ETH Price: $1,873.62 (-0.24%)

Transaction Decoder

Block:
4275509 at Sep-15-2017 04:43:12 AM +UTC
Transaction Fee:
0.00036082040625 ETH $0.68
Gas Used:
55,779 Gas / 6.46875 Gwei

Emitted Events:

49 DSToken.0xa9059cbb00000000000000000000000000000000000000000000000000000000( 0xa9059cbb00000000000000000000000000000000000000000000000000000000, 0x0000000000000000000000007f6fd52f187eca668964470744766706c51aef59, 0x0000000000000000000000002ea702da04bb93830991e4c50ed265d5e80062ed, 0x0000000000000000000000000000000000000000000000df2e8c0e50d2250000, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000004000000000, 00000000000000000000000000000000000000000000000000000044a9059cbb, 0000000000000000000000002ea702da04bb93830991e4c50ed265d5e80062ed, 0000000000000000000000000000000000000000000000df2e8c0e50d2250000 )
50 DSToken.Transfer( from=[Sender] 0x7f6fd52f187eca668964470744766706c51aef59, to=0x2EA702da04Bb93830991E4C50eD265d5E80062ed, value=4116978000000000000000 )

Account State Difference:

  Address   Before After State Difference Code
0x7F6fd52f...6c51Aef59
0.00344094130559965 Eth
Nonce: 14
0.00308012089934965 Eth
Nonce: 15
0.00036082040625
0x86Fa0498...B78ECfdb0
542.999218446604019876 Eth542.999579267010269876 Eth0.00036082040625

Execution Trace

DSToken.transfer( dst=0x2EA702da04Bb93830991E4C50eD265d5E80062ed, wad=4116978000000000000000 ) => ( True )
contract DSNote {
    event LogNote(
        bytes4   indexed  sig,
        address  indexed  guy,
        bytes32  indexed  foo,
        bytes32  indexed  bar,
	uint	 	  wad,
        bytes             fax
    ) anonymous;

    modifier note {
        bytes32 foo;
        bytes32 bar;

        assembly {
            foo := calldataload(4)
            bar := calldataload(36)
        }

        LogNote(msg.sig, msg.sender, foo, bar, msg.value, msg.data);

        _;
    }
}

contract DSAuthority {
    function canCall(
        address src, address dst, bytes4 sig
    ) constant returns (bool);
}

contract DSAuthEvents {
    event LogSetAuthority (address indexed authority);
    event LogSetOwner     (address indexed owner);
}

contract DSAuth is DSAuthEvents {
    DSAuthority  public  authority;
    address      public  owner;

    function DSAuth() {
        owner = msg.sender;
        LogSetOwner(msg.sender);
    }

    function setOwner(address owner_)
        auth
    {
        owner = owner_;
        LogSetOwner(owner);
    }

    function setAuthority(DSAuthority authority_)
        auth
    {
        authority = authority_;
        LogSetAuthority(authority);
    }

    modifier auth {
        assert(isAuthorized(msg.sender, msg.sig));
        _;
    }

    modifier authorized(bytes4 sig) {
        assert(isAuthorized(msg.sender, sig));
        _;
    }

    function isAuthorized(address src, bytes4 sig) internal returns (bool) {
        if (src == address(this)) {
            return true;
        } else if (src == owner) {
            return true;
        } else if (authority == DSAuthority(0)) {
            return false;
        } else {
            return authority.canCall(src, this, sig);
        }
    }

    function assert(bool x) internal {
        if (!x) throw;
    }
}

contract DSStop is DSAuth, DSNote {

    bool public stopped;

    modifier stoppable {
        assert (!stopped);
        _;
    }
    function stop() auth note {
        stopped = true;
    }
    function start() auth note {
        stopped = false;
    }

