import "./interfaces/INftCollection.sol"; /** * @title AnarKey * @notice ANARKEY ERC721X NFT collection */ contract AnarKey is Ownable, RevokableDefaultOperatorFilterer, ERC721X, Pausable, IERC2981, TokenStake { using SafeMath for uint256; using SafeERC20 for IERC20; using Strings for uint256; IERC20 public USDT; // USDT token bool public isMetadataLocked; bool public isMaxSupplyLocked; bool public autoStageChange; uint256 public maxSupply = 1111; uint256 private BatchSize = 100; string public baseTokenURI; address public royalties; uint256 public royaltiesPercentage; uint256 public MaxMintPerTX = 10; uint256 public NFT_PRICE = 5000; uint256 public TokenDecimal = 1000000; uint256 public saleStage = 0; uint256 private publicSaleKey; uint256 public CurrentMintIndex = 0; uint256 public EndRoundMintIndex = 200; uint256 public NextEndRoundMintIndex = 400; uint256 public NextRoundMintPrice = 5000; uint256 public MaxMintIndex = 750; address public immutable withdrawWallet1 = 0x4Da56C7c284d56094b21fCC56888BeeaCac53365; address public immutable withdrawWallet2 = 0xac488462d5Ed9a904842e8946290698694B2391f; mapping(address => uint256) private _userMints; event Withdraw(uint256 amount); event LockMetadata(); event LockMaxSupply(); constructor() ERC721X("AnarKey", "ANARKEY", BatchSize, maxSupply) { autoStageChange = true; } modifier callerIsUser() { require(tx.origin == msg.sender, "The caller is another contract"); _; } /** * @notice Allows the owner to lock the contract * @dev Callable by owner */ function lockMetadata() external onlyOwner { require(!isMetadataLocked, "Contract is locked"); require(bytes(baseTokenURI).length > 0, "BaseUri not set"); isMetadataLocked = true; emit LockMetadata(); } function setAutoStageChange(bool _stage) external onlyOwner { autoStageChange = _stage; } /** * @notice Allows the owner to lock the max supply * @dev Callable by owner */ function lockMaxSupply() external onlyOwner { require(!isMaxSupplyLocked, "Max supply is locked"); require(maxSupply > 0, "Max supply not set"); isMaxSupplyLocked = true; emit LockMaxSupply(); } function mint(uint256 _quantity, uint256 _CallerPublicSaleKey) external callerIsUser whenNotPaused { uint256 userBalance = USDT.balanceOf(msg.sender); uint256 costToMint = NFT_PRICE * TokenDecimal * _quantity; require(totalSupply().add(_quantity) <= maxSupply, "NFT: Total supply reached"); require(totalSupply().add(_quantity) <= MaxMintIndex, "Total supply reached max mint supply"); require(totalSupply().add(_quantity) <= EndRoundMintIndex, "Your quantity is over than limit"); require(publicSaleKey == _CallerPublicSaleKey, "Called with incorrect public sale key"); require(costToMint <= userBalance, "User balance is not enough"); require(_quantity <= MaxMintPerTX, "Mint exceed the limit per TX"); require(saleStage > 0, "Sale is not active at the moment"); require(CurrentMintIndex + _quantity <= EndRoundMintIndex, "Supply over the swap supply limit"); USDT.safeTransferFrom(msg.sender, address(this), costToMint); _userMints[msg.sender] = _userMints[msg.sender] + _quantity; CurrentMintIndex = CurrentMintIndex + _quantity; _safeMint(msg.sender, _quantity); if (totalSupply() >= EndRoundMintIndex) { if (autoStageChange) { EndRoundMintIndex = NextEndRoundMintIndex; NFT_PRICE = NextRoundMintPrice; saleStage++; } } } function ownerMintBulk(address[] memory _accounts, uint256[] memory _quantity) external onlyOwner{ require(_accounts.length == _quantity.length,"arrays must have same length"); for (uint256 i = 0; i < _accounts.length; i++) { require(totalSupply().add(_quantity[i]) <= maxSupply, "NFT: Total supply reached"); CurrentMintIndex = CurrentMintIndex + _quantity[i]; _safeMint(_accounts[i], _quantity[i]); } } function setMaxSupply(uint256 _maxSupply) external onlyOwner { require(!isMaxSupplyLocked, "Operations: Max supply is locked"); setCollectionSize(_maxSupply); maxSupply = _maxSupply; } /** * @notice Allows the owner to set the base URI to be used for all token IDs * @param _uri: base URI * @dev Callable by owner */ function setBaseURI(string memory _uri) external onlyOwner { require(!isMetadataLocked, "Operations: Contract is locked"); baseTokenURI = _uri; } /** * @notice Returns the Uniform Resource Identifier (URI) for a token ID * @param tokenId: token ID */ function tokenURI(uint256 tokenId) public view override returns (string memory) { require(_exists(tokenId), "Invalid tokenId"); return bytes(baseTokenURI).length > 0 ? string(abi.encodePacked(baseTokenURI, tokenId.toString(), ".json")) : ""; } function setRoyalties(address _royalties) public onlyOwner { royalties = _royalties; } function setRoyaltiesPercentage(uint256 _percentage) public onlyOwner { royaltiesPercentage = _percentage; } function royaltyInfo(uint256 _tokenId, uint256 _salePrice) external view override returns (address, uint256 royaltyAmount) { _tokenId; // silence solc warning royaltyAmount = (_salePrice / 100) * royaltiesPercentage; return (royalties, royaltyAmount); } function setUSDTAddress(IERC20 _address) external onlyOwner { USDT = _address; } function setTokenDecimal(uint256 _tokenDecimal) external onlyOwner { TokenDecimal = _tokenDecimal; } function pause() public onlyOwner { _pause(); } function unpause() public onlyOwner { _unpause(); } function _withdraw(uint256 amount) private { require(amount <= USDT.balanceOf(address(this)), "amount > balance"); require(amount > 0, "Empty amount"); uint256 amount1 = amount.mul(50).div(100); uint256 amount2 = amount.mul(50).div(100); USDT.safeTransfer(withdrawWallet1, amount1); USDT.safeTransfer(withdrawWallet2, amount2); emit Withdraw(amount); } function withdraw(uint256 amount) external onlyOwner { _withdraw(amount); } function withdrawAll() external onlyOwner { _withdraw(USDT.balanceOf(address(this))); } function setMaxperTX(uint256 _MaxMintPerTX) external onlyOwner { MaxMintPerTX = _MaxMintPerTX; } function setMintPrice(uint256 _MintPrice) external onlyOwner { NFT_PRICE = _MintPrice; } function setCurrentMintIndex(uint256 _Index) external onlyOwner { CurrentMintIndex = _Index; } function setEndRoundMintIndex(uint256 _Index) external onlyOwner { EndRoundMintIndex = _Index; } function setNextEndRoundMintIndex(uint256 _Index) external onlyOwner { NextEndRoundMintIndex = _Index; } function setNextRoundPrice(uint256 _Index) external onlyOwner { NextRoundMintPrice = _Index; } function setMaxMintIndex(uint256 _Index) external onlyOwner { MaxMintIndex = _Index; } function setSaleStage(uint256 _SaleStage, uint256 _price, uint256 _endIndex) external onlyOwner { saleStage = _SaleStage; NFT_PRICE = _price; EndRoundMintIndex = _endIndex; } function setPublicSaleKey(uint256 _PublicSaleKey) external onlyOwner { publicSaleKey = _PublicSaleKey; } /// ============ OPERATOR FILTER REGISTRY ============ function setApprovalForAll(address operator, bool approved) public override onlyAllowedOperatorApproval(operator) { super.setApprovalForAll(operator, approved); } function approve(address operator, uint256 tokenId) public override onlyAllowedOperatorApproval(operator) { super.approve(operator, tokenId); } function transferFrom(address from, address to, uint256 tokenId) public override onlyAllowedOperator(from) whenTokenNotStaked(tokenId){ super.transferFrom(from, to, tokenId); } function safeTransferFrom(address from, address to, uint256 tokenId) public override onlyAllowedOperator(from) whenTokenNotStaked(tokenId){ super.safeTransferFrom(from, to, tokenId); } function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public override onlyAllowedOperator(from) whenTokenNotStaked(tokenId) { super.safeTransferFrom(from, to, tokenId, data); } function owner() public view override(UpdatableOperatorFilterer, Ownable) returns (address) { return Ownable.owner(); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface INftCollection { /** * @dev Stake Token */ function stakeToken(uint256 tokenId) external; /** * @dev Unstake Token */ function unstakeToken(uint256 tokenId) external; /** * @dev return Token stake status */ function isTokenStaked(uint256 tokenId) external view returns (bool); }// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; pragma abicoder v2; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol"; import "./../erc721x/contracts/ERC721X.sol"; abstract contract TokenStake is Ownable, ERC721X { using EnumerableSet for EnumerableSet.AddressSet; EnumerableSet.AddressSet private _tokenStakers; mapping(uint256 => address) private _stakedTokens; event TokenStaked(address indexed tokenStaker, uint256 tokenId); event TokenUnstaked(address indexed tokenStaker, uint256 tokenId); event TokenRecoverUnstaked(uint256 tokenId); event BatchUpdateTokenStaked(address indexed newTokenStaker, uint256[] tokenIds); event TokenStakerAdded(address indexed tokenStaker); event TokenStakerRemoved(address indexed tokenStaker); modifier tokenStakersOnly() { require(_tokenStakers.contains(_msgSender()), "TokenStake: Not staker"); _; } modifier whenTokenNotStaked(uint256 tokenId) { require(_stakedTokens[tokenId] == address(0), "TokenStake: Token is staked"); _; } modifier whenTokenStaked(uint256 tokenId) { require(_stakedTokens[tokenId] != address(0), "TokenStake: Token is not staked"); _; } /** * @notice Returns `true` if token is staked and can't be transfered */ function isTokenStaked(uint256 tokenId) public view returns (bool) { return _stakedTokens[tokenId] != address(0); } /** * @notice Returns the address of the staker for a specific `tokenId`` * Returns 0x0 if token is not staked */ function stakerForToken(uint256 tokenId) public view returns (address) { return _stakedTokens[tokenId]; } /** * @notice Lock a token for staking * only callable by members of the `tokenStakers` list * The owner of the token must approve the staking contract prior to call this method */ function stakeToken(uint256 tokenId) external tokenStakersOnly whenTokenNotStaked(tokenId) { require(_isApprovedOrOwner(_msgSender(), tokenId), "TokenStake: Staker not approved"); _stakedTokens[tokenId] = _msgSender(); emit TokenStaked(_msgSender(), tokenId); } /** * @notice Lock a token for staking * only callable by the staker */ function unstakeToken(uint256 tokenId) external whenTokenStaked(tokenId) { require(_msgSender() == _stakedTokens[tokenId], "TokenStake: Token not stake by account"); require(_msgSender() != address(0), "TokenStake: can't unstake from zero address"); _stakedTokens[tokenId] = address(0); emit TokenUnstaked(_msgSender(), tokenId); } /** * @notice Recover a staked token * only callable by the owner */ function recoverStakeToken(uint256 tokenId) external onlyOwner whenTokenStaked(tokenId) { _stakedTokens[tokenId] = address(0); emit TokenRecoverUnstaked(tokenId); } /** * @dev Change the token staker for a list of tokenIds * only callable by the owner * this is usefull if the staker contract must be updated * if `newStaker` is set to 0x0, tokens will be unstaked */ function batchUpdateTokenStake(address newStaker, uint256[] calldata tokenIds) external onlyOwner { for (uint256 i = 0; i < tokenIds.length; i++) { require(_stakedTokens[tokenIds[i]] != address(0), "TokenStake: not restakeable"); if (newStaker != address(0)) { require(_isApprovedOrOwner(newStaker, tokenIds[i]), "TokenStake: Staker not approved"); } _stakedTokens[tokenIds[i]] = newStaker; } emit BatchUpdateTokenStaked(newStaker, tokenIds); } /** * @dev returns true if `account` is a member of the staker group */ function isTokenStaker(address account) public view returns (bool) { return _tokenStakers.contains(account); } /** * @dev Add `tokenStaker` to the list of allowed stakers * only callable by the owner */ function addTokenStaker(address tokenStaker) external onlyOwner { require(!_tokenStakers.contains(tokenStaker), "TokenStake: Already TokenStaker"); _tokenStakers.add(tokenStaker); emit TokenStakerAdded(tokenStaker); } /** * @dev Remove `tokenStaker` from the list of allowed stakers * only callable by the owner */ function removeTokenStaker(address tokenStaker) external onlyOwner { require(_tokenStakers.contains(tokenStaker), "TokenStake: Not TokenStaker"); _tokenStakers.remove(tokenStaker); emit TokenStakerRemoved(tokenStaker); } }// SPDX-License-Identifier: MIT // ERC721A Contracts v3.3.0 // Creator: Chiru Labs pragma solidity ^0.8.4; import "@openzeppelin/contracts/token/ERC721/IERC721.sol"; import "@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol"; import "@openzeppelin/contracts/token/ERC721/IERC721Receiver.sol"; import "@openzeppelin/contracts/utils/Address.sol"; import "@openzeppelin/contracts/utils/Context.sol"; import "@openzeppelin/contracts/utils/Strings.sol"; import "@openzeppelin/contracts/utils/introspection/ERC165.sol"; /** * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including * the Metadata and Enumerable extension. Built to optimize for lower gas during batch mints. * * Assumes serials are sequentially minted starting at 0 (e.g. 0, 1, 2, 3..). * * Assumes the number of issuable tokens (collection size) is capped and fits in a uint128. * * Does not support burning tokens to address(0). */ contract ERC721X is Context, ERC165, IERC721, IERC721Metadata { using Address for address; using Strings for uint256; struct TokenOwnership { address addr; uint64 startTimestamp; } struct AddressData { uint64 balance; uint64 numberMinted; } uint256 private currentIndex = 0; uint256 private burnedIndex = 0; uint256 internal collectionSize; uint256 internal maxBatchSize; // Token name string private _name; // Token symbol string private _symbol; // Mapping from token ID to ownership details // An empty struct value does not necessarily mean the token is unowned. See ownershipOf implementation for details. mapping(uint256 => TokenOwnership) private _ownerships; // Mapping owner address to address data mapping(address => AddressData) private _addressData; // Mapping from token ID to approved address mapping(uint256 => address) private _tokenApprovals; // Mapping from owner to operator approvals mapping(address => mapping(address => bool)) private _operatorApprovals; /** * @dev * `maxBatchSize` refers to how much a minter can mint at a time. * `collectionSize_` refers to how many tokens are in the collection. */ constructor( string memory name_, string memory symbol_, uint256 maxBatchSize_, uint256 collectionSize_ ) { require(collectionSize_ > 0, "ERC721X: collection must have a nonzero supply"); require(maxBatchSize_ > 0, "ERC721X: max batch size must be nonzero"); _name = name_; _symbol = symbol_; maxBatchSize = maxBatchSize_; collectionSize = collectionSize_; } /** * @dev See Remove store data in IERC721Enumerable {IERC721Enumerable-totalSupply}. */ function totalSupply() public view returns (uint256) { return currentIndex - burnedIndex; } /** * @dev See Remove store data in IERC721Enumerable {IERC721Enumerable-totalSupply}. */ function setCollectionSize(uint256 _collectionSize) internal { collectionSize = _collectionSize; } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) { return interfaceId == type(IERC721).interfaceId || interfaceId == type(IERC721Metadata).interfaceId || super.supportsInterface(interfaceId); } /** * @dev See {IERC721-balanceOf}. */ function balanceOf(address owner) public view override returns (uint256) { require(owner != address(0), "ERC721X: balance query for the zero address"); return uint256(_addressData[owner].balance); } function _numberMinted(address owner) internal view returns (uint256) { require(owner != address(0), "ERC721X: number minted query for the zero address"); return uint256(_addressData[owner].numberMinted); } function ownershipOf(uint256 tokenId) internal view returns (TokenOwnership memory) { require(_exists(tokenId), "ERC721X: owner query for nonexistent token"); uint256 lowestTokenToCheck; if (tokenId >= maxBatchSize) { lowestTokenToCheck = tokenId - maxBatchSize + 1; } for (uint256 curr = tokenId; curr >= lowestTokenToCheck; curr--) { TokenOwnership memory ownership = _ownerships[curr]; if (ownership.addr != address(0)) { return ownership; } } revert("ERC721X: unable to determine the owner of token"); } /** * @dev See {IERC721-ownerOf}. */ function ownerOf(uint256 tokenId) public view override returns (address) { return ownershipOf(tokenId).addr; } /** * @dev See {IERC721Metadata-name}. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev See {IERC721Metadata-symbol}. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev See {IERC721Metadata-tokenURI}. */ function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { require(_exists(tokenId), "ERC721Metadata: URI query for nonexistent token"); string memory baseURI = _baseURI(); return bytes(baseURI).length > 0 ? string(abi.encodePacked(baseURI, tokenId.toString(), ".json")): ""; } /** * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each * token will be the concatenation of the `baseURI` and the `tokenId`. Empty * by default, can be overriden in child contracts. */ function _baseURI() internal view virtual returns (string memory) { return ""; } /** * @dev See {IERC721-approve}. */ function approve(address to, uint256 tokenId) public virtual override { address owner = ERC721X.ownerOf(tokenId); require(to != owner, "ERC721X: approval to current owner"); require(_msgSender() == owner || isApprovedForAll(owner, _msgSender()),"ERC721X: approve caller is not owner nor approved for all"); _approve(to, tokenId, owner); } /** * @dev See {IERC721-getApproved}. */ function getApproved(uint256 tokenId) public view override returns (address) { require(_exists(tokenId), "ERC721X: approved query for nonexistent token"); return _tokenApprovals[tokenId]; } /** * @dev See {IERC721-setApprovalForAll}. */ function setApprovalForAll(address operator, bool approved) public virtual override { require(operator != _msgSender(), "ERC721X: approve to caller"); _operatorApprovals[_msgSender()][operator] = approved; emit ApprovalForAll(_msgSender(), operator, approved); } /** * @dev See {IERC721-isApprovedForAll}. */ function isApprovedForAll(address owner, address operator) public view virtual override returns (bool){ return _operatorApprovals[owner][operator]; } /** * @dev See {IERC721-transferFrom}. */ function transferFrom( address from, address to, uint256 tokenId ) public virtual override { _transfer(from, to, tokenId); } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom( address from, address to, uint256 tokenId ) public virtual override { safeTransferFrom(from, to, tokenId, ""); } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes memory _data ) public virtual override { _transfer(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721X: transfer to non ERC721Receiver implementer"); } /** * @dev Returns whether `tokenId` exists. * * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}. * * Tokens start existing when they are minted (`_mint`), */ function _exists(uint256 tokenId) internal view returns (bool) { return tokenId < currentIndex; } /** * @dev Returns whether `spender` is allowed to manage `tokenId`. * * Requirements: * * - `tokenId` must exist. */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) { require(_exists(tokenId), "ERC721X: operator query for nonexistent token"); TokenOwnership memory prevOwnership = ownershipOf(tokenId); return(spender == prevOwnership.addr || getApproved(tokenId) == spender || isApprovedForAll(prevOwnership.addr, spender)); //return (spender == owner || isApprovedForAll(owner, spender) || getApproved(tokenId) == spender); } function _safeMint(address to, uint256 quantity) internal { _safeMint(to, quantity, ""); } /** * @dev Mints `quantity` tokens and transfers them to `to`. * * Requirements: * * - there must be `quantity` tokens remaining unminted in the total collection. * - `to` cannot be the zero address. * - `quantity` cannot be larger than the max batch size. * * Emits a {Transfer} event. */ function _safeMint( address to, uint256 quantity, bytes memory _data ) internal { uint256 startTokenId = currentIndex; require(to != address(0), "ERC721X: mint to the zero address"); require(!_exists(startTokenId), "ERC721X: token already minted"); require(quantity <= maxBatchSize, "ERC721X: quantity to mint over than max batch size"); _beforeTokenTransfers(address(0), to, startTokenId, quantity); unchecked { _addressData[to].balance += uint64(quantity); _addressData[to].numberMinted += uint64(quantity); _ownerships[startTokenId] = TokenOwnership(to, uint64(block.timestamp)); uint256 updatedIndex = startTokenId; for (uint256 i = 0; i < quantity; i++) { emit Transfer(address(0), to, updatedIndex); require(_checkOnERC721Received(address(0), to, updatedIndex, _data), "ERC721X: transfer to non ERC721Receiver implementer"); updatedIndex++; } currentIndex = updatedIndex; _afterTokenTransfers(address(0), to, startTokenId, quantity); } } /** * @dev burn function Transfers `tokenId` from `from` to `unused address`. * * Requirements: * * - `to` cannot be the zero address and fix to unused address. * - `tokenId` token must be owned by `from`. * * Emits a {Transfer} event. */ function _burn( address from, uint256 tokenId ) internal virtual { address to = 0x000000000000000000000000000000000000dEaD; TokenOwnership memory prevOwnership = ownershipOf(tokenId); //bool isApprovedOrOwner = (_msgSender() == prevOwnership.addr || //getApproved(tokenId) == _msgSender() || //isApprovedForAll(prevOwnership.addr, _msgSender())); require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721X: burn caller is not owner nor approved"); require(prevOwnership.addr == from, "ERC721X: burn from incorrect owner"); _beforeTokenTransfers(from, to, tokenId, 1); // Clear approvals from the previous owner _approve(address(0), tokenId, prevOwnership.addr); _addressData[from].balance -= 1; _addressData[to].balance += 1; _ownerships[tokenId] = TokenOwnership(to, uint64(block.timestamp)); // If the ownership slot of tokenId+1 is not explicitly set, that means the transfer initiator owns it. // Set the slot of tokenId+1 explicitly in storage to maintain correctness for ownerOf(tokenId+1) calls. uint256 nextTokenId = tokenId + 1; if (_ownerships[nextTokenId].addr == address(0)) { if (_exists(nextTokenId)) { _ownerships[nextTokenId] = TokenOwnership( prevOwnership.addr, prevOwnership.startTimestamp ); } } emit Transfer(from, to, tokenId); burnedIndex++; _afterTokenTransfers(from, to, tokenId, 1); } /** * @dev Transfers `tokenId` from `from` to `to`. * * Requirements: * * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * * Emits a {Transfer} event. */ function _transfer( address from, address to, uint256 tokenId ) internal virtual { TokenOwnership memory prevOwnership = ownershipOf(tokenId); //bool isApprovedOrOwner = (_msgSender() == prevOwnership.addr || //getApproved(tokenId) == _msgSender() || //isApprovedForAll(prevOwnership.addr, _msgSender())); require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721X: transfer caller is not owner nor approved"); require(prevOwnership.addr == from, "ERC721X: transfer from incorrect owner"); require(to != address(0), "ERC721X: transfer to the zero address"); _beforeTokenTransfers(from, to, tokenId, 1); // Clear approvals from the previous owner _approve(address(0), tokenId, prevOwnership.addr); _addressData[from].balance -= 1; _addressData[to].balance += 1; _ownerships[tokenId] = TokenOwnership(to, uint64(block.timestamp)); // If the ownership slot of tokenId+1 is not explicitly set, that means the transfer initiator owns it. // Set the slot of tokenId+1 explicitly in storage to maintain correctness for ownerOf(tokenId+1) calls. uint256 nextTokenId = tokenId + 1; if (_ownerships[nextTokenId].addr == address(0)) { if (_exists(nextTokenId)) { _ownerships[nextTokenId] = TokenOwnership( prevOwnership.addr, prevOwnership.startTimestamp ); } } emit Transfer(from, to, tokenId); _afterTokenTransfers(from, to, tokenId, 1); } /** * @dev Approve `to` to operate on `tokenId` * * Emits a {Approval} event. */ function _approve( address to, uint256 tokenId, address owner ) private { _tokenApprovals[tokenId] = to; emit Approval(owner, to, tokenId); } uint256 public nextOwnerToExplicitlySet = 0; /** * @dev Explicitly set `owners` to eliminate loops in future calls of ownerOf(). */ function _setOwnersExplicit(uint256 quantity) internal { uint256 oldNextOwnerToSet = nextOwnerToExplicitlySet; require(quantity > 0, "quantity must be nonzero"); uint256 endIndex = oldNextOwnerToSet + quantity - 1; if (endIndex > collectionSize - 1) { endIndex = collectionSize - 1; } // We know if the last one in the group exists, all in the group exist, due to serial ordering. require(_exists(endIndex), "not enough minted yet for this cleanup"); for (uint256 i = oldNextOwnerToSet; i <= endIndex; i++) { if (_ownerships[i].addr == address(0)) { TokenOwnership memory ownership = ownershipOf(i); _ownerships[i] = TokenOwnership( ownership.addr, ownership.startTimestamp ); } } nextOwnerToExplicitlySet = endIndex + 1; } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received( address from, address to, uint256 tokenId, bytes memory _data ) private returns (bool) { if (to.isContract()) { try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, _data) returns (bytes4 retval) { return retval == IERC721Receiver(to).onERC721Received.selector; } catch (bytes memory reason) { if (reason.length == 0) { revert("ERC721X: transfer to non ERC721Receiver implementer"); } else { assembly { revert(add(32, reason), mload(reason)) } } } } else { return true; } } /** * @dev Hook that is called before a set of serially-ordered token ids are about to be transferred. This includes minting. * * startTokenId - the first token id to be transferred * quantity - the amount to be transferred * * Calling conditions: * * - When `from` and `to` are both non-zero, ``from``'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. */ function _beforeTokenTransfers( address from, address to, uint256 startTokenId, uint256 quantity ) internal virtual {} /** * @dev Hook that is called after a set of serially-ordered token ids have been transferred. This includes * minting. * * startTokenId - the first token id to be transferred * quantity - the amount to be transferred * * Calling conditions: * * - when `from` and `to` are both non-zero. * - `from` and `to` are never both zero. */ function _afterTokenTransfers( address from, address to, uint256 startTokenId, uint256 quantity ) internal virtual {} }// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; import {RevokableOperatorFilterer} from "./RevokableOperatorFilterer.sol"; import {CANONICAL_CORI_SUBSCRIPTION, CANONICAL_OPERATOR_FILTER_REGISTRY_ADDRESS} from "./lib/Constants.sol"; /** * @title RevokableDefaultOperatorFilterer * @notice Inherits from RevokableOperatorFilterer and automatically subscribes to the default OpenSea subscription. * Note that OpenSea will disable creator earnings enforcement if filtered operators begin fulfilling orders * on-chain, eg, if the registry is revoked or bypassed. */ abstract contract RevokableDefaultOperatorFilterer is RevokableOperatorFilterer { /// @dev The constructor that is called when the contract is being deployed. constructor() RevokableOperatorFilterer(CANONICAL_OPERATOR_FILTER_REGISTRY_ADDRESS, CANONICAL_CORI_SUBSCRIPTION, true) {} } // SPDX-License-Identifier: MIT pragma solidity ^0.8.13; import {IOperatorFilterRegistry} from "./IOperatorFilterRegistry.sol"; /** * @title UpdatableOperatorFilterer * @notice Abstract contract whose constructor automatically registers and optionally subscribes to or copies another * registrant's entries in the OperatorFilterRegistry. This contract allows the Owner to update the * OperatorFilterRegistry address via updateOperatorFilterRegistryAddress, including to the zero address, * which will bypass registry checks. * Note that OpenSea will still disable creator earnings enforcement if filtered operators begin fulfilling orders * on-chain, eg, if the registry is revoked or bypassed. * @dev This smart contract is meant to be inherited by token contracts so they can use the following: * - `onlyAllowedOperator` modifier for `transferFrom` and `safeTransferFrom` methods. * - `onlyAllowedOperatorApproval` modifier for `approve` and `setApprovalForAll` methods. */ abstract contract UpdatableOperatorFilterer { /// @dev Emitted when an operator is not allowed. error OperatorNotAllowed(address operator); /// @dev Emitted when someone other than the owner is trying to call an only owner function. error OnlyOwner(); event OperatorFilterRegistryAddressUpdated(address newRegistry); IOperatorFilterRegistry public operatorFilterRegistry; /// @dev The constructor that is called when the contract is being deployed. constructor(address _registry, address subscriptionOrRegistrantToCopy, bool subscribe) { IOperatorFilterRegistry registry = IOperatorFilterRegistry(_registry); operatorFilterRegistry = registry; // If an inheriting token contract is deployed to a network without the registry deployed, the modifier // will not revert, but the contract will need to be registered with the registry once it is deployed in // order for the modifier to filter addresses. if (address(registry).code.length > 0) { if (subscribe) { registry.registerAndSubscribe(address(this), subscriptionOrRegistrantToCopy); } else { if (subscriptionOrRegistrantToCopy != address(0)) { registry.registerAndCopyEntries(address(this), subscriptionOrRegistrantToCopy); } else { registry.register(address(this)); } } } } /** * @dev A helper function to check if the operator is allowed. */ modifier onlyAllowedOperator(address from) virtual { // Allow spending tokens from addresses with balance // Note that this still allows listings and marketplaces with escrow to transfer tokens if transferred // from an EOA. if (from != msg.sender) { _checkFilterOperator(msg.sender); } _; } /** * @dev A helper function to check if the operator approval is allowed. */ modifier onlyAllowedOperatorApproval(address operator) virtual { _checkFilterOperator(operator); _; } /** * @notice Update the address that the contract will make OperatorFilter checks against. When set to the zero * address, checks will be bypassed. OnlyOwner. */ function updateOperatorFilterRegistryAddress(address newRegistry) public virtual { if (msg.sender != owner()) { revert OnlyOwner(); } operatorFilterRegistry = IOperatorFilterRegistry(newRegistry); emit OperatorFilterRegistryAddressUpdated(newRegistry); } /** * @dev Assume the contract has an owner, but leave specific Ownable implementation up to inheriting contract. */ function owner() public view virtual returns (address); /** * @dev A helper function to check if the operator is allowed. */ function _checkFilterOperator(address operator) internal view virtual { IOperatorFilterRegistry registry = operatorFilterRegistry; // Check registry code length to facilitate testing in environments without a deployed registry. if (address(registry) != address(0) && address(registry).code.length > 0) { // under normal circumstances, this function will revert rather than return false, but inheriting contracts // may specify their own OperatorFilterRegistry implementations, which may behave differently if (!registry.isOperatorAllowed(address(this), operator)) { revert OperatorNotAllowed(operator); } } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract Pausable is Context { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ constructor() { _paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { require(!paused(), "Pausable: paused"); } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { require(paused(), "Pausable: not paused"); } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/SafeMath.sol) pragma solidity ^0.8.0; // CAUTION // This version of SafeMath should only be used with Solidity 0.8 or later, // because it relies on the compiler's built in overflow checks. /** * @dev Wrappers over Solidity's arithmetic operations. * * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler * now has built in overflow checking. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { return a + b; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { return a * b; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { unchecked { require(b <= a, errorMessage); return a - b; } } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { unchecked { require(b > 0, errorMessage); return a / b; } } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { unchecked { require(b > 0, errorMessage); return a % b; } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value)); } /** * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value)); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Compatible with tokens that require the approval to be set to * 0 before setting it to a non-zero value. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0)); _callOptionalReturn(token, approvalCall); } } /** * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`. * Revert on invalid signature. */ function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token)); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (interfaces/IERC2981.sol) pragma solidity ^0.8.0; import "../utils/introspection/IERC165.sol"; /** * @dev Interface for the NFT Royalty Standard. * * A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal * support for royalty payments across all NFT marketplaces and ecosystem participants. * * _Available since v4.5._ */ interface IERC2981 is IERC165 { /** * @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of * exchange. The royalty amount is denominated and should be paid in that same unit of exchange. */ function royaltyInfo(uint256 tokenId, uint256 salePrice) external view returns (address receiver, uint256 royaltyAmount); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.13; interface IOperatorFilterRegistry { /** * @notice Returns true if operator is not filtered for a given token, either by address or codeHash. Also returns * true if supplied registrant address is not registered. */ function isOperatorAllowed(address registrant, address operator) external view returns (bool); /** * @notice Registers an address with the registry. May be called by address itself or by EIP-173 owner. */ function register(address registrant) external; /** * @notice Registers an address with the registry and "subscribes" to another address's filtered operators and codeHashes. */ function registerAndSubscribe(address registrant, address subscription) external; /** * @notice Registers an address with the registry and copies the filtered operators and codeHashes from another * address without subscribing. */ function registerAndCopyEntries(address registrant, address registrantToCopy) external; /** * @notice Unregisters an address with the registry and removes its subscription. May be called by address itself or by EIP-173 owner. * Note that this does not remove any filtered addresses or codeHashes. * Also note that any subscriptions to this registrant will still be active and follow the existing filtered addresses and codehashes. */ function unregister(address addr) external; /** * @notice Update an operator address for a registered address - when filtered is true, the operator is filtered. */ function updateOperator(address registrant, address operator, bool filtered) external; /** * @notice Update multiple operators for a registered address - when filtered is true, the operators will be filtered. Reverts on duplicates. */ function updateOperators(address registrant, address[] calldata operators, bool filtered) external; /** * @notice Update a codeHash for a registered address - when filtered is true, the codeHash is filtered. */ function updateCodeHash(address registrant, bytes32 codehash, bool filtered) external; /** * @notice Update multiple codeHashes for a registered address - when filtered is true, the codeHashes will be filtered. Reverts on duplicates. */ function updateCodeHashes(address registrant, bytes32[] calldata codeHashes, bool filtered) external; /** * @notice Subscribe an address to another registrant's filtered operators and codeHashes. Will remove previous * subscription if present. * Note that accounts with subscriptions may go on to subscribe to other accounts - in this case, * subscriptions will not be forwarded. Instead the former subscription's existing entries will still be * used. */ function subscribe(address registrant, address registrantToSubscribe) external; /** * @notice Unsubscribe an address from its current subscribed registrant, and optionally copy its filtered operators and codeHashes. */ function unsubscribe(address registrant, bool copyExistingEntries) external; /** * @notice Get the subscription address of a given registrant, if any. */ function subscriptionOf(address addr) external returns (address registrant); /** * @notice Get the set of addresses subscribed to a given registrant. * Note that order is not guaranteed as updates are made. */ function subscribers(address registrant) external returns (address[] memory); /** * @notice Get the subscriber at a given index in the set of addresses subscribed to a given registrant. * Note that order is not guaranteed as updates are made. */ function subscriberAt(address registrant, uint256 index) external returns (address); /** * @notice Copy filtered operators and codeHashes from a different registrantToCopy to addr. */ function copyEntriesOf(address registrant, address registrantToCopy) external; /** * @notice Returns true if operator is filtered by a given address or its subscription. */ function isOperatorFiltered(address registrant, address operator) external returns (bool); /** * @notice Returns true if the hash of an address's code is filtered by a given address or its subscription. */ function isCodeHashOfFiltered(address registrant, address operatorWithCode) external returns (bool); /** * @notice Returns true if a codeHash is filtered by a given address or its subscription. */ function isCodeHashFiltered(address registrant, bytes32 codeHash) external returns (bool); /** * @notice Returns a list of filtered operators for a given address or its subscription. */ function filteredOperators(address addr) external returns (address[] memory); /** * @notice Returns the set of filtered codeHashes for a given address or its subscription. * Note that order is not guaranteed as updates are made. */ function filteredCodeHashes(address addr) external returns (bytes32[] memory); /** * @notice Returns the filtered operator at the given index of the set of filtered operators for a given address or * its subscription. * Note that order is not guaranteed as updates are made. */ function filteredOperatorAt(address registrant, uint256 index) external returns (address); /** * @notice Returns the filtered codeHash at the given index of the list of filtered codeHashes for a given address or * its subscription. * Note that order is not guaranteed as updates are made. */ function filteredCodeHashAt(address registrant, uint256 index) external returns (bytes32); /** * @notice Returns true if an address has registered */ function isRegistered(address addr) external returns (bool); /** * @dev Convenience method to compute the code hash of an arbitrary contract */ function codeHashOf(address addr) external returns (bytes32); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.13; address constant CANONICAL_OPERATOR_FILTER_REGISTRY_ADDRESS = 0x000000000000AAeB6D7670E522A718067333cd4E; address constant CANONICAL_CORI_SUBSCRIPTION = 0x3cc6CddA760b79bAfa08dF41ECFA224f810dCeB6; // SPDX-License-Identifier: MIT pragma solidity ^0.8.13; import {UpdatableOperatorFilterer} from "./UpdatableOperatorFilterer.sol"; import {IOperatorFilterRegistry} from "./IOperatorFilterRegistry.sol"; /** * @title RevokableOperatorFilterer * @notice This contract is meant to allow contracts to permanently skip OperatorFilterRegistry checks if desired. The * Registry itself has an "unregister" function, but if the contract is ownable, the owner can re-register at * any point. As implemented, this abstract contract allows the contract owner to permanently skip the * OperatorFilterRegistry checks by calling revokeOperatorFilterRegistry. Once done, the registry * address cannot be further updated. * Note that OpenSea will still disable creator earnings enforcement if filtered operators begin fulfilling orders * on-chain, eg, if the registry is revoked or bypassed. */ abstract contract RevokableOperatorFilterer is UpdatableOperatorFilterer { /// @dev Emitted when the registry has already been revoked. error RegistryHasBeenRevoked(); /// @dev Emitted when the initial registry address is attempted to be set to the zero address. error InitialRegistryAddressCannotBeZeroAddress(); event OperatorFilterRegistryRevoked(); bool public isOperatorFilterRegistryRevoked; /// @dev The constructor that is called when the contract is being deployed. constructor(address _registry, address subscriptionOrRegistrantToCopy, bool subscribe) UpdatableOperatorFilterer(_registry, subscriptionOrRegistrantToCopy, subscribe) { // don't allow creating a contract with a permanently revoked registry if (_registry == address(0)) { revert InitialRegistryAddressCannotBeZeroAddress(); } } /** * @notice Update the address that the contract will make OperatorFilter checks against. When set to the zero * address, checks will be permanently bypassed, and the address cannot be updated again. OnlyOwner. */ function updateOperatorFilterRegistryAddress(address newRegistry) public override { if (msg.sender != owner()) { revert OnlyOwner(); } // if registry has been revoked, do not allow further updates if (isOperatorFilterRegistryRevoked) { revert RegistryHasBeenRevoked(); } operatorFilterRegistry = IOperatorFilterRegistry(newRegistry); emit OperatorFilterRegistryAddressUpdated(newRegistry); } /** * @notice Revoke the OperatorFilterRegistry address, permanently bypassing checks. OnlyOwner. */ function revokeOperatorFilterRegistry() public { if (msg.sender != owner()) { revert OnlyOwner(); } // if registry has been revoked, do not allow further updates if (isOperatorFilterRegistryRevoked) { revert RegistryHasBeenRevoked(); } // set to zero address to bypass checks operatorFilterRegistry = IOperatorFilterRegistry(address(0)); isOperatorFilterRegistryRevoked = true; emit OperatorFilterRegistryRevoked(); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/structs/EnumerableSet.sol) // This file was procedurally generated from scripts/generate/templates/EnumerableSet.js. pragma solidity ^0.8.0; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ```solidity * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`) * and `uint256` (`UintSet`) are supported. * * [WARNING] * ==== * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure * unusable. * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info. * * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an * array of EnumerableSet. * ==== */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position of the value in the `values` array, plus 1 because index 0 // means a value is not in the set. mapping(bytes32 => uint256) _indexes; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._indexes[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We read and store the value's index to prevent multiple reads from the same storage slot uint256 valueIndex = set._indexes[value]; if (valueIndex != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; if (lastIndex != toDeleteIndex) { bytes32 lastValue = set._values[lastIndex]; // Move the last value to the index where the value to delete is set._values[toDeleteIndex] = lastValue; // Update the index for the moved value set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex } // Delete the slot where the moved value was stored set._values.pop(); // Delete the index for the deleted slot delete set._indexes[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._indexes[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { return set._values[index]; } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function _values(Set storage set) private view returns (bytes32[] memory) { return set._values; } // Bytes32Set struct Bytes32Set { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _add(set._inner, value); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _remove(set._inner, value); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) { return _contains(set._inner, value); } /** * @dev Returns the number of values in the set. O(1). */ function length(Bytes32Set storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) { return _at(set._inner, index); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(Bytes32Set storage set) internal view returns (bytes32[] memory) { bytes32[] memory store = _values(set._inner); bytes32[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, index)))); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(AddressSet storage set) internal view returns (address[] memory) { bytes32[] memory store = _values(set._inner); address[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values in the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(UintSet storage set) internal view returns (uint256[] memory) { bytes32[] memory store = _values(set._inner); uint256[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol) pragma solidity ^0.8.0; import "./IERC165.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` * * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation. */ abstract contract ERC165 is IERC165 { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IERC165).interfaceId; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol) pragma solidity ^0.8.0; /** * @title ERC721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC721 asset contracts. */ interface IERC721Receiver { /** * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom} * by `operator` from `from`, this function is called. * * It must return its Solidity selector to confirm the token transfer. * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted. * * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`. */ function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol) pragma solidity ^0.8.0; import "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional metadata extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Metadata is IERC721 { /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.0; import "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes calldata data ) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10**64) { value /= 10**64; result += 64; } if (value >= 10**32) { value /= 10**32; result += 32; } if (value >= 10**16) { value /= 10**16; result += 16; } if (value >= 10**8) { value /= 10**8; result += 8; } if (value >= 10**4) { value /= 10**4; result += 4; } if (value >= 10**2) { value /= 10**2; result += 2; } if (value >= 10**1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0); } } }
File 4 of 7: BlurExchangeV2
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { Ownable2StepUpgradeable } from "lib/openzeppelin-contracts-upgradeable/contracts/access/Ownable2StepUpgradeable.sol"; import { UUPSUpgradeable } from "lib/openzeppelin-contracts-upgradeable/contracts/proxy/utils/UUPSUpgradeable.sol"; import { Executor } from "./Executor.sol"; import "./lib/Constants.sol"; import { TakeAsk, TakeBid, TakeAskSingle, TakeBidSingle, Order, Exchange, Fees, FeeRate, AssetType, OrderType, Transfer, FungibleTransfers, StateUpdate, AtomicExecution, Cancel, Listing } from "./lib/Structs.sol"; import { IBlurExchangeV2 } from "./interfaces/IBlurExchangeV2.sol"; import { ReentrancyGuardUpgradeable } from "./lib/ReentrancyGuardUpgradeable.sol"; contract BlurExchangeV2 is IBlurExchangeV2, Ownable2StepUpgradeable, UUPSUpgradeable, ReentrancyGuardUpgradeable, Executor { address public governor; // required by the OZ UUPS module function _authorizeUpgrade(address) internal override onlyOwner {} constructor(address delegate, address pool, address proxy) Executor(delegate, pool, proxy) { _disableInitializers(); } function initialize() external initializer { __UUPSUpgradeable_init(); __Ownable_init(); __Reentrancy_init(); verifyDomain(); } modifier onlyGovernor() { if (msg.sender != governor) { revert Unauthorized(); } _; } /** * @notice Governor only function to set the protocol fee rate and recipient * @param recipient Protocol fee recipient * @param rate Protocol fee rate */ function setProtocolFee(address recipient, uint16 rate) external onlyGovernor { if (rate > _MAX_PROTOCOL_FEE_RATE) { revert ProtocolFeeTooHigh(); } protocolFee = FeeRate(recipient, rate); emit NewProtocolFee(recipient, rate); } /** * @notice Admin only function to set the governor of the exchange * @param _governor Address of governor to set */ function setGovernor(address _governor) external onlyOwner { governor = _governor; emit NewGovernor(_governor); } /** * @notice Admin only function to grant or revoke the approval of an oracle * @param oracle Address to set approval of * @param approved If the oracle should be approved or not */ function setOracle(address oracle, bool approved) external onlyOwner { if (approved) { oracles[oracle] = 1; } else { oracles[oracle] = 0; } emit SetOracle(oracle, approved); } /** * @notice Admin only function to set the block range * @param _blockRange Block range that oracle signatures are valid for */ function setBlockRange(uint256 _blockRange) external onlyOwner { blockRange = _blockRange; emit NewBlockRange(_blockRange); } /** * @notice Cancel listings by recording their fulfillment * @param cancels List of cancels to execute */ function cancelTrades(Cancel[] memory cancels) external { uint256 cancelsLength = cancels.length; for (uint256 i; i < cancelsLength; ) { Cancel memory cancel = cancels[i]; amountTaken[msg.sender][cancel.hash][cancel.index] += cancel.amount; emit CancelTrade(msg.sender, cancel.hash, cancel.index, cancel.amount); unchecked { ++i; } } } /** * @notice Cancels all orders by incrementing caller nonce */ function incrementNonce() external { emit NonceIncremented(msg.sender, ++nonces[msg.sender]); } /*////////////////////////////////////////////////////////////// EXECUTION WRAPPERS //////////////////////////////////////////////////////////////*/ /** * @notice Wrapper of _takeAsk that verifies an oracle signature of the calldata before executing * @param inputs Inputs for _takeAsk * @param oracleSignature Oracle signature of inputs */ function takeAsk( TakeAsk memory inputs, bytes calldata oracleSignature ) public payable nonReentrant verifyOracleSignature(_hashCalldata(msg.sender), oracleSignature) { _takeAsk( inputs.orders, inputs.exchanges, inputs.takerFee, inputs.signatures, inputs.tokenRecipient ); } /** * @notice Wrapper of _takeBid that verifies an oracle signature of the calldata before executing * @param inputs Inputs for _takeBid * @param oracleSignature Oracle signature of inputs */ function takeBid( TakeBid memory inputs, bytes calldata oracleSignature ) public verifyOracleSignature(_hashCalldata(msg.sender), oracleSignature) { _takeBid(inputs.orders, inputs.exchanges, inputs.takerFee, inputs.signatures); } /** * @notice Wrapper of _takeAskSingle that verifies an oracle signature of the calldata before executing * @param inputs Inputs for _takeAskSingle * @param oracleSignature Oracle signature of inputs */ function takeAskSingle( TakeAskSingle memory inputs, bytes calldata oracleSignature ) public payable nonReentrant verifyOracleSignature(_hashCalldata(msg.sender), oracleSignature) { _takeAskSingle( inputs.order, inputs.exchange, inputs.takerFee, inputs.signature, inputs.tokenRecipient ); } /** * @notice Wrapper of _takeBidSingle that verifies an oracle signature of the calldata before executing * @param inputs Inputs for _takeBidSingle * @param oracleSignature Oracle signature of inputs */ function takeBidSingle( TakeBidSingle memory inputs, bytes calldata oracleSignature ) external verifyOracleSignature(_hashCalldata(msg.sender), oracleSignature) { _takeBidSingle(inputs.order, inputs.exchange, inputs.takerFee, inputs.signature); } /*////////////////////////////////////////////////////////////// EXECUTION POOL WRAPPERS //////////////////////////////////////////////////////////////*/ /** * @notice Wrapper of takeAskSingle that withdraws ETH from the caller's pool balance prior to executing * @param inputs Inputs for takeAskSingle * @param oracleSignature Oracle signature of inputs * @param amountToWithdraw Amount of ETH to withdraw from the pool */ function takeAskSinglePool( TakeAskSingle memory inputs, bytes calldata oracleSignature, uint256 amountToWithdraw ) external payable { _withdrawFromPool(msg.sender, amountToWithdraw); takeAskSingle(inputs, oracleSignature); } /** * @notice Wrapper of takeAsk that withdraws ETH from the caller's pool balance prior to executing * @param inputs Inputs for takeAsk * @param oracleSignature Oracle signature of inputs * @param amountToWithdraw Amount of ETH to withdraw from the pool */ function takeAskPool( TakeAsk memory inputs, bytes calldata oracleSignature, uint256 amountToWithdraw ) external payable { _withdrawFromPool(msg.sender, amountToWithdraw); takeAsk(inputs, oracleSignature); } /*////////////////////////////////////////////////////////////// EXECUTION FUNCTIONS //////////////////////////////////////////////////////////////*/ /** * @notice Take a single ask * @param order Order of listing to fulfill * @param exchange Exchange struct indicating the listing to take and the parameters to match it with * @param takerFee Taker fee to be taken * @param signature Order signature * @param tokenRecipient Address to receive the token transfer */ function _takeAskSingle( Order memory order, Exchange memory exchange, FeeRate memory takerFee, bytes memory signature, address tokenRecipient ) internal { Fees memory fees = Fees(protocolFee, takerFee); Listing memory listing = exchange.listing; uint256 takerAmount = exchange.taker.amount; /* Validate the order and listing, revert if not. */ if (!_validateOrderAndListing(order, OrderType.ASK, exchange, signature, fees)) { revert InvalidOrder(); } /* Create single execution batch and insert the transfer. */ bytes memory executionBatch = _initializeSingleExecution( order, OrderType.ASK, listing.tokenId, takerAmount, tokenRecipient ); /* Set the fulfillment of the order. */ unchecked { amountTaken[order.trader][bytes32(order.salt)][listing.index] += takerAmount; } /* Execute the token transfers, revert if not successful. */ { bool[] memory successfulTransfers = _executeNonfungibleTransfers(executionBatch, 1); if (!successfulTransfers[0]) { revert TokenTransferFailed(); } } ( uint256 totalPrice, uint256 protocolFeeAmount, uint256 makerFeeAmount, uint256 takerFeeAmount ) = _computeFees(listing.price, takerAmount, order.makerFee, fees); /* If there are insufficient funds to cover the price with the fees, revert. */ unchecked { if (address(this).balance < totalPrice + takerFeeAmount) { revert InsufficientFunds(); } } /* Execute ETH transfers. */ _transferETH(fees.protocolFee.recipient, protocolFeeAmount); _transferETH(fees.takerFee.recipient, takerFeeAmount); _transferETH(order.makerFee.recipient, makerFeeAmount); unchecked { _transferETH(order.trader, totalPrice - makerFeeAmount - protocolFeeAmount); } _emitExecutionEvent(executionBatch, order, listing.index, totalPrice, fees, OrderType.ASK); /* Return dust. */ _transferETH(msg.sender, address(this).balance); } /** * @notice Take a single bid * @param order Order of listing to fulfill * @param exchange Exchange struct indicating the listing to take and the parameters to match it with * @param takerFee Taker fee to be taken * @param signature Order signature */ function _takeBidSingle( Order memory order, Exchange memory exchange, FeeRate memory takerFee, bytes memory signature ) internal { Fees memory fees = Fees(protocolFee, takerFee); Listing memory listing = exchange.listing; uint256 takerAmount = exchange.taker.amount; /* Validate the order and listing, revert if not. */ if (!_validateOrderAndListing(order, OrderType.BID, exchange, signature, fees)) { revert InvalidOrder(); } /* Create single execution batch and insert the transfer. */ bytes memory executionBatch = _initializeSingleExecution( order, OrderType.BID, exchange.taker.tokenId, takerAmount, msg.sender ); /* Execute the token transfers, revert if not successful. */ { bool[] memory successfulTransfers = _executeNonfungibleTransfers(executionBatch, 1); if (!successfulTransfers[0]) { revert TokenTransferFailed(); } } ( uint256 totalPrice, uint256 protocolFeeAmount, uint256 makerFeeAmount, uint256 takerFeeAmount ) = _computeFees(listing.price, takerAmount, order.makerFee, fees); /* Execute pool transfers and set the fulfillment of the order. */ address trader = order.trader; _transferPool(trader, order.makerFee.recipient, makerFeeAmount); _transferPool(trader, fees.takerFee.recipient, takerFeeAmount); _transferPool(trader, fees.protocolFee.recipient, protocolFeeAmount); unchecked { _transferPool(trader, msg.sender, totalPrice - takerFeeAmount - protocolFeeAmount); amountTaken[trader][bytes32(order.salt)][listing.index] += exchange.taker.amount; } _emitExecutionEvent(executionBatch, order, listing.index, totalPrice, fees, OrderType.BID); } /** * @notice Take multiple asks; efficiently verifying and executing the transfers in bulk * @param orders List of orders * @param exchanges List of exchanges indicating the listing to take and the parameters to match it with * @param takerFee Taker fee to be taken on each exchange * @param signatures Bytes array of order signatures * @param tokenRecipient Address to receive the tokens purchased */ function _takeAsk( Order[] memory orders, Exchange[] memory exchanges, FeeRate memory takerFee, bytes memory signatures, address tokenRecipient ) internal { Fees memory fees = Fees(protocolFee, takerFee); /** * Validate all the orders potentially used in the execution and * initialize the arrays for pending fulfillments. */ (bool[] memory validOrders, uint256[][] memory pendingAmountTaken) = _validateOrders( orders, OrderType.ASK, signatures, fees ); uint256 exchangesLength = exchanges.length; /* Initialize the execution batch structs. */ ( bytes memory executionBatch, FungibleTransfers memory fungibleTransfers ) = _initializeBatch(exchangesLength, OrderType.ASK, tokenRecipient); Order memory order; Exchange memory exchange; uint256 remainingETH = address(this).balance; for (uint256 i; i < exchangesLength; ) { exchange = exchanges[i]; order = orders[exchange.index]; /* Check the listing and exchange is valid and its parent order has already been validated. */ if ( _validateListingFromBatch( order, OrderType.ASK, exchange, validOrders, pendingAmountTaken ) ) { /* Insert the transfers into the batch. */ bool inserted; (remainingETH, inserted) = _insertExecutionAsk( executionBatch, fungibleTransfers, order, exchange, fees, remainingETH ); if (inserted) { unchecked { pendingAmountTaken[exchange.index][exchange.listing.index] += exchange .taker .amount; } } } unchecked { ++i; } } /* Execute all transfers. */ _executeBatchTransfer(executionBatch, fungibleTransfers, fees, OrderType.ASK); /* Return dust. */ _transferETH(msg.sender, address(this).balance); } /** * @notice Take multiple bids; efficiently verifying and executing the transfers in bulk * @param orders List of orders * @param exchanges List of exchanges indicating the listing to take and the parameters to match it with * @param takerFee Taker fee to be taken on each exchange * @param signatures Bytes array of order signatures */ function _takeBid( Order[] memory orders, Exchange[] memory exchanges, FeeRate memory takerFee, bytes memory signatures ) internal { Fees memory fees = Fees(protocolFee, takerFee); /** * Validate all the orders potentially used in the execution and * initialize the arrays for pending fulfillments. */ (bool[] memory validOrders, uint256[][] memory pendingAmountTaken) = _validateOrders( orders, OrderType.BID, signatures, fees ); uint256 exchangesLength = exchanges.length; /* Initialize the execution batch structs. */ ( bytes memory executionBatch, FungibleTransfers memory fungibleTransfers ) = _initializeBatch(exchangesLength, OrderType.BID, msg.sender); Order memory order; Exchange memory exchange; for (uint256 i; i < exchangesLength; ) { exchange = exchanges[i]; order = orders[exchange.index]; /* Check the listing and exchange is valid and its parent order has already been validated. */ if ( _validateListingFromBatch( order, OrderType.BID, exchange, validOrders, pendingAmountTaken ) ) { /* Insert the transfers into the batch. */ _insertExecutionBid(executionBatch, fungibleTransfers, order, exchange, fees); /* Record the pending fulfillment. */ unchecked { pendingAmountTaken[exchange.index][exchange.listing.index] += exchange .taker .amount; } } unchecked { ++i; } } /* Execute all transfers. */ _executeBatchTransfer(executionBatch, fungibleTransfers, fees, OrderType.BID); } /*////////////////////////////////////////////////////////////// EXECUTION HELPERS //////////////////////////////////////////////////////////////*/ /** * @notice Initialize the ExecutionBatch and FungibleTransfers objects for bulk execution * @param exchangesLength Number of exchanges * @param orderType Order type * @param taker Order taker address */ function _initializeBatch( uint256 exchangesLength, OrderType orderType, address taker ) internal pure returns (bytes memory executionBatch, FungibleTransfers memory fungibleTransfers) { /* Initialize the batch. Constructing it manually in calldata packing allows for cheaper delegate execution. */ uint256 arrayLength = Transfer_size * exchangesLength + One_word; uint256 executionBatchLength = ExecutionBatch_base_size + arrayLength; executionBatch = new bytes(executionBatchLength); assembly { let calldataPointer := add(executionBatch, ExecutionBatch_calldata_offset) mstore(add(calldataPointer, ExecutionBatch_taker_offset), taker) mstore(add(calldataPointer, ExecutionBatch_orderType_offset), orderType) mstore(add(calldataPointer, ExecutionBatch_transfers_pointer_offset), ExecutionBatch_transfers_offset) // set the transfers pointer mstore(add(calldataPointer, ExecutionBatch_transfers_offset), exchangesLength) // set the length of the transfers array } /* Initialize the fungible transfers object. */ AtomicExecution[] memory executions = new AtomicExecution[](exchangesLength); address[] memory feeRecipients = new address[](exchangesLength); address[] memory makers = new address[](exchangesLength); uint256[] memory makerTransfers = new uint256[](exchangesLength); uint256[] memory feeTransfers = new uint256[](exchangesLength); fungibleTransfers = FungibleTransfers({ totalProtocolFee: 0, totalSellerTransfer: 0, totalTakerFee: 0, feeRecipientId: 0, feeRecipients: feeRecipients, makerId: 0, makers: makers, feeTransfers: feeTransfers, makerTransfers: makerTransfers, executions: executions }); } /** * @notice Initialize the ExecutionBatch object for a single execution * @param order Order to take a Listing from * @param orderType Order type * @param tokenId Token id * @param amount ERC721/ERC1155 amount * @param taker Order taker address */ function _initializeSingleExecution( Order memory order, OrderType orderType, uint256 tokenId, uint256 amount, address taker ) internal pure returns (bytes memory executionBatch) { /* Initialize the batch. Constructing it manually in calldata packing allows for cheaper delegate execution. */ uint256 arrayLength = Transfer_size + One_word; uint256 executionBatchLength = ExecutionBatch_base_size + arrayLength; executionBatch = new bytes(executionBatchLength); assembly { let calldataPointer := add(executionBatch, ExecutionBatch_calldata_offset) mstore(add(calldataPointer, ExecutionBatch_taker_offset), taker) mstore(add(calldataPointer, ExecutionBatch_orderType_offset), orderType) mstore(add(calldataPointer, ExecutionBatch_transfers_pointer_offset), ExecutionBatch_transfers_offset) // set the transfers pointer mstore(add(calldataPointer, ExecutionBatch_transfers_offset), 1) // set the length of the transfers array } /* Insert the transfer into the batch. */ _insertNonfungibleTransfer(executionBatch, order, tokenId, amount); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (access/Ownable2Step.sol) pragma solidity ^0.8.0; import "./OwnableUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership} and {acceptOwnership}. * * This module is used through inheritance. It will make available all functions * from parent (Ownable). */ abstract contract Ownable2StepUpgradeable is Initializable, OwnableUpgradeable { function __Ownable2Step_init() internal onlyInitializing { __Ownable_init_unchained(); } function __Ownable2Step_init_unchained() internal onlyInitializing { } address private _pendingOwner; event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner); /** * @dev Returns the address of the pending owner. */ function pendingOwner() public view virtual returns (address) { return _pendingOwner; } /** * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one. * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual override onlyOwner { _pendingOwner = newOwner; emit OwnershipTransferStarted(owner(), newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner. * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual override { delete _pendingOwner; super._transferOwnership(newOwner); } /** * @dev The new owner accepts the ownership transfer. */ function acceptOwnership() external { address sender = _msgSender(); require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner"); _transferOwnership(sender); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (proxy/utils/UUPSUpgradeable.sol) pragma solidity ^0.8.0; import "../../interfaces/draft-IERC1822Upgradeable.sol"; import "../ERC1967/ERC1967UpgradeUpgradeable.sol"; import "./Initializable.sol"; /** * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy. * * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing * `UUPSUpgradeable` with a custom implementation of upgrades. * * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism. * * _Available since v4.1._ */ abstract contract UUPSUpgradeable is Initializable, IERC1822ProxiableUpgradeable, ERC1967UpgradeUpgradeable { function __UUPSUpgradeable_init() internal onlyInitializing { } function __UUPSUpgradeable_init_unchained() internal onlyInitializing { } /// @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment address private immutable __self = address(this); /** * @dev Check that the execution is being performed through a delegatecall call and that the execution context is * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to * fail. */ modifier onlyProxy() { require(address(this) != __self, "Function must be called through delegatecall"); require(_getImplementation() == __self, "Function must be called through active proxy"); _; } /** * @dev Check that the execution is not being performed through a delegate call. This allows a function to be * callable on the implementing contract but not through proxies. */ modifier notDelegated() { require(address(this) == __self, "UUPSUpgradeable: must not be called through delegatecall"); _; } /** * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the * implementation. It is used to validate the implementation's compatibility when performing an upgrade. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier. */ function proxiableUUID() external view virtual override notDelegated returns (bytes32) { return _IMPLEMENTATION_SLOT; } /** * @dev Upgrade the implementation of the proxy to `newImplementation`. * * Calls {_authorizeUpgrade}. * * Emits an {Upgraded} event. */ function upgradeTo(address newImplementation) external virtual onlyProxy { _authorizeUpgrade(newImplementation); _upgradeToAndCallUUPS(newImplementation, new bytes(0), false); } /** * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call * encoded in `data`. * * Calls {_authorizeUpgrade}. * * Emits an {Upgraded} event. */ function upgradeToAndCall(address newImplementation, bytes memory data) external payable virtual onlyProxy { _authorizeUpgrade(newImplementation); _upgradeToAndCallUUPS(newImplementation, data, true); } /** * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by * {upgradeTo} and {upgradeToAndCall}. * * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}. * * ```solidity * function _authorizeUpgrade(address) internal override onlyOwner {} * ``` */ function _authorizeUpgrade(address newImplementation) internal virtual; /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { Validation } from "./Validation.sol"; import "./lib/Constants.sol"; import { Order, Exchange, FungibleTransfers, StateUpdate, AtomicExecution, AssetType, Fees, FeeRate, Listing, Taker, Transfer, OrderType } from "./lib/Structs.sol"; import { IDelegate } from "./interfaces/IDelegate.sol"; import { IExecutor } from "./interfaces/IExecutor.sol"; abstract contract Executor is IExecutor, Validation { address private immutable _DELEGATE; address private immutable _POOL; constructor(address delegate, address pool, address proxy) Validation(proxy) { _DELEGATE = delegate; _POOL = pool; } receive() external payable { if (msg.sender != _POOL) { revert Unauthorized(); } } /** * @notice Insert a validated ask listing into the batch if there's sufficient ETH to fulfill * @param executionBatch Execution batch * @param fungibleTransfers Fungible transfers * @param order Order of the listing to insert * @param exchange Exchange containing the listing to insert * @param fees Protocol and taker fees * @param remainingETH Available ETH remaining * @return Available ETH remaining after insertion; if the listing was inserted in the batch */ function _insertExecutionAsk( bytes memory executionBatch, FungibleTransfers memory fungibleTransfers, Order memory order, Exchange memory exchange, Fees memory fees, uint256 remainingETH ) internal pure returns (uint256, bool) { uint256 takerAmount = exchange.taker.amount; ( uint256 totalPrice, uint256 protocolFeeAmount, uint256 makerFeeAmount, uint256 takerFeeAmount ) = _computeFees(exchange.listing.price, takerAmount, order.makerFee, fees); /* Only insert the executions if there are sufficient funds to execute. */ if (remainingETH >= totalPrice + takerFeeAmount) { unchecked { remainingETH = remainingETH - totalPrice - takerFeeAmount; } _setAddresses(fungibleTransfers, order); uint256 index = _insertNonfungibleTransfer( executionBatch, order, exchange.listing.tokenId, takerAmount ); _insertFungibleTransfers( fungibleTransfers, takerAmount, exchange.listing, bytes32(order.salt), index, totalPrice, protocolFeeAmount, makerFeeAmount, takerFeeAmount, true ); return (remainingETH, true); } else { return (remainingETH, false); } } /** * @notice Insert a validated bid listing into the batch * @param executionBatch Execution batch * @param fungibleTransfers Fungible transfers * @param order Order of the listing to insert * @param exchange Exchange containing listing to insert * @param fees Protocol and taker fees */ function _insertExecutionBid( bytes memory executionBatch, FungibleTransfers memory fungibleTransfers, Order memory order, Exchange memory exchange, Fees memory fees ) internal pure { uint256 takerAmount = exchange.taker.amount; ( uint256 totalPrice, uint256 protocolFeeAmount, uint256 makerFeeAmount, uint256 takerFeeAmount ) = _computeFees(exchange.listing.price, takerAmount, order.makerFee, fees); _setAddresses(fungibleTransfers, order); uint256 index = _insertNonfungibleTransfer( executionBatch, order, exchange.taker.tokenId, takerAmount ); _insertFungibleTransfers( fungibleTransfers, takerAmount, exchange.listing, bytes32(order.salt), index, totalPrice, protocolFeeAmount, makerFeeAmount, takerFeeAmount, false ); } /** * @notice Insert the nonfungible transfer into the batch * @param executionBatch Execution batch * @param order Order * @param tokenId Token id * @param amount Number of token units * @return transferIndex Index of the transfer */ function _insertNonfungibleTransfer( bytes memory executionBatch, Order memory order, uint256 tokenId, uint256 amount ) internal pure returns (uint256 transferIndex) { assembly { let calldataPointer := add(executionBatch, ExecutionBatch_calldata_offset) transferIndex := mload(add(calldataPointer, ExecutionBatch_length_offset)) let transfersOffset := mload(add(calldataPointer, ExecutionBatch_transfers_pointer_offset)) let transferPointer := add( add(calldataPointer, add(transfersOffset, One_word)), mul(transferIndex, Transfer_size) ) mstore( add(transferPointer, Transfer_trader_offset), mload(add(order, Order_trader_offset)) ) // set the trader mstore(add(transferPointer, Transfer_id_offset), tokenId) // set the token id mstore( add(transferPointer, Transfer_collection_offset), mload(add(order, Order_collection_offset)) ) // set the collection mstore( add(transferPointer, Transfer_assetType_offset), mload(add(order, Order_assetType_offset)) ) // set the asset type mstore(add(calldataPointer, ExecutionBatch_length_offset), add(transferIndex, 1)) // increment the batch length if eq(mload(add(order, Order_assetType_offset)), AssetType_ERC1155) { mstore(add(transferPointer, Transfer_amount_offset), amount) // set the amount (don't need to set for ERC721's) } } } /** * @notice Insert the fungible transfers that need to be executed atomically * @param fungibleTransfers Fungible transfers struct * @param takerAmount Amount of the listing being taken * @param listing Listing to execute * @param orderHash Order hash * @param index Execution index * @param totalPrice Total price of the purchased tokens * @param protocolFeeAmount Computed protocol fee * @param makerFeeAmount Computed maker fee * @param takerFeeAmount Computed taker fee * @param makerIsSeller Is the order maker the seller */ function _insertFungibleTransfers( FungibleTransfers memory fungibleTransfers, uint256 takerAmount, Listing memory listing, bytes32 orderHash, uint256 index, uint256 totalPrice, uint256 protocolFeeAmount, uint256 makerFeeAmount, uint256 takerFeeAmount, bool makerIsSeller ) internal pure { uint256 makerId = fungibleTransfers.makerId; fungibleTransfers.executions[index].makerId = makerId; fungibleTransfers.executions[index].makerFeeRecipientId = fungibleTransfers.feeRecipientId; fungibleTransfers.executions[index].stateUpdate = StateUpdate({ trader: fungibleTransfers.makers[makerId], hash: orderHash, index: listing.index, value: takerAmount, maxAmount: listing.amount }); if (makerIsSeller) { unchecked { fungibleTransfers.executions[index].sellerAmount = totalPrice - protocolFeeAmount - makerFeeAmount; } } else { unchecked { fungibleTransfers.executions[index].sellerAmount = totalPrice - protocolFeeAmount - takerFeeAmount; } } fungibleTransfers.executions[index].makerFeeAmount = makerFeeAmount; fungibleTransfers.executions[index].takerFeeAmount = takerFeeAmount; fungibleTransfers.executions[index].protocolFeeAmount = protocolFeeAmount; } /** * @notice Set the addresses of the maker fee recipient and order maker if different than currently being batched * @param fungibleTransfers Fungible transfers struct * @param order Parent order of listing being added to the batch */ function _setAddresses( FungibleTransfers memory fungibleTransfers, Order memory order ) internal pure { address feeRecipient = order.makerFee.recipient; uint256 feeRecipientId = fungibleTransfers.feeRecipientId; address currentFeeRecipient = fungibleTransfers.feeRecipients[feeRecipientId]; if (feeRecipient != currentFeeRecipient) { if (currentFeeRecipient == address(0)) { fungibleTransfers.feeRecipients[feeRecipientId] = feeRecipient; } else { unchecked { fungibleTransfers.feeRecipients[++feeRecipientId] = feeRecipient; } fungibleTransfers.feeRecipientId = feeRecipientId; } } address trader = order.trader; uint256 makerId = fungibleTransfers.makerId; address currentTrader = fungibleTransfers.makers[makerId]; if (trader != currentTrader) { if (currentTrader == address(0)) { fungibleTransfers.makers[makerId] = trader; } else { unchecked { fungibleTransfers.makers[++makerId] = trader; } fungibleTransfers.makerId = makerId; } } } /** * @notice Compute all necessary fees to be taken * @param pricePerToken Price per token unit * @param takerAmount Number of token units taken (should only be greater than 1 for ERC1155) * @param fees Protocol and taker fee set by the transaction */ function _computeFees( uint256 pricePerToken, uint256 takerAmount, FeeRate memory makerFee, Fees memory fees ) internal pure returns ( uint256 totalPrice, uint256 protocolFeeAmount, uint256 makerFeeAmount, uint256 takerFeeAmount ) { totalPrice = pricePerToken * takerAmount; makerFeeAmount = (totalPrice * makerFee.rate) / _BASIS_POINTS; takerFeeAmount = (totalPrice * fees.takerFee.rate) / _BASIS_POINTS; protocolFeeAmount = (totalPrice * fees.protocolFee.rate) / _BASIS_POINTS; } /*////////////////////////////////////////////////////////////// EXECUTION FUNCTIONS //////////////////////////////////////////////////////////////*/ /** * @notice Execute the transfers by first attempting the nonfungible transfers, for the successful transfers sum the fungible transfers by the recipients and execute * @param executionBatch Execution batch struct * @param fungibleTransfers Fungible transfers struct * @param fees Protocol, maker, taker fees (note: makerFee will be inaccurate at this point in execution) * @param orderType Order type */ function _executeBatchTransfer( bytes memory executionBatch, FungibleTransfers memory fungibleTransfers, Fees memory fees, OrderType orderType ) internal { uint256 batchLength; assembly { let calldataPointer := add(executionBatch, ExecutionBatch_calldata_offset) batchLength := mload(add(calldataPointer, ExecutionBatch_length_offset)) } if (batchLength > 0) { bool[] memory successfulTransfers = _executeNonfungibleTransfers( executionBatch, batchLength ); uint256 transfersLength = successfulTransfers.length; for (uint256 i; i < transfersLength; ) { if (successfulTransfers[i]) { AtomicExecution memory execution = fungibleTransfers.executions[i]; FeeRate memory makerFee; uint256 price; unchecked { if (orderType == OrderType.ASK) { fungibleTransfers.makerTransfers[execution.makerId] += execution .sellerAmount; // amount that needs to be sent *to* the order maker price = execution.sellerAmount + execution.protocolFeeAmount + execution.makerFeeAmount; } else { fungibleTransfers.makerTransfers[execution.makerId] += execution.protocolFeeAmount + execution.makerFeeAmount + execution.takerFeeAmount + execution.sellerAmount; // amount that needs to be taken *from* the order maker price = execution.sellerAmount + execution.protocolFeeAmount + execution.takerFeeAmount; } fungibleTransfers.totalSellerTransfer += execution.sellerAmount; // only for bids fungibleTransfers.totalProtocolFee += execution.protocolFeeAmount; fungibleTransfers.totalTakerFee += execution.takerFeeAmount; fungibleTransfers.feeTransfers[execution.makerFeeRecipientId] += execution .makerFeeAmount; makerFee = FeeRate( fungibleTransfers.feeRecipients[execution.makerFeeRecipientId], uint16((execution.makerFeeAmount * _BASIS_POINTS) / price) ); } /* Commit state updates. */ StateUpdate memory stateUpdate = fungibleTransfers.executions[i].stateUpdate; { address trader = stateUpdate.trader; bytes32 hash = stateUpdate.hash; uint256 index = stateUpdate.index; uint256 _amountTaken = amountTaken[trader][hash][index]; uint256 newAmountTaken = _amountTaken + stateUpdate.value; /* Overfulfilled Listings should be caught prior to inserting into the batch, but this check prevents any misuse. */ if (newAmountTaken <= stateUpdate.maxAmount) { amountTaken[trader][hash][index] = newAmountTaken; } else { revert OrderFulfilled(); } } _emitExecutionEventFromBatch( executionBatch, price, makerFee, fees, stateUpdate, orderType, i ); } unchecked { ++i; } } if (orderType == OrderType.ASK) { /* Transfer the payments to the sellers. */ uint256 makersLength = fungibleTransfers.makerId + 1; for (uint256 i; i < makersLength; ) { _transferETH(fungibleTransfers.makers[i], fungibleTransfers.makerTransfers[i]); unchecked { ++i; } } /* Transfer the fees to the fee recipients. */ uint256 feesLength = fungibleTransfers.feeRecipientId + 1; for (uint256 i; i < feesLength; ) { _transferETH( fungibleTransfers.feeRecipients[i], fungibleTransfers.feeTransfers[i] ); unchecked { ++i; } } /* Transfer the protocol fees. */ _transferETH(fees.protocolFee.recipient, fungibleTransfers.totalProtocolFee); /* Transfer the taker fees. */ _transferETH(fees.takerFee.recipient, fungibleTransfers.totalTakerFee); } else { /* Take the pool funds from the buyers. */ uint256 makersLength = fungibleTransfers.makerId + 1; for (uint256 i; i < makersLength; ) { _transferPool( fungibleTransfers.makers[i], address(this), fungibleTransfers.makerTransfers[i] ); unchecked { ++i; } } /* Transfer the payment to the seller. */ _transferPool(address(this), msg.sender, fungibleTransfers.totalSellerTransfer); /* Transfer the fees to the fee recipients. */ uint256 feesLength = fungibleTransfers.feeRecipientId + 1; for (uint256 i; i < feesLength; ) { _transferPool( address(this), fungibleTransfers.feeRecipients[i], fungibleTransfers.feeTransfers[i] ); unchecked { ++i; } } /* Transfer the protocol fees. */ _transferPool( address(this), fees.protocolFee.recipient, fungibleTransfers.totalProtocolFee ); /* Transfer the taker fees. */ _transferPool( address(this), fees.takerFee.recipient, fungibleTransfers.totalTakerFee ); } } } /** * @notice Attempt to execute a series of nonfungible transfers through the delegate; reverts will be skipped * @param executionBatch Execution batch struct * @param batchIndex Current available transfer slot in the batch * @return Array indicating which transfers were successful */ function _executeNonfungibleTransfers( bytes memory executionBatch, uint256 batchIndex ) internal returns (bool[] memory) { address delegate = _DELEGATE; /* Initialize the memory space for the successful transfers array returned from the Delegate call. */ uint256 successfulTransfersPointer; assembly { successfulTransfersPointer := mload(Memory_pointer) /* Need to shift the free memory pointer ahead one word to account for the array pointer returned from the call. */ mstore(Memory_pointer, add(successfulTransfersPointer, One_word)) } bool[] memory successfulTransfers = new bool[](batchIndex); assembly { let size := mload(executionBatch) let selectorPointer := add(executionBatch, ExecutionBatch_selector_offset) mstore(selectorPointer, shr(Bytes4_shift, Delegate_transfer_selector)) let success := call( gas(), delegate, 0, add(selectorPointer, Delegate_transfer_calldata_offset), sub(size, Delegate_transfer_calldata_offset), successfulTransfersPointer, add(0x40, mul(batchIndex, One_word)) ) } return successfulTransfers; } /*////////////////////////////////////////////////////////////// TRANSFER FUNCTIONS //////////////////////////////////////////////////////////////*/ /** * @notice Transfer ETH * @param to Recipient address * @param amount Amount of ETH to send */ function _transferETH(address to, uint256 amount) internal { if (amount > 0) { bool success; assembly { success := call(gas(), to, amount, 0, 0, 0, 0) } if (!success) { revert ETHTransferFailed(); } } } /** * @notice Transfer pool funds on behalf of a user * @param from Sender address * @param to Recipient address * @param amount Amount to send */ function _transferPool(address from, address to, uint256 amount) internal { if (amount > 0) { bool success; address pool = _POOL; assembly { let x := mload(Memory_pointer) mstore(x, ERC20_transferFrom_selector) mstore(add(x, ERC20_transferFrom_from_offset), from) mstore(add(x, ERC20_transferFrom_to_offset), to) mstore(add(x, ERC20_transferFrom_amount_offset), amount) success := call(gas(), pool, 0, x, ERC20_transferFrom_size, 0, 0) } if (!success) { revert PoolTransferFailed(); } } } /** * @notice Deposit ETH to user's pool funds * @param to Recipient address * @param amount Amount of ETH to deposit */ function _depositPool(address to, uint256 amount) internal { bool success; address pool = _POOL; assembly { let x := mload(Memory_pointer) mstore(x, Pool_deposit_selector) mstore(add(x, Pool_deposit_user_offset), to) success := call(gas(), pool, amount, x, Pool_deposit_size, 0, 0) } if (!success) { revert PoolDepositFailed(); } } /** * @notice Withdraw ETH from user's pool funds * @param from Address to withdraw from * @param amount Amount of ETH to withdraw */ function _withdrawFromPool(address from, uint256 amount) internal { bool success; address pool = _POOL; assembly { let x := mload(Memory_pointer) mstore(x, Pool_withdrawFrom_selector) mstore(add(x, Pool_withdrawFrom_from_offset), from) mstore(add(x, Pool_withdrawFrom_to_offset), address()) mstore(add(x, Pool_withdrawFrom_amount_offset), amount) success := call(gas(), pool, 0, x, Pool_withdrawFrom_size, 0, 0) } if (!success) { revert PoolWithdrawFromFailed(); } } /*////////////////////////////////////////////////////////////// EVENT EMITTERS //////////////////////////////////////////////////////////////*/ /** * @notice Emit Execution event from a single execution * @param executionBatch Execution batch struct * @param price Price of the token purchased * @param fees Protocol, maker, and taker fees taken * @param stateUpdate Fulfillment to be recorded with a successful execution * @param orderType Order type * @param transferIndex Index of the transfer corresponding to the execution */ function _emitExecutionEventFromBatch( bytes memory executionBatch, uint256 price, FeeRate memory makerFee, Fees memory fees, StateUpdate memory stateUpdate, OrderType orderType, uint256 transferIndex ) internal { Transfer memory transfer; assembly { let calldataPointer := add(executionBatch, ExecutionBatch_calldata_offset) let transfersOffset := mload(add(calldataPointer, ExecutionBatch_transfers_pointer_offset)) transfer := add( add(calldataPointer, add(transfersOffset, One_word)), mul(transferIndex, Transfer_size) ) } _emitOptimalExecutionEvent( transfer, stateUpdate.hash, stateUpdate.index, price, makerFee, fees, orderType ); } /** * @notice Emit the Execution event that minimizes the number of bytes in the log * @param transfer The nft transfer * @param orderHash Order hash * @param listingIndex Index of the listing being fulfilled within the order * @param price Price of the token purchased * @param makerFee Maker fees taken * @param fees Protocol, and taker fees taken * @param orderType Order type */ function _emitOptimalExecutionEvent( Transfer memory transfer, bytes32 orderHash, uint256 listingIndex, uint256 price, FeeRate memory makerFee, Fees memory fees, OrderType orderType ) internal { if ( // see _insertNonfungibleTransfer; ERC721 transfers don't set the transfer amount, // so we can assume the transfer amount and not check it transfer.assetType == AssetType.ERC721 && fees.protocolFee.rate == 0 && transfer.id < 1 << (11 * 8) && listingIndex < 1 << (1 * 8) && price < 1 << (11 * 8) ) { if (makerFee.rate == 0 && fees.takerFee.rate == 0) { emit Execution721Packed( orderHash, packTokenIdListingIndexTrader(transfer.id, listingIndex, transfer.trader), packTypePriceCollection(orderType, price, transfer.collection) ); return; } else if (makerFee.rate == 0) { emit Execution721TakerFeePacked( orderHash, packTokenIdListingIndexTrader(transfer.id, listingIndex, transfer.trader), packTypePriceCollection(orderType, price, transfer.collection), packFee(fees.takerFee) ); return; } else if (fees.takerFee.rate == 0) { emit Execution721MakerFeePacked( orderHash, packTokenIdListingIndexTrader(transfer.id, listingIndex, transfer.trader), packTypePriceCollection(orderType, price, transfer.collection), packFee(makerFee) ); return; } } emit Execution({ transfer: transfer, orderHash: orderHash, listingIndex: listingIndex, price: price, makerFee: makerFee, fees: fees, orderType: orderType }); } /** * @notice Emit Execution event from a single execution * @param executionBatch Execution batch struct * @param order Order being fulfilled * @param listingIndex Index of the listing being fulfilled within the order * @param price Price of the token purchased * @param fees Protocol, and taker fees taken * @param orderType Order type */ function _emitExecutionEvent( bytes memory executionBatch, Order memory order, uint256 listingIndex, uint256 price, Fees memory fees, OrderType orderType ) internal { Transfer memory transfer; assembly { let calldataPointer := add(executionBatch, ExecutionBatch_calldata_offset) let transfersOffset := mload(add(calldataPointer, ExecutionBatch_transfers_pointer_offset)) transfer := add(calldataPointer, add(transfersOffset, One_word)) } _emitOptimalExecutionEvent( transfer, bytes32(order.salt), listingIndex, price, order.makerFee, fees, orderType ); } function packTokenIdListingIndexTrader( uint256 tokenId, uint256 listingIndex, address trader ) private pure returns (uint256) { return (tokenId << (21 * 8)) | (listingIndex << (20 * 8)) | uint160(trader); } function packTypePriceCollection( OrderType orderType, uint256 price, address collection ) private pure returns (uint256) { return (uint256(orderType) << (31 * 8)) | (price << (20 * 8)) | uint160(collection); } function packFee(FeeRate memory fee) private pure returns (uint256) { return (uint256(fee.rate) << (20 * 8)) | uint160(fee.recipient); } uint256[50] private __gap; } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; uint256 constant Bytes1_shift = 0xf8; uint256 constant Bytes4_shift = 0xe0; uint256 constant Bytes20_shift = 0x60; uint256 constant One_word = 0x20; uint256 constant Memory_pointer = 0x40; uint256 constant AssetType_ERC721 = 0; uint256 constant AssetType_ERC1155 = 1; uint256 constant OrderType_ASK = 0; uint256 constant OrderType_BID = 1; uint256 constant Pool_withdrawFrom_selector = 0x9555a94200000000000000000000000000000000000000000000000000000000; uint256 constant Pool_withdrawFrom_from_offset = 0x04; uint256 constant Pool_withdrawFrom_to_offset = 0x24; uint256 constant Pool_withdrawFrom_amount_offset = 0x44; uint256 constant Pool_withdrawFrom_size = 0x64; uint256 constant Pool_deposit_selector = 0xf340fa0100000000000000000000000000000000000000000000000000000000; uint256 constant Pool_deposit_user_offset = 0x04; uint256 constant Pool_deposit_size = 0x24; uint256 constant ERC20_transferFrom_selector = 0x23b872dd00000000000000000000000000000000000000000000000000000000; uint256 constant ERC721_safeTransferFrom_selector = 0x42842e0e00000000000000000000000000000000000000000000000000000000; uint256 constant ERC1155_safeTransferFrom_selector = 0xf242432a00000000000000000000000000000000000000000000000000000000; uint256 constant ERC20_transferFrom_size = 0x64; uint256 constant ERC721_safeTransferFrom_size = 0x64; uint256 constant ERC1155_safeTransferFrom_size = 0xc4; uint256 constant OracleSignatures_size = 0x59; uint256 constant OracleSignatures_s_offset = 0x20; uint256 constant OracleSignatures_v_offset = 0x40; uint256 constant OracleSignatures_blockNumber_offset = 0x41; uint256 constant OracleSignatures_oracle_offset = 0x45; uint256 constant Signatures_size = 0x41; uint256 constant Signatures_s_offset = 0x20; uint256 constant Signatures_v_offset = 0x40; uint256 constant ERC20_transferFrom_from_offset = 0x4; uint256 constant ERC20_transferFrom_to_offset = 0x24; uint256 constant ERC20_transferFrom_amount_offset = 0x44; uint256 constant ERC721_safeTransferFrom_from_offset = 0x4; uint256 constant ERC721_safeTransferFrom_to_offset = 0x24; uint256 constant ERC721_safeTransferFrom_id_offset = 0x44; uint256 constant ERC1155_safeTransferFrom_from_offset = 0x4; uint256 constant ERC1155_safeTransferFrom_to_offset = 0x24; uint256 constant ERC1155_safeTransferFrom_id_offset = 0x44; uint256 constant ERC1155_safeTransferFrom_amount_offset = 0x64; uint256 constant ERC1155_safeTransferFrom_data_pointer_offset = 0x84; uint256 constant ERC1155_safeTransferFrom_data_offset = 0xa4; uint256 constant Delegate_transfer_selector = 0xa1ccb98e00000000000000000000000000000000000000000000000000000000; uint256 constant Delegate_transfer_calldata_offset = 0x1c; uint256 constant Order_size = 0x100; uint256 constant Order_trader_offset = 0x00; uint256 constant Order_collection_offset = 0x20; uint256 constant Order_listingsRoot_offset = 0x40; uint256 constant Order_numberOfListings_offset = 0x60; uint256 constant Order_expirationTime_offset = 0x80; uint256 constant Order_assetType_offset = 0xa0; uint256 constant Order_makerFee_offset = 0xc0; uint256 constant Order_salt_offset = 0xe0; uint256 constant Exchange_size = 0x80; uint256 constant Exchange_askIndex_offset = 0x00; uint256 constant Exchange_proof_offset = 0x20; uint256 constant Exchange_maker_offset = 0x40; uint256 constant Exchange_taker_offset = 0x60; uint256 constant BidExchange_size = 0x80; uint256 constant BidExchange_askIndex_offset = 0x00; uint256 constant BidExchange_proof_offset = 0x20; uint256 constant BidExchange_maker_offset = 0x40; uint256 constant BidExchange_taker_offset = 0x60; uint256 constant Listing_size = 0x80; uint256 constant Listing_index_offset = 0x00; uint256 constant Listing_tokenId_offset = 0x20; uint256 constant Listing_amount_offset = 0x40; uint256 constant Listing_price_offset = 0x60; uint256 constant Taker_size = 0x40; uint256 constant Taker_tokenId_offset = 0x00; uint256 constant Taker_amount_offset = 0x20; uint256 constant StateUpdate_size = 0x80; uint256 constant StateUpdate_salt_offset = 0x20; uint256 constant StateUpdate_leaf_offset = 0x40; uint256 constant StateUpdate_value_offset = 0x60; uint256 constant Transfer_size = 0xa0; uint256 constant Transfer_trader_offset = 0x00; uint256 constant Transfer_id_offset = 0x20; uint256 constant Transfer_amount_offset = 0x40; uint256 constant Transfer_collection_offset = 0x60; uint256 constant Transfer_assetType_offset = 0x80; uint256 constant ExecutionBatch_selector_offset = 0x20; uint256 constant ExecutionBatch_calldata_offset = 0x40; uint256 constant ExecutionBatch_base_size = 0xa0; // size of the executionBatch without the flattened dynamic elements uint256 constant ExecutionBatch_taker_offset = 0x00; uint256 constant ExecutionBatch_orderType_offset = 0x20; uint256 constant ExecutionBatch_transfers_pointer_offset = 0x40; uint256 constant