}

contract DSMath {
    
    /*
    standard uint256 functions
     */

    function add(uint256 x, uint256 y) constant internal returns (uint256 z) {
        assert((z = x + y) >= x);
    }

    function sub(uint256 x, uint256 y) constant internal returns (uint256 z) {
        assert((z = x - y) <= x);
    }

    function mul(uint256 x, uint256 y) constant internal returns (uint256 z) {
        assert((z = x * y) >= x);
    }

    function div(uint256 x, uint256 y) constant internal returns (uint256 z) {
        z = x / y;
    }

    function min(uint256 x, uint256 y) constant internal returns (uint256 z) {
        return x <= y ? x : y;
    }
    function max(uint256 x, uint256 y) constant internal returns (uint256 z) {
        return x >= y ? x : y;
    }

    /*
    uint128 functions (h is for half)
     */


    function hadd(uint128 x, uint128 y) constant internal returns (uint128 z) {
        assert((z = x + y) >= x);
    }

    function hsub(uint128 x, uint128 y) constant internal returns (uint128 z) {
        assert((z = x - y) <= x);
    }

    function hmul(uint128 x, uint128 y) constant internal returns (uint128 z) {
        assert((z = x * y) >= x);
    }

    function hdiv(uint128 x, uint128 y) constant internal returns (uint128 z) {
        z = x / y;
    }

    function hmin(uint128 x, uint128 y) constant internal returns (uint128 z) {
        return x <= y ? x : y;
    }
    function hmax(uint128 x, uint128 y) constant internal returns (uint128 z) {
        return x >= y ? x : y;
    }


    /*
    int256 functions
     */

    function imin(int256 x, int256 y) constant internal returns (int256 z) {
        return x <= y ? x : y;
    }
    function imax(int256 x, int256 y) constant internal returns (int256 z) {
        return x >= y ? x : y;
    }

    /*
    WAD math
     */

    uint128 constant WAD = 10 ** 18;

    function wadd(uint128 x, uint128 y) constant internal returns (uint128) {
        return hadd(x, y);
    }

    function wsub(uint128 x, uint128 y) constant internal returns (uint128) {
        return hsub(x, y);
    }

    function wmul(uint128 x, uint128 y) constant internal returns (uint128 z) {
        z = cast((uint256(x) * y + WAD / 2) / WAD);
    }

    function wdiv(uint128 x, uint128 y) constant internal returns (uint128 z) {
        z = cast((uint256(x) * WAD + y / 2) / y);
    }

    function wmin(uint128 x, uint128 y) constant internal returns (uint128) {
        return hmin(x, y);
    }
    function wmax(uint128 x, uint128 y) constant internal returns (uint128) {
        return hmax(x, y);
    }

    /*
    RAY math
     */

    uint128 constant RAY = 10 ** 27;

    function radd(uint128 x, uint128 y) constant internal returns (uint128) {
        return hadd(x, y);
    }

    function rsub(uint128 x, uint128 y) constant internal returns (uint128) {
        return hsub(x, y);
    }

    function rmul(uint128 x, uint128 y) constant internal returns (uint128 z) {
        z = cast((uint256(x) * y + RAY / 2) / RAY);
    }

    function rdiv(uint128 x, uint128 y) constant internal returns (uint128 z) {
        z = cast((uint256(x) * RAY + y / 2) / y);
    }

    function rpow(uint128 x, uint64 n) constant internal returns (uint128 z) {
        // This famous algorithm is called "exponentiation by squaring"
        // and calculates x^n with x as fixed-point and n as regular unsigned.
        //
        // It's O(log n), instead of O(n) for naive repeated multiplication.
        //
        // These facts are why it works:
        //
        //  If n is even, then x^n = (x^2)^(n/2).
        //  If n is odd,  then x^n = x * x^(n-1),
        //   and applying the equation for even x gives
        //    x^n = x * (x^2)^((n-1) / 2).
        //
        //  Also, EVM division is flooring and
        //    floor[(n-1) / 2] = floor[n / 2].