ExecutionBatch_length_offset = 0x60; uint256 constant ExecutionBatch_transfers_offset = 0x80; // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; struct TakeAsk { Order[] orders; Exchange[] exchanges; FeeRate takerFee; bytes signatures; address tokenRecipient; } struct TakeAskSingle { Order order; Exchange exchange; FeeRate takerFee; bytes signature; address tokenRecipient; } struct TakeBid { Order[] orders; Exchange[] exchanges; FeeRate takerFee; bytes signatures; } struct TakeBidSingle { Order order; Exchange exchange; FeeRate takerFee; bytes signature; } enum AssetType { ERC721, ERC1155 } enum OrderType { ASK, BID } struct Exchange { // Size: 0x80 uint256 index; // 0x00 bytes32[] proof; // 0x20 Listing listing; // 0x40 Taker taker; // 0x60 } struct Listing { // Size: 0x80 uint256 index; // 0x00 uint256 tokenId; // 0x20 uint256 amount; // 0x40 uint256 price; // 0x60 } struct Taker { // Size: 0x40 uint256 tokenId; // 0x00 uint256 amount; // 0x20 } struct Order { // Size: 0x100 address trader; // 0x00 address collection; // 0x20 bytes32 listingsRoot; // 0x40 uint256 numberOfListings; // 0x60 uint256 expirationTime; // 0x80 AssetType assetType; // 0xa0 FeeRate makerFee; // 0xc0 uint256 salt; // 0xe0 } /* Reference only; struct is composed manually using calldata formatting in execution struct ExecutionBatch { // Size: 0x80 address taker; // 0x00 OrderType orderType; // 0x20 Transfer[] transfers; // 0x40 uint256 length; // 0x60 } */ struct Transfer { // Size: 0xa0 address trader; // 0x00 uint256 id; // 0x20 uint256 amount; // 0x40 address collection; // 0x60 AssetType assetType; // 0x80 } struct FungibleTransfers { uint256 totalProtocolFee; uint256 totalSellerTransfer; uint256 totalTakerFee; uint256 feeRecipientId; uint256 makerId; address[] feeRecipients; address[] makers; uint256[] makerTransfers; uint256[] feeTransfers; AtomicExecution[] executions; } struct AtomicExecution { // Size: 0xe0 uint256 makerId; // 0x00 uint256 sellerAmount; // 0x20 uint256 makerFeeRecipientId; // 0x40 uint256 makerFeeAmount; // 0x60 uint256 takerFeeAmount; // 0x80 uint256 protocolFeeAmount; // 0xa0 StateUpdate stateUpdate; // 0xc0 } struct StateUpdate { // Size: 0xa0 address trader; // 0x00 bytes32 hash; // 0x20 uint256 index; // 0x40 uint256 value; // 0x60 uint256 maxAmount; // 0x80 } struct Fees { // Size: 0x40 FeeRate protocolFee; // 0x00 FeeRate takerFee; // 0x20 } struct FeeRate { // Size: 0x40 address recipient; // 0x00 uint16 rate; // 0x20 } struct Cancel { bytes32 hash; uint256 index; uint256 amount; } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { TakeAsk, TakeBid, TakeAskSingle, TakeBidSingle, Order, Exchange, Fees, FeeRate, AssetType, OrderType, Transfer, FungibleTransfers, StateUpdate, Cancel, Listing } from "../lib/Structs.sol"; interface IBlurExchangeV2 { error InsufficientFunds(); error TokenTransferFailed(); error InvalidOrder(); error ProtocolFeeTooHigh(); event NewProtocolFee(address indexed recipient, uint16 indexed rate); event NewGovernor(address indexed governor); event NewBlockRange(uint256 blockRange); event CancelTrade(address indexed user, bytes32 hash, uint256 index, uint256 amount); event NonceIncremented(address indexed user, uint256 newNonce); event SetOracle(address indexed user, bool approved); function initialize() external; function setProtocolFee(address recipient, uint16 rate) external; function setGovernor(address _governor) external; function setOracle(address oracle, bool approved) external; function setBlockRange(uint256 _blockRange) external; function cancelTrades(Cancel[] memory cancels) external; function incrementNonce() external; /*////////////////////////////////////////////////////////////// EXECUTION WRAPPERS //////////////////////////////////////////////////////////////*/ function takeAsk(TakeAsk memory inputs, bytes calldata oracleSignature) external payable; function takeBid(TakeBid memory inputs, bytes calldata oracleSignature) external; function takeAskSingle(TakeAskSingle memory inputs, bytes calldata oracleSignature) external payable; function takeBidSingle(TakeBidSingle memory inputs, bytes calldata oracleSignature) external; /*////////////////////////////////////////////////////////////// EXECUTION POOL WRAPPERS //////////////////////////////////////////////////////////////*/ function takeAskSinglePool( TakeAskSingle memory inputs, bytes calldata oracleSignature, uint256 amountToWithdraw ) external payable; function takeAskPool( TakeAsk memory inputs, bytes calldata oracleSignature, uint256 amountToWithdraw ) external payable; } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity 0.8.17; /// @notice Upgradeable gas optimized reentrancy protection for smart contracts. /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/ReentrancyGuard.sol) abstract contract ReentrancyGuardUpgradeable { uint256 private locked; function __Reentrancy_init() internal { locked = 1; } modifier nonReentrant() virtual { require(locked == 1, "REENTRANCY"); locked = 2; _; locked = 1; } uint256[49] private __gap; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal onlyInitializing { __Ownable_init_unchained(); } function __Ownable_init_unchained() internal onlyInitializing { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.1) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol) pragma solidity ^0.8.0; /** * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified * proxy whose upgrades are fully controlled by the current implementation. */ interface IERC1822ProxiableUpgradeable { /** * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation * address. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. */ function proxiableUUID() external view returns (bytes32); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.3) (proxy/ERC1967/ERC1967Upgrade.sol) pragma solidity ^0.8.2; import "../beacon/IBeaconUpgradeable.sol"; import "../../interfaces/IERC1967Upgradeable.sol"; import "../../interfaces/draft-IERC1822Upgradeable.sol"; import "../../utils/AddressUpgradeable.sol"; import "../../utils/StorageSlotUpgradeable.sol"; import "../utils/Initializable.sol"; /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots. * * _Available since v4.1._ * * @custom:oz-upgrades-unsafe-allow delegatecall */ abstract contract ERC1967UpgradeUpgradeable is Initializable, IERC1967Upgradeable { function __ERC1967Upgrade_init() internal onlyInitializing { } function __ERC1967Upgrade_init_unchained() internal onlyInitializing { } // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1 bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143; /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev Returns the current implementation address. */ function _getImplementation() internal view returns (address) { return StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { require(AddressUpgradeable.isContract(newImplementation), "ERC1967: new implementation is not a contract"); StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Perform implementation upgrade * * Emits an {Upgraded} event. */ function _upgradeTo(address newImplementation) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); } /** * @dev Perform implementation upgrade with additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCall( address newImplementation, bytes memory data, bool forceCall ) internal { _upgradeTo(newImplementation); if (data.length > 0 || forceCall) { _functionDelegateCall(newImplementation, data); } } /** * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCallUUPS( address newImplementation, bytes memory data, bool forceCall ) internal { // Upgrades from old implementations will perform a rollback test. This test requires the new // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing // this special case will break upgrade paths from old UUPS implementation to new ones. if (StorageSlotUpgradeable.getBooleanSlot(_ROLLBACK_SLOT).value) { _setImplementation(newImplementation); } else { try IERC1822ProxiableUpgradeable(newImplementation).proxiableUUID() returns (bytes32 slot) { require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID"); } catch { revert("ERC1967Upgrade: new implementation is not UUPS"); } _upgradeToAndCall(newImplementation, data, forceCall); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Returns the current admin. */ function _getAdmin() internal view returns (address) { return StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value; } /** * @dev Stores a new address in the EIP1967 admin slot. */ function _setAdmin(address newAdmin) private { require(newAdmin != address(0), "ERC1967: new admin is the zero address"); StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {AdminChanged} event. */ function _changeAdmin(address newAdmin) internal { emit AdminChanged(_getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor. */ bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Returns the current beacon. */ function _getBeacon() internal view returns (address) { return StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value; } /** * @dev Stores a new beacon in the EIP1967 beacon slot. */ function _setBeacon(address newBeacon) private { require(AddressUpgradeable.isContract(newBeacon), "ERC1967: new beacon is not a contract"); require( AddressUpgradeable.isContract(IBeaconUpgradeable(newBeacon).implementation()), "ERC1967: beacon implementation is not a contract" ); StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value = newBeacon; } /** * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that). * * Emits a {BeaconUpgraded} event. */ function _upgradeBeaconToAndCall( address newBeacon, bytes memory data, bool forceCall ) internal { _setBeacon(newBeacon); emit BeaconUpgraded(newBeacon); if (data.length > 0 || forceCall) { _functionDelegateCall(IBeaconUpgradeable(newBeacon).implementation(), data); } } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function _functionDelegateCall(address target, bytes memory data) private returns (bytes memory) { require(AddressUpgradeable.isContract(target), "Address: delegate call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.delegatecall(data); return AddressUpgradeable.verifyCallResult(success, returndata, "Address: low-level delegate call failed"); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol) pragma solidity ^0.8.0; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeaconUpgradeable { /** * @dev Must return an address that can be used as a delegate call target. * * {BeaconProxy} will check that this address is a contract. */ function implementation() external view returns (address); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.3) (interfaces/IERC1967.sol) pragma solidity ^0.8.0; /** * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC. * * _Available since v4.9._ */ interface IERC1967Upgradeable { /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Emitted when the beacon is changed. */ event BeaconUpgraded(address indexed beacon); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol) pragma solidity ^0.8.0; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ``` * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._ */ library StorageSlotUpgradeable { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { MerkleProof } from "lib/openzeppelin-contracts/contracts/utils/cryptography/MerkleProof.sol"; import { Signatures } from "./Signatures.sol"; import { AssetType, Order, Exchange, Listing, OrderType, FeeRate, Fees, Taker } from "./lib/Structs.sol"; import { IValidation } from "./interfaces/IValidation.sol"; abstract contract Validation is IValidation, Signatures { uint256 internal constant _BASIS_POINTS = 10_000; uint256 internal constant _MAX_PROTOCOL_FEE_RATE = 250; FeeRate public protocolFee; /* amountTaken[user][orderHash][listingIndex] */ mapping(address => mapping(bytes32 => mapping(uint256 => uint256))) public amountTaken; constructor(address proxy) Signatures(proxy) {} /** * @notice Check if an order has expired * @param order Order to check liveness * @return Order is live */ function _checkLiveness(Order memory order) private view returns (bool) { return (order.expirationTime > block.timestamp); } /** * @notice Check that the fees to be taken will not overflow the purchase price * @param makerFee Maker fee amount * @param fees Protocol and taker fee rates * @return Fees are valid */ function _checkFee(FeeRate memory makerFee, Fees memory fees) private pure returns (bool) { return makerFee.rate + fees.takerFee.rate + fees.protocolFee.rate <= _BASIS_POINTS; } /** * @notice Validate a list of orders and prepare arrays for recording pending fulfillments * @param orders List of orders * @param orderType Order type for all orders * @param signatures Bytes array of the order signatures * @param fees Protocol and taker fee rates */ function _validateOrders( Order[] memory orders, OrderType orderType, bytes memory signatures, Fees memory fees ) internal view returns (bool[] memory validOrders, uint256[][] memory pendingAmountTaken) { uint256 ordersLength = orders.length; validOrders = new bool[](ordersLength); pendingAmountTaken = new uint256[][](ordersLength); for (uint256 i; i < ordersLength; ) { pendingAmountTaken[i] = new uint256[](orders[i].numberOfListings); validOrders[i] = _validateOrder(orders[i], orderType, signatures, fees, i); unchecked { ++i; } } } /** * @notice Validate an order * @param order Order to validate * @param orderType Order type * @param signatures Bytes array of order signatures * @param fees Protocol and taker fee rates * @param signatureIndex Index of the order signature * @return Validity of the order */ function _validateOrder( Order memory order, OrderType orderType, bytes memory signatures, Fees memory fees, uint256 signatureIndex ) internal view returns (bool) { bytes32 orderHash = hashOrder(order, orderType); /* After hashing, the salt is no longer needed so we can store the order hash here. */ order.salt = uint256(orderHash); return _verifyAuthorization( order.trader, orderHash, signatures, signatureIndex ) && _checkLiveness(order) && _checkFee(order.makerFee, fees); } /** * @notice Validate a listing (only valid if the order has be prevalidated) * @dev Validation can be manipulated by inputting the same order twice in the orders array, * which will effectively bypass the `pendingAmountTaken` check. There is a safety check at the * execution phase that will revert the transaction if this manipulation overdraws an order. * @param order Order of the listing * @param orderType Order type * @param exchange Exchange containing the listing * @param validOrders List indicated which orders were validated * @param pendingAmountTaken Pending fulfillments from the current batch * @return validListing Validity of the listing */ function _validateListingFromBatch( Order memory order, OrderType orderType, Exchange memory exchange, bool[] memory validOrders, uint256[][] memory pendingAmountTaken ) internal view returns (bool validListing) { Listing memory listing = exchange.listing; uint256 listingIndex = listing.index; uint256 amountTaken = amountTaken[order.trader][bytes32(order.salt)][listingIndex]; uint256 pendingAmountTaken = pendingAmountTaken[exchange.index][listingIndex]; uint256 takerAmount = exchange.taker.amount; unchecked { validListing = validOrders[exchange.index] && _validateListing(order, orderType, exchange) && pendingAmountTaken + takerAmount <= type(uint256).max - amountTaken && amountTaken + pendingAmountTaken + takerAmount <= listing.amount; } } /** * @notice Validate a listing and its proposed exchange * @param order Order of the listing * @param orderType Order type * @param exchange Exchange containing the listing * @return validListing Validity of the listing and its proposed exchange */ function _validateListing( Order memory order, OrderType orderType, Exchange memory exchange ) private pure returns (bool validListing) { Listing memory listing = exchange.listing; validListing = MerkleProof.verify(exchange.proof, order.listingsRoot, hashListing(listing)); Taker memory taker = exchange.taker; if (orderType == OrderType.ASK) { if (order.assetType == AssetType.ERC721) { validListing = validListing && taker.amount == 1 && listing.amount == 1; } validListing = validListing && listing.tokenId == taker.tokenId; } else { if (order.assetType == AssetType.ERC721) { validListing = validListing && taker.amount == 1; } else { validListing = validListing && listing.tokenId == taker.tokenId; } } } /** * @notice Validate both the listing and it's parent order (only for single executions) * @param order Order of the listing * @param orderType Order type * @param exchange Exchange containing the listing * @param signature Order signature * @param fees Protocol and taker fee rates * @return Validity of the order and listing */ function _validateOrderAndListing( Order memory order, OrderType orderType, Exchange memory exchange, bytes memory signature, Fees memory fees ) internal view returns (bool) { Listing memory listing = exchange.listing; uint256 listingIndex = listing.index; return _validateOrder(order, orderType, signature, fees, 0) && _validateListing(order, orderType, exchange) && amountTaken[order.trader][bytes32(order.salt)][listingIndex] + exchange.taker.amount <= listing.amount; } uint256[49] private __gap; } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { AssetType, OrderType, Transfer } from "../lib/Structs.sol"; interface IDelegate { function transfer( address caller, OrderType orderType, Transfer[] calldata transfers, uint256 length ) external returns (bool[] memory successful); } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { Fees, FeeRate, Transfer, OrderType } from "../lib/Structs.sol"; interface IExecutor { error ETHTransferFailed(); error PoolTransferFailed(); error PoolWithdrawFromFailed(); error PoolDepositFailed(); error OrderFulfilled(); event Execution( Transfer transfer, bytes32 orderHash, uint256 listingIndex, uint256 price, FeeRate makerFee, Fees fees, OrderType orderType ); event Execution721Packed( bytes32 orderHash, uint256 tokenIdListingIndexTrader, uint256 collectionPriceSide ); event Execution721TakerFeePacked( bytes32 orderHash, uint256 tokenIdListingIndexTrader, uint256 collectionPriceSide, uint256 takerFeeRecipientRate ); event Execution721MakerFeePacked( bytes32 orderHash, uint256 tokenIdListingIndexTrader, uint256 collectionPriceSide, uint256 makerFeeRecipientRate ); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol) pragma solidity ^0.8.0; /** * @dev These functions deal with verification of Merkle Tree proofs. * * The tree and the proofs can be generated using our * https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. * You will find a quickstart guide in the readme. * * WARNING: You should avoid using leaf values that are 64 bytes long prior to * hashing, or use a hash function other than keccak256 for hashing leaves. * This is because the concatenation of a sorted pair of internal nodes in * the merkle tree could be reinterpreted as a leaf value. * OpenZeppelin's JavaScript library generates merkle trees that are safe * against this attack out of the box. */ library MerkleProof { /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. */ function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProof(proof, leaf) == root; } /** * @dev Calldata version of {verify} * * _Available since v4.7._ */ function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProofCalldata(proof, leaf) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leafs & pre-images are assumed to be sorted. * * _Available since v4.4._ */ function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Calldata version of {processProof} * * _Available since v4.7._ */ function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function multiProofVerify( bytes32[] memory proof, bool[] memory proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProof(proof, proofFlags, leaves) == root; } /** * @dev Calldata version of {multiProofVerify} * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function multiProofVerifyCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProofCalldata(proof, proofFlags, leaves) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). * * _Available since v4.7._ */ function processMultiProof( bytes32[] memory proof, bool[] memory proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof"); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { unchecked { return hashes[totalHashes - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Calldata version of {processMultiProof}. * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function processMultiProofCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof"); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { unchecked { return hashes[totalHashes - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) { return a < b ? _efficientHash(a, b) : _efficientHash(b, a); } function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) { /// @solidity memory-safe-assembly assembly { mstore(0x00, a) mstore(0x20, b) value := keccak256(0x00, 0x40) } } } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; import "./lib/Constants.sol"; import { TakeAsk, TakeBid, TakeAskSingle, TakeBidSingle, FeeRate, Order, OrderType, AssetType, Listing } from "./lib/Structs.sol"; import { ISignatures } from "./interfaces/ISignatures.sol"; abstract contract Signatures is ISignatures { string private constant _NAME = "Blur Exchange"; string private constant _VERSION = "1.0"; bytes32 private immutable _FEE_RATE_TYPEHASH; bytes32 private immutable _ORDER_TYPEHASH; bytes32 private immutable _DOMAIN_SEPARATOR; mapping(address => uint256) public oracles; mapping(address => uint256) public nonces; uint256 public blockRange; constructor(address proxy) { (_FEE_RATE_TYPEHASH, _ORDER_TYPEHASH, _DOMAIN_SEPARATOR) = _createTypehashes(proxy); } /** * @notice Verify the domain separator produced during deployment of the implementation matches that of the proxy */ function verifyDomain() public view { bytes32 eip712DomainTypehash = keccak256( bytes.concat( "EIP712Domain(", "string name,", "string version,", "uint256 chainId,", "address verifyingContract", ")" ) ); bytes32 domainSeparator = _hashDomain( eip712DomainTypehash, keccak256(bytes(_NAME)), keccak256(bytes(_VERSION)), address(this) ); if (_DOMAIN_SEPARATOR != domainSeparator) { revert InvalidDomain(); } } /** * @notice Return version and domain separator */ function information() external view returns (string memory version, bytes32 domainSeparator) { version = _VERSION; domainSeparator = _DOMAIN_SEPARATOR; } /** * @notice Create a hash of TakeAsk calldata with an approved caller * @param inputs TakeAsk inputs * @param _caller Address approved to execute the calldata * @return Calldata hash */ function hashTakeAsk(TakeAsk memory inputs, address _caller) external pure returns (bytes32) { return _hashCalldata(_caller); } /** * @notice Create a hash of TakeBid calldata with an approved caller * @param inputs TakeBid inputs * @param _caller Address approved to execute the calldata * @return Calldata hash */ function hashTakeBid(TakeBid memory inputs, address _caller) external pure returns (bytes32) { return _hashCalldata(_caller); } /** * @notice Create a hash of TakeAskSingle calldata with an approved caller * @param inputs TakeAskSingle inputs * @param _caller Address approved to execute the calldata * @return Calldata hash */ function hashTakeAskSingle( TakeAskSingle memory inputs, address _caller ) external pure returns (bytes32) { return _hashCalldata(_caller); } /** * @notice Create a hash of TakeBidSingle calldata with an approved caller * @param inputs TakeBidSingle inputs * @param _caller Address approved to execute the calldata * @return Calldata hash */ function hashTakeBidSingle( TakeBidSingle memory inputs, address _caller ) external pure returns (bytes32) { return _hashCalldata(_caller); } /** * @notice Create an EIP712 hash of an Order * @dev Includes two additional parameters not in the struct (orderType, nonce) * @param order Order to hash * @param orderType OrderType of the Order * @return Order EIP712 hash */ function hashOrder(Order memory order, OrderType orderType) public view returns (bytes32) { return keccak256( abi.encode( _ORDER_TYPEHASH, order.trader, order.collection, order.listingsRoot, order.numberOfListings, order.expirationTime, order.assetType, _hashFeeRate(order.makerFee), order.salt, orderType, nonces[order.trader] ) ); } /** * @notice Create a hash of a Listing struct * @param listing Listing to hash * @return Listing hash */ function hashListing(Listing memory listing) public pure returns (bytes32) { return keccak256(abi.encode(listing.index, listing.tokenId, listing.amount, listing.price)); } /** * @notice Create a hash of calldata with an approved caller * @param _caller Address approved to execute the calldata * @return hash Calldata hash */ function _hashCalldata(address _caller) internal pure returns (bytes32 hash) { assembly { let nextPointer := mload(0x40) let size := add(sub(nextPointer, 0x80), 0x20) mstore(nextPointer, _caller) hash := keccak256(0x80, size) } } /** * @notice Create an EIP712 hash of a FeeRate struct * @param feeRate FeeRate to hash * @return FeeRate EIP712 hash */ function _hashFeeRate(FeeRate memory feeRate) private view returns (bytes32) { return keccak256(abi.encode(_FEE_RATE_TYPEHASH, feeRate.recipient, feeRate.rate)); } /** * @notice Create an EIP712 hash to sign * @param hash Primary EIP712 object hash * @return EIP712 hash */ function _hashToSign(bytes32 hash) private view returns (bytes32) { return keccak256(bytes.concat(bytes2(0x1901), _DOMAIN_SEPARATOR, hash)); } /** * @notice Generate all EIP712 Typehashes */ function _createTypehashes( address proxy ) private view returns (bytes32 feeRateTypehash, bytes32 orderTypehash, bytes32 domainSeparator) { bytes32 eip712DomainTypehash = keccak256( bytes.concat( "EIP712Domain(", "string name,", "string version,", "uint256 chainId,", "address verifyingContract", ")" ) ); bytes memory feeRateTypestring = "FeeRate(address recipient,uint16 rate)"; orderTypehash = keccak256( bytes.concat( "Order(", "address trader,", "address collection,", "bytes32 listingsRoot,", "uint256 numberOfListings,", "uint256 expirationTime,", "uint8 assetType,", "FeeRate makerFee,", "uint256 salt,", "uint8 orderType,", "uint256 nonce", ")", feeRateTypestring ) ); feeRateTypehash = keccak256(feeRateTypestring); domainSeparator = _hashDomain( eip712DomainTypehash, keccak256(bytes(_NAME)), keccak256(bytes(_VERSION)), proxy ); } /** * @notice Create an EIP712 domain separator * @param eip712DomainTypehash Typehash of the EIP712Domain struct * @param nameHash Hash of the contract name * @param versionHash Hash of the version string * @param proxy Address of the proxy this implementation will be behind * @return EIP712Domain hash */ function _hashDomain( bytes32 eip712DomainTypehash, bytes32 nameHash, bytes32 versionHash, address proxy ) private view returns (bytes32) { return keccak256( abi.encode(eip712DomainTypehash, nameHash, versionHash, block.chainid, proxy) ); } /** * @notice Verify EIP712 signature * @param signer Address of the alleged signer * @param hash EIP712 hash * @param signatures Packed bytes array of order signatures * @param index Index of the signature to verify * @return authorized Validity of the signature */ function _verifyAuthorization( address signer, bytes32 hash, bytes memory signatures, uint256 index ) internal view returns (bool authorized) { bytes32 hashToSign = _hashToSign(hash); bytes32 r; bytes32 s; uint8 v; assembly { let signatureOffset := add(add(signatures, One_word), mul(Signatures_size, index)) r := mload(signatureOffset) s := mload(add(signatureOffset, Signatures_s_offset)) v := shr(Bytes1_shift, mload(add(signatureOffset, Signatures_v_offset))) } authorized = _verify(signer, hashToSign, v, r, s); } modifier verifyOracleSignature(bytes32 hash, bytes calldata oracleSignature) { bytes32 r; bytes32 s; uint8 v; uint32 blockNumber; address oracle; assembly { let signatureOffset := oracleSignature.offset r := calldataload(signatureOffset) s := calldataload(add(signatureOffset, OracleSignatures_s_offset)) v := shr(Bytes1_shift, calldataload(add(signatureOffset, OracleSignatures_v_offset))) blockNumber := shr( Bytes4_shift, calldataload(add(signatureOffset, OracleSignatures_blockNumber_offset)) ) oracle := shr( Bytes20_shift, calldataload(add(signatureOffset, OracleSignatures_oracle_offset)) ) } if (blockNumber + blockRange < block.number) { revert ExpiredOracleSignature(); } if (oracles[oracle] == 0) { revert UnauthorizedOracle(); } if (!_verify(oracle, keccak256(abi.encodePacked(hash, blockNumber)), v, r, s)) { revert InvalidOracleSignature(); } _; } /** * @notice Verify signature of digest * @param signer Address of expected signer * @param digest Signature digest * @param v v parameter * @param r r parameter * @param s s parameter */ function _verify( address signer, bytes32 digest, uint8 v, bytes32 r, bytes32 s ) private pure returns (bool valid) { address recoveredSigner = ecrecover(digest, v, r, s); if (recoveredSigner != address(0) && recoveredSigner == signer) { valid = true; } } uint256[47] private __gap; } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { FeeRate } from "../lib/Structs.sol"; interface IValidation { function protocolFee() external view returns (address, uint16); function amountTaken(address user, bytes32 hash, uint256 listingIndex) external view returns (uint256); } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { TakeAsk, TakeBid, TakeAskSingle, TakeBidSingle, Order, OrderType, Listing } from "../lib/Structs.sol"; interface ISignatures { error Unauthorized(); error ExpiredOracleSignature(); error UnauthorizedOracle(); error InvalidOracleSignature(); error InvalidDomain(); function oracles(address oracle) external view returns (uint256); function nonces(address user) external view returns (uint256); function blockRange() external view returns (uint256); function verifyDomain() external view; function information() external view returns (string memory version, bytes32 domainSeparator); function hashListing(Listing memory listing) external pure returns (bytes32); function hashOrder(Order memory order, OrderType orderType) external view returns (bytes32); function hashTakeAsk(TakeAsk memory inputs, address _caller) external pure returns (bytes32); function hashTakeBid(TakeBid memory inputs, address _caller) external pure returns (bytes32); function hashTakeAskSingle(TakeAskSingle memory inputs, address _caller) external pure returns (bytes32); function hashTakeBidSingle(TakeBidSingle memory inputs, address _caller) external pure returns (bytes32); }
File 5 of 7: BlurPool
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; import "lib/openzeppelin-contracts-upgradeable/contracts/proxy/utils/UUPSUpgradeable.sol"; import "lib/openzeppelin-contracts-upgradeable/contracts/access/OwnableUpgradeable.sol"; import "./interfaces/IBlurPool.sol"; /** * @title BlurPool * @dev ETH pool; funds can only be transferred by Exchange, ExchangeV2, Swap or Blend */ contract BlurPool is IBlurPool, OwnableUpgradeable, UUPSUpgradeable { address private immutable EXCHANGE; address private immutable EXCHANGE_V2; address private immutable SWAP; address private immutable BLEND; mapping(address => uint256) private _balances; string public constant name = 'Blur Pool'; string constant symbol = ''; // required by the OZ UUPS module function _authorizeUpgrade(address) internal override onlyOwner {} constructor(address exchange, address exchangeV2, address swap, address blend) { _disableInitializers(); EXCHANGE = exchange; EXCHANGE_V2 = exchangeV2; SWAP = swap; BLEND = blend; } /* Constructor (for ERC1967) */ function initialize() external initializer { __Ownable_init(); } function decimals() external pure returns (uint8) { return 18; } function totalSupply() external view returns (uint256) { return address(this).balance; } function balanceOf(address user) external view returns (uint256) { return _balances[user]; } /** * @dev receive deposit function */ receive() external payable { deposit(); } /** * @dev deposit ETH into pool */ function deposit() public payable { _balances[msg.sender] += msg.value; emit Transfer(address(0), msg.sender, msg.value); } /** * @dev deposit ETH into pool on behalf of user * @param user Address to deposit to */ function deposit(address user) public payable { if (msg.sender != BLEND && msg.sender != EXCHANGE_V2) { revert('Unauthorized deposit'); } _balances[user] += msg.value; emit Transfer(address(0), user, msg.value); } /** * @dev withdraw ETH from pool * @param amount Amount to withdraw */ function withdraw(uint256 amount) external { uint256 balance = _balances[msg.sender]; require(balance >= amount, "Insufficient funds"); unchecked { _balances[msg.sender] = balance - amount; } (bool success,) = payable(msg.sender).call{value: amount}(""); require(success, "Transfer failed"); emit Transfer(msg.sender, address(0), amount); } /** * @dev withdraw ETH from pool on behalf of user; only callable by Blend * @param from Address to withdraw from * @param to Address to withdraw to * @param amount Amount to withdraw */ function withdrawFrom(address from, address to, uint256 amount) external { if (msg.sender != BLEND && msg.sender != EXCHANGE_V2) { revert('Unauthorized transfer'); } uint256 balance = _balances[from]; require(balance >= amount, "Insufficient balance"); unchecked { _balances[from] = balance - amount; } (bool success,) = payable(to).call{value: amount}(""); require(success, "Transfer failed"); emit Transfer(from, address(0), amount); } /** * @dev transferFrom Transfer balances within pool; only callable by Swap, Exchange, and Blend * @param from Pool fund sender * @param to Pool fund recipient * @param amount Amount to transfer */ function transferFrom(address from, address to, uint256 amount) external returns (bool) { if ( msg.sender != EXCHANGE && msg.sender != EXCHANGE_V2 && msg.sender != SWAP && msg.sender != BLEND ) { revert('Unauthorized transfer'); } _transfer(from, to, amount); return true; } function _transfer(address from, address to, uint256 amount) private { require(to != address(0), "Cannot transfer to 0 address"); uint256 balance = _balances[from]; require(balance >= amount, "Insufficient balance"); unchecked { _balances[from] = balance - amount; } _balances[to] += amount; emit Transfer(from, to, amount); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (proxy/utils/UUPSUpgradeable.sol) pragma solidity ^0.8.0; import "../../interfaces/draft-IERC1822Upgradeable.sol"; import "../ERC1967/ERC1967UpgradeUpgradeable.sol"; import "./Initializable.sol"; /** * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy. * * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing * `UUPSUpgradeable` with a custom implementation of upgrades. * * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism. * * _Available since v4.1._ */ abstract contract UUPSUpgradeable is Initializable, IERC1822ProxiableUpgradeable, ERC1967UpgradeUpgradeable { function __UUPSUpgradeable_init() internal onlyInitializing { } function __UUPSUpgradeable_init_unchained() internal onlyInitializing { } /// @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment address private immutable __self = address(this); /** * @dev Check that the execution is being performed through a delegatecall call and that the execution context is * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to * fail. */ modifier onlyProxy() { require(address(this) != __self, "Function must be called through delegatecall"); require(_getImplementation() == __self, "Function must be called through active proxy"); _; } /** * @dev Check that the execution is not being performed through a delegate call. This allows a function to be * callable on the implementing contract but not through proxies. */ modifier notDelegated() { require(address(this) == __self, "UUPSUpgradeable: must not be called through delegatecall"); _; } /** * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the * implementation. It is used to validate the implementation's compatibility when performing an upgrade. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier. */ function proxiableUUID() external view virtual override notDelegated returns (bytes32) { return _IMPLEMENTATION_SLOT; } /** * @dev Upgrade the implementation of the proxy to `newImplementation`. * * Calls {_authorizeUpgrade}. * * Emits an {Upgraded} event. */ function upgradeTo(address newImplementation) external virtual onlyProxy { _authorizeUpgrade(newImplementation); _upgradeToAndCallUUPS(newImplementation, new bytes(0), false); } /** * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call * encoded in `data`. * * Calls {_authorizeUpgrade}. * * Emits an {Upgraded} event. */ function upgradeToAndCall(address newImplementation, bytes memory data) external payable virtual onlyProxy { _authorizeUpgrade(newImplementation); _upgradeToAndCallUUPS(newImplementation, data, true); } /** * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by * {upgradeTo} and {upgradeToAndCall}. * * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}. * * ```solidity * function _authorizeUpgrade(address) internal override onlyOwner {} * ``` */ function _authorizeUpgrade(address newImplementation) internal virtual; /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal onlyInitializing { __Ownable_init_unchained(); } function __Ownable_init_unchained() internal onlyInitializing { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IBlurPool { event Transfer(address indexed from, address indexed to, uint256 amount); function initialize() external; function decimals() external pure returns (uint8); function totalSupply() external view returns (uint256); function balanceOf(address user) external view returns (uint256); function deposit() external payable; function deposit(address user) external payable; function withdraw(uint256 amount) external; function withdrawFrom(address from, address to, uint256 amount) external; function transferFrom(address from, address to, uint256 amount) external returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol) pragma solidity ^0.8.0; /** * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified * proxy whose upgrades are fully controlled by the current implementation. */ interface IERC1822ProxiableUpgradeable { /** * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation * address. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. */ function proxiableUUID() external view returns (bytes32); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.3) (proxy/ERC1967/ERC1967Upgrade.sol) pragma solidity ^0.8.2; import "../beacon/IBeaconUpgradeable.sol"; import "../../interfaces/IERC1967Upgradeable.sol"; import "../../interfaces/draft-IERC1822Upgradeable.sol"; import "../../utils/AddressUpgradeable.sol"; import "../../utils/StorageSlotUpgradeable.sol"; import "../utils/Initializable.sol"; /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots. * * _Available since v4.1._ * * @custom:oz-upgrades-unsafe-allow delegatecall */ abstract contract ERC1967UpgradeUpgradeable is Initializable, IERC1967Upgradeable { function __ERC1967Upgrade_init() internal onlyInitializing { } function __ERC1967Upgrade_init_unchained() internal onlyInitializing { } // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1 bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143; /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev Returns the current implementation address. */ function _getImplementation() internal view returns (address) { return StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { require(AddressUpgradeable.isContract(newImplementation), "ERC1967: new implementation is not a contract"); StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Perform implementation upgrade * * Emits an {Upgraded} event. */ function _upgradeTo(address newImplementation) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); } /** * @dev Perform implementation upgrade with additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCall( address newImplementation, bytes memory data, bool forceCall ) internal { _upgradeTo(newImplementation); if (data.length > 0 || forceCall) { _functionDelegateCall(newImplementation, data); } } /** * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCallUUPS( address newImplementation, bytes memory data, bool forceCall ) internal { // Upgrades from old implementations will perform a rollback test. This test requires the new // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing // this special case will break upgrade paths from old UUPS implementation to new ones. if (StorageSlotUpgradeable.getBooleanSlot(_ROLLBACK_SLOT).value) { _setImplementation(newImplementation); } else { try IERC1822ProxiableUpgradeable(newImplementation).proxiableUUID() returns (bytes32 slot) { require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID"); } catch { revert("ERC1967Upgrade: new implementation is not UUPS"); } _upgradeToAndCall(newImplementation, data, forceCall); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Returns the current admin. */ function _getAdmin() internal view returns (address) { return StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value; } /** * @dev Stores a new address in the EIP1967 admin slot. */ function _setAdmin(address newAdmin) private { require(newAdmin != address(0), "ERC1967: new admin is the zero address"); StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {AdminChanged} event. */ function _changeAdmin(address newAdmin) internal { emit AdminChanged(_getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor. */ bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Returns the current beacon. */ function _getBeacon() internal view returns (address) { return StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value; } /** * @dev Stores a new beacon in the EIP1967 beacon slot. */ function _setBeacon(address newBeacon) private { require(AddressUpgradeable.isContract(newBeacon), "ERC1967: new beacon is not a contract"); require( AddressUpgradeable.isContract(IBeaconUpgradeable(newBeacon).implementation()), "ERC1967: beacon implementation is not a contract" ); StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value = newBeacon; } /** * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that). * * Emits a {BeaconUpgraded} event. */ function _upgradeBeaconToAndCall( address newBeacon, bytes memory data, bool forceCall ) internal { _setBeacon(newBeacon); emit BeaconUpgraded(newBeacon); if (data.length > 0 || forceCall) { _functionDelegateCall(IBeaconUpgradeable(newBeacon).implementation(), data); } } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function _functionDelegateCall(address target, bytes memory data) private returns (bytes memory) { require(AddressUpgradeable.isContract(target), "Address: delegate call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.delegatecall(data); return AddressUpgradeable.verifyCallResult(success, returndata, "Address: low-level delegate call failed"); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.1) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol) pragma solidity ^0.8.0; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeaconUpgradeable { /** * @dev Must return an address that can be used as a delegate call target. * * {BeaconProxy} will check that this address is a contract. */ function implementation() external view returns (address); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.3) (interfaces/IERC1967.sol) pragma solidity ^0.8.0; /** * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC. * * _Available since v4.9._ */ interface IERC1967Upgradeable { /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Emitted when the beacon is changed. */ event BeaconUpgraded(address indexed beacon); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol) pragma solidity ^0.8.0; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ``` * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._ */ library StorageSlotUpgradeable { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; }
File 6 of 7: Delegate
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { ERC721 } from "lib/solmate/src/tokens/ERC721.sol"; import { ERC1155 } from "lib/solmate/src/tokens/ERC1155.sol"; import { ERC20 } from "lib/solmate/src/tokens/ERC20.sol"; import "./lib/Constants.sol"; import { AssetType, OrderType, Transfer } from "./lib/Structs.sol"; contract Delegate { error Unauthorized(); error InvalidLength(); address private immutable _EXCHANGE; constructor(address exchange) { _EXCHANGE = exchange; } modifier onlyApproved() { if (msg.sender != _EXCHANGE) { revert Unauthorized(); } _; } function transfer( address taker, OrderType orderType, Transfer[] calldata transfers, uint256 length ) external onlyApproved returns (bool[] memory successful) { if (transfers.length < length) { revert InvalidLength(); } successful = new bool[](length); for (uint256 i; i < length; ) { assembly { let calldataPointer := mload(0x40) let transfersPointer := add(transfers.offset, mul(Transfer_size, i)) let assetType := calldataload(add(transfersPointer, Transfer_assetType_offset)) switch assetType case 0 { // AssetType_ERC721 mstore(calldataPointer, ERC721_safeTransferFrom_selector) switch orderType case 0 { // OrderType_ASK; taker is recipient mstore(add(calldataPointer, ERC721_safeTransferFrom_to_offset), taker) mstore( add(calldataPointer, ERC721_safeTransferFrom_from_offset), calldataload(add(transfersPointer, Transfer_trader_offset)) ) } case 1 { // OrderType_BID; taker is sender mstore(add(calldataPointer, ERC721_safeTransferFrom_from_offset), taker) mstore( add(calldataPointer, ERC721_safeTransferFrom_to_offset), calldataload(add(transfersPointer, Transfer_trader_offset)) ) } default { revert(0, 0) } mstore( add(calldataPointer, ERC721_safeTransferFrom_id_offset), calldataload(add(transfersPointer, Transfer_id_offset)) ) let collection := calldataload( add(transfersPointer, Transfer_collection_offset) ) let success := call( gas(), collection, 0, calldataPointer, ERC721_safeTransferFrom_size, 0, 0 ) mstore(add(add(successful, 0x20), mul(0x20, i)), success) } case 1 { // AssetType_ERC1155 mstore(calldataPointer, ERC1155_safeTransferFrom_selector) switch orderType case 0 { // OrderType_ASK; taker is recipient mstore( add(calldataPointer, ERC1155_safeTransferFrom_from_offset), calldataload( add( transfersPointer, Transfer_trader_offset ) ) ) mstore(add(calldataPointer, ERC1155_safeTransferFrom_to_offset), taker) } case 1 { // OrderType_BID; taker is sender mstore( add(calldataPointer, ERC1155_safeTransferFrom_to_offset), calldataload( add( transfersPointer, Transfer_trader_offset ) ) ) mstore(add(calldataPointer, ERC1155_safeTransferFrom_from_offset), taker) } default { revert(0, 0) } mstore(add(calldataPointer, ERC1155_safeTransferFrom_data_pointer_offset), 0xa0) mstore(add(calldataPointer, ERC1155_safeTransferFrom_data_offset), 0) mstore( add(calldataPointer, ERC1155_safeTransferFrom_id_offset), calldataload( add(transfersPointer, Transfer_id_offset) ) ) mstore( add(calldataPointer, ERC1155_safeTransferFrom_amount_offset), calldataload( add( transfersPointer, Transfer_amount_offset ) ) ) let collection := calldataload( add( transfersPointer, Transfer_collection_offset ) ) let success := call( gas(), collection, 0, calldataPointer, ERC1155_safeTransferFrom_size, 0, 0 ) mstore(add(add(successful, 0x20), mul(0x20, i)), success) } default { revert(0, 0) } } unchecked { ++i; } } } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Modern, minimalist, and gas efficient ERC-721 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC721.sol) abstract contract ERC721 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event Transfer(address indexed from, address indexed to, uint256 indexed id); event Approval(address indexed owner, address indexed spender, uint256 indexed id); event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /*////////////////////////////////////////////////////////////// METADATA STORAGE/LOGIC //////////////////////////////////////////////////////////////*/ string public name; string public symbol; function tokenURI(uint256 id) public view virtual returns (string memory); /*////////////////////////////////////////////////////////////// ERC721 BALANCE/OWNER STORAGE //////////////////////////////////////////////////////////////*/ mapping(uint256 => address) internal _ownerOf; mapping(address => uint256) internal _balanceOf; function ownerOf(uint256 id) public view virtual returns (address owner) { require((owner = _ownerOf[id]) != address(0), "NOT_MINTED"); } function balanceOf(address owner) public view virtual returns (uint256) { require(owner != address(0), "ZERO_ADDRESS"); return _balanceOf[owner]; } /*////////////////////////////////////////////////////////////// ERC721 APPROVAL STORAGE //////////////////////////////////////////////////////////////*/ mapping(uint256 => address) public getApproved; mapping(address => mapping(address => bool)) public isApprovedForAll; /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor(string memory _name, string memory _symbol) { name = _name; symbol = _symbol; } /*////////////////////////////////////////////////////////////// ERC721 LOGIC //////////////////////////////////////////////////////////////*/ function approve(address spender, uint256 id) public virtual { address owner = _ownerOf[id]; require(msg.sender == owner || isApprovedForAll[owner][msg.sender], "NOT_AUTHORIZED"); getApproved[id] = spender; emit Approval(owner, spender, id); } function setApprovalForAll(address operator, bool approved) public virtual { isApprovedForAll[msg.sender][operator] = approved; emit ApprovalForAll(msg.sender, operator, approved); } function transferFrom( address from, address to, uint256 id ) public virtual { require(from == _ownerOf[id], "WRONG_FROM"); require(to != address(0), "INVALID_RECIPIENT"); require( msg.sender == from || isApprovedForAll[from][msg.sender] || msg.sender == getApproved[id], "NOT_AUTHORIZED" ); // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. unchecked { _balanceOf[from]--; _balanceOf[to]++; } _ownerOf[id] = to; delete getApproved[id]; emit Transfer(from, to, id); } function safeTransferFrom( address from, address to, uint256 id ) public virtual { transferFrom(from, to, id); require( to.code.length == 0 || ERC721TokenReceiver(to).onERC721Received(msg.sender, from, id, "") == ERC721TokenReceiver.onERC721Received.selector, "UNSAFE_RECIPIENT" ); } function safeTransferFrom( address from, address to, uint256 id, bytes calldata data ) public virtual { transferFrom(from, to, id); require( to.code.length == 0 || ERC721TokenReceiver(to).onERC721Received(msg.sender, from, id, data) == ERC721TokenReceiver.onERC721Received.selector, "UNSAFE_RECIPIENT" ); } /*////////////////////////////////////////////////////////////// ERC165 LOGIC //////////////////////////////////////////////////////////////*/ function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) { return interfaceId == 0x01ffc9a7 || // ERC165 Interface ID for ERC165 interfaceId == 0x80ac58cd || // ERC165 Interface ID for ERC721 interfaceId == 0x5b5e139f; // ERC165 Interface ID for ERC721Metadata } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint(address to, uint256 id) internal virtual { require(to != address(0), "INVALID_RECIPIENT"); require(_ownerOf[id] == address(0), "ALREADY_MINTED"); // Counter overflow is incredibly unrealistic. unchecked { _balanceOf[to]++; } _ownerOf[id] = to; emit Transfer(address(0), to, id); } function _burn(uint256 id) internal virtual { address owner = _ownerOf[id]; require(owner != address(0), "NOT_MINTED"); // Ownership check above ensures no underflow. unchecked { _balanceOf[owner]--; } delete _ownerOf[id]; delete getApproved[id]; emit Transfer(owner, address(0), id); } /*////////////////////////////////////////////////////////////// INTERNAL SAFE MINT LOGIC //////////////////////////////////////////////////////////////*/ function _safeMint(address to, uint256 id) internal virtual { _mint(to, id); require( to.code.length == 0 || ERC721TokenReceiver(to).onERC721Received(msg.sender, address(0), id, "") == ERC721TokenReceiver.onERC721Received.selector, "UNSAFE_RECIPIENT" ); } function _safeMint( address to, uint256 id, bytes memory data ) internal virtual { _mint(to, id); require( to.code.length == 0 || ERC721TokenReceiver(to).onERC721Received(msg.sender, address(0), id, data) == ERC721TokenReceiver.onERC721Received.selector, "UNSAFE_RECIPIENT" ); } } /// @notice A generic interface for a contract which properly accepts ERC721 tokens. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC721.sol) abstract contract ERC721TokenReceiver { function onERC721Received( address, address, uint256, bytes calldata ) external virtual returns (bytes4) { return ERC721TokenReceiver.onERC721Received.selector; } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Minimalist and gas efficient standard ERC1155 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC1155.sol) abstract contract ERC1155 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event TransferSingle( address indexed operator, address indexed from, address indexed to, uint256 id, uint256 amount ); event TransferBatch( address indexed operator, address indexed from, address indexed to, uint256[] ids, uint256[] amounts ); event ApprovalForAll(address indexed owner, address indexed operator, bool approved); event URI(string value, uint256 indexed id); /*////////////////////////////////////////////////////////////// ERC1155 STORAGE //////////////////////////////////////////////////////////////*/ mapping(address => mapping(uint256 => uint256)) public balanceOf; mapping(address => mapping(address => bool)) public isApprovedForAll; /*////////////////////////////////////////////////////////////// METADATA LOGIC //////////////////////////////////////////////////////////////*/ function uri(uint256 id) public view virtual returns (string memory); /*////////////////////////////////////////////////////////////// ERC1155 LOGIC //////////////////////////////////////////////////////////////*/ function setApprovalForAll(address operator, bool approved) public virtual { isApprovedForAll[msg.sender][operator] = approved; emit ApprovalForAll(msg.sender, operator, approved); } function safeTransferFrom( address from, address to, uint256 id, uint256 amount, bytes calldata data ) public virtual { require(msg.sender == from || isApprovedForAll[from][msg.sender], "NOT_AUTHORIZED"); balanceOf[from][id] -= amount; balanceOf[to][id] += amount; emit TransferSingle(msg.sender, from, to, id, amount); require( to.code.length == 0 ? to != address(0) : ERC1155TokenReceiver(to).onERC1155Received(msg.sender, from, id, amount, data) == ERC1155TokenReceiver.onERC1155Received.selector, "UNSAFE_RECIPIENT" ); } function safeBatchTransferFrom( address from, address to, uint256[] calldata ids, uint256[] calldata amounts, bytes calldata data ) public virtual { require(ids.length == amounts.length, "LENGTH_MISMATCH"); require(msg.sender == from || isApprovedForAll[from][msg.sender], "NOT_AUTHORIZED"); // Storing these outside the loop saves ~15 gas per iteration. uint256 id; uint256 amount; for (uint256 i = 0; i < ids.length; ) { id = ids[i]; amount = amounts[i]; balanceOf[from][id] -= amount; balanceOf[to][id] += amount; // An array can't have a total length // larger than the max uint256 value. unchecked { ++i; } } emit TransferBatch(msg.sender, from, to, ids, amounts); require( to.code.length == 0 ? to != address(0) : ERC1155TokenReceiver(to).onERC1155BatchReceived(msg.sender, from, ids, amounts, data) == ERC1155TokenReceiver.onERC1155BatchReceived.selector, "UNSAFE_RECIPIENT" ); } function balanceOfBatch(address[] calldata owners, uint256[] calldata ids) public view virtual returns (uint256[] memory balances) { require(owners.length == ids.length, "LENGTH_MISMATCH"); balances = new uint256[](owners.length); // Unchecked because the only math done is incrementing // the array index counter which cannot possibly overflow. unchecked { for (uint256 i = 0; i < owners.length; ++i) { balances[i] = balanceOf[owners[i]][ids[i]]; } } } /*////////////////////////////////////////////////////////////// ERC165 LOGIC //////////////////////////////////////////////////////////////*/ function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) { return interfaceId == 0x01ffc9a7 || // ERC165 Interface ID for ERC165 interfaceId == 0xd9b67a26 || // ERC165 Interface ID for ERC1155 interfaceId == 0x0e89341c; // ERC165 Interface ID for ERC1155MetadataURI } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint( address to, uint256 id, uint256 amount, bytes memory data ) internal virtual { balanceOf[to][id] += amount; emit TransferSingle(msg.sender, address(0), to, id, amount); require( to.code.length == 0 ? to != address(0) : ERC1155TokenReceiver(to).onERC1155Received(msg.sender, address(0), id, amount, data) == ERC1155TokenReceiver.onERC1155Received.selector, "UNSAFE_RECIPIENT" ); } function _batchMint( address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data ) internal virtual { uint256 idsLength = ids.length; // Saves MLOADs. require(idsLength == amounts.length, "LENGTH_MISMATCH"); for (uint256 i = 0; i < idsLength; ) { balanceOf[to][ids[i]] += amounts[i]; // An array can't have a total length // larger than the max uint256 value. unchecked { ++i; } } emit TransferBatch(msg.sender, address(0), to, ids, amounts); require( to.code.length == 0 ? to != address(0) : ERC1155TokenReceiver(to).onERC1155BatchReceived(msg.sender, address(0), ids, amounts, data) == ERC1155TokenReceiver.onERC1155BatchReceived.selector, "UNSAFE_RECIPIENT" ); } function _batchBurn( address from, uint256[] memory ids, uint256[] memory amounts ) internal virtual { uint256 idsLength = ids.length; // Saves MLOADs. require(idsLength == amounts.length, "LENGTH_MISMATCH"); for (uint256 i = 0; i < idsLength; ) { balanceOf[from][ids[i]] -= amounts[i]; // An array can't have a total length // larger than the max uint256 value. unchecked { ++i; } } emit TransferBatch(msg.sender, from, address(0), ids, amounts); } function _burn( address from, uint256 id, uint256 amount ) internal virtual { balanceOf[from][id] -= amount; emit TransferSingle(msg.sender, from, address(0), id, amount); } } /// @notice A generic interface for a contract which properly accepts ERC1155 tokens. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC1155.sol) abstract contract ERC1155TokenReceiver { function onERC1155Received( address, address, uint256, uint256, bytes calldata ) external virtual returns (bytes4) { return ERC1155TokenReceiver.onERC1155Received.selector; } function onERC1155BatchReceived( address, address, uint256[] calldata, uint256[] calldata, bytes calldata ) external virtual returns (bytes4) { return ERC1155TokenReceiver.onERC1155BatchReceived.selector; } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol) /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol) /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it. abstract contract ERC20 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); /*////////////////////////////////////////////////////////////// METADATA STORAGE //////////////////////////////////////////////////////////////*/ string public name; string public symbol; uint8 public immutable decimals; /*////////////////////////////////////////////////////////////// ERC20 STORAGE //////////////////////////////////////////////////////////////*/ uint256 public totalSupply; mapping(address => uint256) public balanceOf; mapping(address => mapping(address => uint256)) public allowance; /*////////////////////////////////////////////////////////////// EIP-2612 STORAGE //////////////////////////////////////////////////////////////*/ uint256 internal immutable INITIAL_CHAIN_ID; bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR; mapping(address => uint256) public nonces; /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor( string memory _name, string memory _symbol, uint8 _decimals ) { name = _name; symbol = _symbol; decimals = _decimals; INITIAL_CHAIN_ID = block.chainid; INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator(); } /*////////////////////////////////////////////////////////////// ERC20 LOGIC //////////////////////////////////////////////////////////////*/ function approve(address spender, uint256 amount) public virtual returns (bool) { allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } function transfer(address to, uint256 amount) public virtual returns (bool) { balanceOf[msg.sender] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(msg.sender, to, amount); return true; } function transferFrom( address from, address to, uint256 amount ) public virtual returns (bool) { uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals. if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount; balanceOf[from] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(from, to, amount); return true; } /*////////////////////////////////////////////////////////////// EIP-2612 LOGIC //////////////////////////////////////////////////////////////*/ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED"); // Unchecked because the only math done is incrementing // the owner's nonce which cannot realistically overflow. unchecked { address recoveredAddress = ecrecover( keccak256( abi.encodePacked( "\\x19\\x01", DOMAIN_SEPARATOR(), keccak256( abi.encode( keccak256( "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)" ), owner, spender, value, nonces[owner]++, deadline ) ) ) ), v, r, s ); require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER"); allowance[recoveredAddress][spender] = value; } emit Approval(owner, spender, value); } function DOMAIN_SEPARATOR() public view virtual returns (bytes32) { return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator(); } function computeDomainSeparator() internal view virtual returns (bytes32) { return keccak256( abi.encode( keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"), keccak256(bytes(name)), keccak256("1"), block.chainid, address(this) ) ); } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint(address to, uint256 amount) internal virtual { totalSupply += amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(address(0), to, amount); } function _burn(address from, uint256 amount) internal virtual { balanceOf[from] -= amount; // Cannot underflow because a user's balance // will never be larger than the total supply. unchecked { totalSupply -= amount; } emit Transfer(from, address(0), amount); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; uint256 constant Bytes1_shift = 0xf8; uint256 constant Bytes4_shift = 0xe0; uint256 constant Bytes20_shift = 0x60; uint256 constant One_word = 0x20; uint256 constant Memory_pointer = 0x40; uint256 constant AssetType_ERC721 = 0; uint256 constant AssetType_ERC1155 = 1; uint256 constant OrderType_ASK = 0; uint256 constant OrderType_BID = 1; uint256 constant Pool_withdrawFrom_selector = 0x9555a94200000000000000000000000000000000000000000000000000000000; uint256 constant Pool_withdrawFrom_from_offset = 0x04; uint256 constant Pool_withdrawFrom_to_offset = 0x24; uint256 constant Pool_withdrawFrom_amount_offset = 0x44; uint256 constant Pool_withdrawFrom_size = 0x64; uint256 constant Pool_deposit_selector = 0xf340fa0100000000000000000000000000000000000000000000000000000000; uint256 constant Pool_deposit_user_offset = 0x04; uint256 constant Pool_deposit_size = 0x24; uint256 constant ERC20_transferFrom_selector = 0x23b872dd00000000000000000000000000000000000000000000000000000000; uint256 constant ERC721_safeTransferFrom_selector = 0x42842e0e00000000000000000000000000000000000000000000000000000000; uint256 constant ERC1155_safeTransferFrom_selector = 0xf242432a00000000000000000000000000000000000000000000000000000000; uint256 constant ERC20_transferFrom_size = 0x64; uint256 constant ERC721_safeTransferFrom_size = 0x64; uint256 constant ERC1155_safeTransferFrom_size = 0xc4; uint256 constant OracleSignatures_size = 0x59; uint256 constant OracleSignatures_s_offset = 0x20; uint256 constant OracleSignatures_v_offset = 0x40; uint256 constant OracleSignatures_blockNumber_offset = 0x41; uint256 constant OracleSignatures_oracle_offset = 0x45; uint256 constant Signatures_size = 0x41; uint256 constant Signatures_s_offset = 0x20; uint256 constant Signatures_v_offset = 0x40; uint256 constant ERC20_transferFrom_from_offset = 0x4; uint256 constant ERC20_transferFrom_to_offset = 0x24; uint256 constant ERC20_transferFrom_amount_offset = 0x44; uint256 constant ERC721_safeTransferFrom_from_offset = 0x4; uint256 constant ERC721_safeTransferFrom_to_offset = 0x24; uint256 constant ERC721_safeTransferFrom_id_offset = 0x44; uint256 constant ERC1155_safeTransferFrom_from_offset = 0x4; uint256 constant ERC1155_safeTransferFrom_to_offset = 0x24; uint256 constant ERC1155_safeTransferFrom_id_offset = 0x44; uint256 constant ERC1155_safeTransferFrom_amount_offset = 0x64; uint256 constant ERC1155_safeTransferFrom_data_pointer_offset = 0x84; uint256 constant ERC1155_safeTransferFrom_data_offset = 0xa4; uint256 constant Delegate_transfer_selector = 0xa1ccb98e00000000000000000000000000000000000000000000000000000000; uint256 constant Delegate_transfer_calldata_offset = 0x1c; uint256 constant Order_size = 0x100; uint256 constant Order_trader_offset = 0x00; uint256 constant Order_collection_offset = 0x20; uint256 constant Order_listingsRoot_offset = 0x40; uint256 constant Order_numberOfListings_offset = 0x60; uint256 constant Order_expirationTime_offset = 0x80; uint256 constant Order_assetType_offset = 0xa0; uint256 constant Order_makerFee_offset = 0xc0; uint256 constant Order_salt_offset = 0xe0; uint256 constant Exchange_size = 0x80; uint256 constant Exchange_askIndex_offset = 0x00; uint256 constant Exchange_proof_offset = 0x20; uint256 constant Exchange_maker_offset = 0x40; uint256 constant Exchange_taker_offset = 0x60; uint256 constant BidExchange_size = 0x80; uint256 constant BidExchange_askIndex_offset = 0x00; uint256 constant BidExchange_proof_offset = 0x20; uint256 constant BidExchange_maker_offset = 0x40; uint256 constant BidExchange_taker_offset = 0x60; uint256 constant Listing_size = 0x80; uint256 constant Listing_index_offset = 0x00; uint256 constant Listing_tokenId_offset = 0x20; uint256 constant Listing_amount_offset = 0x40; uint256 constant Listing_price_offset = 0x60; uint256 constant Taker_size = 0x40; uint256 constant Taker_tokenId_offset = 0x00; uint256 constant Taker_amount_offset = 0x20; uint256 constant StateUpdate_size = 0x80; uint256 constant StateUpdate_salt_offset = 0x20; uint256 constant StateUpdate_leaf_offset = 0x40; uint256 constant StateUpdate_value_offset = 0x60; uint256 constant Transfer_size = 0xa0; uint256 constant Transfer_trader_offset = 0x00; uint256 constant Transfer_id_offset = 0x20; uint256 constant Transfer_amount_offset = 0x40; uint256 constant Transfer_collection_offset = 0x60; uint256 constant Transfer_assetType_offset = 0x80; uint256 constant ExecutionBatch_selector_offset = 0x20; uint256 constant ExecutionBatch_calldata_offset = 0x40; uint256 constant ExecutionBatch_base_size = 0xa0; // size of the executionBatch without the flattened dynamic elements uint256 constant ExecutionBatch_taker_offset = 0x00; uint256 constant ExecutionBatch_orderType_offset = 0x20; uint256 constant ExecutionBatch_transfers_pointer_offset = 0x40; uint256 constant ExecutionBatch_length_offset = 0x60; uint256 constant ExecutionBatch_transfers_offset = 0x80; // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; struct TakeAsk { Order[] orders; Exchange[] exchanges; FeeRate takerFee; bytes signatures; address tokenRecipient; } struct TakeAskSingle { Order order; Exchange exchange; FeeRate takerFee; bytes signature; address tokenRecipient; } struct TakeBid { Order[] orders; Exchange[] exchanges; FeeRate takerFee; bytes signatures; } struct TakeBidSingle { Order order; Exchange exchange; FeeRate takerFee; bytes signature; } enum AssetType { ERC721, ERC1155 } enum OrderType { ASK, BID } struct Exchange { // Size: 0x80 uint256 index; // 0x00 bytes32[] proof; // 0x20 Listing listing; // 0x40 Taker taker; // 0x60 } struct Listing { // Size: 0x80 uint256 index; // 0x00 uint256 tokenId; // 0x20 uint256 amount; // 0x40 uint256 price; // 0x60 } struct Taker { // Size: 0x40 uint256 tokenId; // 0x00 uint256 amount; // 0x20 } struct Order { // Size: 0x100 address trader; // 0x00 address collection; // 0x20 bytes32 listingsRoot; // 0x40 uint256 numberOfListings; // 0x60 uint256 expirationTime; // 0x80 AssetType assetType; // 0xa0 FeeRate makerFee; // 0xc0 uint256 salt; // 0xe0 } /* Reference only; struct is composed manually using calldata formatting in execution struct ExecutionBatch { // Size: 0x80 address taker; // 0x00 OrderType orderType; // 0x20 Transfer[] transfers; // 0x40 uint256 length; // 0x60 } */ struct Transfer { // Size: 0xa0 address trader; // 0x00 uint256 id; // 0x20 uint256 amount; // 0x40 address collection; // 0x60 AssetType assetType; // 0x80 } struct FungibleTransfers { uint256 totalProtocolFee; uint256 totalSellerTransfer; uint256 totalTakerFee; uint256 feeRecipientId; uint256 makerId; address[] feeRecipients; address[] makers; uint256[] makerTransfers; uint256[] feeTransfers; AtomicExecution[] executions; } struct AtomicExecution { // Size: 0xe0 uint256 makerId; // 0x00 uint256 sellerAmount; // 0x20 uint256 makerFeeRecipientId; // 0x40 uint256 makerFeeAmount; // 0x60 uint256 takerFeeAmount; // 0x80 uint256 protocolFeeAmount; // 0xa0 StateUpdate stateUpdate; // 0xc0 } struct StateUpdate { // Size: 0xa0 address trader; // 0x00 bytes32 hash; // 0x20 uint256 index; // 0x40 uint256 value; // 0x60 uint256 maxAmount; // 0x80 } struct Fees { // Size: 0x40 FeeRate protocolFee; // 0x00 FeeRate takerFee; // 0x20 } struct FeeRate { // Size: 0x40 address recipient; // 0x00 uint16 rate; // 0x20 } struct Cancel { bytes32 hash; uint256 index; uint256 amount; }
File 7 of 7: OperatorFilterRegistry