        z = n % 2 != 0 ? x : RAY;

        for (n /= 2; n != 0; n /= 2) {
            x = rmul(x, x);

            if (n % 2 != 0) {
                z = rmul(z, x);
            }
        }
    }

    function rmin(uint128 x, uint128 y) constant internal returns (uint128) {
        return hmin(x, y);
    }
    function rmax(uint128 x, uint128 y) constant internal returns (uint128) {
        return hmax(x, y);
    }

    function cast(uint256 x) constant internal returns (uint128 z) {
        assert((z = uint128(x)) == x);
    }

}

contract ERC20 {
    function totalSupply() constant returns (uint supply);
    function balanceOf( address who ) constant returns (uint value);
    function allowance( address owner, address spender ) constant returns (uint _allowance);

    function transfer( address to, uint value) returns (bool ok);
    function transferFrom( address from, address to, uint value) returns (bool ok);
    function approve( address spender, uint value ) returns (bool ok);

    event Transfer( address indexed from, address indexed to, uint value);
    event Approval( address indexed owner, address indexed spender, uint value);
}

contract DSTokenBase is ERC20, DSMath {
    uint256                                            _supply;
    mapping (address => uint256)                       _balances;
    mapping (address => mapping (address => uint256))  _approvals;
    
    function DSTokenBase(uint256 supply) {
        _balances[msg.sender] = supply;
        _supply = supply;
    }
    
    function totalSupply() constant returns (uint256) {
        return _supply;
    }
    function balanceOf(address src) constant returns (uint256) {
        return _balances[src];
    }
    function allowance(address src, address guy) constant returns (uint256) {
        return _approvals[src][guy];
    }
    
    function transfer(address dst, uint wad) returns (bool) {
        assert(_balances[msg.sender] >= wad);
        
        _balances[msg.sender] = sub(_balances[msg.sender], wad);
        _balances[dst] = add(_balances[dst], wad);
        
        Transfer(msg.sender, dst, wad);
        
        return true;
    }
    
    function transferFrom(address src, address dst, uint wad) returns (bool) {
        assert(_balances[src] >= wad);
        assert(_approvals[src][msg.sender] >= wad);
        
        _approvals[src][msg.sender] = sub(_approvals[src][msg.sender], wad);
        _balances[src] = sub(_balances[src], wad);
        _balances[dst] = add(_balances[dst], wad);
        
        Transfer(src, dst, wad);
        
        return true;
    }
    
    function approve(address guy, uint256 wad) returns (bool) {
        _approvals[msg.sender][guy] = wad;
        
        Approval(msg.sender, guy, wad);
        
        return true;
    }

}

contract DSToken is DSTokenBase(0), DSStop {

    bytes32  public  symbol;
    uint256  public  decimals = 18; // standard token precision. override to customize

    function DSToken(bytes32 symbol_) {
        symbol = symbol_;
    }

    function transfer(address dst, uint wad) stoppable note returns (bool) {
        return super.transfer(dst, wad);
    }
    function transferFrom(
        address src, address dst, uint wad
    ) stoppable note returns (bool) {
        return super.transferFrom(src, dst, wad);
    }
    function approve(address guy, uint wad) stoppable note returns (bool) {
        return super.approve(guy, wad);
    }

    function push(address dst, uint128 wad) returns (bool) {
        return transfer(dst, wad);
    }
    function pull(address src, uint128 wad) returns (bool) {
        return transferFrom(src, msg.sender, wad);
    }

    function mint(uint128 wad) auth stoppable note {
        _balances[msg.sender] = add(_balances[msg.sender], wad);
        _supply = add(_supply, wad);
    }
    function burn(uint128 wad) auth stoppable note {
        _balances[msg.sender] = sub(_balances[msg.sender], wad);
        _supply = sub(_supply, wad);
    }

    // Optional token name

    bytes32   public  name = "";
    
    function setName(bytes32 name_) auth {
        name = name_;
    }

}