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/structs/EnumerableSet.sol) // This file was procedurally generated from scripts/generate/templates/EnumerableSet.js. pragma solidity ^0.8.0; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ``` * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`) * and `uint256` (`UintSet`) are supported. * * [WARNING] * ==== * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure * unusable. * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info. * * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an * array of EnumerableSet. * ==== */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position of the value in the `values` array, plus 1 because index 0 // means a value is not in the set. mapping(bytes32 => uint256) _indexes; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._indexes[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We read and store the value's index to prevent multiple reads from the same storage slot uint256 valueIndex = set._indexes[value]; if (valueIndex != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; if (lastIndex != toDeleteIndex) { bytes32 lastValue = set._values[lastIndex]; // Move the last value to the index where the value to delete is set._values[toDeleteIndex] = lastValue; // Update the index for the moved value set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex } // Delete the slot where the moved value was stored set._values.pop(); // Delete the index for the deleted slot delete set._indexes[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._indexes[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { return set._values[index]; } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function _values(Set storage set) private view returns (bytes32[] memory) { return set._values; } // Bytes32Set struct Bytes32Set { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _add(set._inner, value); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _remove(set._inner, value); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) { return _contains(set._inner, value); } /** * @dev Returns the number of values in the set. O(1). */ function length(Bytes32Set storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) { return _at(set._inner, index); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(Bytes32Set storage set) internal view returns (bytes32[] memory) { bytes32[] memory store = _values(set._inner); bytes32[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, index)))); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(AddressSet storage set) internal view returns (address[] memory) { bytes32[] memory store = _values(set._inner); address[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values in the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(UintSet storage set) internal view returns (uint256[] memory) { bytes32[] memory store = _values(set._inner); uint256[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.13; import {EnumerableSet} from "openzeppelin-contracts/utils/structs/EnumerableSet.sol"; interface IOperatorFilterRegistry { function isOperatorAllowed(address registrant, address operator) external returns (bool); function register(address registrant) external; function registerAndSubscribe(address registrant, address subscription) external; function registerAndCopyEntries(address registrant, address registrantToCopy) external; function updateOperator(address registrant, address operator, bool filtered) external; function updateOperators(address registrant, address[] calldata operators, bool filtered) external; function updateCodeHash(address registrant, bytes32 codehash, bool filtered) external; function updateCodeHashes(address registrant, bytes32[] calldata codeHashes, bool filtered) external; function subscribe(address registrant, address registrantToSubscribe) external; function unsubscribe(address registrant, bool copyExistingEntries) external; function subscriptionOf(address addr) external returns (address registrant); function subscribers(address registrant) external returns (address[] memory); function subscriberAt(address registrant, uint256 index) external returns (address); function copyEntriesOf(address registrant, address registrantToCopy) external; function isOperatorFiltered(address registrant, address operator) external returns (bool); function isCodeHashOfFiltered(address registrant, address operatorWithCode) external returns (bool); function isCodeHashFiltered(address registrant, bytes32 codeHash) external returns (bool); function filteredOperators(address addr) external returns (address[] memory); function filteredCodeHashes(address addr) external returns (bytes32[] memory); function filteredOperatorAt(address registrant, uint256 index) external returns (address); function filteredCodeHashAt(address registrant, uint256 index) external returns (bytes32); function isRegistered(address addr) external returns (bool); function codeHashOf(address addr) external returns (bytes32); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.13; import {IOperatorFilterRegistry} from "./IOperatorFilterRegistry.sol"; import {Ownable} from "openzeppelin-contracts/access/Ownable.sol"; import {EnumerableSet} from "openzeppelin-contracts/utils/structs/EnumerableSet.sol"; import {OperatorFilterRegistryErrorsAndEvents} from "./OperatorFilterRegistryErrorsAndEvents.sol"; /** * @title OperatorFilterRegistry * @notice Borrows heavily from the QQL BlacklistOperatorFilter contract: * https://github.com/qql-art/contracts/blob/main/contracts/BlacklistOperatorFilter.sol * @notice This contracts allows tokens or token owners to register specific addresses or codeHashes that may be * * restricted according to the isOperatorAllowed function. */ contract OperatorFilterRegistry is IOperatorFilterRegistry, OperatorFilterRegistryErrorsAndEvents { using EnumerableSet for EnumerableSet.AddressSet; using EnumerableSet for EnumerableSet.Bytes32Set; /// @dev initialized accounts have a nonzero codehash (see https://eips.ethereum.org/EIPS/eip-1052) /// Note that this will also be a smart contract's codehash when making calls from its constructor. bytes32 constant EOA_CODEHASH = keccak256(""); mapping(address => EnumerableSet.AddressSet) private _filteredOperators; mapping(address => EnumerableSet.Bytes32Set) private _filteredCodeHashes; mapping(address => address) private _registrations; mapping(address => EnumerableSet.AddressSet) private _subscribers; /** * @notice restricts method caller to the address or EIP-173 "owner()" */ modifier onlyAddressOrOwner(address addr) { if (msg.sender != addr) { try Ownable(addr).owner() returns (address owner) { if (msg.sender != owner) { revert OnlyAddressOrOwner(); } } catch (bytes memory reason) { if (reason.length == 0) { revert NotOwnable(); } else { /// @solidity memory-safe-assembly assembly { revert(add(32, reason), mload(reason)) } } } } _; } /** * @notice Returns true if operator is not filtered for a given token, either by address or codeHash. Also returns * true if supplied registrant address is not registered. */ function isOperatorAllowed(address registrant, address operator) external view returns (bool) { address registration = _registrations[registrant]; if (registration != address(0)) { EnumerableSet.AddressSet storage filteredOperatorsRef; EnumerableSet.Bytes32Set storage filteredCodeHashesRef; filteredOperatorsRef = _filteredOperators[registration]; filteredCodeHashesRef = _filteredCodeHashes[registration]; if (filteredOperatorsRef.contains(operator)) { revert AddressFiltered(operator); } if (operator.code.length > 0) { bytes32 codeHash = operator.codehash; if (filteredCodeHashesRef.contains(codeHash)) { revert CodeHashFiltered(operator, codeHash); } } } return true; } ////////////////// // AUTH METHODS // ////////////////// /** * @notice Registers an address with the registry. May be called by address itself or by EIP-173 owner. */ function register(address registrant) external onlyAddressOrOwner(registrant) { if (_registrations[registrant] != address(0)) { revert AlreadyRegistered(); } _registrations[registrant] = registrant; emit RegistrationUpdated(registrant, true); } /** * @notice Unregisters an address with the registry and removes its subscription. May be called by address itself or by EIP-173 owner. * Note that this does not remove any filtered addresses or codeHashes. * Also note that any subscriptions to this registrant will still be active and follow the existing filtered addresses and codehashes. */ function unregister(address registrant) external onlyAddressOrOwner(registrant) { address registration = _registrations[registrant]; if (registration == address(0)) { revert NotRegistered(registrant); } if (registration != registrant) { _subscribers[registration].remove(registrant); emit SubscriptionUpdated(registrant, registration, false); } _registrations[registrant] = address(0); emit RegistrationUpdated(registrant, false); } /** * @notice Registers an address with the registry and "subscribes" to another address's filtered operators and codeHashes. */ function registerAndSubscribe(address registrant, address subscription) external onlyAddressOrOwner(registrant) { address registration = _registrations[registrant]; if (registration != address(0)) { revert AlreadyRegistered(); } if (registrant == subscription) { revert CannotSubscribeToSelf(); } address subscriptionRegistration = _registrations[subscription]; if (subscriptionRegistration == address(0)) { revert NotRegistered(subscription); } if (subscriptionRegistration != subscription) { revert CannotSubscribeToRegistrantWithSubscription(subscription); } _registrations[registrant] = subscription; _subscribers[subscription].add(registrant); emit RegistrationUpdated(registrant, true); emit SubscriptionUpdated(registrant, subscription, true); } /** * @notice Registers an address with the registry and copies the filtered operators and codeHashes from another * address without subscribing. */ function registerAndCopyEntries(address registrant, address registrantToCopy) external onlyAddressOrOwner(registrant) { if (registrantToCopy == registrant) { revert CannotCopyFromSelf(); } address registration = _registrations[registrant]; if (registration != address(0)) { revert AlreadyRegistered(); } address registrantRegistration = _registrations[registrantToCopy]; if (registrantRegistration == address(0)) { revert NotRegistered(registrantToCopy); } _registrations[registrant] = registrant; emit RegistrationUpdated(registrant, true); _copyEntries(registrant, registrantToCopy); } /** * @notice Update an operator address for a registered address - when filtered is true, the operator is filtered. */ function updateOperator(address registrant, address operator, bool filtered) external onlyAddressOrOwner(registrant) { address registration = _registrations[registrant]; if (registration == address(0)) { revert NotRegistered(registrant); } if (registration != registrant) { revert CannotUpdateWhileSubscribed(registration); } EnumerableSet.AddressSet storage filteredOperatorsRef = _filteredOperators[registrant]; if (!filtered) { bool removed = filteredOperatorsRef.remove(operator); if (!removed) { revert AddressNotFiltered(operator); } } else { bool added = filteredOperatorsRef.add(operator); if (!added) { revert AddressAlreadyFiltered(operator); } } emit OperatorUpdated(registrant, operator, filtered); } /** * @notice Update a codeHash for a registered address - when filtered is true, the codeHash is filtered. */ function updateCodeHash(address registrant, bytes32 codeHash, bool filtered) external onlyAddressOrOwner(registrant) { if (codeHash == EOA_CODEHASH) { revert CannotFilterEOAs(); } address registration = _registrations[registrant]; if (registration == address(0)) { revert NotRegistered(registrant); } if (registration != registrant) { revert CannotUpdateWhileSubscribed(registration); } EnumerableSet.Bytes32Set storage filteredCodeHashesRef = _filteredCodeHashes[registrant]; if (!filtered) { bool removed = filteredCodeHashesRef.remove(codeHash); if (!removed) { revert CodeHashNotFiltered(codeHash); } } else { bool added = filteredCodeHashesRef.add(codeHash); if (!added) { revert CodeHashAlreadyFiltered(codeHash); } } emit CodeHashUpdated(registrant, codeHash, filtered); } /** * @notice Update multiple operators for a registered address - when filtered is true, the operators will be filtered. Reverts on duplicates. */ function updateOperators(address registrant, address[] calldata operators, bool filtered) external onlyAddressOrOwner(registrant) { address registration = _registrations[registrant]; if (registration == address(0)) { revert NotRegistered(registrant); } if (registration != registrant) { revert CannotUpdateWhileSubscribed(registration); } EnumerableSet.AddressSet storage filteredOperatorsRef = _filteredOperators[registrant]; uint256 operatorsLength = operators.length; unchecked { if (!filtered) { for (uint256 i = 0; i < operatorsLength; ++i) { address operator = operators[i]; bool removed = filteredOperatorsRef.remove(operator); if (!removed) { revert AddressNotFiltered(operator); } } } else { for (uint256 i = 0; i < operatorsLength; ++i) { address operator = operators[i]; bool added = filteredOperatorsRef.add(operator); if (!added) { revert AddressAlreadyFiltered(operator); } } } } emit OperatorsUpdated(registrant, operators, filtered); } /** * @notice Update multiple codeHashes for a registered address - when filtered is true, the codeHashes will be filtered. Reverts on duplicates. */ function updateCodeHashes(address registrant, bytes32[] calldata codeHashes, bool filtered) external onlyAddressOrOwner(registrant) { address registration = _registrations[registrant]; if (registration == address(0)) { revert NotRegistered(registrant); } if (registration != registrant) { revert CannotUpdateWhileSubscribed(registration); } EnumerableSet.Bytes32Set storage filteredCodeHashesRef = _filteredCodeHashes[registrant]; uint256 codeHashesLength = codeHashes.length; unchecked { if (!filtered) { for (uint256 i = 0; i < codeHashesLength; ++i) { bytes32 codeHash = codeHashes[i]; bool removed = filteredCodeHashesRef.remove(codeHash); if (!removed) { revert CodeHashNotFiltered(codeHash); } } } else { for (uint256 i = 0; i < codeHashesLength; ++i) { bytes32 codeHash = codeHashes[i]; if (codeHash == EOA_CODEHASH) { revert CannotFilterEOAs(); } bool added = filteredCodeHashesRef.add(codeHash); if (!added) { revert CodeHashAlreadyFiltered(codeHash); } } } } emit CodeHashesUpdated(registrant, codeHashes, filtered); } /** * @notice Subscribe an address to another registrant's filtered operators and codeHashes. Will remove previous * subscription if present. * Note that accounts with subscriptions may go on to subscribe to other accounts - in this case, * subscriptions will not be forwarded. Instead the former subscription's existing entries will still be * used. */ function subscribe(address registrant, address newSubscription) external onlyAddressOrOwner(registrant) { if (registrant == newSubscription) { revert CannotSubscribeToSelf(); } if (newSubscription == address(0)) { revert CannotSubscribeToZeroAddress(); } address registration = _registrations[registrant]; if (registration == address(0)) { revert NotRegistered(registrant); } if (registration == newSubscription) { revert AlreadySubscribed(newSubscription); } address newSubscriptionRegistration = _registrations[newSubscription]; if (newSubscriptionRegistration == address(0)) { revert NotRegistered(newSubscription); } if (newSubscriptionRegistration != newSubscription) { revert CannotSubscribeToRegistrantWithSubscription(newSubscription); } if (registration != registrant) { _subscribers[registration].remove(registrant); emit SubscriptionUpdated(registrant, registration, false); } _registrations[registrant] = newSubscription; _subscribers[newSubscription].add(registrant); emit SubscriptionUpdated(registrant, newSubscription, true); } /** * @notice Unsubscribe an address from its current subscribed registrant, and optionally copy its filtered operators and codeHashes. */ function unsubscribe(address registrant, bool copyExistingEntries) external onlyAddressOrOwner(registrant) { address registration = _registrations[registrant]; if (registration == address(0)) { revert NotRegistered(registrant); } if (registration == registrant) { revert NotSubscribed(); } _subscribers[registration].remove(registrant); _registrations[registrant] = registrant; emit SubscriptionUpdated(registrant, registration, false); if (copyExistingEntries) { _copyEntries(registrant, registration); } } /** * @notice Copy filtered operators and codeHashes from a different registrantToCopy to addr. */ function copyEntriesOf(address registrant, address registrantToCopy) external onlyAddressOrOwner(registrant) { if (registrant == registrantToCopy) { revert CannotCopyFromSelf(); } address registration = _registrations[registrant]; if (registration == address(0)) { revert NotRegistered(registrant); } if (registration != registrant) { revert CannotUpdateWhileSubscribed(registration); } address registrantRegistration = _registrations[registrantToCopy]; if (registrantRegistration == address(0)) { revert NotRegistered(registrantToCopy); } _copyEntries(registrant, registrantToCopy); } /// @dev helper to copy entries from registrantToCopy to registrant and emit events function _copyEntries(address registrant, address registrantToCopy) private { EnumerableSet.AddressSet storage filteredOperatorsRef = _filteredOperators[registrantToCopy]; EnumerableSet.Bytes32Set storage filteredCodeHashesRef = _filteredCodeHashes[registrantToCopy]; uint256 filteredOperatorsLength = filteredOperatorsRef.length(); uint256 filteredCodeHashesLength = filteredCodeHashesRef.length(); unchecked { for (uint256 i = 0; i < filteredOperatorsLength; ++i) { address operator = filteredOperatorsRef.at(i); bool added = _filteredOperators[registrant].add(operator); if (added) { emit OperatorUpdated(registrant, operator, true); } } for (uint256 i = 0; i < filteredCodeHashesLength; ++i) { bytes32 codehash = filteredCodeHashesRef.at(i); bool added = _filteredCodeHashes[registrant].add(codehash); if (added) { emit CodeHashUpdated(registrant, codehash, true); } } } } ////////////////// // VIEW METHODS // ////////////////// /** * @notice Get the subscription address of a given registrant, if any. */ function subscriptionOf(address registrant) external view returns (address subscription) { subscription = _registrations[registrant]; if (subscription == address(0)) { revert NotRegistered(registrant); } else if (subscription == registrant) { subscription = address(0); } } /** * @notice Get the set of addresses subscribed to a given registrant. * Note that order is not guaranteed as updates are made. */ function subscribers(address registrant) external view returns (address[] memory) { return _subscribers[registrant].values(); } /** * @notice Get the subscriber at a given index in the set of addresses subscribed to a given registrant. * Note that order is not guaranteed as updates are made. */ function subscriberAt(address registrant, uint256 index) external view returns (address) { return _subscribers[registrant].at(index); } /** * @notice Returns true if operator is filtered by a given address or its subscription. */ function isOperatorFiltered(address registrant, address operator) external view returns (bool) { address registration = _registrations[registrant]; if (registration != registrant) { return _filteredOperators[registration].contains(operator); } return _filteredOperators[registrant].contains(operator); } /** * @notice Returns true if a codeHash is filtered by a given address or its subscription. */ function isCodeHashFiltered(address registrant, bytes32 codeHash) external view returns (bool) { address registration = _registrations[registrant]; if (registration != registrant) { return _filteredCodeHashes[registration].contains(codeHash); } return _filteredCodeHashes[registrant].contains(codeHash); } /** * @notice Returns true if the hash of an address's code is filtered by a given address or its subscription. */ function isCodeHashOfFiltered(address registrant, address operatorWithCode) external view returns (bool) { bytes32 codeHash = operatorWithCode.codehash; address registration = _registrations[registrant]; if (registration != registrant) { return _filteredCodeHashes[registration].contains(codeHash); } return _filteredCodeHashes[registrant].contains(codeHash); } /** * @notice Returns true if an address has registered */ function isRegistered(address registrant) external view returns (bool) { return _registrations[registrant] != address(0); } /** * @notice Returns a list of filtered operators for a given address or its subscription. */ function filteredOperators(address registrant) external view returns (address[] memory) { address registration = _registrations[registrant]; if (registration != registrant) { return _filteredOperators[registration].values(); } return _filteredOperators[registrant].values(); } /** * @notice Returns the set of filtered codeHashes for a given address or its subscription. * Note that order is not guaranteed as updates are made. */ function filteredCodeHashes(address registrant) external view returns (bytes32[] memory) { address registration = _registrations[registrant]; if (registration != registrant) { return _filteredCodeHashes[registration].values(); } return _filteredCodeHashes[registrant].values(); } /** * @notice Returns the filtered operator at the given index of the set of filtered operators for a given address or * its subscription. * Note that order is not guaranteed as updates are made. */ function filteredOperatorAt(address registrant, uint256 index) external view returns (address) { address registration = _registrations[registrant]; if (registration != registrant) { return _filteredOperators[registration].at(index); } return _filteredOperators[registrant].at(index); } /** * @notice Returns the filtered codeHash at the given index of the list of filtered codeHashes for a given address or * its subscription. * Note that order is not guaranteed as updates are made. */ function filteredCodeHashAt(address registrant, uint256 index) external view returns (bytes32) { address registration = _registrations[registrant]; if (registration != registrant) { return _filteredCodeHashes[registration].at(index); } return _filteredCodeHashes[registrant].at(index); } /// @dev Convenience method to compute the code hash of an arbitrary contract function codeHashOf(address a) external view returns (bytes32) { return a.codehash; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.13; contract OperatorFilterRegistryErrorsAndEvents { error CannotFilterEOAs(); error AddressAlreadyFiltered(address operator); error AddressNotFiltered(address operator); error CodeHashAlreadyFiltered(bytes32 codeHash); error CodeHashNotFiltered(bytes32 codeHash); error OnlyAddressOrOwner(); error NotRegistered(address registrant); error AlreadyRegistered(); error AlreadySubscribed(address subscription); error NotSubscribed(); error CannotUpdateWhileSubscribed(address subscription); error CannotSubscribeToSelf(); error CannotSubscribeToZeroAddress(); error NotOwnable(); error AddressFiltered(address filtered); error CodeHashFiltered(address account, bytes32 codeHash); error CannotSubscribeToRegistrantWithSubscription(address registrant); error CannotCopyFromSelf(); event RegistrationUpdated(address indexed registrant, bool indexed registered); event OperatorUpdated(address indexed registrant, address indexed operator, bool indexed filtered); event OperatorsUpdated(address indexed registrant, address[] operators, bool indexed filtered); event CodeHashUpdated(address indexed registrant, bytes32 indexed codeHash, bool indexed filtered); event CodeHashesUpdated(address indexed registrant, bytes32[] codeHashes, bool indexed filtered); event SubscriptionUpdated(address indexed registrant, address indexed subscription, bool indexed subscribed); }